xref: /freebsd/sys/arm/arm/pmap-v6.c (revision c66ec88f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause AND BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
8  * Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
9  * Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
41  */
42 /*-
43  * Copyright (c) 2003 Networks Associates Technology, Inc.
44  * All rights reserved.
45  *
46  * This software was developed for the FreeBSD Project by Jake Burkholder,
47  * Safeport Network Services, and Network Associates Laboratories, the
48  * Security Research Division of Network Associates, Inc. under
49  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
50  * CHATS research program.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  *
61  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71  * SUCH DAMAGE.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 /*
78  *	Manages physical address maps.
79  *
80  *	Since the information managed by this module is
81  *	also stored by the logical address mapping module,
82  *	this module may throw away valid virtual-to-physical
83  *	mappings at almost any time.  However, invalidations
84  *	of virtual-to-physical mappings must be done as
85  *	requested.
86  *
87  *	In order to cope with hardware architectures which
88  *	make virtual-to-physical map invalidates expensive,
89  *	this module may delay invalidate or reduced protection
90  *	operations until such time as they are actually
91  *	necessary.  This module is given full information as
92  *	to which processors are currently using which maps,
93  *	and to when physical maps must be made correct.
94  */
95 
96 #include "opt_vm.h"
97 #include "opt_pmap.h"
98 #include "opt_ddb.h"
99 
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/lock.h>
105 #include <sys/proc.h>
106 #include <sys/rwlock.h>
107 #include <sys/malloc.h>
108 #include <sys/vmmeter.h>
109 #include <sys/malloc.h>
110 #include <sys/mman.h>
111 #include <sys/sf_buf.h>
112 #include <sys/smp.h>
113 #include <sys/sched.h>
114 #include <sys/sysctl.h>
115 
116 #ifdef DDB
117 #include <ddb/ddb.h>
118 #endif
119 
120 #include <vm/vm.h>
121 #include <vm/uma.h>
122 #include <vm/pmap.h>
123 #include <vm/vm_param.h>
124 #include <vm/vm_kern.h>
125 #include <vm/vm_object.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_page.h>
128 #include <vm/vm_pageout.h>
129 #include <vm/vm_phys.h>
130 #include <vm/vm_extern.h>
131 #include <vm/vm_reserv.h>
132 #include <sys/lock.h>
133 #include <sys/mutex.h>
134 
135 #include <machine/md_var.h>
136 #include <machine/pmap_var.h>
137 #include <machine/cpu.h>
138 #include <machine/pcb.h>
139 #include <machine/sf_buf.h>
140 #ifdef SMP
141 #include <machine/smp.h>
142 #endif
143 #ifndef PMAP_SHPGPERPROC
144 #define PMAP_SHPGPERPROC 200
145 #endif
146 
147 #ifndef DIAGNOSTIC
148 #define PMAP_INLINE	__inline
149 #else
150 #define PMAP_INLINE
151 #endif
152 
153 #ifdef PMAP_DEBUG
154 static void pmap_zero_page_check(vm_page_t m);
155 void pmap_debug(int level);
156 int pmap_pid_dump(int pid);
157 
158 #define PDEBUG(_lev_,_stat_) \
159 	if (pmap_debug_level >= (_lev_)) \
160 		((_stat_))
161 #define dprintf printf
162 int pmap_debug_level = 1;
163 #else   /* PMAP_DEBUG */
164 #define PDEBUG(_lev_,_stat_) /* Nothing */
165 #define dprintf(x, arg...)
166 #endif  /* PMAP_DEBUG */
167 
168 /*
169  *  Level 2 page tables map definion ('max' is excluded).
170  */
171 
172 #define PT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
173 #define PT2V_MAX_ADDRESS	((vm_offset_t)PT2MAP + PT2MAP_SIZE)
174 
175 #define UPT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
176 #define UPT2V_MAX_ADDRESS \
177     ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
178 
179 /*
180  *  Promotion to a 1MB (PTE1) page mapping requires that the corresponding
181  *  4KB (PTE2) page mappings have identical settings for the following fields:
182  */
183 #define PTE2_PROMOTE	(PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG |	\
184 			 PTE2_NX | PTE2_RO | PTE2_U | PTE2_W |		\
185 			 PTE2_ATTR_MASK)
186 
187 #define PTE1_PROMOTE	(PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG |	\
188 			 PTE1_NX | PTE1_RO | PTE1_U | PTE1_W |		\
189 			 PTE1_ATTR_MASK)
190 
191 #define ATTR_TO_L1(l2_attr)	((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
192 				 (((l2_attr) & L2_C)    ? L1_S_C    : 0) | \
193 				 (((l2_attr) & L2_B)    ? L1_S_B    : 0) | \
194 				 (((l2_attr) & PTE2_A)  ? PTE1_A    : 0) | \
195 				 (((l2_attr) & PTE2_NM) ? PTE1_NM   : 0) | \
196 				 (((l2_attr) & PTE2_S)  ? PTE1_S    : 0) | \
197 				 (((l2_attr) & PTE2_NG) ? PTE1_NG   : 0) | \
198 				 (((l2_attr) & PTE2_NX) ? PTE1_NX   : 0) | \
199 				 (((l2_attr) & PTE2_RO) ? PTE1_RO   : 0) | \
200 				 (((l2_attr) & PTE2_U)  ? PTE1_U    : 0) | \
201 				 (((l2_attr) & PTE2_W)  ? PTE1_W    : 0))
202 
203 #define ATTR_TO_L2(l1_attr)	((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
204 				 (((l1_attr) & L1_S_C)    ? L2_C    : 0) | \
205 				 (((l1_attr) & L1_S_B)    ? L2_B    : 0) | \
206 				 (((l1_attr) & PTE1_A)    ? PTE2_A  : 0) | \
207 				 (((l1_attr) & PTE1_NM)   ? PTE2_NM : 0) | \
208 				 (((l1_attr) & PTE1_S)    ? PTE2_S  : 0) | \
209 				 (((l1_attr) & PTE1_NG)   ? PTE2_NG : 0) | \
210 				 (((l1_attr) & PTE1_NX)   ? PTE2_NX : 0) | \
211 				 (((l1_attr) & PTE1_RO)   ? PTE2_RO : 0) | \
212 				 (((l1_attr) & PTE1_U)    ? PTE2_U  : 0) | \
213 				 (((l1_attr) & PTE1_W)    ? PTE2_W  : 0))
214 
215 /*
216  *  PTE2 descriptors creation macros.
217  */
218 #define PTE2_ATTR_DEFAULT	vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
219 #define PTE2_ATTR_PT		vm_memattr_to_pte2(pt_memattr)
220 
221 #define PTE2_KPT(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
222 #define PTE2_KPT_NG(pa)	PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
223 
224 #define PTE2_KRW(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
225 #define PTE2_KRO(pa)	PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
226 
227 #define PV_STATS
228 #ifdef PV_STATS
229 #define PV_STAT(x)	do { x ; } while (0)
230 #else
231 #define PV_STAT(x)	do { } while (0)
232 #endif
233 
234 /*
235  *  The boot_pt1 is used temporary in very early boot stage as L1 page table.
236  *  We can init many things with no memory allocation thanks to its static
237  *  allocation and this brings two main advantages:
238  *  (1) other cores can be started very simply,
239  *  (2) various boot loaders can be supported as its arguments can be processed
240  *      in virtual address space and can be moved to safe location before
241  *      first allocation happened.
242  *  Only disadvantage is that boot_pt1 is used only in very early boot stage.
243  *  However, the table is uninitialized and so lays in bss. Therefore kernel
244  *  image size is not influenced.
245  *
246  *  QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
247  *       CPU suspend/resume game.
248  */
249 extern pt1_entry_t boot_pt1[];
250 
251 vm_paddr_t base_pt1;
252 pt1_entry_t *kern_pt1;
253 pt2_entry_t *kern_pt2tab;
254 pt2_entry_t *PT2MAP;
255 
256 static uint32_t ttb_flags;
257 static vm_memattr_t pt_memattr;
258 ttb_entry_t pmap_kern_ttb;
259 
260 struct pmap kernel_pmap_store;
261 LIST_HEAD(pmaplist, pmap);
262 static struct pmaplist allpmaps;
263 static struct mtx allpmaps_lock;
264 
265 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
266 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
267 
268 static vm_offset_t kernel_vm_end_new;
269 vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
270 vm_offset_t vm_max_kernel_address;
271 vm_paddr_t kernel_l1pa;
272 
273 static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
274 
275 /*
276  *  Data for the pv entry allocation mechanism
277  */
278 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
279 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
280 static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
281 static int shpgperproc = PMAP_SHPGPERPROC;
282 
283 struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
284 int pv_maxchunks;			/* How many chunks we have KVA for */
285 vm_offset_t pv_vafree;			/* freelist stored in the PTE */
286 
287 vm_paddr_t first_managed_pa;
288 #define	pa_to_pvh(pa)	(&pv_table[pte1_index(pa - first_managed_pa)])
289 
290 /*
291  *  All those kernel PT submaps that BSD is so fond of
292  */
293 caddr_t _tmppt = 0;
294 
295 /*
296  *  Crashdump maps.
297  */
298 static caddr_t crashdumpmap;
299 
300 static pt2_entry_t *PMAP1 = NULL, *PMAP2;
301 static pt2_entry_t *PADDR1 = NULL, *PADDR2;
302 #ifdef DDB
303 static pt2_entry_t *PMAP3;
304 static pt2_entry_t *PADDR3;
305 static int PMAP3cpu __unused; /* for SMP only */
306 #endif
307 #ifdef SMP
308 static int PMAP1cpu;
309 static int PMAP1changedcpu;
310 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
311     &PMAP1changedcpu, 0,
312     "Number of times pmap_pte2_quick changed CPU with same PMAP1");
313 #endif
314 static int PMAP1changed;
315 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
316     &PMAP1changed, 0,
317     "Number of times pmap_pte2_quick changed PMAP1");
318 static int PMAP1unchanged;
319 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
320     &PMAP1unchanged, 0,
321     "Number of times pmap_pte2_quick didn't change PMAP1");
322 static struct mtx PMAP2mutex;
323 
324 /*
325  * Internal flags for pmap_enter()'s helper functions.
326  */
327 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
328 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
329 
330 static __inline void pt2_wirecount_init(vm_page_t m);
331 static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
332     vm_offset_t va);
333 static int pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1,
334     u_int flags, vm_page_t m);
335 void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
336 
337 /*
338  *  Function to set the debug level of the pmap code.
339  */
340 #ifdef PMAP_DEBUG
341 void
342 pmap_debug(int level)
343 {
344 
345 	pmap_debug_level = level;
346 	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
347 }
348 #endif /* PMAP_DEBUG */
349 
350 /*
351  *  This table must corespond with memory attribute configuration in vm.h.
352  *  First entry is used for normal system mapping.
353  *
354  *  Device memory is always marked as shared.
355  *  Normal memory is shared only in SMP .
356  *  Not outer shareable bits are not used yet.
357  *  Class 6 cannot be used on ARM11.
358  */
359 #define TEXDEF_TYPE_SHIFT	0
360 #define TEXDEF_TYPE_MASK	0x3
361 #define TEXDEF_INNER_SHIFT	2
362 #define TEXDEF_INNER_MASK	0x3
363 #define TEXDEF_OUTER_SHIFT	4
364 #define TEXDEF_OUTER_MASK	0x3
365 #define TEXDEF_NOS_SHIFT	6
366 #define TEXDEF_NOS_MASK		0x1
367 
368 #define TEX(t, i, o, s) 			\
369 		((t) << TEXDEF_TYPE_SHIFT) |	\
370 		((i) << TEXDEF_INNER_SHIFT) |	\
371 		((o) << TEXDEF_OUTER_SHIFT | 	\
372 		((s) << TEXDEF_NOS_SHIFT))
373 
374 static uint32_t tex_class[8] = {
375 /*	    type      inner cache outer cache */
376 	TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0),  /* 0 - ATTR_WB_WA	*/
377 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 1 - ATTR_NOCACHE	*/
378 	TEX(PRRR_DEV, NMRR_NC,	  NMRR_NC,    0),  /* 2 - ATTR_DEVICE	*/
379 	TEX(PRRR_SO,  NMRR_NC,	  NMRR_NC,    0),  /* 3 - ATTR_SO	*/
380 	TEX(PRRR_MEM, NMRR_WT,	  NMRR_WT,    0),  /* 4 - ATTR_WT	*/
381 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 5 - NOT USED YET	*/
382 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 6 - NOT USED YET	*/
383 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 7 - NOT USED YET	*/
384 };
385 #undef TEX
386 
387 static uint32_t pte2_attr_tab[8] = {
388 	PTE2_ATTR_WB_WA,	/* 0 - VM_MEMATTR_WB_WA */
389 	PTE2_ATTR_NOCACHE,	/* 1 - VM_MEMATTR_NOCACHE */
390 	PTE2_ATTR_DEVICE,	/* 2 - VM_MEMATTR_DEVICE */
391 	PTE2_ATTR_SO,		/* 3 - VM_MEMATTR_SO */
392 	PTE2_ATTR_WT,		/* 4 - VM_MEMATTR_WRITE_THROUGH */
393 	0,			/* 5 - NOT USED YET */
394 	0,			/* 6 - NOT USED YET */
395 	0			/* 7 - NOT USED YET */
396 };
397 CTASSERT(VM_MEMATTR_WB_WA == 0);
398 CTASSERT(VM_MEMATTR_NOCACHE == 1);
399 CTASSERT(VM_MEMATTR_DEVICE == 2);
400 CTASSERT(VM_MEMATTR_SO == 3);
401 CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
402 #define	VM_MEMATTR_END	(VM_MEMATTR_WRITE_THROUGH + 1)
403 
404 boolean_t
405 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
406 {
407 
408 	return (mode >= 0 && mode < VM_MEMATTR_END);
409 }
410 
411 static inline uint32_t
412 vm_memattr_to_pte2(vm_memattr_t ma)
413 {
414 
415 	KASSERT((u_int)ma < VM_MEMATTR_END,
416 	    ("%s: bad vm_memattr_t %d", __func__, ma));
417 	return (pte2_attr_tab[(u_int)ma]);
418 }
419 
420 static inline uint32_t
421 vm_page_pte2_attr(vm_page_t m)
422 {
423 
424 	return (vm_memattr_to_pte2(m->md.pat_mode));
425 }
426 
427 /*
428  * Convert TEX definition entry to TTB flags.
429  */
430 static uint32_t
431 encode_ttb_flags(int idx)
432 {
433 	uint32_t inner, outer, nos, reg;
434 
435 	inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
436 		TEXDEF_INNER_MASK;
437 	outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
438 		TEXDEF_OUTER_MASK;
439 	nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
440 		TEXDEF_NOS_MASK;
441 
442 	reg = nos << 5;
443 	reg |= outer << 3;
444 	if (cpuinfo.coherent_walk)
445 		reg |= (inner & 0x1) << 6;
446 	reg |= (inner & 0x2) >> 1;
447 #ifdef SMP
448 	ARM_SMP_UP(
449 		reg |= 1 << 1,
450 	);
451 #endif
452 	return reg;
453 }
454 
455 /*
456  *  Set TEX remapping registers in current CPU.
457  */
458 void
459 pmap_set_tex(void)
460 {
461 	uint32_t prrr, nmrr;
462 	uint32_t type, inner, outer, nos;
463 	int i;
464 
465 #ifdef PMAP_PTE_NOCACHE
466 	/* XXX fixme */
467 	if (cpuinfo.coherent_walk) {
468 		pt_memattr = VM_MEMATTR_WB_WA;
469 		ttb_flags = encode_ttb_flags(0);
470 	}
471 	else {
472 		pt_memattr = VM_MEMATTR_NOCACHE;
473 		ttb_flags = encode_ttb_flags(1);
474 	}
475 #else
476 	pt_memattr = VM_MEMATTR_WB_WA;
477 	ttb_flags = encode_ttb_flags(0);
478 #endif
479 
480 	prrr = 0;
481 	nmrr = 0;
482 
483 	/* Build remapping register from TEX classes. */
484 	for (i = 0; i < 8; i++) {
485 		type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
486 			TEXDEF_TYPE_MASK;
487 		inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
488 			TEXDEF_INNER_MASK;
489 		outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
490 			TEXDEF_OUTER_MASK;
491 		nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
492 			TEXDEF_NOS_MASK;
493 
494 		prrr |= type  << (i * 2);
495 		prrr |= nos   << (i + 24);
496 		nmrr |= inner << (i * 2);
497 		nmrr |= outer << (i * 2 + 16);
498 	}
499 	/* Add shareable bits for device memory. */
500 	prrr |= PRRR_DS0 | PRRR_DS1;
501 
502 	/* Add shareable bits for normal memory in SMP case. */
503 #ifdef SMP
504 	ARM_SMP_UP(
505 		prrr |= PRRR_NS1,
506 	);
507 #endif
508 	cp15_prrr_set(prrr);
509 	cp15_nmrr_set(nmrr);
510 
511 	/* Caches are disabled, so full TLB flush should be enough. */
512 	tlb_flush_all_local();
513 }
514 
515 /*
516  * Remap one vm_meattr class to another one. This can be useful as
517  * workaround for SOC errata, e.g. if devices must be accessed using
518  * SO memory class.
519  *
520  * !!! Please note that this function is absolutely last resort thing.
521  * It should not be used under normal circumstances. !!!
522  *
523  * Usage rules:
524  * - it shall be called after pmap_bootstrap_prepare() and before
525  *   cpu_mp_start() (thus only on boot CPU). In practice, it's expected
526  *   to be called from platform_attach() or platform_late_init().
527  *
528  * - if remapping doesn't change caching mode, or until uncached class
529  *   is remapped to any kind of cached one, then no other restriction exists.
530  *
531  * - if pmap_remap_vm_attr() changes caching mode, but both (original and
532  *   remapped) remain cached, then caller is resposible for calling
533  *   of dcache_wbinv_poc_all().
534  *
535  * - remapping of any kind of cached class to uncached is not permitted.
536  */
537 void
538 pmap_remap_vm_attr(vm_memattr_t old_attr, vm_memattr_t new_attr)
539 {
540 	int old_idx, new_idx;
541 
542 	/* Map VM memattrs to indexes to tex_class table. */
543 	old_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)old_attr]);
544 	new_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)new_attr]);
545 
546 	/* Replace TEX attribute and apply it. */
547 	tex_class[old_idx] = tex_class[new_idx];
548 	pmap_set_tex();
549 }
550 
551 /*
552  * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
553  * KERNBASE is mapped by first L2 page table in L2 page table page. It
554  * meets same constrain due to PT2MAP being placed just under KERNBASE.
555  */
556 CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
557 CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
558 
559 /*
560  *  In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
561  *  For now, anyhow, the following check must be fulfilled.
562  */
563 CTASSERT(PAGE_SIZE == PTE2_SIZE);
564 /*
565  *  We don't want to mess up MI code with all MMU and PMAP definitions,
566  *  so some things, which depend on other ones, are defined independently.
567  *  Now, it is time to check that we don't screw up something.
568  */
569 CTASSERT(PDRSHIFT == PTE1_SHIFT);
570 /*
571  *  Check L1 and L2 page table entries definitions consistency.
572  */
573 CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
574 CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
575 /*
576  *  Check L2 page tables page consistency.
577  */
578 CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
579 CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
580 /*
581  *  Check PT2TAB consistency.
582  *  PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
583  *  This should be done without remainder.
584  */
585 CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
586 
587 /*
588  *	A PT2MAP magic.
589  *
590  *  All level 2 page tables (PT2s) are mapped continuously and accordingly
591  *  into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
592  *  be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
593  *  must be used together, but not necessary at once. The first PT2 in a page
594  *  must map things on correctly aligned address and the others must follow
595  *  in right order.
596  */
597 #define NB_IN_PT2TAB	(PT2TAB_ENTRIES * sizeof(pt2_entry_t))
598 #define NPT2_IN_PT2TAB	(NB_IN_PT2TAB / NB_IN_PT2)
599 #define NPG_IN_PT2TAB	(NB_IN_PT2TAB / PAGE_SIZE)
600 
601 /*
602  *  Check PT2TAB consistency.
603  *  NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
604  *  NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
605  *  The both should be done without remainder.
606  */
607 CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
608 CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
609 /*
610  *  The implementation was made general, however, with the assumption
611  *  bellow in mind. In case of another value of NPG_IN_PT2TAB,
612  *  the code should be once more rechecked.
613  */
614 CTASSERT(NPG_IN_PT2TAB == 1);
615 
616 /*
617  *  Get offset of PT2 in a page
618  *  associated with given PT1 index.
619  */
620 static __inline u_int
621 page_pt2off(u_int pt1_idx)
622 {
623 
624 	return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
625 }
626 
627 /*
628  *  Get physical address of PT2
629  *  associated with given PT2s page and PT1 index.
630  */
631 static __inline vm_paddr_t
632 page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
633 {
634 
635 	return (pgpa + page_pt2off(pt1_idx));
636 }
637 
638 /*
639  *  Get first entry of PT2
640  *  associated with given PT2s page and PT1 index.
641  */
642 static __inline pt2_entry_t *
643 page_pt2(vm_offset_t pgva, u_int pt1_idx)
644 {
645 
646 	return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
647 }
648 
649 /*
650  *  Get virtual address of PT2s page (mapped in PT2MAP)
651  *  which holds PT2 which holds entry which maps given virtual address.
652  */
653 static __inline vm_offset_t
654 pt2map_pt2pg(vm_offset_t va)
655 {
656 
657 	va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
658 	return ((vm_offset_t)pt2map_entry(va));
659 }
660 
661 /*****************************************************************************
662  *
663  *     THREE pmap initialization milestones exist:
664  *
665  *  locore.S
666  *    -> fundamental init (including MMU) in ASM
667  *
668  *  initarm()
669  *    -> fundamental init continues in C
670  *    -> first available physical address is known
671  *
672  *    pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
673  *      -> basic (safe) interface for physical address allocation is made
674  *      -> basic (safe) interface for virtual mapping is made
675  *      -> limited not SMP coherent work is possible
676  *
677  *    -> more fundamental init continues in C
678  *    -> locks and some more things are available
679  *    -> all fundamental allocations and mappings are done
680  *
681  *    pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
682  *      -> phys_avail[] and virtual_avail is set
683  *      -> control is passed to vm subsystem
684  *      -> physical and virtual address allocation are off limit
685  *      -> low level mapping functions, some SMP coherent,
686  *         are available, which cannot be used before vm subsystem
687  *         is being inited
688  *
689  *  mi_startup()
690  *    -> vm subsystem is being inited
691  *
692  *      pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
693  *        -> pmap is fully inited
694  *
695  *****************************************************************************/
696 
697 /*****************************************************************************
698  *
699  *	PMAP first stage initialization and utility functions
700  *	for pre-bootstrap epoch.
701  *
702  *  After pmap_bootstrap_prepare() is called, the following functions
703  *  can be used:
704  *
705  *  (1) strictly only for this stage functions for physical page allocations,
706  *      virtual space allocations, and mappings:
707  *
708  *  vm_paddr_t pmap_preboot_get_pages(u_int num);
709  *  void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
710  *  vm_offset_t pmap_preboot_reserve_pages(u_int num);
711  *  vm_offset_t pmap_preboot_get_vpages(u_int num);
712  *  void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
713  *      vm_prot_t prot, vm_memattr_t attr);
714  *
715  *  (2) for all stages:
716  *
717  *  vm_paddr_t pmap_kextract(vm_offset_t va);
718  *
719  *  NOTE: This is not SMP coherent stage.
720  *
721  *****************************************************************************/
722 
723 #define KERNEL_P2V(pa) \
724     ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
725 #define KERNEL_V2P(va) \
726     ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
727 
728 static vm_paddr_t last_paddr;
729 
730 /*
731  *  Pre-bootstrap epoch page allocator.
732  */
733 vm_paddr_t
734 pmap_preboot_get_pages(u_int num)
735 {
736 	vm_paddr_t ret;
737 
738 	ret = last_paddr;
739 	last_paddr += num * PAGE_SIZE;
740 
741 	return (ret);
742 }
743 
744 /*
745  *	The fundamental initialization of PMAP stuff.
746  *
747  *  Some things already happened in locore.S and some things could happen
748  *  before pmap_bootstrap_prepare() is called, so let's recall what is done:
749  *  1. Caches are disabled.
750  *  2. We are running on virtual addresses already with 'boot_pt1'
751  *     as L1 page table.
752  *  3. So far, all virtual addresses can be converted to physical ones and
753  *     vice versa by the following macros:
754  *       KERNEL_P2V(pa) .... physical to virtual ones,
755  *       KERNEL_V2P(va) .... virtual to physical ones.
756  *
757  *  What is done herein:
758  *  1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
759  *  2. PT2MAP magic is brought to live.
760  *  3. Basic preboot functions for page allocations and mappings can be used.
761  *  4. Everything is prepared for L1 cache enabling.
762  *
763  *  Variations:
764  *  1. To use second TTB register, so kernel and users page tables will be
765  *     separated. This way process forking - pmap_pinit() - could be faster,
766  *     it saves physical pages and KVA per a process, and it's simple change.
767  *     However, it will lead, due to hardware matter, to the following:
768  *     (a) 2G space for kernel and 2G space for users.
769  *     (b) 1G space for kernel in low addresses and 3G for users above it.
770  *     A question is: Is the case (b) really an option? Note that case (b)
771  *     does save neither physical memory and KVA.
772  */
773 void
774 pmap_bootstrap_prepare(vm_paddr_t last)
775 {
776 	vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
777 	vm_offset_t pt2pg_va;
778 	pt1_entry_t *pte1p;
779 	pt2_entry_t *pte2p;
780 	u_int i;
781 	uint32_t l1_attr;
782 
783 	/*
784 	 * Now, we are going to make real kernel mapping. Note that we are
785 	 * already running on some mapping made in locore.S and we expect
786 	 * that it's large enough to ensure nofault access to physical memory
787 	 * allocated herein before switch.
788 	 *
789 	 * As kernel image and everything needed before are and will be mapped
790 	 * by section mappings, we align last physical address to PTE1_SIZE.
791 	 */
792 	last_paddr = pte1_roundup(last);
793 
794 	/*
795 	 * Allocate and zero page(s) for kernel L1 page table.
796 	 *
797 	 * Note that it's first allocation on space which was PTE1_SIZE
798 	 * aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
799 	 */
800 	base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
801 	kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
802 	bzero((void*)kern_pt1, NB_IN_PT1);
803 	pte1_sync_range(kern_pt1, NB_IN_PT1);
804 
805 	/* Allocate and zero page(s) for kernel PT2TAB. */
806 	pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
807 	kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
808 	bzero(kern_pt2tab, NB_IN_PT2TAB);
809 	pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
810 
811 	/* Allocate and zero page(s) for kernel L2 page tables. */
812 	pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
813 	pt2pg_va = KERNEL_P2V(pt2pg_pa);
814 	size = NKPT2PG * PAGE_SIZE;
815 	bzero((void*)pt2pg_va, size);
816 	pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
817 
818 	/*
819 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
820 	 * preallocated pages for kernel L2 page tables so that vm_page
821 	 * structures representing these pages will be created. The vm_page
822 	 * structures are required for promotion of the corresponding kernel
823 	 * virtual addresses to section mappings.
824 	 */
825 	vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
826 
827 	/*
828 	 * Insert allocated L2 page table pages to PT2TAB and make
829 	 * link to all PT2s in L1 page table. See how kernel_vm_end
830 	 * is initialized.
831 	 *
832 	 * We play simple and safe. So every KVA will have underlaying
833 	 * L2 page table, even kernel image mapped by sections.
834 	 */
835 	pte2p = kern_pt2tab_entry(KERNBASE);
836 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
837 		pt2tab_store(pte2p++, PTE2_KPT(pa));
838 
839 	pte1p = kern_pte1(KERNBASE);
840 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
841 		pte1_store(pte1p++, PTE1_LINK(pa));
842 
843 	/* Make section mappings for kernel. */
844 	l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
845 	pte1p = kern_pte1(KERNBASE);
846 	for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
847 		pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
848 
849 	/*
850 	 * Get free and aligned space for PT2MAP and make L1 page table links
851 	 * to L2 page tables held in PT2TAB.
852 	 *
853 	 * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
854 	 * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
855 	 * each entry in PT2TAB maps all PT2s in a page. This implies that
856 	 * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
857 	 */
858 	PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
859 	pte1p = kern_pte1((vm_offset_t)PT2MAP);
860 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
861 		pte1_store(pte1p++, PTE1_LINK(pa));
862 	}
863 
864 	/*
865 	 * Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
866 	 * Each pmap will hold own PT2TAB, so the mapping should be not global.
867 	 */
868 	pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
869 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
870 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
871 	}
872 
873 	/*
874 	 * Choose correct L2 page table and make mappings for allocations
875 	 * made herein which replaces temporary locore.S mappings after a while.
876 	 * Note that PT2MAP cannot be used until we switch to kern_pt1.
877 	 *
878 	 * Note, that these allocations started aligned on 1M section and
879 	 * kernel PT1 was allocated first. Making of mappings must follow
880 	 * order of physical allocations as we've used KERNEL_P2V() macro
881 	 * for virtual addresses resolution.
