xref: /freebsd/sys/arm/arm/mpcore_timer.c (revision d35f6548)
1 /*-
2  * Copyright (c) 2011 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * Developed by Ben Gray <ben.r.gray@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company nor the name of the author may be used to
16  *    endorse or promote products derived from this software without specific
17  *    prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /**
33  * The ARM Cortex-A9 core can support a global timer plus a private and
34  * watchdog timer per core.  This driver reserves memory and interrupt
35  * resources for accessing both timer register sets, these resources are
36  * stored globally and used to setup the timecount and eventtimer.
37  *
38  * The timecount timer uses the global 64-bit counter, whereas the
39  * per-CPU eventtimer uses the private 32-bit counters.
40  *
41  *
42  * REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2)
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 #include <sys/kernel.h>
52 #include <sys/module.h>
53 #include <sys/malloc.h>
54 #include <sys/rman.h>
55 #include <sys/timeet.h>
56 #include <sys/timetc.h>
57 #include <sys/watchdog.h>
58 #include <machine/bus.h>
59 #include <machine/cpu.h>
60 #include <machine/intr.h>
61 
62 #include <machine/machdep.h> /* For arm_set_delay */
63 
64 #include <dev/ofw/openfirm.h>
65 #include <dev/ofw/ofw_bus.h>
66 #include <dev/ofw/ofw_bus_subr.h>
67 
68 #include <machine/bus.h>
69 
70 #include <arm/arm/mpcore_timervar.h>
71 
72 /* Private (per-CPU) timer register map */
73 #define PRV_TIMER_LOAD                 0x0000
74 #define PRV_TIMER_COUNT                0x0004
75 #define PRV_TIMER_CTRL                 0x0008
76 #define PRV_TIMER_INTR                 0x000C
77 
78 #define PRV_TIMER_CTR_PRESCALER_SHIFT  8
79 #define PRV_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
80 #define PRV_TIMER_CTRL_AUTO_RELOAD     (1UL << 1)
81 #define PRV_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
82 
83 #define PRV_TIMER_INTR_EVENT           (1UL << 0)
84 
85 /* Global timer register map */
86 #define GBL_TIMER_COUNT_LOW            0x0000
87 #define GBL_TIMER_COUNT_HIGH           0x0004
88 #define GBL_TIMER_CTRL                 0x0008
89 #define GBL_TIMER_INTR                 0x000C
90 
91 #define GBL_TIMER_CTR_PRESCALER_SHIFT  8
92 #define GBL_TIMER_CTRL_AUTO_INC        (1UL << 3)
93 #define GBL_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
94 #define GBL_TIMER_CTRL_COMP_ENABLE     (1UL << 1)
95 #define GBL_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
96 
97 #define GBL_TIMER_INTR_EVENT           (1UL << 0)
98 
99 struct arm_tmr_softc {
100 	device_t		dev;
101 	int			irqrid;
102 	int			memrid;
103 	struct resource *	gbl_mem;
104 	struct resource *	prv_mem;
105 	struct resource *	prv_irq;
106 	uint64_t		clkfreq;
107 	struct eventtimer	et;
108 };
109 
110 static struct eventtimer *arm_tmr_et;
111 static struct timecounter *arm_tmr_tc;
112 static uint64_t arm_tmr_freq;
113 static boolean_t arm_tmr_freq_varies;
114 
115 #define	tmr_prv_read_4(sc, reg)         bus_read_4((sc)->prv_mem, reg)
116 #define	tmr_prv_write_4(sc, reg, val)   bus_write_4((sc)->prv_mem, reg, val)
117 #define	tmr_gbl_read_4(sc, reg)         bus_read_4((sc)->gbl_mem, reg)
118 #define	tmr_gbl_write_4(sc, reg, val)   bus_write_4((sc)->gbl_mem, reg, val)
119 
120 static void arm_tmr_delay(int, void *);
121 
122 static timecounter_get_t arm_tmr_get_timecount;
123 
124 static struct timecounter arm_tmr_timecount = {
125 	.tc_name           = "MPCore",
126 	.tc_get_timecount  = arm_tmr_get_timecount,
127 	.tc_poll_pps       = NULL,
128 	.tc_counter_mask   = ~0u,
129 	.tc_frequency      = 0,
130 	.tc_quality        = 800,
131 };
132 
133 #define	TMR_GBL		0x01
134 #define	TMR_PRV		0x02
135 #define	TMR_BOTH	(TMR_GBL | TMR_PRV)
136 #define	TMR_NONE	0
137 
138 static struct ofw_compat_data compat_data[] = {
139 	{"arm,mpcore-timers",		TMR_BOTH}, /* Non-standard, FreeBSD. */
140 	{"arm,cortex-a9-global-timer",	TMR_GBL},
141 	{"arm,cortex-a5-global-timer",	TMR_GBL},
142 	{"arm,cortex-a9-twd-timer",	TMR_PRV},
143 	{"arm,cortex-a5-twd-timer",	TMR_PRV},
144 	{"arm,arm11mp-twd-timer",	TMR_PRV},
145 	{NULL,				TMR_NONE}
146 };
147 
148 /**
149  *	arm_tmr_get_timecount - reads the timecount (global) timer
150  *	@tc: pointer to arm_tmr_timecount struct
151  *
152  *	We only read the lower 32-bits, the timecount stuff only uses 32-bits
153  *	so (for now?) ignore the upper 32-bits.
