xref: /freebsd/sys/arm/arm/pmap-v6.c (revision 9768746b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause AND BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
8  * Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
9  * Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
41  */
42 /*-
43  * Copyright (c) 2003 Networks Associates Technology, Inc.
44  * All rights reserved.
45  *
46  * This software was developed for the FreeBSD Project by Jake Burkholder,
47  * Safeport Network Services, and Network Associates Laboratories, the
48  * Security Research Division of Network Associates, Inc. under
49  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
50  * CHATS research program.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  *
61  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71  * SUCH DAMAGE.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 /*
78  *	Manages physical address maps.
79  *
80  *	Since the information managed by this module is
81  *	also stored by the logical address mapping module,
82  *	this module may throw away valid virtual-to-physical
83  *	mappings at almost any time.  However, invalidations
84  *	of virtual-to-physical mappings must be done as
85  *	requested.
86  *
87  *	In order to cope with hardware architectures which
88  *	make virtual-to-physical map invalidates expensive,
89  *	this module may delay invalidate or reduced protection
90  *	operations until such time as they are actually
91  *	necessary.  This module is given full information as
92  *	to which processors are currently using which maps,
93  *	and to when physical maps must be made correct.
94  */
95 
96 #include "opt_vm.h"
97 #include "opt_pmap.h"
98 #include "opt_ddb.h"
99 
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/lock.h>
105 #include <sys/proc.h>
106 #include <sys/rwlock.h>
107 #include <sys/malloc.h>
108 #include <sys/vmmeter.h>
109 #include <sys/malloc.h>
110 #include <sys/mman.h>
111 #include <sys/sf_buf.h>
112 #include <sys/smp.h>
113 #include <sys/sched.h>
114 #include <sys/sysctl.h>
115 
116 #ifdef DDB
117 #include <ddb/ddb.h>
118 #endif
119 
120 #include <vm/vm.h>
121 #include <vm/uma.h>
122 #include <vm/pmap.h>
123 #include <vm/vm_param.h>
124 #include <vm/vm_kern.h>
125 #include <vm/vm_object.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_page.h>
128 #include <vm/vm_pageout.h>
129 #include <vm/vm_phys.h>
130 #include <vm/vm_extern.h>
131 #include <vm/vm_reserv.h>
132 #include <sys/lock.h>
133 #include <sys/mutex.h>
134 
135 #include <machine/md_var.h>
136 #include <machine/pmap_var.h>
137 #include <machine/cpu.h>
138 #include <machine/pcb.h>
139 #include <machine/sf_buf.h>
140 #ifdef SMP
141 #include <machine/smp.h>
142 #endif
143 #ifndef PMAP_SHPGPERPROC
144 #define PMAP_SHPGPERPROC 200
145 #endif
146 
147 #ifndef DIAGNOSTIC
148 #define PMAP_INLINE	__inline
149 #else
150 #define PMAP_INLINE
151 #endif
152 
153 #ifdef PMAP_DEBUG
154 static void pmap_zero_page_check(vm_page_t m);
155 void pmap_debug(int level);
156 int pmap_pid_dump(int pid);
157 
158 #define PDEBUG(_lev_,_stat_) \
159 	if (pmap_debug_level >= (_lev_)) \
160 		((_stat_))
161 #define dprintf printf
162 int pmap_debug_level = 1;
163 #else   /* PMAP_DEBUG */
164 #define PDEBUG(_lev_,_stat_) /* Nothing */
165 #define dprintf(x, arg...)
166 #endif  /* PMAP_DEBUG */
167 
168 /*
169  *  Level 2 page tables map definion ('max' is excluded).
170  */
171 
172 #define PT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
173 #define PT2V_MAX_ADDRESS	((vm_offset_t)PT2MAP + PT2MAP_SIZE)
174 
175 #define UPT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
176 #define UPT2V_MAX_ADDRESS \
177     ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
178 
179 /*
180  *  Promotion to a 1MB (PTE1) page mapping requires that the corresponding
181  *  4KB (PTE2) page mappings have identical settings for the following fields:
182  */
183 #define PTE2_PROMOTE	(PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG |	\
184 			 PTE2_NX | PTE2_RO | PTE2_U | PTE2_W |		\
185 			 PTE2_ATTR_MASK)
186 
187 #define PTE1_PROMOTE	(PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG |	\
188 			 PTE1_NX | PTE1_RO | PTE1_U | PTE1_W |		\
189 			 PTE1_ATTR_MASK)
190 
191 #define ATTR_TO_L1(l2_attr)	((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
192 				 (((l2_attr) & L2_C)    ? L1_S_C    : 0) | \
193 				 (((l2_attr) & L2_B)    ? L1_S_B    : 0) | \
194 				 (((l2_attr) & PTE2_A)  ? PTE1_A    : 0) | \
195 				 (((l2_attr) & PTE2_NM) ? PTE1_NM   : 0) | \
196 				 (((l2_attr) & PTE2_S)  ? PTE1_S    : 0) | \
197 				 (((l2_attr) & PTE2_NG) ? PTE1_NG   : 0) | \
198 				 (((l2_attr) & PTE2_NX) ? PTE1_NX   : 0) | \
199 				 (((l2_attr) & PTE2_RO) ? PTE1_RO   : 0) | \
200 				 (((l2_attr) & PTE2_U)  ? PTE1_U    : 0) | \
201 				 (((l2_attr) & PTE2_W)  ? PTE1_W    : 0))
202 
203 #define ATTR_TO_L2(l1_attr)	((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
204 				 (((l1_attr) & L1_S_C)    ? L2_C    : 0) | \
205 				 (((l1_attr) & L1_S_B)    ? L2_B    : 0) | \
206 				 (((l1_attr) & PTE1_A)    ? PTE2_A  : 0) | \
207 				 (((l1_attr) & PTE1_NM)   ? PTE2_NM : 0) | \
208 				 (((l1_attr) & PTE1_S)    ? PTE2_S  : 0) | \
209 				 (((l1_attr) & PTE1_NG)   ? PTE2_NG : 0) | \
210 				 (((l1_attr) & PTE1_NX)   ? PTE2_NX : 0) | \
211 				 (((l1_attr) & PTE1_RO)   ? PTE2_RO : 0) | \
212 				 (((l1_attr) & PTE1_U)    ? PTE2_U  : 0) | \
213 				 (((l1_attr) & PTE1_W)    ? PTE2_W  : 0))
214 
215 /*
216  *  PTE2 descriptors creation macros.
217  */
218 #define PTE2_ATTR_DEFAULT	vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
219 #define PTE2_ATTR_PT		vm_memattr_to_pte2(pt_memattr)
220 
221 #define PTE2_KPT(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
222 #define PTE2_KPT_NG(pa)	PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
223 
224 #define PTE2_KRW(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
225 #define PTE2_KRO(pa)	PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
226 
227 #define PV_STATS
228 #ifdef PV_STATS
229 #define PV_STAT(x)	do { x ; } while (0)
230 #else
231 #define PV_STAT(x)	do { } while (0)
232 #endif
233 
234 /*
235  *  The boot_pt1 is used temporary in very early boot stage as L1 page table.
236  *  We can init many things with no memory allocation thanks to its static
237  *  allocation and this brings two main advantages:
238  *  (1) other cores can be started very simply,
239  *  (2) various boot loaders can be supported as its arguments can be processed
240  *      in virtual address space and can be moved to safe location before
241  *      first allocation happened.
242  *  Only disadvantage is that boot_pt1 is used only in very early boot stage.
243  *  However, the table is uninitialized and so lays in bss. Therefore kernel
244  *  image size is not influenced.
245  *
246  *  QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
247  *       CPU suspend/resume game.
248  */
249 extern pt1_entry_t boot_pt1[];
250 
251 vm_paddr_t base_pt1;
252 pt1_entry_t *kern_pt1;
253 pt2_entry_t *kern_pt2tab;
254 pt2_entry_t *PT2MAP;
255 
256 static uint32_t ttb_flags;
257 static vm_memattr_t pt_memattr;
258 ttb_entry_t pmap_kern_ttb;
259 
260 struct pmap kernel_pmap_store;
261 LIST_HEAD(pmaplist, pmap);
262 static struct pmaplist allpmaps;
263 static struct mtx allpmaps_lock;
264 
265 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
266 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
267 
268 static vm_offset_t kernel_vm_end_new;
269 vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
270 vm_offset_t vm_max_kernel_address;
271 vm_paddr_t kernel_l1pa;
272 
273 static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
274 
275 /*
276  *  Data for the pv entry allocation mechanism
277  */
278 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
279 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
280 static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
281 static int shpgperproc = PMAP_SHPGPERPROC;
282 
283 struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
284 int pv_maxchunks;			/* How many chunks we have KVA for */
285 vm_offset_t pv_vafree;			/* freelist stored in the PTE */
286 
287 vm_paddr_t first_managed_pa;
288 #define	pa_to_pvh(pa)	(&pv_table[pte1_index(pa - first_managed_pa)])
289 
290 /*
291  *  All those kernel PT submaps that BSD is so fond of
292  */
293 caddr_t _tmppt = 0;
294 
295 /*
296  *  Crashdump maps.
297  */
298 static caddr_t crashdumpmap;
299 
300 static pt2_entry_t *PMAP1 = NULL, *PMAP2;
301 static pt2_entry_t *PADDR1 = NULL, *PADDR2;
302 #ifdef DDB
303 static pt2_entry_t *PMAP3;
304 static pt2_entry_t *PADDR3;
305 static int PMAP3cpu __unused; /* for SMP only */
306 #endif
307 #ifdef SMP
308 static int PMAP1cpu;
309 static int PMAP1changedcpu;
310 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
311     &PMAP1changedcpu, 0,
312     "Number of times pmap_pte2_quick changed CPU with same PMAP1");
313 #endif
314 static int PMAP1changed;
315 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
316     &PMAP1changed, 0,
317     "Number of times pmap_pte2_quick changed PMAP1");
318 static int PMAP1unchanged;
319 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
320     &PMAP1unchanged, 0,
321     "Number of times pmap_pte2_quick didn't change PMAP1");
322 static struct mtx PMAP2mutex;
323 
324 /*
325  * Internal flags for pmap_enter()'s helper functions.
326  */
327 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
328 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
329 
330 static __inline void pt2_wirecount_init(vm_page_t m);
331 static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
332     vm_offset_t va);
333 static int pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1,
334     u_int flags, vm_page_t m);
335 void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
336 
337 /*
338  *  Function to set the debug level of the pmap code.
339  */
340 #ifdef PMAP_DEBUG
341 void
342 pmap_debug(int level)
343 {
344 
345 	pmap_debug_level = level;
346 	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
347 }
348 #endif /* PMAP_DEBUG */
349 
350 /*
351  *  This table must corespond with memory attribute configuration in vm.h.
352  *  First entry is used for normal system mapping.
353  *
354  *  Device memory is always marked as shared.
355  *  Normal memory is shared only in SMP .
356  *  Not outer shareable bits are not used yet.
357  *  Class 6 cannot be used on ARM11.
358  */
359 #define TEXDEF_TYPE_SHIFT	0
360 #define TEXDEF_TYPE_MASK	0x3
361 #define TEXDEF_INNER_SHIFT	2
362 #define TEXDEF_INNER_MASK	0x3
363 #define TEXDEF_OUTER_SHIFT	4
364 #define TEXDEF_OUTER_MASK	0x3
365 #define TEXDEF_NOS_SHIFT	6
366 #define TEXDEF_NOS_MASK		0x1
367 
368 #define TEX(t, i, o, s) 			\
369 		((t) << TEXDEF_TYPE_SHIFT) |	\
370 		((i) << TEXDEF_INNER_SHIFT) |	\
371 		((o) << TEXDEF_OUTER_SHIFT | 	\
372 		((s) << TEXDEF_NOS_SHIFT))
373 
374 static uint32_t tex_class[8] = {
375 /*	    type      inner cache outer cache */
376 	TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0),  /* 0 - ATTR_WB_WA	*/
377 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 1 - ATTR_NOCACHE	*/
378 	TEX(PRRR_DEV, NMRR_NC,	  NMRR_NC,    0),  /* 2 - ATTR_DEVICE	*/
379 	TEX(PRRR_SO,  NMRR_NC,	  NMRR_NC,    0),  /* 3 - ATTR_SO	*/
380 	TEX(PRRR_MEM, NMRR_WT,	  NMRR_WT,    0),  /* 4 - ATTR_WT	*/
381 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 5 - NOT USED YET	*/
382 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 6 - NOT USED YET	*/
383 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 7 - NOT USED YET	*/
384 };
385 #undef TEX
386 
387 static uint32_t pte2_attr_tab[8] = {
388 	PTE2_ATTR_WB_WA,	/* 0 - VM_MEMATTR_WB_WA */
389 	PTE2_ATTR_NOCACHE,	/* 1 - VM_MEMATTR_NOCACHE */
390 	PTE2_ATTR_DEVICE,	/* 2 - VM_MEMATTR_DEVICE */
391 	PTE2_ATTR_SO,		/* 3 - VM_MEMATTR_SO */
392 	PTE2_ATTR_WT,		/* 4 - VM_MEMATTR_WRITE_THROUGH */
393 	0,			/* 5 - NOT USED YET */
394 	0,			/* 6 - NOT USED YET */
395 	0			/* 7 - NOT USED YET */
396 };
397 CTASSERT(VM_MEMATTR_WB_WA == 0);
398 CTASSERT(VM_MEMATTR_NOCACHE == 1);
399 CTASSERT(VM_MEMATTR_DEVICE == 2);
400 CTASSERT(VM_MEMATTR_SO == 3);
401 CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
402 #define	VM_MEMATTR_END	(VM_MEMATTR_WRITE_THROUGH + 1)
403 
404 boolean_t
405 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
406 {
407 
408 	return (mode >= 0 && mode < VM_MEMATTR_END);
409 }
410 
411 static inline uint32_t
412 vm_memattr_to_pte2(vm_memattr_t ma)
413 {
414 
415 	KASSERT((u_int)ma < VM_MEMATTR_END,
416 	    ("%s: bad vm_memattr_t %d", __func__, ma));
417 	return (pte2_attr_tab[(u_int)ma]);
418 }
419 
420 static inline uint32_t
421 vm_page_pte2_attr(vm_page_t m)
422 {
423 
424 	return (vm_memattr_to_pte2(m->md.pat_mode));
425 }
426 
427 /*
428  * Convert TEX definition entry to TTB flags.
429  */
430 static uint32_t
431 encode_ttb_flags(int idx)
432 {
433 	uint32_t inner, outer, nos, reg;
434 
435 	inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
436 		TEXDEF_INNER_MASK;
437 	outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
438 		TEXDEF_OUTER_MASK;
439 	nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
440 		TEXDEF_NOS_MASK;
441 
442 	reg = nos << 5;
443 	reg |= outer << 3;
444 	if (cpuinfo.coherent_walk)
445 		reg |= (inner & 0x1) << 6;
446 	reg |= (inner & 0x2) >> 1;
447 #ifdef SMP
448 	ARM_SMP_UP(
449 		reg |= 1 << 1,
450 	);
451 #endif
452 	return reg;
453 }
454 
455 /*
456  *  Set TEX remapping registers in current CPU.
457  */
458 void
459 pmap_set_tex(void)
460 {
461 	uint32_t prrr, nmrr;
462 	uint32_t type, inner, outer, nos;
463 	int i;
464 
465 #ifdef PMAP_PTE_NOCACHE
466 	/* XXX fixme */
467 	if (cpuinfo.coherent_walk) {
468 		pt_memattr = VM_MEMATTR_WB_WA;
469 		ttb_flags = encode_ttb_flags(0);
470 	}
471 	else {
472 		pt_memattr = VM_MEMATTR_NOCACHE;
473 		ttb_flags = encode_ttb_flags(1);
474 	}
475 #else
476 	pt_memattr = VM_MEMATTR_WB_WA;
477 	ttb_flags = encode_ttb_flags(0);
478 #endif
479 
480 	prrr = 0;
481 	nmrr = 0;
482 
483 	/* Build remapping register from TEX classes. */
484 	for (i = 0; i < 8; i++) {
485 		type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
486 			TEXDEF_TYPE_MASK;
487 		inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
488 			TEXDEF_INNER_MASK;
489 		outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
490 			TEXDEF_OUTER_MASK;
491 		nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
492 			TEXDEF_NOS_MASK;
493 
494 		prrr |= type  << (i * 2);
495 		prrr |= nos   << (i + 24);
496 		nmrr |= inner << (i * 2);
497 		nmrr |= outer << (i * 2 + 16);
498 	}
499 	/* Add shareable bits for device memory. */
500 	prrr |= PRRR_DS0 | PRRR_DS1;
501 
502 	/* Add shareable bits for normal memory in SMP case. */
503 #ifdef SMP
504 	ARM_SMP_UP(
505 		prrr |= PRRR_NS1,
506 	);
507 #endif
508 	cp15_prrr_set(prrr);
509 	cp15_nmrr_set(nmrr);
510 
511 	/* Caches are disabled, so full TLB flush should be enough. */
512 	tlb_flush_all_local();
513 }
514 
515 /*
516  * Remap one vm_meattr class to another one. This can be useful as
517  * workaround for SOC errata, e.g. if devices must be accessed using
518  * SO memory class.
519  *
520  * !!! Please note that this function is absolutely last resort thing.
521  * It should not be used under normal circumstances. !!!
522  *
523  * Usage rules:
524  * - it shall be called after pmap_bootstrap_prepare() and before
525  *   cpu_mp_start() (thus only on boot CPU). In practice, it's expected
526  *   to be called from platform_attach() or platform_late_init().
527  *
528  * - if remapping doesn't change caching mode, or until uncached class
529  *   is remapped to any kind of cached one, then no other restriction exists.
530  *
531  * - if pmap_remap_vm_attr() changes caching mode, but both (original and
532  *   remapped) remain cached, then caller is resposible for calling
533  *   of dcache_wbinv_poc_all().
534  *
535  * - remapping of any kind of cached class to uncached is not permitted.
536  */
537 void
538 pmap_remap_vm_attr(vm_memattr_t old_attr, vm_memattr_t new_attr)
539 {
540 	int old_idx, new_idx;
541 
542 	/* Map VM memattrs to indexes to tex_class table. */
543 	old_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)old_attr]);
544 	new_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)new_attr]);
545 
546 	/* Replace TEX attribute and apply it. */
547 	tex_class[old_idx] = tex_class[new_idx];
548 	pmap_set_tex();
549 }
550 
551 /*
552  * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
553  * KERNBASE is mapped by first L2 page table in L2 page table page. It
554  * meets same constrain due to PT2MAP being placed just under KERNBASE.
555  */
556 CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
557 CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
558 
559 /*
560  *  In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
561  *  For now, anyhow, the following check must be fulfilled.
562  */
563 CTASSERT(PAGE_SIZE == PTE2_SIZE);
564 /*
565  *  We don't want to mess up MI code with all MMU and PMAP definitions,
566  *  so some things, which depend on other ones, are defined independently.
567  *  Now, it is time to check that we don't screw up something.
568  */
569 CTASSERT(PDRSHIFT == PTE1_SHIFT);
570 /*
571  *  Check L1 and L2 page table entries definitions consistency.
572  */
573 CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
574 CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
575 /*
576  *  Check L2 page tables page consistency.
577  */
578 CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
579 CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
580 /*
581  *  Check PT2TAB consistency.
582  *  PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
583  *  This should be done without remainder.
584  */
585 CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
586 
587 /*
588  *	A PT2MAP magic.
589  *
590  *  All level 2 page tables (PT2s) are mapped continuously and accordingly
591  *  into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
592  *  be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
593  *  must be used together, but not necessary at once. The first PT2 in a page
594  *  must map things on correctly aligned address and the others must follow
595  *  in right order.
596  */
597 #define NB_IN_PT2TAB	(PT2TAB_ENTRIES * sizeof(pt2_entry_t))
598 #define NPT2_IN_PT2TAB	(NB_IN_PT2TAB / NB_IN_PT2)
599 #define NPG_IN_PT2TAB	(NB_IN_PT2TAB / PAGE_SIZE)
600 
601 /*
602  *  Check PT2TAB consistency.
603  *  NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
604  *  NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
605  *  The both should be done without remainder.
606  */
607 CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
608 CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
609 /*
610  *  The implementation was made general, however, with the assumption
611  *  bellow in mind. In case of another value of NPG_IN_PT2TAB,
612  *  the code should be once more rechecked.
613  */
614 CTASSERT(NPG_IN_PT2TAB == 1);
615 
616 /*
617  *  Get offset of PT2 in a page
618  *  associated with given PT1 index.
619  */
620 static __inline u_int
621 page_pt2off(u_int pt1_idx)
622 {
623 
624 	return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
625 }
626 
627 /*
628  *  Get physical address of PT2
629  *  associated with given PT2s page and PT1 index.
630  */
631 static __inline vm_paddr_t
632 page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
633 {
634 
635 	return (pgpa + page_pt2off(pt1_idx));
636 }
637 
638 /*
639  *  Get first entry of PT2
640  *  associated with given PT2s page and PT1 index.
641  */
642 static __inline pt2_entry_t *
643 page_pt2(vm_offset_t pgva, u_int pt1_idx)
644 {
645 
646 	return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
647 }
648 
649 /*
650  *  Get virtual address of PT2s page (mapped in PT2MAP)
651  *  which holds PT2 which holds entry which maps given virtual address.
652  */
653 static __inline vm_offset_t
654 pt2map_pt2pg(vm_offset_t va)
655 {
656 
657 	va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
658 	return ((vm_offset_t)pt2map_entry(va));
659 }
660 
661 /*****************************************************************************
662  *
663  *     THREE pmap initialization milestones exist:
664  *
665  *  locore.S
666  *    -> fundamental init (including MMU) in ASM
667  *
668  *  initarm()
669  *    -> fundamental init continues in C
670  *    -> first available physical address is known
671  *
672  *    pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
673  *      -> basic (safe) interface for physical address allocation is made
674  *      -> basic (safe) interface for virtual mapping is made
675  *      -> limited not SMP coherent work is possible
676  *
677  *    -> more fundamental init continues in C
678  *    -> locks and some more things are available
679  *    -> all fundamental allocations and mappings are done
680  *
681  *    pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
682  *      -> phys_avail[] and virtual_avail is set
683  *      -> control is passed to vm subsystem
684  *      -> physical and virtual address allocation are off limit
685  *      -> low level mapping functions, some SMP coherent,
686  *         are available, which cannot be used before vm subsystem
687  *         is being inited
688  *
689  *  mi_startup()
690  *    -> vm subsystem is being inited
691  *
692  *      pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
693  *        -> pmap is fully inited
694  *
695  *****************************************************************************/
696 
697 /*****************************************************************************
698  *
699  *	PMAP first stage initialization and utility functions
700  *	for pre-bootstrap epoch.
701  *
702  *  After pmap_bootstrap_prepare() is called, the following functions
703  *  can be used:
704  *
705  *  (1) strictly only for this stage functions for physical page allocations,
706  *      virtual space allocations, and mappings:
707  *
708  *  vm_paddr_t pmap_preboot_get_pages(u_int num);
709  *  void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
710  *  vm_offset_t pmap_preboot_reserve_pages(u_int num);
711  *  vm_offset_t pmap_preboot_get_vpages(u_int num);
712  *  void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
713  *      vm_prot_t prot, vm_memattr_t attr);
714  *
715  *  (2) for all stages:
716  *
717  *  vm_paddr_t pmap_kextract(vm_offset_t va);
718  *
719  *  NOTE: This is not SMP coherent stage.
720  *
721  *****************************************************************************/
722 
723 #define KERNEL_P2V(pa) \
724     ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
725 #define KERNEL_V2P(va) \
726     ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
727 
728 static vm_paddr_t last_paddr;
729 
730 /*
731  *  Pre-bootstrap epoch page allocator.
732  */
733 vm_paddr_t
734 pmap_preboot_get_pages(u_int num)
735 {
736 	vm_paddr_t ret;
737 
738 	ret = last_paddr;
739 	last_paddr += num * PAGE_SIZE;
740 
741 	return (ret);
742 }
743 
744 /*
745  *	The fundamental initialization of PMAP stuff.
746  *
747  *  Some things already happened in locore.S and some things could happen
748  *  before pmap_bootstrap_prepare() is called, so let's recall what is done:
749  *  1. Caches are disabled.
750  *  2. We are running on virtual addresses already with 'boot_pt1'
751  *     as L1 page table.
752  *  3. So far, all virtual addresses can be converted to physical ones and
753  *     vice versa by the following macros:
754  *       KERNEL_P2V(pa) .... physical to virtual ones,
755  *       KERNEL_V2P(va) .... virtual to physical ones.
756  *
757  *  What is done herein:
758  *  1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
759  *  2. PT2MAP magic is brought to live.
760  *  3. Basic preboot functions for page allocations and mappings can be used.
761  *  4. Everything is prepared for L1 cache enabling.
762  *
763  *  Variations:
764  *  1. To use second TTB register, so kernel and users page tables will be
765  *     separated. This way process forking - pmap_pinit() - could be faster,
766  *     it saves physical pages and KVA per a process, and it's simple change.
767  *     However, it will lead, due to hardware matter, to the following:
768  *     (a) 2G space for kernel and 2G space for users.
769  *     (b) 1G space for kernel in low addresses and 3G for users above it.
770  *     A question is: Is the case (b) really an option? Note that case (b)
771  *     does save neither physical memory and KVA.
772  */
773 void
774 pmap_bootstrap_prepare(vm_paddr_t last)
775 {
776 	vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
777 	vm_offset_t pt2pg_va;
778 	pt1_entry_t *pte1p;
779 	pt2_entry_t *pte2p;
780 	u_int i;
781 	uint32_t l1_attr;
782 
783 	/*
784 	 * Now, we are going to make real kernel mapping. Note that we are
785 	 * already running on some mapping made in locore.S and we expect
786 	 * that it's large enough to ensure nofault access to physical memory
787 	 * allocated herein before switch.
788 	 *
789 	 * As kernel image and everything needed before are and will be mapped
790 	 * by section mappings, we align last physical address to PTE1_SIZE.
791 	 */
792 	last_paddr = pte1_roundup(last);
793 
794 	/*
795 	 * Allocate and zero page(s) for kernel L1 page table.
796 	 *
797 	 * Note that it's first allocation on space which was PTE1_SIZE
798 	 * aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
799 	 */
800 	base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
801 	kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
802 	bzero((void*)kern_pt1, NB_IN_PT1);
803 	pte1_sync_range(kern_pt1, NB_IN_PT1);
804 
805 	/* Allocate and zero page(s) for kernel PT2TAB. */
806 	pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
807 	kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
808 	bzero(kern_pt2tab, NB_IN_PT2TAB);
809 	pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
810 
811 	/* Allocate and zero page(s) for kernel L2 page tables. */
812 	pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
813 	pt2pg_va = KERNEL_P2V(pt2pg_pa);
814 	size = NKPT2PG * PAGE_SIZE;
815 	bzero((void*)pt2pg_va, size);
816 	pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
817 
818 	/*
819 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
820 	 * preallocated pages for kernel L2 page tables so that vm_page
821 	 * structures representing these pages will be created. The vm_page
822 	 * structures are required for promotion of the corresponding kernel
823 	 * virtual addresses to section mappings.
824 	 */
825 	vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
826 
827 	/*
828 	 * Insert allocated L2 page table pages to PT2TAB and make
829 	 * link to all PT2s in L1 page table. See how kernel_vm_end
830 	 * is initialized.
831 	 *
832 	 * We play simple and safe. So every KVA will have underlaying
833 	 * L2 page table, even kernel image mapped by sections.
834 	 */
835 	pte2p = kern_pt2tab_entry(KERNBASE);
836 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
837 		pt2tab_store(pte2p++, PTE2_KPT(pa));
838 
839 	pte1p = kern_pte1(KERNBASE);
840 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
841 		pte1_store(pte1p++, PTE1_LINK(pa));
842 
843 	/* Make section mappings for kernel. */
844 	l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
845 	pte1p = kern_pte1(KERNBASE);
846 	for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
847 		pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
848 
849 	/*
850 	 * Get free and aligned space for PT2MAP and make L1 page table links
851 	 * to L2 page tables held in PT2TAB.
852 	 *
853 	 * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
854 	 * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
855 	 * each entry in PT2TAB maps all PT2s in a page. This implies that
856 	 * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
857 	 */
858 	PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
859 	pte1p = kern_pte1((vm_offset_t)PT2MAP);
860 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
861 		pte1_store(pte1p++, PTE1_LINK(pa));
862 	}
863 
864 	/*
865 	 * Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
866 	 * Each pmap will hold own PT2TAB, so the mapping should be not global.
867 	 */
868 	pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
869 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
870 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
871 	}
872 
873 	/*
874 	 * Choose correct L2 page table and make mappings for allocations
875 	 * made herein which replaces temporary locore.S mappings after a while.
876 	 * Note that PT2MAP cannot be used until we switch to kern_pt1.
877 	 *
878 	 * Note, that these allocations started aligned on 1M section and
879 	 * kernel PT1 was allocated first. Making of mappings must follow
880 	 * order of physical allocations as we've used KERNEL_P2V() macro
881 	 * for virtual addresses resolution.
