xref: /freebsd/sys/arm/arm/mpcore_timer.c (revision 5b9b849b)
1 /*-
2  * Copyright (c) 2011 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * Developed by Ben Gray <ben.r.gray@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company nor the name of the author may be used to
16  *    endorse or promote products derived from this software without specific
17  *    prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /**
33  * The ARM Cortex-A9 core can support a global timer plus a private and
34  * watchdog timer per core.  This driver reserves memory and interrupt
35  * resources for accessing both timer register sets, these resources are
36  * stored globally and used to setup the timecount and eventtimer.
37  *
38  * The timecount timer uses the global 64-bit counter, whereas the
39  * per-CPU eventtimer uses the private 32-bit counters.
40  *
41  *
42  * REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2)
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 #include <sys/kernel.h>
52 #include <sys/module.h>
53 #include <sys/malloc.h>
54 #include <sys/rman.h>
55 #include <sys/timeet.h>
56 #include <sys/timetc.h>
57 #include <sys/watchdog.h>
58 #include <machine/bus.h>
59 #include <machine/cpu.h>
60 #include <machine/intr.h>
61 
62 #include <dev/fdt/fdt_common.h>
63 #include <dev/ofw/openfirm.h>
64 #include <dev/ofw/ofw_bus.h>
65 #include <dev/ofw/ofw_bus_subr.h>
66 
67 #include <machine/bus.h>
68 #include <machine/fdt.h>
69 
70 #include <arm/arm/mpcore_timervar.h>
71 
72 /* Private (per-CPU) timer register map */
73 #define PRV_TIMER_LOAD                 0x0000
74 #define PRV_TIMER_COUNT                0x0004
75 #define PRV_TIMER_CTRL                 0x0008
76 #define PRV_TIMER_INTR                 0x000C
77 
78 #define PRV_TIMER_CTR_PRESCALER_SHIFT  8
79 #define PRV_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
80 #define PRV_TIMER_CTRL_AUTO_RELOAD     (1UL << 1)
81 #define PRV_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
82 
83 #define PRV_TIMER_INTR_EVENT           (1UL << 0)
84 
85 /* Global timer register map */
86 #define GBL_TIMER_COUNT_LOW            0x0000
87 #define GBL_TIMER_COUNT_HIGH           0x0004
88 #define GBL_TIMER_CTRL                 0x0008
89 #define GBL_TIMER_INTR                 0x000C
90 
91 #define GBL_TIMER_CTR_PRESCALER_SHIFT  8
92 #define GBL_TIMER_CTRL_AUTO_INC        (1UL << 3)
93 #define GBL_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
94 #define GBL_TIMER_CTRL_COMP_ENABLE     (1UL << 1)
95 #define GBL_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
96 
97 #define GBL_TIMER_INTR_EVENT           (1UL << 0)
98 
99 struct arm_tmr_softc {
100 	struct resource *	tmr_res[4];
101 	bus_space_tag_t		prv_bst;
102 	bus_space_tag_t		gbl_bst;
103 	bus_space_handle_t	prv_bsh;
104 	bus_space_handle_t	gbl_bsh;
105 	uint64_t		clkfreq;
106 	struct eventtimer	et;
107 };
108 
109 static struct resource_spec arm_tmr_spec[] = {
110 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },	/* Global registers */
111 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },    /* Global timer interrupt (unused) */
112 	{ SYS_RES_MEMORY,	1,	RF_ACTIVE },	/* Private (per-CPU) registers */
113 	{ SYS_RES_IRQ,		1,	RF_ACTIVE },    /* Private timer interrupt */
114 	{ -1, 0 }
115 };
116 
117 static struct arm_tmr_softc *arm_tmr_sc = NULL;
118 
119 static uint64_t platform_arm_tmr_freq = 0;
120 
121 #define	tmr_prv_read_4(reg)		\
122     bus_space_read_4(arm_tmr_sc->prv_bst, arm_tmr_sc->prv_bsh, reg)
123 #define	tmr_prv_write_4(reg, val)		\
124     bus_space_write_4(arm_tmr_sc->prv_bst, arm_tmr_sc->prv_bsh, reg, val)
125 #define	tmr_gbl_read_4(reg)		\
126     bus_space_read_4(arm_tmr_sc->gbl_bst, arm_tmr_sc->gbl_bsh, reg)
127 #define	tmr_gbl_write_4(reg, val)		\
128     bus_space_write_4(arm_tmr_sc->gbl_bst, arm_tmr_sc->gbl_bsh, reg, val)
129 
130 
131 static timecounter_get_t arm_tmr_get_timecount;
132 
133 static struct timecounter arm_tmr_timecount = {
134 	.tc_name           = "MPCore",
135 	.tc_get_timecount  = arm_tmr_get_timecount,
136 	.tc_poll_pps       = NULL,
137 	.tc_counter_mask   = ~0u,
138 	.tc_frequency      = 0,
139 	.tc_quality        = 800,
140 };
141 
142 /**
143  *	arm_tmr_get_timecount - reads the timecount (global) timer
144  *	@tc: pointer to arm_tmr_timecount struct
145  *
146  *	We only read the lower 32-bits, the timecount stuff only uses 32-bits
147  *	so (for now?) ignore the upper 32-bits.