154  *
155  *	RETURNS
156  *	The lower 32-bits of the counter.
157  */
158 static unsigned
159 arm_tmr_get_timecount(struct timecounter *tc)
160 {
161 	struct arm_tmr_softc *sc;
162 
163 	sc = tc->tc_priv;
164 	return (tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW));
165 }
166 
167 /**
168  *	arm_tmr_start - starts the eventtimer (private) timer
169  *	@et: pointer to eventtimer struct
170  *	@first: the number of seconds and fractional sections to trigger in
171  *	@period: the period (in seconds and fractional sections) to set
172  *
173  *	If the eventtimer is required to be in oneshot mode, period will be
174  *	NULL and first will point to the time to trigger.  If in periodic mode
175  *	period will contain the time period and first may optionally contain
176  *	the time for the first period.
177  *
178  *	RETURNS
179  *	Always returns 0
180  */
181 static int
182 arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
183 {
184 	struct arm_tmr_softc *sc;
185 	uint32_t load, count;
186 	uint32_t ctrl;
187 
188 	sc = et->et_priv;
189 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
190 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
191 
192 	ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE;
193 
194 	if (period != 0) {
195 		load = ((uint32_t)et->et_frequency * period) >> 32;
196 		ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD;
197 	} else
198 		load = 0;
199 
200 	if (first != 0)
201 		count = (uint32_t)((et->et_frequency * first) >> 32);
202 	else
203 		count = load;
204 
205 	tmr_prv_write_4(sc, PRV_TIMER_LOAD, load);
206 	tmr_prv_write_4(sc, PRV_TIMER_COUNT, count);
207 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, ctrl);
208 
209 	return (0);
210 }
211 
212 /**
213  *	arm_tmr_stop - stops the eventtimer (private) timer
214  *	@et: pointer to eventtimer struct
215  *
216  *	Simply stops the private timer by clearing all bits in the ctrl register.
217  *
218  *	RETURNS
219  *	Always returns 0
220  */
221 static int
222 arm_tmr_stop(struct eventtimer *et)
223 {
224 	struct arm_tmr_softc *sc;
225 
226 	sc = et->et_priv;
227 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
228 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
229 	return (0);
230 }
231 
232 /**
233  *	arm_tmr_intr - ISR for the eventtimer (private) timer
234  *	@arg: pointer to arm_tmr_softc struct
235  *
236  *	Clears the event register and then calls the eventtimer callback.
237  *
238  *	RETURNS
239  *	Always returns FILTER_HANDLED
240  */
241 static int
242 arm_tmr_intr(void *arg)
243 {
244 	struct arm_tmr_softc *sc;
245 
246 	sc = arg;
247 	tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
248 	if (sc->et.et_active)
249 		sc->et.et_event_cb(&sc->et, sc->et.et_arg);
250 	return (FILTER_HANDLED);
251 }
252 
253 
254 
255 
256 /**
257  *	arm_tmr_probe - timer probe routine
258  *	@dev: new device
259  *
260  *	The probe function returns success when probed with the fdt compatible
261  *	string set to "arm,mpcore-timers".
262  *
263  *	RETURNS
264  *	BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO.