882 	 */
883 	pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
884 	pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
885 
886 	pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
887 
888 	/* Make mapping for kernel L1 page table. */
889 	for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
890 		pte2_store(pte2p++, PTE2_KPT(pa));
891 
892 	/* Make mapping for kernel PT2TAB. */
893 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
894 		pte2_store(pte2p++, PTE2_KPT(pa));
895 
896 	/* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
897 	pmap_kern_ttb = base_pt1 | ttb_flags;
898 	cpuinfo_reinit_mmu(pmap_kern_ttb);
899 	/*
900 	 * Initialize the first available KVA. As kernel image is mapped by
901 	 * sections, we are leaving some gap behind.
902 	 */
903 	virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
904 }
905 
906 /*
907  *  Setup L2 page table page for given KVA.
908  *  Used in pre-bootstrap epoch.
909  *
910  *  Note that we have allocated NKPT2PG pages for L2 page tables in advance
911  *  and used them for mapping KVA starting from KERNBASE. However, this is not
912  *  enough. Vectors and devices need L2 page tables too. Note that they are
913  *  even above VM_MAX_KERNEL_ADDRESS.
914  */
915 static __inline vm_paddr_t
916 pmap_preboot_pt2pg_setup(vm_offset_t va)
917 {
918 	pt2_entry_t *pte2p, pte2;
919 	vm_paddr_t pt2pg_pa;
920 
921 	/* Get associated entry in PT2TAB. */
922 	pte2p = kern_pt2tab_entry(va);
923 
924 	/* Just return, if PT2s page exists already. */
925 	pte2 = pt2tab_load(pte2p);
926 	if (pte2_is_valid(pte2))
927 		return (pte2_pa(pte2));
928 
929 	KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
930 	    ("%s: NKPT2PG too small", __func__));
931 
932 	/*
933 	 * Allocate page for PT2s and insert it to PT2TAB.
934 	 * In other words, map it into PT2MAP space.
935 	 */
936 	pt2pg_pa = pmap_preboot_get_pages(1);
937 	pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
938 
939 	/* Zero all PT2s in allocated page. */
940 	bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
941 	pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
942 
943 	return (pt2pg_pa);
944 }
945 
946 /*
947  *  Setup L2 page table for given KVA.
948  *  Used in pre-bootstrap epoch.
949  */
950 static void
951 pmap_preboot_pt2_setup(vm_offset_t va)
952 {
953 	pt1_entry_t *pte1p;
954 	vm_paddr_t pt2pg_pa, pt2_pa;
955 
956 	/* Setup PT2's page. */
957 	pt2pg_pa = pmap_preboot_pt2pg_setup(va);
958 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
959 
960 	/* Insert PT2 to PT1. */
961 	pte1p = kern_pte1(va);
962 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
963 }
964 
965 /*
966  *  Get L2 page entry associated with given KVA.
967  *  Used in pre-bootstrap epoch.
968  */
969 static __inline pt2_entry_t*
970 pmap_preboot_vtopte2(vm_offset_t va)
971 {
972 	pt1_entry_t *pte1p;
973 
974 	/* Setup PT2 if needed. */
975 	pte1p = kern_pte1(va);
976 	if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
977 		pmap_preboot_pt2_setup(va);
978 
979 	return (pt2map_entry(va));
980 }
981 
982 /*
983  *  Pre-bootstrap epoch page(s) mapping(s).
984  */
985 void
986 pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
987 {
988 	u_int i;
989 	pt2_entry_t *pte2p;
990 
991 	/* Map all the pages. */
992 	for (i = 0; i < num; i++) {
993 		pte2p = pmap_preboot_vtopte2(va);
994 		pte2_store(pte2p, PTE2_KRW(pa));
995 		va += PAGE_SIZE;
996 		pa += PAGE_SIZE;
997 	}
998 }
999 
1000 /*
1001  *  Pre-bootstrap epoch virtual space alocator.
1002  */
1003 vm_offset_t
1004 pmap_preboot_reserve_pages(u_int num)
1005 {
1006 	u_int i;
1007 	vm_offset_t start, va;
1008 	pt2_entry_t *pte2p;
1009 
1010 	/* Allocate virtual space. */
1011 	start = va = virtual_avail;
1012 	virtual_avail += num * PAGE_SIZE;
1013 
1014 	/* Zero the mapping. */
1015 	for (i = 0; i < num; i++) {
1016 		pte2p = pmap_preboot_vtopte2(va);
1017 		pte2_store(pte2p, 0);
1018 		va += PAGE_SIZE;
1019 	}
1020 
1021 	return (start);
1022 }
1023 
1024 /*
1025  *  Pre-bootstrap epoch page(s) allocation and mapping(s).
1026  */
1027 vm_offset_t
1028 pmap_preboot_get_vpages(u_int num)
1029 {
1030 	vm_paddr_t  pa;
1031 	vm_offset_t va;
1032 
1033 	/* Allocate physical page(s). */
1034 	pa = pmap_preboot_get_pages(num);
1035 
1036 	/* Allocate virtual space. */
1037 	va = virtual_avail;
1038 	virtual_avail += num * PAGE_SIZE;
1039 
1040 	/* Map and zero all. */
1041 	pmap_preboot_map_pages(pa, va, num);
1042 	bzero((void *)va, num * PAGE_SIZE);
1043 
1044 	return (va);
1045 }
1046 
1047 /*
1048  *  Pre-bootstrap epoch page mapping(s) with attributes.
1049  */
1050 void
1051 pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
1052     vm_prot_t prot, vm_memattr_t attr)
1053 {
1054 	u_int num;
1055 	u_int l1_attr, l1_prot, l2_prot, l2_attr;
1056 	pt1_entry_t *pte1p;
1057 	pt2_entry_t *pte2p;
1058 
1059 	l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
1060 	l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1061 	l2_attr = vm_memattr_to_pte2(attr);
1062 	l1_prot = ATTR_TO_L1(l2_prot);
1063 	l1_attr = ATTR_TO_L1(l2_attr);
1064 
1065 	/* Map all the pages. */
1066 	num = round_page(size);
1067 	while (num > 0) {
1068 		if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
1069 			pte1p = kern_pte1(va);
1070 			pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
1071 			va += PTE1_SIZE;
1072 			pa += PTE1_SIZE;
1073 			num -= PTE1_SIZE;
1074 		} else {
1075 			pte2p = pmap_preboot_vtopte2(va);
1076 			pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
1077 			va += PAGE_SIZE;
1078 			pa += PAGE_SIZE;
1079 			num -= PAGE_SIZE;
1080 		}
1081 	}
1082 }
1083 
1084 /*
1085  *  Extract from the kernel page table the physical address
1086  *  that is mapped by the given virtual address "va".
1087  */
1088 vm_paddr_t
1089 pmap_kextract(vm_offset_t va)
1090 {
1091 	vm_paddr_t pa;
1092 	pt1_entry_t pte1;
1093 	pt2_entry_t pte2;
1094 
1095 	pte1 = pte1_load(kern_pte1(va));
1096 	if (pte1_is_section(pte1)) {
1097 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1098 	} else if (pte1_is_link(pte1)) {
1099 		/*
1100 		 * We should beware of concurrent promotion that changes
1101 		 * pte1 at this point. However, it's not a problem as PT2
1102 		 * page is preserved by promotion in PT2TAB. So even if
1103 		 * it happens, using of PT2MAP is still safe.
1104 		 *
1105 		 * QQQ: However, concurrent removing is a problem which
1106 		 *      ends in abort on PT2MAP space. Locking must be used
1107 		 *      to deal with this.
1108 		 */
1109 		pte2 = pte2_load(pt2map_entry(va));
1110 		pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
1111 	}
1112 	else {
1113 		panic("%s: va %#x pte1 %#x", __func__, va, pte1);
1114 	}
1115 	return (pa);
1116 }
1117 
1118 /*
1119  *  Extract from the kernel page table the physical address
1120  *  that is mapped by the given virtual address "va". Also
1121  *  return L2 page table entry which maps the address.
1122  *
1123  *  This is only intended to be used for panic dumps.
1124  */
1125 vm_paddr_t
1126 pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
1127 {
1128 	vm_paddr_t pa;
1129 	pt1_entry_t pte1;
1130 	pt2_entry_t pte2;
1131 
1132 	pte1 = pte1_load(kern_pte1(va));
1133 	if (pte1_is_section(pte1)) {
1134 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1135 		pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
1136 	} else if (pte1_is_link(pte1)) {
1137 		pte2 = pte2_load(pt2map_entry(va));
1138 		pa = pte2_pa(pte2);
1139 	} else {
1140 		pte2 = 0;
1141 		pa = 0;
1142 	}
1143 	if (pte2p != NULL)
1144 		*pte2p = pte2;
1145 	return (pa);
1146 }
1147 
1148 /*****************************************************************************
1149  *
1150  *	PMAP second stage initialization and utility functions
1151  *	for bootstrap epoch.
1152  *
1153  *  After pmap_bootstrap() is called, the following functions for
1154  *  mappings can be used:
1155  *
1156  *  void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
1157  *  void pmap_kremove(vm_offset_t va);
1158  *  vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1159  *      int prot);
1160  *
1161  *  NOTE: This is not SMP coherent stage. And physical page allocation is not
1162  *        allowed during this stage.
1163  *
1164  *****************************************************************************/
1165 
1166 /*
1167  *  Initialize kernel PMAP locks and lists, kernel_pmap itself, and
1168  *  reserve various virtual spaces for temporary mappings.
1169  */
1170 void
1171 pmap_bootstrap(vm_offset_t firstaddr)
1172 {
1173 	pt2_entry_t *unused __unused;
1174 	struct pcpu *pc;
1175 
1176 	/*
1177 	 * Initialize the kernel pmap (which is statically allocated).
1178 	 */
1179 	PMAP_LOCK_INIT(kernel_pmap);
1180 	kernel_l1pa = (vm_paddr_t)kern_pt1;  /* for libkvm */
1181 	kernel_pmap->pm_pt1 = kern_pt1;
1182 	kernel_pmap->pm_pt2tab = kern_pt2tab;
1183 	CPU_FILL(&kernel_pmap->pm_active);  /* don't allow deactivation */
1184 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1185 
1186 	/*
1187 	 * Initialize the global pv list lock.
1188 	 */
1189 	rw_init(&pvh_global_lock, "pmap pv global");
1190 
1191 	LIST_INIT(&allpmaps);
1192 
1193 	/*
1194 	 * Request a spin mutex so that changes to allpmaps cannot be
1195 	 * preempted by smp_rendezvous_cpus().
1196 	 */
1197 	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
1198 	mtx_lock_spin(&allpmaps_lock);
1199 	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
1200 	mtx_unlock_spin(&allpmaps_lock);
1201 
1202 	/*
1203 	 * Reserve some special page table entries/VA space for temporary
1204 	 * mapping of pages.
1205 	 */
1206 #define	SYSMAP(c, p, v, n)  do {		\
1207 	v = (c)pmap_preboot_reserve_pages(n);	\
1208 	p = pt2map_entry((vm_offset_t)v);	\
1209 	} while (0)
1210 
1211 	/*
1212 	 * Local CMAP1/CMAP2 are used for zeroing and copying pages.
1213 	 * Local CMAP2 is also used for data cache cleaning.
1214 	 */
1215 	pc = get_pcpu();
1216 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1217 	SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
1218 	SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
1219 	SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
1220 
1221 	/*
1222 	 * Crashdump maps.
1223 	 */
1224 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
1225 
1226 	/*
1227 	 * _tmppt is used for reading arbitrary physical pages via /dev/mem.
1228 	 */
1229 	SYSMAP(caddr_t, unused, _tmppt, 1);
1230 
1231 	/*
1232 	 * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
1233 	 * respectively. PADDR3 is used by pmap_pte2_ddb().
1234 	 */
1235 	SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
1236 	SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
1237 #ifdef DDB
1238 	SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
1239 #endif
1240 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
1241 
1242 	/*
1243 	 * Note that in very short time in initarm(), we are going to
1244 	 * initialize phys_avail[] array and no further page allocation
1245 	 * can happen after that until vm subsystem will be initialized.
1246 	 */
1247 	kernel_vm_end_new = kernel_vm_end;
1248 	virtual_end = vm_max_kernel_address;
1249 }
1250 
1251 static void
1252 pmap_init_reserved_pages(void)
1253 {
1254 	struct pcpu *pc;
1255 	vm_offset_t pages;
1256 	int i;
1257 
1258 	CPU_FOREACH(i) {
1259 		pc = pcpu_find(i);
1260 		/*
1261 		 * Skip if the mapping has already been initialized,
1262 		 * i.e. this is the BSP.
1263 		 */
1264 		if (pc->pc_cmap1_addr != 0)
1265 			continue;
1266 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1267 		pages = kva_alloc(PAGE_SIZE * 3);
1268 		if (pages == 0)
1269 			panic("%s: unable to allocate KVA", __func__);
1270 		pc->pc_cmap1_pte2p = pt2map_entry(pages);
1271 		pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
1272 		pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
1273 		pc->pc_cmap1_addr = (caddr_t)pages;
1274 		pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
1275 		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
1276 	}
1277 }
1278 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
1279 
1280 /*
1281  *  The function can already be use in second initialization stage.
1282  *  As such, the function DOES NOT call pmap_growkernel() where PT2
1283  *  allocation can happen. So if used, be sure that PT2 for given
1284  *  virtual address is allocated already!
1285  *
1286  *  Add a wired page to the kva.
1287  *  Note: not SMP coherent.
1288  */
1289 static __inline void
1290 pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
1291     uint32_t attr)
1292 {
1293 	pt1_entry_t *pte1p;
1294 	pt2_entry_t *pte2p;
1295 
1296 	pte1p = kern_pte1(va);
1297 	if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
1298 		/*
1299 		 * This is a very low level function, so PT2 and particularly
1300 		 * PT2PG associated with given virtual address must be already
1301 		 * allocated. It's a pain mainly during pmap initialization
1302 		 * stage. However, called after pmap initialization with
1303 		 * virtual address not under kernel_vm_end will lead to
1304 		 * the same misery.
1305 		 */
1306 		if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
1307 			panic("%s: kernel PT2 not allocated!", __func__);
1308 	}
1309 
1310 	pte2p = pt2map_entry(va);
1311 	pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
1312 }
1313 
1314 PMAP_INLINE void
1315 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1316 {
1317 
1318 	pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
1319 }
1320 
1321 /*
1322  *  Remove a page from the kernel pagetables.
1323  *  Note: not SMP coherent.
1324  */
1325 PMAP_INLINE void
1326 pmap_kremove(vm_offset_t va)
1327 {
1328 	pt1_entry_t *pte1p;
1329 	pt2_entry_t *pte2p;
1330 
1331 	pte1p = kern_pte1(va);
1332 	if (pte1_is_section(pte1_load(pte1p))) {
1333 		pte1_clear(pte1p);
1334 	} else {
1335 		pte2p = pt2map_entry(va);
1336 		pte2_clear(pte2p);
1337 	}
1338 }
1339 
1340 /*
1341  *  Share new kernel PT2PG with all pmaps.
1342  *  The caller is responsible for maintaining TLB consistency.
1343  */
1344 static void
1345 pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
1346 {
1347 	pmap_t pmap;
1348 	pt2_entry_t *pte2p;
1349 
1350 	mtx_lock_spin(&allpmaps_lock);
1351 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1352 		pte2p = pmap_pt2tab_entry(pmap, va);
1353 		pt2tab_store(pte2p, npte2);
1354 	}
1355 	mtx_unlock_spin(&allpmaps_lock);
1356 }
1357 
1358 /*
1359  *  Share new kernel PTE1 with all pmaps.
1360  *  The caller is responsible for maintaining TLB consistency.
1361  */
1362 static void
1363 pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
1364 {
1365 	pmap_t pmap;
1366 	pt1_entry_t *pte1p;
1367 
1368 	mtx_lock_spin(&allpmaps_lock);
1369 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1370 		pte1p = pmap_pte1(pmap, va);
1371 		pte1_store(pte1p, npte1);
1372 	}
1373 	mtx_unlock_spin(&allpmaps_lock);
1374 }
1375 
1376 /*
1377  *  Used to map a range of physical addresses into kernel
1378  *  virtual address space.
1379  *
1380  *  The value passed in '*virt' is a suggested virtual address for
1381  *  the mapping. Architectures which can support a direct-mapped
1382  *  physical to virtual region can return the appropriate address
1383  *  within that region, leaving '*virt' unchanged. Other
1384  *  architectures should map the pages starting at '*virt' and
1385  *  update '*virt' with the first usable address after the mapped
1386  *  region.
1387  *
1388  *  NOTE: Read the comments above pmap_kenter_prot_attr() as
1389  *        the function is used herein!
1390  */
1391 vm_offset_t
1392 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1393 {
1394 	vm_offset_t va, sva;
1395 	vm_paddr_t pte1_offset;
1396 	pt1_entry_t npte1;
1397 	uint32_t l1prot, l2prot;
1398 	uint32_t l1attr, l2attr;
1399 
1400 	PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
1401 	    " prot = %d\n", __func__, *virt, start, end, end - start,  prot));
1402 
1403 	l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
1404 	l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1405 	l1prot = ATTR_TO_L1(l2prot);
1406 
1407 	l2attr = PTE2_ATTR_DEFAULT;
1408 	l1attr = ATTR_TO_L1(l2attr);
1409 
1410 	va = *virt;
1411 	/*
1412 	 * Does the physical address range's size and alignment permit at
1413 	 * least one section mapping to be created?
1414 	 */
1415 	pte1_offset = start & PTE1_OFFSET;
1416 	if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
1417 	    PTE1_SIZE) {
1418 		/*
1419 		 * Increase the starting virtual address so that its alignment
1420 		 * does not preclude the use of section mappings.
1421 		 */
1422 		if ((va & PTE1_OFFSET) < pte1_offset)
1423 			va = pte1_trunc(va) + pte1_offset;
1424 		else if ((va & PTE1_OFFSET) > pte1_offset)
1425 			va = pte1_roundup(va) + pte1_offset;
1426 	}
1427 	sva = va;
1428 	while (start < end) {
1429 		if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
1430 			KASSERT((va & PTE1_OFFSET) == 0,
1431 			    ("%s: misaligned va %#x", __func__, va));
1432 			npte1 = PTE1_KERN(start, l1prot, l1attr);
1433 			pmap_kenter_pte1(va, npte1);
1434 			va += PTE1_SIZE;
1435 			start += PTE1_SIZE;
1436 		} else {
1437 			pmap_kenter_prot_attr(va, start, l2prot, l2attr);
1438 			va += PAGE_SIZE;
1439 			start += PAGE_SIZE;
1440 		}
1441 	}
1442 	tlb_flush_range(sva, va - sva);
1443 	*virt = va;
1444 	return (sva);
1445 }
1446 
1447 /*
1448  *  Make a temporary mapping for a physical address.
1449  *  This is only intended to be used for panic dumps.
1450  */
1451 void *
1452 pmap_kenter_temporary(vm_paddr_t pa, int i)
1453 {
1454 	vm_offset_t va;
1455 
1456 	/* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
1457 
1458 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
1459 	pmap_kenter(va, pa);
1460 	tlb_flush_local(va);
1461 	return ((void *)crashdumpmap);
1462 }
1463 
1464 /*************************************
1465  *
1466  *  TLB & cache maintenance routines.
1467  *
1468  *************************************/
1469 
1470 /*
1471  *  We inline these within pmap.c for speed.
1472  */
1473 PMAP_INLINE void
1474 pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
1475 {
1476 
1477 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1478 		tlb_flush(va);
1479 }
1480 
1481 PMAP_INLINE void
1482 pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
1483 {
1484 
1485 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1486 		tlb_flush_range(sva, size);
1487 }
1488 
1489 /*
1490  *  Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
1491  *  Requirements:
1492  *   - Must deal with pages in order to ensure that none of the PTE2_* bits
1493  *     are ever set, PTE2_V in particular.
1494  *   - Assumes we can write to pte2s without pte2_store() atomic ops.
1495  *   - Assumes nothing will ever test these addresses for 0 to indicate
1496  *     no mapping instead of correctly checking PTE2_V.
1497  *   - Assumes a vm_offset_t will fit in a pte2 (true for arm).
1498  *  Because PTE2_V is never set, there can be no mappings to invalidate.
1499  */
1500 static vm_offset_t
1501 pmap_pte2list_alloc(vm_offset_t *head)
1502 {
1503 	pt2_entry_t *pte2p;
1504 	vm_offset_t va;
1505 
1506 	va = *head;
1507 	if (va == 0)
1508 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
1509 	pte2p = pt2map_entry(va);
1510 	*head = *pte2p;
1511 	if (*head & PTE2_V)
1512 		panic("%s: va with PTE2_V set!", __func__);
1513 	*pte2p = 0;
1514 	return (va);
1515 }
1516 
1517 static void
1518 pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
1519 {
1520 	pt2_entry_t *pte2p;
1521 
1522 	if (va & PTE2_V)
1523 		panic("%s: freeing va with PTE2_V set!", __func__);
1524 	pte2p = pt2map_entry(va);
1525 	*pte2p = *head;		/* virtual! PTE2_V is 0 though */
1526 	*head = va;
1527 }
1528 
1529 static void
1530 pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
1531 {
1532 	int i;
1533 	vm_offset_t va;
1534 
1535 	*head = 0;
1536 	for (i = npages - 1; i >= 0; i--) {
1537 		va = (vm_offset_t)base + i * PAGE_SIZE;
1538 		pmap_pte2list_free(head, va);
1539 	}
1540 }
1541 
1542 /*****************************************************************************
1543  *
1544  *	PMAP third and final stage initialization.
1545  *
1546  *  After pmap_init() is called, PMAP subsystem is fully initialized.
1547  *
1548  *****************************************************************************/
1549 
1550 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1551     "VM/pmap parameters");
1552 
1553 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1554     "Max number of PV entries");
1555 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1556     "Page share factor per proc");
1557 
1558 static u_long nkpt2pg = NKPT2PG;
1559 SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
1560     &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
1561 
1562 static int sp_enabled = 1;
1563 SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
1564     &sp_enabled, 0, "Are large page mappings enabled?");
1565 
1566 bool
1567 pmap_ps_enabled(pmap_t pmap __unused)
1568 {
1569 
1570 	return (sp_enabled != 0);
1571 }
1572 
1573 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1574     "1MB page mapping counters");
1575 
1576 static u_long pmap_pte1_demotions;
1577 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
1578     &pmap_pte1_demotions, 0, "1MB page demotions");
1579 
1580 static u_long pmap_pte1_mappings;
1581 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
1582     &pmap_pte1_mappings, 0, "1MB page mappings");
1583 
1584 static u_long pmap_pte1_p_failures;
1585 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
1586     &pmap_pte1_p_failures, 0, "1MB page promotion failures");
1587 
1588 static u_long pmap_pte1_promotions;
1589 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
1590     &pmap_pte1_promotions, 0, "1MB page promotions");
1591 
1592 static u_long pmap_pte1_kern_demotions;
1593 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
1594     &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
1595 
1596 static u_long pmap_pte1_kern_promotions;
1597 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
1598     &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
1599 
1600 static __inline ttb_entry_t
1601 pmap_ttb_get(pmap_t pmap)
1602 {
1603 
1604 	return (vtophys(pmap->pm_pt1) | ttb_flags);
1605 }
1606 
1607 /*
1608  *  Initialize a vm_page's machine-dependent fields.
1609  *
1610  *  Variations:
1611  *  1. Pages for L2 page tables are always not managed. So, pv_list and
1612  *     pt2_wirecount can share same physical space. However, proper
1613  *     initialization on a page alloc for page tables and reinitialization
1614  *     on the page free must be ensured.
1615  */
1616 void
1617 pmap_page_init(vm_page_t m)
1618 {
1619 
1620 	TAILQ_INIT(&m->md.pv_list);
1621 	pt2_wirecount_init(m);
1622 	m->md.pat_mode = VM_MEMATTR_DEFAULT;
1623 }
1624 
1625 /*
1626  *  Virtualization for faster way how to zero whole page.
1627  */
1628 static __inline void
1629 pagezero(void *page)
1630 {
1631 
1632 	bzero(page, PAGE_SIZE);
1633 }
1634 
1635 /*
1636  *  Zero L2 page table page.
1637  *  Use same KVA as in pmap_zero_page().
1638  */
1639 static __inline vm_paddr_t
1640 pmap_pt2pg_zero(vm_page_t m)
1641 {
1642 	pt2_entry_t *cmap2_pte2p;
1643 	vm_paddr_t pa;
1644 	struct pcpu *pc;
1645 
1646 	pa = VM_PAGE_TO_PHYS(m);
1647 
1648 	/*
1649 	 * XXX: For now, we map whole page even if it's already zero,
1650 	 *      to sync it even if the sync is only DSB.
1651 	 */
1652 	sched_pin();
1653 	pc = get_pcpu();
1654 	cmap2_pte2p = pc->pc_cmap2_pte2p;
1655 	mtx_lock(&pc->pc_cmap_lock);
1656 	if (pte2_load(cmap2_pte2p) != 0)
1657 		panic("%s: CMAP2 busy", __func__);
1658 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
1659 	    vm_page_pte2_attr(m)));
1660 	/*  Even VM_ALLOC_ZERO request is only advisory. */
1661 	if ((m->flags & PG_ZERO) == 0)
1662 		pagezero(pc->pc_cmap2_addr);
1663 	pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
1664 	pte2_clear(cmap2_pte2p);
1665 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
1666 
1667 	/*
1668 	 * Unpin the thread before releasing the lock.  Otherwise the thread
1669 	 * could be rescheduled while still bound to the current CPU, only
1670 	 * to unpin itself immediately upon resuming execution.
1671 	 */
1672 	sched_unpin();
1673 	mtx_unlock(&pc->pc_cmap_lock);
1674 
1675 	return (pa);
1676 }
1677 
1678 /*
1679  *  Init just allocated page as L2 page table(s) holder
1680  *  and return its physical address.
1681  */
1682 static __inline vm_paddr_t
1683 pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
1684 {
1685 	vm_paddr_t pa;
1686 	pt2_entry_t *pte2p;
1687 
1688 	/* Check page attributes. */
1689 	if (m->md.pat_mode != pt_memattr)
1690 		pmap_page_set_memattr(m, pt_memattr);
1691 
1692 	/* Zero page and init wire counts. */
1693 	pa = pmap_pt2pg_zero(m);
1694 	pt2_wirecount_init(m);
1695 
1696 	/*
1697 	 * Map page to PT2MAP address space for given pmap.
1698 	 * Note that PT2MAP space is shared with all pmaps.
1699 	 */
1700 	if (pmap == kernel_pmap)
1701 		pmap_kenter_pt2tab(va, PTE2_KPT(pa));
1702 	else {
1703 		pte2p = pmap_pt2tab_entry(pmap, va);
1704 		pt2tab_store(pte2p, PTE2_KPT_NG(pa));
1705 	}
1706 
1707 	return (pa);
1708 }
1709 
1710 /*
1711  *  Initialize the pmap module.
1712  *  Called by vm_init, to initialize any structures that the pmap
1713  *  system needs to map virtual memory.
1714  */
1715 void
1716 pmap_init(void)
1717 {
1718 	vm_size_t s;
1719 	pt2_entry_t *pte2p, pte2;
1720 	u_int i, pte1_idx, pv_npg;
1721 
1722 	PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
1723 
1724 	/*
1725 	 * Initialize the vm page array entries for kernel pmap's
1726 	 * L2 page table pages allocated in advance.
1727 	 */
1728 	pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
1729 	pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
1730 	for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
1731 		vm_paddr_t pa;
1732 		vm_page_t m;
1733 
1734 		pte2 = pte2_load(pte2p);
1735 		KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
1736 
1737 		pa = pte2_pa(pte2);
1738 		m = PHYS_TO_VM_PAGE(pa);
1739 		KASSERT(m >= vm_page_array &&
1740 		    m < &vm_page_array[vm_page_array_size],
1741 		    ("%s: L2 page table page is out of range", __func__));
1742 
1743 		m->pindex = pte1_idx;
1744 		m->phys_addr = pa;
1745 		pte1_idx += NPT2_IN_PG;
1746 	}
1747 
1748 	/*
1749 	 * Initialize the address space (zone) for the pv entries.  Set a
1750 	 * high water mark so that the system can recover from excessive
1751 	 * numbers of pv entries.
1752 	 */
1753 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1754 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1755 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1756 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1757 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1758 
1759 	/*
1760 	 * Are large page mappings enabled?
1761 	 */
1762 	TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
1763 	if (sp_enabled) {
1764 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1765 		    ("%s: can't assign to pagesizes[1]", __func__));
1766 		pagesizes[1] = PTE1_SIZE;
1767 	}
1768 
1769 	/*
1770 	 * Calculate the size of the pv head table for sections.
1771 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1772 	 * Note that the table is only for sections which could be promoted.
1773 	 */
1774 	first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
1775 	pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
1776 	    - first_managed_pa) / PTE1_SIZE + 1;
1777 
1778 	/*
1779 	 * Allocate memory for the pv head table for sections.
1780 	 */
1781 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1782 	s = round_page(s);
1783 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
1784 	for (i = 0; i < pv_npg; i++)
1785 		TAILQ_INIT(&pv_table[i].pv_list);
1786 
1787 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1788 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1789 	if (pv_chunkbase == NULL)
1790 		panic("%s: not enough kvm for pv chunks", __func__);
1791 	pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1792 }
1793 
1794 /*
1795  *  Add a list of wired pages to the kva
1796  *  this routine is only used for temporary
1797  *  kernel mappings that do not need to have
1798  *  page modification or references recorded.
1799  *  Note that old mappings are simply written
1800  *  over.  The page *must* be wired.