148  *
149  *	RETURNS
150  *	The lower 32-bits of the counter.
151  */
152 static unsigned
153 arm_tmr_get_timecount(struct timecounter *tc)
154 {
155 	return (tmr_gbl_read_4(GBL_TIMER_COUNT_LOW));
156 }
157 
158 /**
159  *	arm_tmr_start - starts the eventtimer (private) timer
160  *	@et: pointer to eventtimer struct
161  *	@first: the number of seconds and fractional sections to trigger in
162  *	@period: the period (in seconds and fractional sections) to set
163  *
164  *	If the eventtimer is required to be in oneshot mode, period will be
165  *	NULL and first will point to the time to trigger.  If in periodic mode
166  *	period will contain the time period and first may optionally contain
167  *	the time for the first period.
168  *
169  *	RETURNS
170  *	Always returns 0
171  */
172 static int
173 arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
174 {
175 	uint32_t load, count;
176 	uint32_t ctrl;
177 
178 	tmr_prv_write_4(PRV_TIMER_CTRL, 0);
179 	tmr_prv_write_4(PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
180 
181 	ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE;
182 
183 	if (period != 0) {
184 		load = ((uint32_t)et->et_frequency * period) >> 32;
185 		ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD;
186 	} else
187 		load = 0;
188 
189 	if (first != 0)
190 		count = (uint32_t)((et->et_frequency * first) >> 32);
191 	else
192 		count = load;
193 
194 	tmr_prv_write_4(PRV_TIMER_LOAD, load);
195 	tmr_prv_write_4(PRV_TIMER_COUNT, count);
196 	tmr_prv_write_4(PRV_TIMER_CTRL, ctrl);
197 
198 	return (0);
199 }
200 
201 /**
202  *	arm_tmr_stop - stops the eventtimer (private) timer
203  *	@et: pointer to eventtimer struct
204  *
205  *	Simply stops the private timer by clearing all bits in the ctrl register.
206  *
207  *	RETURNS
208  *	Always returns 0
209  */
210 static int
211 arm_tmr_stop(struct eventtimer *et)
212 {
213 	tmr_prv_write_4(PRV_TIMER_CTRL, 0);
214 	tmr_prv_write_4(PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
215 	return (0);
216 }
217 
218 /**
219  *	arm_tmr_intr - ISR for the eventtimer (private) timer
220  *	@arg: pointer to arm_tmr_softc struct
221  *
222  *	Clears the event register and then calls the eventtimer callback.
223  *
224  *	RETURNS
225  *	Always returns FILTER_HANDLED
226  */
227 static int
228 arm_tmr_intr(void *arg)
229 {
230 	struct arm_tmr_softc *sc = (struct arm_tmr_softc *)arg;
231 
232 	tmr_prv_write_4(PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
233 
234 	if (sc->et.et_active)
235 		sc->et.et_event_cb(&sc->et, sc->et.et_arg);
236 
237 	return (FILTER_HANDLED);
238 }
239 
240 
241 
242 
243 /**
244  *	arm_tmr_probe - timer probe routine
245  *	@dev: new device
246  *
247  *	The probe function returns success when probed with the fdt compatible
248  *	string set to "arm,mpcore-timers".
249  *
250  *	RETURNS
251  *	BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO.
