xref: /freebsd/sys/arm/arm/mpcore_timer.c (revision b0b1dbdd)
1 /*-
2  * Copyright (c) 2011 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * Developed by Ben Gray <ben.r.gray@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company nor the name of the author may be used to
16  *    endorse or promote products derived from this software without specific
17  *    prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /**
33  * The ARM Cortex-A9 core can support a global timer plus a private and
34  * watchdog timer per core.  This driver reserves memory and interrupt
35  * resources for accessing both timer register sets, these resources are
36  * stored globally and used to setup the timecount and eventtimer.
37  *
38  * The timecount timer uses the global 64-bit counter, whereas the
39  * per-CPU eventtimer uses the private 32-bit counters.
40  *
41  *
42  * REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2)
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 #include <sys/kernel.h>
52 #include <sys/module.h>
53 #include <sys/malloc.h>
54 #include <sys/rman.h>
55 #include <sys/timeet.h>
56 #include <sys/timetc.h>
57 #include <sys/watchdog.h>
58 #include <machine/bus.h>
59 #include <machine/cpu.h>
60 #include <machine/intr.h>
61 
62 #include <dev/ofw/openfirm.h>
63 #include <dev/ofw/ofw_bus.h>
64 #include <dev/ofw/ofw_bus_subr.h>
65 
66 #include <machine/bus.h>
67 
68 #include <arm/arm/mpcore_timervar.h>
69 
70 /* Private (per-CPU) timer register map */
71 #define PRV_TIMER_LOAD                 0x0000
72 #define PRV_TIMER_COUNT                0x0004
73 #define PRV_TIMER_CTRL                 0x0008
74 #define PRV_TIMER_INTR                 0x000C
75 
76 #define PRV_TIMER_CTR_PRESCALER_SHIFT  8
77 #define PRV_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
78 #define PRV_TIMER_CTRL_AUTO_RELOAD     (1UL << 1)
79 #define PRV_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
80 
81 #define PRV_TIMER_INTR_EVENT           (1UL << 0)
82 
83 /* Global timer register map */
84 #define GBL_TIMER_COUNT_LOW            0x0000
85 #define GBL_TIMER_COUNT_HIGH           0x0004
86 #define GBL_TIMER_CTRL                 0x0008
87 #define GBL_TIMER_INTR                 0x000C
88 
89 #define GBL_TIMER_CTR_PRESCALER_SHIFT  8
90 #define GBL_TIMER_CTRL_AUTO_INC        (1UL << 3)
91 #define GBL_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
92 #define GBL_TIMER_CTRL_COMP_ENABLE     (1UL << 1)
93 #define GBL_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
94 
95 #define GBL_TIMER_INTR_EVENT           (1UL << 0)
96 
97 struct arm_tmr_softc {
98 	device_t		dev;
99 	int			irqrid;
100 	int			memrid;
101 	struct resource *	gbl_mem;
102 	struct resource *	prv_mem;
103 	struct resource *	prv_irq;
104 	uint64_t		clkfreq;
105 	struct eventtimer	et;
106 };
107 
108 static struct eventtimer *arm_tmr_et;
109 static struct timecounter *arm_tmr_tc;
110 static uint64_t arm_tmr_freq;
111 static boolean_t arm_tmr_freq_varies;
112 
113 #define	tmr_prv_read_4(sc, reg)         bus_read_4((sc)->prv_mem, reg)
114 #define	tmr_prv_write_4(sc, reg, val)   bus_write_4((sc)->prv_mem, reg, val)
115 #define	tmr_gbl_read_4(sc, reg)         bus_read_4((sc)->gbl_mem, reg)
116 #define	tmr_gbl_write_4(sc, reg, val)   bus_write_4((sc)->gbl_mem, reg, val)
117 
118 static timecounter_get_t arm_tmr_get_timecount;
119 
120 static struct timecounter arm_tmr_timecount = {
121 	.tc_name           = "MPCore",
122 	.tc_get_timecount  = arm_tmr_get_timecount,
123 	.tc_poll_pps       = NULL,
124 	.tc_counter_mask   = ~0u,
125 	.tc_frequency      = 0,
126 	.tc_quality        = 800,
127 };
128 
129 #define	TMR_GBL		0x01
130 #define	TMR_PRV		0x02
131 #define	TMR_BOTH	(TMR_GBL | TMR_PRV)
132 #define	TMR_NONE	0
133 
134 static struct ofw_compat_data compat_data[] = {
135 	{"arm,mpcore-timers",		TMR_BOTH}, /* Non-standard, FreeBSD. */
136 	{"arm,cortex-a9-global-timer",	TMR_GBL},
137 	{"arm,cortex-a5-global-timer",	TMR_GBL},
138 	{"arm,cortex-a9-twd-timer",	TMR_PRV},
139 	{"arm,cortex-a5-twd-timer",	TMR_PRV},
140 	{"arm,arm11mp-twd-timer",	TMR_PRV},
141 	{NULL,				TMR_NONE}
142 };
143 
144 /**
145  *	arm_tmr_get_timecount - reads the timecount (global) timer
146  *	@tc: pointer to arm_tmr_timecount struct
147  *
148  *	We only read the lower 32-bits, the timecount stuff only uses 32-bits
149  *	so (for now?) ignore the upper 32-bits.