882 	 */
883 	pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
884 	pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
885 
886 	pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
887 
888 	/* Make mapping for kernel L1 page table. */
889 	for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
890 		pte2_store(pte2p++, PTE2_KPT(pa));
891 
892 	/* Make mapping for kernel PT2TAB. */
893 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
894 		pte2_store(pte2p++, PTE2_KPT(pa));
895 
896 	/* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
897 	pmap_kern_ttb = base_pt1 | ttb_flags;
898 	cpuinfo_reinit_mmu(pmap_kern_ttb);
899 	/*
900 	 * Initialize the first available KVA. As kernel image is mapped by
901 	 * sections, we are leaving some gap behind.
902 	 */
903 	virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
904 }
905 
906 /*
907  *  Setup L2 page table page for given KVA.
908  *  Used in pre-bootstrap epoch.
909  *
910  *  Note that we have allocated NKPT2PG pages for L2 page tables in advance
911  *  and used them for mapping KVA starting from KERNBASE. However, this is not
912  *  enough. Vectors and devices need L2 page tables too. Note that they are
913  *  even above VM_MAX_KERNEL_ADDRESS.
914  */
915 static __inline vm_paddr_t
916 pmap_preboot_pt2pg_setup(vm_offset_t va)
917 {
918 	pt2_entry_t *pte2p, pte2;
919 	vm_paddr_t pt2pg_pa;
920 
921 	/* Get associated entry in PT2TAB. */
922 	pte2p = kern_pt2tab_entry(va);
923 
924 	/* Just return, if PT2s page exists already. */
925 	pte2 = pt2tab_load(pte2p);
926 	if (pte2_is_valid(pte2))
927 		return (pte2_pa(pte2));
928 
929 	KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
930 	    ("%s: NKPT2PG too small", __func__));
931 
932 	/*
933 	 * Allocate page for PT2s and insert it to PT2TAB.
934 	 * In other words, map it into PT2MAP space.
935 	 */
936 	pt2pg_pa = pmap_preboot_get_pages(1);
937 	pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
938 
939 	/* Zero all PT2s in allocated page. */
940 	bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
941 	pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
942 
943 	return (pt2pg_pa);
944 }
945 
946 /*
947  *  Setup L2 page table for given KVA.
948  *  Used in pre-bootstrap epoch.
949  */
950 static void
951 pmap_preboot_pt2_setup(vm_offset_t va)
952 {
953 	pt1_entry_t *pte1p;
954 	vm_paddr_t pt2pg_pa, pt2_pa;
955 
956 	/* Setup PT2's page. */
957 	pt2pg_pa = pmap_preboot_pt2pg_setup(va);
958 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
959 
960 	/* Insert PT2 to PT1. */
961 	pte1p = kern_pte1(va);
962 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
963 }
964 
965 /*
966  *  Get L2 page entry associated with given KVA.
967  *  Used in pre-bootstrap epoch.
968  */
969 static __inline pt2_entry_t*
970 pmap_preboot_vtopte2(vm_offset_t va)
971 {
972 	pt1_entry_t *pte1p;
973 
974 	/* Setup PT2 if needed. */
975 	pte1p = kern_pte1(va);
976 	if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
977 		pmap_preboot_pt2_setup(va);
978 
979 	return (pt2map_entry(va));
980 }
981 
982 /*
983  *  Pre-bootstrap epoch page(s) mapping(s).
984  */
985 void
986 pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
987 {
988 	u_int i;
989 	pt2_entry_t *pte2p;
990 
991 	/* Map all the pages. */
992 	for (i = 0; i < num; i++) {
993 		pte2p = pmap_preboot_vtopte2(va);
994 		pte2_store(pte2p, PTE2_KRW(pa));
995 		va += PAGE_SIZE;
996 		pa += PAGE_SIZE;
997 	}
998 }
999 
1000 /*
1001  *  Pre-bootstrap epoch virtual space alocator.
1002  */
1003 vm_offset_t
1004 pmap_preboot_reserve_pages(u_int num)
1005 {
1006 	u_int i;
1007 	vm_offset_t start, va;
1008 	pt2_entry_t *pte2p;
1009 
1010 	/* Allocate virtual space. */
1011 	start = va = virtual_avail;
1012 	virtual_avail += num * PAGE_SIZE;
1013 
1014 	/* Zero the mapping. */
1015 	for (i = 0; i < num; i++) {
1016 		pte2p = pmap_preboot_vtopte2(va);
1017 		pte2_store(pte2p, 0);
1018 		va += PAGE_SIZE;
1019 	}
1020 
1021 	return (start);
1022 }
1023 
1024 /*
1025  *  Pre-bootstrap epoch page(s) allocation and mapping(s).
1026  */
1027 vm_offset_t
1028 pmap_preboot_get_vpages(u_int num)
1029 {
1030 	vm_paddr_t  pa;
1031 	vm_offset_t va;
1032 
1033 	/* Allocate physical page(s). */
1034 	pa = pmap_preboot_get_pages(num);
1035 
1036 	/* Allocate virtual space. */
1037 	va = virtual_avail;
1038 	virtual_avail += num * PAGE_SIZE;
1039 
1040 	/* Map and zero all. */
1041 	pmap_preboot_map_pages(pa, va, num);
1042 	bzero((void *)va, num * PAGE_SIZE);
1043 
1044 	return (va);
1045 }
1046 
1047 /*
1048  *  Pre-bootstrap epoch page mapping(s) with attributes.
1049  */
1050 void
1051 pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
1052     vm_prot_t prot, vm_memattr_t attr)
1053 {
1054 	u_int num;
1055 	u_int l1_attr, l1_prot, l2_prot, l2_attr;
1056 	pt1_entry_t *pte1p;
1057 	pt2_entry_t *pte2p;
1058 
1059 	l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
1060 	l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1061 	l2_attr = vm_memattr_to_pte2(attr);
1062 	l1_prot = ATTR_TO_L1(l2_prot);
1063 	l1_attr = ATTR_TO_L1(l2_attr);
1064 
1065 	/* Map all the pages. */
1066 	num = round_page(size);
1067 	while (num > 0) {
1068 		if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
1069 			pte1p = kern_pte1(va);
1070 			pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
1071 			va += PTE1_SIZE;
1072 			pa += PTE1_SIZE;
1073 			num -= PTE1_SIZE;
1074 		} else {
1075 			pte2p = pmap_preboot_vtopte2(va);
1076 			pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
1077 			va += PAGE_SIZE;
1078 			pa += PAGE_SIZE;
1079 			num -= PAGE_SIZE;
1080 		}
1081 	}
1082 }
1083 
1084 /*
1085  *  Extract from the kernel page table the physical address
1086  *  that is mapped by the given virtual address "va".
1087  */
1088 vm_paddr_t
1089 pmap_kextract(vm_offset_t va)
1090 {
1091 	vm_paddr_t pa;
1092 	pt1_entry_t pte1;
1093 	pt2_entry_t pte2;
1094 
1095 	pte1 = pte1_load(kern_pte1(va));
1096 	if (pte1_is_section(pte1)) {
1097 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1098 	} else if (pte1_is_link(pte1)) {
1099 		/*
1100 		 * We should beware of concurrent promotion that changes
1101 		 * pte1 at this point. However, it's not a problem as PT2
1102 		 * page is preserved by promotion in PT2TAB. So even if
1103 		 * it happens, using of PT2MAP is still safe.
1104 		 *
1105 		 * QQQ: However, concurrent removing is a problem which
1106 		 *      ends in abort on PT2MAP space. Locking must be used
1107 		 *      to deal with this.
1108 		 */
1109 		pte2 = pte2_load(pt2map_entry(va));
1110 		pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
1111 	}
1112 	else {
1113 		panic("%s: va %#x pte1 %#x", __func__, va, pte1);
1114 	}
1115 	return (pa);
1116 }
1117 
1118 /*
1119  *  Extract from the kernel page table the physical address
1120  *  that is mapped by the given virtual address "va". Also
1121  *  return L2 page table entry which maps the address.
1122  *
1123  *  This is only intended to be used for panic dumps.
1124  */
1125 vm_paddr_t
1126 pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
1127 {
1128 	vm_paddr_t pa;
1129 	pt1_entry_t pte1;
1130 	pt2_entry_t pte2;
1131 
1132 	pte1 = pte1_load(kern_pte1(va));
1133 	if (pte1_is_section(pte1)) {
1134 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1135 		pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
1136 	} else if (pte1_is_link(pte1)) {
1137 		pte2 = pte2_load(pt2map_entry(va));
1138 		pa = pte2_pa(pte2);
1139 	} else {
1140 		pte2 = 0;
1141 		pa = 0;
1142 	}
1143 	if (pte2p != NULL)
1144 		*pte2p = pte2;
1145 	return (pa);
1146 }
1147 
1148 /*****************************************************************************
1149  *
1150  *	PMAP second stage initialization and utility functions
1151  *	for bootstrap epoch.
1152  *
1153  *  After pmap_bootstrap() is called, the following functions for
1154  *  mappings can be used:
1155  *
1156  *  void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
1157  *  void pmap_kremove(vm_offset_t va);
1158  *  vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1159  *      int prot);
1160  *
1161  *  NOTE: This is not SMP coherent stage. And physical page allocation is not
1162  *        allowed during this stage.
1163  *
1164  *****************************************************************************/
1165 
1166 /*
1167  *  Initialize kernel PMAP locks and lists, kernel_pmap itself, and
1168  *  reserve various virtual spaces for temporary mappings.
1169  */
1170 void
1171 pmap_bootstrap(vm_offset_t firstaddr)
1172 {
1173 	pt2_entry_t *unused __unused;
1174 	struct pcpu *pc;
1175 
1176 	/*
1177 	 * Initialize the kernel pmap (which is statically allocated).
1178 	 */
1179 	PMAP_LOCK_INIT(kernel_pmap);
1180 	kernel_l1pa = (vm_paddr_t)kern_pt1;  /* for libkvm */
1181 	kernel_pmap->pm_pt1 = kern_pt1;
1182 	kernel_pmap->pm_pt2tab = kern_pt2tab;
1183 	CPU_FILL(&kernel_pmap->pm_active);  /* don't allow deactivation */
1184 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1185 
1186 	/*
1187 	 * Initialize the global pv list lock.
1188 	 */
1189 	rw_init(&pvh_global_lock, "pmap pv global");
1190 
1191 	LIST_INIT(&allpmaps);
1192 
1193 	/*
1194 	 * Request a spin mutex so that changes to allpmaps cannot be
1195 	 * preempted by smp_rendezvous_cpus().
1196 	 */
1197 	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
1198 	mtx_lock_spin(&allpmaps_lock);
1199 	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
1200 	mtx_unlock_spin(&allpmaps_lock);
1201 
1202 	/*
1203 	 * Reserve some special page table entries/VA space for temporary
1204 	 * mapping of pages.
1205 	 */
1206 #define	SYSMAP(c, p, v, n)  do {		\
1207 	v = (c)pmap_preboot_reserve_pages(n);	\
1208 	p = pt2map_entry((vm_offset_t)v);	\
1209 	} while (0)
1210 
1211 	/*
1212 	 * Local CMAP1/CMAP2 are used for zeroing and copying pages.
1213 	 * Local CMAP2 is also used for data cache cleaning.
1214 	 */
1215 	pc = get_pcpu();
1216 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1217 	SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
1218 	SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
1219 	SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
1220 
1221 	/*
1222 	 * Crashdump maps.
1223 	 */
1224 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
1225 
1226 	/*
1227 	 * _tmppt is used for reading arbitrary physical pages via /dev/mem.
1228 	 */
1229 	SYSMAP(caddr_t, unused, _tmppt, 1);
1230 
1231 	/*
1232 	 * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
1233 	 * respectively. PADDR3 is used by pmap_pte2_ddb().
1234 	 */
1235 	SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
1236 	SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
1237 #ifdef DDB
1238 	SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
1239 #endif
1240 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
1241 
1242 	/*
1243 	 * Note that in very short time in initarm(), we are going to
1244 	 * initialize phys_avail[] array and no further page allocation
1245 	 * can happen after that until vm subsystem will be initialized.
1246 	 */
1247 	kernel_vm_end_new = kernel_vm_end;
1248 	virtual_end = vm_max_kernel_address;
1249 }
1250 
1251 static void
1252 pmap_init_reserved_pages(void)
1253 {
1254 	struct pcpu *pc;
1255 	vm_offset_t pages;
1256 	int i;
1257 
1258 	CPU_FOREACH(i) {
1259 		pc = pcpu_find(i);
1260 		/*
1261 		 * Skip if the mapping has already been initialized,
1262 		 * i.e. this is the BSP.
1263 		 */
1264 		if (pc->pc_cmap1_addr != 0)
1265 			continue;
1266 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1267 		pages = kva_alloc(PAGE_SIZE * 3);
1268 		if (pages == 0)
1269 			panic("%s: unable to allocate KVA", __func__);
1270 		pc->pc_cmap1_pte2p = pt2map_entry(pages);
1271 		pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
1272 		pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
1273 		pc->pc_cmap1_addr = (caddr_t)pages;
1274 		pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
1275 		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
1276 	}
1277 }
1278 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
1279 
1280 /*
1281  *  The function can already be use in second initialization stage.
1282  *  As such, the function DOES NOT call pmap_growkernel() where PT2
1283  *  allocation can happen. So if used, be sure that PT2 for given
1284  *  virtual address is allocated already!
1285  *
1286  *  Add a wired page to the kva.
1287  *  Note: not SMP coherent.
1288  */
1289 static __inline void
1290 pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
1291     uint32_t attr)
1292 {
1293 	pt1_entry_t *pte1p;
1294 	pt2_entry_t *pte2p;
1295 
1296 	pte1p = kern_pte1(va);
1297 	if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
1298 		/*
1299 		 * This is a very low level function, so PT2 and particularly
1300 		 * PT2PG associated with given virtual address must be already
1301 		 * allocated. It's a pain mainly during pmap initialization
1302 		 * stage. However, called after pmap initialization with
1303 		 * virtual address not under kernel_vm_end will lead to
1304 		 * the same misery.
1305 		 */
1306 		if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
1307 			panic("%s: kernel PT2 not allocated!", __func__);
1308 	}
1309 
1310 	pte2p = pt2map_entry(va);
1311 	pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
1312 }
1313 
1314 PMAP_INLINE void
1315 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1316 {
1317 
1318 	pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
1319 }
1320 
1321 /*
1322  *  Remove a page from the kernel pagetables.
1323  *  Note: not SMP coherent.
1324  */
1325 PMAP_INLINE void
1326 pmap_kremove(vm_offset_t va)
1327 {
1328 	pt1_entry_t *pte1p;
1329 	pt2_entry_t *pte2p;
1330 
1331 	pte1p = kern_pte1(va);
1332 	if (pte1_is_section(pte1_load(pte1p))) {
1333 		pte1_clear(pte1p);
1334 	} else {
1335 		pte2p = pt2map_entry(va);
1336 		pte2_clear(pte2p);
1337 	}
1338 }
1339 
1340 /*
1341  *  Share new kernel PT2PG with all pmaps.
1342  *  The caller is responsible for maintaining TLB consistency.
1343  */
1344 static void
1345 pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
1346 {
1347 	pmap_t pmap;
1348 	pt2_entry_t *pte2p;
1349 
1350 	mtx_lock_spin(&allpmaps_lock);
1351 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1352 		pte2p = pmap_pt2tab_entry(pmap, va);
1353 		pt2tab_store(pte2p, npte2);
1354 	}
1355 	mtx_unlock_spin(&allpmaps_lock);
1356 }
1357 
1358 /*
1359  *  Share new kernel PTE1 with all pmaps.
1360  *  The caller is responsible for maintaining TLB consistency.
1361  */
1362 static void
1363 pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
1364 {
1365 	pmap_t pmap;
1366 	pt1_entry_t *pte1p;
1367 
1368 	mtx_lock_spin(&allpmaps_lock);
1369 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1370 		pte1p = pmap_pte1(pmap, va);
1371 		pte1_store(pte1p, npte1);
1372 	}
1373 	mtx_unlock_spin(&allpmaps_lock);
1374 }
1375 
1376 /*
1377  *  Used to map a range of physical addresses into kernel
1378  *  virtual address space.
1379  *
1380  *  The value passed in '*virt' is a suggested virtual address for
1381  *  the mapping. Architectures which can support a direct-mapped
1382  *  physical to virtual region can return the appropriate address
1383  *  within that region, leaving '*virt' unchanged. Other
1384  *  architectures should map the pages starting at '*virt' and
1385  *  update '*virt' with the first usable address after the mapped
1386  *  region.
1387  *
1388  *  NOTE: Read the comments above pmap_kenter_prot_attr() as
1389  *        the function is used herein!
1390  */
1391 vm_offset_t
1392 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1393 {
1394 	vm_offset_t va, sva;
1395 	vm_paddr_t pte1_offset;
1396 	pt1_entry_t npte1;
1397 	uint32_t l1prot, l2prot;
1398 	uint32_t l1attr, l2attr;
1399 
1400 	PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
1401 	    " prot = %d\n", __func__, *virt, start, end, end - start,  prot));
1402 
1403 	l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
1404 	l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1405 	l1prot = ATTR_TO_L1(l2prot);
1406 
1407 	l2attr = PTE2_ATTR_DEFAULT;
1408 	l1attr = ATTR_TO_L1(l2attr);
1409 
1410 	va = *virt;
1411 	/*
1412 	 * Does the physical address range's size and alignment permit at
1413 	 * least one section mapping to be created?
1414 	 */
1415 	pte1_offset = start & PTE1_OFFSET;
1416 	if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
1417 	    PTE1_SIZE) {
1418 		/*
1419 		 * Increase the starting virtual address so that its alignment
1420 		 * does not preclude the use of section mappings.
1421 		 */
1422 		if ((va & PTE1_OFFSET) < pte1_offset)
1423 			va = pte1_trunc(va) + pte1_offset;
1424 		else if ((va & PTE1_OFFSET) > pte1_offset)
1425 			va = pte1_roundup(va) + pte1_offset;
1426 	}
1427 	sva = va;
1428 	while (start < end) {
1429 		if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
1430 			KASSERT((va & PTE1_OFFSET) == 0,
1431 			    ("%s: misaligned va %#x", __func__, va));
1432 			npte1 = PTE1_KERN(start, l1prot, l1attr);
1433 			pmap_kenter_pte1(va, npte1);
1434 			va += PTE1_SIZE;
1435 			start += PTE1_SIZE;
1436 		} else {
1437 			pmap_kenter_prot_attr(va, start, l2prot, l2attr);
1438 			va += PAGE_SIZE;
1439 			start += PAGE_SIZE;
1440 		}
1441 	}
1442 	tlb_flush_range(sva, va - sva);
1443 	*virt = va;
1444 	return (sva);
1445 }
1446 
1447 /*
1448  *  Make a temporary mapping for a physical address.
1449  *  This is only intended to be used for panic dumps.
1450  */
1451 void *
1452 pmap_kenter_temporary(vm_paddr_t pa, int i)
1453 {
1454 	vm_offset_t va;
1455 
1456 	/* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
1457 
1458 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
1459 	pmap_kenter(va, pa);
1460 	tlb_flush_local(va);
1461 	return ((void *)crashdumpmap);
1462 }
1463 
1464 /*************************************
1465  *
1466  *  TLB & cache maintenance routines.
1467  *
1468  *************************************/
1469 
1470 /*
1471  *  We inline these within pmap.c for speed.
1472  */
1473 PMAP_INLINE void
1474 pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
1475 {
1476 
1477 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1478 		tlb_flush(va);
1479 }
1480 
1481 PMAP_INLINE void
1482 pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
1483 {
1484 
1485 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1486 		tlb_flush_range(sva, size);
1487 }
1488 
1489 /*
1490  *  Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
1491  *  Requirements:
1492  *   - Must deal with pages in order to ensure that none of the PTE2_* bits
1493  *     are ever set, PTE2_V in particular.
1494  *   - Assumes we can write to pte2s without pte2_store() atomic ops.
1495  *   - Assumes nothing will ever test these addresses for 0 to indicate
1496  *     no mapping instead of correctly checking PTE2_V.
1497  *   - Assumes a vm_offset_t will fit in a pte2 (true for arm).
1498  *  Because PTE2_V is never set, there can be no mappings to invalidate.
1499  */
1500 static vm_offset_t
1501 pmap_pte2list_alloc(vm_offset_t *head)
1502 {
1503 	pt2_entry_t *pte2p;
1504 	vm_offset_t va;
1505 
1506 	va = *head;
1507 	if (va == 0)
1508 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
1509 	pte2p = pt2map_entry(va);
1510 	*head = *pte2p;
1511 	if (*head & PTE2_V)
1512 		panic("%s: va with PTE2_V set!", __func__);
1513 	*pte2p = 0;
1514 	return (va);
1515 }
1516 
1517 static void
1518 pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
1519 {
1520 	pt2_entry_t *pte2p;
1521 
1522 	if (va & PTE2_V)
1523 		panic("%s: freeing va with PTE2_V set!", __func__);
1524 	pte2p = pt2map_entry(va);
1525 	*pte2p = *head;		/* virtual! PTE2_V is 0 though */
1526 	*head = va;
1527 }
1528 
1529 static void
1530 pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
1531 {
1532 	int i;
1533 	vm_offset_t va;
1534 
1535 	*head = 0;
1536 	for (i = npages - 1; i >= 0; i--) {
1537 		va = (vm_offset_t)base + i * PAGE_SIZE;
1538 		pmap_pte2list_free(head, va);
1539 	}
1540 }
1541 
1542 /*****************************************************************************
1543  *
1544  *	PMAP third and final stage initialization.
1545  *
1546  *  After pmap_init() is called, PMAP subsystem is fully initialized.
1547  *
1548  *****************************************************************************/
1549 
1550 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1551     "VM/pmap parameters");
1552 
1553 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1554     "Max number of PV entries");
1555 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1556     "Page share factor per proc");
1557 
1558 static u_long nkpt2pg = NKPT2PG;
1559 SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
1560     &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
1561 
1562 static int sp_enabled = 1;
1563 SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
1564     &sp_enabled, 0, "Are large page mappings enabled?");
1565 
1566 bool
1567 pmap_ps_enabled(pmap_t pmap __unused)
1568 {
1569 
1570 	return (sp_enabled != 0);
1571 }
1572 
1573 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1574     "1MB page mapping counters");
1575 
1576 static u_long pmap_pte1_demotions;
1577 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
1578     &pmap_pte1_demotions, 0, "1MB page demotions");
1579 
1580 static u_long pmap_pte1_mappings;
1581 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
1582     &pmap_pte1_mappings, 0, "1MB page mappings");
1583 
1584 static u_long pmap_pte1_p_failures;
1585 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
1586     &pmap_pte1_p_failures, 0, "1MB page promotion failures");
1587 
1588 static u_long pmap_pte1_promotions;
1589 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
1590     &pmap_pte1_promotions, 0, "1MB page promotions");
1591 
1592 static u_long pmap_pte1_kern_demotions;
1593 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
1594     &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
1595 
1596 static u_long pmap_pte1_kern_promotions;
1597 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
1598     &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
1599 
1600 static __inline ttb_entry_t
1601 pmap_ttb_get(pmap_t pmap)
1602 {
1603 
1604 	return (vtophys(pmap->pm_pt1) | ttb_flags);
1605 }
1606 
1607 /*
1608  *  Initialize a vm_page's machine-dependent fields.
1609  *
1610  *  Variations:
1611  *  1. Pages for L2 page tables are always not managed. So, pv_list and
1612  *     pt2_wirecount can share same physical space. However, proper
1613  *     initialization on a page alloc for page tables and reinitialization
1614  *     on the page free must be ensured.
1615  */
1616 void
1617 pmap_page_init(vm_page_t m)
1618 {
1619 
1620 	TAILQ_INIT(&m->md.pv_list);
1621 	pt2_wirecount_init(m);
1622 	m->md.pat_mode = VM_MEMATTR_DEFAULT;
1623 }
1624 
1625 /*
1626  *  Virtualization for faster way how to zero whole page.
1627  */
1628 static __inline void
1629 pagezero(void *page)
1630 {
1631 
1632 	bzero(page, PAGE_SIZE);
1633 }
1634 
1635 /*
1636  *  Zero L2 page table page.
1637  *  Use same KVA as in pmap_zero_page().
1638  */
1639 static __inline vm_paddr_t
1640 pmap_pt2pg_zero(vm_page_t m)
1641 {
1642 	pt2_entry_t *cmap2_pte2p;
1643 	vm_paddr_t pa;
1644 	struct pcpu *pc;
1645 
1646 	pa = VM_PAGE_TO_PHYS(m);
1647 
1648 	/*
1649 	 * XXX: For now, we map whole page even if it's already zero,
1650 	 *      to sync it even if the sync is only DSB.
1651 	 */
1652 	sched_pin();
1653 	pc = get_pcpu();
1654 	cmap2_pte2p = pc->pc_cmap2_pte2p;
1655 	mtx_lock(&pc->pc_cmap_lock);
1656 	if (pte2_load(cmap2_pte2p) != 0)
1657 		panic("%s: CMAP2 busy", __func__);
1658 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
1659 	    vm_page_pte2_attr(m)));
1660 	/*  Even VM_ALLOC_ZERO request is only advisory. */
1661 	if ((m->flags & PG_ZERO) == 0)
1662 		pagezero(pc->pc_cmap2_addr);
1663 	pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
1664 	pte2_clear(cmap2_pte2p);
1665 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
1666 
1667 	/*
1668 	 * Unpin the thread before releasing the lock.  Otherwise the thread
1669 	 * could be rescheduled while still bound to the current CPU, only
1670 	 * to unpin itself immediately upon resuming execution.
1671 	 */
1672 	sched_unpin();
1673 	mtx_unlock(&pc->pc_cmap_lock);
1674 
1675 	return (pa);
1676 }
1677 
1678 /*
1679  *  Init just allocated page as L2 page table(s) holder
1680  *  and return its physical address.
1681  */
1682 static __inline vm_paddr_t
1683 pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
1684 {
1685 	vm_paddr_t pa;
1686 	pt2_entry_t *pte2p;
1687 
1688 	/* Check page attributes. */
1689 	if (m->md.pat_mode != pt_memattr)
1690 		pmap_page_set_memattr(m, pt_memattr);
1691 
1692 	/* Zero page and init wire counts. */
1693 	pa = pmap_pt2pg_zero(m);
1694 	pt2_wirecount_init(m);
1695 
1696 	/*
1697 	 * Map page to PT2MAP address space for given pmap.
1698 	 * Note that PT2MAP space is shared with all pmaps.
1699 	 */
1700 	if (pmap == kernel_pmap)
1701 		pmap_kenter_pt2tab(va, PTE2_KPT(pa));
1702 	else {
1703 		pte2p = pmap_pt2tab_entry(pmap, va);
1704 		pt2tab_store(pte2p, PTE2_KPT_NG(pa));
1705 	}
1706 
1707 	return (pa);
1708 }
1709 
1710 /*
1711  *  Initialize the pmap module.
1712  *  Called by vm_init, to initialize any structures that the pmap
1713  *  system needs to map virtual memory.
1714  */
1715 void
1716 pmap_init(void)
1717 {
1718 	vm_size_t s;
1719 	pt2_entry_t *pte2p, pte2;
1720 	u_int i, pte1_idx, pv_npg;
1721 
1722 	PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
1723 
1724 	/*
1725 	 * Initialize the vm page array entries for kernel pmap's
1726 	 * L2 page table pages allocated in advance.
1727 	 */
1728 	pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
1729 	pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
1730 	for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
1731 		vm_paddr_t pa;
1732 		vm_page_t m;
1733 
1734 		pte2 = pte2_load(pte2p);
1735 		KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
1736 
1737 		pa = pte2_pa(pte2);
1738 		m = PHYS_TO_VM_PAGE(pa);
1739 		KASSERT(m >= vm_page_array &&
1740 		    m < &vm_page_array[vm_page_array_size],
1741 		    ("%s: L2 page table page is out of range", __func__));
1742 
1743 		m->pindex = pte1_idx;
1744 		m->phys_addr = pa;
1745 		pte1_idx += NPT2_IN_PG;
1746 	}
1747 
1748 	/*
1749 	 * Initialize the address space (zone) for the pv entries.  Set a
1750 	 * high water mark so that the system can recover from excessive
1751 	 * numbers of pv entries.
1752 	 */
1753 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1754 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1755 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1756 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1757 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1758 
1759 	/*
1760 	 * Are large page mappings enabled?
1761 	 */
1762 	TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
1763 	if (sp_enabled) {
1764 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1765 		    ("%s: can't assign to pagesizes[1]", __func__));
1766 		pagesizes[1] = PTE1_SIZE;
1767 	}
1768 
1769 	/*
1770 	 * Calculate the size of the pv head table for sections.
1771 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1772 	 * Note that the table is only for sections which could be promoted.
1773 	 */
1774 	first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
1775 	pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
1776 	    - first_managed_pa) / PTE1_SIZE + 1;
1777 
1778 	/*
1779 	 * Allocate memory for the pv head table for sections.
1780 	 */
1781 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1782 	s = round_page(s);
1783 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
1784 	for (i = 0; i < pv_npg; i++)
1785 		TAILQ_INIT(&pv_table[i].pv_list);
1786 
1787 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1788 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1789 	if (pv_chunkbase == NULL)
1790 		panic("%s: not enough kvm for pv chunks", __func__);
1791 	pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1792 }
1793 
1794 /*
1795  *  Add a list of wired pages to the kva
1796  *  this routine is only used for temporary
1797  *  kernel mappings that do not need to have
1798  *  page modification or references recorded.
1799  *  Note that old mappings are simply written
1800  *  over.  The page *must* be wired.
