xref: /freebsd/sys/arm/arm/mpcore_timer.c (revision 65454883)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2011 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Developed by Ben Gray <ben.r.gray@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the company nor the name of the author may be used to
18  *    endorse or promote products derived from this software without specific
19  *    prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /**
35  * The ARM Cortex-A9 core can support a global timer plus a private and
36  * watchdog timer per core.  This driver reserves memory and interrupt
37  * resources for accessing both timer register sets, these resources are
38  * stored globally and used to setup the timecount and eventtimer.
39  *
40  * The timecount timer uses the global 64-bit counter, whereas the
41  * per-CPU eventtimer uses the private 32-bit counters.
42  *
43  *
44  * REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2)
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/bus.h>
53 #include <sys/kernel.h>
54 #include <sys/module.h>
55 #include <sys/malloc.h>
56 #include <sys/rman.h>
57 #include <sys/timeet.h>
58 #include <sys/timetc.h>
59 #include <sys/watchdog.h>
60 #include <machine/bus.h>
61 #include <machine/cpu.h>
62 #include <machine/intr.h>
63 
64 #include <machine/machdep.h> /* For arm_set_delay */
65 
66 #include <dev/ofw/openfirm.h>
67 #include <dev/ofw/ofw_bus.h>
68 #include <dev/ofw/ofw_bus_subr.h>
69 
70 #include <machine/bus.h>
71 
72 #include <arm/arm/mpcore_timervar.h>
73 
74 /* Private (per-CPU) timer register map */
75 #define PRV_TIMER_LOAD                 0x0000
76 #define PRV_TIMER_COUNT                0x0004
77 #define PRV_TIMER_CTRL                 0x0008
78 #define PRV_TIMER_INTR                 0x000C
79 
80 #define PRV_TIMER_CTR_PRESCALER_SHIFT  8
81 #define PRV_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
82 #define PRV_TIMER_CTRL_AUTO_RELOAD     (1UL << 1)
83 #define PRV_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
84 
85 #define PRV_TIMER_INTR_EVENT           (1UL << 0)
86 
87 /* Global timer register map */
88 #define GBL_TIMER_COUNT_LOW            0x0000
89 #define GBL_TIMER_COUNT_HIGH           0x0004
90 #define GBL_TIMER_CTRL                 0x0008
91 #define GBL_TIMER_INTR                 0x000C
92 
93 #define GBL_TIMER_CTR_PRESCALER_SHIFT  8
94 #define GBL_TIMER_CTRL_AUTO_INC        (1UL << 3)
95 #define GBL_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
96 #define GBL_TIMER_CTRL_COMP_ENABLE     (1UL << 1)
97 #define GBL_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
98 
99 #define GBL_TIMER_INTR_EVENT           (1UL << 0)
100 
101 struct arm_tmr_softc {
102 	device_t		dev;
103 	int			irqrid;
104 	int			memrid;
105 	struct resource *	gbl_mem;
106 	struct resource *	prv_mem;
107 	struct resource *	prv_irq;
108 	uint64_t		clkfreq;
109 	struct eventtimer	et;
110 };
111 
112 static struct eventtimer *arm_tmr_et;
113 static struct timecounter *arm_tmr_tc;
114 static uint64_t arm_tmr_freq;
115 static boolean_t arm_tmr_freq_varies;
116 
117 #define	tmr_prv_read_4(sc, reg)         bus_read_4((sc)->prv_mem, reg)
118 #define	tmr_prv_write_4(sc, reg, val)   bus_write_4((sc)->prv_mem, reg, val)
119 #define	tmr_gbl_read_4(sc, reg)         bus_read_4((sc)->gbl_mem, reg)
120 #define	tmr_gbl_write_4(sc, reg, val)   bus_write_4((sc)->gbl_mem, reg, val)
121 
122 static void arm_tmr_delay(int, void *);
123 
124 static timecounter_get_t arm_tmr_get_timecount;
125 
126 static struct timecounter arm_tmr_timecount = {
127 	.tc_name           = "MPCore",
128 	.tc_get_timecount  = arm_tmr_get_timecount,
129 	.tc_poll_pps       = NULL,
130 	.tc_counter_mask   = ~0u,
131 	.tc_frequency      = 0,
132 	.tc_quality        = 800,
133 };
134 
135 #define	TMR_GBL		0x01
136 #define	TMR_PRV		0x02
137 #define	TMR_BOTH	(TMR_GBL | TMR_PRV)
138 #define	TMR_NONE	0
139 
140 static struct ofw_compat_data compat_data[] = {
141 	{"arm,mpcore-timers",		TMR_BOTH}, /* Non-standard, FreeBSD. */
142 	{"arm,cortex-a9-global-timer",	TMR_GBL},
143 	{"arm,cortex-a5-global-timer",	TMR_GBL},
144 	{"arm,cortex-a9-twd-timer",	TMR_PRV},
145 	{"arm,cortex-a5-twd-timer",	TMR_PRV},
146 	{"arm,arm11mp-twd-timer",	TMR_PRV},
147 	{NULL,				TMR_NONE}
148 };
149 
150 /**
151  *	arm_tmr_get_timecount - reads the timecount (global) timer
152  *	@tc: pointer to arm_tmr_timecount struct
153  *
154  *	We only read the lower 32-bits, the timecount stuff only uses 32-bits
155  *	so (for now?) ignore the upper 32-bits.