1801  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1802  */
1803 void
1804 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1805 {
1806 	u_int anychanged;
1807 	pt2_entry_t *epte2p, *pte2p, pte2;
1808 	vm_page_t m;
1809 	vm_paddr_t pa;
1810 
1811 	anychanged = 0;
1812 	pte2p = pt2map_entry(sva);
1813 	epte2p = pte2p + count;
1814 	while (pte2p < epte2p) {
1815 		m = *ma++;
1816 		pa = VM_PAGE_TO_PHYS(m);
1817 		pte2 = pte2_load(pte2p);
1818 		if ((pte2_pa(pte2) != pa) ||
1819 		    (pte2_attr(pte2) != vm_page_pte2_attr(m))) {
1820 			anychanged++;
1821 			pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
1822 			    vm_page_pte2_attr(m)));
1823 		}
1824 		pte2p++;
1825 	}
1826 	if (__predict_false(anychanged))
1827 		tlb_flush_range(sva, count * PAGE_SIZE);
1828 }
1829 
1830 /*
1831  *  This routine tears out page mappings from the
1832  *  kernel -- it is meant only for temporary mappings.
1833  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1834  */
1835 void
1836 pmap_qremove(vm_offset_t sva, int count)
1837 {
1838 	vm_offset_t va;
1839 
1840 	va = sva;
1841 	while (count-- > 0) {
1842 		pmap_kremove(va);
1843 		va += PAGE_SIZE;
1844 	}
1845 	tlb_flush_range(sva, va - sva);
1846 }
1847 
1848 /*
1849  *  Are we current address space or kernel?
1850  */
1851 static __inline int
1852 pmap_is_current(pmap_t pmap)
1853 {
1854 
1855 	return (pmap == kernel_pmap ||
1856 		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
1857 }
1858 
1859 /*
1860  *  If the given pmap is not the current or kernel pmap, the returned
1861  *  pte2 must be released by passing it to pmap_pte2_release().
1862  */
1863 static pt2_entry_t *
1864 pmap_pte2(pmap_t pmap, vm_offset_t va)
1865 {
1866 	pt1_entry_t pte1;
1867 	vm_paddr_t pt2pg_pa;
1868 
1869 	pte1 = pte1_load(pmap_pte1(pmap, va));
1870 	if (pte1_is_section(pte1))
1871 		panic("%s: attempt to map PTE1", __func__);
1872 	if (pte1_is_link(pte1)) {
1873 		/* Are we current address space or kernel? */
1874 		if (pmap_is_current(pmap))
1875 			return (pt2map_entry(va));
1876 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1877 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1878 		mtx_lock(&PMAP2mutex);
1879 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
1880 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
1881 			tlb_flush((vm_offset_t)PADDR2);
1882 		}
1883 		return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1884 	}
1885 	return (NULL);
1886 }
1887 
1888 /*
1889  *  Releases a pte2 that was obtained from pmap_pte2().
1890  *  Be prepared for the pte2p being NULL.
1891  */
1892 static __inline void
1893 pmap_pte2_release(pt2_entry_t *pte2p)
1894 {
1895 
1896 	if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
1897 		mtx_unlock(&PMAP2mutex);
1898 	}
1899 }
1900 
1901 /*
1902  *  Super fast pmap_pte2 routine best used when scanning
1903  *  the pv lists.  This eliminates many coarse-grained
1904  *  invltlb calls.  Note that many of the pv list
1905  *  scans are across different pmaps.  It is very wasteful
1906  *  to do an entire tlb flush for checking a single mapping.
1907  *
1908  *  If the given pmap is not the current pmap, pvh_global_lock
1909  *  must be held and curthread pinned to a CPU.
1910  */
1911 static pt2_entry_t *
1912 pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
1913 {
1914 	pt1_entry_t pte1;
1915 	vm_paddr_t pt2pg_pa;
1916 
1917 	pte1 = pte1_load(pmap_pte1(pmap, va));
1918 	if (pte1_is_section(pte1))
1919 		panic("%s: attempt to map PTE1", __func__);
1920 	if (pte1_is_link(pte1)) {
1921 		/* Are we current address space or kernel? */
1922 		if (pmap_is_current(pmap))
1923 			return (pt2map_entry(va));
1924 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1925 		KASSERT(curthread->td_pinned > 0,
1926 		    ("%s: curthread not pinned", __func__));
1927 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1928 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1929 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
1930 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
1931 #ifdef SMP
1932 			PMAP1cpu = PCPU_GET(cpuid);
1933 #endif
1934 			tlb_flush_local((vm_offset_t)PADDR1);
1935 			PMAP1changed++;
1936 		} else
1937 #ifdef SMP
1938 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1939 			PMAP1cpu = PCPU_GET(cpuid);
1940 			tlb_flush_local((vm_offset_t)PADDR1);
1941 			PMAP1changedcpu++;
1942 		} else
1943 #endif
1944 			PMAP1unchanged++;
1945 		return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1946 	}
1947 	return (NULL);
1948 }
1949 
1950 /*
1951  *  Routine: pmap_extract
1952  *  Function:
1953  * 	Extract the physical page address associated
1954  *	with the given map/virtual_address pair.
1955  */
1956 vm_paddr_t
1957 pmap_extract(pmap_t pmap, vm_offset_t va)
1958 {
1959 	vm_paddr_t pa;
1960 	pt1_entry_t pte1;
1961 	pt2_entry_t *pte2p;
1962 
1963 	PMAP_LOCK(pmap);
1964 	pte1 = pte1_load(pmap_pte1(pmap, va));
1965 	if (pte1_is_section(pte1))
1966 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1967 	else if (pte1_is_link(pte1)) {
1968 		pte2p = pmap_pte2(pmap, va);
1969 		pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
1970 		pmap_pte2_release(pte2p);
1971 	} else
1972 		pa = 0;
1973 	PMAP_UNLOCK(pmap);
1974 	return (pa);
1975 }
1976 
1977 /*
1978  *  Routine: pmap_extract_and_hold
1979  *  Function:
1980  *	Atomically extract and hold the physical page
1981  *	with the given pmap and virtual address pair
1982  *	if that mapping permits the given protection.
1983  */
1984 vm_page_t
1985 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1986 {
1987 	vm_paddr_t pa;
1988 	pt1_entry_t pte1;
1989 	pt2_entry_t pte2, *pte2p;
1990 	vm_page_t m;
1991 
1992 	m = NULL;
1993 	PMAP_LOCK(pmap);
1994 	pte1 = pte1_load(pmap_pte1(pmap, va));
1995 	if (pte1_is_section(pte1)) {
1996 		if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
1997 			pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1998 			m = PHYS_TO_VM_PAGE(pa);
1999 			if (!vm_page_wire_mapped(m))
2000 				m = NULL;
2001 		}
2002 	} else if (pte1_is_link(pte1)) {
2003 		pte2p = pmap_pte2(pmap, va);
2004 		pte2 = pte2_load(pte2p);
2005 		pmap_pte2_release(pte2p);
2006 		if (pte2_is_valid(pte2) &&
2007 		    (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
2008 			pa = pte2_pa(pte2);
2009 			m = PHYS_TO_VM_PAGE(pa);
2010 			if (!vm_page_wire_mapped(m))
2011 				m = NULL;
2012 		}
2013 	}
2014 	PMAP_UNLOCK(pmap);
2015 	return (m);
2016 }
2017 
2018 /*
2019  *  Grow the number of kernel L2 page table entries, if needed.
2020  */
2021 void
2022 pmap_growkernel(vm_offset_t addr)
2023 {
2024 	vm_page_t m;
2025 	vm_paddr_t pt2pg_pa, pt2_pa;
2026 	pt1_entry_t pte1;
2027 	pt2_entry_t pte2;
2028 
2029 	PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
2030 	/*
2031 	 * All the time kernel_vm_end is first KVA for which underlying
2032 	 * L2 page table is either not allocated or linked from L1 page table
2033 	 * (not considering sections). Except for two possible cases:
2034 	 *
2035 	 *   (1) in the very beginning as long as pmap_growkernel() was
2036 	 *       not called, it could be first unused KVA (which is not
2037 	 *       rounded up to PTE1_SIZE),
2038 	 *
2039 	 *   (2) when all KVA space is mapped and vm_map_max(kernel_map)
2040 	 *       address is not rounded up to PTE1_SIZE. (For example,
2041 	 *       it could be 0xFFFFFFFF.)
2042 	 */
2043 	kernel_vm_end = pte1_roundup(kernel_vm_end);
2044 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2045 	addr = roundup2(addr, PTE1_SIZE);
2046 	if (addr - 1 >= vm_map_max(kernel_map))
2047 		addr = vm_map_max(kernel_map);
2048 	while (kernel_vm_end < addr) {
2049 		pte1 = pte1_load(kern_pte1(kernel_vm_end));
2050 		if (pte1_is_valid(pte1)) {
2051 			kernel_vm_end += PTE1_SIZE;
2052 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2053 				kernel_vm_end = vm_map_max(kernel_map);
2054 				break;
2055 			}
2056 			continue;
2057 		}
2058 
2059 		/*
2060 		 * kernel_vm_end_new is used in pmap_pinit() when kernel
2061 		 * mappings are entered to new pmap all at once to avoid race
2062 		 * between pmap_kenter_pte1() and kernel_vm_end increase.
2063 		 * The same aplies to pmap_kenter_pt2tab().
2064 		 */
2065 		kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
2066 
2067 		pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
2068 		if (!pte2_is_valid(pte2)) {
2069 			/*
2070 			 * Install new PT2s page into kernel PT2TAB.
2071 			 */
2072 			m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
2073 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2074 			if (m == NULL)
2075 				panic("%s: no memory to grow kernel", __func__);
2076 			m->pindex = pte1_index(kernel_vm_end) & ~PT2PG_MASK;
2077 
2078 			/*
2079 			 * QQQ: To link all new L2 page tables from L1 page
2080 			 *      table now and so pmap_kenter_pte1() them
2081 			 *      at once together with pmap_kenter_pt2tab()
2082 			 *      could be nice speed up. However,
2083 			 *      pmap_growkernel() does not happen so often...
2084 			 * QQQ: The other TTBR is another option.
2085 			 */
2086 			pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
2087 			    m);
2088 		} else
2089 			pt2pg_pa = pte2_pa(pte2);
2090 
2091 		pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
2092 		pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
2093 
2094 		kernel_vm_end = kernel_vm_end_new;
2095 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2096 			kernel_vm_end = vm_map_max(kernel_map);
2097 			break;
2098 		}
2099 	}
2100 }
2101 
2102 static int
2103 kvm_size(SYSCTL_HANDLER_ARGS)
2104 {
2105 	unsigned long ksize = vm_max_kernel_address - KERNBASE;
2106 
2107 	return (sysctl_handle_long(oidp, &ksize, 0, req));
2108 }
2109 SYSCTL_PROC(_vm, OID_AUTO, kvm_size,
2110     CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_size, "IU",
2111     "Size of KVM");
2112 
2113 static int
2114 kvm_free(SYSCTL_HANDLER_ARGS)
2115 {
2116 	unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
2117 
2118 	return (sysctl_handle_long(oidp, &kfree, 0, req));
2119 }
2120 SYSCTL_PROC(_vm, OID_AUTO, kvm_free,
2121     CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_free, "IU",
2122     "Amount of KVM free");
2123 
2124 /***********************************************
2125  *
2126  *  Pmap allocation/deallocation routines.
2127  *
2128  ***********************************************/
2129 
2130 /*
2131  *  Initialize the pmap for the swapper process.
2132  */
2133 void
2134 pmap_pinit0(pmap_t pmap)
2135 {
2136 	PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
2137 
2138 	PMAP_LOCK_INIT(pmap);
2139 
2140 	/*
2141 	 * Kernel page table directory and pmap stuff around is already
2142 	 * initialized, we are using it right now and here. So, finish
2143 	 * only PMAP structures initialization for process0 ...
2144 	 *
2145 	 * Since the L1 page table and PT2TAB is shared with the kernel pmap,
2146 	 * which is already included in the list "allpmaps", this pmap does
2147 	 * not need to be inserted into that list.
2148 	 */
2149 	pmap->pm_pt1 = kern_pt1;
2150 	pmap->pm_pt2tab = kern_pt2tab;
2151 	CPU_ZERO(&pmap->pm_active);
2152 	PCPU_SET(curpmap, pmap);
2153 	TAILQ_INIT(&pmap->pm_pvchunk);
2154 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2155 	CPU_SET(0, &pmap->pm_active);
2156 }
2157 
2158 static __inline void
2159 pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
2160     vm_offset_t eva)
2161 {
2162 	u_int idx, count;
2163 
2164 	idx = pte1_index(sva);
2165 	count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
2166 	bcopy(spte1p + idx, dpte1p + idx, count);
2167 }
2168 
2169 static __inline void
2170 pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
2171     vm_offset_t eva)
2172 {
2173 	u_int idx, count;
2174 
2175 	idx = pt2tab_index(sva);
2176 	count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
2177 	bcopy(spte2p + idx, dpte2p + idx, count);
2178 }
2179 
2180 /*
2181  *  Initialize a preallocated and zeroed pmap structure,
2182  *  such as one in a vmspace structure.
2183  */
2184 int
2185 pmap_pinit(pmap_t pmap)
2186 {
2187 	pt1_entry_t *pte1p;
2188 	pt2_entry_t *pte2p;
2189 	vm_paddr_t pa, pt2tab_pa;
2190 	u_int i;
2191 
2192 	PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
2193 	    pmap->pm_pt1));
2194 
2195 	/*
2196 	 * No need to allocate L2 page table space yet but we do need
2197 	 * a valid L1 page table and PT2TAB table.
2198 	 *
2199 	 * Install shared kernel mappings to these tables. It's a little
2200 	 * tricky as some parts of KVA are reserved for vectors, devices,
2201 	 * and whatever else. These parts are supposed to be above
2202 	 * vm_max_kernel_address. Thus two regions should be installed:
2203 	 *
2204 	 *   (1) <KERNBASE, kernel_vm_end),
2205 	 *   (2) <vm_max_kernel_address, 0xFFFFFFFF>.
2206 	 *
2207 	 * QQQ: The second region should be stable enough to be installed
2208 	 *      only once in time when the tables are allocated.
2209 	 * QQQ: Maybe copy of both regions at once could be faster ...
2210 	 * QQQ: Maybe the other TTBR is an option.
2211 	 *
2212 	 * Finally, install own PT2TAB table to these tables.
2213 	 */
2214 
2215 	if (pmap->pm_pt1 == NULL) {
2216 		pmap->pm_pt1 = kmem_alloc_contig(NB_IN_PT1,
2217 		    M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0, pt_memattr);
2218 		if (pmap->pm_pt1 == NULL)
2219 			return (0);
2220 	}
2221 	if (pmap->pm_pt2tab == NULL) {
2222 		/*
2223 		 * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
2224 		 *      only, what should be the only size for 32 bit systems,
2225 		 *      then we could allocate it with vm_page_alloc() and all
2226 		 *      the stuff needed as other L2 page table pages.
2227 		 *      (2) Note that a process PT2TAB is special L2 page table
2228 		 *      page. Its mapping in kernel_arena is permanent and can
2229 		 *      be used no matter which process is current. Its mapping
2230 		 *      in PT2MAP can be used only for current process.
2231 		 */
2232 		pmap->pm_pt2tab = kmem_alloc_attr(NB_IN_PT2TAB,
2233 		    M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
2234 		if (pmap->pm_pt2tab == NULL) {
2235 			/*
2236 			 * QQQ: As struct pmap is allocated from UMA with
2237 			 *      UMA_ZONE_NOFREE flag, it's important to leave
2238 			 *      no allocation in pmap if initialization failed.
2239 			 */
2240 			kmem_free(pmap->pm_pt1, NB_IN_PT1);
2241 			pmap->pm_pt1 = NULL;
2242 			return (0);
2243 		}
2244 		/*
2245 		 * QQQ: Each L2 page table page vm_page_t has pindex set to
2246 		 *      pte1 index of virtual address mapped by this page.
2247 		 *      It's not valid for non kernel PT2TABs themselves.
2248 		 *      The pindex of these pages can not be altered because
2249 		 *      of the way how they are allocated now. However, it
2250 		 *      should not be a problem.
2251 		 */
2252 	}
2253 
2254 	mtx_lock_spin(&allpmaps_lock);
2255 	/*
2256 	 * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
2257 	 * kernel_vm_end_new is used here instead of kernel_vm_end.
2258 	 */
2259 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
2260 	    kernel_vm_end_new - 1);
2261 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
2262 	    0xFFFFFFFF);
2263 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
2264 	    kernel_vm_end_new - 1);
2265 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
2266 	    0xFFFFFFFF);
2267 	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
2268 	mtx_unlock_spin(&allpmaps_lock);
2269 
2270 	/*
2271 	 * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
2272 	 * I.e. self reference mapping.  The PT2TAB is private, however mapped
2273 	 * into shared PT2MAP space, so the mapping should be not global.
2274 	 */
2275 	pt2tab_pa = vtophys(pmap->pm_pt2tab);
2276 	pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
2277 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
2278 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
2279 	}
2280 
2281 	/* Insert PT2MAP PT2s into pmap PT1. */
2282 	pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
2283 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
2284 		pte1_store(pte1p++, PTE1_LINK(pa));
2285 	}
2286 
2287 	/*
2288 	 * Now synchronize new mapping which was made above.
2289 	 */
2290 	pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
2291 	pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
2292 
2293 	CPU_ZERO(&pmap->pm_active);
2294 	TAILQ_INIT(&pmap->pm_pvchunk);
2295 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2296 
2297 	return (1);
2298 }
2299 
2300 #ifdef INVARIANTS
2301 static boolean_t
2302 pt2tab_user_is_empty(pt2_entry_t *tab)
2303 {
2304 	u_int i, end;
2305 
2306 	end = pt2tab_index(VM_MAXUSER_ADDRESS);
2307 	for (i = 0; i < end; i++)
2308 		if (tab[i] != 0) return (FALSE);
2309 	return (TRUE);
2310 }
2311 #endif
2312 /*
2313  *  Release any resources held by the given physical map.
2314  *  Called when a pmap initialized by pmap_pinit is being released.
2315  *  Should only be called if the map contains no valid mappings.
2316  */
2317 void
2318 pmap_release(pmap_t pmap)
2319 {
2320 #ifdef INVARIANTS
2321 	vm_offset_t start, end;
2322 #endif
2323 	KASSERT(pmap->pm_stats.resident_count == 0,
2324 	    ("%s: pmap resident count %ld != 0", __func__,
2325 	    pmap->pm_stats.resident_count));
2326 	KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
2327 	    ("%s: has allocated user PT2(s)", __func__));
2328 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2329 	    ("%s: pmap %p is active on some CPU(s)", __func__, pmap));
2330 
2331 	mtx_lock_spin(&allpmaps_lock);
2332 	LIST_REMOVE(pmap, pm_list);
2333 	mtx_unlock_spin(&allpmaps_lock);
2334 
2335 #ifdef INVARIANTS
2336 	start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
2337 	end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
2338 	bzero((char *)pmap->pm_pt1 + start, end - start);
2339 
2340 	start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
2341 	end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
2342 	bzero((char *)pmap->pm_pt2tab + start, end - start);
2343 #endif
2344 	/*
2345 	 * We are leaving PT1 and PT2TAB allocated on released pmap,
2346 	 * so hopefully UMA vmspace_zone will always be inited with
2347 	 * UMA_ZONE_NOFREE flag.
2348 	 */
2349 }
2350 
2351 /*********************************************************
2352  *
2353  *  L2 table pages and their pages management routines.
2354  *
2355  *********************************************************/
2356 
2357 /*
2358  *  Virtual interface for L2 page table wire counting.
2359  *
2360  *  Each L2 page table in a page has own counter which counts a number of
2361  *  valid mappings in a table. Global page counter counts mappings in all
2362  *  tables in a page plus a single itself mapping in PT2TAB.
2363  *
2364  *  During a promotion we leave the associated L2 page table counter
2365  *  untouched, so the table (strictly speaking a page which holds it)
2366  *  is never freed if promoted.
2367  *
2368  *  If a page m->ref_count == 1 then no valid mappings exist in any L2 page
2369  *  table in the page and the page itself is only mapped in PT2TAB.
2370  */
2371 
2372 static __inline void
2373 pt2_wirecount_init(vm_page_t m)
2374 {
2375 	u_int i;
2376 
2377 	/*
2378 	 * Note: A page m is allocated with VM_ALLOC_WIRED flag and
2379 	 *       m->ref_count should be already set correctly.
2380 	 *       So, there is no need to set it again herein.
2381 	 */
2382 	for (i = 0; i < NPT2_IN_PG; i++)
2383 		m->md.pt2_wirecount[i] = 0;
2384 }
2385 
2386 static __inline void
2387 pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
2388 {
2389 
2390 	/*
2391 	 * Note: A just modificated pte2 (i.e. already allocated)
2392 	 *       is acquiring one extra reference which must be
2393 	 *       explicitly cleared. It influences the KASSERTs herein.
2394 	 *       All L2 page tables in a page always belong to the same
2395 	 *       pmap, so we allow only one extra reference for the page.
2396 	 */
2397 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
2398 	    ("%s: PT2 is overflowing ...", __func__));
2399 	KASSERT(m->ref_count <= (NPTE2_IN_PG + 1),
2400 	    ("%s: PT2PG is overflowing ...", __func__));
2401 
2402 	m->ref_count++;
2403 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
2404 }
2405 
2406 static __inline void
2407 pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
2408 {
2409 
2410 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
2411 	    ("%s: PT2 is underflowing ...", __func__));
2412 	KASSERT(m->ref_count > 1,
2413 	    ("%s: PT2PG is underflowing ...", __func__));
2414 
2415 	m->ref_count--;
2416 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
2417 }
2418 
2419 static __inline void
2420 pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
2421 {
2422 
2423 	KASSERT(count <= NPTE2_IN_PT2,
2424 	    ("%s: invalid count %u", __func__, count));
2425 	KASSERT(m->ref_count >  m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
2426 	    ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->ref_count,
2427 	    m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
2428 
2429 	m->ref_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
2430 	m->ref_count += count;
2431 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
2432 
2433 	KASSERT(m->ref_count <= (NPTE2_IN_PG + 1),
2434 	    ("%s: PT2PG is overflowed (%u) ...", __func__, m->ref_count));
2435 }
2436 
2437 static __inline uint32_t
2438 pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
2439 {
2440 
2441 	return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
2442 }
2443 
2444 static __inline boolean_t
2445 pt2_is_empty(vm_page_t m, vm_offset_t va)
2446 {
2447 
2448 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
2449 }
2450 
2451 static __inline boolean_t
2452 pt2_is_full(vm_page_t m, vm_offset_t va)
2453 {
2454 
2455 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
2456 	    NPTE2_IN_PT2);
2457 }
2458 
2459 static __inline boolean_t
2460 pt2pg_is_empty(vm_page_t m)
2461 {
2462 
2463 	return (m->ref_count == 1);
2464 }
2465 
2466 /*
2467  *  This routine is called if the L2 page table
2468  *  is not mapped correctly.
2469  */
2470 static vm_page_t
2471 _pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2472 {
2473 	uint32_t pte1_idx;
2474 	pt1_entry_t *pte1p;
2475 	pt2_entry_t pte2;
2476 	vm_page_t  m;
2477 	vm_paddr_t pt2pg_pa, pt2_pa;
2478 
2479 	pte1_idx = pte1_index(va);
2480 	pte1p = pmap->pm_pt1 + pte1_idx;
2481 
2482 	KASSERT(pte1_load(pte1p) == 0,
2483 	    ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
2484 	    pte1_load(pte1p)));
2485 
2486 	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
2487 	if (!pte2_is_valid(pte2)) {
2488 		/*
2489 		 * Install new PT2s page into pmap PT2TAB.
2490 		 */
2491 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2492 		if (m == NULL) {
2493 			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2494 				PMAP_UNLOCK(pmap);
2495 				rw_wunlock(&pvh_global_lock);
2496 				vm_wait(NULL);
2497 				rw_wlock(&pvh_global_lock);
2498 				PMAP_LOCK(pmap);
2499 			}
2500 
2501 			/*
2502 			 * Indicate the need to retry.  While waiting,
2503 			 * the L2 page table page may have been allocated.
2504 			 */
2505 			return (NULL);
2506 		}
2507 		m->pindex = pte1_idx & ~PT2PG_MASK;
2508 		pmap->pm_stats.resident_count++;
2509 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
2510 	} else {
2511 		pt2pg_pa = pte2_pa(pte2);
2512 		m = PHYS_TO_VM_PAGE(pt2pg_pa);
2513 	}
2514 
2515 	pt2_wirecount_inc(m, pte1_idx);
2516 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
2517 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
2518 
2519 	return (m);
2520 }
2521 
2522 static vm_page_t
2523 pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2524 {
2525 	u_int pte1_idx;
2526 	pt1_entry_t *pte1p, pte1;
2527 	vm_page_t m;
2528 
2529 	pte1_idx = pte1_index(va);
2530 retry:
2531 	pte1p = pmap->pm_pt1 + pte1_idx;
2532 	pte1 = pte1_load(pte1p);
2533 
2534 	/*
2535 	 * This supports switching from a 1MB page to a
2536 	 * normal 4K page.
2537 	 */
2538 	if (pte1_is_section(pte1)) {
2539 		(void)pmap_demote_pte1(pmap, pte1p, va);
2540 		/*
2541 		 * Reload pte1 after demotion.
2542 		 *
2543 		 * Note: Demotion can even fail as either PT2 is not find for
2544 		 *       the virtual address or PT2PG can not be allocated.
2545 		 */
2546 		pte1 = pte1_load(pte1p);
2547 	}
2548 
2549 	/*
2550 	 * If the L2 page table page is mapped, we just increment the
2551 	 * hold count, and activate it.
2552 	 */
2553 	if (pte1_is_link(pte1)) {
2554 		m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2555 		pt2_wirecount_inc(m, pte1_idx);
2556 	} else  {
2557 		/*
2558 		 * Here if the PT2 isn't mapped, or if it has
2559 		 * been deallocated.
2560 		 */
2561 		m = _pmap_allocpte2(pmap, va, flags);
2562 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2563 			goto retry;
2564 	}
2565 
2566 	return (m);
2567 }
2568 
2569 /*
2570  *  Schedule the specified unused L2 page table page to be freed. Specifically,
2571  *  add the page to the specified list of pages that will be released to the
2572  *  physical memory manager after the TLB has been updated.
2573  */
2574 static __inline void
2575 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
2576 {
2577 
2578 	/*
2579 	 * Put page on a list so that it is released after
2580 	 * *ALL* TLB shootdown is done
2581 	 */
2582 #ifdef PMAP_DEBUG
2583 	pmap_zero_page_check(m);
2584 #endif
2585 	m->flags |= PG_ZERO;
2586 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2587 }
2588 
2589 /*
2590  *  Unwire L2 page tables page.
2591  */
2592 static void
2593 pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
2594 {
2595 	pt1_entry_t *pte1p, opte1 __unused;
2596 	pt2_entry_t *pte2p;
2597 	uint32_t i;
2598 
2599 	KASSERT(pt2pg_is_empty(m),
2600 	    ("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
2601 
2602 	/*
2603 	 * Unmap all L2 page tables in the page from L1 page table.
2604 	 *
2605 	 * QQQ: Individual L2 page tables (except the last one) can be unmapped
2606 	 * earlier. However, we are doing that this way.
2607 	 */
2608 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
2609 	    ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
2610 	pte1p = pmap->pm_pt1 + m->pindex;
2611 	for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
2612 		KASSERT(m->md.pt2_wirecount[i] == 0,
2613 		    ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
2614 		opte1 = pte1_load(pte1p);
2615 		if (pte1_is_link(opte1)) {
2616 			pte1_clear(pte1p);
2617 			/*
2618 			 * Flush intermediate TLB cache.
2619 			 */
2620 			pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
2621 		}
2622 #ifdef INVARIANTS
2623 		else
2624 			KASSERT((opte1 == 0) || pte1_is_section(opte1),
2625 			    ("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
2626 			    pmap, va, opte1, i));
2627 #endif
2628 	}
2629 
2630 	/*
2631 	 * Unmap the page from PT2TAB.
2632 	 */
2633 	pte2p = pmap_pt2tab_entry(pmap, va);
2634 	(void)pt2tab_load_clear(pte2p);
2635 	pmap_tlb_flush(pmap, pt2map_pt2pg(va));
2636 
2637 	m->ref_count = 0;
2638 	pmap->pm_stats.resident_count--;
2639 
2640 	/*
2641 	 * This barrier is so that the ordinary store unmapping
2642 	 * the L2 page table page is globally performed before TLB shoot-
2643 	 * down is begun.
2644 	 */
2645 	wmb();
2646 	vm_wire_sub(1);
2647 }
2648 
2649 /*
2650  *  Decrements a L2 page table page's wire count, which is used to record the
2651  *  number of valid page table entries within the page.  If the wire count
2652  *  drops to zero, then the page table page is unmapped.  Returns TRUE if the
2653  *  page table page was unmapped and FALSE otherwise.
2654  */
2655 static __inline boolean_t
2656 pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2657 {
2658 	pt2_wirecount_dec(m, pte1_index(va));
2659 	if (pt2pg_is_empty(m)) {
2660 		/*
2661 		 * QQQ: Wire count is zero, so whole page should be zero and
2662 		 *      we can set PG_ZERO flag to it.
2663 		 *      Note that when promotion is enabled, it takes some
2664 		 *      more efforts. See pmap_unwire_pt2_all() below.