150  *
151  *	RETURNS
152  *	The lower 32-bits of the counter.
153  */
154 static unsigned
155 arm_tmr_get_timecount(struct timecounter *tc)
156 {
157 	struct arm_tmr_softc *sc;
158 
159 	sc = tc->tc_priv;
160 	return (tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW));
161 }
162 
163 /**
164  *	arm_tmr_start - starts the eventtimer (private) timer
165  *	@et: pointer to eventtimer struct
166  *	@first: the number of seconds and fractional sections to trigger in
167  *	@period: the period (in seconds and fractional sections) to set
168  *
169  *	If the eventtimer is required to be in oneshot mode, period will be
170  *	NULL and first will point to the time to trigger.  If in periodic mode
171  *	period will contain the time period and first may optionally contain
172  *	the time for the first period.
173  *
174  *	RETURNS
175  *	Always returns 0
176  */
177 static int
178 arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
179 {
180 	struct arm_tmr_softc *sc;
181 	uint32_t load, count;
182 	uint32_t ctrl;
183 
184 	sc = et->et_priv;
185 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
186 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
187 
188 	ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE;
189 
190 	if (period != 0) {
191 		load = ((uint32_t)et->et_frequency * period) >> 32;
192 		ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD;
193 	} else
194 		load = 0;
195 
196 	if (first != 0)
197 		count = (uint32_t)((et->et_frequency * first) >> 32);
198 	else
199 		count = load;
200 
201 	tmr_prv_write_4(sc, PRV_TIMER_LOAD, load);
202 	tmr_prv_write_4(sc, PRV_TIMER_COUNT, count);
203 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, ctrl);
204 
205 	return (0);
206 }
207 
208 /**
209  *	arm_tmr_stop - stops the eventtimer (private) timer
210  *	@et: pointer to eventtimer struct
211  *
212  *	Simply stops the private timer by clearing all bits in the ctrl register.
213  *
214  *	RETURNS
215  *	Always returns 0
216  */
217 static int
218 arm_tmr_stop(struct eventtimer *et)
219 {
220 	struct arm_tmr_softc *sc;
221 
222 	sc = et->et_priv;
223 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
224 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
225 	return (0);
226 }
227 
228 /**
229  *	arm_tmr_intr - ISR for the eventtimer (private) timer
230  *	@arg: pointer to arm_tmr_softc struct
231  *
232  *	Clears the event register and then calls the eventtimer callback.
233  *
234  *	RETURNS
235  *	Always returns FILTER_HANDLED
236  */
237 static int
238 arm_tmr_intr(void *arg)
239 {
240 	struct arm_tmr_softc *sc;
241 
242 	sc = arg;
243 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
244 	if (sc->et.et_active)
245 		sc->et.et_event_cb(&sc->et, sc->et.et_arg);
246 	return (FILTER_HANDLED);
247 }
248 
249 
250 
251 
252 /**
253  *	arm_tmr_probe - timer probe routine
254  *	@dev: new device
255  *
256  *	The probe function returns success when probed with the fdt compatible
257  *	string set to "arm,mpcore-timers".
258  *
259  *	RETURNS
260  *	BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO.