1801  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1802  */
1803 void
1804 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1805 {
1806 	u_int anychanged;
1807 	pt2_entry_t *epte2p, *pte2p, pte2;
1808 	vm_page_t m;
1809 	vm_paddr_t pa;
1810 
1811 	anychanged = 0;
1812 	pte2p = pt2map_entry(sva);
1813 	epte2p = pte2p + count;
1814 	while (pte2p < epte2p) {
1815 		m = *ma++;
1816 		pa = VM_PAGE_TO_PHYS(m);
1817 		pte2 = pte2_load(pte2p);
1818 		if ((pte2_pa(pte2) != pa) ||
1819 		    (pte2_attr(pte2) != vm_page_pte2_attr(m))) {
1820 			anychanged++;
1821 			pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
1822 			    vm_page_pte2_attr(m)));
1823 		}
1824 		pte2p++;
1825 	}
1826 	if (__predict_false(anychanged))
1827 		tlb_flush_range(sva, count * PAGE_SIZE);
1828 }
1829 
1830 /*
1831  *  This routine tears out page mappings from the
1832  *  kernel -- it is meant only for temporary mappings.
1833  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1834  */
1835 void
1836 pmap_qremove(vm_offset_t sva, int count)
1837 {
1838 	vm_offset_t va;
1839 
1840 	va = sva;
1841 	while (count-- > 0) {
1842 		pmap_kremove(va);
1843 		va += PAGE_SIZE;
1844 	}
1845 	tlb_flush_range(sva, va - sva);
1846 }
1847 
1848 /*
1849  *  Are we current address space or kernel?
1850  */
1851 static __inline int
1852 pmap_is_current(pmap_t pmap)
1853 {
1854 
1855 	return (pmap == kernel_pmap ||
1856 		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
1857 }
1858 
1859 /*
1860  *  If the given pmap is not the current or kernel pmap, the returned
1861  *  pte2 must be released by passing it to pmap_pte2_release().
1862  */
1863 static pt2_entry_t *
1864 pmap_pte2(pmap_t pmap, vm_offset_t va)
1865 {
1866 	pt1_entry_t pte1;
1867 	vm_paddr_t pt2pg_pa;
1868 
1869 	pte1 = pte1_load(pmap_pte1(pmap, va));
1870 	if (pte1_is_section(pte1))
1871 		panic("%s: attempt to map PTE1", __func__);
1872 	if (pte1_is_link(pte1)) {
1873 		/* Are we current address space or kernel? */
1874 		if (pmap_is_current(pmap))
1875 			return (pt2map_entry(va));
1876 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1877 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1878 		mtx_lock(&PMAP2mutex);
1879 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
1880 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
1881 			tlb_flush((vm_offset_t)PADDR2);
1882 		}
1883 		return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1884 	}
1885 	return (NULL);
1886 }
1887 
1888 /*
1889  *  Releases a pte2 that was obtained from pmap_pte2().
1890  *  Be prepared for the pte2p being NULL.
1891  */
1892 static __inline void
1893 pmap_pte2_release(pt2_entry_t *pte2p)
1894 {
1895 
1896 	if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
1897 		mtx_unlock(&PMAP2mutex);
1898 	}
1899 }
1900 
1901 /*
1902  *  Super fast pmap_pte2 routine best used when scanning
1903  *  the pv lists.  This eliminates many coarse-grained
1904  *  invltlb calls.  Note that many of the pv list
1905  *  scans are across different pmaps.  It is very wasteful
1906  *  to do an entire tlb flush for checking a single mapping.
1907  *
1908  *  If the given pmap is not the current pmap, pvh_global_lock
1909  *  must be held and curthread pinned to a CPU.
1910  */
1911 static pt2_entry_t *
1912 pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
1913 {
1914 	pt1_entry_t pte1;
1915 	vm_paddr_t pt2pg_pa;
1916 
1917 	pte1 = pte1_load(pmap_pte1(pmap, va));
1918 	if (pte1_is_section(pte1))
1919 		panic("%s: attempt to map PTE1", __func__);
1920 	if (pte1_is_link(pte1)) {
1921 		/* Are we current address space or kernel? */
1922 		if (pmap_is_current(pmap))
1923 			return (pt2map_entry(va));
1924 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1925 		KASSERT(curthread->td_pinned > 0,
1926 		    ("%s: curthread not pinned", __func__));
1927 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1928 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1929 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
1930 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
1931 #ifdef SMP
1932 			PMAP1cpu = PCPU_GET(cpuid);
1933 #endif
1934 			tlb_flush_local((vm_offset_t)PADDR1);
1935 			PMAP1changed++;
1936 		} else
1937 #ifdef SMP
1938 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1939 			PMAP1cpu = PCPU_GET(cpuid);
1940 			tlb_flush_local((vm_offset_t)PADDR1);
1941 			PMAP1changedcpu++;
1942 		} else
1943 #endif
1944 			PMAP1unchanged++;
1945 		return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1946 	}
1947 	return (NULL);
1948 }
1949 
1950 /*
1951  *  Routine: pmap_extract
1952  *  Function:
1953  * 	Extract the physical page address associated
1954  *	with the given map/virtual_address pair.
1955  */
1956 vm_paddr_t
1957 pmap_extract(pmap_t pmap, vm_offset_t va)
1958 {
1959 	vm_paddr_t pa;
1960 	pt1_entry_t pte1;
1961 	pt2_entry_t *pte2p;
1962 
1963 	PMAP_LOCK(pmap);
1964 	pte1 = pte1_load(pmap_pte1(pmap, va));
1965 	if (pte1_is_section(pte1))
1966 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1967 	else if (pte1_is_link(pte1)) {
1968 		pte2p = pmap_pte2(pmap, va);
1969 		pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
1970 		pmap_pte2_release(pte2p);
1971 	} else
1972 		pa = 0;
1973 	PMAP_UNLOCK(pmap);
1974 	return (pa);
1975 }
1976 
1977 /*
1978  *  Routine: pmap_extract_and_hold
1979  *  Function:
1980  *	Atomically extract and hold the physical page
1981  *	with the given pmap and virtual address pair
1982  *	if that mapping permits the given protection.
1983  */
1984 vm_page_t
1985 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1986 {
1987 	vm_paddr_t pa;
1988 	pt1_entry_t pte1;
1989 	pt2_entry_t pte2, *pte2p;
1990 	vm_page_t m;
1991 
1992 	m = NULL;
1993 	PMAP_LOCK(pmap);
1994 	pte1 = pte1_load(pmap_pte1(pmap, va));
1995 	if (pte1_is_section(pte1)) {
1996 		if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
1997 			pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1998 			m = PHYS_TO_VM_PAGE(pa);
1999 			if (!vm_page_wire_mapped(m))
2000 				m = NULL;
2001 		}
2002 	} else if (pte1_is_link(pte1)) {
2003 		pte2p = pmap_pte2(pmap, va);
2004 		pte2 = pte2_load(pte2p);
2005 		pmap_pte2_release(pte2p);
2006 		if (pte2_is_valid(pte2) &&
2007 		    (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
2008 			pa = pte2_pa(pte2);
2009 			m = PHYS_TO_VM_PAGE(pa);
2010 			if (!vm_page_wire_mapped(m))
2011 				m = NULL;
2012 		}
2013 	}
2014 	PMAP_UNLOCK(pmap);
2015 	return (m);
2016 }
2017 
2018 /*
2019  *  Grow the number of kernel L2 page table entries, if needed.
2020  */
2021 void
2022 pmap_growkernel(vm_offset_t addr)
2023 {
2024 	vm_page_t m;
2025 	vm_paddr_t pt2pg_pa, pt2_pa;
2026 	pt1_entry_t pte1;
2027 	pt2_entry_t pte2;
2028 
2029 	PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
2030 	/*
2031 	 * All the time kernel_vm_end is first KVA for which underlying
2032 	 * L2 page table is either not allocated or linked from L1 page table
2033 	 * (not considering sections). Except for two possible cases:
2034 	 *
2035 	 *   (1) in the very beginning as long as pmap_growkernel() was
2036 	 *       not called, it could be first unused KVA (which is not
2037 	 *       rounded up to PTE1_SIZE),
2038 	 *
2039 	 *   (2) when all KVA space is mapped and vm_map_max(kernel_map)
2040 	 *       address is not rounded up to PTE1_SIZE. (For example,
2041 	 *       it could be 0xFFFFFFFF.)
2042 	 */
2043 	kernel_vm_end = pte1_roundup(kernel_vm_end);
2044 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2045 	addr = roundup2(addr, PTE1_SIZE);
2046 	if (addr - 1 >= vm_map_max(kernel_map))
2047 		addr = vm_map_max(kernel_map);
2048 	while (kernel_vm_end < addr) {
2049 		pte1 = pte1_load(kern_pte1(kernel_vm_end));
2050 		if (pte1_is_valid(pte1)) {
2051 			kernel_vm_end += PTE1_SIZE;
2052 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2053 				kernel_vm_end = vm_map_max(kernel_map);
2054 				break;
2055 			}
2056 			continue;
2057 		}
2058 
2059 		/*
2060 		 * kernel_vm_end_new is used in pmap_pinit() when kernel
2061 		 * mappings are entered to new pmap all at once to avoid race
2062 		 * between pmap_kenter_pte1() and kernel_vm_end increase.
2063 		 * The same aplies to pmap_kenter_pt2tab().
2064 		 */
2065 		kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
2066 
2067 		pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
2068 		if (!pte2_is_valid(pte2)) {
2069 			/*
2070 			 * Install new PT2s page into kernel PT2TAB.
2071 			 */
2072 			m = vm_page_alloc(NULL,
2073 			    pte1_index(kernel_vm_end) & ~PT2PG_MASK,
2074 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2075 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2076 			if (m == NULL)
2077 				panic("%s: no memory to grow kernel", __func__);
2078 			/*
2079 			 * QQQ: To link all new L2 page tables from L1 page
2080 			 *      table now and so pmap_kenter_pte1() them
2081 			 *      at once together with pmap_kenter_pt2tab()
2082 			 *      could be nice speed up. However,
2083 			 *      pmap_growkernel() does not happen so often...
2084 			 * QQQ: The other TTBR is another option.
2085 			 */
2086 			pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
2087 			    m);
2088 		} else
2089 			pt2pg_pa = pte2_pa(pte2);
2090 
2091 		pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
2092 		pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
2093 
2094 		kernel_vm_end = kernel_vm_end_new;
2095 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2096 			kernel_vm_end = vm_map_max(kernel_map);
2097 			break;
2098 		}
2099 	}
2100 }
2101 
2102 static int
2103 kvm_size(SYSCTL_HANDLER_ARGS)
2104 {
2105 	unsigned long ksize = vm_max_kernel_address - KERNBASE;
2106 
2107 	return (sysctl_handle_long(oidp, &ksize, 0, req));
2108 }
2109 SYSCTL_PROC(_vm, OID_AUTO, kvm_size,
2110     CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_size, "IU",
2111     "Size of KVM");
2112 
2113 static int
2114 kvm_free(SYSCTL_HANDLER_ARGS)
2115 {
2116 	unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
2117 
2118 	return (sysctl_handle_long(oidp, &kfree, 0, req));
2119 }
2120 SYSCTL_PROC(_vm, OID_AUTO, kvm_free,
2121     CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_free, "IU",
2122     "Amount of KVM free");
2123 
2124 /***********************************************
2125  *
2126  *  Pmap allocation/deallocation routines.
2127  *
2128  ***********************************************/
2129 
2130 /*
2131  *  Initialize the pmap for the swapper process.
2132  */
2133 void
2134 pmap_pinit0(pmap_t pmap)
2135 {
2136 	PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
2137 
2138 	PMAP_LOCK_INIT(pmap);
2139 
2140 	/*
2141 	 * Kernel page table directory and pmap stuff around is already
2142 	 * initialized, we are using it right now and here. So, finish
2143 	 * only PMAP structures initialization for process0 ...
2144 	 *
2145 	 * Since the L1 page table and PT2TAB is shared with the kernel pmap,
2146 	 * which is already included in the list "allpmaps", this pmap does
2147 	 * not need to be inserted into that list.
2148 	 */
2149 	pmap->pm_pt1 = kern_pt1;
2150 	pmap->pm_pt2tab = kern_pt2tab;
2151 	CPU_ZERO(&pmap->pm_active);
2152 	PCPU_SET(curpmap, pmap);
2153 	TAILQ_INIT(&pmap->pm_pvchunk);
2154 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2155 	CPU_SET(0, &pmap->pm_active);
2156 }
2157 
2158 static __inline void
2159 pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
2160     vm_offset_t eva)
2161 {
2162 	u_int idx, count;
2163 
2164 	idx = pte1_index(sva);
2165 	count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
2166 	bcopy(spte1p + idx, dpte1p + idx, count);
2167 }
2168 
2169 static __inline void
2170 pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
2171     vm_offset_t eva)
2172 {
2173 	u_int idx, count;
2174 
2175 	idx = pt2tab_index(sva);
2176 	count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
2177 	bcopy(spte2p + idx, dpte2p + idx, count);
2178 }
2179 
2180 /*
2181  *  Initialize a preallocated and zeroed pmap structure,
2182  *  such as one in a vmspace structure.
2183  */
2184 int
2185 pmap_pinit(pmap_t pmap)
2186 {
2187 	pt1_entry_t *pte1p;
2188 	pt2_entry_t *pte2p;
2189 	vm_paddr_t pa, pt2tab_pa;
2190 	u_int i;
2191 
2192 	PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
2193 	    pmap->pm_pt1));
2194 
2195 	/*
2196 	 * No need to allocate L2 page table space yet but we do need
2197 	 * a valid L1 page table and PT2TAB table.
2198 	 *
2199 	 * Install shared kernel mappings to these tables. It's a little
2200 	 * tricky as some parts of KVA are reserved for vectors, devices,
2201 	 * and whatever else. These parts are supposed to be above
2202 	 * vm_max_kernel_address. Thus two regions should be installed:
2203 	 *
2204 	 *   (1) <KERNBASE, kernel_vm_end),
2205 	 *   (2) <vm_max_kernel_address, 0xFFFFFFFF>.
2206 	 *
2207 	 * QQQ: The second region should be stable enough to be installed
2208 	 *      only once in time when the tables are allocated.
2209 	 * QQQ: Maybe copy of both regions at once could be faster ...
2210 	 * QQQ: Maybe the other TTBR is an option.
2211 	 *
2212 	 * Finally, install own PT2TAB table to these tables.
2213 	 */
2214 
2215 	if (pmap->pm_pt1 == NULL) {
2216 		pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(NB_IN_PT1,
2217 		    M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0, pt_memattr);
2218 		if (pmap->pm_pt1 == NULL)
2219 			return (0);
2220 	}
2221 	if (pmap->pm_pt2tab == NULL) {
2222 		/*
2223 		 * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
2224 		 *      only, what should be the only size for 32 bit systems,
2225 		 *      then we could allocate it with vm_page_alloc() and all
2226 		 *      the stuff needed as other L2 page table pages.
2227 		 *      (2) Note that a process PT2TAB is special L2 page table
2228 		 *      page. Its mapping in kernel_arena is permanent and can
2229 		 *      be used no matter which process is current. Its mapping
2230 		 *      in PT2MAP can be used only for current process.
2231 		 */
2232 		pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(NB_IN_PT2TAB,
2233 		    M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
2234 		if (pmap->pm_pt2tab == NULL) {
2235 			/*
2236 			 * QQQ: As struct pmap is allocated from UMA with
2237 			 *      UMA_ZONE_NOFREE flag, it's important to leave
2238 			 *      no allocation in pmap if initialization failed.
2239 			 */
2240 			kmem_free((vm_offset_t)pmap->pm_pt1, NB_IN_PT1);
2241 			pmap->pm_pt1 = NULL;
2242 			return (0);
2243 		}
2244 		/*
2245 		 * QQQ: Each L2 page table page vm_page_t has pindex set to
2246 		 *      pte1 index of virtual address mapped by this page.
2247 		 *      It's not valid for non kernel PT2TABs themselves.
2248 		 *      The pindex of these pages can not be altered because
2249 		 *      of the way how they are allocated now. However, it
2250 		 *      should not be a problem.
2251 		 */
2252 	}
2253 
2254 	mtx_lock_spin(&allpmaps_lock);
2255 	/*
2256 	 * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
2257 	 * kernel_vm_end_new is used here instead of kernel_vm_end.
2258 	 */
2259 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
2260 	    kernel_vm_end_new - 1);
2261 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
2262 	    0xFFFFFFFF);
2263 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
2264 	    kernel_vm_end_new - 1);
2265 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
2266 	    0xFFFFFFFF);
2267 	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
2268 	mtx_unlock_spin(&allpmaps_lock);
2269 
2270 	/*
2271 	 * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
2272 	 * I.e. self reference mapping.  The PT2TAB is private, however mapped
2273 	 * into shared PT2MAP space, so the mapping should be not global.
2274 	 */
2275 	pt2tab_pa = vtophys(pmap->pm_pt2tab);
2276 	pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
2277 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
2278 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
2279 	}
2280 
2281 	/* Insert PT2MAP PT2s into pmap PT1. */
2282 	pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
2283 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
2284 		pte1_store(pte1p++, PTE1_LINK(pa));
2285 	}
2286 
2287 	/*
2288 	 * Now synchronize new mapping which was made above.
2289 	 */
2290 	pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
2291 	pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
2292 
2293 	CPU_ZERO(&pmap->pm_active);
2294 	TAILQ_INIT(&pmap->pm_pvchunk);
2295 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2296 
2297 	return (1);
2298 }
2299 
2300 #ifdef INVARIANTS
2301 static boolean_t
2302 pt2tab_user_is_empty(pt2_entry_t *tab)
2303 {
2304 	u_int i, end;
2305 
2306 	end = pt2tab_index(VM_MAXUSER_ADDRESS);
2307 	for (i = 0; i < end; i++)
2308 		if (tab[i] != 0) return (FALSE);
2309 	return (TRUE);
2310 }
2311 #endif
2312 /*
2313  *  Release any resources held by the given physical map.
2314  *  Called when a pmap initialized by pmap_pinit is being released.
2315  *  Should only be called if the map contains no valid mappings.
2316  */
2317 void
2318 pmap_release(pmap_t pmap)
2319 {
2320 #ifdef INVARIANTS
2321 	vm_offset_t start, end;
2322 #endif
2323 	KASSERT(pmap->pm_stats.resident_count == 0,
2324 	    ("%s: pmap resident count %ld != 0", __func__,
2325 	    pmap->pm_stats.resident_count));
2326 	KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
2327 	    ("%s: has allocated user PT2(s)", __func__));
2328 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2329 	    ("%s: pmap %p is active on some CPU(s)", __func__, pmap));
2330 
2331 	mtx_lock_spin(&allpmaps_lock);
2332 	LIST_REMOVE(pmap, pm_list);
2333 	mtx_unlock_spin(&allpmaps_lock);
2334 
2335 #ifdef INVARIANTS
2336 	start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
2337 	end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
2338 	bzero((char *)pmap->pm_pt1 + start, end - start);
2339 
2340 	start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
2341 	end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
2342 	bzero((char *)pmap->pm_pt2tab + start, end - start);
2343 #endif
2344 	/*
2345 	 * We are leaving PT1 and PT2TAB allocated on released pmap,
2346 	 * so hopefully UMA vmspace_zone will always be inited with
2347 	 * UMA_ZONE_NOFREE flag.
2348 	 */
2349 }
2350 
2351 /*********************************************************
2352  *
2353  *  L2 table pages and their pages management routines.
2354  *
2355  *********************************************************/
2356 
2357 /*
2358  *  Virtual interface for L2 page table wire counting.
2359  *
2360  *  Each L2 page table in a page has own counter which counts a number of
2361  *  valid mappings in a table. Global page counter counts mappings in all
2362  *  tables in a page plus a single itself mapping in PT2TAB.
2363  *
2364  *  During a promotion we leave the associated L2 page table counter
2365  *  untouched, so the table (strictly speaking a page which holds it)
2366  *  is never freed if promoted.
2367  *
2368  *  If a page m->ref_count == 1 then no valid mappings exist in any L2 page
2369  *  table in the page and the page itself is only mapped in PT2TAB.
2370  */
2371 
2372 static __inline void
2373 pt2_wirecount_init(vm_page_t m)
2374 {
2375 	u_int i;
2376 
2377 	/*
2378 	 * Note: A page m is allocated with VM_ALLOC_WIRED flag and
2379 	 *       m->ref_count should be already set correctly.
2380 	 *       So, there is no need to set it again herein.
2381 	 */
2382 	for (i = 0; i < NPT2_IN_PG; i++)
2383 		m->md.pt2_wirecount[i] = 0;
2384 }
2385 
2386 static __inline void
2387 pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
2388 {
2389 
2390 	/*
2391 	 * Note: A just modificated pte2 (i.e. already allocated)
2392 	 *       is acquiring one extra reference which must be
2393 	 *       explicitly cleared. It influences the KASSERTs herein.
2394 	 *       All L2 page tables in a page always belong to the same
2395 	 *       pmap, so we allow only one extra reference for the page.
2396 	 */
2397 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
2398 	    ("%s: PT2 is overflowing ...", __func__));
2399 	KASSERT(m->ref_count <= (NPTE2_IN_PG + 1),
2400 	    ("%s: PT2PG is overflowing ...", __func__));
2401 
2402 	m->ref_count++;
2403 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
2404 }
2405 
2406 static __inline void
2407 pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
2408 {
2409 
2410 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
2411 	    ("%s: PT2 is underflowing ...", __func__));
2412 	KASSERT(m->ref_count > 1,
2413 	    ("%s: PT2PG is underflowing ...", __func__));
2414 
2415 	m->ref_count--;
2416 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
2417 }
2418 
2419 static __inline void
2420 pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
2421 {
2422 
2423 	KASSERT(count <= NPTE2_IN_PT2,
2424 	    ("%s: invalid count %u", __func__, count));
2425 	KASSERT(m->ref_count >  m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
2426 	    ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->ref_count,
2427 	    m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
2428 
2429 	m->ref_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
2430 	m->ref_count += count;
2431 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
2432 
2433 	KASSERT(m->ref_count <= (NPTE2_IN_PG + 1),
2434 	    ("%s: PT2PG is overflowed (%u) ...", __func__, m->ref_count));
2435 }
2436 
2437 static __inline uint32_t
2438 pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
2439 {
2440 
2441 	return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
2442 }
2443 
2444 static __inline boolean_t
2445 pt2_is_empty(vm_page_t m, vm_offset_t va)
2446 {
2447 
2448 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
2449 }
2450 
2451 static __inline boolean_t
2452 pt2_is_full(vm_page_t m, vm_offset_t va)
2453 {
2454 
2455 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
2456 	    NPTE2_IN_PT2);
2457 }
2458 
2459 static __inline boolean_t
2460 pt2pg_is_empty(vm_page_t m)
2461 {
2462 
2463 	return (m->ref_count == 1);
2464 }
2465 
2466 /*
2467  *  This routine is called if the L2 page table
2468  *  is not mapped correctly.
2469  */
2470 static vm_page_t
2471 _pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2472 {
2473 	uint32_t pte1_idx;
2474 	pt1_entry_t *pte1p;
2475 	pt2_entry_t pte2;
2476 	vm_page_t  m;
2477 	vm_paddr_t pt2pg_pa, pt2_pa;
2478 
2479 	pte1_idx = pte1_index(va);
2480 	pte1p = pmap->pm_pt1 + pte1_idx;
2481 
2482 	KASSERT(pte1_load(pte1p) == 0,
2483 	    ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
2484 	    pte1_load(pte1p)));
2485 
2486 	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
2487 	if (!pte2_is_valid(pte2)) {
2488 		/*
2489 		 * Install new PT2s page into pmap PT2TAB.
2490 		 */
2491 		m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK,
2492 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2493 		if (m == NULL) {
2494 			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2495 				PMAP_UNLOCK(pmap);
2496 				rw_wunlock(&pvh_global_lock);
2497 				vm_wait(NULL);
2498 				rw_wlock(&pvh_global_lock);
2499 				PMAP_LOCK(pmap);
2500 			}
2501 
2502 			/*
2503 			 * Indicate the need to retry.  While waiting,
2504 			 * the L2 page table page may have been allocated.
2505 			 */
2506 			return (NULL);
2507 		}
2508 		pmap->pm_stats.resident_count++;
2509 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
2510 	} else {
2511 		pt2pg_pa = pte2_pa(pte2);
2512 		m = PHYS_TO_VM_PAGE(pt2pg_pa);
2513 	}
2514 
2515 	pt2_wirecount_inc(m, pte1_idx);
2516 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
2517 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
2518 
2519 	return (m);
2520 }
2521 
2522 static vm_page_t
2523 pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2524 {
2525 	u_int pte1_idx;
2526 	pt1_entry_t *pte1p, pte1;
2527 	vm_page_t m;
2528 
2529 	pte1_idx = pte1_index(va);
2530 retry:
2531 	pte1p = pmap->pm_pt1 + pte1_idx;
2532 	pte1 = pte1_load(pte1p);
2533 
2534 	/*
2535 	 * This supports switching from a 1MB page to a
2536 	 * normal 4K page.
2537 	 */
2538 	if (pte1_is_section(pte1)) {
2539 		(void)pmap_demote_pte1(pmap, pte1p, va);
2540 		/*
2541 		 * Reload pte1 after demotion.
2542 		 *
2543 		 * Note: Demotion can even fail as either PT2 is not find for
2544 		 *       the virtual address or PT2PG can not be allocated.
2545 		 */
2546 		pte1 = pte1_load(pte1p);
2547 	}
2548 
2549 	/*
2550 	 * If the L2 page table page is mapped, we just increment the
2551 	 * hold count, and activate it.
2552 	 */
2553 	if (pte1_is_link(pte1)) {
2554 		m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2555 		pt2_wirecount_inc(m, pte1_idx);
2556 	} else  {
2557 		/*
2558 		 * Here if the PT2 isn't mapped, or if it has
2559 		 * been deallocated.
2560 		 */
2561 		m = _pmap_allocpte2(pmap, va, flags);
2562 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2563 			goto retry;
2564 	}
2565 
2566 	return (m);
2567 }
2568 
2569 /*
2570  *  Schedule the specified unused L2 page table page to be freed. Specifically,
2571  *  add the page to the specified list of pages that will be released to the
2572  *  physical memory manager after the TLB has been updated.
2573  */
2574 static __inline void
2575 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
2576 {
2577 
2578 	/*
2579 	 * Put page on a list so that it is released after
2580 	 * *ALL* TLB shootdown is done
2581 	 */
2582 #ifdef PMAP_DEBUG
2583 	pmap_zero_page_check(m);
2584 #endif
2585 	m->flags |= PG_ZERO;
2586 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2587 }
2588 
2589 /*
2590  *  Unwire L2 page tables page.
2591  */
2592 static void
2593 pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
2594 {
2595 	pt1_entry_t *pte1p, opte1 __unused;
2596 	pt2_entry_t *pte2p;
2597 	uint32_t i;
2598 
2599 	KASSERT(pt2pg_is_empty(m),
2600 	    ("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
2601 
2602 	/*
2603 	 * Unmap all L2 page tables in the page from L1 page table.
2604 	 *
2605 	 * QQQ: Individual L2 page tables (except the last one) can be unmapped
2606 	 * earlier. However, we are doing that this way.
2607 	 */
2608 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
2609 	    ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
2610 	pte1p = pmap->pm_pt1 + m->pindex;
2611 	for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
2612 		KASSERT(m->md.pt2_wirecount[i] == 0,
2613 		    ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
2614 		opte1 = pte1_load(pte1p);
2615 		if (pte1_is_link(opte1)) {
2616 			pte1_clear(pte1p);
2617 			/*
2618 			 * Flush intermediate TLB cache.
2619 			 */
2620 			pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
2621 		}
2622 #ifdef INVARIANTS
2623 		else
2624 			KASSERT((opte1 == 0) || pte1_is_section(opte1),
2625 			    ("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
2626 			    pmap, va, opte1, i));
2627 #endif
2628 	}
2629 
2630 	/*
2631 	 * Unmap the page from PT2TAB.
2632 	 */
2633 	pte2p = pmap_pt2tab_entry(pmap, va);
2634 	(void)pt2tab_load_clear(pte2p);
2635 	pmap_tlb_flush(pmap, pt2map_pt2pg(va));
2636 
2637 	m->ref_count = 0;
2638 	pmap->pm_stats.resident_count--;
2639 
2640 	/*
2641 	 * This barrier is so that the ordinary store unmapping
2642 	 * the L2 page table page is globally performed before TLB shoot-
2643 	 * down is begun.
2644 	 */
2645 	wmb();
2646 	vm_wire_sub(1);
2647 }
2648 
2649 /*
2650  *  Decrements a L2 page table page's wire count, which is used to record the
2651  *  number of valid page table entries within the page.  If the wire count
2652  *  drops to zero, then the page table page is unmapped.  Returns TRUE if the
2653  *  page table page was unmapped and FALSE otherwise.
2654  */
2655 static __inline boolean_t
2656 pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2657 {
2658 	pt2_wirecount_dec(m, pte1_index(va));
2659 	if (pt2pg_is_empty(m)) {
2660 		/*
2661 		 * QQQ: Wire count is zero, so whole page should be zero and
2662 		 *      we can set PG_ZERO flag to it.
2663 		 *      Note that when promotion is enabled, it takes some
2664 		 *      more efforts. See pmap_unwire_pt2_all() below.