265  */
266 static int
267 arm_tmr_probe(device_t dev)
268 {
269 
270 	if (!ofw_bus_status_okay(dev))
271 		return (ENXIO);
272 
273 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == TMR_NONE)
274 		return (ENXIO);
275 
276 	device_set_desc(dev, "ARM MPCore Timers");
277 	return (BUS_PROBE_DEFAULT);
278 }
279 
280 static int
281 attach_tc(struct arm_tmr_softc *sc)
282 {
283 	int rid;
284 
285 	if (arm_tmr_tc != NULL)
286 		return (EBUSY);
287 
288 	rid = sc->memrid;
289 	sc->gbl_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid,
290 	    RF_ACTIVE);
291 	if (sc->gbl_mem == NULL) {
292 		device_printf(sc->dev, "could not allocate gbl mem resources\n");
293 		return (ENXIO);
294 	}
295 	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, 0x00000000);
296 
297 	arm_tmr_timecount.tc_frequency = sc->clkfreq;
298 	arm_tmr_timecount.tc_priv = sc;
299 	tc_init(&arm_tmr_timecount);
300 	arm_tmr_tc = &arm_tmr_timecount;
301 
302 	tmr_gbl_write_4(sc, GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE);
303 
304 	return (0);
305 }
306 
307 static int
308 attach_et(struct arm_tmr_softc *sc)
309 {
310 	void *ihl;
311 	int irid, mrid;
312 
313 	if (arm_tmr_et != NULL)
314 		return (EBUSY);
315 
316 	mrid = sc->memrid;
317 	sc->prv_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mrid,
318 	    RF_ACTIVE);
319 	if (sc->prv_mem == NULL) {
320 		device_printf(sc->dev, "could not allocate prv mem resources\n");
321 		return (ENXIO);
322 	}
323 	tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0x00000000);
324 
325 	irid = sc->irqrid;
326 	sc->prv_irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irid, RF_ACTIVE);
327 	if (sc->prv_irq == NULL) {
328 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
329 		device_printf(sc->dev, "could not allocate prv irq resources\n");
330 		return (ENXIO);
331 	}
332 
333 	if (bus_setup_intr(sc->dev, sc->prv_irq, INTR_TYPE_CLK, arm_tmr_intr,
334 			NULL, sc, &ihl) != 0) {
335 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
336 		bus_release_resource(sc->dev, SYS_RES_IRQ, irid, sc->prv_irq);
337 		device_printf(sc->dev, "unable to setup the et irq handler.\n");
338 		return (ENXIO);
339 	}
340 
341 	/*
342 	 * Setup and register the eventtimer.  Most event timers set their min
343 	 * and max period values to some value calculated from the clock
344 	 * frequency.  We might not know yet what our runtime clock frequency
345 	 * will be, so we just use some safe values.  A max of 2 seconds ensures
346 	 * that even if our base clock frequency is 2GHz (meaning a 4GHz CPU),
347 	 * we won't overflow our 32-bit timer count register.  A min of 20
348 	 * nanoseconds is pretty much completely arbitrary.
349 	 */
350 	sc->et.et_name = "MPCore";
351 	sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
352 	sc->et.et_quality = 1000;
353 	sc->et.et_frequency = sc->clkfreq;
354 	sc->et.et_min_period = nstosbt(20);
355 	sc->et.et_max_period =  2 * SBT_1S;
356 	sc->et.et_start = arm_tmr_start;
357 	sc->et.et_stop = arm_tmr_stop;
358 	sc->et.et_priv = sc;
359 	et_register(&sc->et);
360 	arm_tmr_et = &sc->et;
361 
362 	return (0);
363 }
364 
365 /**
366  *	arm_tmr_attach - attaches the timer to the simplebus
367  *	@dev: new device
368  *
369  *	Reserves memory and interrupt resources, stores the softc structure
370  *	globally and registers both the timecount and eventtimer objects.
371  *
372  *	RETURNS
373  *	Zero on success or ENXIO if an error occuried.
374  */
375 static int
376 arm_tmr_attach(device_t dev)
377 {
378 	struct arm_tmr_softc *sc;
379 	phandle_t node;
380 	pcell_t clock;
381 	int et_err, tc_err, tmrtype;
382 
383 	sc = device_get_softc(dev);
384 	sc->dev = dev;
385 
386 	if (arm_tmr_freq_varies) {
387 		sc->clkfreq = arm_tmr_freq;
388 	} else {
389 		if (arm_tmr_freq != 0) {
390 			sc->clkfreq = arm_tmr_freq;
391 		} else {
392 			/* Get the base clock frequency */
393 			node = ofw_bus_get_node(dev);
394 			if ((OF_getencprop(node, "clock-frequency", &clock,
395 			    sizeof(clock))) <= 0) {
396 				device_printf(dev, "missing clock-frequency "
397 				    "attribute in FDT\n");
398 				return (ENXIO);
399 			}
400 			sc->clkfreq = clock;
401 		}
402 	}
403 
404 	tmrtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
405 	tc_err = ENXIO;
406 	et_err = ENXIO;
407 
408 	/*
409 	 * If we're handling the global timer and it is fixed-frequency, set it
410 	 * up to use as a timecounter.  If it's variable frequency it won't work
411 	 * as a timecounter.  We also can't use it for DELAY(), so hopefully the
412 	 * platform provides its own implementation. If it doesn't, ours will
413 	 * get used, but since the frequency isn't set, it will only use the
414 	 * bogus loop counter.