252  */
253 static int
254 arm_tmr_probe(device_t dev)
255 {
256 
257 	if (!ofw_bus_status_okay(dev))
258 		return (ENXIO);
259 
260 	if (!ofw_bus_is_compatible(dev, "arm,mpcore-timers"))
261 		return (ENXIO);
262 
263 	device_set_desc(dev, "ARM MPCore Timers");
264 	return (BUS_PROBE_DEFAULT);
265 }
266 
267 /**
268  *	arm_tmr_attach - attaches the timer to the simplebus
269  *	@dev: new device
270  *
271  *	Reserves memory and interrupt resources, stores the softc structure
272  *	globally and registers both the timecount and eventtimer objects.
273  *
274  *	RETURNS
275  *	Zero on sucess or ENXIO if an error occuried.
276  */
277 static int
278 arm_tmr_attach(device_t dev)
279 {
280 	struct arm_tmr_softc *sc = device_get_softc(dev);
281 	phandle_t node;
282 	pcell_t clock;
283 	void *ihl;
284 	boolean_t fixed_freq;
285 
286 	if (arm_tmr_sc)
287 		return (ENXIO);
288 
289 	if (platform_arm_tmr_freq == ARM_TMR_FREQUENCY_VARIES) {
290 		fixed_freq = false;
291 	} else {
292 		fixed_freq = true;
293 		if (platform_arm_tmr_freq != 0) {
294 			sc->clkfreq = platform_arm_tmr_freq;
295 		} else {
296 			/* Get the base clock frequency */
297 			node = ofw_bus_get_node(dev);
298 			if ((OF_getencprop(node, "clock-frequency", &clock,
299 			    sizeof(clock))) <= 0) {
300 				device_printf(dev, "missing clock-frequency "
301 				    "attribute in FDT\n");
302 				return (ENXIO);
303 			}
304 		}
305 	}
306 
307 	if (bus_alloc_resources(dev, arm_tmr_spec, sc->tmr_res)) {
308 		device_printf(dev, "could not allocate resources\n");
309 		return (ENXIO);
310 	}
311 
312 	/* Global timer interface */
313 	sc->gbl_bst = rman_get_bustag(sc->tmr_res[0]);
314 	sc->gbl_bsh = rman_get_bushandle(sc->tmr_res[0]);
315 
316 	/* Private per-CPU timer interface */
317 	sc->prv_bst = rman_get_bustag(sc->tmr_res[2]);
318 	sc->prv_bsh = rman_get_bushandle(sc->tmr_res[2]);
319 
320 	arm_tmr_sc = sc;
321 
322 	/* Disable both timers to start off */
323 	tmr_prv_write_4(PRV_TIMER_CTRL, 0x00000000);
324 	tmr_gbl_write_4(GBL_TIMER_CTRL, 0x00000000);
325 
326 	if (bus_setup_intr(dev, sc->tmr_res[3], INTR_TYPE_CLK, arm_tmr_intr,
327 			NULL, sc, &ihl) != 0) {
328 		bus_release_resources(dev, arm_tmr_spec, sc->tmr_res);
329 		device_printf(dev, "Unable to setup the clock irq handler.\n");
330 		return (ENXIO);
331 	}
332 
333 	/*
334 	 * If the clock is fixed-frequency, setup and enable the global timer to
335 	 * use as the timecounter.  If it's variable frequency it won't work as
336 	 * a timecounter.  We also can't use it for DELAY(), so hopefully the
337 	 * platform provides its own implementation.  If it doesn't, ours will
338 	 * get used, but since the frequency isn't set, it will only use the
339 	 * bogus loop counter.
340 	 */
341 	if (fixed_freq)  {
342 		tmr_gbl_write_4(GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE);
343 		arm_tmr_timecount.tc_frequency = sc->clkfreq;
344 		tc_init(&arm_tmr_timecount);
345 	}
346 
347 	/*
348 	 * Setup and register the eventtimer.  Most event timers set their min
349 	 * and max period values to some value calculated from the clock
350 	 * frequency.  We might not know yet what our runtime clock frequency
351 	 * will be, so we just use some safe values.  A max of 2 seconds ensures
352 	 * that even if our base clock frequency is 2GHz (meaning a 4GHz CPU),
353 	 * we won't overflow our 32-bit timer count register.  A min of 20
354 	 * nanoseconds is pretty much completely arbitrary.