2665 		 */
2666 		pmap_unwire_pt2pg(pmap, va, m);
2667 		pmap_add_delayed_free_list(m, free);
2668 		return (TRUE);
2669 	} else
2670 		return (FALSE);
2671 }
2672 
2673 /*
2674  *  Drop a L2 page table page's wire count at once, which is used to record
2675  *  the number of valid L2 page table entries within the page. If the wire
2676  *  count drops to zero, then the L2 page table page is unmapped.
2677  */
2678 static __inline void
2679 pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
2680     struct spglist *free)
2681 {
2682 	u_int pte1_idx = pte1_index(va);
2683 
2684 	KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
2685 		("%s: PT2 page's pindex is wrong", __func__));
2686 	KASSERT(m->ref_count > pt2_wirecount_get(m, pte1_idx),
2687 	    ("%s: bad pt2 wire count %u > %u", __func__, m->ref_count,
2688 	    pt2_wirecount_get(m, pte1_idx)));
2689 
2690 	/*
2691 	 * It's possible that the L2 page table was never used.
2692 	 * It happened in case that a section was created without promotion.
2693 	 */
2694 	if (pt2_is_full(m, va)) {
2695 		pt2_wirecount_set(m, pte1_idx, 0);
2696 
2697 		/*
2698 		 * QQQ: We clear L2 page table now, so when L2 page table page
2699 		 *      is going to be freed, we can set it PG_ZERO flag ...
2700 		 *      This function is called only on section mappings, so
2701 		 *      hopefully it's not to big overload.
2702 		 *
2703 		 * XXX: If pmap is current, existing PT2MAP mapping could be
2704 		 *      used for zeroing.
2705 		 */
2706 		pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
2707 	}
2708 #ifdef INVARIANTS
2709 	else
2710 		KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
2711 		    __func__, pt2_wirecount_get(m, pte1_idx)));
2712 #endif
2713 	if (pt2pg_is_empty(m)) {
2714 		pmap_unwire_pt2pg(pmap, va, m);
2715 		pmap_add_delayed_free_list(m, free);
2716 	}
2717 }
2718 
2719 /*
2720  *  After removing a L2 page table entry, this routine is used to
2721  *  conditionally free the page, and manage the hold/wire counts.
2722  */
2723 static boolean_t
2724 pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
2725 {
2726 	pt1_entry_t pte1;
2727 	vm_page_t mpte;
2728 
2729 	if (va >= VM_MAXUSER_ADDRESS)
2730 		return (FALSE);
2731 	pte1 = pte1_load(pmap_pte1(pmap, va));
2732 	mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2733 	return (pmap_unwire_pt2(pmap, va, mpte, free));
2734 }
2735 
2736 /*************************************
2737  *
2738  *  Page management routines.
2739  *
2740  *************************************/
2741 
2742 static const uint32_t pc_freemask[_NPCM] = {
2743 	[0 ... _NPCM - 2] = PC_FREEN,
2744 	[_NPCM - 1] = PC_FREEL
2745 };
2746 
2747 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2748 	"Current number of pv entries");
2749 
2750 #ifdef PV_STATS
2751 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2752 
2753 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2754     "Current number of pv entry chunks");
2755 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2756     "Current number of pv entry chunks allocated");
2757 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2758     "Current number of pv entry chunks frees");
2759 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
2760     0, "Number of times tried to get a chunk page but failed.");
2761 
2762 static long pv_entry_frees, pv_entry_allocs;
2763 static int pv_entry_spare;
2764 
2765 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2766     "Current number of pv entry frees");
2767 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
2768     0, "Current number of pv entry allocs");
2769 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2770     "Current number of spare pv entries");
2771 #endif
2772 
2773 /*
2774  *  Is given page managed?
2775  */
2776 static __inline bool
2777 is_managed(vm_paddr_t pa)
2778 {
2779 	vm_page_t m;
2780 
2781 	m = PHYS_TO_VM_PAGE(pa);
2782 	if (m == NULL)
2783 		return (false);
2784 	return ((m->oflags & VPO_UNMANAGED) == 0);
2785 }
2786 
2787 static __inline bool
2788 pte1_is_managed(pt1_entry_t pte1)
2789 {
2790 
2791 	return (is_managed(pte1_pa(pte1)));
2792 }
2793 
2794 static __inline bool
2795 pte2_is_managed(pt2_entry_t pte2)
2796 {
2797 
2798 	return (is_managed(pte2_pa(pte2)));
2799 }
2800 
2801 /*
2802  *  We are in a serious low memory condition.  Resort to
2803  *  drastic measures to free some pages so we can allocate
2804  *  another pv entry chunk.
2805  */
2806 static vm_page_t
2807 pmap_pv_reclaim(pmap_t locked_pmap)
2808 {
2809 	struct pch newtail;
2810 	struct pv_chunk *pc;
2811 	struct md_page *pvh;
2812 	pt1_entry_t *pte1p;
2813 	pmap_t pmap;
2814 	pt2_entry_t *pte2p, tpte2;
2815 	pv_entry_t pv;
2816 	vm_offset_t va;
2817 	vm_page_t m, m_pc;
2818 	struct spglist free;
2819 	uint32_t inuse;
2820 	int bit, field, freed;
2821 
2822 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2823 	pmap = NULL;
2824 	m_pc = NULL;
2825 	SLIST_INIT(&free);
2826 	TAILQ_INIT(&newtail);
2827 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2828 	    SLIST_EMPTY(&free))) {
2829 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2830 		if (pmap != pc->pc_pmap) {
2831 			if (pmap != NULL) {
2832 				if (pmap != locked_pmap)
2833 					PMAP_UNLOCK(pmap);
2834 			}
2835 			pmap = pc->pc_pmap;
2836 			/* Avoid deadlock and lock recursion. */
2837 			if (pmap > locked_pmap)
2838 				PMAP_LOCK(pmap);
2839 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2840 				pmap = NULL;
2841 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2842 				continue;
2843 			}
2844 		}
2845 
2846 		/*
2847 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2848 		 */
2849 		freed = 0;
2850 		for (field = 0; field < _NPCM; field++) {
2851 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2852 			    inuse != 0; inuse &= ~(1UL << bit)) {
2853 				bit = ffs(inuse) - 1;
2854 				pv = &pc->pc_pventry[field * 32 + bit];
2855 				va = pv->pv_va;
2856 				pte1p = pmap_pte1(pmap, va);
2857 				if (pte1_is_section(pte1_load(pte1p)))
2858 					continue;
2859 				pte2p = pmap_pte2(pmap, va);
2860 				tpte2 = pte2_load(pte2p);
2861 				if ((tpte2 & PTE2_W) == 0)
2862 					tpte2 = pte2_load_clear(pte2p);
2863 				pmap_pte2_release(pte2p);
2864 				if ((tpte2 & PTE2_W) != 0)
2865 					continue;
2866 				KASSERT(tpte2 != 0,
2867 				    ("pmap_pv_reclaim: pmap %p va %#x zero pte",
2868 				    pmap, va));
2869 				pmap_tlb_flush(pmap, va);
2870 				m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
2871 				if (pte2_is_dirty(tpte2))
2872 					vm_page_dirty(m);
2873 				if ((tpte2 & PTE2_A) != 0)
2874 					vm_page_aflag_set(m, PGA_REFERENCED);
2875 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2876 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2877 				    (m->flags & PG_FICTITIOUS) == 0) {
2878 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2879 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2880 						vm_page_aflag_clear(m,
2881 						    PGA_WRITEABLE);
2882 					}
2883 				}
2884 				pc->pc_map[field] |= 1UL << bit;
2885 				pmap_unuse_pt2(pmap, va, &free);
2886 				freed++;
2887 			}
2888 		}
2889 		if (freed == 0) {
2890 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2891 			continue;
2892 		}
2893 		/* Every freed mapping is for a 4 KB page. */
2894 		pmap->pm_stats.resident_count -= freed;
2895 		PV_STAT(pv_entry_frees += freed);
2896 		PV_STAT(pv_entry_spare += freed);
2897 		pv_entry_count -= freed;
2898 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2899 		for (field = 0; field < _NPCM; field++)
2900 			if (pc->pc_map[field] != pc_freemask[field]) {
2901 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2902 				    pc_list);
2903 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2904 
2905 				/*
2906 				 * One freed pv entry in locked_pmap is
2907 				 * sufficient.
2908 				 */
2909 				if (pmap == locked_pmap)
2910 					goto out;
2911 				break;
2912 			}
2913 		if (field == _NPCM) {
2914 			PV_STAT(pv_entry_spare -= _NPCPV);
2915 			PV_STAT(pc_chunk_count--);
2916 			PV_STAT(pc_chunk_frees++);
2917 			/* Entire chunk is free; return it. */
2918 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2919 			pmap_qremove((vm_offset_t)pc, 1);
2920 			pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2921 			break;
2922 		}
2923 	}
2924 out:
2925 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2926 	if (pmap != NULL) {
2927 		if (pmap != locked_pmap)
2928 			PMAP_UNLOCK(pmap);
2929 	}
2930 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2931 		m_pc = SLIST_FIRST(&free);
2932 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2933 		/* Recycle a freed page table page. */
2934 		m_pc->ref_count = 1;
2935 		vm_wire_add(1);
2936 	}
2937 	vm_page_free_pages_toq(&free, false);
2938 	return (m_pc);
2939 }
2940 
2941 static void
2942 free_pv_chunk(struct pv_chunk *pc)
2943 {
2944 	vm_page_t m;
2945 
2946 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2947 	PV_STAT(pv_entry_spare -= _NPCPV);
2948 	PV_STAT(pc_chunk_count--);
2949 	PV_STAT(pc_chunk_frees++);
2950 	/* entire chunk is free, return it */
2951 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2952 	pmap_qremove((vm_offset_t)pc, 1);
2953 	vm_page_unwire_noq(m);
2954 	vm_page_free(m);
2955 	pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2956 }
2957 
2958 /*
2959  *  Free the pv_entry back to the free list.
2960  */
2961 static void
2962 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2963 {
2964 	struct pv_chunk *pc;
2965 	int idx, field, bit;
2966 
2967 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2968 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2969 	PV_STAT(pv_entry_frees++);
2970 	PV_STAT(pv_entry_spare++);
2971 	pv_entry_count--;
2972 	pc = pv_to_chunk(pv);
2973 	idx = pv - &pc->pc_pventry[0];
2974 	field = idx / 32;
2975 	bit = idx % 32;
2976 	pc->pc_map[field] |= 1ul << bit;
2977 	for (idx = 0; idx < _NPCM; idx++)
2978 		if (pc->pc_map[idx] != pc_freemask[idx]) {
2979 			/*
2980 			 * 98% of the time, pc is already at the head of the
2981 			 * list.  If it isn't already, move it to the head.
2982 			 */
2983 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2984 			    pc)) {
2985 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2986 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2987 				    pc_list);
2988 			}
2989 			return;
2990 		}
2991 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2992 	free_pv_chunk(pc);
2993 }
2994 
2995 /*
2996  *  Get a new pv_entry, allocating a block from the system
2997  *  when needed.
2998  */
2999 static pv_entry_t
3000 get_pv_entry(pmap_t pmap, boolean_t try)
3001 {
3002 	static const struct timeval printinterval = { 60, 0 };
3003 	static struct timeval lastprint;
3004 	int bit, field;
3005 	pv_entry_t pv;
3006 	struct pv_chunk *pc;
3007 	vm_page_t m;
3008 
3009 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3010 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3011 	PV_STAT(pv_entry_allocs++);
3012 	pv_entry_count++;
3013 	if (pv_entry_count > pv_entry_high_water)
3014 		if (ratecheck(&lastprint, &printinterval))
3015 			printf("Approaching the limit on PV entries, consider "
3016 			    "increasing either the vm.pmap.shpgperproc or the "
3017 			    "vm.pmap.pv_entries tunable.\n");
3018 retry:
3019 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3020 	if (pc != NULL) {
3021 		for (field = 0; field < _NPCM; field++) {
3022 			if (pc->pc_map[field]) {
3023 				bit = ffs(pc->pc_map[field]) - 1;
3024 				break;
3025 			}
3026 		}
3027 		if (field < _NPCM) {
3028 			pv = &pc->pc_pventry[field * 32 + bit];
3029 			pc->pc_map[field] &= ~(1ul << bit);
3030 			/* If this was the last item, move it to tail */
3031 			for (field = 0; field < _NPCM; field++)
3032 				if (pc->pc_map[field] != 0) {
3033 					PV_STAT(pv_entry_spare--);
3034 					return (pv);	/* not full, return */
3035 				}
3036 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3037 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3038 			PV_STAT(pv_entry_spare--);
3039 			return (pv);
3040 		}
3041 	}
3042 	/*
3043 	 * Access to the pte2list "pv_vafree" is synchronized by the pvh
3044 	 * global lock.  If "pv_vafree" is currently non-empty, it will
3045 	 * remain non-empty until pmap_pte2list_alloc() completes.
3046 	 */
3047 	if (pv_vafree == 0 ||
3048 	    (m = vm_page_alloc_noobj(VM_ALLOC_WIRED)) == NULL) {
3049 		if (try) {
3050 			pv_entry_count--;
3051 			PV_STAT(pc_chunk_tryfail++);
3052 			return (NULL);
3053 		}
3054 		m = pmap_pv_reclaim(pmap);
3055 		if (m == NULL)
3056 			goto retry;
3057 	}
3058 	PV_STAT(pc_chunk_count++);
3059 	PV_STAT(pc_chunk_allocs++);
3060 	pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
3061 	pmap_qenter((vm_offset_t)pc, &m, 1);
3062 	pc->pc_pmap = pmap;
3063 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
3064 	for (field = 1; field < _NPCM; field++)
3065 		pc->pc_map[field] = pc_freemask[field];
3066 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3067 	pv = &pc->pc_pventry[0];
3068 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3069 	PV_STAT(pv_entry_spare += _NPCPV - 1);
3070 	return (pv);
3071 }
3072 
3073 /*
3074  *  Create a pv entry for page at pa for
3075  *  (pmap, va).
3076  */
3077 static void
3078 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3079 {
3080 	pv_entry_t pv;
3081 
3082 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3083 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3084 	pv = get_pv_entry(pmap, FALSE);
3085 	pv->pv_va = va;
3086 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3087 }
3088 
3089 static __inline pv_entry_t
3090 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3091 {
3092 	pv_entry_t pv;
3093 
3094 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3095 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3096 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3097 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3098 			break;
3099 		}
3100 	}
3101 	return (pv);
3102 }
3103 
3104 static void
3105 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3106 {
3107 	pv_entry_t pv;
3108 
3109 	pv = pmap_pvh_remove(pvh, pmap, va);
3110 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3111 	free_pv_entry(pmap, pv);
3112 }
3113 
3114 static void
3115 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
3116 {
3117 	struct md_page *pvh;
3118 
3119 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3120 	pmap_pvh_free(&m->md, pmap, va);
3121 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
3122 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3123 		if (TAILQ_EMPTY(&pvh->pv_list))
3124 			vm_page_aflag_clear(m, PGA_WRITEABLE);
3125 	}
3126 }
3127 
3128 static void
3129 pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3130 {
3131 	struct md_page *pvh;
3132 	pv_entry_t pv;
3133 	vm_offset_t va_last;
3134 	vm_page_t m;
3135 
3136 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3137 	KASSERT((pa & PTE1_OFFSET) == 0,
3138 	    ("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
3139 
3140 	/*
3141 	 * Transfer the 1mpage's pv entry for this mapping to the first
3142 	 * page's pv list.
3143 	 */
3144 	pvh = pa_to_pvh(pa);
3145 	va = pte1_trunc(va);
3146 	pv = pmap_pvh_remove(pvh, pmap, va);
3147 	KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
3148 	m = PHYS_TO_VM_PAGE(pa);
3149 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3150 	/* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
3151 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3152 	do {
3153 		m++;
3154 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3155 		    ("pmap_pv_demote_pte1: page %p is not managed", m));
3156 		va += PAGE_SIZE;
3157 		pmap_insert_entry(pmap, va, m);
3158 	} while (va < va_last);
3159 }
3160 
3161 #if VM_NRESERVLEVEL > 0
3162 static void
3163 pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3164 {
3165 	struct md_page *pvh;
3166 	pv_entry_t pv;
3167 	vm_offset_t va_last;
3168 	vm_page_t m;
3169 
3170 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3171 	KASSERT((pa & PTE1_OFFSET) == 0,
3172 	    ("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
3173 
3174 	/*
3175 	 * Transfer the first page's pv entry for this mapping to the
3176 	 * 1mpage's pv list.  Aside from avoiding the cost of a call
3177 	 * to get_pv_entry(), a transfer avoids the possibility that
3178 	 * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
3179 	 * removes one of the mappings that is being promoted.
3180 	 */
3181 	m = PHYS_TO_VM_PAGE(pa);
3182 	va = pte1_trunc(va);
3183 	pv = pmap_pvh_remove(&m->md, pmap, va);
3184 	KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
3185 	pvh = pa_to_pvh(pa);
3186 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3187 	/* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
3188 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3189 	do {
3190 		m++;
3191 		va += PAGE_SIZE;
3192 		pmap_pvh_free(&m->md, pmap, va);
3193 	} while (va < va_last);
3194 }
3195 #endif
3196 
3197 /*
3198  *  Conditionally create a pv entry.
3199  */
3200 static boolean_t
3201 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3202 {
3203 	pv_entry_t pv;
3204 
3205 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3206 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3207 	if (pv_entry_count < pv_entry_high_water &&
3208 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3209 		pv->pv_va = va;
3210 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3211 		return (TRUE);
3212 	} else
3213 		return (FALSE);
3214 }
3215 
3216 /*
3217  *  Create the pv entries for each of the pages within a section.
3218  */
3219 static bool
3220 pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags)
3221 {
3222 	struct md_page *pvh;
3223 	pv_entry_t pv;
3224 	bool noreclaim;
3225 
3226 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3227 	noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
3228 	if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
3229 	    (pv = get_pv_entry(pmap, noreclaim)) == NULL)
3230 		return (false);
3231 	pv->pv_va = va;
3232 	pvh = pa_to_pvh(pte1_pa(pte1));
3233 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3234 	return (true);
3235 }
3236 
3237 static inline void
3238 pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
3239 {
3240 
3241 	/* Kill all the small mappings or the big one only. */
3242 	if (pte1_is_section(npte1))
3243 		pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
3244 	else
3245 		pmap_tlb_flush(pmap, pte1_trunc(va));
3246 }
3247 
3248 /*
3249  *  Update kernel pte1 on all pmaps.
3250  *
3251  *  The following function is called only on one cpu with disabled interrupts.
3252  *  In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
3253  *  nobody can invoke explicit hardware table walk during the update of pte1.
3254  *  Unsolicited hardware table walk can still happen, invoked by speculative
3255  *  data or instruction prefetch or even by speculative hardware table walk.
3256  *
3257  *  The break-before-make approach should be implemented here. However, it's
3258  *  not so easy to do that for kernel mappings as it would be unhappy to unmap
3259  *  itself unexpectedly but voluntarily.
3260  */
3261 static void
3262 pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
3263 {
3264 	pmap_t pmap;
3265 	pt1_entry_t *pte1p;
3266 
3267 	/*
3268 	 * Get current pmap. Interrupts should be disabled here
3269 	 * so PCPU_GET() is done atomically.
3270 	 */
3271 	pmap = PCPU_GET(curpmap);
3272 	if (pmap == NULL)
3273 		pmap = kernel_pmap;
3274 
3275 	/*
3276 	 * (1) Change pte1 on current pmap.
3277 	 * (2) Flush all obsolete TLB entries on current CPU.
3278 	 * (3) Change pte1 on all pmaps.
3279 	 * (4) Flush all obsolete TLB entries on all CPUs in SMP case.
3280 	 */
3281 
3282 	pte1p = pmap_pte1(pmap, va);
3283 	pte1_store(pte1p, npte1);
3284 
3285 	/* Kill all the small mappings or the big one only. */
3286 	if (pte1_is_section(npte1)) {
3287 		pmap_pte1_kern_promotions++;
3288 		tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
3289 	} else {
3290 		pmap_pte1_kern_demotions++;
3291 		tlb_flush_local(pte1_trunc(va));
3292 	}
3293 
3294 	/*
3295 	 * In SMP case, this function is called when all cpus are at smp
3296 	 * rendezvous, so there is no need to use 'allpmaps_lock' lock here.
3297 	 * In UP case, the function is called with this lock locked.
3298 	 */
3299 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
3300 		pte1p = pmap_pte1(pmap, va);
3301 		pte1_store(pte1p, npte1);
3302 	}
3303 
3304 #ifdef SMP
3305 	/* Kill all the small mappings or the big one only. */
3306 	if (pte1_is_section(npte1))
3307 		tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
3308 	else
3309 		tlb_flush(pte1_trunc(va));
3310 #endif
3311 }
3312 
3313 #ifdef SMP
3314 struct pte1_action {
3315 	vm_offset_t va;
3316 	pt1_entry_t npte1;
3317 	u_int update;		/* CPU that updates the PTE1 */
3318 };
3319 
3320 static void
3321 pmap_update_pte1_action(void *arg)
3322 {
3323 	struct pte1_action *act = arg;
3324 
3325 	if (act->update == PCPU_GET(cpuid))
3326 		pmap_update_pte1_kernel(act->va, act->npte1);
3327 }
3328 
3329 /*
3330  *  Change pte1 on current pmap.
3331  *  Note that kernel pte1 must be changed on all pmaps.
3332  *
3333  *  According to the architecture reference manual published by ARM,
3334  *  the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
3335  *  According to this manual, UNPREDICTABLE behaviours must never happen in
3336  *  a viable system. In contrast, on x86 processors, it is not specified which
3337  *  TLB entry mapping the virtual address will be used, but the MMU doesn't
3338  *  generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
3339  *  Black).
3340  *
3341  *  It's a problem when either promotion or demotion is being done. The pte1
3342  *  update and appropriate TLB flush must be done atomically in general.
3343  */
3344 static void
3345 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3346     pt1_entry_t npte1)
3347 {
3348 
3349 	if (pmap == kernel_pmap) {
3350 		struct pte1_action act;
3351 
3352 		sched_pin();
3353 		act.va = va;
3354 		act.npte1 = npte1;
3355 		act.update = PCPU_GET(cpuid);
3356 		smp_rendezvous_cpus(all_cpus, smp_no_rendezvous_barrier,
3357 		    pmap_update_pte1_action, NULL, &act);
3358 		sched_unpin();
3359 	} else {
3360 		register_t cspr;
3361 
3362 		/*
3363 		 * Use break-before-make approach for changing userland
3364 		 * mappings. It can cause L1 translation aborts on other
3365 		 * cores in SMP case. So, special treatment is implemented
3366 		 * in pmap_fault(). To reduce the likelihood that another core
3367 		 * will be affected by the broken mapping, disable interrupts
3368 		 * until the mapping change is completed.
3369 		 */
3370 		cspr = disable_interrupts(PSR_I | PSR_F);
3371 		pte1_clear(pte1p);
3372 		pmap_tlb_flush_pte1(pmap, va, npte1);
3373 		pte1_store(pte1p, npte1);
3374 		restore_interrupts(cspr);
3375 	}
3376 }
3377 #else
3378 static void
3379 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3380     pt1_entry_t npte1)
3381 {
3382 
3383 	if (pmap == kernel_pmap) {
3384 		mtx_lock_spin(&allpmaps_lock);
3385 		pmap_update_pte1_kernel(va, npte1);
3386 		mtx_unlock_spin(&allpmaps_lock);
3387 	} else {
3388 		register_t cspr;
3389 
3390 		/*
3391 		 * Use break-before-make approach for changing userland
3392 		 * mappings. It's absolutely safe in UP case when interrupts
3393 		 * are disabled.
3394 		 */
3395 		cspr = disable_interrupts(PSR_I | PSR_F);
3396 		pte1_clear(pte1p);
3397 		pmap_tlb_flush_pte1(pmap, va, npte1);
3398 		pte1_store(pte1p, npte1);
3399 		restore_interrupts(cspr);
3400 	}
3401 }
3402 #endif
3403 
3404 #if VM_NRESERVLEVEL > 0
3405 /*
3406  *  Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
3407  *  within a single page table page (PT2) to a single 1MB page mapping.
3408  *  For promotion to occur, two conditions must be met: (1) the 4KB page
3409  *  mappings must map aligned, contiguous physical memory and (2) the 4KB page
3410  *  mappings must have identical characteristics.
3411  *
3412  *  Managed (PG_MANAGED) mappings within the kernel address space are not
3413  *  promoted.  The reason is that kernel PTE1s are replicated in each pmap but
3414  *  pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
3415  *  read the PTE1 from the kernel pmap.
3416  */
3417 static void
3418 pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3419 {
3420 	pt1_entry_t npte1;
3421 	pt2_entry_t *fpte2p, fpte2, fpte2_fav;
3422 	pt2_entry_t *pte2p, pte2;
3423 	vm_offset_t pteva __unused;
3424 	vm_page_t m __unused;
3425 
3426 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3427 	    pmap, va, pte1_load(pte1p), pte1p));
3428 
3429 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3430 
3431 	/*
3432 	 * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
3433 	 * either invalid, unused, or does not map the first 4KB physical page
3434 	 * within a 1MB page.
3435 	 */
3436 	fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
3437 	fpte2 = pte2_load(fpte2p);
3438 	if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
3439 	    (PTE2_A | PTE2_V)) {
3440 		pmap_pte1_p_failures++;
3441 		CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
3442 		    __func__, va, pmap);
3443 		return;
3444 	}
3445 	if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
3446 		pmap_pte1_p_failures++;
3447 		CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
3448 		    __func__, va, pmap);
3449 		return;
3450 	}
3451 	if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3452 		/*
3453 		 * When page is not modified, PTE2_RO can be set without
3454 		 * a TLB invalidation.
3455 		 */
3456 		fpte2 |= PTE2_RO;
3457 		pte2_store(fpte2p, fpte2);
3458 	}
3459 
3460 	/*
3461 	 * Examine each of the other PTE2s in the specified PT2. Abort if this
3462 	 * PTE2 maps an unexpected 4KB physical page or does not have identical
3463 	 * characteristics to the first PTE2.
3464 	 */
3465 	fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
3466 	fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
3467 	for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
3468 		pte2 = pte2_load(pte2p);
3469 		if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
3470 			pmap_pte1_p_failures++;
3471 			CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
3472 			    __func__, va, pmap);
3473 			return;
3474 		}
3475 		if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3476 			/*
3477 			 * When page is not modified, PTE2_RO can be set
3478 			 * without a TLB invalidation. See note above.
3479 			 */
3480 			pte2 |= PTE2_RO;
3481 			pte2_store(pte2p, pte2);
3482 			pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
3483 			    PTE2_FRAME);
3484 			CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
3485 			    __func__, pteva, pmap);
3486 		}
3487 		if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
3488 			pmap_pte1_p_failures++;
3489 			CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
3490 			    __func__, va, pmap);
3491 			return;
3492 		}
3493 
3494 		fpte2_fav -= PTE2_SIZE;
3495 	}
3496 	/*
3497 	 * The page table page in its current state will stay in PT2TAB
3498 	 * until the PTE1 mapping the section is demoted by pmap_demote_pte1()
3499 	 * or destroyed by pmap_remove_pte1().
3500 	 *
3501 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3502 	 */
3503 	m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
3504 	KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
3505 	    ("%s: PT2 page is out of range", __func__));
3506 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
3507 	    ("%s: PT2 page's pindex is wrong", __func__));
3508 
3509 	/*
3510 	 * Get pte1 from pte2 format.
3511 	 */
3512 	npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
3513 
3514 	/*
3515 	 * Promote the pv entries.
3516 	 */
3517 	if (pte2_is_managed(fpte2))
3518 		pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
3519 
3520 	/*
3521 	 * Promote the mappings.
3522 	 */
3523 	pmap_change_pte1(pmap, pte1p, va, npte1);
3524 
3525 	pmap_pte1_promotions++;
3526 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3527 	    __func__, va, pmap);
3528 
3529 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3530 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3531 }
3532 #endif /* VM_NRESERVLEVEL > 0 */
3533 
3534 /*
3535  *  Zero L2 page table page.
3536  */
3537 static __inline void
3538 pmap_clear_pt2(pt2_entry_t *fpte2p)
3539 {
3540 	pt2_entry_t *pte2p;
3541 
3542 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
3543 		pte2_clear(pte2p);
3544 
3545 }
3546 
3547 /*
3548  *  Removes a 1MB page mapping from the kernel pmap.
3549  */
3550 static void
3551 pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3552 {
3553 	vm_page_t m;
3554 	uint32_t pte1_idx;
3555 	pt2_entry_t *fpte2p;
3556 	vm_paddr_t pt2_pa;
3557 
3558 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3559 	m = pmap_pt2_page(pmap, va);
3560 	if (m == NULL)
3561 		/*
3562 		 * QQQ: Is this function called only on promoted pte1?
3563 		 *      We certainly do section mappings directly
3564 		 *      (without promotion) in kernel !!!
3565 		 */
3566 		panic("%s: missing pt2 page", __func__);
3567 
3568 	pte1_idx = pte1_index(va);
3569 
3570 	/*
3571 	 * Initialize the L2 page table.
3572 	 */
3573 	fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3574 	pmap_clear_pt2(fpte2p);
3575 
3576 	/*
3577 	 * Remove the mapping.
3578 	 */
3579 	pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
3580 	pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
3581 
3582 	/*
3583 	 * QQQ: We do not need to invalidate PT2MAP mapping
3584 	 * as we did not change it. I.e. the L2 page table page
3585 	 * was and still is mapped the same way.
