xref: /freebsd/sys/arm/arm/mpcore_timer.c (revision 83ad3864)
1 /*-
2  * Copyright (c) 2011 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * Developed by Ben Gray <ben.r.gray@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company nor the name of the author may be used to
16  *    endorse or promote products derived from this software without specific
17  *    prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /**
33  * The ARM Cortex-A9 core can support a global timer plus a private and
34  * watchdog timer per core.  This driver reserves memory and interrupt
35  * resources for accessing both timer register sets, these resources are
36  * stored globally and used to setup the timecount and eventtimer.
37  *
38  * The timecount timer uses the global 64-bit counter, whereas the
39  * per-CPU eventtimer uses the private 32-bit counters.
40  *
41  *
42  * REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2)
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 #include <sys/kernel.h>
52 #include <sys/module.h>
53 #include <sys/malloc.h>
54 #include <sys/rman.h>
55 #include <sys/timeet.h>
56 #include <sys/timetc.h>
57 #include <sys/watchdog.h>
58 #include <machine/bus.h>
59 #include <machine/cpu.h>
60 #include <machine/intr.h>
61 
62 #ifdef MULTIDELAY
63 #include <machine/machdep.h> /* For arm_set_delay */
64 #endif
65 
66 #include <dev/ofw/openfirm.h>
67 #include <dev/ofw/ofw_bus.h>
68 #include <dev/ofw/ofw_bus_subr.h>
69 
70 #include <machine/bus.h>
71 
72 #include <arm/arm/mpcore_timervar.h>
73 
74 #if defined(PLATFORM) && !defined(MULTIDELAY)
75 #error The MPCore Timer driver requires MULTIDELAY when building with PLATFORM
76 #endif
77 
78 /* Private (per-CPU) timer register map */
79 #define PRV_TIMER_LOAD                 0x0000
80 #define PRV_TIMER_COUNT                0x0004
81 #define PRV_TIMER_CTRL                 0x0008
82 #define PRV_TIMER_INTR                 0x000C
83 
84 #define PRV_TIMER_CTR_PRESCALER_SHIFT  8
85 #define PRV_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
86 #define PRV_TIMER_CTRL_AUTO_RELOAD     (1UL << 1)
87 #define PRV_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
88 
89 #define PRV_TIMER_INTR_EVENT           (1UL << 0)
90 
91 /* Global timer register map */
92 #define GBL_TIMER_COUNT_LOW            0x0000
93 #define GBL_TIMER_COUNT_HIGH           0x0004
94 #define GBL_TIMER_CTRL                 0x0008
95 #define GBL_TIMER_INTR                 0x000C
96 
97 #define GBL_TIMER_CTR_PRESCALER_SHIFT  8
98 #define GBL_TIMER_CTRL_AUTO_INC        (1UL << 3)
99 #define GBL_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
100 #define GBL_TIMER_CTRL_COMP_ENABLE     (1UL << 1)
101 #define GBL_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
102 
103 #define GBL_TIMER_INTR_EVENT           (1UL << 0)
104 
105 struct arm_tmr_softc {
106 	device_t		dev;
107 	int			irqrid;
108 	int			memrid;
109 	struct resource *	gbl_mem;
110 	struct resource *	prv_mem;
111 	struct resource *	prv_irq;
112 	uint64_t		clkfreq;
113 	struct eventtimer	et;
114 };
115 
116 static struct eventtimer *arm_tmr_et;
117 static struct timecounter *arm_tmr_tc;
118 static uint64_t arm_tmr_freq;
119 static boolean_t arm_tmr_freq_varies;
120 
121 #define	tmr_prv_read_4(sc, reg)         bus_read_4((sc)->prv_mem, reg)
122 #define	tmr_prv_write_4(sc, reg, val)   bus_write_4((sc)->prv_mem, reg, val)
123 #define	tmr_gbl_read_4(sc, reg)         bus_read_4((sc)->gbl_mem, reg)
124 #define	tmr_gbl_write_4(sc, reg, val)   bus_write_4((sc)->gbl_mem, reg, val)
125 
126 static void arm_tmr_delay(int, void *);
127 
128 static timecounter_get_t arm_tmr_get_timecount;
129 
130 static struct timecounter arm_tmr_timecount = {
131 	.tc_name           = "MPCore",
132 	.tc_get_timecount  = arm_tmr_get_timecount,
133 	.tc_poll_pps       = NULL,
134 	.tc_counter_mask   = ~0u,
135 	.tc_frequency      = 0,
136 	.tc_quality        = 800,
137 };
138 
139 #define	TMR_GBL		0x01
140 #define	TMR_PRV		0x02
141 #define	TMR_BOTH	(TMR_GBL | TMR_PRV)
142 #define	TMR_NONE	0
143 
144 static struct ofw_compat_data compat_data[] = {
145 	{"arm,mpcore-timers",		TMR_BOTH}, /* Non-standard, FreeBSD. */
146 	{"arm,cortex-a9-global-timer",	TMR_GBL},
147 	{"arm,cortex-a5-global-timer",	TMR_GBL},
148 	{"arm,cortex-a9-twd-timer",	TMR_PRV},
149 	{"arm,cortex-a5-twd-timer",	TMR_PRV},
150 	{"arm,arm11mp-twd-timer",	TMR_PRV},
151 	{NULL,				TMR_NONE}
152 };
153 
154 /**
155  *	arm_tmr_get_timecount - reads the timecount (global) timer
156  *	@tc: pointer to arm_tmr_timecount struct
157  *
158  *	We only read the lower 32-bits, the timecount stuff only uses 32-bits
159  *	so (for now?) ignore the upper 32-bits.