261  */
262 static int
263 arm_tmr_probe(device_t dev)
264 {
265 
266 	if (!ofw_bus_status_okay(dev))
267 		return (ENXIO);
268 
269 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == TMR_NONE)
270 		return (ENXIO);
271 
272 	device_set_desc(dev, "ARM MPCore Timers");
273 	return (BUS_PROBE_DEFAULT);
274 }
275 
276 static int
277 attach_tc(struct arm_tmr_softc *sc)
278 {
279 	int rid;
280 
281 	if (arm_tmr_tc != NULL)
282 		return (EBUSY);
283 
284 	rid = sc->memrid;
285 	sc->gbl_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid,
286 	    RF_ACTIVE);
287 	if (sc->gbl_mem == NULL) {
288 		device_printf(sc->dev, "could not allocate gbl mem resources\n");
289 		return (ENXIO);
290 	}
291 	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, 0x00000000);
292 
293 	arm_tmr_timecount.tc_frequency = sc->clkfreq;
294 	arm_tmr_timecount.tc_priv = sc;
295 	tc_init(&arm_tmr_timecount);
296 	arm_tmr_tc = &arm_tmr_timecount;
297 
298 	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE);
299 
300 	return (0);
301 }
302 
303 static int
304 attach_et(struct arm_tmr_softc *sc)
305 {
306 	void *ihl;
307 	int irid, mrid;
308 
309 	if (arm_tmr_et != NULL)
310 		return (EBUSY);
311 
312 	mrid = sc->memrid;
313 	sc->prv_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mrid,
314 	    RF_ACTIVE);
315 	if (sc->prv_mem == NULL) {
316 		device_printf(sc->dev, "could not allocate prv mem resources\n");
317 		return (ENXIO);
318 	}
319 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0x00000000);
320 
321 	irid = sc->irqrid;
322 	sc->prv_irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irid, RF_ACTIVE);
323 	if (sc->prv_irq == NULL) {
324 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
325 		device_printf(sc->dev, "could not allocate prv irq resources\n");
326 		return (ENXIO);
327 	}
328 
329 	if (bus_setup_intr(sc->dev, sc->prv_irq, INTR_TYPE_CLK, arm_tmr_intr,
330 			NULL, sc, &ihl) != 0) {
331 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
332 		bus_release_resource(sc->dev, SYS_RES_IRQ, irid, sc->prv_irq);
333 		device_printf(sc->dev, "unable to setup the et irq handler.\n");
334 		return (ENXIO);
335 	}
336 
337 	/*
338 	 * Setup and register the eventtimer.  Most event timers set their min
339 	 * and max period values to some value calculated from the clock
340 	 * frequency.  We might not know yet what our runtime clock frequency
341 	 * will be, so we just use some safe values.  A max of 2 seconds ensures
342 	 * that even if our base clock frequency is 2GHz (meaning a 4GHz CPU),
343 	 * we won't overflow our 32-bit timer count register.  A min of 20
344 	 * nanoseconds is pretty much completely arbitrary.
345 	 */
346 	sc->et.et_name = "MPCore";
347 	sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
348 	sc->et.et_quality = 1000;
349 	sc->et.et_frequency = sc->clkfreq;
350 	sc->et.et_min_period = 20 * SBT_1NS;
351 	sc->et.et_max_period =  2 * SBT_1S;
352 	sc->et.et_start = arm_tmr_start;
353 	sc->et.et_stop = arm_tmr_stop;
354 	sc->et.et_priv = sc;
355 	et_register(&sc->et);
356 	arm_tmr_et = &sc->et;
357 
358 	return (0);
359 }
360 
361 /**
362  *	arm_tmr_attach - attaches the timer to the simplebus
363  *	@dev: new device
364  *
365  *	Reserves memory and interrupt resources, stores the softc structure
366  *	globally and registers both the timecount and eventtimer objects.
367  *
368  *	RETURNS
369  *	Zero on success or ENXIO if an error occuried.
370  */
371 static int
372 arm_tmr_attach(device_t dev)
373 {
374 	struct arm_tmr_softc *sc;
375 	phandle_t node;
376 	pcell_t clock;
377 	int et_err, tc_err, tmrtype;
378 
379 	sc = device_get_softc(dev);
380 	sc->dev = dev;
381 
382 	if (arm_tmr_freq_varies) {
383 		sc->clkfreq = arm_tmr_freq;
384 	} else {
385 		if (arm_tmr_freq != 0) {
386 			sc->clkfreq = arm_tmr_freq;
387 		} else {
388 			/* Get the base clock frequency */
389 			node = ofw_bus_get_node(dev);
390 			if ((OF_getencprop(node, "clock-frequency", &clock,
391 			    sizeof(clock))) <= 0) {
392 				device_printf(dev, "missing clock-frequency "
393 				    "attribute in FDT\n");
394 				return (ENXIO);
395 			}
396 			sc->clkfreq = clock;
397 		}
398 	}
399 
400 	tmrtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
401 	tc_err = ENXIO;
402 	et_err = ENXIO;
403 
404 	/*
405 	 * If we're handling the global timer and it is fixed-frequency, set it
406 	 * up to use as a timecounter.  If it's variable frequency it won't work
407 	 * as a timecounter.  We also can't use it for DELAY(), so hopefully the
408 	 * platform provides its own implementation. If it doesn't, ours will
409 	 * get used, but since the frequency isn't set, it will only use the
410 	 * bogus loop counter.