3586 	 */
3587 }
3588 
3589 /*
3590  *  Do the things to unmap a section in a process
3591  */
3592 static void
3593 pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
3594     struct spglist *free)
3595 {
3596 	pt1_entry_t opte1;
3597 	struct md_page *pvh;
3598 	vm_offset_t eva, va;
3599 	vm_page_t m;
3600 
3601 	PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
3602 	    pte1_load(pte1p), pte1p));
3603 
3604 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3605 	KASSERT((sva & PTE1_OFFSET) == 0,
3606 	    ("%s: sva is not 1mpage aligned", __func__));
3607 
3608 	/*
3609 	 * Clear and invalidate the mapping. It should occupy one and only TLB
3610 	 * entry. So, pmap_tlb_flush() called with aligned address should be
3611 	 * sufficient.
3612 	 */
3613 	opte1 = pte1_load_clear(pte1p);
3614 	pmap_tlb_flush(pmap, sva);
3615 
3616 	if (pte1_is_wired(opte1))
3617 		pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
3618 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
3619 	if (pte1_is_managed(opte1)) {
3620 		pvh = pa_to_pvh(pte1_pa(opte1));
3621 		pmap_pvh_free(pvh, pmap, sva);
3622 		eva = sva + PTE1_SIZE;
3623 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
3624 		    va < eva; va += PAGE_SIZE, m++) {
3625 			if (pte1_is_dirty(opte1))
3626 				vm_page_dirty(m);
3627 			if (opte1 & PTE1_A)
3628 				vm_page_aflag_set(m, PGA_REFERENCED);
3629 			if (TAILQ_EMPTY(&m->md.pv_list) &&
3630 			    TAILQ_EMPTY(&pvh->pv_list))
3631 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3632 		}
3633 	}
3634 	if (pmap == kernel_pmap) {
3635 		/*
3636 		 * L2 page table(s) can't be removed from kernel map as
3637 		 * kernel counts on it (stuff around pmap_growkernel()).
3638 		 */
3639 		 pmap_remove_kernel_pte1(pmap, pte1p, sva);
3640 	} else {
3641 		/*
3642 		 * Get associated L2 page table page.
3643 		 * It's possible that the page was never allocated.
3644 		 */
3645 		m = pmap_pt2_page(pmap, sva);
3646 		if (m != NULL)
3647 			pmap_unwire_pt2_all(pmap, sva, m, free);
3648 	}
3649 }
3650 
3651 /*
3652  *  Fills L2 page table page with mappings to consecutive physical pages.
3653  */
3654 static __inline void
3655 pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
3656 {
3657 	pt2_entry_t *pte2p;
3658 
3659 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
3660 		pte2_store(pte2p, npte2);
3661 		npte2 += PTE2_SIZE;
3662 	}
3663 }
3664 
3665 /*
3666  *  Tries to demote a 1MB page mapping. If demotion fails, the
3667  *  1MB page mapping is invalidated.
3668  */
3669 static boolean_t
3670 pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3671 {
3672 	pt1_entry_t opte1, npte1;
3673 	pt2_entry_t *fpte2p, npte2;
3674 	vm_paddr_t pt2pg_pa, pt2_pa;
3675 	vm_page_t m;
3676 	struct spglist free;
3677 	uint32_t pte1_idx, isnew = 0;
3678 
3679 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3680 	    pmap, va, pte1_load(pte1p), pte1p));
3681 
3682 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3683 
3684 	opte1 = pte1_load(pte1p);
3685 	KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
3686 
3687 	if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
3688 		KASSERT(!pte1_is_wired(opte1),
3689 		    ("%s: PT2 page for a wired mapping is missing", __func__));
3690 
3691 		/*
3692 		 * Invalidate the 1MB page mapping and return
3693 		 * "failure" if the mapping was never accessed or the
3694 		 * allocation of the new page table page fails.
3695 		 */
3696 		if ((opte1 & PTE1_A) == 0 ||
3697 		    (m = vm_page_alloc_noobj(VM_ALLOC_WIRED)) == NULL) {
3698 			SLIST_INIT(&free);
3699 			pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
3700 			vm_page_free_pages_toq(&free, false);
3701 			CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
3702 			    __func__, va, pmap);
3703 			return (FALSE);
3704 		}
3705 		m->pindex = pte1_index(va) & ~PT2PG_MASK;
3706 		if (va < VM_MAXUSER_ADDRESS)
3707 			pmap->pm_stats.resident_count++;
3708 
3709 		isnew = 1;
3710 
3711 		/*
3712 		 * We init all L2 page tables in the page even if
3713 		 * we are going to change everything for one L2 page
3714 		 * table in a while.
3715 		 */
3716 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
3717 	} else {
3718 		if (va < VM_MAXUSER_ADDRESS) {
3719 			if (pt2_is_empty(m, va))
3720 				isnew = 1; /* Demoting section w/o promotion. */
3721 #ifdef INVARIANTS
3722 			else
3723 				KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
3724 				    " count %u", __func__,
3725 				    pt2_wirecount_get(m, pte1_index(va))));
3726 #endif
3727 		}
3728 	}
3729 
3730 	pt2pg_pa = VM_PAGE_TO_PHYS(m);
3731 	pte1_idx = pte1_index(va);
3732 	/*
3733 	 * If the pmap is current, then the PT2MAP can provide access to
3734 	 * the page table page (promoted L2 page tables are not unmapped).
3735 	 * Otherwise, temporarily map the L2 page table page (m) into
3736 	 * the kernel's address space at either PADDR1 or PADDR2.
3737 	 *
3738 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3739 	 */
3740 	if (pmap_is_current(pmap))
3741 		fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3742 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
3743 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
3744 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
3745 #ifdef SMP
3746 			PMAP1cpu = PCPU_GET(cpuid);
3747 #endif
3748 			tlb_flush_local((vm_offset_t)PADDR1);
3749 			PMAP1changed++;
3750 		} else
3751 #ifdef SMP
3752 		if (PMAP1cpu != PCPU_GET(cpuid)) {
3753 			PMAP1cpu = PCPU_GET(cpuid);
3754 			tlb_flush_local((vm_offset_t)PADDR1);
3755 			PMAP1changedcpu++;
3756 		} else
3757 #endif
3758 			PMAP1unchanged++;
3759 		fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
3760 	} else {
3761 		mtx_lock(&PMAP2mutex);
3762 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
3763 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
3764 			tlb_flush((vm_offset_t)PADDR2);
3765 		}
3766 		fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
3767 	}
3768 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
3769 	npte1 = PTE1_LINK(pt2_pa);
3770 
3771 	KASSERT((opte1 & PTE1_A) != 0,
3772 	    ("%s: opte1 is missing PTE1_A", __func__));
3773 	KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
3774 	    ("%s: opte1 has PTE1_NM", __func__));
3775 
3776 	/*
3777 	 *  Get pte2 from pte1 format.
3778 	*/
3779 	npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
3780 
3781 	/*
3782 	 * If the L2 page table page is new, initialize it. If the mapping
3783 	 * has changed attributes, update the page table entries.
3784 	 */
3785 	if (isnew != 0) {
3786 		pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
3787 		pmap_fill_pt2(fpte2p, npte2);
3788 	} else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
3789 		    (npte2 & PTE2_PROMOTE))
3790 		pmap_fill_pt2(fpte2p, npte2);
3791 
3792 	KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
3793 	    ("%s: fpte2p and npte2 map different physical addresses",
3794 	    __func__));
3795 
3796 	if (fpte2p == PADDR2)
3797 		mtx_unlock(&PMAP2mutex);
3798 
3799 	/*
3800 	 * Demote the mapping. This pmap is locked. The old PTE1 has
3801 	 * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
3802 	 * has not PTE1_NM set. Thus, there is no danger of a race with
3803 	 * another processor changing the setting of PTE1_A and/or PTE1_NM
3804 	 * between the read above and the store below.
3805 	 */
3806 	pmap_change_pte1(pmap, pte1p, va, npte1);
3807 
3808 	/*
3809 	 * Demote the pv entry. This depends on the earlier demotion
3810 	 * of the mapping. Specifically, the (re)creation of a per-
3811 	 * page pv entry might trigger the execution of pmap_pv_reclaim(),
3812 	 * which might reclaim a newly (re)created per-page pv entry
3813 	 * and destroy the associated mapping. In order to destroy
3814 	 * the mapping, the PTE1 must have already changed from mapping
3815 	 * the 1mpage to referencing the page table page.
3816 	 */
3817 	if (pte1_is_managed(opte1))
3818 		pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
3819 
3820 	pmap_pte1_demotions++;
3821 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3822 	    __func__, va, pmap);
3823 
3824 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3825 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3826 	return (TRUE);
3827 }
3828 
3829 /*
3830  *	Insert the given physical page (p) at
3831  *	the specified virtual address (v) in the
3832  *	target physical map with the protection requested.
3833  *
3834  *	If specified, the page will be wired down, meaning
3835  *	that the related pte can not be reclaimed.
3836  *
3837  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3838  *	or lose information.  That is, this routine must actually
3839  *	insert this page into the given map NOW.
3840  */
3841 int
3842 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3843     u_int flags, int8_t psind)
3844 {
3845 	pt1_entry_t *pte1p;
3846 	pt2_entry_t *pte2p;
3847 	pt2_entry_t npte2, opte2;
3848 	pv_entry_t pv;
3849 	vm_paddr_t opa, pa;
3850 	vm_page_t mpte2, om;
3851 	int rv;
3852 
3853 	va = trunc_page(va);
3854 	KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
3855 	KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
3856 	    ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
3857 	    va));
3858 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
3859 	    ("%s: managed mapping within the clean submap", __func__));
3860 	if ((m->oflags & VPO_UNMANAGED) == 0)
3861 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3862 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3863 	    ("%s: flags %u has reserved bits set", __func__, flags));
3864 	pa = VM_PAGE_TO_PHYS(m);
3865 	npte2 = PTE2(pa, PTE2_A, vm_page_pte2_attr(m));
3866 	if ((flags & VM_PROT_WRITE) == 0)
3867 		npte2 |= PTE2_NM;
3868 	if ((prot & VM_PROT_WRITE) == 0)
3869 		npte2 |= PTE2_RO;
3870 	KASSERT((npte2 & (PTE2_NM | PTE2_RO)) != PTE2_RO,
3871 	    ("%s: flags includes VM_PROT_WRITE but prot doesn't", __func__));
3872 	if ((prot & VM_PROT_EXECUTE) == 0)
3873 		npte2 |= PTE2_NX;
3874 	if ((flags & PMAP_ENTER_WIRED) != 0)
3875 		npte2 |= PTE2_W;
3876 	if (va < VM_MAXUSER_ADDRESS)
3877 		npte2 |= PTE2_U;
3878 	if (pmap != kernel_pmap)
3879 		npte2 |= PTE2_NG;
3880 
3881 	rw_wlock(&pvh_global_lock);
3882 	PMAP_LOCK(pmap);
3883 	sched_pin();
3884 	if (psind == 1) {
3885 		/* Assert the required virtual and physical alignment. */
3886 		KASSERT((va & PTE1_OFFSET) == 0,
3887 		    ("%s: va unaligned", __func__));
3888 		KASSERT(m->psind > 0, ("%s: m->psind < psind", __func__));
3889 		rv = pmap_enter_pte1(pmap, va, PTE1_PA(pa) | ATTR_TO_L1(npte2) |
3890 		    PTE1_V, flags, m);
3891 		goto out;
3892 	}
3893 
3894 	/*
3895 	 * In the case that a page table page is not
3896 	 * resident, we are creating it here.
3897 	 */
3898 	if (va < VM_MAXUSER_ADDRESS) {
3899 		mpte2 = pmap_allocpte2(pmap, va, flags);
3900 		if (mpte2 == NULL) {
3901 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3902 			    ("pmap_allocpte2 failed with sleep allowed"));
3903 			rv = KERN_RESOURCE_SHORTAGE;
3904 			goto out;
3905 		}
3906 	} else
3907 		mpte2 = NULL;
3908 	pte1p = pmap_pte1(pmap, va);
3909 	if (pte1_is_section(pte1_load(pte1p)))
3910 		panic("%s: attempted on 1MB page", __func__);
3911 	pte2p = pmap_pte2_quick(pmap, va);
3912 	if (pte2p == NULL)
3913 		panic("%s: invalid L1 page table entry va=%#x", __func__, va);
3914 
3915 	om = NULL;
3916 	opte2 = pte2_load(pte2p);
3917 	opa = pte2_pa(opte2);
3918 	/*
3919 	 * Mapping has not changed, must be protection or wiring change.
3920 	 */
3921 	if (pte2_is_valid(opte2) && (opa == pa)) {
3922 		/*
3923 		 * Wiring change, just update stats. We don't worry about
3924 		 * wiring PT2 pages as they remain resident as long as there
3925 		 * are valid mappings in them. Hence, if a user page is wired,
3926 		 * the PT2 page will be also.
3927 		 */
3928 		if (pte2_is_wired(npte2) && !pte2_is_wired(opte2))
3929 			pmap->pm_stats.wired_count++;
3930 		else if (!pte2_is_wired(npte2) && pte2_is_wired(opte2))
3931 			pmap->pm_stats.wired_count--;
3932 
3933 		/*
3934 		 * Remove extra pte2 reference
3935 		 */
3936 		if (mpte2)
3937 			pt2_wirecount_dec(mpte2, pte1_index(va));
3938 		if ((m->oflags & VPO_UNMANAGED) == 0)
3939 			om = m;
3940 		goto validate;
3941 	}
3942 
3943 	/*
3944 	 * QQQ: We think that changing physical address on writeable mapping
3945 	 *      is not safe. Well, maybe on kernel address space with correct
3946 	 *      locking, it can make a sense. However, we have no idea why
3947 	 *      anyone should do that on user address space. Are we wrong?
3948 	 */
3949 	KASSERT((opa == 0) || (opa == pa) ||
3950 	    !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
3951 	    ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
3952 	    __func__, pmap, va, opte2, opa, pa, flags, prot));
3953 
3954 	pv = NULL;
3955 
3956 	/*
3957 	 * Mapping has changed, invalidate old range and fall through to
3958 	 * handle validating new mapping.
3959 	 */
3960 	if (opa) {
3961 		if (pte2_is_wired(opte2))
3962 			pmap->pm_stats.wired_count--;
3963 		om = PHYS_TO_VM_PAGE(opa);
3964 		if (om != NULL && (om->oflags & VPO_UNMANAGED) != 0)
3965 			om = NULL;
3966 		if (om != NULL)
3967 			pv = pmap_pvh_remove(&om->md, pmap, va);
3968 
3969 		/*
3970 		 * Remove extra pte2 reference
3971 		 */
3972 		if (mpte2 != NULL)
3973 			pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
3974 	} else
3975 		pmap->pm_stats.resident_count++;
3976 
3977 	/*
3978 	 * Enter on the PV list if part of our managed memory.
3979 	 */
3980 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3981 		if (pv == NULL) {
3982 			pv = get_pv_entry(pmap, FALSE);
3983 			pv->pv_va = va;
3984 		}
3985 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3986 	} else if (pv != NULL)
3987 		free_pv_entry(pmap, pv);
3988 
3989 	/*
3990 	 * Increment counters
3991 	 */
3992 	if (pte2_is_wired(npte2))
3993 		pmap->pm_stats.wired_count++;
3994 
3995 validate:
3996 	/*
3997 	 * Now validate mapping with desired protection/wiring.
3998 	 */
3999 	if (prot & VM_PROT_WRITE) {
4000 		if ((m->oflags & VPO_UNMANAGED) == 0)
4001 			vm_page_aflag_set(m, PGA_WRITEABLE);
4002 	}
4003 
4004 	/*
4005 	 * If the mapping or permission bits are different, we need
4006 	 * to update the pte2.
4007 	 *
4008 	 * QQQ: Think again and again what to do
4009 	 *      if the mapping is going to be changed!
4010 	 */
4011 	if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
4012 		/*
4013 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4014 		 * is set. Do it now, before the mapping is stored and made
4015 		 * valid for hardware table walk. If done later, there is a race
4016 		 * for other threads of current process in lazy loading case.
4017 		 * Don't do it for kernel memory which is mapped with exec
4018 		 * permission even if the memory isn't going to hold executable
4019 		 * code. The only time when icache sync is needed is after
4020 		 * kernel module is loaded and the relocation info is processed.
4021 		 * And it's done in elf_cpu_load_file().
4022 		 *
4023 		 * QQQ: (1) Does it exist any better way where
4024 		 *          or how to sync icache?
4025 		 *      (2) Now, we do it on a page basis.
4026 		 */
4027 		if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
4028 		    m->md.pat_mode == VM_MEMATTR_WB_WA &&
4029 		    (opa != pa || (opte2 & PTE2_NX)))
4030 			cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4031 
4032 		if (opte2 & PTE2_V) {
4033 			/* Change mapping with break-before-make approach. */
4034 			opte2 = pte2_load_clear(pte2p);
4035 			pmap_tlb_flush(pmap, va);
4036 			pte2_store(pte2p, npte2);
4037 			if (om != NULL) {
4038 				KASSERT((om->oflags & VPO_UNMANAGED) == 0,
4039 				    ("%s: om %p unmanaged", __func__, om));
4040 				if ((opte2 & PTE2_A) != 0)
4041 					vm_page_aflag_set(om, PGA_REFERENCED);
4042 				if (pte2_is_dirty(opte2))
4043 					vm_page_dirty(om);
4044 				if (TAILQ_EMPTY(&om->md.pv_list) &&
4045 				    ((om->flags & PG_FICTITIOUS) != 0 ||
4046 				    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4047 					vm_page_aflag_clear(om, PGA_WRITEABLE);
4048 			}
4049 		} else
4050 			pte2_store(pte2p, npte2);
4051 	}
4052 #if 0
4053 	else {
4054 		/*
4055 		 * QQQ: In time when both access and not mofified bits are
4056 		 *      emulated by software, this should not happen. Some
4057 		 *      analysis is need, if this really happen. Missing
4058 		 *      tlb flush somewhere could be the reason.
4059 		 */
4060 		panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
4061 		    va, opte2, npte2);
4062 	}
4063 #endif
4064 
4065 #if VM_NRESERVLEVEL > 0
4066 	/*
4067 	 * If both the L2 page table page and the reservation are fully
4068 	 * populated, then attempt promotion.
4069 	 */
4070 	if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
4071 	    sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
4072 	    vm_reserv_level_iffullpop(m) == 0)
4073 		pmap_promote_pte1(pmap, pte1p, va);
4074 #endif
4075 
4076 	rv = KERN_SUCCESS;
4077 out:
4078 	sched_unpin();
4079 	rw_wunlock(&pvh_global_lock);
4080 	PMAP_UNLOCK(pmap);
4081 	return (rv);
4082 }
4083 
4084 /*
4085  *  Do the things to unmap a page in a process.
4086  */
4087 static int
4088 pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
4089     struct spglist *free)
4090 {
4091 	pt2_entry_t opte2;
4092 	vm_page_t m;
4093 
4094 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4095 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4096 
4097 	/* Clear and invalidate the mapping. */
4098 	opte2 = pte2_load_clear(pte2p);
4099 	pmap_tlb_flush(pmap, va);
4100 
4101 	KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
4102 	    __func__, pmap, va, opte2));
4103 
4104 	if (opte2 & PTE2_W)
4105 		pmap->pm_stats.wired_count -= 1;
4106 	pmap->pm_stats.resident_count -= 1;
4107 	if (pte2_is_managed(opte2)) {
4108 		m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4109 		if (pte2_is_dirty(opte2))
4110 			vm_page_dirty(m);
4111 		if (opte2 & PTE2_A)
4112 			vm_page_aflag_set(m, PGA_REFERENCED);
4113 		pmap_remove_entry(pmap, m, va);
4114 	}
4115 	return (pmap_unuse_pt2(pmap, va, free));
4116 }
4117 
4118 /*
4119  *  Remove a single page from a process address space.
4120  */
4121 static void
4122 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
4123 {
4124 	pt2_entry_t *pte2p;
4125 
4126 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4127 	KASSERT(curthread->td_pinned > 0,
4128 	    ("%s: curthread not pinned", __func__));
4129 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4130 	if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
4131 	    !pte2_is_valid(pte2_load(pte2p)))
4132 		return;
4133 	pmap_remove_pte2(pmap, pte2p, va, free);
4134 }
4135 
4136 /*
4137  *  Remove the given range of addresses from the specified map.
4138  *
4139  *  It is assumed that the start and end are properly
4140  *  rounded to the page size.
4141  */
4142 void
4143 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4144 {
4145 	vm_offset_t nextva;
4146 	pt1_entry_t *pte1p, pte1;
4147 	pt2_entry_t *pte2p, pte2;
4148 	struct spglist free;
4149 
4150 	/*
4151 	 * Perform an unsynchronized read. This is, however, safe.
4152 	 */
4153 	if (pmap->pm_stats.resident_count == 0)
4154 		return;
4155 
4156 	SLIST_INIT(&free);
4157 
4158 	rw_wlock(&pvh_global_lock);
4159 	sched_pin();
4160 	PMAP_LOCK(pmap);
4161 
4162 	/*
4163 	 * Special handling of removing one page. A very common
4164 	 * operation and easy to short circuit some code.
4165 	 */
4166 	if (sva + PAGE_SIZE == eva) {
4167 		pte1 = pte1_load(pmap_pte1(pmap, sva));
4168 		if (pte1_is_link(pte1)) {
4169 			pmap_remove_page(pmap, sva, &free);
4170 			goto out;
4171 		}
4172 	}
4173 
4174 	for (; sva < eva; sva = nextva) {
4175 		/*
4176 		 * Calculate address for next L2 page table.
4177 		 */
4178 		nextva = pte1_trunc(sva + PTE1_SIZE);
4179 		if (nextva < sva)
4180 			nextva = eva;
4181 		if (pmap->pm_stats.resident_count == 0)
4182 			break;
4183 
4184 		pte1p = pmap_pte1(pmap, sva);
4185 		pte1 = pte1_load(pte1p);
4186 
4187 		/*
4188 		 * Weed out invalid mappings. Note: we assume that the L1 page
4189 		 * table is always allocated, and in kernel virtual.
4190 		 */
4191 		if (pte1 == 0)
4192 			continue;
4193 
4194 		if (pte1_is_section(pte1)) {
4195 			/*
4196 			 * Are we removing the entire large page?  If not,
4197 			 * demote the mapping and fall through.
4198 			 */
4199 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4200 				pmap_remove_pte1(pmap, pte1p, sva, &free);
4201 				continue;
4202 			} else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4203 				/* The large page mapping was destroyed. */
4204 				continue;
4205 			}
4206 #ifdef INVARIANTS
4207 			else {
4208 				/* Update pte1 after demotion. */
4209 				pte1 = pte1_load(pte1p);
4210 			}
4211 #endif
4212 		}
4213 
4214 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4215 		    " is not link", __func__, pmap, sva, pte1, pte1p));
4216 
4217 		/*
4218 		 * Limit our scan to either the end of the va represented
4219 		 * by the current L2 page table page, or to the end of the
4220 		 * range being removed.
4221 		 */
4222 		if (nextva > eva)
4223 			nextva = eva;
4224 
4225 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
4226 		    pte2p++, sva += PAGE_SIZE) {
4227 			pte2 = pte2_load(pte2p);
4228 			if (!pte2_is_valid(pte2))
4229 				continue;
4230 			if (pmap_remove_pte2(pmap, pte2p, sva, &free))
4231 				break;
4232 		}
4233 	}
4234 out:
4235 	sched_unpin();
4236 	rw_wunlock(&pvh_global_lock);
4237 	PMAP_UNLOCK(pmap);
4238 	vm_page_free_pages_toq(&free, false);
4239 }
4240 
4241 /*
4242  *	Routine:	pmap_remove_all
4243  *	Function:
4244  *		Removes this physical page from
4245  *		all physical maps in which it resides.
4246  *		Reflects back modify bits to the pager.
4247  *
4248  *	Notes:
4249  *		Original versions of this routine were very
4250  *		inefficient because they iteratively called
4251  *		pmap_remove (slow...)
4252  */
4253 
4254 void
4255 pmap_remove_all(vm_page_t m)
4256 {
4257 	struct md_page *pvh;
4258 	pv_entry_t pv;
4259 	pmap_t pmap;
4260 	pt2_entry_t *pte2p, opte2;
4261 	pt1_entry_t *pte1p;
4262 	vm_offset_t va;
4263 	struct spglist free;
4264 
4265 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4266 	    ("%s: page %p is not managed", __func__, m));
4267 	SLIST_INIT(&free);
4268 	rw_wlock(&pvh_global_lock);
4269 	sched_pin();
4270 	if ((m->flags & PG_FICTITIOUS) != 0)
4271 		goto small_mappings;
4272 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4273 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4274 		va = pv->pv_va;
4275 		pmap = PV_PMAP(pv);
4276 		PMAP_LOCK(pmap);
4277 		pte1p = pmap_pte1(pmap, va);
4278 		(void)pmap_demote_pte1(pmap, pte1p, va);
4279 		PMAP_UNLOCK(pmap);
4280 	}
4281 small_mappings:
4282 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4283 		pmap = PV_PMAP(pv);
4284 		PMAP_LOCK(pmap);
4285 		pmap->pm_stats.resident_count--;
4286 		pte1p = pmap_pte1(pmap, pv->pv_va);
4287 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
4288 		    "a 1mpage in page %p's pv list", __func__, m));
4289 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
4290 		opte2 = pte2_load_clear(pte2p);
4291 		pmap_tlb_flush(pmap, pv->pv_va);
4292 		KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
4293 		    __func__, pmap, pv->pv_va));
4294 		if (pte2_is_wired(opte2))
4295 			pmap->pm_stats.wired_count--;
4296 		if (opte2 & PTE2_A)
4297 			vm_page_aflag_set(m, PGA_REFERENCED);
4298 
4299 		/*
4300 		 * Update the vm_page_t clean and reference bits.
4301 		 */
4302 		if (pte2_is_dirty(opte2))
4303 			vm_page_dirty(m);
4304 		pmap_unuse_pt2(pmap, pv->pv_va, &free);
4305 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4306 		free_pv_entry(pmap, pv);
4307 		PMAP_UNLOCK(pmap);
4308 	}
4309 	vm_page_aflag_clear(m, PGA_WRITEABLE);
4310 	sched_unpin();
4311 	rw_wunlock(&pvh_global_lock);
4312 	vm_page_free_pages_toq(&free, false);
4313 }
4314 
4315 /*
4316  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4317  *  good coding style, a.k.a. 80 character line width limit hell.
4318  */
4319 static __inline void
4320 pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
4321     struct spglist *free)
4322 {
4323 	vm_paddr_t pa;
4324 	vm_page_t m, mt, mpt2pg;
4325 	struct md_page *pvh;
4326 
4327 	pa = pte1_pa(pte1);
4328 	m = PHYS_TO_VM_PAGE(pa);
4329 
4330 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4331 	    __func__, m, m->phys_addr, pa));
4332 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4333 	    m < &vm_page_array[vm_page_array_size],
4334 	    ("%s: bad pte1 %#x", __func__, pte1));
4335 
4336 	if (pte1_is_dirty(pte1)) {
4337 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4338 			vm_page_dirty(mt);
4339 	}
4340 
4341 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
4342 	pvh = pa_to_pvh(pa);
4343 	TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4344 	if (TAILQ_EMPTY(&pvh->pv_list)) {
4345 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4346 			if (TAILQ_EMPTY(&mt->md.pv_list))
4347 				vm_page_aflag_clear(mt, PGA_WRITEABLE);
4348 	}
4349 	mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
4350 	if (mpt2pg != NULL)
4351 		pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
4352 }
4353 
4354 /*
4355  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4356  *  good coding style, a.k.a. 80 character line width limit hell.
4357  */
4358 static __inline void
4359 pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
4360     struct spglist *free)
4361 {
4362 	vm_paddr_t pa;
4363 	vm_page_t m;
4364 	struct md_page *pvh;
4365 
4366 	pa = pte2_pa(pte2);
4367 	m = PHYS_TO_VM_PAGE(pa);
4368 
4369 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4370 	    __func__, m, m->phys_addr, pa));
4371 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4372 	    m < &vm_page_array[vm_page_array_size],
4373 	    ("%s: bad pte2 %#x", __func__, pte2));
4374 
4375 	if (pte2_is_dirty(pte2))
4376 		vm_page_dirty(m);
4377 
4378 	pmap->pm_stats.resident_count--;
4379 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4380 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
4381 		pvh = pa_to_pvh(pa);
4382 		if (TAILQ_EMPTY(&pvh->pv_list))
4383 			vm_page_aflag_clear(m, PGA_WRITEABLE);
4384 	}
4385 	pmap_unuse_pt2(pmap, pv->pv_va, free);
4386 }
4387 
4388 /*
4389  *  Remove all pages from specified address space this aids process
4390  *  exit speeds. Also, this code is special cased for current process
4391  *  only, but can have the more generic (and slightly slower) mode enabled.
4392  *  This is much faster than pmap_remove in the case of running down
4393  *  an entire address space.
4394  */
4395 void
4396 pmap_remove_pages(pmap_t pmap)
4397 {
4398 	pt1_entry_t *pte1p, pte1;
4399 	pt2_entry_t *pte2p, pte2;
4400 	pv_entry_t pv;
4401 	struct pv_chunk *pc, *npc;
4402 	struct spglist free;
4403 	int field, idx;
4404 	int32_t bit;
4405 	uint32_t inuse, bitmask;
4406 	boolean_t allfree;
4407 
4408 	/*
4409 	 * Assert that the given pmap is only active on the current
4410 	 * CPU.  Unfortunately, we cannot block another CPU from
4411 	 * activating the pmap while this function is executing.