156  *
157  *	RETURNS
158  *	The lower 32-bits of the counter.
159  */
160 static unsigned
161 arm_tmr_get_timecount(struct timecounter *tc)
162 {
163 	struct arm_tmr_softc *sc;
164 
165 	sc = tc->tc_priv;
166 	return (tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW));
167 }
168 
169 /**
170  *	arm_tmr_start - starts the eventtimer (private) timer
171  *	@et: pointer to eventtimer struct
172  *	@first: the number of seconds and fractional sections to trigger in
173  *	@period: the period (in seconds and fractional sections) to set
174  *
175  *	If the eventtimer is required to be in oneshot mode, period will be
176  *	NULL and first will point to the time to trigger.  If in periodic mode
177  *	period will contain the time period and first may optionally contain
178  *	the time for the first period.
179  *
180  *	RETURNS
181  *	Always returns 0
182  */
183 static int
184 arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
185 {
186 	struct arm_tmr_softc *sc;
187 	uint32_t load, count;
188 	uint32_t ctrl;
189 
190 	sc = et->et_priv;
191 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
192 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
193 
194 	ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE;
195 
196 	if (period != 0) {
197 		load = ((uint32_t)et->et_frequency * period) >> 32;
198 		ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD;
199 	} else
200 		load = 0;
201 
202 	if (first != 0)
203 		count = (uint32_t)((et->et_frequency * first) >> 32);
204 	else
205 		count = load;
206 
207 	tmr_prv_write_4(sc, PRV_TIMER_LOAD, load);
208 	tmr_prv_write_4(sc, PRV_TIMER_COUNT, count);
209 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, ctrl);
210 
211 	return (0);
212 }
213 
214 /**
215  *	arm_tmr_stop - stops the eventtimer (private) timer
216  *	@et: pointer to eventtimer struct
217  *
218  *	Simply stops the private timer by clearing all bits in the ctrl register.
219  *
220  *	RETURNS
221  *	Always returns 0
222  */
223 static int
224 arm_tmr_stop(struct eventtimer *et)
225 {
226 	struct arm_tmr_softc *sc;
227 
228 	sc = et->et_priv;
229 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
230 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
231 	return (0);
232 }
233 
234 /**
235  *	arm_tmr_intr - ISR for the eventtimer (private) timer
236  *	@arg: pointer to arm_tmr_softc struct
237  *
238  *	Clears the event register and then calls the eventtimer callback.
239  *
240  *	RETURNS
241  *	Always returns FILTER_HANDLED
242  */
243 static int
244 arm_tmr_intr(void *arg)
245 {
246 	struct arm_tmr_softc *sc;
247 
248 	sc = arg;
249 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
250 	if (sc->et.et_active)
251 		sc->et.et_event_cb(&sc->et, sc->et.et_arg);
252 	return (FILTER_HANDLED);
253 }
254 
255 /**
256  *	arm_tmr_probe - timer probe routine
257  *	@dev: new device
258  *
259  *	The probe function returns success when probed with the fdt compatible
260  *	string set to "arm,mpcore-timers".
261  *
262  *	RETURNS
263  *	BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO.