2665 		 */
2666 		pmap_unwire_pt2pg(pmap, va, m);
2667 		pmap_add_delayed_free_list(m, free);
2668 		return (TRUE);
2669 	} else
2670 		return (FALSE);
2671 }
2672 
2673 /*
2674  *  Drop a L2 page table page's wire count at once, which is used to record
2675  *  the number of valid L2 page table entries within the page. If the wire
2676  *  count drops to zero, then the L2 page table page is unmapped.
2677  */
2678 static __inline void
2679 pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
2680     struct spglist *free)
2681 {
2682 	u_int pte1_idx = pte1_index(va);
2683 
2684 	KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
2685 		("%s: PT2 page's pindex is wrong", __func__));
2686 	KASSERT(m->ref_count > pt2_wirecount_get(m, pte1_idx),
2687 	    ("%s: bad pt2 wire count %u > %u", __func__, m->ref_count,
2688 	    pt2_wirecount_get(m, pte1_idx)));
2689 
2690 	/*
2691 	 * It's possible that the L2 page table was never used.
2692 	 * It happened in case that a section was created without promotion.
2693 	 */
2694 	if (pt2_is_full(m, va)) {
2695 		pt2_wirecount_set(m, pte1_idx, 0);
2696 
2697 		/*
2698 		 * QQQ: We clear L2 page table now, so when L2 page table page
2699 		 *      is going to be freed, we can set it PG_ZERO flag ...
2700 		 *      This function is called only on section mappings, so
2701 		 *      hopefully it's not to big overload.
2702 		 *
2703 		 * XXX: If pmap is current, existing PT2MAP mapping could be
2704 		 *      used for zeroing.
2705 		 */
2706 		pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
2707 	}
2708 #ifdef INVARIANTS
2709 	else
2710 		KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
2711 		    __func__, pt2_wirecount_get(m, pte1_idx)));
2712 #endif
2713 	if (pt2pg_is_empty(m)) {
2714 		pmap_unwire_pt2pg(pmap, va, m);
2715 		pmap_add_delayed_free_list(m, free);
2716 	}
2717 }
2718 
2719 /*
2720  *  After removing a L2 page table entry, this routine is used to
2721  *  conditionally free the page, and manage the hold/wire counts.
2722  */
2723 static boolean_t
2724 pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
2725 {
2726 	pt1_entry_t pte1;
2727 	vm_page_t mpte;
2728 
2729 	if (va >= VM_MAXUSER_ADDRESS)
2730 		return (FALSE);
2731 	pte1 = pte1_load(pmap_pte1(pmap, va));
2732 	mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2733 	return (pmap_unwire_pt2(pmap, va, mpte, free));
2734 }
2735 
2736 /*************************************
2737  *
2738  *  Page management routines.
2739  *
2740  *************************************/
2741 
2742 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2743 CTASSERT(_NPCM == 11);
2744 CTASSERT(_NPCPV == 336);
2745 
2746 static __inline struct pv_chunk *
2747 pv_to_chunk(pv_entry_t pv)
2748 {
2749 
2750 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2751 }
2752 
2753 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2754 
2755 #define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2756 #define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2757 
2758 static const uint32_t pc_freemask[_NPCM] = {
2759 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2760 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2761 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2762 	PC_FREE0_9, PC_FREE10
2763 };
2764 
2765 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2766 	"Current number of pv entries");
2767 
2768 #ifdef PV_STATS
2769 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2770 
2771 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2772     "Current number of pv entry chunks");
2773 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2774     "Current number of pv entry chunks allocated");
2775 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2776     "Current number of pv entry chunks frees");
2777 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
2778     0, "Number of times tried to get a chunk page but failed.");
2779 
2780 static long pv_entry_frees, pv_entry_allocs;
2781 static int pv_entry_spare;
2782 
2783 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2784     "Current number of pv entry frees");
2785 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
2786     0, "Current number of pv entry allocs");
2787 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2788     "Current number of spare pv entries");
2789 #endif
2790 
2791 /*
2792  *  Is given page managed?
2793  */
2794 static __inline bool
2795 is_managed(vm_paddr_t pa)
2796 {
2797 	vm_page_t m;
2798 
2799 	m = PHYS_TO_VM_PAGE(pa);
2800 	if (m == NULL)
2801 		return (false);
2802 	return ((m->oflags & VPO_UNMANAGED) == 0);
2803 }
2804 
2805 static __inline bool
2806 pte1_is_managed(pt1_entry_t pte1)
2807 {
2808 
2809 	return (is_managed(pte1_pa(pte1)));
2810 }
2811 
2812 static __inline bool
2813 pte2_is_managed(pt2_entry_t pte2)
2814 {
2815 
2816 	return (is_managed(pte2_pa(pte2)));
2817 }
2818 
2819 /*
2820  *  We are in a serious low memory condition.  Resort to
2821  *  drastic measures to free some pages so we can allocate
2822  *  another pv entry chunk.
2823  */
2824 static vm_page_t
2825 pmap_pv_reclaim(pmap_t locked_pmap)
2826 {
2827 	struct pch newtail;
2828 	struct pv_chunk *pc;
2829 	struct md_page *pvh;
2830 	pt1_entry_t *pte1p;
2831 	pmap_t pmap;
2832 	pt2_entry_t *pte2p, tpte2;
2833 	pv_entry_t pv;
2834 	vm_offset_t va;
2835 	vm_page_t m, m_pc;
2836 	struct spglist free;
2837 	uint32_t inuse;
2838 	int bit, field, freed;
2839 
2840 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2841 	pmap = NULL;
2842 	m_pc = NULL;
2843 	SLIST_INIT(&free);
2844 	TAILQ_INIT(&newtail);
2845 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2846 	    SLIST_EMPTY(&free))) {
2847 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2848 		if (pmap != pc->pc_pmap) {
2849 			if (pmap != NULL) {
2850 				if (pmap != locked_pmap)
2851 					PMAP_UNLOCK(pmap);
2852 			}
2853 			pmap = pc->pc_pmap;
2854 			/* Avoid deadlock and lock recursion. */
2855 			if (pmap > locked_pmap)
2856 				PMAP_LOCK(pmap);
2857 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2858 				pmap = NULL;
2859 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2860 				continue;
2861 			}
2862 		}
2863 
2864 		/*
2865 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2866 		 */
2867 		freed = 0;
2868 		for (field = 0; field < _NPCM; field++) {
2869 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2870 			    inuse != 0; inuse &= ~(1UL << bit)) {
2871 				bit = ffs(inuse) - 1;
2872 				pv = &pc->pc_pventry[field * 32 + bit];
2873 				va = pv->pv_va;
2874 				pte1p = pmap_pte1(pmap, va);
2875 				if (pte1_is_section(pte1_load(pte1p)))
2876 					continue;
2877 				pte2p = pmap_pte2(pmap, va);
2878 				tpte2 = pte2_load(pte2p);
2879 				if ((tpte2 & PTE2_W) == 0)
2880 					tpte2 = pte2_load_clear(pte2p);
2881 				pmap_pte2_release(pte2p);
2882 				if ((tpte2 & PTE2_W) != 0)
2883 					continue;
2884 				KASSERT(tpte2 != 0,
2885 				    ("pmap_pv_reclaim: pmap %p va %#x zero pte",
2886 				    pmap, va));
2887 				pmap_tlb_flush(pmap, va);
2888 				m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
2889 				if (pte2_is_dirty(tpte2))
2890 					vm_page_dirty(m);
2891 				if ((tpte2 & PTE2_A) != 0)
2892 					vm_page_aflag_set(m, PGA_REFERENCED);
2893 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2894 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2895 				    (m->flags & PG_FICTITIOUS) == 0) {
2896 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2897 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2898 						vm_page_aflag_clear(m,
2899 						    PGA_WRITEABLE);
2900 					}
2901 				}
2902 				pc->pc_map[field] |= 1UL << bit;
2903 				pmap_unuse_pt2(pmap, va, &free);
2904 				freed++;
2905 			}
2906 		}
2907 		if (freed == 0) {
2908 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2909 			continue;
2910 		}
2911 		/* Every freed mapping is for a 4 KB page. */
2912 		pmap->pm_stats.resident_count -= freed;
2913 		PV_STAT(pv_entry_frees += freed);
2914 		PV_STAT(pv_entry_spare += freed);
2915 		pv_entry_count -= freed;
2916 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2917 		for (field = 0; field < _NPCM; field++)
2918 			if (pc->pc_map[field] != pc_freemask[field]) {
2919 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2920 				    pc_list);
2921 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2922 
2923 				/*
2924 				 * One freed pv entry in locked_pmap is
2925 				 * sufficient.
2926 				 */
2927 				if (pmap == locked_pmap)
2928 					goto out;
2929 				break;
2930 			}
2931 		if (field == _NPCM) {
2932 			PV_STAT(pv_entry_spare -= _NPCPV);
2933 			PV_STAT(pc_chunk_count--);
2934 			PV_STAT(pc_chunk_frees++);
2935 			/* Entire chunk is free; return it. */
2936 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2937 			pmap_qremove((vm_offset_t)pc, 1);
2938 			pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2939 			break;
2940 		}
2941 	}
2942 out:
2943 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2944 	if (pmap != NULL) {
2945 		if (pmap != locked_pmap)
2946 			PMAP_UNLOCK(pmap);
2947 	}
2948 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2949 		m_pc = SLIST_FIRST(&free);
2950 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2951 		/* Recycle a freed page table page. */
2952 		m_pc->ref_count = 1;
2953 		vm_wire_add(1);
2954 	}
2955 	vm_page_free_pages_toq(&free, false);
2956 	return (m_pc);
2957 }
2958 
2959 static void
2960 free_pv_chunk(struct pv_chunk *pc)
2961 {
2962 	vm_page_t m;
2963 
2964 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2965 	PV_STAT(pv_entry_spare -= _NPCPV);
2966 	PV_STAT(pc_chunk_count--);
2967 	PV_STAT(pc_chunk_frees++);
2968 	/* entire chunk is free, return it */
2969 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2970 	pmap_qremove((vm_offset_t)pc, 1);
2971 	vm_page_unwire_noq(m);
2972 	vm_page_free(m);
2973 	pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2974 }
2975 
2976 /*
2977  *  Free the pv_entry back to the free list.
2978  */
2979 static void
2980 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2981 {
2982 	struct pv_chunk *pc;
2983 	int idx, field, bit;
2984 
2985 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2986 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2987 	PV_STAT(pv_entry_frees++);
2988 	PV_STAT(pv_entry_spare++);
2989 	pv_entry_count--;
2990 	pc = pv_to_chunk(pv);
2991 	idx = pv - &pc->pc_pventry[0];
2992 	field = idx / 32;
2993 	bit = idx % 32;
2994 	pc->pc_map[field] |= 1ul << bit;
2995 	for (idx = 0; idx < _NPCM; idx++)
2996 		if (pc->pc_map[idx] != pc_freemask[idx]) {
2997 			/*
2998 			 * 98% of the time, pc is already at the head of the
2999 			 * list.  If it isn't already, move it to the head.
3000 			 */
3001 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
3002 			    pc)) {
3003 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3004 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
3005 				    pc_list);
3006 			}
3007 			return;
3008 		}
3009 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3010 	free_pv_chunk(pc);
3011 }
3012 
3013 /*
3014  *  Get a new pv_entry, allocating a block from the system
3015  *  when needed.
3016  */
3017 static pv_entry_t
3018 get_pv_entry(pmap_t pmap, boolean_t try)
3019 {
3020 	static const struct timeval printinterval = { 60, 0 };
3021 	static struct timeval lastprint;
3022 	int bit, field;
3023 	pv_entry_t pv;
3024 	struct pv_chunk *pc;
3025 	vm_page_t m;
3026 
3027 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3028 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3029 	PV_STAT(pv_entry_allocs++);
3030 	pv_entry_count++;
3031 	if (pv_entry_count > pv_entry_high_water)
3032 		if (ratecheck(&lastprint, &printinterval))
3033 			printf("Approaching the limit on PV entries, consider "
3034 			    "increasing either the vm.pmap.shpgperproc or the "
3035 			    "vm.pmap.pv_entries tunable.\n");
3036 retry:
3037 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3038 	if (pc != NULL) {
3039 		for (field = 0; field < _NPCM; field++) {
3040 			if (pc->pc_map[field]) {
3041 				bit = ffs(pc->pc_map[field]) - 1;
3042 				break;
3043 			}
3044 		}
3045 		if (field < _NPCM) {
3046 			pv = &pc->pc_pventry[field * 32 + bit];
3047 			pc->pc_map[field] &= ~(1ul << bit);
3048 			/* If this was the last item, move it to tail */
3049 			for (field = 0; field < _NPCM; field++)
3050 				if (pc->pc_map[field] != 0) {
3051 					PV_STAT(pv_entry_spare--);
3052 					return (pv);	/* not full, return */
3053 				}
3054 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3055 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3056 			PV_STAT(pv_entry_spare--);
3057 			return (pv);
3058 		}
3059 	}
3060 	/*
3061 	 * Access to the pte2list "pv_vafree" is synchronized by the pvh
3062 	 * global lock.  If "pv_vafree" is currently non-empty, it will
3063 	 * remain non-empty until pmap_pte2list_alloc() completes.
3064 	 */
3065 	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
3066 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
3067 		if (try) {
3068 			pv_entry_count--;
3069 			PV_STAT(pc_chunk_tryfail++);
3070 			return (NULL);
3071 		}
3072 		m = pmap_pv_reclaim(pmap);
3073 		if (m == NULL)
3074 			goto retry;
3075 	}
3076 	PV_STAT(pc_chunk_count++);
3077 	PV_STAT(pc_chunk_allocs++);
3078 	pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
3079 	pmap_qenter((vm_offset_t)pc, &m, 1);
3080 	pc->pc_pmap = pmap;
3081 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
3082 	for (field = 1; field < _NPCM; field++)
3083 		pc->pc_map[field] = pc_freemask[field];
3084 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3085 	pv = &pc->pc_pventry[0];
3086 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3087 	PV_STAT(pv_entry_spare += _NPCPV - 1);
3088 	return (pv);
3089 }
3090 
3091 /*
3092  *  Create a pv entry for page at pa for
3093  *  (pmap, va).
3094  */
3095 static void
3096 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3097 {
3098 	pv_entry_t pv;
3099 
3100 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3101 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3102 	pv = get_pv_entry(pmap, FALSE);
3103 	pv->pv_va = va;
3104 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3105 }
3106 
3107 static __inline pv_entry_t
3108 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3109 {
3110 	pv_entry_t pv;
3111 
3112 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3113 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3114 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3115 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3116 			break;
3117 		}
3118 	}
3119 	return (pv);
3120 }
3121 
3122 static void
3123 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3124 {
3125 	pv_entry_t pv;
3126 
3127 	pv = pmap_pvh_remove(pvh, pmap, va);
3128 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3129 	free_pv_entry(pmap, pv);
3130 }
3131 
3132 static void
3133 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
3134 {
3135 	struct md_page *pvh;
3136 
3137 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3138 	pmap_pvh_free(&m->md, pmap, va);
3139 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
3140 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3141 		if (TAILQ_EMPTY(&pvh->pv_list))
3142 			vm_page_aflag_clear(m, PGA_WRITEABLE);
3143 	}
3144 }
3145 
3146 static void
3147 pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3148 {
3149 	struct md_page *pvh;
3150 	pv_entry_t pv;
3151 	vm_offset_t va_last;
3152 	vm_page_t m;
3153 
3154 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3155 	KASSERT((pa & PTE1_OFFSET) == 0,
3156 	    ("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
3157 
3158 	/*
3159 	 * Transfer the 1mpage's pv entry for this mapping to the first
3160 	 * page's pv list.
3161 	 */
3162 	pvh = pa_to_pvh(pa);
3163 	va = pte1_trunc(va);
3164 	pv = pmap_pvh_remove(pvh, pmap, va);
3165 	KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
3166 	m = PHYS_TO_VM_PAGE(pa);
3167 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3168 	/* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
3169 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3170 	do {
3171 		m++;
3172 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3173 		    ("pmap_pv_demote_pte1: page %p is not managed", m));
3174 		va += PAGE_SIZE;
3175 		pmap_insert_entry(pmap, va, m);
3176 	} while (va < va_last);
3177 }
3178 
3179 #if VM_NRESERVLEVEL > 0
3180 static void
3181 pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3182 {
3183 	struct md_page *pvh;
3184 	pv_entry_t pv;
3185 	vm_offset_t va_last;
3186 	vm_page_t m;
3187 
3188 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3189 	KASSERT((pa & PTE1_OFFSET) == 0,
3190 	    ("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
3191 
3192 	/*
3193 	 * Transfer the first page's pv entry for this mapping to the
3194 	 * 1mpage's pv list.  Aside from avoiding the cost of a call
3195 	 * to get_pv_entry(), a transfer avoids the possibility that
3196 	 * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
3197 	 * removes one of the mappings that is being promoted.
3198 	 */
3199 	m = PHYS_TO_VM_PAGE(pa);
3200 	va = pte1_trunc(va);
3201 	pv = pmap_pvh_remove(&m->md, pmap, va);
3202 	KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
3203 	pvh = pa_to_pvh(pa);
3204 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3205 	/* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
3206 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3207 	do {
3208 		m++;
3209 		va += PAGE_SIZE;
3210 		pmap_pvh_free(&m->md, pmap, va);
3211 	} while (va < va_last);
3212 }
3213 #endif
3214 
3215 /*
3216  *  Conditionally create a pv entry.
3217  */
3218 static boolean_t
3219 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3220 {
3221 	pv_entry_t pv;
3222 
3223 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3224 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3225 	if (pv_entry_count < pv_entry_high_water &&
3226 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3227 		pv->pv_va = va;
3228 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3229 		return (TRUE);
3230 	} else
3231 		return (FALSE);
3232 }
3233 
3234 /*
3235  *  Create the pv entries for each of the pages within a section.
3236  */
3237 static bool
3238 pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags)
3239 {
3240 	struct md_page *pvh;
3241 	pv_entry_t pv;
3242 	bool noreclaim;
3243 
3244 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3245 	noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
3246 	if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
3247 	    (pv = get_pv_entry(pmap, noreclaim)) == NULL)
3248 		return (false);
3249 	pv->pv_va = va;
3250 	pvh = pa_to_pvh(pte1_pa(pte1));
3251 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3252 	return (true);
3253 }
3254 
3255 static inline void
3256 pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
3257 {
3258 
3259 	/* Kill all the small mappings or the big one only. */
3260 	if (pte1_is_section(npte1))
3261 		pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
3262 	else
3263 		pmap_tlb_flush(pmap, pte1_trunc(va));
3264 }
3265 
3266 /*
3267  *  Update kernel pte1 on all pmaps.
3268  *
3269  *  The following function is called only on one cpu with disabled interrupts.
3270  *  In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
3271  *  nobody can invoke explicit hardware table walk during the update of pte1.
3272  *  Unsolicited hardware table walk can still happen, invoked by speculative
3273  *  data or instruction prefetch or even by speculative hardware table walk.
3274  *
3275  *  The break-before-make approach should be implemented here. However, it's
3276  *  not so easy to do that for kernel mappings as it would be unhappy to unmap
3277  *  itself unexpectedly but voluntarily.
3278  */
3279 static void
3280 pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
3281 {
3282 	pmap_t pmap;
3283 	pt1_entry_t *pte1p;
3284 
3285 	/*
3286 	 * Get current pmap. Interrupts should be disabled here
3287 	 * so PCPU_GET() is done atomically.
3288 	 */
3289 	pmap = PCPU_GET(curpmap);
3290 	if (pmap == NULL)
3291 		pmap = kernel_pmap;
3292 
3293 	/*
3294 	 * (1) Change pte1 on current pmap.
3295 	 * (2) Flush all obsolete TLB entries on current CPU.
3296 	 * (3) Change pte1 on all pmaps.
3297 	 * (4) Flush all obsolete TLB entries on all CPUs in SMP case.
3298 	 */
3299 
3300 	pte1p = pmap_pte1(pmap, va);
3301 	pte1_store(pte1p, npte1);
3302 
3303 	/* Kill all the small mappings or the big one only. */
3304 	if (pte1_is_section(npte1)) {
3305 		pmap_pte1_kern_promotions++;
3306 		tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
3307 	} else {
3308 		pmap_pte1_kern_demotions++;
3309 		tlb_flush_local(pte1_trunc(va));
3310 	}
3311 
3312 	/*
3313 	 * In SMP case, this function is called when all cpus are at smp
3314 	 * rendezvous, so there is no need to use 'allpmaps_lock' lock here.
3315 	 * In UP case, the function is called with this lock locked.
3316 	 */
3317 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
3318 		pte1p = pmap_pte1(pmap, va);
3319 		pte1_store(pte1p, npte1);
3320 	}
3321 
3322 #ifdef SMP
3323 	/* Kill all the small mappings or the big one only. */
3324 	if (pte1_is_section(npte1))
3325 		tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
3326 	else
3327 		tlb_flush(pte1_trunc(va));
3328 #endif
3329 }
3330 
3331 #ifdef SMP
3332 struct pte1_action {
3333 	vm_offset_t va;
3334 	pt1_entry_t npte1;
3335 	u_int update;		/* CPU that updates the PTE1 */
3336 };
3337 
3338 static void
3339 pmap_update_pte1_action(void *arg)
3340 {
3341 	struct pte1_action *act = arg;
3342 
3343 	if (act->update == PCPU_GET(cpuid))
3344 		pmap_update_pte1_kernel(act->va, act->npte1);
3345 }
3346 
3347 /*
3348  *  Change pte1 on current pmap.
3349  *  Note that kernel pte1 must be changed on all pmaps.
3350  *
3351  *  According to the architecture reference manual published by ARM,
3352  *  the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
3353  *  According to this manual, UNPREDICTABLE behaviours must never happen in
3354  *  a viable system. In contrast, on x86 processors, it is not specified which
3355  *  TLB entry mapping the virtual address will be used, but the MMU doesn't
3356  *  generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
3357  *  Black).
3358  *
3359  *  It's a problem when either promotion or demotion is being done. The pte1
3360  *  update and appropriate TLB flush must be done atomically in general.
3361  */
3362 static void
3363 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3364     pt1_entry_t npte1)
3365 {
3366 
3367 	if (pmap == kernel_pmap) {
3368 		struct pte1_action act;
3369 
3370 		sched_pin();
3371 		act.va = va;
3372 		act.npte1 = npte1;
3373 		act.update = PCPU_GET(cpuid);
3374 		smp_rendezvous_cpus(all_cpus, smp_no_rendezvous_barrier,
3375 		    pmap_update_pte1_action, NULL, &act);
3376 		sched_unpin();
3377 	} else {
3378 		register_t cspr;
3379 
3380 		/*
3381 		 * Use break-before-make approach for changing userland
3382 		 * mappings. It can cause L1 translation aborts on other
3383 		 * cores in SMP case. So, special treatment is implemented
3384 		 * in pmap_fault(). To reduce the likelihood that another core
3385 		 * will be affected by the broken mapping, disable interrupts
3386 		 * until the mapping change is completed.
3387 		 */
3388 		cspr = disable_interrupts(PSR_I | PSR_F);
3389 		pte1_clear(pte1p);
3390 		pmap_tlb_flush_pte1(pmap, va, npte1);
3391 		pte1_store(pte1p, npte1);
3392 		restore_interrupts(cspr);
3393 	}
3394 }
3395 #else
3396 static void
3397 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3398     pt1_entry_t npte1)
3399 {
3400 
3401 	if (pmap == kernel_pmap) {
3402 		mtx_lock_spin(&allpmaps_lock);
3403 		pmap_update_pte1_kernel(va, npte1);
3404 		mtx_unlock_spin(&allpmaps_lock);
3405 	} else {
3406 		register_t cspr;
3407 
3408 		/*
3409 		 * Use break-before-make approach for changing userland
3410 		 * mappings. It's absolutely safe in UP case when interrupts
3411 		 * are disabled.
3412 		 */
3413 		cspr = disable_interrupts(PSR_I | PSR_F);
3414 		pte1_clear(pte1p);
3415 		pmap_tlb_flush_pte1(pmap, va, npte1);
3416 		pte1_store(pte1p, npte1);
3417 		restore_interrupts(cspr);
3418 	}
3419 }
3420 #endif
3421 
3422 #if VM_NRESERVLEVEL > 0
3423 /*
3424  *  Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
3425  *  within a single page table page (PT2) to a single 1MB page mapping.
3426  *  For promotion to occur, two conditions must be met: (1) the 4KB page
3427  *  mappings must map aligned, contiguous physical memory and (2) the 4KB page
3428  *  mappings must have identical characteristics.
3429  *
3430  *  Managed (PG_MANAGED) mappings within the kernel address space are not
3431  *  promoted.  The reason is that kernel PTE1s are replicated in each pmap but
3432  *  pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
3433  *  read the PTE1 from the kernel pmap.
3434  */
3435 static void
3436 pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3437 {
3438 	pt1_entry_t npte1;
3439 	pt2_entry_t *fpte2p, fpte2, fpte2_fav;
3440 	pt2_entry_t *pte2p, pte2;
3441 	vm_offset_t pteva __unused;
3442 	vm_page_t m __unused;
3443 
3444 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3445 	    pmap, va, pte1_load(pte1p), pte1p));
3446 
3447 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3448 
3449 	/*
3450 	 * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
3451 	 * either invalid, unused, or does not map the first 4KB physical page
3452 	 * within a 1MB page.
3453 	 */
3454 	fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
3455 	fpte2 = pte2_load(fpte2p);
3456 	if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
3457 	    (PTE2_A | PTE2_V)) {
3458 		pmap_pte1_p_failures++;
3459 		CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
3460 		    __func__, va, pmap);
3461 		return;
3462 	}
3463 	if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
3464 		pmap_pte1_p_failures++;
3465 		CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
3466 		    __func__, va, pmap);
3467 		return;
3468 	}
3469 	if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3470 		/*
3471 		 * When page is not modified, PTE2_RO can be set without
3472 		 * a TLB invalidation.
3473 		 */
3474 		fpte2 |= PTE2_RO;
3475 		pte2_store(fpte2p, fpte2);
3476 	}
3477 
3478 	/*
3479 	 * Examine each of the other PTE2s in the specified PT2. Abort if this
3480 	 * PTE2 maps an unexpected 4KB physical page or does not have identical
3481 	 * characteristics to the first PTE2.
3482 	 */
3483 	fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
3484 	fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
3485 	for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
3486 		pte2 = pte2_load(pte2p);
3487 		if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
3488 			pmap_pte1_p_failures++;
3489 			CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
3490 			    __func__, va, pmap);
3491 			return;
3492 		}
3493 		if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3494 			/*
3495 			 * When page is not modified, PTE2_RO can be set
3496 			 * without a TLB invalidation. See note above.
3497 			 */
3498 			pte2 |= PTE2_RO;
3499 			pte2_store(pte2p, pte2);
3500 			pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
3501 			    PTE2_FRAME);
3502 			CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
3503 			    __func__, pteva, pmap);
3504 		}
3505 		if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
3506 			pmap_pte1_p_failures++;
3507 			CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
3508 			    __func__, va, pmap);
3509 			return;
3510 		}
3511 
3512 		fpte2_fav -= PTE2_SIZE;
3513 	}
3514 	/*
3515 	 * The page table page in its current state will stay in PT2TAB
3516 	 * until the PTE1 mapping the section is demoted by pmap_demote_pte1()
3517 	 * or destroyed by pmap_remove_pte1().
3518 	 *
3519 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3520 	 */
3521 	m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
3522 	KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
3523 	    ("%s: PT2 page is out of range", __func__));
3524 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
3525 	    ("%s: PT2 page's pindex is wrong", __func__));
3526 
3527 	/*
3528 	 * Get pte1 from pte2 format.
3529 	 */
3530 	npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
3531 
3532 	/*
3533 	 * Promote the pv entries.
3534 	 */
3535 	if (pte2_is_managed(fpte2))
3536 		pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
3537 
3538 	/*
3539 	 * Promote the mappings.
3540 	 */
3541 	pmap_change_pte1(pmap, pte1p, va, npte1);
3542 
3543 	pmap_pte1_promotions++;
3544 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3545 	    __func__, va, pmap);
3546 
3547 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3548 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3549 }
3550 #endif /* VM_NRESERVLEVEL > 0 */
3551 
3552 /*
3553  *  Zero L2 page table page.
3554  */
3555 static __inline void
3556 pmap_clear_pt2(pt2_entry_t *fpte2p)
3557 {
3558 	pt2_entry_t *pte2p;
3559 
3560 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
3561 		pte2_clear(pte2p);
3562 
3563 }
3564 
3565 /*
3566  *  Removes a 1MB page mapping from the kernel pmap.
3567  */
3568 static void
3569 pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3570 {
3571 	vm_page_t m;
3572 	uint32_t pte1_idx;
3573 	pt2_entry_t *fpte2p;
3574 	vm_paddr_t pt2_pa;
3575 
3576 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3577 	m = pmap_pt2_page(pmap, va);
3578 	if (m == NULL)
3579 		/*
3580 		 * QQQ: Is this function called only on promoted pte1?
3581 		 *      We certainly do section mappings directly
3582 		 *      (without promotion) in kernel !!!
3583 		 */
3584 		panic("%s: missing pt2 page", __func__);
3585 
3586 	pte1_idx = pte1_index(va);
3587 
3588 	/*
3589 	 * Initialize the L2 page table.
3590 	 */
3591 	fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3592 	pmap_clear_pt2(fpte2p);
3593 
3594 	/*
3595 	 * Remove the mapping.
