xref: /freebsd/sys/arm/arm/pmap-v6.c (revision c697fb7f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause AND BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
8  * Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
9  * Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
41  */
42 /*-
43  * Copyright (c) 2003 Networks Associates Technology, Inc.
44  * All rights reserved.
45  *
46  * This software was developed for the FreeBSD Project by Jake Burkholder,
47  * Safeport Network Services, and Network Associates Laboratories, the
48  * Security Research Division of Network Associates, Inc. under
49  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
50  * CHATS research program.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  *
61  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71  * SUCH DAMAGE.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 /*
78  *	Manages physical address maps.
79  *
80  *	Since the information managed by this module is
81  *	also stored by the logical address mapping module,
82  *	this module may throw away valid virtual-to-physical
83  *	mappings at almost any time.  However, invalidations
84  *	of virtual-to-physical mappings must be done as
85  *	requested.
86  *
87  *	In order to cope with hardware architectures which
88  *	make virtual-to-physical map invalidates expensive,
89  *	this module may delay invalidate or reduced protection
90  *	operations until such time as they are actually
91  *	necessary.  This module is given full information as
92  *	to which processors are currently using which maps,
93  *	and to when physical maps must be made correct.
94  */
95 
96 #include "opt_vm.h"
97 #include "opt_pmap.h"
98 #include "opt_ddb.h"
99 
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/lock.h>
105 #include <sys/proc.h>
106 #include <sys/rwlock.h>
107 #include <sys/malloc.h>
108 #include <sys/vmmeter.h>
109 #include <sys/malloc.h>
110 #include <sys/mman.h>
111 #include <sys/sf_buf.h>
112 #include <sys/smp.h>
113 #include <sys/sched.h>
114 #include <sys/sysctl.h>
115 
116 #ifdef DDB
117 #include <ddb/ddb.h>
118 #endif
119 
120 #include <machine/physmem.h>
121 
122 #include <vm/vm.h>
123 #include <vm/uma.h>
124 #include <vm/pmap.h>
125 #include <vm/vm_param.h>
126 #include <vm/vm_kern.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_map.h>
129 #include <vm/vm_page.h>
130 #include <vm/vm_pageout.h>
131 #include <vm/vm_phys.h>
132 #include <vm/vm_extern.h>
133 #include <vm/vm_reserv.h>
134 #include <sys/lock.h>
135 #include <sys/mutex.h>
136 
137 #include <machine/md_var.h>
138 #include <machine/pmap_var.h>
139 #include <machine/cpu.h>
140 #include <machine/pcb.h>
141 #include <machine/sf_buf.h>
142 #ifdef SMP
143 #include <machine/smp.h>
144 #endif
145 #ifndef PMAP_SHPGPERPROC
146 #define PMAP_SHPGPERPROC 200
147 #endif
148 
149 #ifndef DIAGNOSTIC
150 #define PMAP_INLINE	__inline
151 #else
152 #define PMAP_INLINE
153 #endif
154 
155 #ifdef PMAP_DEBUG
156 static void pmap_zero_page_check(vm_page_t m);
157 void pmap_debug(int level);
158 int pmap_pid_dump(int pid);
159 
160 #define PDEBUG(_lev_,_stat_) \
161 	if (pmap_debug_level >= (_lev_)) \
162 		((_stat_))
163 #define dprintf printf
164 int pmap_debug_level = 1;
165 #else   /* PMAP_DEBUG */
166 #define PDEBUG(_lev_,_stat_) /* Nothing */
167 #define dprintf(x, arg...)
168 #endif  /* PMAP_DEBUG */
169 
170 /*
171  *  Level 2 page tables map definion ('max' is excluded).
172  */
173 
174 #define PT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
175 #define PT2V_MAX_ADDRESS	((vm_offset_t)PT2MAP + PT2MAP_SIZE)
176 
177 #define UPT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
178 #define UPT2V_MAX_ADDRESS \
179     ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
180 
181 /*
182  *  Promotion to a 1MB (PTE1) page mapping requires that the corresponding
183  *  4KB (PTE2) page mappings have identical settings for the following fields:
184  */
185 #define PTE2_PROMOTE	(PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG |	\
186 			 PTE2_NX | PTE2_RO | PTE2_U | PTE2_W |		\
187 			 PTE2_ATTR_MASK)
188 
189 #define PTE1_PROMOTE	(PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG |	\
190 			 PTE1_NX | PTE1_RO | PTE1_U | PTE1_W |		\
191 			 PTE1_ATTR_MASK)
192 
193 #define ATTR_TO_L1(l2_attr)	((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
194 				 (((l2_attr) & L2_C)    ? L1_S_C    : 0) | \
195 				 (((l2_attr) & L2_B)    ? L1_S_B    : 0) | \
196 				 (((l2_attr) & PTE2_A)  ? PTE1_A    : 0) | \
197 				 (((l2_attr) & PTE2_NM) ? PTE1_NM   : 0) | \
198 				 (((l2_attr) & PTE2_S)  ? PTE1_S    : 0) | \
199 				 (((l2_attr) & PTE2_NG) ? PTE1_NG   : 0) | \
200 				 (((l2_attr) & PTE2_NX) ? PTE1_NX   : 0) | \
201 				 (((l2_attr) & PTE2_RO) ? PTE1_RO   : 0) | \
202 				 (((l2_attr) & PTE2_U)  ? PTE1_U    : 0) | \
203 				 (((l2_attr) & PTE2_W)  ? PTE1_W    : 0))
204 
205 #define ATTR_TO_L2(l1_attr)	((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
206 				 (((l1_attr) & L1_S_C)    ? L2_C    : 0) | \
207 				 (((l1_attr) & L1_S_B)    ? L2_B    : 0) | \
208 				 (((l1_attr) & PTE1_A)    ? PTE2_A  : 0) | \
209 				 (((l1_attr) & PTE1_NM)   ? PTE2_NM : 0) | \
210 				 (((l1_attr) & PTE1_S)    ? PTE2_S  : 0) | \
211 				 (((l1_attr) & PTE1_NG)   ? PTE2_NG : 0) | \
212 				 (((l1_attr) & PTE1_NX)   ? PTE2_NX : 0) | \
213 				 (((l1_attr) & PTE1_RO)   ? PTE2_RO : 0) | \
214 				 (((l1_attr) & PTE1_U)    ? PTE2_U  : 0) | \
215 				 (((l1_attr) & PTE1_W)    ? PTE2_W  : 0))
216 
217 /*
218  *  PTE2 descriptors creation macros.