264  */
265 static int
266 arm_tmr_probe(device_t dev)
267 {
268 
269 	if (!ofw_bus_status_okay(dev))
270 		return (ENXIO);
271 
272 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == TMR_NONE)
273 		return (ENXIO);
274 
275 	device_set_desc(dev, "ARM MPCore Timers");
276 	return (BUS_PROBE_DEFAULT);
277 }
278 
279 static int
280 attach_tc(struct arm_tmr_softc *sc)
281 {
282 	int rid;
283 
284 	if (arm_tmr_tc != NULL)
285 		return (EBUSY);
286 
287 	rid = sc->memrid;
288 	sc->gbl_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid,
289 	    RF_ACTIVE);
290 	if (sc->gbl_mem == NULL) {
291 		device_printf(sc->dev, "could not allocate gbl mem resources\n");
292 		return (ENXIO);
293 	}
294 	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, 0x00000000);
295 
296 	arm_tmr_timecount.tc_frequency = sc->clkfreq;
297 	arm_tmr_timecount.tc_priv = sc;
298 	tc_init(&arm_tmr_timecount);
299 	arm_tmr_tc = &arm_tmr_timecount;
300 
301 	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE);
302 
303 	return (0);
304 }
305 
306 static int
307 attach_et(struct arm_tmr_softc *sc)
308 {
309 	void *ihl;
310 	int irid, mrid;
311 
312 	if (arm_tmr_et != NULL)
313 		return (EBUSY);
314 
315 	mrid = sc->memrid;
316 	sc->prv_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mrid,
317 	    RF_ACTIVE);
318 	if (sc->prv_mem == NULL) {
319 		device_printf(sc->dev, "could not allocate prv mem resources\n");
320 		return (ENXIO);
321 	}
322 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0x00000000);
323 
324 	irid = sc->irqrid;
325 	sc->prv_irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irid, RF_ACTIVE);
326 	if (sc->prv_irq == NULL) {
327 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
328 		device_printf(sc->dev, "could not allocate prv irq resources\n");
329 		return (ENXIO);
330 	}
331 
332 	if (bus_setup_intr(sc->dev, sc->prv_irq, INTR_TYPE_CLK, arm_tmr_intr,
333 			NULL, sc, &ihl) != 0) {
334 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
335 		bus_release_resource(sc->dev, SYS_RES_IRQ, irid, sc->prv_irq);
336 		device_printf(sc->dev, "unable to setup the et irq handler.\n");
337 		return (ENXIO);
338 	}
339 
340 	/*
341 	 * Setup and register the eventtimer.  Most event timers set their min
342 	 * and max period values to some value calculated from the clock
343 	 * frequency.  We might not know yet what our runtime clock frequency
344 	 * will be, so we just use some safe values.  A max of 2 seconds ensures
345 	 * that even if our base clock frequency is 2GHz (meaning a 4GHz CPU),
346 	 * we won't overflow our 32-bit timer count register.  A min of 20
347 	 * nanoseconds is pretty much completely arbitrary.
348 	 */
349 	sc->et.et_name = "MPCore";
350 	sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
351 	sc->et.et_quality = 1000;
352 	sc->et.et_frequency = sc->clkfreq;
353 	sc->et.et_min_period = nstosbt(20);
354 	sc->et.et_max_period =  2 * SBT_1S;
355 	sc->et.et_start = arm_tmr_start;
356 	sc->et.et_stop = arm_tmr_stop;
357 	sc->et.et_priv = sc;
358 	et_register(&sc->et);
359 	arm_tmr_et = &sc->et;
360 
361 	return (0);
362 }
363 
364 /**
365  *	arm_tmr_attach - attaches the timer to the simplebus
366  *	@dev: new device
367  *
368  *	Reserves memory and interrupt resources, stores the softc structure
369  *	globally and registers both the timecount and eventtimer objects.
370  *
371  *	RETURNS
372  *	Zero on success or ENXIO if an error occuried.
373  */
374 static int
375 arm_tmr_attach(device_t dev)
376 {
377 	struct arm_tmr_softc *sc;
378 	phandle_t node;
379 	pcell_t clock;
380 	int et_err, tc_err, tmrtype;
381 
382 	sc = device_get_softc(dev);
383 	sc->dev = dev;
384 
385 	if (arm_tmr_freq_varies) {
386 		sc->clkfreq = arm_tmr_freq;
387 	} else {
388 		if (arm_tmr_freq != 0) {
389 			sc->clkfreq = arm_tmr_freq;
390 		} else {
391 			/* Get the base clock frequency */
392 			node = ofw_bus_get_node(dev);
393 			if ((OF_getencprop(node, "clock-frequency", &clock,
394 			    sizeof(clock))) <= 0) {
395 				device_printf(dev, "missing clock-frequency "
396 				    "attribute in FDT\n");
397 				return (ENXIO);
398 			}
399 			sc->clkfreq = clock;
400 		}
401 	}
402 
403 	tmrtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
404 	tc_err = ENXIO;
405 	et_err = ENXIO;
406 
407 	/*
408 	 * If we're handling the global timer and it is fixed-frequency, set it
409 	 * up to use as a timecounter.  If it's variable frequency it won't work
410 	 * as a timecounter.  We also can't use it for DELAY(), so hopefully the
411 	 * platform provides its own implementation. If it doesn't, ours will
412 	 * get used, but since the frequency isn't set, it will only use the
413 	 * bogus loop counter.