3596 	 */
3597 	pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
3598 	pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
3599 
3600 	/*
3601 	 * QQQ: We do not need to invalidate PT2MAP mapping
3602 	 * as we did not change it. I.e. the L2 page table page
3603 	 * was and still is mapped the same way.
3604 	 */
3605 }
3606 
3607 /*
3608  *  Do the things to unmap a section in a process
3609  */
3610 static void
3611 pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
3612     struct spglist *free)
3613 {
3614 	pt1_entry_t opte1;
3615 	struct md_page *pvh;
3616 	vm_offset_t eva, va;
3617 	vm_page_t m;
3618 
3619 	PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
3620 	    pte1_load(pte1p), pte1p));
3621 
3622 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3623 	KASSERT((sva & PTE1_OFFSET) == 0,
3624 	    ("%s: sva is not 1mpage aligned", __func__));
3625 
3626 	/*
3627 	 * Clear and invalidate the mapping. It should occupy one and only TLB
3628 	 * entry. So, pmap_tlb_flush() called with aligned address should be
3629 	 * sufficient.
3630 	 */
3631 	opte1 = pte1_load_clear(pte1p);
3632 	pmap_tlb_flush(pmap, sva);
3633 
3634 	if (pte1_is_wired(opte1))
3635 		pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
3636 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
3637 	if (pte1_is_managed(opte1)) {
3638 		pvh = pa_to_pvh(pte1_pa(opte1));
3639 		pmap_pvh_free(pvh, pmap, sva);
3640 		eva = sva + PTE1_SIZE;
3641 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
3642 		    va < eva; va += PAGE_SIZE, m++) {
3643 			if (pte1_is_dirty(opte1))
3644 				vm_page_dirty(m);
3645 			if (opte1 & PTE1_A)
3646 				vm_page_aflag_set(m, PGA_REFERENCED);
3647 			if (TAILQ_EMPTY(&m->md.pv_list) &&
3648 			    TAILQ_EMPTY(&pvh->pv_list))
3649 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3650 		}
3651 	}
3652 	if (pmap == kernel_pmap) {
3653 		/*
3654 		 * L2 page table(s) can't be removed from kernel map as
3655 		 * kernel counts on it (stuff around pmap_growkernel()).
3656 		 */
3657 		 pmap_remove_kernel_pte1(pmap, pte1p, sva);
3658 	} else {
3659 		/*
3660 		 * Get associated L2 page table page.
3661 		 * It's possible that the page was never allocated.
3662 		 */
3663 		m = pmap_pt2_page(pmap, sva);
3664 		if (m != NULL)
3665 			pmap_unwire_pt2_all(pmap, sva, m, free);
3666 	}
3667 }
3668 
3669 /*
3670  *  Fills L2 page table page with mappings to consecutive physical pages.
3671  */
3672 static __inline void
3673 pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
3674 {
3675 	pt2_entry_t *pte2p;
3676 
3677 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
3678 		pte2_store(pte2p, npte2);
3679 		npte2 += PTE2_SIZE;
3680 	}
3681 }
3682 
3683 /*
3684  *  Tries to demote a 1MB page mapping. If demotion fails, the
3685  *  1MB page mapping is invalidated.
3686  */
3687 static boolean_t
3688 pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3689 {
3690 	pt1_entry_t opte1, npte1;
3691 	pt2_entry_t *fpte2p, npte2;
3692 	vm_paddr_t pt2pg_pa, pt2_pa;
3693 	vm_page_t m;
3694 	struct spglist free;
3695 	uint32_t pte1_idx, isnew = 0;
3696 
3697 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3698 	    pmap, va, pte1_load(pte1p), pte1p));
3699 
3700 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3701 
3702 	opte1 = pte1_load(pte1p);
3703 	KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
3704 
3705 	if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
3706 		KASSERT(!pte1_is_wired(opte1),
3707 		    ("%s: PT2 page for a wired mapping is missing", __func__));
3708 
3709 		/*
3710 		 * Invalidate the 1MB page mapping and return
3711 		 * "failure" if the mapping was never accessed or the
3712 		 * allocation of the new page table page fails.
3713 		 */
3714 		if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL,
3715 		    pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ |
3716 		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) {
3717 			SLIST_INIT(&free);
3718 			pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
3719 			vm_page_free_pages_toq(&free, false);
3720 			CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
3721 			    __func__, va, pmap);
3722 			return (FALSE);
3723 		}
3724 		if (va < VM_MAXUSER_ADDRESS)
3725 			pmap->pm_stats.resident_count++;
3726 
3727 		isnew = 1;
3728 
3729 		/*
3730 		 * We init all L2 page tables in the page even if
3731 		 * we are going to change everything for one L2 page
3732 		 * table in a while.
3733 		 */
3734 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
3735 	} else {
3736 		if (va < VM_MAXUSER_ADDRESS) {
3737 			if (pt2_is_empty(m, va))
3738 				isnew = 1; /* Demoting section w/o promotion. */
3739 #ifdef INVARIANTS
3740 			else
3741 				KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
3742 				    " count %u", __func__,
3743 				    pt2_wirecount_get(m, pte1_index(va))));
3744 #endif
3745 		}
3746 	}
3747 
3748 	pt2pg_pa = VM_PAGE_TO_PHYS(m);
3749 	pte1_idx = pte1_index(va);
3750 	/*
3751 	 * If the pmap is current, then the PT2MAP can provide access to
3752 	 * the page table page (promoted L2 page tables are not unmapped).
3753 	 * Otherwise, temporarily map the L2 page table page (m) into
3754 	 * the kernel's address space at either PADDR1 or PADDR2.
3755 	 *
3756 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3757 	 */
3758 	if (pmap_is_current(pmap))
3759 		fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3760 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
3761 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
3762 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
3763 #ifdef SMP
3764 			PMAP1cpu = PCPU_GET(cpuid);
3765 #endif
3766 			tlb_flush_local((vm_offset_t)PADDR1);
3767 			PMAP1changed++;
3768 		} else
3769 #ifdef SMP
3770 		if (PMAP1cpu != PCPU_GET(cpuid)) {
3771 			PMAP1cpu = PCPU_GET(cpuid);
3772 			tlb_flush_local((vm_offset_t)PADDR1);
3773 			PMAP1changedcpu++;
3774 		} else
3775 #endif
3776 			PMAP1unchanged++;
3777 		fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
3778 	} else {
3779 		mtx_lock(&PMAP2mutex);
3780 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
3781 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
3782 			tlb_flush((vm_offset_t)PADDR2);
3783 		}
3784 		fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
3785 	}
3786 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
3787 	npte1 = PTE1_LINK(pt2_pa);
3788 
3789 	KASSERT((opte1 & PTE1_A) != 0,
3790 	    ("%s: opte1 is missing PTE1_A", __func__));
3791 	KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
3792 	    ("%s: opte1 has PTE1_NM", __func__));
3793 
3794 	/*
3795 	 *  Get pte2 from pte1 format.
3796 	*/
3797 	npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
3798 
3799 	/*
3800 	 * If the L2 page table page is new, initialize it. If the mapping
3801 	 * has changed attributes, update the page table entries.
3802 	 */
3803 	if (isnew != 0) {
3804 		pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
3805 		pmap_fill_pt2(fpte2p, npte2);
3806 	} else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
3807 		    (npte2 & PTE2_PROMOTE))
3808 		pmap_fill_pt2(fpte2p, npte2);
3809 
3810 	KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
3811 	    ("%s: fpte2p and npte2 map different physical addresses",
3812 	    __func__));
3813 
3814 	if (fpte2p == PADDR2)
3815 		mtx_unlock(&PMAP2mutex);
3816 
3817 	/*
3818 	 * Demote the mapping. This pmap is locked. The old PTE1 has
3819 	 * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
3820 	 * has not PTE1_NM set. Thus, there is no danger of a race with
3821 	 * another processor changing the setting of PTE1_A and/or PTE1_NM
3822 	 * between the read above and the store below.
3823 	 */
3824 	pmap_change_pte1(pmap, pte1p, va, npte1);
3825 
3826 	/*
3827 	 * Demote the pv entry. This depends on the earlier demotion
3828 	 * of the mapping. Specifically, the (re)creation of a per-
3829 	 * page pv entry might trigger the execution of pmap_pv_reclaim(),
3830 	 * which might reclaim a newly (re)created per-page pv entry
3831 	 * and destroy the associated mapping. In order to destroy
3832 	 * the mapping, the PTE1 must have already changed from mapping
3833 	 * the 1mpage to referencing the page table page.
3834 	 */
3835 	if (pte1_is_managed(opte1))
3836 		pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
3837 
3838 	pmap_pte1_demotions++;
3839 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3840 	    __func__, va, pmap);
3841 
3842 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3843 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3844 	return (TRUE);
3845 }
3846 
3847 /*
3848  *	Insert the given physical page (p) at
3849  *	the specified virtual address (v) in the
3850  *	target physical map with the protection requested.
3851  *
3852  *	If specified, the page will be wired down, meaning
3853  *	that the related pte can not be reclaimed.
3854  *
3855  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3856  *	or lose information.  That is, this routine must actually
3857  *	insert this page into the given map NOW.
3858  */
3859 int
3860 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3861     u_int flags, int8_t psind)
3862 {
3863 	pt1_entry_t *pte1p;
3864 	pt2_entry_t *pte2p;
3865 	pt2_entry_t npte2, opte2;
3866 	pv_entry_t pv;
3867 	vm_paddr_t opa, pa;
3868 	vm_page_t mpte2, om;
3869 	int rv;
3870 
3871 	va = trunc_page(va);
3872 	KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
3873 	KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
3874 	    ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
3875 	    va));
3876 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
3877 	    va >= kmi.clean_eva,
3878 	    ("%s: managed mapping within the clean submap", __func__));
3879 	if ((m->oflags & VPO_UNMANAGED) == 0)
3880 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3881 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3882 	    ("%s: flags %u has reserved bits set", __func__, flags));
3883 	pa = VM_PAGE_TO_PHYS(m);
3884 	npte2 = PTE2(pa, PTE2_A, vm_page_pte2_attr(m));
3885 	if ((flags & VM_PROT_WRITE) == 0)
3886 		npte2 |= PTE2_NM;
3887 	if ((prot & VM_PROT_WRITE) == 0)
3888 		npte2 |= PTE2_RO;
3889 	KASSERT((npte2 & (PTE2_NM | PTE2_RO)) != PTE2_RO,
3890 	    ("%s: flags includes VM_PROT_WRITE but prot doesn't", __func__));
3891 	if ((prot & VM_PROT_EXECUTE) == 0)
3892 		npte2 |= PTE2_NX;
3893 	if ((flags & PMAP_ENTER_WIRED) != 0)
3894 		npte2 |= PTE2_W;
3895 	if (va < VM_MAXUSER_ADDRESS)
3896 		npte2 |= PTE2_U;
3897 	if (pmap != kernel_pmap)
3898 		npte2 |= PTE2_NG;
3899 
3900 	rw_wlock(&pvh_global_lock);
3901 	PMAP_LOCK(pmap);
3902 	sched_pin();
3903 	if (psind == 1) {
3904 		/* Assert the required virtual and physical alignment. */
3905 		KASSERT((va & PTE1_OFFSET) == 0,
3906 		    ("%s: va unaligned", __func__));
3907 		KASSERT(m->psind > 0, ("%s: m->psind < psind", __func__));
3908 		rv = pmap_enter_pte1(pmap, va, PTE1_PA(pa) | ATTR_TO_L1(npte2) |
3909 		    PTE1_V, flags, m);
3910 		goto out;
3911 	}
3912 
3913 	/*
3914 	 * In the case that a page table page is not
3915 	 * resident, we are creating it here.
3916 	 */
3917 	if (va < VM_MAXUSER_ADDRESS) {
3918 		mpte2 = pmap_allocpte2(pmap, va, flags);
3919 		if (mpte2 == NULL) {
3920 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3921 			    ("pmap_allocpte2 failed with sleep allowed"));
3922 			rv = KERN_RESOURCE_SHORTAGE;
3923 			goto out;
3924 		}
3925 	} else
3926 		mpte2 = NULL;
3927 	pte1p = pmap_pte1(pmap, va);
3928 	if (pte1_is_section(pte1_load(pte1p)))
3929 		panic("%s: attempted on 1MB page", __func__);
3930 	pte2p = pmap_pte2_quick(pmap, va);
3931 	if (pte2p == NULL)
3932 		panic("%s: invalid L1 page table entry va=%#x", __func__, va);
3933 
3934 	om = NULL;
3935 	opte2 = pte2_load(pte2p);
3936 	opa = pte2_pa(opte2);
3937 	/*
3938 	 * Mapping has not changed, must be protection or wiring change.
3939 	 */
3940 	if (pte2_is_valid(opte2) && (opa == pa)) {
3941 		/*
3942 		 * Wiring change, just update stats. We don't worry about
3943 		 * wiring PT2 pages as they remain resident as long as there
3944 		 * are valid mappings in them. Hence, if a user page is wired,
3945 		 * the PT2 page will be also.
3946 		 */
3947 		if (pte2_is_wired(npte2) && !pte2_is_wired(opte2))
3948 			pmap->pm_stats.wired_count++;
3949 		else if (!pte2_is_wired(npte2) && pte2_is_wired(opte2))
3950 			pmap->pm_stats.wired_count--;
3951 
3952 		/*
3953 		 * Remove extra pte2 reference
3954 		 */
3955 		if (mpte2)
3956 			pt2_wirecount_dec(mpte2, pte1_index(va));
3957 		if ((m->oflags & VPO_UNMANAGED) == 0)
3958 			om = m;
3959 		goto validate;
3960 	}
3961 
3962 	/*
3963 	 * QQQ: We think that changing physical address on writeable mapping
3964 	 *      is not safe. Well, maybe on kernel address space with correct
3965 	 *      locking, it can make a sense. However, we have no idea why
3966 	 *      anyone should do that on user address space. Are we wrong?
3967 	 */
3968 	KASSERT((opa == 0) || (opa == pa) ||
3969 	    !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
3970 	    ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
3971 	    __func__, pmap, va, opte2, opa, pa, flags, prot));
3972 
3973 	pv = NULL;
3974 
3975 	/*
3976 	 * Mapping has changed, invalidate old range and fall through to
3977 	 * handle validating new mapping.
3978 	 */
3979 	if (opa) {
3980 		if (pte2_is_wired(opte2))
3981 			pmap->pm_stats.wired_count--;
3982 		om = PHYS_TO_VM_PAGE(opa);
3983 		if (om != NULL && (om->oflags & VPO_UNMANAGED) != 0)
3984 			om = NULL;
3985 		if (om != NULL)
3986 			pv = pmap_pvh_remove(&om->md, pmap, va);
3987 
3988 		/*
3989 		 * Remove extra pte2 reference
3990 		 */
3991 		if (mpte2 != NULL)
3992 			pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
3993 	} else
3994 		pmap->pm_stats.resident_count++;
3995 
3996 	/*
3997 	 * Enter on the PV list if part of our managed memory.
3998 	 */
3999 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4000 		if (pv == NULL) {
4001 			pv = get_pv_entry(pmap, FALSE);
4002 			pv->pv_va = va;
4003 		}
4004 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4005 	} else if (pv != NULL)
4006 		free_pv_entry(pmap, pv);
4007 
4008 	/*
4009 	 * Increment counters
4010 	 */
4011 	if (pte2_is_wired(npte2))
4012 		pmap->pm_stats.wired_count++;
4013 
4014 validate:
4015 	/*
4016 	 * Now validate mapping with desired protection/wiring.
4017 	 */
4018 	if (prot & VM_PROT_WRITE) {
4019 		if ((m->oflags & VPO_UNMANAGED) == 0)
4020 			vm_page_aflag_set(m, PGA_WRITEABLE);
4021 	}
4022 
4023 	/*
4024 	 * If the mapping or permission bits are different, we need
4025 	 * to update the pte2.
4026 	 *
4027 	 * QQQ: Think again and again what to do
4028 	 *      if the mapping is going to be changed!
4029 	 */
4030 	if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
4031 		/*
4032 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4033 		 * is set. Do it now, before the mapping is stored and made
4034 		 * valid for hardware table walk. If done later, there is a race
4035 		 * for other threads of current process in lazy loading case.
4036 		 * Don't do it for kernel memory which is mapped with exec
4037 		 * permission even if the memory isn't going to hold executable
4038 		 * code. The only time when icache sync is needed is after
4039 		 * kernel module is loaded and the relocation info is processed.
4040 		 * And it's done in elf_cpu_load_file().
4041 		 *
4042 		 * QQQ: (1) Does it exist any better way where
4043 		 *          or how to sync icache?
4044 		 *      (2) Now, we do it on a page basis.
4045 		 */
4046 		if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
4047 		    m->md.pat_mode == VM_MEMATTR_WB_WA &&
4048 		    (opa != pa || (opte2 & PTE2_NX)))
4049 			cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4050 
4051 		if (opte2 & PTE2_V) {
4052 			/* Change mapping with break-before-make approach. */
4053 			opte2 = pte2_load_clear(pte2p);
4054 			pmap_tlb_flush(pmap, va);
4055 			pte2_store(pte2p, npte2);
4056 			if (om != NULL) {
4057 				KASSERT((om->oflags & VPO_UNMANAGED) == 0,
4058 				    ("%s: om %p unmanaged", __func__, om));
4059 				if ((opte2 & PTE2_A) != 0)
4060 					vm_page_aflag_set(om, PGA_REFERENCED);
4061 				if (pte2_is_dirty(opte2))
4062 					vm_page_dirty(om);
4063 				if (TAILQ_EMPTY(&om->md.pv_list) &&
4064 				    ((om->flags & PG_FICTITIOUS) != 0 ||
4065 				    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4066 					vm_page_aflag_clear(om, PGA_WRITEABLE);
4067 			}
4068 		} else
4069 			pte2_store(pte2p, npte2);
4070 	}
4071 #if 0
4072 	else {
4073 		/*
4074 		 * QQQ: In time when both access and not mofified bits are
4075 		 *      emulated by software, this should not happen. Some
4076 		 *      analysis is need, if this really happen. Missing
4077 		 *      tlb flush somewhere could be the reason.
4078 		 */
4079 		panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
4080 		    va, opte2, npte2);
4081 	}
4082 #endif
4083 
4084 #if VM_NRESERVLEVEL > 0
4085 	/*
4086 	 * If both the L2 page table page and the reservation are fully
4087 	 * populated, then attempt promotion.
4088 	 */
4089 	if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
4090 	    sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
4091 	    vm_reserv_level_iffullpop(m) == 0)
4092 		pmap_promote_pte1(pmap, pte1p, va);
4093 #endif
4094 
4095 	rv = KERN_SUCCESS;
4096 out:
4097 	sched_unpin();
4098 	rw_wunlock(&pvh_global_lock);
4099 	PMAP_UNLOCK(pmap);
4100 	return (rv);
4101 }
4102 
4103 /*
4104  *  Do the things to unmap a page in a process.
4105  */
4106 static int
4107 pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
4108     struct spglist *free)
4109 {
4110 	pt2_entry_t opte2;
4111 	vm_page_t m;
4112 
4113 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4114 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4115 
4116 	/* Clear and invalidate the mapping. */
4117 	opte2 = pte2_load_clear(pte2p);
4118 	pmap_tlb_flush(pmap, va);
4119 
4120 	KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
4121 	    __func__, pmap, va, opte2));
4122 
4123 	if (opte2 & PTE2_W)
4124 		pmap->pm_stats.wired_count -= 1;
4125 	pmap->pm_stats.resident_count -= 1;
4126 	if (pte2_is_managed(opte2)) {
4127 		m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4128 		if (pte2_is_dirty(opte2))
4129 			vm_page_dirty(m);
4130 		if (opte2 & PTE2_A)
4131 			vm_page_aflag_set(m, PGA_REFERENCED);
4132 		pmap_remove_entry(pmap, m, va);
4133 	}
4134 	return (pmap_unuse_pt2(pmap, va, free));
4135 }
4136 
4137 /*
4138  *  Remove a single page from a process address space.
4139  */
4140 static void
4141 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
4142 {
4143 	pt2_entry_t *pte2p;
4144 
4145 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4146 	KASSERT(curthread->td_pinned > 0,
4147 	    ("%s: curthread not pinned", __func__));
4148 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4149 	if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
4150 	    !pte2_is_valid(pte2_load(pte2p)))
4151 		return;
4152 	pmap_remove_pte2(pmap, pte2p, va, free);
4153 }
4154 
4155 /*
4156  *  Remove the given range of addresses from the specified map.
4157  *
4158  *  It is assumed that the start and end are properly
4159  *  rounded to the page size.
4160  */
4161 void
4162 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4163 {
4164 	vm_offset_t nextva;
4165 	pt1_entry_t *pte1p, pte1;
4166 	pt2_entry_t *pte2p, pte2;
4167 	struct spglist free;
4168 
4169 	/*
4170 	 * Perform an unsynchronized read. This is, however, safe.
4171 	 */
4172 	if (pmap->pm_stats.resident_count == 0)
4173 		return;
4174 
4175 	SLIST_INIT(&free);
4176 
4177 	rw_wlock(&pvh_global_lock);
4178 	sched_pin();
4179 	PMAP_LOCK(pmap);
4180 
4181 	/*
4182 	 * Special handling of removing one page. A very common
4183 	 * operation and easy to short circuit some code.
4184 	 */
4185 	if (sva + PAGE_SIZE == eva) {
4186 		pte1 = pte1_load(pmap_pte1(pmap, sva));
4187 		if (pte1_is_link(pte1)) {
4188 			pmap_remove_page(pmap, sva, &free);
4189 			goto out;
4190 		}
4191 	}
4192 
4193 	for (; sva < eva; sva = nextva) {
4194 		/*
4195 		 * Calculate address for next L2 page table.
4196 		 */
4197 		nextva = pte1_trunc(sva + PTE1_SIZE);
4198 		if (nextva < sva)
4199 			nextva = eva;
4200 		if (pmap->pm_stats.resident_count == 0)
4201 			break;
4202 
4203 		pte1p = pmap_pte1(pmap, sva);
4204 		pte1 = pte1_load(pte1p);
4205 
4206 		/*
4207 		 * Weed out invalid mappings. Note: we assume that the L1 page
4208 		 * table is always allocated, and in kernel virtual.
4209 		 */
4210 		if (pte1 == 0)
4211 			continue;
4212 
4213 		if (pte1_is_section(pte1)) {
4214 			/*
4215 			 * Are we removing the entire large page?  If not,
4216 			 * demote the mapping and fall through.
4217 			 */
4218 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4219 				pmap_remove_pte1(pmap, pte1p, sva, &free);
4220 				continue;
4221 			} else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4222 				/* The large page mapping was destroyed. */
4223 				continue;
4224 			}
4225 #ifdef INVARIANTS
4226 			else {
4227 				/* Update pte1 after demotion. */
4228 				pte1 = pte1_load(pte1p);
4229 			}
4230 #endif
4231 		}
4232 
4233 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4234 		    " is not link", __func__, pmap, sva, pte1, pte1p));
4235 
4236 		/*
4237 		 * Limit our scan to either the end of the va represented
4238 		 * by the current L2 page table page, or to the end of the
4239 		 * range being removed.
4240 		 */
4241 		if (nextva > eva)
4242 			nextva = eva;
4243 
4244 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
4245 		    pte2p++, sva += PAGE_SIZE) {
4246 			pte2 = pte2_load(pte2p);
4247 			if (!pte2_is_valid(pte2))
4248 				continue;
4249 			if (pmap_remove_pte2(pmap, pte2p, sva, &free))
4250 				break;
4251 		}
4252 	}
4253 out:
4254 	sched_unpin();
4255 	rw_wunlock(&pvh_global_lock);
4256 	PMAP_UNLOCK(pmap);
4257 	vm_page_free_pages_toq(&free, false);
4258 }
4259 
4260 /*
4261  *	Routine:	pmap_remove_all
4262  *	Function:
4263  *		Removes this physical page from
4264  *		all physical maps in which it resides.
4265  *		Reflects back modify bits to the pager.
4266  *
4267  *	Notes:
4268  *		Original versions of this routine were very
4269  *		inefficient because they iteratively called
4270  *		pmap_remove (slow...)
4271  */
4272 
4273 void
4274 pmap_remove_all(vm_page_t m)
4275 {
4276 	struct md_page *pvh;
4277 	pv_entry_t pv;
4278 	pmap_t pmap;
4279 	pt2_entry_t *pte2p, opte2;
4280 	pt1_entry_t *pte1p;
4281 	vm_offset_t va;
4282 	struct spglist free;
4283 
4284 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4285 	    ("%s: page %p is not managed", __func__, m));
4286 	SLIST_INIT(&free);
4287 	rw_wlock(&pvh_global_lock);
4288 	sched_pin();
4289 	if ((m->flags & PG_FICTITIOUS) != 0)
4290 		goto small_mappings;
4291 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4292 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4293 		va = pv->pv_va;
4294 		pmap = PV_PMAP(pv);
4295 		PMAP_LOCK(pmap);
4296 		pte1p = pmap_pte1(pmap, va);
4297 		(void)pmap_demote_pte1(pmap, pte1p, va);
4298 		PMAP_UNLOCK(pmap);
4299 	}
4300 small_mappings:
4301 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4302 		pmap = PV_PMAP(pv);
4303 		PMAP_LOCK(pmap);
4304 		pmap->pm_stats.resident_count--;
4305 		pte1p = pmap_pte1(pmap, pv->pv_va);
4306 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
4307 		    "a 1mpage in page %p's pv list", __func__, m));
4308 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
4309 		opte2 = pte2_load_clear(pte2p);
4310 		pmap_tlb_flush(pmap, pv->pv_va);
4311 		KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
4312 		    __func__, pmap, pv->pv_va));
4313 		if (pte2_is_wired(opte2))
4314 			pmap->pm_stats.wired_count--;
4315 		if (opte2 & PTE2_A)
4316 			vm_page_aflag_set(m, PGA_REFERENCED);
4317 
4318 		/*
4319 		 * Update the vm_page_t clean and reference bits.
4320 		 */
4321 		if (pte2_is_dirty(opte2))
4322 			vm_page_dirty(m);
4323 		pmap_unuse_pt2(pmap, pv->pv_va, &free);
4324 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4325 		free_pv_entry(pmap, pv);
4326 		PMAP_UNLOCK(pmap);
4327 	}
4328 	vm_page_aflag_clear(m, PGA_WRITEABLE);
4329 	sched_unpin();
4330 	rw_wunlock(&pvh_global_lock);
4331 	vm_page_free_pages_toq(&free, false);
4332 }
4333 
4334 /*
4335  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4336  *  good coding style, a.k.a. 80 character line width limit hell.
4337  */
4338 static __inline void
4339 pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
4340     struct spglist *free)
4341 {
4342 	vm_paddr_t pa;
4343 	vm_page_t m, mt, mpt2pg;
4344 	struct md_page *pvh;
4345 
4346 	pa = pte1_pa(pte1);
4347 	m = PHYS_TO_VM_PAGE(pa);
4348 
4349 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4350 	    __func__, m, m->phys_addr, pa));
4351 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4352 	    m < &vm_page_array[vm_page_array_size],
4353 	    ("%s: bad pte1 %#x", __func__, pte1));
4354 
4355 	if (pte1_is_dirty(pte1)) {
4356 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4357 			vm_page_dirty(mt);
4358 	}
4359 
4360 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
4361 	pvh = pa_to_pvh(pa);
4362 	TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4363 	if (TAILQ_EMPTY(&pvh->pv_list)) {
4364 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4365 			if (TAILQ_EMPTY(&mt->md.pv_list))
4366 				vm_page_aflag_clear(mt, PGA_WRITEABLE);
4367 	}
4368 	mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
4369 	if (mpt2pg != NULL)
4370 		pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
4371 }
4372 
4373 /*
4374  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4375  *  good coding style, a.k.a. 80 character line width limit hell.
4376  */
4377 static __inline void
4378 pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
4379     struct spglist *free)
4380 {
4381 	vm_paddr_t pa;
4382 	vm_page_t m;
4383 	struct md_page *pvh;
4384 
4385 	pa = pte2_pa(pte2);
4386 	m = PHYS_TO_VM_PAGE(pa);
4387 
4388 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4389 	    __func__, m, m->phys_addr, pa));
4390 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4391 	    m < &vm_page_array[vm_page_array_size],
4392 	    ("%s: bad pte2 %#x", __func__, pte2));
4393 
4394 	if (pte2_is_dirty(pte2))
4395 		vm_page_dirty(m);
4396 
4397 	pmap->pm_stats.resident_count--;
4398 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4399 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
4400 		pvh = pa_to_pvh(pa);
4401 		if (TAILQ_EMPTY(&pvh->pv_list))
4402 			vm_page_aflag_clear(m, PGA_WRITEABLE);
4403 	}
4404 	pmap_unuse_pt2(pmap, pv->pv_va, free);
4405 }
4406 
4407 /*
4408  *  Remove all pages from specified address space this aids process
4409  *  exit speeds. Also, this code is special cased for current process
4410  *  only, but can have the more generic (and slightly slower) mode enabled.
4411  *  This is much faster than pmap_remove in the case of running down
4412  *  an entire address space.
4413  */
4414 void
4415 pmap_remove_pages(pmap_t pmap)
4416 {
4417 	pt1_entry_t *pte1p, pte1;
4418 	pt2_entry_t *pte2p, pte2;
4419 	pv_entry_t pv;
4420 	struct pv_chunk *pc, *npc;
4421 	struct spglist free;
4422 	int field, idx;
4423 	int32_t bit;
4424 	uint32_t inuse, bitmask;
4425 	boolean_t allfree;
4426 
4427 	/*
4428 	 * Assert that the given pmap is only active on the current
4429 	 * CPU.  Unfortunately, we cannot block another CPU from
4430 	 * activating the pmap while this function is executing.
