xref: /freebsd/sys/arm/arm/mpcore_timer.c (revision 6048caab)
1 /*-
2  * Copyright (c) 2011 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * Developed by Ben Gray <ben.r.gray@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company nor the name of the author may be used to
16  *    endorse or promote products derived from this software without specific
17  *    prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /**
33  * The ARM Cortex-A9 core can support a global timer plus a private and
34  * watchdog timer per core.  This driver reserves memory and interrupt
35  * resources for accessing both timer register sets, these resources are
36  * stored globally and used to setup the timecount and eventtimer.
37  *
38  * The timecount timer uses the global 64-bit counter, whereas the
39  * per-CPU eventtimer uses the private 32-bit counters.
40  *
41  *
42  * REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2)
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 #include <sys/kernel.h>
52 #include <sys/module.h>
53 #include <sys/malloc.h>
54 #include <sys/rman.h>
55 #include <sys/timeet.h>
56 #include <sys/timetc.h>
57 #include <sys/watchdog.h>
58 #include <machine/bus.h>
59 #include <machine/cpu.h>
60 #include <machine/intr.h>
61 
62 #include <dev/fdt/fdt_common.h>
63 #include <dev/ofw/openfirm.h>
64 #include <dev/ofw/ofw_bus.h>
65 #include <dev/ofw/ofw_bus_subr.h>
66 
67 #include <machine/bus.h>
68 #include <machine/fdt.h>
69 
70 #include <arm/arm/mpcore_timervar.h>
71 
72 /* Private (per-CPU) timer register map */
73 #define PRV_TIMER_LOAD                 0x0000
74 #define PRV_TIMER_COUNT                0x0004
75 #define PRV_TIMER_CTRL                 0x0008
76 #define PRV_TIMER_INTR                 0x000C
77 
78 #define PRV_TIMER_CTR_PRESCALER_SHIFT  8
79 #define PRV_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
80 #define PRV_TIMER_CTRL_AUTO_RELOAD     (1UL << 1)
81 #define PRV_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
82 
83 #define PRV_TIMER_INTR_EVENT           (1UL << 0)
84 
85 /* Global timer register map */
86 #define GBL_TIMER_COUNT_LOW            0x0000
87 #define GBL_TIMER_COUNT_HIGH           0x0004
88 #define GBL_TIMER_CTRL                 0x0008
89 #define GBL_TIMER_INTR                 0x000C
90 
91 #define GBL_TIMER_CTR_PRESCALER_SHIFT  8
92 #define GBL_TIMER_CTRL_AUTO_INC        (1UL << 3)
93 #define GBL_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
94 #define GBL_TIMER_CTRL_COMP_ENABLE     (1UL << 1)
95 #define GBL_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
96 
97 #define GBL_TIMER_INTR_EVENT           (1UL << 0)
98 
99 struct arm_tmr_softc {
100 	device_t		dev;
101 	int			irqrid;
102 	int			memrid;
103 	struct resource *	gbl_mem;
104 	struct resource *	prv_mem;
105 	struct resource *	prv_irq;
106 	uint64_t		clkfreq;
107 	struct eventtimer	et;
108 };
109 
110 static struct eventtimer *arm_tmr_et;
111 static struct timecounter *arm_tmr_tc;
112 static uint64_t arm_tmr_freq;
113 static boolean_t arm_tmr_freq_varies;
114 
115 #define	tmr_prv_read_4(sc, reg)         bus_read_4((sc)->prv_mem, reg)
116 #define	tmr_prv_write_4(sc, reg, val)   bus_write_4((sc)->prv_mem, reg, val)
117 #define	tmr_gbl_read_4(sc, reg)         bus_read_4((sc)->gbl_mem, reg)
118 #define	tmr_gbl_write_4(sc, reg, val)   bus_write_4((sc)->gbl_mem, reg, val)
119 
120 static timecounter_get_t arm_tmr_get_timecount;
121 
122 static struct timecounter arm_tmr_timecount = {
123 	.tc_name           = "MPCore",
124 	.tc_get_timecount  = arm_tmr_get_timecount,
125 	.tc_poll_pps       = NULL,
126 	.tc_counter_mask   = ~0u,
127 	.tc_frequency      = 0,
128 	.tc_quality        = 800,
129 };
130 
131 #define	TMR_GBL		0x01
132 #define	TMR_PRV		0x02
133 #define	TMR_BOTH	(TMR_GBL | TMR_PRV)
134 #define	TMR_NONE	0
135 
136 static struct ofw_compat_data compat_data[] = {
137 	{"arm,mpcore-timers",		TMR_BOTH}, /* Non-standard, FreeBSD. */
138 	{"arm,cortex-a9-global-timer",	TMR_GBL},
139 	{"arm,cortex-a5-global-timer",	TMR_GBL},
140 	{"arm,cortex-a9-twd-timer",	TMR_PRV},
141 	{"arm,cortex-a5-twd-timer",	TMR_PRV},
142 	{"arm,arm11mp-twd-timer",	TMR_PRV},
143 	{NULL,				TMR_NONE}
144 };
145 
146 /**
147  *	arm_tmr_get_timecount - reads the timecount (global) timer
148  *	@tc: pointer to arm_tmr_timecount struct
149  *
150  *	We only read the lower 32-bits, the timecount stuff only uses 32-bits
151  *	so (for now?) ignore the upper 32-bits.