4412 	 */
4413 	KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
4414 	    ("%s: non-current pmap %p", __func__, pmap));
4415 #if defined(SMP) && defined(INVARIANTS)
4416 	{
4417 		cpuset_t other_cpus;
4418 
4419 		sched_pin();
4420 		other_cpus = pmap->pm_active;
4421 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
4422 		sched_unpin();
4423 		KASSERT(CPU_EMPTY(&other_cpus),
4424 		    ("%s: pmap %p active on other cpus", __func__, pmap));
4425 	}
4426 #endif
4427 	SLIST_INIT(&free);
4428 	rw_wlock(&pvh_global_lock);
4429 	PMAP_LOCK(pmap);
4430 	sched_pin();
4431 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4432 		KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
4433 		    __func__, pmap, pc->pc_pmap));
4434 		allfree = TRUE;
4435 		for (field = 0; field < _NPCM; field++) {
4436 			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4437 			while (inuse != 0) {
4438 				bit = ffs(inuse) - 1;
4439 				bitmask = 1UL << bit;
4440 				idx = field * 32 + bit;
4441 				pv = &pc->pc_pventry[idx];
4442 				inuse &= ~bitmask;
4443 
4444 				/*
4445 				 * Note that we cannot remove wired pages
4446 				 * from a process' mapping at this time
4447 				 */
4448 				pte1p = pmap_pte1(pmap, pv->pv_va);
4449 				pte1 = pte1_load(pte1p);
4450 				if (pte1_is_section(pte1)) {
4451 					if (pte1_is_wired(pte1))  {
4452 						allfree = FALSE;
4453 						continue;
4454 					}
4455 					pte1_clear(pte1p);
4456 					pmap_remove_pte1_quick(pmap, pte1, pv,
4457 					    &free);
4458 				}
4459 				else if (pte1_is_link(pte1)) {
4460 					pte2p = pt2map_entry(pv->pv_va);
4461 					pte2 = pte2_load(pte2p);
4462 
4463 					if (!pte2_is_valid(pte2)) {
4464 						printf("%s: pmap %p va %#x "
4465 						    "pte2 %#x\n", __func__,
4466 						    pmap, pv->pv_va, pte2);
4467 						panic("bad pte2");
4468 					}
4469 
4470 					if (pte2_is_wired(pte2))   {
4471 						allfree = FALSE;
4472 						continue;
4473 					}
4474 					pte2_clear(pte2p);
4475 					pmap_remove_pte2_quick(pmap, pte2, pv,
4476 					    &free);
4477 				} else {
4478 					printf("%s: pmap %p va %#x pte1 %#x\n",
4479 					    __func__, pmap, pv->pv_va, pte1);
4480 					panic("bad pte1");
4481 				}
4482 
4483 				/* Mark free */
4484 				PV_STAT(pv_entry_frees++);
4485 				PV_STAT(pv_entry_spare++);
4486 				pv_entry_count--;
4487 				pc->pc_map[field] |= bitmask;
4488 			}
4489 		}
4490 		if (allfree) {
4491 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4492 			free_pv_chunk(pc);
4493 		}
4494 	}
4495 	tlb_flush_all_ng_local();
4496 	sched_unpin();
4497 	rw_wunlock(&pvh_global_lock);
4498 	PMAP_UNLOCK(pmap);
4499 	vm_page_free_pages_toq(&free, false);
4500 }
4501 
4502 /*
4503  *  This code makes some *MAJOR* assumptions:
4504  *  1. Current pmap & pmap exists.
4505  *  2. Not wired.
4506  *  3. Read access.
4507  *  4. No L2 page table pages.
4508  *  but is *MUCH* faster than pmap_enter...
4509  */
4510 static vm_page_t
4511 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4512     vm_prot_t prot, vm_page_t mpt2pg)
4513 {
4514 	pt2_entry_t *pte2p, pte2;
4515 	vm_paddr_t pa;
4516 	struct spglist free;
4517 	uint32_t l2prot;
4518 
4519 	KASSERT(!VA_IS_CLEANMAP(va) ||
4520 	    (m->oflags & VPO_UNMANAGED) != 0,
4521 	    ("%s: managed mapping within the clean submap", __func__));
4522 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4523 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4524 
4525 	/*
4526 	 * In the case that a L2 page table page is not
4527 	 * resident, we are creating it here.
4528 	 */
4529 	if (va < VM_MAXUSER_ADDRESS) {
4530 		u_int pte1_idx;
4531 		pt1_entry_t pte1, *pte1p;
4532 		vm_paddr_t pt2_pa;
4533 
4534 		/*
4535 		 * Get L1 page table things.
4536 		 */
4537 		pte1_idx = pte1_index(va);
4538 		pte1p = pmap_pte1(pmap, va);
4539 		pte1 = pte1_load(pte1p);
4540 
4541 		if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
4542 			/*
4543 			 * Each of NPT2_IN_PG L2 page tables on the page can
4544 			 * come here. Make sure that associated L1 page table
4545 			 * link is established.
4546 			 *
4547 			 * QQQ: It comes that we don't establish all links to
4548 			 *      L2 page tables for newly allocated L2 page
4549 			 *      tables page.
4550 			 */
4551 			KASSERT(!pte1_is_section(pte1),
4552 			    ("%s: pte1 %#x is section", __func__, pte1));
4553 			if (!pte1_is_link(pte1)) {
4554 				pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
4555 				    pte1_idx);
4556 				pte1_store(pte1p, PTE1_LINK(pt2_pa));
4557 			}
4558 			pt2_wirecount_inc(mpt2pg, pte1_idx);
4559 		} else {
4560 			/*
4561 			 * If the L2 page table page is mapped, we just
4562 			 * increment the hold count, and activate it.
4563 			 */
4564 			if (pte1_is_section(pte1)) {
4565 				return (NULL);
4566 			} else if (pte1_is_link(pte1)) {
4567 				mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
4568 				pt2_wirecount_inc(mpt2pg, pte1_idx);
4569 			} else {
4570 				mpt2pg = _pmap_allocpte2(pmap, va,
4571 				    PMAP_ENTER_NOSLEEP);
4572 				if (mpt2pg == NULL)
4573 					return (NULL);
4574 			}
4575 		}
4576 	} else {
4577 		mpt2pg = NULL;
4578 	}
4579 
4580 	/*
4581 	 * This call to pt2map_entry() makes the assumption that we are
4582 	 * entering the page into the current pmap.  In order to support
4583 	 * quick entry into any pmap, one would likely use pmap_pte2_quick().
4584 	 * But that isn't as quick as pt2map_entry().
4585 	 */
4586 	pte2p = pt2map_entry(va);
4587 	pte2 = pte2_load(pte2p);
4588 	if (pte2_is_valid(pte2)) {
4589 		if (mpt2pg != NULL) {
4590 			/*
4591 			 * Remove extra pte2 reference
4592 			 */
4593 			pt2_wirecount_dec(mpt2pg, pte1_index(va));
4594 			mpt2pg = NULL;
4595 		}
4596 		return (NULL);
4597 	}
4598 
4599 	/*
4600 	 * Enter on the PV list if part of our managed memory.
4601 	 */
4602 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4603 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4604 		if (mpt2pg != NULL) {
4605 			SLIST_INIT(&free);
4606 			if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
4607 				pmap_tlb_flush(pmap, va);
4608 				vm_page_free_pages_toq(&free, false);
4609 			}
4610 
4611 			mpt2pg = NULL;
4612 		}
4613 		return (NULL);
4614 	}
4615 
4616 	/*
4617 	 * Increment counters
4618 	 */
4619 	pmap->pm_stats.resident_count++;
4620 
4621 	/*
4622 	 * Now validate mapping with RO protection
4623 	 */
4624 	pa = VM_PAGE_TO_PHYS(m);
4625 	l2prot = PTE2_RO | PTE2_NM;
4626 	if (va < VM_MAXUSER_ADDRESS)
4627 		l2prot |= PTE2_U | PTE2_NG;
4628 	if ((prot & VM_PROT_EXECUTE) == 0)
4629 		l2prot |= PTE2_NX;
4630 	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4631 		/*
4632 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4633 		 * is set. QQQ: For more info, see comments in pmap_enter().
4634 		 */
4635 		cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4636 	}
4637 	pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
4638 
4639 	return (mpt2pg);
4640 }
4641 
4642 void
4643 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4644 {
4645 
4646 	rw_wlock(&pvh_global_lock);
4647 	PMAP_LOCK(pmap);
4648 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4649 	rw_wunlock(&pvh_global_lock);
4650 	PMAP_UNLOCK(pmap);
4651 }
4652 
4653 /*
4654  *  Tries to create a read- and/or execute-only 1 MB page mapping.  Returns
4655  *  true if successful.  Returns false if (1) a mapping already exists at the
4656  *  specified virtual address or (2) a PV entry cannot be allocated without
4657  *  reclaiming another PV entry.
4658  */
4659 static bool
4660 pmap_enter_1mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4661 {
4662 	pt1_entry_t pte1;
4663 	vm_paddr_t pa;
4664 
4665 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4666 	pa = VM_PAGE_TO_PHYS(m);
4667 	pte1 = PTE1(pa, PTE1_NM | PTE1_RO, ATTR_TO_L1(vm_page_pte2_attr(m)));
4668 	if ((prot & VM_PROT_EXECUTE) == 0)
4669 		pte1 |= PTE1_NX;
4670 	if (va < VM_MAXUSER_ADDRESS)
4671 		pte1 |= PTE1_U;
4672 	if (pmap != kernel_pmap)
4673 		pte1 |= PTE1_NG;
4674 	return (pmap_enter_pte1(pmap, va, pte1, PMAP_ENTER_NOSLEEP |
4675 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, m) == KERN_SUCCESS);
4676 }
4677 
4678 /*
4679  *  Tries to create the specified 1 MB page mapping.  Returns KERN_SUCCESS if
4680  *  the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
4681  *  otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
4682  *  a mapping already exists at the specified virtual address.  Returns
4683  *  KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NORECLAIM was specified and PV entry
4684  *  allocation failed.
4685  */
4686 static int
4687 pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags,
4688     vm_page_t m)
4689 {
4690 	struct spglist free;
4691 	pt1_entry_t opte1, *pte1p;
4692 	pt2_entry_t pte2, *pte2p;
4693 	vm_offset_t cur, end;
4694 	vm_page_t mt;
4695 
4696 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4697 	KASSERT((pte1 & (PTE1_NM | PTE1_RO)) == 0 ||
4698 	    (pte1 & (PTE1_NM | PTE1_RO)) == (PTE1_NM | PTE1_RO),
4699 	    ("%s: pte1 has inconsistent NM and RO attributes", __func__));
4700 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4701 	pte1p = pmap_pte1(pmap, va);
4702 	opte1 = pte1_load(pte1p);
4703 	if (pte1_is_valid(opte1)) {
4704 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
4705 			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4706 			    __func__, va, pmap);
4707 			return (KERN_FAILURE);
4708 		}
4709 		/* Break the existing mapping(s). */
4710 		SLIST_INIT(&free);
4711 		if (pte1_is_section(opte1)) {
4712 			/*
4713 			 * If the section resulted from a promotion, then a
4714 			 * reserved PT page could be freed.
4715 			 */
4716 			pmap_remove_pte1(pmap, pte1p, va, &free);
4717 		} else {
4718 			sched_pin();
4719 			end = va + PTE1_SIZE;
4720 			for (cur = va, pte2p = pmap_pte2_quick(pmap, va);
4721 			    cur != end; cur += PAGE_SIZE, pte2p++) {
4722 				pte2 = pte2_load(pte2p);
4723 				if (!pte2_is_valid(pte2))
4724 					continue;
4725 				if (pmap_remove_pte2(pmap, pte2p, cur, &free))
4726 					break;
4727 			}
4728 			sched_unpin();
4729 		}
4730 		vm_page_free_pages_toq(&free, false);
4731 	}
4732 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4733 		/*
4734 		 * Abort this mapping if its PV entry could not be created.
4735 		 */
4736 		if (!pmap_pv_insert_pte1(pmap, va, pte1, flags)) {
4737 			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4738 			    __func__, va, pmap);
4739 			return (KERN_RESOURCE_SHORTAGE);
4740 		}
4741 		if ((pte1 & PTE1_RO) == 0) {
4742 			for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4743 				vm_page_aflag_set(mt, PGA_WRITEABLE);
4744 		}
4745 	}
4746 
4747 	/*
4748 	 * Increment counters.
4749 	 */
4750 	if (pte1_is_wired(pte1))
4751 		pmap->pm_stats.wired_count += PTE1_SIZE / PAGE_SIZE;
4752 	pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
4753 
4754 	/*
4755 	 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4756 	 * is set.  QQQ: For more info, see comments in pmap_enter().
4757 	 */
4758 	if ((pte1 & PTE1_NX) == 0 && m->md.pat_mode == VM_MEMATTR_WB_WA &&
4759 	    pmap != kernel_pmap && (!pte1_is_section(opte1) ||
4760 	    pte1_pa(opte1) != VM_PAGE_TO_PHYS(m) || (opte1 & PTE2_NX) != 0))
4761 		cache_icache_sync_fresh(va, VM_PAGE_TO_PHYS(m), PTE1_SIZE);
4762 
4763 	/*
4764 	 * Map the section.
4765 	 */
4766 	pte1_store(pte1p, pte1);
4767 
4768 	pmap_pte1_mappings++;
4769 	CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
4770 	    pmap);
4771 	return (KERN_SUCCESS);
4772 }
4773 
4774 /*
4775  *  Maps a sequence of resident pages belonging to the same object.
4776  *  The sequence begins with the given page m_start.  This page is
4777  *  mapped at the given virtual address start.  Each subsequent page is
4778  *  mapped at a virtual address that is offset from start by the same
4779  *  amount as the page is offset from m_start within the object.  The
4780  *  last page in the sequence is the page with the largest offset from
4781  *  m_start that can be mapped at a virtual address less than the given
4782  *  virtual address end.  Not every virtual page between start and end
4783  *  is mapped; only those for which a resident page exists with the
4784  *  corresponding offset from m_start are mapped.
4785  */
4786 void
4787 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4788     vm_page_t m_start, vm_prot_t prot)
4789 {
4790 	vm_offset_t va;
4791 	vm_page_t m, mpt2pg;
4792 	vm_pindex_t diff, psize;
4793 
4794 	PDEBUG(6, printf("%s: pmap %p start %#x end  %#x m %p prot %#x\n",
4795 	    __func__, pmap, start, end, m_start, prot));
4796 
4797 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4798 	psize = atop(end - start);
4799 	mpt2pg = NULL;
4800 	m = m_start;
4801 	rw_wlock(&pvh_global_lock);
4802 	PMAP_LOCK(pmap);
4803 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4804 		va = start + ptoa(diff);
4805 		if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
4806 		    m->psind == 1 && sp_enabled &&
4807 		    pmap_enter_1mpage(pmap, va, m, prot))
4808 			m = &m[PTE1_SIZE / PAGE_SIZE - 1];
4809 		else
4810 			mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
4811 			    mpt2pg);
4812 		m = TAILQ_NEXT(m, listq);
4813 	}
4814 	rw_wunlock(&pvh_global_lock);
4815 	PMAP_UNLOCK(pmap);
4816 }
4817 
4818 /*
4819  *  This code maps large physical mmap regions into the
4820  *  processor address space.  Note that some shortcuts
4821  *  are taken, but the code works.
4822  */
4823 void
4824 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4825     vm_pindex_t pindex, vm_size_t size)
4826 {
4827 	pt1_entry_t *pte1p;
4828 	vm_paddr_t pa, pte2_pa;
4829 	vm_page_t p;
4830 	vm_memattr_t pat_mode;
4831 	u_int l1attr, l1prot;
4832 
4833 	VM_OBJECT_ASSERT_WLOCKED(object);
4834 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4835 	    ("%s: non-device object", __func__));
4836 	if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
4837 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4838 			return;
4839 		p = vm_page_lookup(object, pindex);
4840 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4841 		    ("%s: invalid page %p", __func__, p));
4842 		pat_mode = p->md.pat_mode;
4843 
4844 		/*
4845 		 * Abort the mapping if the first page is not physically
4846 		 * aligned to a 1MB page boundary.
4847 		 */
4848 		pte2_pa = VM_PAGE_TO_PHYS(p);
4849 		if (pte2_pa & PTE1_OFFSET)
4850 			return;
4851 
4852 		/*
4853 		 * Skip the first page. Abort the mapping if the rest of
4854 		 * the pages are not physically contiguous or have differing
4855 		 * memory attributes.
4856 		 */
4857 		p = TAILQ_NEXT(p, listq);
4858 		for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
4859 		    pa += PAGE_SIZE) {
4860 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4861 			    ("%s: invalid page %p", __func__, p));
4862 			if (pa != VM_PAGE_TO_PHYS(p) ||
4863 			    pat_mode != p->md.pat_mode)
4864 				return;
4865 			p = TAILQ_NEXT(p, listq);
4866 		}
4867 
4868 		/*
4869 		 * Map using 1MB pages.
4870 		 *
4871 		 * QQQ: Well, we are mapping a section, so same condition must
4872 		 * be hold like during promotion. It looks that only RW mapping
4873 		 * is done here, so readonly mapping must be done elsewhere.
4874 		 */
4875 		l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
4876 		l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
4877 		PMAP_LOCK(pmap);
4878 		for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
4879 			pte1p = pmap_pte1(pmap, addr);
4880 			if (!pte1_is_valid(pte1_load(pte1p))) {
4881 				pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
4882 				pmap->pm_stats.resident_count += PTE1_SIZE /
4883 				    PAGE_SIZE;
4884 				pmap_pte1_mappings++;
4885 			}
4886 			/* Else continue on if the PTE1 is already valid. */
4887 			addr += PTE1_SIZE;
4888 		}
4889 		PMAP_UNLOCK(pmap);
4890 	}
4891 }
4892 
4893 /*
4894  *  Do the things to protect a 1mpage in a process.
4895  */
4896 static void
4897 pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
4898     vm_prot_t prot)
4899 {
4900 	pt1_entry_t npte1, opte1;
4901 	vm_offset_t eva, va;
4902 	vm_page_t m;
4903 
4904 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4905 	KASSERT((sva & PTE1_OFFSET) == 0,
4906 	    ("%s: sva is not 1mpage aligned", __func__));
4907 
4908 	opte1 = npte1 = pte1_load(pte1p);
4909 	if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
4910 		eva = sva + PTE1_SIZE;
4911 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
4912 		    va < eva; va += PAGE_SIZE, m++)
4913 			vm_page_dirty(m);
4914 	}
4915 	if ((prot & VM_PROT_WRITE) == 0)
4916 		npte1 |= PTE1_RO | PTE1_NM;
4917 	if ((prot & VM_PROT_EXECUTE) == 0)
4918 		npte1 |= PTE1_NX;
4919 
4920 	/*
4921 	 * QQQ: Herein, execute permission is never set.
4922 	 *      It only can be cleared. So, no icache
4923 	 *      syncing is needed.
4924 	 */
4925 
4926 	if (npte1 != opte1) {
4927 		pte1_store(pte1p, npte1);
4928 		pmap_tlb_flush(pmap, sva);
4929 	}
4930 }
4931 
4932 /*
4933  *	Set the physical protection on the
4934  *	specified range of this map as requested.
4935  */
4936 void
4937 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4938 {
4939 	boolean_t pv_lists_locked;
4940 	vm_offset_t nextva;
4941 	pt1_entry_t *pte1p, pte1;
4942 	pt2_entry_t *pte2p, opte2, npte2;
4943 
4944 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4945 	if (prot == VM_PROT_NONE) {
4946 		pmap_remove(pmap, sva, eva);
4947 		return;
4948 	}
4949 
4950 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
4951 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
4952 		return;
4953 
4954 	if (pmap_is_current(pmap))
4955 		pv_lists_locked = FALSE;
4956 	else {
4957 		pv_lists_locked = TRUE;
4958 resume:
4959 		rw_wlock(&pvh_global_lock);
4960 		sched_pin();
4961 	}
4962 
4963 	PMAP_LOCK(pmap);
4964 	for (; sva < eva; sva = nextva) {
4965 		/*
4966 		 * Calculate address for next L2 page table.
4967 		 */
4968 		nextva = pte1_trunc(sva + PTE1_SIZE);
4969 		if (nextva < sva)
4970 			nextva = eva;
4971 
4972 		pte1p = pmap_pte1(pmap, sva);
4973 		pte1 = pte1_load(pte1p);
4974 
4975 		/*
4976 		 * Weed out invalid mappings. Note: we assume that L1 page
4977 		 * page table is always allocated, and in kernel virtual.
4978 		 */
4979 		if (pte1 == 0)
4980 			continue;
4981 
4982 		if (pte1_is_section(pte1)) {
4983 			/*
4984 			 * Are we protecting the entire large page?  If not,
4985 			 * demote the mapping and fall through.
4986 			 */
4987 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4988 				pmap_protect_pte1(pmap, pte1p, sva, prot);
4989 				continue;
4990 			} else {
4991 				if (!pv_lists_locked) {
4992 					pv_lists_locked = TRUE;
4993 					if (!rw_try_wlock(&pvh_global_lock)) {
4994 						PMAP_UNLOCK(pmap);
4995 						goto resume;
4996 					}
4997 					sched_pin();
4998 				}
4999 				if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5000 					/*
5001 					 * The large page mapping
5002 					 * was destroyed.
5003 					 */
5004 					continue;
5005 				}
5006 #ifdef INVARIANTS
5007 				else {
5008 					/* Update pte1 after demotion */
5009 					pte1 = pte1_load(pte1p);
5010 				}
5011 #endif
5012 			}
5013 		}
5014 
5015 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5016 		    " is not link", __func__, pmap, sva, pte1, pte1p));
5017 
5018 		/*
5019 		 * Limit our scan to either the end of the va represented
5020 		 * by the current L2 page table page, or to the end of the
5021 		 * range being protected.
5022 		 */
5023 		if (nextva > eva)
5024 			nextva = eva;
5025 
5026 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5027 		    sva += PAGE_SIZE) {
5028 			vm_page_t m;
5029 
5030 			opte2 = npte2 = pte2_load(pte2p);
5031 			if (!pte2_is_valid(opte2))
5032 				continue;
5033 
5034 			if ((prot & VM_PROT_WRITE) == 0) {
5035 				if (pte2_is_managed(opte2) &&
5036 				    pte2_is_dirty(opte2)) {
5037 					m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
5038 					vm_page_dirty(m);
5039 				}
5040 				npte2 |= PTE2_RO | PTE2_NM;
5041 			}
5042 
5043 			if ((prot & VM_PROT_EXECUTE) == 0)
5044 				npte2 |= PTE2_NX;
5045 
5046 			/*
5047 			 * QQQ: Herein, execute permission is never set.
5048 			 *      It only can be cleared. So, no icache
5049 			 *      syncing is needed.
5050 			 */
5051 
5052 			if (npte2 != opte2) {
5053 				pte2_store(pte2p, npte2);
5054 				pmap_tlb_flush(pmap, sva);
5055 			}
5056 		}
5057 	}
5058 	if (pv_lists_locked) {
5059 		sched_unpin();
5060 		rw_wunlock(&pvh_global_lock);
5061 	}
5062 	PMAP_UNLOCK(pmap);
5063 }
5064 
5065 /*
5066  *	pmap_pvh_wired_mappings:
5067  *
5068  *	Return the updated number "count" of managed mappings that are wired.
5069  */
5070 static int
5071 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
5072 {
5073 	pmap_t pmap;
5074 	pt1_entry_t pte1;
5075 	pt2_entry_t pte2;
5076 	pv_entry_t pv;
5077 
5078 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5079 	sched_pin();
5080 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5081 		pmap = PV_PMAP(pv);
5082 		PMAP_LOCK(pmap);
5083 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5084 		if (pte1_is_section(pte1)) {
5085 			if (pte1_is_wired(pte1))
5086 				count++;
5087 		} else {
5088 			KASSERT(pte1_is_link(pte1),
5089 			    ("%s: pte1 %#x is not link", __func__, pte1));
5090 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5091 			if (pte2_is_wired(pte2))
5092 				count++;
5093 		}
5094 		PMAP_UNLOCK(pmap);
5095 	}
5096 	sched_unpin();
5097 	return (count);
5098 }
5099 
5100 /*
5101  *	pmap_page_wired_mappings:
5102  *
5103  *	Return the number of managed mappings to the given physical page
5104  *	that are wired.
5105  */
5106 int
5107 pmap_page_wired_mappings(vm_page_t m)
5108 {
5109 	int count;
5110 
5111 	count = 0;
5112 	if ((m->oflags & VPO_UNMANAGED) != 0)
5113 		return (count);
5114 	rw_wlock(&pvh_global_lock);
5115 	count = pmap_pvh_wired_mappings(&m->md, count);
5116 	if ((m->flags & PG_FICTITIOUS) == 0) {
5117 		count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
5118 		    count);
5119 	}
5120 	rw_wunlock(&pvh_global_lock);
5121 	return (count);
5122 }
5123 
5124 /*
5125  *  Returns TRUE if any of the given mappings were used to modify
5126  *  physical memory.  Otherwise, returns FALSE.  Both page and 1mpage
5127  *  mappings are supported.
5128  */
5129 static boolean_t
5130 pmap_is_modified_pvh(struct md_page *pvh)
5131 {
5132 	pv_entry_t pv;
5133 	pt1_entry_t pte1;
5134 	pt2_entry_t pte2;
5135 	pmap_t pmap;
5136 	boolean_t rv;
5137 
5138 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5139 	rv = FALSE;
5140 	sched_pin();
5141 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5142 		pmap = PV_PMAP(pv);
5143 		PMAP_LOCK(pmap);
5144 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5145 		if (pte1_is_section(pte1)) {
5146 			rv = pte1_is_dirty(pte1);
5147 		} else {
5148 			KASSERT(pte1_is_link(pte1),
5149 			    ("%s: pte1 %#x is not link", __func__, pte1));
5150 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5151 			rv = pte2_is_dirty(pte2);
5152 		}
5153 		PMAP_UNLOCK(pmap);
5154 		if (rv)
5155 			break;
5156 	}
5157 	sched_unpin();
5158 	return (rv);
5159 }
5160 
5161 /*
5162  *	pmap_is_modified:
5163  *
5164  *	Return whether or not the specified physical page was modified
5165  *	in any physical maps.
5166  */
5167 boolean_t
5168 pmap_is_modified(vm_page_t m)
5169 {
5170 	boolean_t rv;
5171 
5172 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5173 	    ("%s: page %p is not managed", __func__, m));
5174 
5175 	/*
5176 	 * If the page is not busied then this check is racy.
5177 	 */
5178 	if (!pmap_page_is_write_mapped(m))
5179 		return (FALSE);
5180 	rw_wlock(&pvh_global_lock);
5181 	rv = pmap_is_modified_pvh(&m->md) ||
5182 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5183 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5184 	rw_wunlock(&pvh_global_lock);
5185 	return (rv);
5186 }
5187 
5188 /*
5189  *	pmap_is_prefaultable:
5190  *
5191  *	Return whether or not the specified virtual address is eligible
5192  *	for prefault.
5193  */
5194 boolean_t
5195 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5196 {
5197 	pt1_entry_t pte1;
5198 	pt2_entry_t pte2;
5199 	boolean_t rv;
5200 
5201 	rv = FALSE;
5202 	PMAP_LOCK(pmap);
5203 	pte1 = pte1_load(pmap_pte1(pmap, addr));
5204 	if (pte1_is_link(pte1)) {
5205 		pte2 = pte2_load(pt2map_entry(addr));
5206 		rv = !pte2_is_valid(pte2) ;
5207 	}
5208 	PMAP_UNLOCK(pmap);
5209 	return (rv);
5210 }
5211 
5212 /*
5213  *  Returns TRUE if any of the given mappings were referenced and FALSE
5214  *  otherwise. Both page and 1mpage mappings are supported.
5215  */
5216 static boolean_t
5217 pmap_is_referenced_pvh(struct md_page *pvh)
5218 {
5219 
5220 	pv_entry_t pv;
5221 	pt1_entry_t pte1;
5222 	pt2_entry_t pte2;
5223 	pmap_t pmap;
5224 	boolean_t rv;
5225 
5226 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5227 	rv = FALSE;
5228 	sched_pin();
5229 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5230 		pmap = PV_PMAP(pv);
5231 		PMAP_LOCK(pmap);
5232 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5233 		if (pte1_is_section(pte1)) {
5234 			rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
5235 		} else {
5236 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5237 			rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
5238 		}
5239 		PMAP_UNLOCK(pmap);
5240 		if (rv)
5241 			break;
5242 	}
5243 	sched_unpin();
5244 	return (rv);
5245 }
5246 
5247 /*
5248  *	pmap_is_referenced:
5249  *
5250  *	Return whether or not the specified physical page was referenced
5251  *	in any physical maps.
5252  */
5253 boolean_t
5254 pmap_is_referenced(vm_page_t m)
5255 {
5256 	boolean_t rv;
5257 
5258 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5259 	    ("%s: page %p is not managed", __func__, m));
5260 	rw_wlock(&pvh_global_lock);
5261 	rv = pmap_is_referenced_pvh(&m->md) ||
5262 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5263 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5264 	rw_wunlock(&pvh_global_lock);
5265 	return (rv);
5266 }
5267 
5268 /*
5269  *	pmap_ts_referenced:
5270  *
5271  *	Return a count of reference bits for a page, clearing those bits.