4431 	 */
4432 	KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
4433 	    ("%s: non-current pmap %p", __func__, pmap));
4434 #if defined(SMP) && defined(INVARIANTS)
4435 	{
4436 		cpuset_t other_cpus;
4437 
4438 		sched_pin();
4439 		other_cpus = pmap->pm_active;
4440 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
4441 		sched_unpin();
4442 		KASSERT(CPU_EMPTY(&other_cpus),
4443 		    ("%s: pmap %p active on other cpus", __func__, pmap));
4444 	}
4445 #endif
4446 	SLIST_INIT(&free);
4447 	rw_wlock(&pvh_global_lock);
4448 	PMAP_LOCK(pmap);
4449 	sched_pin();
4450 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4451 		KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
4452 		    __func__, pmap, pc->pc_pmap));
4453 		allfree = TRUE;
4454 		for (field = 0; field < _NPCM; field++) {
4455 			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4456 			while (inuse != 0) {
4457 				bit = ffs(inuse) - 1;
4458 				bitmask = 1UL << bit;
4459 				idx = field * 32 + bit;
4460 				pv = &pc->pc_pventry[idx];
4461 				inuse &= ~bitmask;
4462 
4463 				/*
4464 				 * Note that we cannot remove wired pages
4465 				 * from a process' mapping at this time
4466 				 */
4467 				pte1p = pmap_pte1(pmap, pv->pv_va);
4468 				pte1 = pte1_load(pte1p);
4469 				if (pte1_is_section(pte1)) {
4470 					if (pte1_is_wired(pte1))  {
4471 						allfree = FALSE;
4472 						continue;
4473 					}
4474 					pte1_clear(pte1p);
4475 					pmap_remove_pte1_quick(pmap, pte1, pv,
4476 					    &free);
4477 				}
4478 				else if (pte1_is_link(pte1)) {
4479 					pte2p = pt2map_entry(pv->pv_va);
4480 					pte2 = pte2_load(pte2p);
4481 
4482 					if (!pte2_is_valid(pte2)) {
4483 						printf("%s: pmap %p va %#x "
4484 						    "pte2 %#x\n", __func__,
4485 						    pmap, pv->pv_va, pte2);
4486 						panic("bad pte2");
4487 					}
4488 
4489 					if (pte2_is_wired(pte2))   {
4490 						allfree = FALSE;
4491 						continue;
4492 					}
4493 					pte2_clear(pte2p);
4494 					pmap_remove_pte2_quick(pmap, pte2, pv,
4495 					    &free);
4496 				} else {
4497 					printf("%s: pmap %p va %#x pte1 %#x\n",
4498 					    __func__, pmap, pv->pv_va, pte1);
4499 					panic("bad pte1");
4500 				}
4501 
4502 				/* Mark free */
4503 				PV_STAT(pv_entry_frees++);
4504 				PV_STAT(pv_entry_spare++);
4505 				pv_entry_count--;
4506 				pc->pc_map[field] |= bitmask;
4507 			}
4508 		}
4509 		if (allfree) {
4510 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4511 			free_pv_chunk(pc);
4512 		}
4513 	}
4514 	tlb_flush_all_ng_local();
4515 	sched_unpin();
4516 	rw_wunlock(&pvh_global_lock);
4517 	PMAP_UNLOCK(pmap);
4518 	vm_page_free_pages_toq(&free, false);
4519 }
4520 
4521 /*
4522  *  This code makes some *MAJOR* assumptions:
4523  *  1. Current pmap & pmap exists.
4524  *  2. Not wired.
4525  *  3. Read access.
4526  *  4. No L2 page table pages.
4527  *  but is *MUCH* faster than pmap_enter...
4528  */
4529 static vm_page_t
4530 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4531     vm_prot_t prot, vm_page_t mpt2pg)
4532 {
4533 	pt2_entry_t *pte2p, pte2;
4534 	vm_paddr_t pa;
4535 	struct spglist free;
4536 	uint32_t l2prot;
4537 
4538 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4539 	    (m->oflags & VPO_UNMANAGED) != 0,
4540 	    ("%s: managed mapping within the clean submap", __func__));
4541 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4542 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4543 
4544 	/*
4545 	 * In the case that a L2 page table page is not
4546 	 * resident, we are creating it here.
4547 	 */
4548 	if (va < VM_MAXUSER_ADDRESS) {
4549 		u_int pte1_idx;
4550 		pt1_entry_t pte1, *pte1p;
4551 		vm_paddr_t pt2_pa;
4552 
4553 		/*
4554 		 * Get L1 page table things.
4555 		 */
4556 		pte1_idx = pte1_index(va);
4557 		pte1p = pmap_pte1(pmap, va);
4558 		pte1 = pte1_load(pte1p);
4559 
4560 		if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
4561 			/*
4562 			 * Each of NPT2_IN_PG L2 page tables on the page can
4563 			 * come here. Make sure that associated L1 page table
4564 			 * link is established.
4565 			 *
4566 			 * QQQ: It comes that we don't establish all links to
4567 			 *      L2 page tables for newly allocated L2 page
4568 			 *      tables page.
4569 			 */
4570 			KASSERT(!pte1_is_section(pte1),
4571 			    ("%s: pte1 %#x is section", __func__, pte1));
4572 			if (!pte1_is_link(pte1)) {
4573 				pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
4574 				    pte1_idx);
4575 				pte1_store(pte1p, PTE1_LINK(pt2_pa));
4576 			}
4577 			pt2_wirecount_inc(mpt2pg, pte1_idx);
4578 		} else {
4579 			/*
4580 			 * If the L2 page table page is mapped, we just
4581 			 * increment the hold count, and activate it.
4582 			 */
4583 			if (pte1_is_section(pte1)) {
4584 				return (NULL);
4585 			} else if (pte1_is_link(pte1)) {
4586 				mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
4587 				pt2_wirecount_inc(mpt2pg, pte1_idx);
4588 			} else {
4589 				mpt2pg = _pmap_allocpte2(pmap, va,
4590 				    PMAP_ENTER_NOSLEEP);
4591 				if (mpt2pg == NULL)
4592 					return (NULL);
4593 			}
4594 		}
4595 	} else {
4596 		mpt2pg = NULL;
4597 	}
4598 
4599 	/*
4600 	 * This call to pt2map_entry() makes the assumption that we are
4601 	 * entering the page into the current pmap.  In order to support
4602 	 * quick entry into any pmap, one would likely use pmap_pte2_quick().
4603 	 * But that isn't as quick as pt2map_entry().
4604 	 */
4605 	pte2p = pt2map_entry(va);
4606 	pte2 = pte2_load(pte2p);
4607 	if (pte2_is_valid(pte2)) {
4608 		if (mpt2pg != NULL) {
4609 			/*
4610 			 * Remove extra pte2 reference
4611 			 */
4612 			pt2_wirecount_dec(mpt2pg, pte1_index(va));
4613 			mpt2pg = NULL;
4614 		}
4615 		return (NULL);
4616 	}
4617 
4618 	/*
4619 	 * Enter on the PV list if part of our managed memory.
4620 	 */
4621 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4622 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4623 		if (mpt2pg != NULL) {
4624 			SLIST_INIT(&free);
4625 			if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
4626 				pmap_tlb_flush(pmap, va);
4627 				vm_page_free_pages_toq(&free, false);
4628 			}
4629 
4630 			mpt2pg = NULL;
4631 		}
4632 		return (NULL);
4633 	}
4634 
4635 	/*
4636 	 * Increment counters
4637 	 */
4638 	pmap->pm_stats.resident_count++;
4639 
4640 	/*
4641 	 * Now validate mapping with RO protection
4642 	 */
4643 	pa = VM_PAGE_TO_PHYS(m);
4644 	l2prot = PTE2_RO | PTE2_NM;
4645 	if (va < VM_MAXUSER_ADDRESS)
4646 		l2prot |= PTE2_U | PTE2_NG;
4647 	if ((prot & VM_PROT_EXECUTE) == 0)
4648 		l2prot |= PTE2_NX;
4649 	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4650 		/*
4651 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4652 		 * is set. QQQ: For more info, see comments in pmap_enter().
4653 		 */
4654 		cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4655 	}
4656 	pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
4657 
4658 	return (mpt2pg);
4659 }
4660 
4661 void
4662 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4663 {
4664 
4665 	rw_wlock(&pvh_global_lock);
4666 	PMAP_LOCK(pmap);
4667 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4668 	rw_wunlock(&pvh_global_lock);
4669 	PMAP_UNLOCK(pmap);
4670 }
4671 
4672 /*
4673  *  Tries to create a read- and/or execute-only 1 MB page mapping.  Returns
4674  *  true if successful.  Returns false if (1) a mapping already exists at the
4675  *  specified virtual address or (2) a PV entry cannot be allocated without
4676  *  reclaiming another PV entry.
4677  */
4678 static bool
4679 pmap_enter_1mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4680 {
4681 	pt1_entry_t pte1;
4682 	vm_paddr_t pa;
4683 
4684 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4685 	pa = VM_PAGE_TO_PHYS(m);
4686 	pte1 = PTE1(pa, PTE1_NM | PTE1_RO, ATTR_TO_L1(vm_page_pte2_attr(m)));
4687 	if ((prot & VM_PROT_EXECUTE) == 0)
4688 		pte1 |= PTE1_NX;
4689 	if (va < VM_MAXUSER_ADDRESS)
4690 		pte1 |= PTE1_U;
4691 	if (pmap != kernel_pmap)
4692 		pte1 |= PTE1_NG;
4693 	return (pmap_enter_pte1(pmap, va, pte1, PMAP_ENTER_NOSLEEP |
4694 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, m) == KERN_SUCCESS);
4695 }
4696 
4697 /*
4698  *  Tries to create the specified 1 MB page mapping.  Returns KERN_SUCCESS if
4699  *  the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
4700  *  otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
4701  *  a mapping already exists at the specified virtual address.  Returns
4702  *  KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NORECLAIM was specified and PV entry
4703  *  allocation failed.
4704  */
4705 static int
4706 pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags,
4707     vm_page_t m)
4708 {
4709 	struct spglist free;
4710 	pt1_entry_t opte1, *pte1p;
4711 	pt2_entry_t pte2, *pte2p;
4712 	vm_offset_t cur, end;
4713 	vm_page_t mt;
4714 
4715 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4716 	KASSERT((pte1 & (PTE1_NM | PTE1_RO)) == 0 ||
4717 	    (pte1 & (PTE1_NM | PTE1_RO)) == (PTE1_NM | PTE1_RO),
4718 	    ("%s: pte1 has inconsistent NM and RO attributes", __func__));
4719 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4720 	pte1p = pmap_pte1(pmap, va);
4721 	opte1 = pte1_load(pte1p);
4722 	if (pte1_is_valid(opte1)) {
4723 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
4724 			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4725 			    __func__, va, pmap);
4726 			return (KERN_FAILURE);
4727 		}
4728 		/* Break the existing mapping(s). */
4729 		SLIST_INIT(&free);
4730 		if (pte1_is_section(opte1)) {
4731 			/*
4732 			 * If the section resulted from a promotion, then a
4733 			 * reserved PT page could be freed.
4734 			 */
4735 			pmap_remove_pte1(pmap, pte1p, va, &free);
4736 		} else {
4737 			sched_pin();
4738 			end = va + PTE1_SIZE;
4739 			for (cur = va, pte2p = pmap_pte2_quick(pmap, va);
4740 			    cur != end; cur += PAGE_SIZE, pte2p++) {
4741 				pte2 = pte2_load(pte2p);
4742 				if (!pte2_is_valid(pte2))
4743 					continue;
4744 				if (pmap_remove_pte2(pmap, pte2p, cur, &free))
4745 					break;
4746 			}
4747 			sched_unpin();
4748 		}
4749 		vm_page_free_pages_toq(&free, false);
4750 	}
4751 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4752 		/*
4753 		 * Abort this mapping if its PV entry could not be created.
4754 		 */
4755 		if (!pmap_pv_insert_pte1(pmap, va, pte1, flags)) {
4756 			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4757 			    __func__, va, pmap);
4758 			return (KERN_RESOURCE_SHORTAGE);
4759 		}
4760 		if ((pte1 & PTE1_RO) == 0) {
4761 			for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4762 				vm_page_aflag_set(mt, PGA_WRITEABLE);
4763 		}
4764 	}
4765 
4766 	/*
4767 	 * Increment counters.
4768 	 */
4769 	if (pte1_is_wired(pte1))
4770 		pmap->pm_stats.wired_count += PTE1_SIZE / PAGE_SIZE;
4771 	pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
4772 
4773 	/*
4774 	 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4775 	 * is set.  QQQ: For more info, see comments in pmap_enter().
4776 	 */
4777 	if ((pte1 & PTE1_NX) == 0 && m->md.pat_mode == VM_MEMATTR_WB_WA &&
4778 	    pmap != kernel_pmap && (!pte1_is_section(opte1) ||
4779 	    pte1_pa(opte1) != VM_PAGE_TO_PHYS(m) || (opte1 & PTE2_NX) != 0))
4780 		cache_icache_sync_fresh(va, VM_PAGE_TO_PHYS(m), PTE1_SIZE);
4781 
4782 	/*
4783 	 * Map the section.
4784 	 */
4785 	pte1_store(pte1p, pte1);
4786 
4787 	pmap_pte1_mappings++;
4788 	CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
4789 	    pmap);
4790 	return (KERN_SUCCESS);
4791 }
4792 
4793 /*
4794  *  Maps a sequence of resident pages belonging to the same object.
4795  *  The sequence begins with the given page m_start.  This page is
4796  *  mapped at the given virtual address start.  Each subsequent page is
4797  *  mapped at a virtual address that is offset from start by the same
4798  *  amount as the page is offset from m_start within the object.  The
4799  *  last page in the sequence is the page with the largest offset from
4800  *  m_start that can be mapped at a virtual address less than the given
4801  *  virtual address end.  Not every virtual page between start and end
4802  *  is mapped; only those for which a resident page exists with the
4803  *  corresponding offset from m_start are mapped.
4804  */
4805 void
4806 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4807     vm_page_t m_start, vm_prot_t prot)
4808 {
4809 	vm_offset_t va;
4810 	vm_page_t m, mpt2pg;
4811 	vm_pindex_t diff, psize;
4812 
4813 	PDEBUG(6, printf("%s: pmap %p start %#x end  %#x m %p prot %#x\n",
4814 	    __func__, pmap, start, end, m_start, prot));
4815 
4816 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4817 	psize = atop(end - start);
4818 	mpt2pg = NULL;
4819 	m = m_start;
4820 	rw_wlock(&pvh_global_lock);
4821 	PMAP_LOCK(pmap);
4822 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4823 		va = start + ptoa(diff);
4824 		if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
4825 		    m->psind == 1 && sp_enabled &&
4826 		    pmap_enter_1mpage(pmap, va, m, prot))
4827 			m = &m[PTE1_SIZE / PAGE_SIZE - 1];
4828 		else
4829 			mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
4830 			    mpt2pg);
4831 		m = TAILQ_NEXT(m, listq);
4832 	}
4833 	rw_wunlock(&pvh_global_lock);
4834 	PMAP_UNLOCK(pmap);
4835 }
4836 
4837 /*
4838  *  This code maps large physical mmap regions into the
4839  *  processor address space.  Note that some shortcuts
4840  *  are taken, but the code works.
4841  */
4842 void
4843 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4844     vm_pindex_t pindex, vm_size_t size)
4845 {
4846 	pt1_entry_t *pte1p;
4847 	vm_paddr_t pa, pte2_pa;
4848 	vm_page_t p;
4849 	vm_memattr_t pat_mode;
4850 	u_int l1attr, l1prot;
4851 
4852 	VM_OBJECT_ASSERT_WLOCKED(object);
4853 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4854 	    ("%s: non-device object", __func__));
4855 	if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
4856 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4857 			return;
4858 		p = vm_page_lookup(object, pindex);
4859 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4860 		    ("%s: invalid page %p", __func__, p));
4861 		pat_mode = p->md.pat_mode;
4862 
4863 		/*
4864 		 * Abort the mapping if the first page is not physically
4865 		 * aligned to a 1MB page boundary.
4866 		 */
4867 		pte2_pa = VM_PAGE_TO_PHYS(p);
4868 		if (pte2_pa & PTE1_OFFSET)
4869 			return;
4870 
4871 		/*
4872 		 * Skip the first page. Abort the mapping if the rest of
4873 		 * the pages are not physically contiguous or have differing
4874 		 * memory attributes.
4875 		 */
4876 		p = TAILQ_NEXT(p, listq);
4877 		for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
4878 		    pa += PAGE_SIZE) {
4879 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4880 			    ("%s: invalid page %p", __func__, p));
4881 			if (pa != VM_PAGE_TO_PHYS(p) ||
4882 			    pat_mode != p->md.pat_mode)
4883 				return;
4884 			p = TAILQ_NEXT(p, listq);
4885 		}
4886 
4887 		/*
4888 		 * Map using 1MB pages.
4889 		 *
4890 		 * QQQ: Well, we are mapping a section, so same condition must
4891 		 * be hold like during promotion. It looks that only RW mapping
4892 		 * is done here, so readonly mapping must be done elsewhere.
4893 		 */
4894 		l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
4895 		l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
4896 		PMAP_LOCK(pmap);
4897 		for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
4898 			pte1p = pmap_pte1(pmap, addr);
4899 			if (!pte1_is_valid(pte1_load(pte1p))) {
4900 				pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
4901 				pmap->pm_stats.resident_count += PTE1_SIZE /
4902 				    PAGE_SIZE;
4903 				pmap_pte1_mappings++;
4904 			}
4905 			/* Else continue on if the PTE1 is already valid. */
4906 			addr += PTE1_SIZE;
4907 		}
4908 		PMAP_UNLOCK(pmap);
4909 	}
4910 }
4911 
4912 /*
4913  *  Do the things to protect a 1mpage in a process.
4914  */
4915 static void
4916 pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
4917     vm_prot_t prot)
4918 {
4919 	pt1_entry_t npte1, opte1;
4920 	vm_offset_t eva, va;
4921 	vm_page_t m;
4922 
4923 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4924 	KASSERT((sva & PTE1_OFFSET) == 0,
4925 	    ("%s: sva is not 1mpage aligned", __func__));
4926 
4927 	opte1 = npte1 = pte1_load(pte1p);
4928 	if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
4929 		eva = sva + PTE1_SIZE;
4930 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
4931 		    va < eva; va += PAGE_SIZE, m++)
4932 			vm_page_dirty(m);
4933 	}
4934 	if ((prot & VM_PROT_WRITE) == 0)
4935 		npte1 |= PTE1_RO | PTE1_NM;
4936 	if ((prot & VM_PROT_EXECUTE) == 0)
4937 		npte1 |= PTE1_NX;
4938 
4939 	/*
4940 	 * QQQ: Herein, execute permission is never set.
4941 	 *      It only can be cleared. So, no icache
4942 	 *      syncing is needed.
4943 	 */
4944 
4945 	if (npte1 != opte1) {
4946 		pte1_store(pte1p, npte1);
4947 		pmap_tlb_flush(pmap, sva);
4948 	}
4949 }
4950 
4951 /*
4952  *	Set the physical protection on the
4953  *	specified range of this map as requested.
4954  */
4955 void
4956 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4957 {
4958 	boolean_t pv_lists_locked;
4959 	vm_offset_t nextva;
4960 	pt1_entry_t *pte1p, pte1;
4961 	pt2_entry_t *pte2p, opte2, npte2;
4962 
4963 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4964 	if (prot == VM_PROT_NONE) {
4965 		pmap_remove(pmap, sva, eva);
4966 		return;
4967 	}
4968 
4969 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
4970 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
4971 		return;
4972 
4973 	if (pmap_is_current(pmap))
4974 		pv_lists_locked = FALSE;
4975 	else {
4976 		pv_lists_locked = TRUE;
4977 resume:
4978 		rw_wlock(&pvh_global_lock);
4979 		sched_pin();
4980 	}
4981 
4982 	PMAP_LOCK(pmap);
4983 	for (; sva < eva; sva = nextva) {
4984 		/*
4985 		 * Calculate address for next L2 page table.
4986 		 */
4987 		nextva = pte1_trunc(sva + PTE1_SIZE);
4988 		if (nextva < sva)
4989 			nextva = eva;
4990 
4991 		pte1p = pmap_pte1(pmap, sva);
4992 		pte1 = pte1_load(pte1p);
4993 
4994 		/*
4995 		 * Weed out invalid mappings. Note: we assume that L1 page
4996 		 * page table is always allocated, and in kernel virtual.
4997 		 */
4998 		if (pte1 == 0)
4999 			continue;
5000 
5001 		if (pte1_is_section(pte1)) {
5002 			/*
5003 			 * Are we protecting the entire large page?  If not,
5004 			 * demote the mapping and fall through.
5005 			 */
5006 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5007 				pmap_protect_pte1(pmap, pte1p, sva, prot);
5008 				continue;
5009 			} else {
5010 				if (!pv_lists_locked) {
5011 					pv_lists_locked = TRUE;
5012 					if (!rw_try_wlock(&pvh_global_lock)) {
5013 						PMAP_UNLOCK(pmap);
5014 						goto resume;
5015 					}
5016 					sched_pin();
5017 				}
5018 				if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5019 					/*
5020 					 * The large page mapping
5021 					 * was destroyed.
5022 					 */
5023 					continue;
5024 				}
5025 #ifdef INVARIANTS
5026 				else {
5027 					/* Update pte1 after demotion */
5028 					pte1 = pte1_load(pte1p);
5029 				}
5030 #endif
5031 			}
5032 		}
5033 
5034 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5035 		    " is not link", __func__, pmap, sva, pte1, pte1p));
5036 
5037 		/*
5038 		 * Limit our scan to either the end of the va represented
5039 		 * by the current L2 page table page, or to the end of the
5040 		 * range being protected.
5041 		 */
5042 		if (nextva > eva)
5043 			nextva = eva;
5044 
5045 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5046 		    sva += PAGE_SIZE) {
5047 			vm_page_t m;
5048 
5049 			opte2 = npte2 = pte2_load(pte2p);
5050 			if (!pte2_is_valid(opte2))
5051 				continue;
5052 
5053 			if ((prot & VM_PROT_WRITE) == 0) {
5054 				if (pte2_is_managed(opte2) &&
5055 				    pte2_is_dirty(opte2)) {
5056 					m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
5057 					vm_page_dirty(m);
5058 				}
5059 				npte2 |= PTE2_RO | PTE2_NM;
5060 			}
5061 
5062 			if ((prot & VM_PROT_EXECUTE) == 0)
5063 				npte2 |= PTE2_NX;
5064 
5065 			/*
5066 			 * QQQ: Herein, execute permission is never set.
5067 			 *      It only can be cleared. So, no icache
5068 			 *      syncing is needed.
5069 			 */
5070 
5071 			if (npte2 != opte2) {
5072 				pte2_store(pte2p, npte2);
5073 				pmap_tlb_flush(pmap, sva);
5074 			}
5075 		}
5076 	}
5077 	if (pv_lists_locked) {
5078 		sched_unpin();
5079 		rw_wunlock(&pvh_global_lock);
5080 	}
5081 	PMAP_UNLOCK(pmap);
5082 }
5083 
5084 /*
5085  *	pmap_pvh_wired_mappings:
5086  *
5087  *	Return the updated number "count" of managed mappings that are wired.
5088  */
5089 static int
5090 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
5091 {
5092 	pmap_t pmap;
5093 	pt1_entry_t pte1;
5094 	pt2_entry_t pte2;
5095 	pv_entry_t pv;
5096 
5097 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5098 	sched_pin();
5099 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5100 		pmap = PV_PMAP(pv);
5101 		PMAP_LOCK(pmap);
5102 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5103 		if (pte1_is_section(pte1)) {
5104 			if (pte1_is_wired(pte1))
5105 				count++;
5106 		} else {
5107 			KASSERT(pte1_is_link(pte1),
5108 			    ("%s: pte1 %#x is not link", __func__, pte1));
5109 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5110 			if (pte2_is_wired(pte2))
5111 				count++;
5112 		}
5113 		PMAP_UNLOCK(pmap);
5114 	}
5115 	sched_unpin();
5116 	return (count);
5117 }
5118 
5119 /*
5120  *	pmap_page_wired_mappings:
5121  *
5122  *	Return the number of managed mappings to the given physical page
5123  *	that are wired.
5124  */
5125 int
5126 pmap_page_wired_mappings(vm_page_t m)
5127 {
5128 	int count;
5129 
5130 	count = 0;
5131 	if ((m->oflags & VPO_UNMANAGED) != 0)
5132 		return (count);
5133 	rw_wlock(&pvh_global_lock);
5134 	count = pmap_pvh_wired_mappings(&m->md, count);
5135 	if ((m->flags & PG_FICTITIOUS) == 0) {
5136 		count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
5137 		    count);
5138 	}
5139 	rw_wunlock(&pvh_global_lock);
5140 	return (count);
5141 }
5142 
5143 /*
5144  *  Returns TRUE if any of the given mappings were used to modify
5145  *  physical memory.  Otherwise, returns FALSE.  Both page and 1mpage
5146  *  mappings are supported.
5147  */
5148 static boolean_t
5149 pmap_is_modified_pvh(struct md_page *pvh)
5150 {
5151 	pv_entry_t pv;
5152 	pt1_entry_t pte1;
5153 	pt2_entry_t pte2;
5154 	pmap_t pmap;
5155 	boolean_t rv;
5156 
5157 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5158 	rv = FALSE;
5159 	sched_pin();
5160 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5161 		pmap = PV_PMAP(pv);
5162 		PMAP_LOCK(pmap);
5163 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5164 		if (pte1_is_section(pte1)) {
5165 			rv = pte1_is_dirty(pte1);
5166 		} else {
5167 			KASSERT(pte1_is_link(pte1),
5168 			    ("%s: pte1 %#x is not link", __func__, pte1));
5169 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5170 			rv = pte2_is_dirty(pte2);
5171 		}
5172 		PMAP_UNLOCK(pmap);
5173 		if (rv)
5174 			break;
5175 	}
5176 	sched_unpin();
5177 	return (rv);
5178 }
5179 
5180 /*
5181  *	pmap_is_modified:
5182  *
5183  *	Return whether or not the specified physical page was modified
5184  *	in any physical maps.
5185  */
5186 boolean_t
5187 pmap_is_modified(vm_page_t m)
5188 {
5189 	boolean_t rv;
5190 
5191 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5192 	    ("%s: page %p is not managed", __func__, m));
5193 
5194 	/*
5195 	 * If the page is not busied then this check is racy.
5196 	 */
5197 	if (!pmap_page_is_write_mapped(m))
5198 		return (FALSE);
5199 	rw_wlock(&pvh_global_lock);
5200 	rv = pmap_is_modified_pvh(&m->md) ||
5201 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5202 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5203 	rw_wunlock(&pvh_global_lock);
5204 	return (rv);
5205 }
5206 
5207 /*
5208  *	pmap_is_prefaultable:
5209  *
5210  *	Return whether or not the specified virtual address is eligible
5211  *	for prefault.
5212  */
5213 boolean_t
5214 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5215 {
5216 	pt1_entry_t pte1;
5217 	pt2_entry_t pte2;
5218 	boolean_t rv;
5219 
5220 	rv = FALSE;
5221 	PMAP_LOCK(pmap);
5222 	pte1 = pte1_load(pmap_pte1(pmap, addr));
5223 	if (pte1_is_link(pte1)) {
5224 		pte2 = pte2_load(pt2map_entry(addr));
5225 		rv = !pte2_is_valid(pte2) ;
5226 	}
5227 	PMAP_UNLOCK(pmap);
5228 	return (rv);
5229 }
5230 
5231 /*
5232  *  Returns TRUE if any of the given mappings were referenced and FALSE
5233  *  otherwise. Both page and 1mpage mappings are supported.
5234  */
5235 static boolean_t
5236 pmap_is_referenced_pvh(struct md_page *pvh)
5237 {
5238 
5239 	pv_entry_t pv;
5240 	pt1_entry_t pte1;
5241 	pt2_entry_t pte2;
5242 	pmap_t pmap;
5243 	boolean_t rv;
5244 
5245 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5246 	rv = FALSE;
5247 	sched_pin();
5248 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5249 		pmap = PV_PMAP(pv);
5250 		PMAP_LOCK(pmap);
5251 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5252 		if (pte1_is_section(pte1)) {
5253 			rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
5254 		} else {
5255 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5256 			rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
5257 		}
5258 		PMAP_UNLOCK(pmap);
5259 		if (rv)
5260 			break;
5261 	}
5262 	sched_unpin();
5263 	return (rv);
5264 }
5265 
5266 /*
5267  *	pmap_is_referenced:
5268  *
5269  *	Return whether or not the specified physical page was referenced
5270  *	in any physical maps.
5271  */
5272 boolean_t
5273 pmap_is_referenced(vm_page_t m)
5274 {
5275 	boolean_t rv;
5276 
5277 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5278 	    ("%s: page %p is not managed", __func__, m));
5279 	rw_wlock(&pvh_global_lock);
5280 	rv = pmap_is_referenced_pvh(&m->md) ||
5281 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5282 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5283 	rw_wunlock(&pvh_global_lock);
5284 	return (rv);
5285 }
5286 
5287 /*
5288  *	pmap_ts_referenced:
5289  *
5290  *	Return a count of reference bits for a page, clearing those bits.