415 	 */
416 	if (tmrtype & TMR_GBL) {
417 		if (!arm_tmr_freq_varies)
418 			tc_err = attach_tc(sc);
419 		else if (bootverbose)
420 			device_printf(sc->dev,
421 			    "not using variable-frequency device as timecounter");
422 		sc->memrid++;
423 		sc->irqrid++;
424 	}
425 
426 	/* If we are handling the private timer, set it up as an eventtimer. */
427 	if (tmrtype & TMR_PRV) {
428 		et_err = attach_et(sc);
429 	}
430 
431 	/*
432 	 * If we didn't successfully set up a timecounter or eventtimer then we
433 	 * didn't actually attach at all, return error.
434 	 */
435 	if (tc_err != 0 && et_err != 0) {
436 		return (ENXIO);
437 	}
438 
439 #ifdef PLATFORM
440 	/*
441 	 * We can register as the DELAY() implementation only if we successfully
442 	 * set up the global timer.
443 	 */
444 	if (tc_err == 0)
445 		arm_set_delay(arm_tmr_delay, sc);
446 #endif
447 
448 	return (0);
449 }
450 
451 static device_method_t arm_tmr_methods[] = {
452 	DEVMETHOD(device_probe,		arm_tmr_probe),
453 	DEVMETHOD(device_attach,	arm_tmr_attach),
454 	{ 0, 0 }
455 };
456 
457 static driver_t arm_tmr_driver = {
458 	"mp_tmr",
459 	arm_tmr_methods,
460 	sizeof(struct arm_tmr_softc),
461 };
462 
463 static devclass_t arm_tmr_devclass;
464 
465 EARLY_DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
466     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
467 EARLY_DRIVER_MODULE(mp_tmr, ofwbus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
468     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
469 
470 /*
471  * Handle a change in clock frequency.  The mpcore timer runs at half the CPU
472  * frequency.  When the CPU frequency changes due to power-saving or thermal
473  * management, the platform-specific code that causes the frequency change calls
474  * this routine to inform the clock driver, and we in turn inform the event
475  * timer system, which actually updates the value in et->frequency for us and
476  * reschedules the current event(s) in a way that's atomic with respect to
477  * start/stop/intr code that may be running on various CPUs at the time of the
478  * call.
479  *
480  * This routine can also be called by a platform's early init code.  If the
481  * value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code
482  * to register as an eventtimer, but not a timecounter.  If the value passed in
483  * is any other non-zero value it is used as the fixed frequency for the timer.
484  */
485 void
486 arm_tmr_change_frequency(uint64_t newfreq)
487 {
488 
489 	if (newfreq == ARM_TMR_FREQUENCY_VARIES) {
490 		arm_tmr_freq_varies = true;
491 		return;
492 	}
493 
494 	arm_tmr_freq = newfreq;
495 	if (arm_tmr_et != NULL)
496 		et_change_frequency(arm_tmr_et, newfreq);
497 }
498 
499 static void
500 arm_tmr_delay(int usec, void *arg)
501 {
502 	struct arm_tmr_softc *sc = arg;
503 	int32_t counts_per_usec;
504 	int32_t counts;
505 	uint32_t first, last;
506 
507 	/* Get the number of times to count */
508 	counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
509 
510 	/*
511 	 * Clamp the timeout at a maximum value (about 32 seconds with
512 	 * a 66MHz clock). *Nobody* should be delay()ing for anywhere
513 	 * near that length of time and if they are, they should be hung
514 	 * out to dry.
515 	 */
516 	if (usec >= (0x80000000U / counts_per_usec))
517 		counts = (0x80000000U / counts_per_usec) - 1;
518 	else
519 		counts = usec * counts_per_usec;
520 
521 	first = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
522 
523 	while (counts > 0) {
524 		last = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
525 		counts -= (int32_t)(last - first);
526 		first = last;
527 	}
528 }
529 
530 #ifndef PLATFORM
531 /**
532  *	DELAY - Delay for at least usec microseconds.
533  *	@usec: number of microseconds to delay by
534  *
535  *	This function is called all over the kernel and is suppose to provide a
536  *	consistent delay.  This function may also be called before the console
537  *	is setup so no printf's can be called here.
538  *
539  *	RETURNS:
540  *	nothing
541  */
542 void
543 DELAY(int usec)
544 {
545 	struct arm_tmr_softc *sc;
546 	int32_t counts;
547 
548 	/* Check the timers are setup, if not just use a for loop for the meantime */
549 	if (arm_tmr_tc == NULL || arm_tmr_timecount.tc_frequency == 0) {
550 		for (; usec > 0; usec--)
551 			for (counts = 200; counts > 0; counts--)
552 				cpufunc_nullop();	/* Prevent gcc from optimizing
553 							 * out the loop
554 							 */
555 	} else {
556 		sc = arm_tmr_tc->tc_priv;
557 		arm_tmr_delay(usec, sc);
558 	}
559 }
560 #endif
561