160  *
161  *	RETURNS
162  *	The lower 32-bits of the counter.
163  */
164 static unsigned
165 arm_tmr_get_timecount(struct timecounter *tc)
166 {
167 	struct arm_tmr_softc *sc;
168 
169 	sc = tc->tc_priv;
170 	return (tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW));
171 }
172 
173 /**
174  *	arm_tmr_start - starts the eventtimer (private) timer
175  *	@et: pointer to eventtimer struct
176  *	@first: the number of seconds and fractional sections to trigger in
177  *	@period: the period (in seconds and fractional sections) to set
178  *
179  *	If the eventtimer is required to be in oneshot mode, period will be
180  *	NULL and first will point to the time to trigger.  If in periodic mode
181  *	period will contain the time period and first may optionally contain
182  *	the time for the first period.
183  *
184  *	RETURNS
185  *	Always returns 0
186  */
187 static int
188 arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
189 {
190 	struct arm_tmr_softc *sc;
191 	uint32_t load, count;
192 	uint32_t ctrl;
193 
194 	sc = et->et_priv;
195 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
196 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
197 
198 	ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE;
199 
200 	if (period != 0) {
201 		load = ((uint32_t)et->et_frequency * period) >> 32;
202 		ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD;
203 	} else
204 		load = 0;
205 
206 	if (first != 0)
207 		count = (uint32_t)((et->et_frequency * first) >> 32);
208 	else
209 		count = load;
210 
211 	tmr_prv_write_4(sc, PRV_TIMER_LOAD, load);
212 	tmr_prv_write_4(sc, PRV_TIMER_COUNT, count);
213 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, ctrl);
214 
215 	return (0);
216 }
217 
218 /**
219  *	arm_tmr_stop - stops the eventtimer (private) timer
220  *	@et: pointer to eventtimer struct
221  *
222  *	Simply stops the private timer by clearing all bits in the ctrl register.
223  *
224  *	RETURNS
225  *	Always returns 0
226  */
227 static int
228 arm_tmr_stop(struct eventtimer *et)
229 {
230 	struct arm_tmr_softc *sc;
231 
232 	sc = et->et_priv;
233 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
234 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
235 	return (0);
236 }
237 
238 /**
239  *	arm_tmr_intr - ISR for the eventtimer (private) timer
240  *	@arg: pointer to arm_tmr_softc struct
241  *
242  *	Clears the event register and then calls the eventtimer callback.
243  *
244  *	RETURNS
245  *	Always returns FILTER_HANDLED
246  */
247 static int
248 arm_tmr_intr(void *arg)
249 {
250 	struct arm_tmr_softc *sc;
251 
252 	sc = arg;
253 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
254 	if (sc->et.et_active)
255 		sc->et.et_event_cb(&sc->et, sc->et.et_arg);
256 	return (FILTER_HANDLED);
257 }
258 
259 
260 
261 
262 /**
263  *	arm_tmr_probe - timer probe routine
264  *	@dev: new device
265  *
266  *	The probe function returns success when probed with the fdt compatible
267  *	string set to "arm,mpcore-timers".
268  *
269  *	RETURNS
270  *	BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO.