5291  *	It is not necessary for every reference bit to be cleared, but it
5292  *	is necessary that 0 only be returned when there are truly no
5293  *	reference bits set.
5294  *
5295  *	As an optimization, update the page's dirty field if a modified bit is
5296  *	found while counting reference bits.  This opportunistic update can be
5297  *	performed at low cost and can eliminate the need for some future calls
5298  *	to pmap_is_modified().  However, since this function stops after
5299  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5300  *	dirty pages.  Those dirty pages will only be detected by a future call
5301  *	to pmap_is_modified().
5302  */
5303 int
5304 pmap_ts_referenced(vm_page_t m)
5305 {
5306 	struct md_page *pvh;
5307 	pv_entry_t pv, pvf;
5308 	pmap_t pmap;
5309 	pt1_entry_t  *pte1p, opte1;
5310 	pt2_entry_t *pte2p, opte2;
5311 	vm_paddr_t pa;
5312 	int rtval = 0;
5313 
5314 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5315 	    ("%s: page %p is not managed", __func__, m));
5316 	pa = VM_PAGE_TO_PHYS(m);
5317 	pvh = pa_to_pvh(pa);
5318 	rw_wlock(&pvh_global_lock);
5319 	sched_pin();
5320 	if ((m->flags & PG_FICTITIOUS) != 0 ||
5321 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5322 		goto small_mappings;
5323 	pv = pvf;
5324 	do {
5325 		pmap = PV_PMAP(pv);
5326 		PMAP_LOCK(pmap);
5327 		pte1p = pmap_pte1(pmap, pv->pv_va);
5328 		opte1 = pte1_load(pte1p);
5329 		if (pte1_is_dirty(opte1)) {
5330 			/*
5331 			 * Although "opte1" is mapping a 1MB page, because
5332 			 * this function is called at a 4KB page granularity,
5333 			 * we only update the 4KB page under test.
5334 			 */
5335 			vm_page_dirty(m);
5336 		}
5337 		if ((opte1 & PTE1_A) != 0) {
5338 			/*
5339 			 * Since this reference bit is shared by 256 4KB pages,
5340 			 * it should not be cleared every time it is tested.
5341 			 * Apply a simple "hash" function on the physical page
5342 			 * number, the virtual section number, and the pmap
5343 			 * address to select one 4KB page out of the 256
5344 			 * on which testing the reference bit will result
5345 			 * in clearing that bit. This function is designed
5346 			 * to avoid the selection of the same 4KB page
5347 			 * for every 1MB page mapping.
5348 			 *
5349 			 * On demotion, a mapping that hasn't been referenced
5350 			 * is simply destroyed.  To avoid the possibility of a
5351 			 * subsequent page fault on a demoted wired mapping,
5352 			 * always leave its reference bit set.  Moreover,
5353 			 * since the section is wired, the current state of
5354 			 * its reference bit won't affect page replacement.
5355 			 */
5356 			 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
5357 			    (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
5358 			    !pte1_is_wired(opte1)) {
5359 				pte1_clear_bit(pte1p, PTE1_A);
5360 				pmap_tlb_flush(pmap, pv->pv_va);
5361 			}
5362 			rtval++;
5363 		}
5364 		PMAP_UNLOCK(pmap);
5365 		/* Rotate the PV list if it has more than one entry. */
5366 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5367 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5368 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5369 		}
5370 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5371 			goto out;
5372 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5373 small_mappings:
5374 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5375 		goto out;
5376 	pv = pvf;
5377 	do {
5378 		pmap = PV_PMAP(pv);
5379 		PMAP_LOCK(pmap);
5380 		pte1p = pmap_pte1(pmap, pv->pv_va);
5381 		KASSERT(pte1_is_link(pte1_load(pte1p)),
5382 		    ("%s: not found a link in page %p's pv list", __func__, m));
5383 
5384 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5385 		opte2 = pte2_load(pte2p);
5386 		if (pte2_is_dirty(opte2))
5387 			vm_page_dirty(m);
5388 		if ((opte2 & PTE2_A) != 0) {
5389 			pte2_clear_bit(pte2p, PTE2_A);
5390 			pmap_tlb_flush(pmap, pv->pv_va);
5391 			rtval++;
5392 		}
5393 		PMAP_UNLOCK(pmap);
5394 		/* Rotate the PV list if it has more than one entry. */
5395 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5396 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5397 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5398 		}
5399 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5400 	    PMAP_TS_REFERENCED_MAX);
5401 out:
5402 	sched_unpin();
5403 	rw_wunlock(&pvh_global_lock);
5404 	return (rtval);
5405 }
5406 
5407 /*
5408  *	Clear the wired attribute from the mappings for the specified range of
5409  *	addresses in the given pmap.  Every valid mapping within that range
5410  *	must have the wired attribute set.  In contrast, invalid mappings
5411  *	cannot have the wired attribute set, so they are ignored.
5412  *
5413  *	The wired attribute of the page table entry is not a hardware feature,
5414  *	so there is no need to invalidate any TLB entries.
5415  */
5416 void
5417 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5418 {
5419 	vm_offset_t nextva;
5420 	pt1_entry_t *pte1p, pte1;
5421 	pt2_entry_t *pte2p, pte2;
5422 	boolean_t pv_lists_locked;
5423 
5424 	if (pmap_is_current(pmap))
5425 		pv_lists_locked = FALSE;
5426 	else {
5427 		pv_lists_locked = TRUE;
5428 resume:
5429 		rw_wlock(&pvh_global_lock);
5430 		sched_pin();
5431 	}
5432 	PMAP_LOCK(pmap);
5433 	for (; sva < eva; sva = nextva) {
5434 		nextva = pte1_trunc(sva + PTE1_SIZE);
5435 		if (nextva < sva)
5436 			nextva = eva;
5437 
5438 		pte1p = pmap_pte1(pmap, sva);
5439 		pte1 = pte1_load(pte1p);
5440 
5441 		/*
5442 		 * Weed out invalid mappings. Note: we assume that L1 page
5443 		 * page table is always allocated, and in kernel virtual.
5444 		 */
5445 		if (pte1 == 0)
5446 			continue;
5447 
5448 		if (pte1_is_section(pte1)) {
5449 			if (!pte1_is_wired(pte1))
5450 				panic("%s: pte1 %#x not wired", __func__, pte1);
5451 
5452 			/*
5453 			 * Are we unwiring the entire large page?  If not,
5454 			 * demote the mapping and fall through.
5455 			 */
5456 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5457 				pte1_clear_bit(pte1p, PTE1_W);
5458 				pmap->pm_stats.wired_count -= PTE1_SIZE /
5459 				    PAGE_SIZE;
5460 				continue;
5461 			} else {
5462 				if (!pv_lists_locked) {
5463 					pv_lists_locked = TRUE;
5464 					if (!rw_try_wlock(&pvh_global_lock)) {
5465 						PMAP_UNLOCK(pmap);
5466 						/* Repeat sva. */
5467 						goto resume;
5468 					}
5469 					sched_pin();
5470 				}
5471 				if (!pmap_demote_pte1(pmap, pte1p, sva))
5472 					panic("%s: demotion failed", __func__);
5473 #ifdef INVARIANTS
5474 				else {
5475 					/* Update pte1 after demotion */
5476 					pte1 = pte1_load(pte1p);
5477 				}
5478 #endif
5479 			}
5480 		}
5481 
5482 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5483 		    " is not link", __func__, pmap, sva, pte1, pte1p));
5484 
5485 		/*
5486 		 * Limit our scan to either the end of the va represented
5487 		 * by the current L2 page table page, or to the end of the
5488 		 * range being protected.
5489 		 */
5490 		if (nextva > eva)
5491 			nextva = eva;
5492 
5493 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5494 		    sva += PAGE_SIZE) {
5495 			pte2 = pte2_load(pte2p);
5496 			if (!pte2_is_valid(pte2))
5497 				continue;
5498 			if (!pte2_is_wired(pte2))
5499 				panic("%s: pte2 %#x is missing PTE2_W",
5500 				    __func__, pte2);
5501 
5502 			/*
5503 			 * PTE2_W must be cleared atomically. Although the pmap
5504 			 * lock synchronizes access to PTE2_W, another processor
5505 			 * could be changing PTE2_NM and/or PTE2_A concurrently.
5506 			 */
5507 			pte2_clear_bit(pte2p, PTE2_W);
5508 			pmap->pm_stats.wired_count--;
5509 		}
5510 	}
5511 	if (pv_lists_locked) {
5512 		sched_unpin();
5513 		rw_wunlock(&pvh_global_lock);
5514 	}
5515 	PMAP_UNLOCK(pmap);
5516 }
5517 
5518 /*
5519  *  Clear the write and modified bits in each of the given page's mappings.
5520  */
5521 void
5522 pmap_remove_write(vm_page_t m)
5523 {
5524 	struct md_page *pvh;
5525 	pv_entry_t next_pv, pv;
5526 	pmap_t pmap;
5527 	pt1_entry_t *pte1p;
5528 	pt2_entry_t *pte2p, opte2;
5529 	vm_offset_t va;
5530 
5531 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5532 	    ("%s: page %p is not managed", __func__, m));
5533 	vm_page_assert_busied(m);
5534 
5535 	if (!pmap_page_is_write_mapped(m))
5536 		return;
5537 	rw_wlock(&pvh_global_lock);
5538 	sched_pin();
5539 	if ((m->flags & PG_FICTITIOUS) != 0)
5540 		goto small_mappings;
5541 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5542 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5543 		va = pv->pv_va;
5544 		pmap = PV_PMAP(pv);
5545 		PMAP_LOCK(pmap);
5546 		pte1p = pmap_pte1(pmap, va);
5547 		if (!(pte1_load(pte1p) & PTE1_RO))
5548 			(void)pmap_demote_pte1(pmap, pte1p, va);
5549 		PMAP_UNLOCK(pmap);
5550 	}
5551 small_mappings:
5552 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5553 		pmap = PV_PMAP(pv);
5554 		PMAP_LOCK(pmap);
5555 		pte1p = pmap_pte1(pmap, pv->pv_va);
5556 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5557 		    " a section in page %p's pv list", __func__, m));
5558 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5559 		opte2 = pte2_load(pte2p);
5560 		if (!(opte2 & PTE2_RO)) {
5561 			pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
5562 			if (pte2_is_dirty(opte2))
5563 				vm_page_dirty(m);
5564 			pmap_tlb_flush(pmap, pv->pv_va);
5565 		}
5566 		PMAP_UNLOCK(pmap);
5567 	}
5568 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5569 	sched_unpin();
5570 	rw_wunlock(&pvh_global_lock);
5571 }
5572 
5573 /*
5574  *	Apply the given advice to the specified range of addresses within the
5575  *	given pmap.  Depending on the advice, clear the referenced and/or
5576  *	modified flags in each mapping and set the mapped page's dirty field.
5577  */
5578 void
5579 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5580 {
5581 	pt1_entry_t *pte1p, opte1;
5582 	pt2_entry_t *pte2p, pte2;
5583 	vm_offset_t pdnxt;
5584 	vm_page_t m;
5585 	boolean_t pv_lists_locked;
5586 
5587 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5588 		return;
5589 	if (pmap_is_current(pmap))
5590 		pv_lists_locked = FALSE;
5591 	else {
5592 		pv_lists_locked = TRUE;
5593 resume:
5594 		rw_wlock(&pvh_global_lock);
5595 		sched_pin();
5596 	}
5597 	PMAP_LOCK(pmap);
5598 	for (; sva < eva; sva = pdnxt) {
5599 		pdnxt = pte1_trunc(sva + PTE1_SIZE);
5600 		if (pdnxt < sva)
5601 			pdnxt = eva;
5602 		pte1p = pmap_pte1(pmap, sva);
5603 		opte1 = pte1_load(pte1p);
5604 		if (!pte1_is_valid(opte1)) /* XXX */
5605 			continue;
5606 		else if (pte1_is_section(opte1)) {
5607 			if (!pte1_is_managed(opte1))
5608 				continue;
5609 			if (!pv_lists_locked) {
5610 				pv_lists_locked = TRUE;
5611 				if (!rw_try_wlock(&pvh_global_lock)) {
5612 					PMAP_UNLOCK(pmap);
5613 					goto resume;
5614 				}
5615 				sched_pin();
5616 			}
5617 			if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5618 				/*
5619 				 * The large page mapping was destroyed.
5620 				 */
5621 				continue;
5622 			}
5623 
5624 			/*
5625 			 * Unless the page mappings are wired, remove the
5626 			 * mapping to a single page so that a subsequent
5627 			 * access may repromote.  Since the underlying L2 page
5628 			 * table is fully populated, this removal never
5629 			 * frees a L2 page table page.
5630 			 */
5631 			if (!pte1_is_wired(opte1)) {
5632 				pte2p = pmap_pte2_quick(pmap, sva);
5633 				KASSERT(pte2_is_valid(pte2_load(pte2p)),
5634 				    ("%s: invalid PTE2", __func__));
5635 				pmap_remove_pte2(pmap, pte2p, sva, NULL);
5636 			}
5637 		}
5638 		if (pdnxt > eva)
5639 			pdnxt = eva;
5640 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
5641 		    sva += PAGE_SIZE) {
5642 			pte2 = pte2_load(pte2p);
5643 			if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
5644 				continue;
5645 			else if (pte2_is_dirty(pte2)) {
5646 				if (advice == MADV_DONTNEED) {
5647 					/*
5648 					 * Future calls to pmap_is_modified()
5649 					 * can be avoided by making the page
5650 					 * dirty now.
5651 					 */
5652 					m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
5653 					vm_page_dirty(m);
5654 				}
5655 				pte2_set_bit(pte2p, PTE2_NM);
5656 				pte2_clear_bit(pte2p, PTE2_A);
5657 			} else if ((pte2 & PTE2_A) != 0)
5658 				pte2_clear_bit(pte2p, PTE2_A);
5659 			else
5660 				continue;
5661 			pmap_tlb_flush(pmap, sva);
5662 		}
5663 	}
5664 	if (pv_lists_locked) {
5665 		sched_unpin();
5666 		rw_wunlock(&pvh_global_lock);
5667 	}
5668 	PMAP_UNLOCK(pmap);
5669 }
5670 
5671 /*
5672  *	Clear the modify bits on the specified physical page.
5673  */
5674 void
5675 pmap_clear_modify(vm_page_t m)
5676 {
5677 	struct md_page *pvh;
5678 	pv_entry_t next_pv, pv;
5679 	pmap_t pmap;
5680 	pt1_entry_t *pte1p, opte1;
5681 	pt2_entry_t *pte2p, opte2;
5682 	vm_offset_t va;
5683 
5684 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5685 	    ("%s: page %p is not managed", __func__, m));
5686 	vm_page_assert_busied(m);
5687 
5688 	if (!pmap_page_is_write_mapped(m))
5689 		return;
5690 	rw_wlock(&pvh_global_lock);
5691 	sched_pin();
5692 	if ((m->flags & PG_FICTITIOUS) != 0)
5693 		goto small_mappings;
5694 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5695 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5696 		va = pv->pv_va;
5697 		pmap = PV_PMAP(pv);
5698 		PMAP_LOCK(pmap);
5699 		pte1p = pmap_pte1(pmap, va);
5700 		opte1 = pte1_load(pte1p);
5701 		if (!(opte1 & PTE1_RO)) {
5702 			if (pmap_demote_pte1(pmap, pte1p, va) &&
5703 			    !pte1_is_wired(opte1)) {
5704 				/*
5705 				 * Write protect the mapping to a
5706 				 * single page so that a subsequent
5707 				 * write access may repromote.
5708 				 */
5709 				va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
5710 				pte2p = pmap_pte2_quick(pmap, va);
5711 				opte2 = pte2_load(pte2p);
5712 				if ((opte2 & PTE2_V)) {
5713 					pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
5714 					vm_page_dirty(m);
5715 					pmap_tlb_flush(pmap, va);
5716 				}
5717 			}
5718 		}
5719 		PMAP_UNLOCK(pmap);
5720 	}
5721 small_mappings:
5722 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5723 		pmap = PV_PMAP(pv);
5724 		PMAP_LOCK(pmap);
5725 		pte1p = pmap_pte1(pmap, pv->pv_va);
5726 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5727 		    " a section in page %p's pv list", __func__, m));
5728 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5729 		if (pte2_is_dirty(pte2_load(pte2p))) {
5730 			pte2_set_bit(pte2p, PTE2_NM);
5731 			pmap_tlb_flush(pmap, pv->pv_va);
5732 		}
5733 		PMAP_UNLOCK(pmap);
5734 	}
5735 	sched_unpin();
5736 	rw_wunlock(&pvh_global_lock);
5737 }
5738 
5739 /*
5740  *  Sets the memory attribute for the specified page.
5741  */
5742 void
5743 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5744 {
5745 	pt2_entry_t *cmap2_pte2p;
5746 	vm_memattr_t oma;
5747 	vm_paddr_t pa;
5748 	struct pcpu *pc;
5749 
5750 	oma = m->md.pat_mode;
5751 	m->md.pat_mode = ma;
5752 
5753 	CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
5754 	    VM_PAGE_TO_PHYS(m), oma, ma);
5755 	if ((m->flags & PG_FICTITIOUS) != 0)
5756 		return;
5757 #if 0
5758 	/*
5759 	 * If "m" is a normal page, flush it from the cache.
5760 	 *
5761 	 * First, try to find an existing mapping of the page by sf
5762 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5763 	 * flushes the cache.
5764 	 */
5765 	if (sf_buf_invalidate_cache(m, oma))
5766 		return;
5767 #endif
5768 	/*
5769 	 * If page is not mapped by sf buffer, map the page
5770 	 * transient and do invalidation.
5771 	 */
5772 	if (ma != oma) {
5773 		pa = VM_PAGE_TO_PHYS(m);
5774 		sched_pin();
5775 		pc = get_pcpu();
5776 		cmap2_pte2p = pc->pc_cmap2_pte2p;
5777 		mtx_lock(&pc->pc_cmap_lock);
5778 		if (pte2_load(cmap2_pte2p) != 0)
5779 			panic("%s: CMAP2 busy", __func__);
5780 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
5781 		    vm_memattr_to_pte2(ma)));
5782 		dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
5783 		pte2_clear(cmap2_pte2p);
5784 		tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5785 		sched_unpin();
5786 		mtx_unlock(&pc->pc_cmap_lock);
5787 	}
5788 }
5789 
5790 /*
5791  *  Miscellaneous support routines follow
5792  */
5793 
5794 /*
5795  *  Returns TRUE if the given page is mapped individually or as part of
5796  *  a 1mpage.  Otherwise, returns FALSE.
5797  */
5798 boolean_t
5799 pmap_page_is_mapped(vm_page_t m)
5800 {
5801 	boolean_t rv;
5802 
5803 	if ((m->oflags & VPO_UNMANAGED) != 0)
5804 		return (FALSE);
5805 	rw_wlock(&pvh_global_lock);
5806 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5807 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5808 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5809 	rw_wunlock(&pvh_global_lock);
5810 	return (rv);
5811 }
5812 
5813 /*
5814  *  Returns true if the pmap's pv is one of the first
5815  *  16 pvs linked to from this page.  This count may
5816  *  be changed upwards or downwards in the future; it
5817  *  is only necessary that true be returned for a small
5818  *  subset of pmaps for proper page aging.
5819  */
5820 boolean_t
5821 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5822 {
5823 	struct md_page *pvh;
5824 	pv_entry_t pv;
5825 	int loops = 0;
5826 	boolean_t rv;
5827 
5828 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5829 	    ("%s: page %p is not managed", __func__, m));
5830 	rv = FALSE;
5831 	rw_wlock(&pvh_global_lock);
5832 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5833 		if (PV_PMAP(pv) == pmap) {
5834 			rv = TRUE;
5835 			break;
5836 		}
5837 		loops++;
5838 		if (loops >= 16)
5839 			break;
5840 	}
5841 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5842 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5843 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5844 			if (PV_PMAP(pv) == pmap) {
5845 				rv = TRUE;
5846 				break;
5847 			}
5848 			loops++;
5849 			if (loops >= 16)
5850 				break;
5851 		}
5852 	}
5853 	rw_wunlock(&pvh_global_lock);
5854 	return (rv);
5855 }
5856 
5857 /*
5858  *	pmap_zero_page zeros the specified hardware page by mapping
5859  *	the page into KVM and using bzero to clear its contents.
5860  */
5861 void
5862 pmap_zero_page(vm_page_t m)
5863 {
5864 	pt2_entry_t *cmap2_pte2p;
5865 	struct pcpu *pc;
5866 
5867 	sched_pin();
5868 	pc = get_pcpu();
5869 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5870 	mtx_lock(&pc->pc_cmap_lock);
5871 	if (pte2_load(cmap2_pte2p) != 0)
5872 		panic("%s: CMAP2 busy", __func__);
5873 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5874 	    vm_page_pte2_attr(m)));
5875 	pagezero(pc->pc_cmap2_addr);
5876 	pte2_clear(cmap2_pte2p);
5877 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5878 	sched_unpin();
5879 	mtx_unlock(&pc->pc_cmap_lock);
5880 }
5881 
5882 /*
5883  *	pmap_zero_page_area zeros the specified hardware page by mapping
5884  *	the page into KVM and using bzero to clear its contents.
5885  *
5886  *	off and size may not cover an area beyond a single hardware page.
5887  */
5888 void
5889 pmap_zero_page_area(vm_page_t m, int off, int size)
5890 {
5891 	pt2_entry_t *cmap2_pte2p;
5892 	struct pcpu *pc;
5893 
5894 	sched_pin();
5895 	pc = get_pcpu();
5896 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5897 	mtx_lock(&pc->pc_cmap_lock);
5898 	if (pte2_load(cmap2_pte2p) != 0)
5899 		panic("%s: CMAP2 busy", __func__);
5900 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5901 	    vm_page_pte2_attr(m)));
5902 	if (off == 0 && size == PAGE_SIZE)
5903 		pagezero(pc->pc_cmap2_addr);
5904 	else
5905 		bzero(pc->pc_cmap2_addr + off, size);
5906 	pte2_clear(cmap2_pte2p);
5907 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5908 	sched_unpin();
5909 	mtx_unlock(&pc->pc_cmap_lock);
5910 }
5911 
5912 /*
5913  *	pmap_copy_page copies the specified (machine independent)
5914  *	page by mapping the page into virtual memory and using
5915  *	bcopy to copy the page, one machine dependent page at a
5916  *	time.
5917  */
5918 void
5919 pmap_copy_page(vm_page_t src, vm_page_t dst)
5920 {
5921 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5922 	struct pcpu *pc;
5923 
5924 	sched_pin();
5925 	pc = get_pcpu();
5926 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5927 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5928 	mtx_lock(&pc->pc_cmap_lock);
5929 	if (pte2_load(cmap1_pte2p) != 0)
5930 		panic("%s: CMAP1 busy", __func__);
5931 	if (pte2_load(cmap2_pte2p) != 0)
5932 		panic("%s: CMAP2 busy", __func__);
5933 	pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
5934 	    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
5935 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
5936 	    PTE2_AP_KRW, vm_page_pte2_attr(dst)));
5937 	bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
5938 	pte2_clear(cmap1_pte2p);
5939 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5940 	pte2_clear(cmap2_pte2p);
5941 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5942 	sched_unpin();
5943 	mtx_unlock(&pc->pc_cmap_lock);
5944 }
5945 
5946 int unmapped_buf_allowed = 1;
5947 
5948 void
5949 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5950     vm_offset_t b_offset, int xfersize)
5951 {
5952 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5953 	vm_page_t a_pg, b_pg;
5954 	char *a_cp, *b_cp;
5955 	vm_offset_t a_pg_offset, b_pg_offset;
5956 	struct pcpu *pc;
5957 	int cnt;
5958 
5959 	sched_pin();
5960 	pc = get_pcpu();
5961 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5962 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5963 	mtx_lock(&pc->pc_cmap_lock);
5964 	if (pte2_load(cmap1_pte2p) != 0)
5965 		panic("pmap_copy_pages: CMAP1 busy");
5966 	if (pte2_load(cmap2_pte2p) != 0)
5967 		panic("pmap_copy_pages: CMAP2 busy");
5968 	while (xfersize > 0) {
5969 		a_pg = ma[a_offset >> PAGE_SHIFT];
5970 		a_pg_offset = a_offset & PAGE_MASK;
5971 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5972 		b_pg = mb[b_offset >> PAGE_SHIFT];
5973 		b_pg_offset = b_offset & PAGE_MASK;
5974 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5975 		pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
5976 		    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
5977 		tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
5978 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
5979 		    PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
5980 		tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
5981 		a_cp = pc->pc_cmap1_addr + a_pg_offset;
5982 		b_cp = pc->pc_cmap2_addr + b_pg_offset;
5983 		bcopy(a_cp, b_cp, cnt);
5984 		a_offset += cnt;
5985 		b_offset += cnt;
5986 		xfersize -= cnt;
5987 	}
5988 	pte2_clear(cmap1_pte2p);
5989 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5990 	pte2_clear(cmap2_pte2p);
5991 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5992 	sched_unpin();
5993 	mtx_unlock(&pc->pc_cmap_lock);
5994 }
5995 
5996 vm_offset_t
5997 pmap_quick_enter_page(vm_page_t m)
5998 {
5999 	struct pcpu *pc;
6000 	pt2_entry_t *pte2p;
6001 
6002 	critical_enter();
6003 	pc = get_pcpu();
6004 	pte2p = pc->pc_qmap_pte2p;
6005 
6006 	KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
6007 
6008 	pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6009 	    vm_page_pte2_attr(m)));
6010 	return (pc->pc_qmap_addr);
6011 }
6012 
6013 void
6014 pmap_quick_remove_page(vm_offset_t addr)
6015 {
6016 	struct pcpu *pc;
6017 	pt2_entry_t *pte2p;
6018 
6019 	pc = get_pcpu();
6020 	pte2p = pc->pc_qmap_pte2p;
6021 
6022 	KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
6023 	KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
6024 
6025 	pte2_clear(pte2p);
6026 	tlb_flush(pc->pc_qmap_addr);
6027 	critical_exit();
6028 }
6029 
6030 /*
6031  *	Copy the range specified by src_addr/len
6032  *	from the source map to the range dst_addr/len
6033  *	in the destination map.
6034  *
6035  *	This routine is only advisory and need not do anything.
6036  */
6037 void
6038 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
6039     vm_offset_t src_addr)
6040 {
6041 	struct spglist free;
6042 	vm_offset_t addr;
6043 	vm_offset_t end_addr = src_addr + len;
6044 	vm_offset_t nextva;
6045 
6046 	if (dst_addr != src_addr)
6047 		return;
6048 
6049 	if (!pmap_is_current(src_pmap))
6050 		return;
6051 
6052 	rw_wlock(&pvh_global_lock);
6053 	if (dst_pmap < src_pmap) {
6054 		PMAP_LOCK(dst_pmap);
6055 		PMAP_LOCK(src_pmap);
6056 	} else {
6057 		PMAP_LOCK(src_pmap);
6058 		PMAP_LOCK(dst_pmap);
6059 	}
6060 	sched_pin();
6061 	for (addr = src_addr; addr < end_addr; addr = nextva) {
6062 		pt2_entry_t *src_pte2p, *dst_pte2p;
6063 		vm_page_t dst_mpt2pg, src_mpt2pg;
6064 		pt1_entry_t src_pte1;
6065 		u_int pte1_idx;
6066 
6067 		KASSERT(addr < VM_MAXUSER_ADDRESS,
6068 		    ("%s: invalid to pmap_copy page tables", __func__));
6069 
6070 		nextva = pte1_trunc(addr + PTE1_SIZE);
6071 		if (nextva < addr)
6072 			nextva = end_addr;
6073 
6074 		pte1_idx = pte1_index(addr);
6075 		src_pte1 = src_pmap->pm_pt1[pte1_idx];
6076 		if (pte1_is_section(src_pte1)) {
6077 			if ((addr & PTE1_OFFSET) != 0 ||
6078 			    (addr + PTE1_SIZE) > end_addr)
6079 				continue;
6080 			if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
6081 			    (!pte1_is_managed(src_pte1) ||
6082 			    pmap_pv_insert_pte1(dst_pmap, addr, src_pte1,
6083 			    PMAP_ENTER_NORECLAIM))) {
6084 				dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
6085 				    ~PTE1_W;
6086 				dst_pmap->pm_stats.resident_count +=
6087 				    PTE1_SIZE / PAGE_SIZE;
6088 				pmap_pte1_mappings++;
6089 			}
6090 			continue;
6091 		} else if (!pte1_is_link(src_pte1))
6092 			continue;
6093 
6094 		src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
6095 
6096 		/*
6097 		 * We leave PT2s to be linked from PT1 even if they are not
6098 		 * referenced until all PT2s in a page are without reference.
6099 		 *
6100 		 * QQQ: It could be changed ...