5272  *	It is not necessary for every reference bit to be cleared, but it
5273  *	is necessary that 0 only be returned when there are truly no
5274  *	reference bits set.
5275  *
5276  *	As an optimization, update the page's dirty field if a modified bit is
5277  *	found while counting reference bits.  This opportunistic update can be
5278  *	performed at low cost and can eliminate the need for some future calls
5279  *	to pmap_is_modified().  However, since this function stops after
5280  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5281  *	dirty pages.  Those dirty pages will only be detected by a future call
5282  *	to pmap_is_modified().
5283  */
5284 int
5285 pmap_ts_referenced(vm_page_t m)
5286 {
5287 	struct md_page *pvh;
5288 	pv_entry_t pv, pvf;
5289 	pmap_t pmap;
5290 	pt1_entry_t  *pte1p, opte1;
5291 	pt2_entry_t *pte2p, opte2;
5292 	vm_paddr_t pa;
5293 	int rtval = 0;
5294 
5295 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5296 	    ("%s: page %p is not managed", __func__, m));
5297 	pa = VM_PAGE_TO_PHYS(m);
5298 	pvh = pa_to_pvh(pa);
5299 	rw_wlock(&pvh_global_lock);
5300 	sched_pin();
5301 	if ((m->flags & PG_FICTITIOUS) != 0 ||
5302 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5303 		goto small_mappings;
5304 	pv = pvf;
5305 	do {
5306 		pmap = PV_PMAP(pv);
5307 		PMAP_LOCK(pmap);
5308 		pte1p = pmap_pte1(pmap, pv->pv_va);
5309 		opte1 = pte1_load(pte1p);
5310 		if (pte1_is_dirty(opte1)) {
5311 			/*
5312 			 * Although "opte1" is mapping a 1MB page, because
5313 			 * this function is called at a 4KB page granularity,
5314 			 * we only update the 4KB page under test.
5315 			 */
5316 			vm_page_dirty(m);
5317 		}
5318 		if ((opte1 & PTE1_A) != 0) {
5319 			/*
5320 			 * Since this reference bit is shared by 256 4KB pages,
5321 			 * it should not be cleared every time it is tested.
5322 			 * Apply a simple "hash" function on the physical page
5323 			 * number, the virtual section number, and the pmap
5324 			 * address to select one 4KB page out of the 256
5325 			 * on which testing the reference bit will result
5326 			 * in clearing that bit. This function is designed
5327 			 * to avoid the selection of the same 4KB page
5328 			 * for every 1MB page mapping.
5329 			 *
5330 			 * On demotion, a mapping that hasn't been referenced
5331 			 * is simply destroyed.  To avoid the possibility of a
5332 			 * subsequent page fault on a demoted wired mapping,
5333 			 * always leave its reference bit set.  Moreover,
5334 			 * since the section is wired, the current state of
5335 			 * its reference bit won't affect page replacement.
5336 			 */
5337 			 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
5338 			    (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
5339 			    !pte1_is_wired(opte1)) {
5340 				pte1_clear_bit(pte1p, PTE1_A);
5341 				pmap_tlb_flush(pmap, pv->pv_va);
5342 			}
5343 			rtval++;
5344 		}
5345 		PMAP_UNLOCK(pmap);
5346 		/* Rotate the PV list if it has more than one entry. */
5347 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5348 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5349 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5350 		}
5351 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5352 			goto out;
5353 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5354 small_mappings:
5355 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5356 		goto out;
5357 	pv = pvf;
5358 	do {
5359 		pmap = PV_PMAP(pv);
5360 		PMAP_LOCK(pmap);
5361 		pte1p = pmap_pte1(pmap, pv->pv_va);
5362 		KASSERT(pte1_is_link(pte1_load(pte1p)),
5363 		    ("%s: not found a link in page %p's pv list", __func__, m));
5364 
5365 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5366 		opte2 = pte2_load(pte2p);
5367 		if (pte2_is_dirty(opte2))
5368 			vm_page_dirty(m);
5369 		if ((opte2 & PTE2_A) != 0) {
5370 			pte2_clear_bit(pte2p, PTE2_A);
5371 			pmap_tlb_flush(pmap, pv->pv_va);
5372 			rtval++;
5373 		}
5374 		PMAP_UNLOCK(pmap);
5375 		/* Rotate the PV list if it has more than one entry. */
5376 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5377 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5378 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5379 		}
5380 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5381 	    PMAP_TS_REFERENCED_MAX);
5382 out:
5383 	sched_unpin();
5384 	rw_wunlock(&pvh_global_lock);
5385 	return (rtval);
5386 }
5387 
5388 /*
5389  *	Clear the wired attribute from the mappings for the specified range of
5390  *	addresses in the given pmap.  Every valid mapping within that range
5391  *	must have the wired attribute set.  In contrast, invalid mappings
5392  *	cannot have the wired attribute set, so they are ignored.
5393  *
5394  *	The wired attribute of the page table entry is not a hardware feature,
5395  *	so there is no need to invalidate any TLB entries.
5396  */
5397 void
5398 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5399 {
5400 	vm_offset_t nextva;
5401 	pt1_entry_t *pte1p, pte1;
5402 	pt2_entry_t *pte2p, pte2;
5403 	boolean_t pv_lists_locked;
5404 
5405 	if (pmap_is_current(pmap))
5406 		pv_lists_locked = FALSE;
5407 	else {
5408 		pv_lists_locked = TRUE;
5409 resume:
5410 		rw_wlock(&pvh_global_lock);
5411 		sched_pin();
5412 	}
5413 	PMAP_LOCK(pmap);
5414 	for (; sva < eva; sva = nextva) {
5415 		nextva = pte1_trunc(sva + PTE1_SIZE);
5416 		if (nextva < sva)
5417 			nextva = eva;
5418 
5419 		pte1p = pmap_pte1(pmap, sva);
5420 		pte1 = pte1_load(pte1p);
5421 
5422 		/*
5423 		 * Weed out invalid mappings. Note: we assume that L1 page
5424 		 * page table is always allocated, and in kernel virtual.
5425 		 */
5426 		if (pte1 == 0)
5427 			continue;
5428 
5429 		if (pte1_is_section(pte1)) {
5430 			if (!pte1_is_wired(pte1))
5431 				panic("%s: pte1 %#x not wired", __func__, pte1);
5432 
5433 			/*
5434 			 * Are we unwiring the entire large page?  If not,
5435 			 * demote the mapping and fall through.
5436 			 */
5437 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5438 				pte1_clear_bit(pte1p, PTE1_W);
5439 				pmap->pm_stats.wired_count -= PTE1_SIZE /
5440 				    PAGE_SIZE;
5441 				continue;
5442 			} else {
5443 				if (!pv_lists_locked) {
5444 					pv_lists_locked = TRUE;
5445 					if (!rw_try_wlock(&pvh_global_lock)) {
5446 						PMAP_UNLOCK(pmap);
5447 						/* Repeat sva. */
5448 						goto resume;
5449 					}
5450 					sched_pin();
5451 				}
5452 				if (!pmap_demote_pte1(pmap, pte1p, sva))
5453 					panic("%s: demotion failed", __func__);
5454 #ifdef INVARIANTS
5455 				else {
5456 					/* Update pte1 after demotion */
5457 					pte1 = pte1_load(pte1p);
5458 				}
5459 #endif
5460 			}
5461 		}
5462 
5463 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5464 		    " is not link", __func__, pmap, sva, pte1, pte1p));
5465 
5466 		/*
5467 		 * Limit our scan to either the end of the va represented
5468 		 * by the current L2 page table page, or to the end of the
5469 		 * range being protected.
5470 		 */
5471 		if (nextva > eva)
5472 			nextva = eva;
5473 
5474 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5475 		    sva += PAGE_SIZE) {
5476 			pte2 = pte2_load(pte2p);
5477 			if (!pte2_is_valid(pte2))
5478 				continue;
5479 			if (!pte2_is_wired(pte2))
5480 				panic("%s: pte2 %#x is missing PTE2_W",
5481 				    __func__, pte2);
5482 
5483 			/*
5484 			 * PTE2_W must be cleared atomically. Although the pmap
5485 			 * lock synchronizes access to PTE2_W, another processor
5486 			 * could be changing PTE2_NM and/or PTE2_A concurrently.
5487 			 */
5488 			pte2_clear_bit(pte2p, PTE2_W);
5489 			pmap->pm_stats.wired_count--;
5490 		}
5491 	}
5492 	if (pv_lists_locked) {
5493 		sched_unpin();
5494 		rw_wunlock(&pvh_global_lock);
5495 	}
5496 	PMAP_UNLOCK(pmap);
5497 }
5498 
5499 /*
5500  *  Clear the write and modified bits in each of the given page's mappings.
5501  */
5502 void
5503 pmap_remove_write(vm_page_t m)
5504 {
5505 	struct md_page *pvh;
5506 	pv_entry_t next_pv, pv;
5507 	pmap_t pmap;
5508 	pt1_entry_t *pte1p;
5509 	pt2_entry_t *pte2p, opte2;
5510 	vm_offset_t va;
5511 
5512 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5513 	    ("%s: page %p is not managed", __func__, m));
5514 	vm_page_assert_busied(m);
5515 
5516 	if (!pmap_page_is_write_mapped(m))
5517 		return;
5518 	rw_wlock(&pvh_global_lock);
5519 	sched_pin();
5520 	if ((m->flags & PG_FICTITIOUS) != 0)
5521 		goto small_mappings;
5522 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5523 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5524 		va = pv->pv_va;
5525 		pmap = PV_PMAP(pv);
5526 		PMAP_LOCK(pmap);
5527 		pte1p = pmap_pte1(pmap, va);
5528 		if (!(pte1_load(pte1p) & PTE1_RO))
5529 			(void)pmap_demote_pte1(pmap, pte1p, va);
5530 		PMAP_UNLOCK(pmap);
5531 	}
5532 small_mappings:
5533 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5534 		pmap = PV_PMAP(pv);
5535 		PMAP_LOCK(pmap);
5536 		pte1p = pmap_pte1(pmap, pv->pv_va);
5537 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5538 		    " a section in page %p's pv list", __func__, m));
5539 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5540 		opte2 = pte2_load(pte2p);
5541 		if (!(opte2 & PTE2_RO)) {
5542 			pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
5543 			if (pte2_is_dirty(opte2))
5544 				vm_page_dirty(m);
5545 			pmap_tlb_flush(pmap, pv->pv_va);
5546 		}
5547 		PMAP_UNLOCK(pmap);
5548 	}
5549 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5550 	sched_unpin();
5551 	rw_wunlock(&pvh_global_lock);
5552 }
5553 
5554 /*
5555  *	Apply the given advice to the specified range of addresses within the
5556  *	given pmap.  Depending on the advice, clear the referenced and/or
5557  *	modified flags in each mapping and set the mapped page's dirty field.
5558  */
5559 void
5560 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5561 {
5562 	pt1_entry_t *pte1p, opte1;
5563 	pt2_entry_t *pte2p, pte2;
5564 	vm_offset_t pdnxt;
5565 	vm_page_t m;
5566 	boolean_t pv_lists_locked;
5567 
5568 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5569 		return;
5570 	if (pmap_is_current(pmap))
5571 		pv_lists_locked = FALSE;
5572 	else {
5573 		pv_lists_locked = TRUE;
5574 resume:
5575 		rw_wlock(&pvh_global_lock);
5576 		sched_pin();
5577 	}
5578 	PMAP_LOCK(pmap);
5579 	for (; sva < eva; sva = pdnxt) {
5580 		pdnxt = pte1_trunc(sva + PTE1_SIZE);
5581 		if (pdnxt < sva)
5582 			pdnxt = eva;
5583 		pte1p = pmap_pte1(pmap, sva);
5584 		opte1 = pte1_load(pte1p);
5585 		if (!pte1_is_valid(opte1)) /* XXX */
5586 			continue;
5587 		else if (pte1_is_section(opte1)) {
5588 			if (!pte1_is_managed(opte1))
5589 				continue;
5590 			if (!pv_lists_locked) {
5591 				pv_lists_locked = TRUE;
5592 				if (!rw_try_wlock(&pvh_global_lock)) {
5593 					PMAP_UNLOCK(pmap);
5594 					goto resume;
5595 				}
5596 				sched_pin();
5597 			}
5598 			if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5599 				/*
5600 				 * The large page mapping was destroyed.
5601 				 */
5602 				continue;
5603 			}
5604 
5605 			/*
5606 			 * Unless the page mappings are wired, remove the
5607 			 * mapping to a single page so that a subsequent
5608 			 * access may repromote.  Since the underlying L2 page
5609 			 * table is fully populated, this removal never
5610 			 * frees a L2 page table page.
5611 			 */
5612 			if (!pte1_is_wired(opte1)) {
5613 				pte2p = pmap_pte2_quick(pmap, sva);
5614 				KASSERT(pte2_is_valid(pte2_load(pte2p)),
5615 				    ("%s: invalid PTE2", __func__));
5616 				pmap_remove_pte2(pmap, pte2p, sva, NULL);
5617 			}
5618 		}
5619 		if (pdnxt > eva)
5620 			pdnxt = eva;
5621 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
5622 		    sva += PAGE_SIZE) {
5623 			pte2 = pte2_load(pte2p);
5624 			if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
5625 				continue;
5626 			else if (pte2_is_dirty(pte2)) {
5627 				if (advice == MADV_DONTNEED) {
5628 					/*
5629 					 * Future calls to pmap_is_modified()
5630 					 * can be avoided by making the page
5631 					 * dirty now.
5632 					 */
5633 					m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
5634 					vm_page_dirty(m);
5635 				}
5636 				pte2_set_bit(pte2p, PTE2_NM);
5637 				pte2_clear_bit(pte2p, PTE2_A);
5638 			} else if ((pte2 & PTE2_A) != 0)
5639 				pte2_clear_bit(pte2p, PTE2_A);
5640 			else
5641 				continue;
5642 			pmap_tlb_flush(pmap, sva);
5643 		}
5644 	}
5645 	if (pv_lists_locked) {
5646 		sched_unpin();
5647 		rw_wunlock(&pvh_global_lock);
5648 	}
5649 	PMAP_UNLOCK(pmap);
5650 }
5651 
5652 /*
5653  *	Clear the modify bits on the specified physical page.
5654  */
5655 void
5656 pmap_clear_modify(vm_page_t m)
5657 {
5658 	struct md_page *pvh;
5659 	pv_entry_t next_pv, pv;
5660 	pmap_t pmap;
5661 	pt1_entry_t *pte1p, opte1;
5662 	pt2_entry_t *pte2p, opte2;
5663 	vm_offset_t va;
5664 
5665 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5666 	    ("%s: page %p is not managed", __func__, m));
5667 	vm_page_assert_busied(m);
5668 
5669 	if (!pmap_page_is_write_mapped(m))
5670 		return;
5671 	rw_wlock(&pvh_global_lock);
5672 	sched_pin();
5673 	if ((m->flags & PG_FICTITIOUS) != 0)
5674 		goto small_mappings;
5675 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5676 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5677 		va = pv->pv_va;
5678 		pmap = PV_PMAP(pv);
5679 		PMAP_LOCK(pmap);
5680 		pte1p = pmap_pte1(pmap, va);
5681 		opte1 = pte1_load(pte1p);
5682 		if (!(opte1 & PTE1_RO)) {
5683 			if (pmap_demote_pte1(pmap, pte1p, va) &&
5684 			    !pte1_is_wired(opte1)) {
5685 				/*
5686 				 * Write protect the mapping to a
5687 				 * single page so that a subsequent
5688 				 * write access may repromote.
5689 				 */
5690 				va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
5691 				pte2p = pmap_pte2_quick(pmap, va);
5692 				opte2 = pte2_load(pte2p);
5693 				if ((opte2 & PTE2_V)) {
5694 					pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
5695 					vm_page_dirty(m);
5696 					pmap_tlb_flush(pmap, va);
5697 				}
5698 			}
5699 		}
5700 		PMAP_UNLOCK(pmap);
5701 	}
5702 small_mappings:
5703 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5704 		pmap = PV_PMAP(pv);
5705 		PMAP_LOCK(pmap);
5706 		pte1p = pmap_pte1(pmap, pv->pv_va);
5707 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5708 		    " a section in page %p's pv list", __func__, m));
5709 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5710 		if (pte2_is_dirty(pte2_load(pte2p))) {
5711 			pte2_set_bit(pte2p, PTE2_NM);
5712 			pmap_tlb_flush(pmap, pv->pv_va);
5713 		}
5714 		PMAP_UNLOCK(pmap);
5715 	}
5716 	sched_unpin();
5717 	rw_wunlock(&pvh_global_lock);
5718 }
5719 
5720 /*
5721  *  Sets the memory attribute for the specified page.
5722  */
5723 void
5724 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5725 {
5726 	pt2_entry_t *cmap2_pte2p;
5727 	vm_memattr_t oma;
5728 	vm_paddr_t pa;
5729 	struct pcpu *pc;
5730 
5731 	oma = m->md.pat_mode;
5732 	m->md.pat_mode = ma;
5733 
5734 	CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
5735 	    VM_PAGE_TO_PHYS(m), oma, ma);
5736 	if ((m->flags & PG_FICTITIOUS) != 0)
5737 		return;
5738 #if 0
5739 	/*
5740 	 * If "m" is a normal page, flush it from the cache.
5741 	 *
5742 	 * First, try to find an existing mapping of the page by sf
5743 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5744 	 * flushes the cache.
5745 	 */
5746 	if (sf_buf_invalidate_cache(m, oma))
5747 		return;
5748 #endif
5749 	/*
5750 	 * If page is not mapped by sf buffer, map the page
5751 	 * transient and do invalidation.
5752 	 */
5753 	if (ma != oma) {
5754 		pa = VM_PAGE_TO_PHYS(m);
5755 		sched_pin();
5756 		pc = get_pcpu();
5757 		cmap2_pte2p = pc->pc_cmap2_pte2p;
5758 		mtx_lock(&pc->pc_cmap_lock);
5759 		if (pte2_load(cmap2_pte2p) != 0)
5760 			panic("%s: CMAP2 busy", __func__);
5761 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
5762 		    vm_memattr_to_pte2(ma)));
5763 		dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
5764 		pte2_clear(cmap2_pte2p);
5765 		tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5766 		sched_unpin();
5767 		mtx_unlock(&pc->pc_cmap_lock);
5768 	}
5769 }
5770 
5771 /*
5772  *  Miscellaneous support routines follow
5773  */
5774 
5775 /*
5776  *  Returns TRUE if the given page is mapped individually or as part of
5777  *  a 1mpage.  Otherwise, returns FALSE.
5778  */
5779 boolean_t
5780 pmap_page_is_mapped(vm_page_t m)
5781 {
5782 	boolean_t rv;
5783 
5784 	if ((m->oflags & VPO_UNMANAGED) != 0)
5785 		return (FALSE);
5786 	rw_wlock(&pvh_global_lock);
5787 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5788 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5789 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5790 	rw_wunlock(&pvh_global_lock);
5791 	return (rv);
5792 }
5793 
5794 /*
5795  *  Returns true if the pmap's pv is one of the first
5796  *  16 pvs linked to from this page.  This count may
5797  *  be changed upwards or downwards in the future; it
5798  *  is only necessary that true be returned for a small
5799  *  subset of pmaps for proper page aging.
5800  */
5801 boolean_t
5802 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5803 {
5804 	struct md_page *pvh;
5805 	pv_entry_t pv;
5806 	int loops = 0;
5807 	boolean_t rv;
5808 
5809 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5810 	    ("%s: page %p is not managed", __func__, m));
5811 	rv = FALSE;
5812 	rw_wlock(&pvh_global_lock);
5813 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5814 		if (PV_PMAP(pv) == pmap) {
5815 			rv = TRUE;
5816 			break;
5817 		}
5818 		loops++;
5819 		if (loops >= 16)
5820 			break;
5821 	}
5822 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5823 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5824 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5825 			if (PV_PMAP(pv) == pmap) {
5826 				rv = TRUE;
5827 				break;
5828 			}
5829 			loops++;
5830 			if (loops >= 16)
5831 				break;
5832 		}
5833 	}
5834 	rw_wunlock(&pvh_global_lock);
5835 	return (rv);
5836 }
5837 
5838 /*
5839  *	pmap_zero_page zeros the specified hardware page by mapping
5840  *	the page into KVM and using bzero to clear its contents.
5841  */
5842 void
5843 pmap_zero_page(vm_page_t m)
5844 {
5845 	pt2_entry_t *cmap2_pte2p;
5846 	struct pcpu *pc;
5847 
5848 	sched_pin();
5849 	pc = get_pcpu();
5850 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5851 	mtx_lock(&pc->pc_cmap_lock);
5852 	if (pte2_load(cmap2_pte2p) != 0)
5853 		panic("%s: CMAP2 busy", __func__);
5854 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5855 	    vm_page_pte2_attr(m)));
5856 	pagezero(pc->pc_cmap2_addr);
5857 	pte2_clear(cmap2_pte2p);
5858 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5859 	sched_unpin();
5860 	mtx_unlock(&pc->pc_cmap_lock);
5861 }
5862 
5863 /*
5864  *	pmap_zero_page_area zeros the specified hardware page by mapping
5865  *	the page into KVM and using bzero to clear its contents.
5866  *
5867  *	off and size may not cover an area beyond a single hardware page.
5868  */
5869 void
5870 pmap_zero_page_area(vm_page_t m, int off, int size)
5871 {
5872 	pt2_entry_t *cmap2_pte2p;
5873 	struct pcpu *pc;
5874 
5875 	sched_pin();
5876 	pc = get_pcpu();
5877 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5878 	mtx_lock(&pc->pc_cmap_lock);
5879 	if (pte2_load(cmap2_pte2p) != 0)
5880 		panic("%s: CMAP2 busy", __func__);
5881 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5882 	    vm_page_pte2_attr(m)));
5883 	if (off == 0 && size == PAGE_SIZE)
5884 		pagezero(pc->pc_cmap2_addr);
5885 	else
5886 		bzero(pc->pc_cmap2_addr + off, size);
5887 	pte2_clear(cmap2_pte2p);
5888 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5889 	sched_unpin();
5890 	mtx_unlock(&pc->pc_cmap_lock);
5891 }
5892 
5893 /*
5894  *	pmap_copy_page copies the specified (machine independent)
5895  *	page by mapping the page into virtual memory and using
5896  *	bcopy to copy the page, one machine dependent page at a
5897  *	time.
5898  */
5899 void
5900 pmap_copy_page(vm_page_t src, vm_page_t dst)
5901 {
5902 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5903 	struct pcpu *pc;
5904 
5905 	sched_pin();
5906 	pc = get_pcpu();
5907 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5908 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5909 	mtx_lock(&pc->pc_cmap_lock);
5910 	if (pte2_load(cmap1_pte2p) != 0)
5911 		panic("%s: CMAP1 busy", __func__);
5912 	if (pte2_load(cmap2_pte2p) != 0)
5913 		panic("%s: CMAP2 busy", __func__);
5914 	pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
5915 	    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
5916 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
5917 	    PTE2_AP_KRW, vm_page_pte2_attr(dst)));
5918 	bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
5919 	pte2_clear(cmap1_pte2p);
5920 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5921 	pte2_clear(cmap2_pte2p);
5922 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5923 	sched_unpin();
5924 	mtx_unlock(&pc->pc_cmap_lock);
5925 }
5926 
5927 int unmapped_buf_allowed = 1;
5928 
5929 void
5930 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5931     vm_offset_t b_offset, int xfersize)
5932 {
5933 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5934 	vm_page_t a_pg, b_pg;
5935 	char *a_cp, *b_cp;
5936 	vm_offset_t a_pg_offset, b_pg_offset;
5937 	struct pcpu *pc;
5938 	int cnt;
5939 
5940 	sched_pin();
5941 	pc = get_pcpu();
5942 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5943 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5944 	mtx_lock(&pc->pc_cmap_lock);
5945 	if (pte2_load(cmap1_pte2p) != 0)
5946 		panic("pmap_copy_pages: CMAP1 busy");
5947 	if (pte2_load(cmap2_pte2p) != 0)
5948 		panic("pmap_copy_pages: CMAP2 busy");
5949 	while (xfersize > 0) {
5950 		a_pg = ma[a_offset >> PAGE_SHIFT];
5951 		a_pg_offset = a_offset & PAGE_MASK;
5952 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5953 		b_pg = mb[b_offset >> PAGE_SHIFT];
5954 		b_pg_offset = b_offset & PAGE_MASK;
5955 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5956 		pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
5957 		    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
5958 		tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
5959 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
5960 		    PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
5961 		tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
5962 		a_cp = pc->pc_cmap1_addr + a_pg_offset;
5963 		b_cp = pc->pc_cmap2_addr + b_pg_offset;
5964 		bcopy(a_cp, b_cp, cnt);
5965 		a_offset += cnt;
5966 		b_offset += cnt;
5967 		xfersize -= cnt;
5968 	}
5969 	pte2_clear(cmap1_pte2p);
5970 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5971 	pte2_clear(cmap2_pte2p);
5972 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5973 	sched_unpin();
5974 	mtx_unlock(&pc->pc_cmap_lock);
5975 }
5976 
5977 vm_offset_t
5978 pmap_quick_enter_page(vm_page_t m)
5979 {
5980 	struct pcpu *pc;
5981 	pt2_entry_t *pte2p;
5982 
5983 	critical_enter();
5984 	pc = get_pcpu();
5985 	pte2p = pc->pc_qmap_pte2p;
5986 
5987 	KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
5988 
5989 	pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5990 	    vm_page_pte2_attr(m)));
5991 	return (pc->pc_qmap_addr);
5992 }
5993 
5994 void
5995 pmap_quick_remove_page(vm_offset_t addr)
5996 {
5997 	struct pcpu *pc;
5998 	pt2_entry_t *pte2p;
5999 
6000 	pc = get_pcpu();
6001 	pte2p = pc->pc_qmap_pte2p;
6002 
6003 	KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
6004 	KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
6005 
6006 	pte2_clear(pte2p);
6007 	tlb_flush(pc->pc_qmap_addr);
6008 	critical_exit();
6009 }
6010 
6011 /*
6012  *	Copy the range specified by src_addr/len
6013  *	from the source map to the range dst_addr/len
6014  *	in the destination map.
6015  *
6016  *	This routine is only advisory and need not do anything.
6017  */
6018 void
6019 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
6020     vm_offset_t src_addr)
6021 {
6022 	struct spglist free;
6023 	vm_offset_t addr;
6024 	vm_offset_t end_addr = src_addr + len;
6025 	vm_offset_t nextva;
6026 
6027 	if (dst_addr != src_addr)
6028 		return;
6029 
6030 	if (!pmap_is_current(src_pmap))
6031 		return;
6032 
6033 	rw_wlock(&pvh_global_lock);
6034 	if (dst_pmap < src_pmap) {
6035 		PMAP_LOCK(dst_pmap);
6036 		PMAP_LOCK(src_pmap);
6037 	} else {
6038 		PMAP_LOCK(src_pmap);
6039 		PMAP_LOCK(dst_pmap);
6040 	}
6041 	sched_pin();
6042 	for (addr = src_addr; addr < end_addr; addr = nextva) {
6043 		pt2_entry_t *src_pte2p, *dst_pte2p;
6044 		vm_page_t dst_mpt2pg, src_mpt2pg;
6045 		pt1_entry_t src_pte1;
6046 		u_int pte1_idx;
6047 
6048 		KASSERT(addr < VM_MAXUSER_ADDRESS,
6049 		    ("%s: invalid to pmap_copy page tables", __func__));
6050 
6051 		nextva = pte1_trunc(addr + PTE1_SIZE);
6052 		if (nextva < addr)
6053 			nextva = end_addr;
6054 
6055 		pte1_idx = pte1_index(addr);
6056 		src_pte1 = src_pmap->pm_pt1[pte1_idx];
6057 		if (pte1_is_section(src_pte1)) {
6058 			if ((addr & PTE1_OFFSET) != 0 ||
6059 			    (addr + PTE1_SIZE) > end_addr)
6060 				continue;
6061 			if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
6062 			    (!pte1_is_managed(src_pte1) ||
6063 			    pmap_pv_insert_pte1(dst_pmap, addr, src_pte1,
6064 			    PMAP_ENTER_NORECLAIM))) {
6065 				dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
6066 				    ~PTE1_W;
6067 				dst_pmap->pm_stats.resident_count +=
6068 				    PTE1_SIZE / PAGE_SIZE;
6069 				pmap_pte1_mappings++;
6070 			}
6071 			continue;
6072 		} else if (!pte1_is_link(src_pte1))
6073 			continue;
6074 
6075 		src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
6076 
6077 		/*
6078 		 * We leave PT2s to be linked from PT1 even if they are not
6079 		 * referenced until all PT2s in a page are without reference.
6080 		 *
6081 		 * QQQ: It could be changed ...