271  */
272 static int
273 arm_tmr_probe(device_t dev)
274 {
275 
276 	if (!ofw_bus_status_okay(dev))
277 		return (ENXIO);
278 
279 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == TMR_NONE)
280 		return (ENXIO);
281 
282 	device_set_desc(dev, "ARM MPCore Timers");
283 	return (BUS_PROBE_DEFAULT);
284 }
285 
286 static int
287 attach_tc(struct arm_tmr_softc *sc)
288 {
289 	int rid;
290 
291 	if (arm_tmr_tc != NULL)
292 		return (EBUSY);
293 
294 	rid = sc->memrid;
295 	sc->gbl_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid,
296 	    RF_ACTIVE);
297 	if (sc->gbl_mem == NULL) {
298 		device_printf(sc->dev, "could not allocate gbl mem resources\n");
299 		return (ENXIO);
300 	}
301 	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, 0x00000000);
302 
303 	arm_tmr_timecount.tc_frequency = sc->clkfreq;
304 	arm_tmr_timecount.tc_priv = sc;
305 	tc_init(&arm_tmr_timecount);
306 	arm_tmr_tc = &arm_tmr_timecount;
307 
308 	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE);
309 
310 	return (0);
311 }
312 
313 static int
314 attach_et(struct arm_tmr_softc *sc)
315 {
316 	void *ihl;
317 	int irid, mrid;
318 
319 	if (arm_tmr_et != NULL)
320 		return (EBUSY);
321 
322 	mrid = sc->memrid;
323 	sc->prv_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mrid,
324 	    RF_ACTIVE);
325 	if (sc->prv_mem == NULL) {
326 		device_printf(sc->dev, "could not allocate prv mem resources\n");
327 		return (ENXIO);
328 	}
329 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0x00000000);
330 
331 	irid = sc->irqrid;
332 	sc->prv_irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irid, RF_ACTIVE);
333 	if (sc->prv_irq == NULL) {
334 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
335 		device_printf(sc->dev, "could not allocate prv irq resources\n");
336 		return (ENXIO);
337 	}
338 
339 	if (bus_setup_intr(sc->dev, sc->prv_irq, INTR_TYPE_CLK, arm_tmr_intr,
340 			NULL, sc, &ihl) != 0) {
341 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
342 		bus_release_resource(sc->dev, SYS_RES_IRQ, irid, sc->prv_irq);
343 		device_printf(sc->dev, "unable to setup the et irq handler.\n");
344 		return (ENXIO);
345 	}
346 
347 	/*
348 	 * Setup and register the eventtimer.  Most event timers set their min
349 	 * and max period values to some value calculated from the clock
350 	 * frequency.  We might not know yet what our runtime clock frequency
351 	 * will be, so we just use some safe values.  A max of 2 seconds ensures
352 	 * that even if our base clock frequency is 2GHz (meaning a 4GHz CPU),
353 	 * we won't overflow our 32-bit timer count register.  A min of 20
354 	 * nanoseconds is pretty much completely arbitrary.
355 	 */
356 	sc->et.et_name = "MPCore";
357 	sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
358 	sc->et.et_quality = 1000;
359 	sc->et.et_frequency = sc->clkfreq;
360 	sc->et.et_min_period = 20 * SBT_1NS;
361 	sc->et.et_max_period =  2 * SBT_1S;
362 	sc->et.et_start = arm_tmr_start;
363 	sc->et.et_stop = arm_tmr_stop;
364 	sc->et.et_priv = sc;
365 	et_register(&sc->et);
366 	arm_tmr_et = &sc->et;
367 
368 	return (0);
369 }
370 
371 /**
372  *	arm_tmr_attach - attaches the timer to the simplebus
373  *	@dev: new device
374  *
375  *	Reserves memory and interrupt resources, stores the softc structure
376  *	globally and registers both the timecount and eventtimer objects.
377  *
378  *	RETURNS
379  *	Zero on success or ENXIO if an error occuried.
380  */
381 static int
382 arm_tmr_attach(device_t dev)
383 {
384 	struct arm_tmr_softc *sc;
385 	phandle_t node;
386 	pcell_t clock;
387 	int et_err, tc_err, tmrtype;
388 
389 	sc = device_get_softc(dev);
390 	sc->dev = dev;
391 
392 	if (arm_tmr_freq_varies) {
393 		sc->clkfreq = arm_tmr_freq;
394 	} else {
395 		if (arm_tmr_freq != 0) {
396 			sc->clkfreq = arm_tmr_freq;
397 		} else {
398 			/* Get the base clock frequency */
399 			node = ofw_bus_get_node(dev);
400 			if ((OF_getencprop(node, "clock-frequency", &clock,
401 			    sizeof(clock))) <= 0) {
402 				device_printf(dev, "missing clock-frequency "
403 				    "attribute in FDT\n");
404 				return (ENXIO);
405 			}
406 			sc->clkfreq = clock;
407 		}
408 	}
409 
410 	tmrtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
411 	tc_err = ENXIO;
412 	et_err = ENXIO;
413 
414 	/*
415 	 * If we're handling the global timer and it is fixed-frequency, set it
416 	 * up to use as a timecounter.  If it's variable frequency it won't work
417 	 * as a timecounter.  We also can't use it for DELAY(), so hopefully the
418 	 * platform provides its own implementation. If it doesn't, ours will
419 	 * get used, but since the frequency isn't set, it will only use the
420 	 * bogus loop counter.