6101 		 */
6102 #if 0 /* single_pt2_link_is_cleared */
6103 		KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
6104 		    ("%s: source page table page is unused", __func__));
6105 #else
6106 		if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
6107 			continue;
6108 #endif
6109 		if (nextva > end_addr)
6110 			nextva = end_addr;
6111 
6112 		src_pte2p = pt2map_entry(addr);
6113 		while (addr < nextva) {
6114 			pt2_entry_t temp_pte2;
6115 			temp_pte2 = pte2_load(src_pte2p);
6116 			/*
6117 			 * we only virtual copy managed pages
6118 			 */
6119 			if (pte2_is_managed(temp_pte2)) {
6120 				dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
6121 				    PMAP_ENTER_NOSLEEP);
6122 				if (dst_mpt2pg == NULL)
6123 					goto out;
6124 				dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
6125 				if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
6126 				    pmap_try_insert_pv_entry(dst_pmap, addr,
6127 				    PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
6128 					/*
6129 					 * Clear the wired, modified, and
6130 					 * accessed (referenced) bits
6131 					 * during the copy.
6132 					 */
6133 					temp_pte2 &=  ~(PTE2_W | PTE2_A);
6134 					temp_pte2 |= PTE2_NM;
6135 					pte2_store(dst_pte2p, temp_pte2);
6136 					dst_pmap->pm_stats.resident_count++;
6137 				} else {
6138 					SLIST_INIT(&free);
6139 					if (pmap_unwire_pt2(dst_pmap, addr,
6140 					    dst_mpt2pg, &free)) {
6141 						pmap_tlb_flush(dst_pmap, addr);
6142 						vm_page_free_pages_toq(&free,
6143 						    false);
6144 					}
6145 					goto out;
6146 				}
6147 				if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
6148 				    pt2_wirecount_get(src_mpt2pg, pte1_idx))
6149 					break;
6150 			}
6151 			addr += PAGE_SIZE;
6152 			src_pte2p++;
6153 		}
6154 	}
6155 out:
6156 	sched_unpin();
6157 	rw_wunlock(&pvh_global_lock);
6158 	PMAP_UNLOCK(src_pmap);
6159 	PMAP_UNLOCK(dst_pmap);
6160 }
6161 
6162 /*
6163  *	Increase the starting virtual address of the given mapping if a
6164  *	different alignment might result in more section mappings.
6165  */
6166 void
6167 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6168     vm_offset_t *addr, vm_size_t size)
6169 {
6170 	vm_offset_t pte1_offset;
6171 
6172 	if (size < PTE1_SIZE)
6173 		return;
6174 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6175 		offset += ptoa(object->pg_color);
6176 	pte1_offset = offset & PTE1_OFFSET;
6177 	if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
6178 	    (*addr & PTE1_OFFSET) == pte1_offset)
6179 		return;
6180 	if ((*addr & PTE1_OFFSET) < pte1_offset)
6181 		*addr = pte1_trunc(*addr) + pte1_offset;
6182 	else
6183 		*addr = pte1_roundup(*addr) + pte1_offset;
6184 }
6185 
6186 void
6187 pmap_activate(struct thread *td)
6188 {
6189 	pmap_t pmap, oldpmap;
6190 	u_int cpuid, ttb;
6191 
6192 	PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
6193 
6194 	critical_enter();
6195 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6196 	oldpmap = PCPU_GET(curpmap);
6197 	cpuid = PCPU_GET(cpuid);
6198 
6199 #if defined(SMP)
6200 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6201 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6202 #else
6203 	CPU_CLR(cpuid, &oldpmap->pm_active);
6204 	CPU_SET(cpuid, &pmap->pm_active);
6205 #endif
6206 
6207 	ttb = pmap_ttb_get(pmap);
6208 
6209 	/*
6210 	 * pmap_activate is for the current thread on the current cpu
6211 	 */
6212 	td->td_pcb->pcb_pagedir = ttb;
6213 	cp15_ttbr_set(ttb);
6214 	PCPU_SET(curpmap, pmap);
6215 	critical_exit();
6216 }
6217 
6218 /*
6219  * Perform the pmap work for mincore(2).  If the page is not both referenced and
6220  * modified by this pmap, returns its physical address so that the caller can
6221  * find other mappings.
6222  */
6223 int
6224 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
6225 {
6226 	pt1_entry_t *pte1p, pte1;
6227 	pt2_entry_t *pte2p, pte2;
6228 	vm_paddr_t pa;
6229 	bool managed;
6230 	int val;
6231 
6232 	PMAP_LOCK(pmap);
6233 	pte1p = pmap_pte1(pmap, addr);
6234 	pte1 = pte1_load(pte1p);
6235 	if (pte1_is_section(pte1)) {
6236 		pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
6237 		managed = pte1_is_managed(pte1);
6238 		val = MINCORE_PSIND(1) | MINCORE_INCORE;
6239 		if (pte1_is_dirty(pte1))
6240 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6241 		if (pte1 & PTE1_A)
6242 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6243 	} else if (pte1_is_link(pte1)) {
6244 		pte2p = pmap_pte2(pmap, addr);
6245 		pte2 = pte2_load(pte2p);
6246 		pmap_pte2_release(pte2p);
6247 		pa = pte2_pa(pte2);
6248 		managed = pte2_is_managed(pte2);
6249 		val = MINCORE_INCORE;
6250 		if (pte2_is_dirty(pte2))
6251 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6252 		if (pte2 & PTE2_A)
6253 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6254 	} else {
6255 		managed = false;
6256 		val = 0;
6257 	}
6258 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6259 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6260 		*pap = pa;
6261 	}
6262 	PMAP_UNLOCK(pmap);
6263 	return (val);
6264 }
6265 
6266 void
6267 pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
6268 {
6269 	vm_offset_t sva;
6270 	uint32_t l2attr;
6271 
6272 	KASSERT((size & PAGE_MASK) == 0,
6273 	    ("%s: device mapping not page-sized", __func__));
6274 
6275 	sva = va;
6276 	l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
6277 	while (size != 0) {
6278 		pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
6279 		va += PAGE_SIZE;
6280 		pa += PAGE_SIZE;
6281 		size -= PAGE_SIZE;
6282 	}
6283 	tlb_flush_range(sva, va - sva);
6284 }
6285 
6286 void
6287 pmap_kremove_device(vm_offset_t va, vm_size_t size)
6288 {
6289 	vm_offset_t sva;
6290 
6291 	KASSERT((size & PAGE_MASK) == 0,
6292 	    ("%s: device mapping not page-sized", __func__));
6293 
6294 	sva = va;
6295 	while (size != 0) {
6296 		pmap_kremove(va);
6297 		va += PAGE_SIZE;
6298 		size -= PAGE_SIZE;
6299 	}
6300 	tlb_flush_range(sva, va - sva);
6301 }
6302 
6303 void
6304 pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
6305 {
6306 
6307 	pcb->pcb_pagedir = pmap_ttb_get(pmap);
6308 }
6309 
6310 /*
6311  *  Clean L1 data cache range by physical address.
6312  *  The range must be within a single page.
6313  */
6314 static void
6315 pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
6316 {
6317 	pt2_entry_t *cmap2_pte2p;
6318 	struct pcpu *pc;
6319 
6320 	KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
6321 	    ("%s: not on single page", __func__));
6322 
6323 	sched_pin();
6324 	pc = get_pcpu();
6325 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6326 	mtx_lock(&pc->pc_cmap_lock);
6327 	if (pte2_load(cmap2_pte2p) != 0)
6328 		panic("%s: CMAP2 busy", __func__);
6329 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
6330 	dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
6331 	pte2_clear(cmap2_pte2p);
6332 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6333 	sched_unpin();
6334 	mtx_unlock(&pc->pc_cmap_lock);
6335 }
6336 
6337 /*
6338  *  Sync instruction cache range which is not mapped yet.
6339  */
6340 void
6341 cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
6342 {
6343 	uint32_t len, offset;
6344 	vm_page_t m;
6345 
6346 	/* Write back d-cache on given address range. */
6347 	offset = pa & PAGE_MASK;
6348 	for ( ; size != 0; size -= len, pa += len, offset = 0) {
6349 		len = min(PAGE_SIZE - offset, size);
6350 		m = PHYS_TO_VM_PAGE(pa);
6351 		KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6352 		  __func__, pa));
6353 		pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6354 	}
6355 	/*
6356 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6357 	 * on given physical address is to invalidate all i-cache.
6358 	 */
6359 	icache_inv_all();
6360 }
6361 
6362 void
6363 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
6364 {
6365 
6366 	/* Write back d-cache on given address range. */
6367 	if (va >= VM_MIN_KERNEL_ADDRESS) {
6368 		dcache_wb_pou(va, size);
6369 	} else {
6370 		uint32_t len, offset;
6371 		vm_paddr_t pa;
6372 		vm_page_t m;
6373 
6374 		offset = va & PAGE_MASK;
6375 		for ( ; size != 0; size -= len, va += len, offset = 0) {
6376 			pa = pmap_extract(pmap, va); /* offset is preserved */
6377 			len = min(PAGE_SIZE - offset, size);
6378 			m = PHYS_TO_VM_PAGE(pa);
6379 			KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6380 				__func__, pa));
6381 			pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6382 		}
6383 	}
6384 	/*
6385 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6386 	 * on given physical address is to invalidate all i-cache.
6387 	 */
6388 	icache_inv_all();
6389 }
6390 
6391 /*
6392  *  The implementation of pmap_fault() uses IN_RANGE2() macro which
6393  *  depends on the fact that given range size is a power of 2.
6394  */
6395 CTASSERT(powerof2(NB_IN_PT1));
6396 CTASSERT(powerof2(PT2MAP_SIZE));
6397 
6398 #define IN_RANGE2(addr, start, size)	\
6399     ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
6400 
6401 /*
6402  *  Handle access and R/W emulation faults.
6403  */
6404 int
6405 pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
6406 {
6407 	pt1_entry_t *pte1p, pte1;
6408 	pt2_entry_t *pte2p, pte2;
6409 
6410 	if (pmap == NULL)
6411 		pmap = kernel_pmap;
6412 
6413 	/*
6414 	 * In kernel, we should never get abort with FAR which is in range of
6415 	 * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
6416 	 * and print out a useful abort message and even get to the debugger
6417 	 * otherwise it likely ends with never ending loop of aborts.
6418 	 */
6419 	if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
6420 		/*
6421 		 * All L1 tables should always be mapped and present.
6422 		 * However, we check only current one herein. For user mode,
6423 		 * only permission abort from malicious user is not fatal.
6424 		 * And alignment abort as it may have higher priority.
6425 		 */
6426 		if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
6427 			CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
6428 			    __func__, pmap, pmap->pm_pt1, far);
6429 			panic("%s: pm_pt1 abort", __func__);
6430 		}
6431 		return (KERN_INVALID_ADDRESS);
6432 	}
6433 	if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
6434 		/*
6435 		 * PT2MAP should be always mapped and present in current
6436 		 * L1 table. However, only existing L2 tables are mapped
6437 		 * in PT2MAP. For user mode, only L2 translation abort and
6438 		 * permission abort from malicious user is not fatal.
6439 		 * And alignment abort as it may have higher priority.
6440 		 */
6441 		if (!usermode || (idx != FAULT_ALIGN &&
6442 		    idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
6443 			CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
6444 			    __func__, pmap, PT2MAP, far);
6445 			panic("%s: PT2MAP abort", __func__);
6446 		}
6447 		return (KERN_INVALID_ADDRESS);
6448 	}
6449 
6450 	/*
6451 	 * A pmap lock is used below for handling of access and R/W emulation
6452 	 * aborts. They were handled by atomic operations before so some
6453 	 * analysis of new situation is needed to answer the following question:
6454 	 * Is it safe to use the lock even for these aborts?
6455 	 *
6456 	 * There may happen two cases in general:
6457 	 *
6458 	 * (1) Aborts while the pmap lock is locked already - this should not
6459 	 * happen as pmap lock is not recursive. However, under pmap lock only
6460 	 * internal kernel data should be accessed and such data should be
6461 	 * mapped with A bit set and NM bit cleared. If double abort happens,
6462 	 * then a mapping of data which has caused it must be fixed. Further,
6463 	 * all new mappings are always made with A bit set and the bit can be
6464 	 * cleared only on managed mappings.
6465 	 *
6466 	 * (2) Aborts while another lock(s) is/are locked - this already can
6467 	 * happen. However, there is no difference here if it's either access or
6468 	 * R/W emulation abort, or if it's some other abort.
6469 	 */
6470 
6471 	PMAP_LOCK(pmap);
6472 #ifdef INVARIANTS
6473 	pte1 = pte1_load(pmap_pte1(pmap, far));
6474 	if (pte1_is_link(pte1)) {
6475 		/*
6476 		 * Check in advance that associated L2 page table is mapped into
6477 		 * PT2MAP space. Note that faulty access to not mapped L2 page
6478 		 * table is caught in more general check above where "far" is
6479 		 * checked that it does not lay in PT2MAP space. Note also that
6480 		 * L1 page table and PT2TAB always exist and are mapped.
6481 		 */
6482 		pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
6483 		if (!pte2_is_valid(pte2))
6484 			panic("%s: missing L2 page table (%p, %#x)",
6485 			    __func__, pmap, far);
6486 	}
6487 #endif
6488 #ifdef SMP
6489 	/*
6490 	 * Special treatment is due to break-before-make approach done when
6491 	 * pte1 is updated for userland mapping during section promotion or
6492 	 * demotion. If not caught here, pmap_enter() can find a section
6493 	 * mapping on faulting address. That is not allowed.
6494 	 */
6495 	if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
6496 		PMAP_UNLOCK(pmap);
6497 		return (KERN_SUCCESS);
6498 	}
6499 #endif
6500 	/*
6501 	 * Accesss bits for page and section. Note that the entry
6502 	 * is not in TLB yet, so TLB flush is not necessary.
6503 	 *
6504 	 * QQQ: This is hardware emulation, we do not call userret()
6505 	 *      for aborts from user mode.
6506 	 */
6507 	if (idx == FAULT_ACCESS_L2) {
6508 		pte1 = pte1_load(pmap_pte1(pmap, far));
6509 		if (pte1_is_link(pte1)) {
6510 			/* L2 page table should exist and be mapped. */
6511 			pte2p = pt2map_entry(far);
6512 			pte2 = pte2_load(pte2p);
6513 			if (pte2_is_valid(pte2)) {
6514 				pte2_store(pte2p, pte2 | PTE2_A);
6515 				PMAP_UNLOCK(pmap);
6516 				return (KERN_SUCCESS);
6517 			}
6518 		} else {
6519 			/*
6520 			 * We got L2 access fault but PTE1 is not a link.
6521 			 * Probably some race happened, do nothing.
6522 			 */
6523 			CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L2 - pmap %#x far %#x",
6524 			    __func__, pmap, far);
6525 			PMAP_UNLOCK(pmap);
6526 			return (KERN_SUCCESS);
6527 		}
6528 	}
6529 	if (idx == FAULT_ACCESS_L1) {
6530 		pte1p = pmap_pte1(pmap, far);
6531 		pte1 = pte1_load(pte1p);
6532 		if (pte1_is_section(pte1)) {
6533 			pte1_store(pte1p, pte1 | PTE1_A);
6534 			PMAP_UNLOCK(pmap);
6535 			return (KERN_SUCCESS);
6536 		} else {
6537 			/*
6538 			 * We got L1 access fault but PTE1 is not section
6539 			 * mapping. Probably some race happened, do nothing.
6540 			 */
6541 			CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L1 - pmap %#x far %#x",
6542 			    __func__, pmap, far);
6543 			PMAP_UNLOCK(pmap);
6544 			return (KERN_SUCCESS);
6545 		}
6546 	}
6547 
6548 	/*
6549 	 * Handle modify bits for page and section. Note that the modify
6550 	 * bit is emulated by software. So PTEx_RO is software read only
6551 	 * bit and PTEx_NM flag is real hardware read only bit.
6552 	 *
6553 	 * QQQ: This is hardware emulation, we do not call userret()
6554 	 *      for aborts from user mode.
6555 	 */
6556 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
6557 		pte1 = pte1_load(pmap_pte1(pmap, far));
6558 		if (pte1_is_link(pte1)) {
6559 			/* L2 page table should exist and be mapped. */
6560 			pte2p = pt2map_entry(far);
6561 			pte2 = pte2_load(pte2p);
6562 			if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
6563 			    (pte2 & PTE2_NM)) {
6564 				pte2_store(pte2p, pte2 & ~PTE2_NM);
6565 				tlb_flush(trunc_page(far));
6566 				PMAP_UNLOCK(pmap);
6567 				return (KERN_SUCCESS);
6568 			}
6569 		} else {
6570 			/*
6571 			 * We got L2 permission fault but PTE1 is not a link.
6572 			 * Probably some race happened, do nothing.
6573 			 */
6574 			CTR3(KTR_PMAP, "%s: FAULT_PERM_L2 - pmap %#x far %#x",
6575 			    __func__, pmap, far);
6576 			PMAP_UNLOCK(pmap);
6577 			return (KERN_SUCCESS);
6578 		}
6579 	}
6580 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
6581 		pte1p = pmap_pte1(pmap, far);
6582 		pte1 = pte1_load(pte1p);
6583 		if (pte1_is_section(pte1)) {
6584 			if (!(pte1 & PTE1_RO) && (pte1 & PTE1_NM)) {
6585 				pte1_store(pte1p, pte1 & ~PTE1_NM);
6586 				tlb_flush(pte1_trunc(far));
6587 				PMAP_UNLOCK(pmap);
6588 				return (KERN_SUCCESS);
6589 			}
6590 		} else {
6591 			/*
6592 			 * We got L1 permission fault but PTE1 is not section
6593 			 * mapping. Probably some race happened, do nothing.
6594 			 */
6595 			CTR3(KTR_PMAP, "%s: FAULT_PERM_L1 - pmap %#x far %#x",
6596 			    __func__, pmap, far);
6597 			PMAP_UNLOCK(pmap);
6598 			return (KERN_SUCCESS);
6599 		}
6600 	}
6601 
6602 	/*
6603 	 * QQQ: The previous code, mainly fast handling of access and
6604 	 *      modify bits aborts, could be moved to ASM. Now we are
6605 	 *      starting to deal with not fast aborts.
6606 	 */
6607 	PMAP_UNLOCK(pmap);
6608 	return (KERN_FAILURE);
6609 }
6610 
6611 #if defined(PMAP_DEBUG)
6612 /*
6613  *  Reusing of KVA used in pmap_zero_page function !!!
6614  */
6615 static void
6616 pmap_zero_page_check(vm_page_t m)
6617 {
6618 	pt2_entry_t *cmap2_pte2p;
6619 	uint32_t *p, *end;
6620 	struct pcpu *pc;
6621 
6622 	sched_pin();
6623 	pc = get_pcpu();
6624 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6625 	mtx_lock(&pc->pc_cmap_lock);
6626 	if (pte2_load(cmap2_pte2p) != 0)
6627 		panic("%s: CMAP2 busy", __func__);
6628 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6629 	    vm_page_pte2_attr(m)));
6630 	end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
6631 	for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
6632 		if (*p != 0)
6633 			panic("%s: page %p not zero, va: %p", __func__, m,
6634 			    pc->pc_cmap2_addr);
6635 	pte2_clear(cmap2_pte2p);
6636 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6637 	sched_unpin();
6638 	mtx_unlock(&pc->pc_cmap_lock);
6639 }
6640 
6641 int
6642 pmap_pid_dump(int pid)
6643 {
6644 	pmap_t pmap;
6645 	struct proc *p;
6646 	int npte2 = 0;
6647 	int i, j, index;
6648 
6649 	sx_slock(&allproc_lock);
6650 	FOREACH_PROC_IN_SYSTEM(p) {
6651 		if (p->p_pid != pid || p->p_vmspace == NULL)
6652 			continue;
6653 		index = 0;
6654 		pmap = vmspace_pmap(p->p_vmspace);
6655 		for (i = 0; i < NPTE1_IN_PT1; i++) {
6656 			pt1_entry_t pte1;
6657 			pt2_entry_t *pte2p, pte2;
6658 			vm_offset_t base, va;
6659 			vm_paddr_t pa;
6660 			vm_page_t m;
6661 
6662 			base = i << PTE1_SHIFT;
6663 			pte1 = pte1_load(&pmap->pm_pt1[i]);
6664 
6665 			if (pte1_is_section(pte1)) {
6666 				/*
6667 				 * QQQ: Do something here!
6668 				 */
6669 			} else if (pte1_is_link(pte1)) {
6670 				for (j = 0; j < NPTE2_IN_PT2; j++) {
6671 					va = base + (j << PAGE_SHIFT);
6672 					if (va >= VM_MIN_KERNEL_ADDRESS) {
6673 						if (index) {
6674 							index = 0;
6675 							printf("\n");
6676 						}
6677 						sx_sunlock(&allproc_lock);
6678 						return (npte2);
6679 					}
6680 					pte2p = pmap_pte2(pmap, va);
6681 					pte2 = pte2_load(pte2p);
6682 					pmap_pte2_release(pte2p);
6683 					if (!pte2_is_valid(pte2))
6684 						continue;
6685 
6686 					pa = pte2_pa(pte2);
6687 					m = PHYS_TO_VM_PAGE(pa);
6688 					printf("va: 0x%x, pa: 0x%x, w: %d, "
6689 					    "f: 0x%x", va, pa,
6690 					    m->ref_count, m->flags);
6691 					npte2++;
6692 					index++;
6693 					if (index >= 2) {
6694 						index = 0;
6695 						printf("\n");
6696 					} else {
6697 						printf(" ");
6698 					}
6699 				}
6700 			}
6701 		}
6702 	}
6703 	sx_sunlock(&allproc_lock);
6704 	return (npte2);
6705 }
6706 
6707 #endif
6708 
6709 #ifdef DDB
6710 static pt2_entry_t *
6711 pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
6712 {
6713 	pt1_entry_t pte1;
6714 	vm_paddr_t pt2pg_pa;
6715 
6716 	pte1 = pte1_load(pmap_pte1(pmap, va));
6717 	if (!pte1_is_link(pte1))
6718 		return (NULL);
6719 
6720 	if (pmap_is_current(pmap))
6721 		return (pt2map_entry(va));
6722 
6723 	/* Note that L2 page table size is not equal to PAGE_SIZE. */
6724 	pt2pg_pa = trunc_page(pte1_link_pa(pte1));
6725 	if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
6726 		pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
6727 #ifdef SMP
6728 		PMAP3cpu = PCPU_GET(cpuid);
6729 #endif
6730 		tlb_flush_local((vm_offset_t)PADDR3);
6731 	}
6732 #ifdef SMP
6733 	else if (PMAP3cpu != PCPU_GET(cpuid)) {
6734 		PMAP3cpu = PCPU_GET(cpuid);
6735 		tlb_flush_local((vm_offset_t)PADDR3);
6736 	}
6737 #endif
6738 	return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
6739 }
6740 
6741 static void
6742 dump_pmap(pmap_t pmap)
6743 {
6744 
6745 	printf("pmap %p\n", pmap);
6746 	printf("  pm_pt1: %p\n", pmap->pm_pt1);
6747 	printf("  pm_pt2tab: %p\n", pmap->pm_pt2tab);
6748 	printf("  pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
6749 }
6750 
6751 DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
6752 {
6753 
6754 	pmap_t pmap;
6755 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
6756 		dump_pmap(pmap);
6757 	}
6758 }
6759 
6760 static int
6761 pte2_class(pt2_entry_t pte2)
6762 {
6763 	int cls;
6764 
6765 	cls = (pte2 >> 2) & 0x03;
6766 	cls |= (pte2 >> 4) & 0x04;
6767 	return (cls);
6768 }
6769 
6770 static void
6771 dump_section(pmap_t pmap, uint32_t pte1_idx)
6772 {
6773 }
6774 
6775 static void
6776 dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok)
6777 {
6778 	uint32_t i;
6779 	vm_offset_t va;
6780 	pt2_entry_t *pte2p, pte2;
6781 	vm_page_t m;
6782 
6783 	va = pte1_idx << PTE1_SHIFT;
6784 	pte2p = pmap_pte2_ddb(pmap, va);
6785 	for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
6786 		pte2 = pte2_load(pte2p);
6787 		if (pte2 == 0)
6788 			continue;
6789 		if (!pte2_is_valid(pte2)) {
6790 			printf(" 0x%08X: 0x%08X", va, pte2);
6791 			if (!invalid_ok)
6792 				printf(" - not valid !!!");
6793 			printf("\n");
6794 			continue;
6795 		}
6796 		m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
6797 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
6798 		    pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
6799 		if (m != NULL) {
6800 			printf(" v:%d w:%d f:0x%04X\n", m->valid,
6801 			    m->ref_count, m->flags);
6802 		} else {
6803 			printf("\n");
6804 		}
6805 	}
6806 }
6807 
6808 static __inline boolean_t
6809 is_pv_chunk_space(vm_offset_t va)
6810 {
6811 
6812 	if ((((vm_offset_t)pv_chunkbase) <= va) &&
6813 	    (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
6814 		return (TRUE);
6815 	return (FALSE);
6816 }
6817 
6818 DB_SHOW_COMMAND(pmap, pmap_pmap_print)
6819 {
6820 	/* XXX convert args. */
6821 	pmap_t pmap = (pmap_t)addr;
6822 	pt1_entry_t pte1;
6823 	pt2_entry_t pte2;
6824 	vm_offset_t va, eva;
6825 	vm_page_t m;
6826 	uint32_t i;
6827 	boolean_t invalid_ok, dump_link_ok, dump_pv_chunk;
6828 
6829 	if (have_addr) {
6830 		pmap_t pm;
6831 
6832 		LIST_FOREACH(pm, &allpmaps, pm_list)
6833 			if (pm == pmap) break;
6834 		if (pm == NULL) {
6835 			printf("given pmap %p is not in allpmaps list\n", pmap);
6836 			return;
6837 		}
6838 	} else
6839 		pmap = PCPU_GET(curpmap);
6840 
6841 	eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
6842 	dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */
6843 
6844 	printf("pmap: 0x%08X\n", (uint32_t)pmap);
6845 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6846 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6847 
6848 	for(i = 0; i < NPTE1_IN_PT1; i++) {
6849 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6850 		if (pte1 == 0)
6851 			continue;
6852 		va = i << PTE1_SHIFT;
6853 		if (va >= eva)
6854 			break;
6855 
6856 		if (pte1_is_section(pte1)) {
6857 			printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
6858 			    !!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
6859 			dump_section(pmap, i);
6860 		} else if (pte1_is_link(pte1)) {
6861 			dump_link_ok = TRUE;
6862 			invalid_ok = FALSE;
6863 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6864 			m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
6865 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
6866 			    va, pte1, pte2, m);
6867 			if (is_pv_chunk_space(va)) {
6868 				printf(" - pv_chunk space");
6869 				if (dump_pv_chunk)
6870 					invalid_ok = TRUE;
6871 				else
6872 					dump_link_ok = FALSE;
6873 			}
6874 			else if (m != NULL)
6875 				printf(" w:%d w2:%u", m->ref_count,
6876 				    pt2_wirecount_get(m, pte1_index(va)));
6877 			if (pte2 == 0)
6878 				printf(" !!! pt2tab entry is ZERO");
6879 			else if (pte2_pa(pte1) != pte2_pa(pte2))
6880 				printf(" !!! pt2tab entry is DIFFERENT - m: %p",
6881 				    PHYS_TO_VM_PAGE(pte2_pa(pte2)));
6882 			printf("\n");
6883 			if (dump_link_ok)
6884 				dump_link(pmap, i, invalid_ok);
6885 		} else
6886 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6887 	}
6888 }
6889 
6890 static void
6891 dump_pt2tab(pmap_t pmap)
6892 {
6893 	uint32_t i;
6894 	pt2_entry_t pte2;
6895 	vm_offset_t va;
6896 	vm_paddr_t pa;
6897 	vm_page_t m;
6898 
6899 	printf("PT2TAB:\n");
6900 	for (i = 0; i < PT2TAB_ENTRIES; i++) {
6901 		pte2 = pte2_load(&pmap->pm_pt2tab[i]);
6902 		if (!pte2_is_valid(pte2))
6903 			continue;
6904 		va = i << PT2TAB_SHIFT;
6905 		pa = pte2_pa(pte2);
6906 		m = PHYS_TO_VM_PAGE(pa);
6907 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
6908 		    pte2_class(pte2), !!(pte2 & PTE2_S), m);
6909 		if (m != NULL)
6910 			printf(" , w: %d, f: 0x%04X pidx: %lld",
6911 			    m->ref_count, m->flags, m->pindex);
6912 		printf("\n");
6913 	}
6914 }
6915 
6916 DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
6917 {
6918 	/* XXX convert args. */
6919 	pmap_t pmap = (pmap_t)addr;
6920 	pt1_entry_t pte1;
6921 	pt2_entry_t pte2;
6922 	vm_offset_t va;
6923 	uint32_t i, start;
6924 
6925 	if (have_addr) {
6926 		printf("supported only on current pmap\n");
6927 		return;
6928 	}
6929 
6930 	pmap = PCPU_GET(curpmap);
6931 	printf("curpmap: 0x%08X\n", (uint32_t)pmap);
6932 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6933 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6934 
6935 	start = pte1_index((vm_offset_t)PT2MAP);
6936 	for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
6937 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6938 		if (pte1 == 0)
6939 			continue;
6940 		va = i << PTE1_SHIFT;
6941 		if (pte1_is_section(pte1)) {
6942 			printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
6943 			    !!(pte1 & PTE1_S));
6944 			dump_section(pmap, i);
6945 		} else if (pte1_is_link(pte1)) {
6946 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6947 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
6948 			    pte1, pte2);
6949 			if (pte2 == 0)
6950 				printf("  !!! pt2tab entry is ZERO\n");
6951 		} else
6952 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6953 	}
6954 	dump_pt2tab(pmap);
6955 }
6956 #endif
6957