414 	 */
415 	if (tmrtype & TMR_GBL) {
416 		if (!arm_tmr_freq_varies)
417 			tc_err = attach_tc(sc);
418 		else if (bootverbose)
419 			device_printf(sc->dev,
420 			    "not using variable-frequency device as timecounter\n");
421 		sc->memrid++;
422 		sc->irqrid++;
423 	}
424 
425 	/* If we are handling the private timer, set it up as an eventtimer. */
426 	if (tmrtype & TMR_PRV) {
427 		et_err = attach_et(sc);
428 	}
429 
430 	/*
431 	 * If we didn't successfully set up a timecounter or eventtimer then we
432 	 * didn't actually attach at all, return error.
433 	 */
434 	if (tc_err != 0 && et_err != 0) {
435 		return (ENXIO);
436 	}
437 
438 #ifdef PLATFORM
439 	/*
440 	 * We can register as the DELAY() implementation only if we successfully
441 	 * set up the global timer.
442 	 */
443 	if (tc_err == 0)
444 		arm_set_delay(arm_tmr_delay, sc);
445 #endif
446 
447 	return (0);
448 }
449 
450 static device_method_t arm_tmr_methods[] = {
451 	DEVMETHOD(device_probe,		arm_tmr_probe),
452 	DEVMETHOD(device_attach,	arm_tmr_attach),
453 	{ 0, 0 }
454 };
455 
456 static driver_t arm_tmr_driver = {
457 	"mp_tmr",
458 	arm_tmr_methods,
459 	sizeof(struct arm_tmr_softc),
460 };
461 
462 static devclass_t arm_tmr_devclass;
463 
464 EARLY_DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
465     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
466 EARLY_DRIVER_MODULE(mp_tmr, ofwbus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
467     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
468 
469 /*
470  * Handle a change in clock frequency.  The mpcore timer runs at half the CPU
471  * frequency.  When the CPU frequency changes due to power-saving or thermal
472  * management, the platform-specific code that causes the frequency change calls
473  * this routine to inform the clock driver, and we in turn inform the event
474  * timer system, which actually updates the value in et->frequency for us and
475  * reschedules the current event(s) in a way that's atomic with respect to
476  * start/stop/intr code that may be running on various CPUs at the time of the
477  * call.
478  *
479  * This routine can also be called by a platform's early init code.  If the
480  * value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code
481  * to register as an eventtimer, but not a timecounter.  If the value passed in
482  * is any other non-zero value it is used as the fixed frequency for the timer.
483  */
484 void
485 arm_tmr_change_frequency(uint64_t newfreq)
486 {
487 
488 	if (newfreq == ARM_TMR_FREQUENCY_VARIES) {
489 		arm_tmr_freq_varies = true;
490 		return;
491 	}
492 
493 	arm_tmr_freq = newfreq;
494 	if (arm_tmr_et != NULL)
495 		et_change_frequency(arm_tmr_et, newfreq);
496 }
497 
498 static void
499 arm_tmr_delay(int usec, void *arg)
500 {
501 	struct arm_tmr_softc *sc = arg;
502 	int32_t counts_per_usec;
503 	int32_t counts;
504 	uint32_t first, last;
505 
506 	/* Get the number of times to count */
507 	counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
508 
509 	/*
510 	 * Clamp the timeout at a maximum value (about 32 seconds with
511 	 * a 66MHz clock). *Nobody* should be delay()ing for anywhere
512 	 * near that length of time and if they are, they should be hung
513 	 * out to dry.
514 	 */
515 	if (usec >= (0x80000000U / counts_per_usec))
516 		counts = (0x80000000U / counts_per_usec) - 1;
517 	else
518 		counts = usec * counts_per_usec;
519 
520 	first = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
521 
522 	while (counts > 0) {
523 		last = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
524 		counts -= (int32_t)(last - first);
525 		first = last;
526 	}
527 }
528 
529 #ifndef PLATFORM
530 /**
531  *	DELAY - Delay for at least usec microseconds.
532  *	@usec: number of microseconds to delay by
533  *
534  *	This function is called all over the kernel and is suppose to provide a
535  *	consistent delay.  This function may also be called before the console
536  *	is setup so no printf's can be called here.
537  *
538  *	RETURNS:
539  *	nothing
540  */
541 void
542 DELAY(int usec)
543 {
544 	struct arm_tmr_softc *sc;
545 	int32_t counts;
546 
547 	TSENTER();
548 	/* Check the timers are setup, if not just use a for loop for the meantime */
549 	if (arm_tmr_tc == NULL || arm_tmr_timecount.tc_frequency == 0) {
550 		for (; usec > 0; usec--)
551 			for (counts = 200; counts > 0; counts--)
552 				cpufunc_nullop();	/* Prevent gcc from optimizing
553 							 * out the loop
554 							 */
555 	} else {
556 		sc = arm_tmr_tc->tc_priv;
557 		arm_tmr_delay(usec, sc);
558 	}
559 	TSEXIT();
560 }
561 #endif
562