6082 		 */
6083 #if 0 /* single_pt2_link_is_cleared */
6084 		KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
6085 		    ("%s: source page table page is unused", __func__));
6086 #else
6087 		if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
6088 			continue;
6089 #endif
6090 		if (nextva > end_addr)
6091 			nextva = end_addr;
6092 
6093 		src_pte2p = pt2map_entry(addr);
6094 		while (addr < nextva) {
6095 			pt2_entry_t temp_pte2;
6096 			temp_pte2 = pte2_load(src_pte2p);
6097 			/*
6098 			 * we only virtual copy managed pages
6099 			 */
6100 			if (pte2_is_managed(temp_pte2)) {
6101 				dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
6102 				    PMAP_ENTER_NOSLEEP);
6103 				if (dst_mpt2pg == NULL)
6104 					goto out;
6105 				dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
6106 				if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
6107 				    pmap_try_insert_pv_entry(dst_pmap, addr,
6108 				    PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
6109 					/*
6110 					 * Clear the wired, modified, and
6111 					 * accessed (referenced) bits
6112 					 * during the copy.
6113 					 */
6114 					temp_pte2 &=  ~(PTE2_W | PTE2_A);
6115 					temp_pte2 |= PTE2_NM;
6116 					pte2_store(dst_pte2p, temp_pte2);
6117 					dst_pmap->pm_stats.resident_count++;
6118 				} else {
6119 					SLIST_INIT(&free);
6120 					if (pmap_unwire_pt2(dst_pmap, addr,
6121 					    dst_mpt2pg, &free)) {
6122 						pmap_tlb_flush(dst_pmap, addr);
6123 						vm_page_free_pages_toq(&free,
6124 						    false);
6125 					}
6126 					goto out;
6127 				}
6128 				if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
6129 				    pt2_wirecount_get(src_mpt2pg, pte1_idx))
6130 					break;
6131 			}
6132 			addr += PAGE_SIZE;
6133 			src_pte2p++;
6134 		}
6135 	}
6136 out:
6137 	sched_unpin();
6138 	rw_wunlock(&pvh_global_lock);
6139 	PMAP_UNLOCK(src_pmap);
6140 	PMAP_UNLOCK(dst_pmap);
6141 }
6142 
6143 /*
6144  *	Increase the starting virtual address of the given mapping if a
6145  *	different alignment might result in more section mappings.
6146  */
6147 void
6148 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6149     vm_offset_t *addr, vm_size_t size)
6150 {
6151 	vm_offset_t pte1_offset;
6152 
6153 	if (size < PTE1_SIZE)
6154 		return;
6155 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6156 		offset += ptoa(object->pg_color);
6157 	pte1_offset = offset & PTE1_OFFSET;
6158 	if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
6159 	    (*addr & PTE1_OFFSET) == pte1_offset)
6160 		return;
6161 	if ((*addr & PTE1_OFFSET) < pte1_offset)
6162 		*addr = pte1_trunc(*addr) + pte1_offset;
6163 	else
6164 		*addr = pte1_roundup(*addr) + pte1_offset;
6165 }
6166 
6167 void
6168 pmap_activate(struct thread *td)
6169 {
6170 	pmap_t pmap, oldpmap;
6171 	u_int cpuid, ttb;
6172 
6173 	PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
6174 
6175 	critical_enter();
6176 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6177 	oldpmap = PCPU_GET(curpmap);
6178 	cpuid = PCPU_GET(cpuid);
6179 
6180 #if defined(SMP)
6181 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6182 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6183 #else
6184 	CPU_CLR(cpuid, &oldpmap->pm_active);
6185 	CPU_SET(cpuid, &pmap->pm_active);
6186 #endif
6187 
6188 	ttb = pmap_ttb_get(pmap);
6189 
6190 	/*
6191 	 * pmap_activate is for the current thread on the current cpu
6192 	 */
6193 	td->td_pcb->pcb_pagedir = ttb;
6194 	cp15_ttbr_set(ttb);
6195 	PCPU_SET(curpmap, pmap);
6196 	critical_exit();
6197 }
6198 
6199 /*
6200  * Perform the pmap work for mincore(2).  If the page is not both referenced and
6201  * modified by this pmap, returns its physical address so that the caller can
6202  * find other mappings.
6203  */
6204 int
6205 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
6206 {
6207 	pt1_entry_t *pte1p, pte1;
6208 	pt2_entry_t *pte2p, pte2;
6209 	vm_paddr_t pa;
6210 	bool managed;
6211 	int val;
6212 
6213 	PMAP_LOCK(pmap);
6214 	pte1p = pmap_pte1(pmap, addr);
6215 	pte1 = pte1_load(pte1p);
6216 	if (pte1_is_section(pte1)) {
6217 		pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
6218 		managed = pte1_is_managed(pte1);
6219 		val = MINCORE_PSIND(1) | MINCORE_INCORE;
6220 		if (pte1_is_dirty(pte1))
6221 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6222 		if (pte1 & PTE1_A)
6223 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6224 	} else if (pte1_is_link(pte1)) {
6225 		pte2p = pmap_pte2(pmap, addr);
6226 		pte2 = pte2_load(pte2p);
6227 		pmap_pte2_release(pte2p);
6228 		pa = pte2_pa(pte2);
6229 		managed = pte2_is_managed(pte2);
6230 		val = MINCORE_INCORE;
6231 		if (pte2_is_dirty(pte2))
6232 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6233 		if (pte2 & PTE2_A)
6234 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6235 	} else {
6236 		managed = false;
6237 		val = 0;
6238 	}
6239 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6240 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6241 		*pap = pa;
6242 	}
6243 	PMAP_UNLOCK(pmap);
6244 	return (val);
6245 }
6246 
6247 void
6248 pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
6249 {
6250 	vm_offset_t sva;
6251 	uint32_t l2attr;
6252 
6253 	KASSERT((size & PAGE_MASK) == 0,
6254 	    ("%s: device mapping not page-sized", __func__));
6255 
6256 	sva = va;
6257 	l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
6258 	while (size != 0) {
6259 		pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
6260 		va += PAGE_SIZE;
6261 		pa += PAGE_SIZE;
6262 		size -= PAGE_SIZE;
6263 	}
6264 	tlb_flush_range(sva, va - sva);
6265 }
6266 
6267 void
6268 pmap_kremove_device(vm_offset_t va, vm_size_t size)
6269 {
6270 	vm_offset_t sva;
6271 
6272 	KASSERT((size & PAGE_MASK) == 0,
6273 	    ("%s: device mapping not page-sized", __func__));
6274 
6275 	sva = va;
6276 	while (size != 0) {
6277 		pmap_kremove(va);
6278 		va += PAGE_SIZE;
6279 		size -= PAGE_SIZE;
6280 	}
6281 	tlb_flush_range(sva, va - sva);
6282 }
6283 
6284 void
6285 pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
6286 {
6287 
6288 	pcb->pcb_pagedir = pmap_ttb_get(pmap);
6289 }
6290 
6291 /*
6292  *  Clean L1 data cache range by physical address.
6293  *  The range must be within a single page.
6294  */
6295 static void
6296 pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
6297 {
6298 	pt2_entry_t *cmap2_pte2p;
6299 	struct pcpu *pc;
6300 
6301 	KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
6302 	    ("%s: not on single page", __func__));
6303 
6304 	sched_pin();
6305 	pc = get_pcpu();
6306 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6307 	mtx_lock(&pc->pc_cmap_lock);
6308 	if (pte2_load(cmap2_pte2p) != 0)
6309 		panic("%s: CMAP2 busy", __func__);
6310 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
6311 	dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
6312 	pte2_clear(cmap2_pte2p);
6313 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6314 	sched_unpin();
6315 	mtx_unlock(&pc->pc_cmap_lock);
6316 }
6317 
6318 /*
6319  *  Sync instruction cache range which is not mapped yet.
6320  */
6321 void
6322 cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
6323 {
6324 	uint32_t len, offset;
6325 	vm_page_t m;
6326 
6327 	/* Write back d-cache on given address range. */
6328 	offset = pa & PAGE_MASK;
6329 	for ( ; size != 0; size -= len, pa += len, offset = 0) {
6330 		len = min(PAGE_SIZE - offset, size);
6331 		m = PHYS_TO_VM_PAGE(pa);
6332 		KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6333 		  __func__, pa));
6334 		pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6335 	}
6336 	/*
6337 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6338 	 * on given physical address is to invalidate all i-cache.
6339 	 */
6340 	icache_inv_all();
6341 }
6342 
6343 void
6344 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
6345 {
6346 
6347 	/* Write back d-cache on given address range. */
6348 	if (va >= VM_MIN_KERNEL_ADDRESS) {
6349 		dcache_wb_pou(va, size);
6350 	} else {
6351 		uint32_t len, offset;
6352 		vm_paddr_t pa;
6353 		vm_page_t m;
6354 
6355 		offset = va & PAGE_MASK;
6356 		for ( ; size != 0; size -= len, va += len, offset = 0) {
6357 			pa = pmap_extract(pmap, va); /* offset is preserved */
6358 			len = min(PAGE_SIZE - offset, size);
6359 			m = PHYS_TO_VM_PAGE(pa);
6360 			KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6361 				__func__, pa));
6362 			pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6363 		}
6364 	}
6365 	/*
6366 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6367 	 * on given physical address is to invalidate all i-cache.
6368 	 */
6369 	icache_inv_all();
6370 }
6371 
6372 /*
6373  *  The implementation of pmap_fault() uses IN_RANGE2() macro which
6374  *  depends on the fact that given range size is a power of 2.
6375  */
6376 CTASSERT(powerof2(NB_IN_PT1));
6377 CTASSERT(powerof2(PT2MAP_SIZE));
6378 
6379 #define IN_RANGE2(addr, start, size)	\
6380     ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
6381 
6382 /*
6383  *  Handle access and R/W emulation faults.
6384  */
6385 int
6386 pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
6387 {
6388 	pt1_entry_t *pte1p, pte1;
6389 	pt2_entry_t *pte2p, pte2;
6390 
6391 	if (pmap == NULL)
6392 		pmap = kernel_pmap;
6393 
6394 	/*
6395 	 * In kernel, we should never get abort with FAR which is in range of
6396 	 * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
6397 	 * and print out a useful abort message and even get to the debugger
6398 	 * otherwise it likely ends with never ending loop of aborts.
6399 	 */
6400 	if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
6401 		/*
6402 		 * All L1 tables should always be mapped and present.
6403 		 * However, we check only current one herein. For user mode,
6404 		 * only permission abort from malicious user is not fatal.
6405 		 * And alignment abort as it may have higher priority.
6406 		 */
6407 		if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
6408 			CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
6409 			    __func__, pmap, pmap->pm_pt1, far);
6410 			panic("%s: pm_pt1 abort", __func__);
6411 		}
6412 		return (KERN_INVALID_ADDRESS);
6413 	}
6414 	if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
6415 		/*
6416 		 * PT2MAP should be always mapped and present in current
6417 		 * L1 table. However, only existing L2 tables are mapped
6418 		 * in PT2MAP. For user mode, only L2 translation abort and
6419 		 * permission abort from malicious user is not fatal.
6420 		 * And alignment abort as it may have higher priority.
6421 		 */
6422 		if (!usermode || (idx != FAULT_ALIGN &&
6423 		    idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
6424 			CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
6425 			    __func__, pmap, PT2MAP, far);
6426 			panic("%s: PT2MAP abort", __func__);
6427 		}
6428 		return (KERN_INVALID_ADDRESS);
6429 	}
6430 
6431 	/*
6432 	 * A pmap lock is used below for handling of access and R/W emulation
6433 	 * aborts. They were handled by atomic operations before so some
6434 	 * analysis of new situation is needed to answer the following question:
6435 	 * Is it safe to use the lock even for these aborts?
6436 	 *
6437 	 * There may happen two cases in general:
6438 	 *
6439 	 * (1) Aborts while the pmap lock is locked already - this should not
6440 	 * happen as pmap lock is not recursive. However, under pmap lock only
6441 	 * internal kernel data should be accessed and such data should be
6442 	 * mapped with A bit set and NM bit cleared. If double abort happens,
6443 	 * then a mapping of data which has caused it must be fixed. Further,
6444 	 * all new mappings are always made with A bit set and the bit can be
6445 	 * cleared only on managed mappings.
6446 	 *
6447 	 * (2) Aborts while another lock(s) is/are locked - this already can
6448 	 * happen. However, there is no difference here if it's either access or
6449 	 * R/W emulation abort, or if it's some other abort.
6450 	 */
6451 
6452 	PMAP_LOCK(pmap);
6453 #ifdef INVARIANTS
6454 	pte1 = pte1_load(pmap_pte1(pmap, far));
6455 	if (pte1_is_link(pte1)) {
6456 		/*
6457 		 * Check in advance that associated L2 page table is mapped into
6458 		 * PT2MAP space. Note that faulty access to not mapped L2 page
6459 		 * table is caught in more general check above where "far" is
6460 		 * checked that it does not lay in PT2MAP space. Note also that
6461 		 * L1 page table and PT2TAB always exist and are mapped.
6462 		 */
6463 		pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
6464 		if (!pte2_is_valid(pte2))
6465 			panic("%s: missing L2 page table (%p, %#x)",
6466 			    __func__, pmap, far);
6467 	}
6468 #endif
6469 #ifdef SMP
6470 	/*
6471 	 * Special treatment is due to break-before-make approach done when
6472 	 * pte1 is updated for userland mapping during section promotion or
6473 	 * demotion. If not caught here, pmap_enter() can find a section
6474 	 * mapping on faulting address. That is not allowed.
6475 	 */
6476 	if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
6477 		PMAP_UNLOCK(pmap);
6478 		return (KERN_SUCCESS);
6479 	}
6480 #endif
6481 	/*
6482 	 * Accesss bits for page and section. Note that the entry
6483 	 * is not in TLB yet, so TLB flush is not necessary.
6484 	 *
6485 	 * QQQ: This is hardware emulation, we do not call userret()
6486 	 *      for aborts from user mode.
6487 	 */
6488 	if (idx == FAULT_ACCESS_L2) {
6489 		pte1 = pte1_load(pmap_pte1(pmap, far));
6490 		if (pte1_is_link(pte1)) {
6491 			/* L2 page table should exist and be mapped. */
6492 			pte2p = pt2map_entry(far);
6493 			pte2 = pte2_load(pte2p);
6494 			if (pte2_is_valid(pte2)) {
6495 				pte2_store(pte2p, pte2 | PTE2_A);
6496 				PMAP_UNLOCK(pmap);
6497 				return (KERN_SUCCESS);
6498 			}
6499 		} else {
6500 			/*
6501 			 * We got L2 access fault but PTE1 is not a link.
6502 			 * Probably some race happened, do nothing.
6503 			 */
6504 			CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L2 - pmap %#x far %#x",
6505 			    __func__, pmap, far);
6506 			PMAP_UNLOCK(pmap);
6507 			return (KERN_SUCCESS);
6508 		}
6509 	}
6510 	if (idx == FAULT_ACCESS_L1) {
6511 		pte1p = pmap_pte1(pmap, far);
6512 		pte1 = pte1_load(pte1p);
6513 		if (pte1_is_section(pte1)) {
6514 			pte1_store(pte1p, pte1 | PTE1_A);
6515 			PMAP_UNLOCK(pmap);
6516 			return (KERN_SUCCESS);
6517 		} else {
6518 			/*
6519 			 * We got L1 access fault but PTE1 is not section
6520 			 * mapping. Probably some race happened, do nothing.
6521 			 */
6522 			CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L1 - pmap %#x far %#x",
6523 			    __func__, pmap, far);
6524 			PMAP_UNLOCK(pmap);
6525 			return (KERN_SUCCESS);
6526 		}
6527 	}
6528 
6529 	/*
6530 	 * Handle modify bits for page and section. Note that the modify
6531 	 * bit is emulated by software. So PTEx_RO is software read only
6532 	 * bit and PTEx_NM flag is real hardware read only bit.
6533 	 *
6534 	 * QQQ: This is hardware emulation, we do not call userret()
6535 	 *      for aborts from user mode.
6536 	 */
6537 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
6538 		pte1 = pte1_load(pmap_pte1(pmap, far));
6539 		if (pte1_is_link(pte1)) {
6540 			/* L2 page table should exist and be mapped. */
6541 			pte2p = pt2map_entry(far);
6542 			pte2 = pte2_load(pte2p);
6543 			if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
6544 			    (pte2 & PTE2_NM)) {
6545 				pte2_store(pte2p, pte2 & ~PTE2_NM);
6546 				tlb_flush(trunc_page(far));
6547 				PMAP_UNLOCK(pmap);
6548 				return (KERN_SUCCESS);
6549 			}
6550 		} else {
6551 			/*
6552 			 * We got L2 permission fault but PTE1 is not a link.
6553 			 * Probably some race happened, do nothing.
6554 			 */
6555 			CTR3(KTR_PMAP, "%s: FAULT_PERM_L2 - pmap %#x far %#x",
6556 			    __func__, pmap, far);
6557 			PMAP_UNLOCK(pmap);
6558 			return (KERN_SUCCESS);
6559 		}
6560 	}
6561 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
6562 		pte1p = pmap_pte1(pmap, far);
6563 		pte1 = pte1_load(pte1p);
6564 		if (pte1_is_section(pte1)) {
6565 			if (!(pte1 & PTE1_RO) && (pte1 & PTE1_NM)) {
6566 				pte1_store(pte1p, pte1 & ~PTE1_NM);
6567 				tlb_flush(pte1_trunc(far));
6568 				PMAP_UNLOCK(pmap);
6569 				return (KERN_SUCCESS);
6570 			}
6571 		} else {
6572 			/*
6573 			 * We got L1 permission fault but PTE1 is not section
6574 			 * mapping. Probably some race happened, do nothing.
6575 			 */
6576 			CTR3(KTR_PMAP, "%s: FAULT_PERM_L1 - pmap %#x far %#x",
6577 			    __func__, pmap, far);
6578 			PMAP_UNLOCK(pmap);
6579 			return (KERN_SUCCESS);
6580 		}
6581 	}
6582 
6583 	/*
6584 	 * QQQ: The previous code, mainly fast handling of access and
6585 	 *      modify bits aborts, could be moved to ASM. Now we are
6586 	 *      starting to deal with not fast aborts.
6587 	 */
6588 	PMAP_UNLOCK(pmap);
6589 	return (KERN_FAILURE);
6590 }
6591 
6592 #if defined(PMAP_DEBUG)
6593 /*
6594  *  Reusing of KVA used in pmap_zero_page function !!!
6595  */
6596 static void
6597 pmap_zero_page_check(vm_page_t m)
6598 {
6599 	pt2_entry_t *cmap2_pte2p;
6600 	uint32_t *p, *end;
6601 	struct pcpu *pc;
6602 
6603 	sched_pin();
6604 	pc = get_pcpu();
6605 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6606 	mtx_lock(&pc->pc_cmap_lock);
6607 	if (pte2_load(cmap2_pte2p) != 0)
6608 		panic("%s: CMAP2 busy", __func__);
6609 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6610 	    vm_page_pte2_attr(m)));
6611 	end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
6612 	for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
6613 		if (*p != 0)
6614 			panic("%s: page %p not zero, va: %p", __func__, m,
6615 			    pc->pc_cmap2_addr);
6616 	pte2_clear(cmap2_pte2p);
6617 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6618 	sched_unpin();
6619 	mtx_unlock(&pc->pc_cmap_lock);
6620 }
6621 
6622 int
6623 pmap_pid_dump(int pid)
6624 {
6625 	pmap_t pmap;
6626 	struct proc *p;
6627 	int npte2 = 0;
6628 	int i, j, index;
6629 
6630 	sx_slock(&allproc_lock);
6631 	FOREACH_PROC_IN_SYSTEM(p) {
6632 		if (p->p_pid != pid || p->p_vmspace == NULL)
6633 			continue;
6634 		index = 0;
6635 		pmap = vmspace_pmap(p->p_vmspace);
6636 		for (i = 0; i < NPTE1_IN_PT1; i++) {
6637 			pt1_entry_t pte1;
6638 			pt2_entry_t *pte2p, pte2;
6639 			vm_offset_t base, va;
6640 			vm_paddr_t pa;
6641 			vm_page_t m;
6642 
6643 			base = i << PTE1_SHIFT;
6644 			pte1 = pte1_load(&pmap->pm_pt1[i]);
6645 
6646 			if (pte1_is_section(pte1)) {
6647 				/*
6648 				 * QQQ: Do something here!
6649 				 */
6650 			} else if (pte1_is_link(pte1)) {
6651 				for (j = 0; j < NPTE2_IN_PT2; j++) {
6652 					va = base + (j << PAGE_SHIFT);
6653 					if (va >= VM_MIN_KERNEL_ADDRESS) {
6654 						if (index) {
6655 							index = 0;
6656 							printf("\n");
6657 						}
6658 						sx_sunlock(&allproc_lock);
6659 						return (npte2);
6660 					}
6661 					pte2p = pmap_pte2(pmap, va);
6662 					pte2 = pte2_load(pte2p);
6663 					pmap_pte2_release(pte2p);
6664 					if (!pte2_is_valid(pte2))
6665 						continue;
6666 
6667 					pa = pte2_pa(pte2);
6668 					m = PHYS_TO_VM_PAGE(pa);
6669 					printf("va: 0x%x, pa: 0x%x, w: %d, "
6670 					    "f: 0x%x", va, pa,
6671 					    m->ref_count, m->flags);
6672 					npte2++;
6673 					index++;
6674 					if (index >= 2) {
6675 						index = 0;
6676 						printf("\n");
6677 					} else {
6678 						printf(" ");
6679 					}
6680 				}
6681 			}
6682 		}
6683 	}
6684 	sx_sunlock(&allproc_lock);
6685 	return (npte2);
6686 }
6687 
6688 #endif
6689 
6690 #ifdef DDB
6691 static pt2_entry_t *
6692 pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
6693 {
6694 	pt1_entry_t pte1;
6695 	vm_paddr_t pt2pg_pa;
6696 
6697 	pte1 = pte1_load(pmap_pte1(pmap, va));
6698 	if (!pte1_is_link(pte1))
6699 		return (NULL);
6700 
6701 	if (pmap_is_current(pmap))
6702 		return (pt2map_entry(va));
6703 
6704 	/* Note that L2 page table size is not equal to PAGE_SIZE. */
6705 	pt2pg_pa = trunc_page(pte1_link_pa(pte1));
6706 	if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
6707 		pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
6708 #ifdef SMP
6709 		PMAP3cpu = PCPU_GET(cpuid);
6710 #endif
6711 		tlb_flush_local((vm_offset_t)PADDR3);
6712 	}
6713 #ifdef SMP
6714 	else if (PMAP3cpu != PCPU_GET(cpuid)) {
6715 		PMAP3cpu = PCPU_GET(cpuid);
6716 		tlb_flush_local((vm_offset_t)PADDR3);
6717 	}
6718 #endif
6719 	return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
6720 }
6721 
6722 static void
6723 dump_pmap(pmap_t pmap)
6724 {
6725 
6726 	printf("pmap %p\n", pmap);
6727 	printf("  pm_pt1: %p\n", pmap->pm_pt1);
6728 	printf("  pm_pt2tab: %p\n", pmap->pm_pt2tab);
6729 	printf("  pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
6730 }
6731 
6732 DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
6733 {
6734 
6735 	pmap_t pmap;
6736 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
6737 		dump_pmap(pmap);
6738 	}
6739 }
6740 
6741 static int
6742 pte2_class(pt2_entry_t pte2)
6743 {
6744 	int cls;
6745 
6746 	cls = (pte2 >> 2) & 0x03;
6747 	cls |= (pte2 >> 4) & 0x04;
6748 	return (cls);
6749 }
6750 
6751 static void
6752 dump_section(pmap_t pmap, uint32_t pte1_idx)
6753 {
6754 }
6755 
6756 static void
6757 dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok)
6758 {
6759 	uint32_t i;
6760 	vm_offset_t va;
6761 	pt2_entry_t *pte2p, pte2;
6762 	vm_page_t m;
6763 
6764 	va = pte1_idx << PTE1_SHIFT;
6765 	pte2p = pmap_pte2_ddb(pmap, va);
6766 	for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
6767 		pte2 = pte2_load(pte2p);
6768 		if (pte2 == 0)
6769 			continue;
6770 		if (!pte2_is_valid(pte2)) {
6771 			printf(" 0x%08X: 0x%08X", va, pte2);
6772 			if (!invalid_ok)
6773 				printf(" - not valid !!!");
6774 			printf("\n");
6775 			continue;
6776 		}
6777 		m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
6778 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
6779 		    pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
6780 		if (m != NULL) {
6781 			printf(" v:%d w:%d f:0x%04X\n", m->valid,
6782 			    m->ref_count, m->flags);
6783 		} else {
6784 			printf("\n");
6785 		}
6786 	}
6787 }
6788 
6789 static __inline boolean_t
6790 is_pv_chunk_space(vm_offset_t va)
6791 {
6792 
6793 	if ((((vm_offset_t)pv_chunkbase) <= va) &&
6794 	    (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
6795 		return (TRUE);
6796 	return (FALSE);
6797 }
6798 
6799 DB_SHOW_COMMAND(pmap, pmap_pmap_print)
6800 {
6801 	/* XXX convert args. */
6802 	pmap_t pmap = (pmap_t)addr;
6803 	pt1_entry_t pte1;
6804 	pt2_entry_t pte2;
6805 	vm_offset_t va, eva;
6806 	vm_page_t m;
6807 	uint32_t i;
6808 	boolean_t invalid_ok, dump_link_ok, dump_pv_chunk;
6809 
6810 	if (have_addr) {
6811 		pmap_t pm;
6812 
6813 		LIST_FOREACH(pm, &allpmaps, pm_list)
6814 			if (pm == pmap) break;
6815 		if (pm == NULL) {
6816 			printf("given pmap %p is not in allpmaps list\n", pmap);
6817 			return;
6818 		}
6819 	} else
6820 		pmap = PCPU_GET(curpmap);
6821 
6822 	eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
6823 	dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */
6824 
6825 	printf("pmap: 0x%08X\n", (uint32_t)pmap);
6826 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6827 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6828 
6829 	for(i = 0; i < NPTE1_IN_PT1; i++) {
6830 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6831 		if (pte1 == 0)
6832 			continue;
6833 		va = i << PTE1_SHIFT;
6834 		if (va >= eva)
6835 			break;
6836 
6837 		if (pte1_is_section(pte1)) {
6838 			printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
6839 			    !!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
6840 			dump_section(pmap, i);
6841 		} else if (pte1_is_link(pte1)) {
6842 			dump_link_ok = TRUE;
6843 			invalid_ok = FALSE;
6844 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6845 			m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
6846 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
6847 			    va, pte1, pte2, m);
6848 			if (is_pv_chunk_space(va)) {
6849 				printf(" - pv_chunk space");
6850 				if (dump_pv_chunk)
6851 					invalid_ok = TRUE;
6852 				else
6853 					dump_link_ok = FALSE;
6854 			}
6855 			else if (m != NULL)
6856 				printf(" w:%d w2:%u", m->ref_count,
6857 				    pt2_wirecount_get(m, pte1_index(va)));
6858 			if (pte2 == 0)
6859 				printf(" !!! pt2tab entry is ZERO");
6860 			else if (pte2_pa(pte1) != pte2_pa(pte2))
6861 				printf(" !!! pt2tab entry is DIFFERENT - m: %p",
6862 				    PHYS_TO_VM_PAGE(pte2_pa(pte2)));
6863 			printf("\n");
6864 			if (dump_link_ok)
6865 				dump_link(pmap, i, invalid_ok);
6866 		} else
6867 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6868 	}
6869 }
6870 
6871 static void
6872 dump_pt2tab(pmap_t pmap)
6873 {
6874 	uint32_t i;
6875 	pt2_entry_t pte2;
6876 	vm_offset_t va;
6877 	vm_paddr_t pa;
6878 	vm_page_t m;
6879 
6880 	printf("PT2TAB:\n");
6881 	for (i = 0; i < PT2TAB_ENTRIES; i++) {
6882 		pte2 = pte2_load(&pmap->pm_pt2tab[i]);
6883 		if (!pte2_is_valid(pte2))
6884 			continue;
6885 		va = i << PT2TAB_SHIFT;
6886 		pa = pte2_pa(pte2);
6887 		m = PHYS_TO_VM_PAGE(pa);
6888 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
6889 		    pte2_class(pte2), !!(pte2 & PTE2_S), m);
6890 		if (m != NULL)
6891 			printf(" , w: %d, f: 0x%04X pidx: %lld",
6892 			    m->ref_count, m->flags, m->pindex);
6893 		printf("\n");
6894 	}
6895 }
6896 
6897 DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
6898 {
6899 	/* XXX convert args. */
6900 	pmap_t pmap = (pmap_t)addr;
6901 	pt1_entry_t pte1;
6902 	pt2_entry_t pte2;
6903 	vm_offset_t va;
6904 	uint32_t i, start;
6905 
6906 	if (have_addr) {
6907 		printf("supported only on current pmap\n");
6908 		return;
6909 	}
6910 
6911 	pmap = PCPU_GET(curpmap);
6912 	printf("curpmap: 0x%08X\n", (uint32_t)pmap);
6913 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6914 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6915 
6916 	start = pte1_index((vm_offset_t)PT2MAP);
6917 	for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
6918 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6919 		if (pte1 == 0)
6920 			continue;
6921 		va = i << PTE1_SHIFT;
6922 		if (pte1_is_section(pte1)) {
6923 			printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
6924 			    !!(pte1 & PTE1_S));
6925 			dump_section(pmap, i);
6926 		} else if (pte1_is_link(pte1)) {
6927 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6928 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
6929 			    pte1, pte2);
6930 			if (pte2 == 0)
6931 				printf("  !!! pt2tab entry is ZERO\n");
6932 		} else
6933 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6934 	}
6935 	dump_pt2tab(pmap);
6936 }
6937 #endif
6938