355 	 */
356 	sc->et.et_name = "MPCore";
357 	sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
358 	sc->et.et_quality = 1000;
359 	sc->et.et_frequency = sc->clkfreq;
360 	sc->et.et_min_period = 20 * SBT_1NS;
361 	sc->et.et_max_period =  2 * SBT_1S;
362 	sc->et.et_start = arm_tmr_start;
363 	sc->et.et_stop = arm_tmr_stop;
364 	sc->et.et_priv = sc;
365 	et_register(&sc->et);
366 
367 	return (0);
368 }
369 
370 static device_method_t arm_tmr_methods[] = {
371 	DEVMETHOD(device_probe,		arm_tmr_probe),
372 	DEVMETHOD(device_attach,	arm_tmr_attach),
373 	{ 0, 0 }
374 };
375 
376 static driver_t arm_tmr_driver = {
377 	"mp_tmr",
378 	arm_tmr_methods,
379 	sizeof(struct arm_tmr_softc),
380 };
381 
382 static devclass_t arm_tmr_devclass;
383 
384 DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, arm_tmr_devclass, 0, 0);
385 
386 /*
387  * Handle a change in clock frequency.  The mpcore timer runs at half the CPU
388  * frequency.  When the CPU frequency changes due to power-saving or thermal
389  * managment, the platform-specific code that causes the frequency change calls
390  * this routine to inform the clock driver, and we in turn inform the event
391  * timer system, which actually updates the value in et->frequency for us and
392  * reschedules the current event(s) in a way that's atomic with respect to
393  * start/stop/intr code that may be running on various CPUs at the time of the
394  * call.
395  *
396  * This routine can also be called by a platform's early init code.  If the
397  * value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code
398  * to register as an eventtimer, but not a timecounter.  If the value passed in
399  * is any other non-zero value it is used as the fixed frequency for the timer.
400  */
401 void
402 arm_tmr_change_frequency(uint64_t newfreq)
403 {
404 
405 	if (arm_tmr_sc == NULL)
406 		platform_arm_tmr_freq = newfreq;
407 	else
408 		et_change_frequency(&arm_tmr_sc->et, newfreq);
409 }
410 
411 /**
412  *	DELAY - Delay for at least usec microseconds.
413  *	@usec: number of microseconds to delay by
414  *
415  *	This function is called all over the kernel and is suppose to provide a
416  *	consistent delay.  This function may also be called before the console
417  *	is setup so no printf's can be called here.
418  *
419  *	RETURNS:
420  *	nothing
421  */
422 static void __used /* Must emit function code for the weak ref below. */
423 arm_tmr_DELAY(int usec)
424 {
425 	int32_t counts_per_usec;
426 	int32_t counts;
427 	uint32_t first, last;
428 
429 	/* Check the timers are setup, if not just use a for loop for the meantime */
430 	if (arm_tmr_sc == NULL || arm_tmr_timecount.tc_frequency == 0) {
431 		for (; usec > 0; usec--)
432 			for (counts = 200; counts > 0; counts--)
433 				cpufunc_nullop();	/* Prevent gcc from optimizing
434 							 * out the loop
435 							 */
436 		return;
437 	}
438 
439 	/* Get the number of times to count */
440 	counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
441 
442 	/*
443 	 * Clamp the timeout at a maximum value (about 32 seconds with
444 	 * a 66MHz clock). *Nobody* should be delay()ing for anywhere
445 	 * near that length of time and if they are, they should be hung
446 	 * out to dry.
447 	 */
448 	if (usec >= (0x80000000U / counts_per_usec))
449 		counts = (0x80000000U / counts_per_usec) - 1;
450 	else
451 		counts = usec * counts_per_usec;
452 
453 	first = tmr_gbl_read_4(GBL_TIMER_COUNT_LOW);
454 
455 	while (counts > 0) {
456 		last = tmr_gbl_read_4(GBL_TIMER_COUNT_LOW);
457 		counts -= (int32_t)(last - first);
458 		first = last;
459 	}
460 }
461 
462 /*
463  * Supply a DELAY() implementation via weak linkage.  A platform may want to use
464  * the mpcore per-cpu eventtimers but provide its own DELAY() routine,
465  * especially when the core frequency can change on the fly.
466  */
467 __weak_reference(arm_tmr_DELAY, DELAY);
468 
469