152  *
153  *	RETURNS
154  *	The lower 32-bits of the counter.
155  */
156 static unsigned
157 arm_tmr_get_timecount(struct timecounter *tc)
158 {
159 	struct arm_tmr_softc *sc;
160 
161 	sc = tc->tc_priv;
162 	return (tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW));
163 }
164 
165 /**
166  *	arm_tmr_start - starts the eventtimer (private) timer
167  *	@et: pointer to eventtimer struct
168  *	@first: the number of seconds and fractional sections to trigger in
169  *	@period: the period (in seconds and fractional sections) to set
170  *
171  *	If the eventtimer is required to be in oneshot mode, period will be
172  *	NULL and first will point to the time to trigger.  If in periodic mode
173  *	period will contain the time period and first may optionally contain
174  *	the time for the first period.
175  *
176  *	RETURNS
177  *	Always returns 0
178  */
179 static int
180 arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
181 {
182 	struct arm_tmr_softc *sc;
183 	uint32_t load, count;
184 	uint32_t ctrl;
185 
186 	sc = et->et_priv;
187 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
188 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
189 
190 	ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE;
191 
192 	if (period != 0) {
193 		load = ((uint32_t)et->et_frequency * period) >> 32;
194 		ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD;
195 	} else
196 		load = 0;
197 
198 	if (first != 0)
199 		count = (uint32_t)((et->et_frequency * first) >> 32);
200 	else
201 		count = load;
202 
203 	tmr_prv_write_4(sc, PRV_TIMER_LOAD, load);
204 	tmr_prv_write_4(sc, PRV_TIMER_COUNT, count);
205 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, ctrl);
206 
207 	return (0);
208 }
209 
210 /**
211  *	arm_tmr_stop - stops the eventtimer (private) timer
212  *	@et: pointer to eventtimer struct
213  *
214  *	Simply stops the private timer by clearing all bits in the ctrl register.
215  *
216  *	RETURNS
217  *	Always returns 0
218  */
219 static int
220 arm_tmr_stop(struct eventtimer *et)
221 {
222 	struct arm_tmr_softc *sc;
223 
224 	sc = et->et_priv;
225 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
226 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
227 	return (0);
228 }
229 
230 /**
231  *	arm_tmr_intr - ISR for the eventtimer (private) timer
232  *	@arg: pointer to arm_tmr_softc struct
233  *
234  *	Clears the event register and then calls the eventtimer callback.
235  *
236  *	RETURNS
237  *	Always returns FILTER_HANDLED
238  */
239 static int
240 arm_tmr_intr(void *arg)
241 {
242 	struct arm_tmr_softc *sc;
243 
244 	sc = arg;
245 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
246 	if (sc->et.et_active)
247 		sc->et.et_event_cb(&sc->et, sc->et.et_arg);
248 	return (FILTER_HANDLED);
249 }
250 
251 
252 
253 
254 /**
255  *	arm_tmr_probe - timer probe routine
256  *	@dev: new device
257  *
258  *	The probe function returns success when probed with the fdt compatible
259  *	string set to "arm,mpcore-timers".
260  *
261  *	RETURNS
262  *	BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO.