411 	 */
412 	if (tmrtype & TMR_GBL) {
413 		if (!arm_tmr_freq_varies)
414 			tc_err = attach_tc(sc);
415 		else if (bootverbose)
416 			device_printf(sc->dev,
417 			    "not using variable-frequency device as timecounter");
418 		sc->memrid++;
419 		sc->irqrid++;
420 	}
421 
422 	/* If we are handling the private timer, set it up as an eventtimer. */
423 	if (tmrtype & TMR_PRV) {
424 		et_err = attach_et(sc);
425 	}
426 
427 	/*
428 	 * If we didn't successfully set up a timecounter or eventtimer then we
429 	 * didn't actually attach at all, return error.
430 	 */
431 	if (tc_err != 0 && et_err != 0) {
432 		return (ENXIO);
433 	}
434 	return (0);
435 }
436 
437 static device_method_t arm_tmr_methods[] = {
438 	DEVMETHOD(device_probe,		arm_tmr_probe),
439 	DEVMETHOD(device_attach,	arm_tmr_attach),
440 	{ 0, 0 }
441 };
442 
443 static driver_t arm_tmr_driver = {
444 	"mp_tmr",
445 	arm_tmr_methods,
446 	sizeof(struct arm_tmr_softc),
447 };
448 
449 static devclass_t arm_tmr_devclass;
450 
451 EARLY_DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
452     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
453 EARLY_DRIVER_MODULE(mp_tmr, ofwbus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
454     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
455 
456 /*
457  * Handle a change in clock frequency.  The mpcore timer runs at half the CPU
458  * frequency.  When the CPU frequency changes due to power-saving or thermal
459  * management, the platform-specific code that causes the frequency change calls
460  * this routine to inform the clock driver, and we in turn inform the event
461  * timer system, which actually updates the value in et->frequency for us and
462  * reschedules the current event(s) in a way that's atomic with respect to
463  * start/stop/intr code that may be running on various CPUs at the time of the
464  * call.
465  *
466  * This routine can also be called by a platform's early init code.  If the
467  * value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code
468  * to register as an eventtimer, but not a timecounter.  If the value passed in
469  * is any other non-zero value it is used as the fixed frequency for the timer.
470  */
471 void
472 arm_tmr_change_frequency(uint64_t newfreq)
473 {
474 
475 	if (newfreq == ARM_TMR_FREQUENCY_VARIES) {
476 		arm_tmr_freq_varies = true;
477 		return;
478 	}
479 
480 	arm_tmr_freq = newfreq;
481 	if (arm_tmr_et != NULL)
482 		et_change_frequency(arm_tmr_et, newfreq);
483 }
484 
485 /**
486  *	DELAY - Delay for at least usec microseconds.
487  *	@usec: number of microseconds to delay by
488  *
489  *	This function is called all over the kernel and is suppose to provide a
490  *	consistent delay.  This function may also be called before the console
491  *	is setup so no printf's can be called here.
492  *
493  *	RETURNS:
494  *	nothing
495  */
496 static void __used /* Must emit function code for the weak ref below. */
497 arm_tmr_DELAY(int usec)
498 {
499 	struct arm_tmr_softc *sc;
500 	int32_t counts_per_usec;
501 	int32_t counts;
502 	uint32_t first, last;
503 
504 	/* Check the timers are setup, if not just use a for loop for the meantime */
505 	if (arm_tmr_tc == NULL || arm_tmr_timecount.tc_frequency == 0) {
506 		for (; usec > 0; usec--)
507 			for (counts = 200; counts > 0; counts--)
508 				cpufunc_nullop();	/* Prevent gcc from optimizing
509 							 * out the loop
510 							 */
511 		return;
512 	}
513 
514 	sc = arm_tmr_tc->tc_priv;
515 
516 	/* Get the number of times to count */
517 	counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
518 
519 	/*
520 	 * Clamp the timeout at a maximum value (about 32 seconds with
521 	 * a 66MHz clock). *Nobody* should be delay()ing for anywhere
522 	 * near that length of time and if they are, they should be hung
523 	 * out to dry.
524 	 */
525 	if (usec >= (0x80000000U / counts_per_usec))
526 		counts = (0x80000000U / counts_per_usec) - 1;
527 	else
528 		counts = usec * counts_per_usec;
529 
530 	first = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
531 
532 	while (counts > 0) {
533 		last = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
534 		counts -= (int32_t)(last - first);
535 		first = last;
536 	}
537 }
538 
539 /*
540  * Supply a DELAY() implementation via weak linkage.  A platform may want to use
541  * the mpcore per-cpu eventtimers but provide its own DELAY() routine,
542  * especially when the core frequency can change on the fly.
543  */
544 __weak_reference(arm_tmr_DELAY, DELAY);
545 
546