421 	 */
422 	if (tmrtype & TMR_GBL) {
423 		if (!arm_tmr_freq_varies)
424 			tc_err = attach_tc(sc);
425 		else if (bootverbose)
426 			device_printf(sc->dev,
427 			    "not using variable-frequency device as timecounter");
428 		sc->memrid++;
429 		sc->irqrid++;
430 	}
431 
432 	/* If we are handling the private timer, set it up as an eventtimer. */
433 	if (tmrtype & TMR_PRV) {
434 		et_err = attach_et(sc);
435 	}
436 
437 	/*
438 	 * If we didn't successfully set up a timecounter or eventtimer then we
439 	 * didn't actually attach at all, return error.
440 	 */
441 	if (tc_err != 0 && et_err != 0) {
442 		return (ENXIO);
443 	}
444 
445 #ifdef MULTIDELAY
446 	/*
447 	 * We can register as the DELAY() implementation only if we successfully
448 	 * set up the global timer.
449 	 */
450 	if (tc_err == 0)
451 		arm_set_delay(arm_tmr_delay, sc);
452 #endif
453 
454 	return (0);
455 }
456 
457 static device_method_t arm_tmr_methods[] = {
458 	DEVMETHOD(device_probe,		arm_tmr_probe),
459 	DEVMETHOD(device_attach,	arm_tmr_attach),
460 	{ 0, 0 }
461 };
462 
463 static driver_t arm_tmr_driver = {
464 	"mp_tmr",
465 	arm_tmr_methods,
466 	sizeof(struct arm_tmr_softc),
467 };
468 
469 static devclass_t arm_tmr_devclass;
470 
471 EARLY_DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
472     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
473 EARLY_DRIVER_MODULE(mp_tmr, ofwbus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
474     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
475 
476 /*
477  * Handle a change in clock frequency.  The mpcore timer runs at half the CPU
478  * frequency.  When the CPU frequency changes due to power-saving or thermal
479  * management, the platform-specific code that causes the frequency change calls
480  * this routine to inform the clock driver, and we in turn inform the event
481  * timer system, which actually updates the value in et->frequency for us and
482  * reschedules the current event(s) in a way that's atomic with respect to
483  * start/stop/intr code that may be running on various CPUs at the time of the
484  * call.
485  *
486  * This routine can also be called by a platform's early init code.  If the
487  * value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code
488  * to register as an eventtimer, but not a timecounter.  If the value passed in
489  * is any other non-zero value it is used as the fixed frequency for the timer.
490  */
491 void
492 arm_tmr_change_frequency(uint64_t newfreq)
493 {
494 
495 	if (newfreq == ARM_TMR_FREQUENCY_VARIES) {
496 		arm_tmr_freq_varies = true;
497 		return;
498 	}
499 
500 	arm_tmr_freq = newfreq;
501 	if (arm_tmr_et != NULL)
502 		et_change_frequency(arm_tmr_et, newfreq);
503 }
504 
505 static void
506 arm_tmr_delay(int usec, void *arg)
507 {
508 	struct arm_tmr_softc *sc = arg;
509 	int32_t counts_per_usec;
510 	int32_t counts;
511 	uint32_t first, last;
512 
513 	/* Get the number of times to count */
514 	counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
515 
516 	/*
517 	 * Clamp the timeout at a maximum value (about 32 seconds with
518 	 * a 66MHz clock). *Nobody* should be delay()ing for anywhere
519 	 * near that length of time and if they are, they should be hung
520 	 * out to dry.
521 	 */
522 	if (usec >= (0x80000000U / counts_per_usec))
523 		counts = (0x80000000U / counts_per_usec) - 1;
524 	else
525 		counts = usec * counts_per_usec;
526 
527 	first = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
528 
529 	while (counts > 0) {
530 		last = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
531 		counts -= (int32_t)(last - first);
532 		first = last;
533 	}
534 }
535 
536 #ifndef MULTIDELAY
537 /**
538  *	DELAY - Delay for at least usec microseconds.
539  *	@usec: number of microseconds to delay by
540  *
541  *	This function is called all over the kernel and is suppose to provide a
542  *	consistent delay.  This function may also be called before the console
543  *	is setup so no printf's can be called here.
544  *
545  *	RETURNS:
546  *	nothing
547  */
548 void
549 DELAY(int usec)
550 {
551 	struct arm_tmr_softc *sc;
552 	int32_t counts;
553 
554 	/* Check the timers are setup, if not just use a for loop for the meantime */
555 	if (arm_tmr_tc == NULL || arm_tmr_timecount.tc_frequency == 0) {
556 		for (; usec > 0; usec--)
557 			for (counts = 200; counts > 0; counts--)
558 				cpufunc_nullop();	/* Prevent gcc from optimizing
559 							 * out the loop
560 							 */
561 	} else {
562 		sc = arm_tmr_tc->tc_priv;
563 		arm_tmr_delay(usec, sc);
564 	}
565 }
566 #endif
567