263  */
264 static int
265 arm_tmr_probe(device_t dev)
266 {
267 
268 	if (!ofw_bus_status_okay(dev))
269 		return (ENXIO);
270 
271 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == TMR_NONE)
272 		return (ENXIO);
273 
274 	device_set_desc(dev, "ARM MPCore Timers");
275 	return (BUS_PROBE_DEFAULT);
276 }
277 
278 static int
279 attach_tc(struct arm_tmr_softc *sc)
280 {
281 	int rid;
282 
283 	if (arm_tmr_tc != NULL)
284 		return (EBUSY);
285 
286 	rid = sc->memrid;
287 	sc->gbl_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid,
288 	    RF_ACTIVE);
289 	if (sc->gbl_mem == NULL) {
290 		device_printf(sc->dev, "could not allocate gbl mem resources\n");
291 		return (ENXIO);
292 	}
293 	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, 0x00000000);
294 
295 	arm_tmr_timecount.tc_frequency = sc->clkfreq;
296 	arm_tmr_timecount.tc_priv = sc;
297 	tc_init(&arm_tmr_timecount);
298 	arm_tmr_tc = &arm_tmr_timecount;
299 
300 	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE);
301 
302 	return (0);
303 }
304 
305 static int
306 attach_et(struct arm_tmr_softc *sc)
307 {
308 	void *ihl;
309 	int irid, mrid;
310 
311 	if (arm_tmr_et != NULL)
312 		return (EBUSY);
313 
314 	mrid = sc->memrid;
315 	sc->prv_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mrid,
316 	    RF_ACTIVE);
317 	if (sc->prv_mem == NULL) {
318 		device_printf(sc->dev, "could not allocate prv mem resources\n");
319 		return (ENXIO);
320 	}
321 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0x00000000);
322 
323 	irid = sc->irqrid;
324 	sc->prv_irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irid, RF_ACTIVE);
325 	if (sc->prv_irq == NULL) {
326 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
327 		device_printf(sc->dev, "could not allocate prv irq resources\n");
328 		return (ENXIO);
329 	}
330 
331 	if (bus_setup_intr(sc->dev, sc->prv_irq, INTR_TYPE_CLK, arm_tmr_intr,
332 			NULL, sc, &ihl) != 0) {
333 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
334 		bus_release_resource(sc->dev, SYS_RES_IRQ, irid, sc->prv_irq);
335 		device_printf(sc->dev, "unable to setup the et irq handler.\n");
336 		return (ENXIO);
337 	}
338 
339 	/*
340 	 * Setup and register the eventtimer.  Most event timers set their min
341 	 * and max period values to some value calculated from the clock
342 	 * frequency.  We might not know yet what our runtime clock frequency
343 	 * will be, so we just use some safe values.  A max of 2 seconds ensures
344 	 * that even if our base clock frequency is 2GHz (meaning a 4GHz CPU),
345 	 * we won't overflow our 32-bit timer count register.  A min of 20
346 	 * nanoseconds is pretty much completely arbitrary.
347 	 */
348 	sc->et.et_name = "MPCore";
349 	sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
350 	sc->et.et_quality = 1000;
351 	sc->et.et_frequency = sc->clkfreq;
352 	sc->et.et_min_period = 20 * SBT_1NS;
353 	sc->et.et_max_period =  2 * SBT_1S;
354 	sc->et.et_start = arm_tmr_start;
355 	sc->et.et_stop = arm_tmr_stop;
356 	sc->et.et_priv = sc;
357 	et_register(&sc->et);
358 	arm_tmr_et = &sc->et;
359 
360 	return (0);
361 }
362 
363 /**
364  *	arm_tmr_attach - attaches the timer to the simplebus
365  *	@dev: new device
366  *
367  *	Reserves memory and interrupt resources, stores the softc structure
368  *	globally and registers both the timecount and eventtimer objects.
369  *
370  *	RETURNS
371  *	Zero on sucess or ENXIO if an error occuried.
372  */
373 static int
374 arm_tmr_attach(device_t dev)
375 {
376 	struct arm_tmr_softc *sc;
377 	phandle_t node;
378 	pcell_t clock;
379 	int et_err, tc_err, tmrtype;
380 
381 	sc = device_get_softc(dev);
382 	sc->dev = dev;
383 
384 	if (arm_tmr_freq_varies) {
385 		sc->clkfreq = arm_tmr_freq;
386 	} else {
387 		if (arm_tmr_freq != 0) {
388 			sc->clkfreq = arm_tmr_freq;
389 		} else {
390 			/* Get the base clock frequency */
391 			node = ofw_bus_get_node(dev);
392 			if ((OF_getencprop(node, "clock-frequency", &clock,
393 			    sizeof(clock))) <= 0) {
394 				device_printf(dev, "missing clock-frequency "
395 				    "attribute in FDT\n");
396 				return (ENXIO);
397 			}
398 			sc->clkfreq = clock;
399 		}
400 	}
401 
402 	tmrtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
403 	tc_err = ENXIO;
404 	et_err = ENXIO;
405 
406 	/*
407 	 * If we're handling the global timer and it is fixed-frequency, set it
408 	 * up to use as a timecounter.  If it's variable frequency it won't work
409 	 * as a timecounter.  We also can't use it for DELAY(), so hopefully the
410 	 * platform provides its own implementation. If it doesn't, ours will
411 	 * get used, but since the frequency isn't set, it will only use the
412 	 * bogus loop counter.
413 	 */
414 	if (tmrtype & TMR_GBL) {
415 		if (!arm_tmr_freq_varies)
416 			tc_err = attach_tc(sc);
417 		else if (bootverbose)
418 			device_printf(sc->dev,
419 			    "not using variable-frequency device as timecounter");
420 		sc->memrid++;
421 		sc->irqrid++;
422 	}
423 
424 	/* If we are handling the private timer, set it up as an eventtimer. */
425 	if (tmrtype & TMR_PRV) {
426 		et_err = attach_et(sc);
427 	}
428 
429 	/*
430 	 * If we didn't successfully set up a timecounter or eventtimer then we
431 	 * didn't actually attach at all, return error.
432 	 */
433 	if (tc_err != 0 && et_err != 0) {
434 		return (ENXIO);
435 	}
436 	return (0);
437 }
438 
439 static device_method_t arm_tmr_methods[] = {
440 	DEVMETHOD(device_probe,		arm_tmr_probe),
441 	DEVMETHOD(device_attach,	arm_tmr_attach),
442 	{ 0, 0 }
443 };
444 
445 static driver_t arm_tmr_driver = {
446 	"mp_tmr",
447 	arm_tmr_methods,
448 	sizeof(struct arm_tmr_softc),
449 };
450 
451 static devclass_t arm_tmr_devclass;
452 
453 EARLY_DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
454     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
455 EARLY_DRIVER_MODULE(mp_tmr, ofwbus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
456     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
457 
458 /*
459  * Handle a change in clock frequency.  The mpcore timer runs at half the CPU
460  * frequency.  When the CPU frequency changes due to power-saving or thermal
461  * managment, the platform-specific code that causes the frequency change calls
462  * this routine to inform the clock driver, and we in turn inform the event
463  * timer system, which actually updates the value in et->frequency for us and
464  * reschedules the current event(s) in a way that's atomic with respect to
465  * start/stop/intr code that may be running on various CPUs at the time of the
466  * call.
467  *
468  * This routine can also be called by a platform's early init code.  If the
469  * value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code
470  * to register as an eventtimer, but not a timecounter.  If the value passed in
471  * is any other non-zero value it is used as the fixed frequency for the timer.
472  */
473 void
474 arm_tmr_change_frequency(uint64_t newfreq)
475 {
476 
477 	if (newfreq == ARM_TMR_FREQUENCY_VARIES) {
478 		arm_tmr_freq_varies = true;
479 		return;
480 	}
481 
482 	arm_tmr_freq = newfreq;
483 	if (arm_tmr_et != NULL)
484 		et_change_frequency(arm_tmr_et, newfreq);
485 }
486 
487 /**
488  *	DELAY - Delay for at least usec microseconds.
489  *	@usec: number of microseconds to delay by
490  *
491  *	This function is called all over the kernel and is suppose to provide a
492  *	consistent delay.  This function may also be called before the console
493  *	is setup so no printf's can be called here.
494  *
495  *	RETURNS:
496  *	nothing
497  */
498 static void __used /* Must emit function code for the weak ref below. */
499 arm_tmr_DELAY(int usec)
500 {
501 	struct arm_tmr_softc *sc;
502 	int32_t counts_per_usec;
503 	int32_t counts;
504 	uint32_t first, last;
505 
506 	/* Check the timers are setup, if not just use a for loop for the meantime */
507 	if (arm_tmr_tc == NULL || arm_tmr_timecount.tc_frequency == 0) {
508 		for (; usec > 0; usec--)
509 			for (counts = 200; counts > 0; counts--)
510 				cpufunc_nullop();	/* Prevent gcc from optimizing
511 							 * out the loop
512 							 */
513 		return;
514 	}
515 
516 	sc = arm_tmr_tc->tc_priv;
517 
518 	/* Get the number of times to count */
519 	counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
520 
521 	/*
522 	 * Clamp the timeout at a maximum value (about 32 seconds with
523 	 * a 66MHz clock). *Nobody* should be delay()ing for anywhere
524 	 * near that length of time and if they are, they should be hung
525 	 * out to dry.
526 	 */
527 	if (usec >= (0x80000000U / counts_per_usec))
528 		counts = (0x80000000U / counts_per_usec) - 1;
529 	else
530 		counts = usec * counts_per_usec;
531 
532 	first = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
533 
534 	while (counts > 0) {
535 		last = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
536 		counts -= (int32_t)(last - first);
537 		first = last;
538 	}
539 }
540 
541 /*
542  * Supply a DELAY() implementation via weak linkage.  A platform may want to use
543  * the mpcore per-cpu eventtimers but provide its own DELAY() routine,
544  * especially when the core frequency can change on the fly.
545  */
546 __weak_reference(arm_tmr_DELAY, DELAY);
547 
548