219  */
220 #define PTE2_ATTR_DEFAULT	vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
221 #define PTE2_ATTR_PT		vm_memattr_to_pte2(pt_memattr)
222 
223 #define PTE2_KPT(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
224 #define PTE2_KPT_NG(pa)	PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
225 
226 #define PTE2_KRW(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
227 #define PTE2_KRO(pa)	PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
228 
229 #define PV_STATS
230 #ifdef PV_STATS
231 #define PV_STAT(x)	do { x ; } while (0)
232 #else
233 #define PV_STAT(x)	do { } while (0)
234 #endif
235 
236 /*
237  *  The boot_pt1 is used temporary in very early boot stage as L1 page table.
238  *  We can init many things with no memory allocation thanks to its static
239  *  allocation and this brings two main advantages:
240  *  (1) other cores can be started very simply,
241  *  (2) various boot loaders can be supported as its arguments can be processed
242  *      in virtual address space and can be moved to safe location before
243  *      first allocation happened.
244  *  Only disadvantage is that boot_pt1 is used only in very early boot stage.
245  *  However, the table is uninitialized and so lays in bss. Therefore kernel
246  *  image size is not influenced.
247  *
248  *  QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
249  *       CPU suspend/resume game.
250  */
251 extern pt1_entry_t boot_pt1[];
252 
253 vm_paddr_t base_pt1;
254 pt1_entry_t *kern_pt1;
255 pt2_entry_t *kern_pt2tab;
256 pt2_entry_t *PT2MAP;
257 
258 static uint32_t ttb_flags;
259 static vm_memattr_t pt_memattr;
260 ttb_entry_t pmap_kern_ttb;
261 
262 struct pmap kernel_pmap_store;
263 LIST_HEAD(pmaplist, pmap);
264 static struct pmaplist allpmaps;
265 static struct mtx allpmaps_lock;
266 
267 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
268 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
269 
270 static vm_offset_t kernel_vm_end_new;
271 vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
272 vm_offset_t vm_max_kernel_address;
273 vm_paddr_t kernel_l1pa;
274 
275 static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
276 
277 /*
278  *  Data for the pv entry allocation mechanism
279  */
280 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
281 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
282 static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
283 static int shpgperproc = PMAP_SHPGPERPROC;
284 
285 struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
286 int pv_maxchunks;			/* How many chunks we have KVA for */
287 vm_offset_t pv_vafree;			/* freelist stored in the PTE */
288 
289 vm_paddr_t first_managed_pa;
290 #define	pa_to_pvh(pa)	(&pv_table[pte1_index(pa - first_managed_pa)])
291 
292 /*
293  *  All those kernel PT submaps that BSD is so fond of
294  */
295 caddr_t _tmppt = 0;
296 
297 /*
298  *  Crashdump maps.
299  */
300 static caddr_t crashdumpmap;
301 
302 static pt2_entry_t *PMAP1 = NULL, *PMAP2;
303 static pt2_entry_t *PADDR1 = NULL, *PADDR2;
304 #ifdef DDB
305 static pt2_entry_t *PMAP3;
306 static pt2_entry_t *PADDR3;
307 static int PMAP3cpu __unused; /* for SMP only */
308 #endif
309 #ifdef SMP
310 static int PMAP1cpu;
311 static int PMAP1changedcpu;
312 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
313     &PMAP1changedcpu, 0,
314     "Number of times pmap_pte2_quick changed CPU with same PMAP1");
315 #endif
316 static int PMAP1changed;
317 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
318     &PMAP1changed, 0,
319     "Number of times pmap_pte2_quick changed PMAP1");
320 static int PMAP1unchanged;
321 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
322     &PMAP1unchanged, 0,
323     "Number of times pmap_pte2_quick didn't change PMAP1");
324 static struct mtx PMAP2mutex;
325 
326 /*
327  * Internal flags for pmap_enter()'s helper functions.
328  */
329 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
330 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
331 
332 static __inline void pt2_wirecount_init(vm_page_t m);
333 static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
334     vm_offset_t va);
335 static int pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1,
336     u_int flags, vm_page_t m);
337 void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
338 
339 /*
340  *  Function to set the debug level of the pmap code.
341  */
342 #ifdef PMAP_DEBUG
343 void
344 pmap_debug(int level)
345 {
346 
347 	pmap_debug_level = level;
348 	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
349 }
350 #endif /* PMAP_DEBUG */
351 
352 /*
353  *  This table must corespond with memory attribute configuration in vm.h.
354  *  First entry is used for normal system mapping.
355  *
356  *  Device memory is always marked as shared.
357  *  Normal memory is shared only in SMP .
358  *  Not outer shareable bits are not used yet.
359  *  Class 6 cannot be used on ARM11.
360  */
361 #define TEXDEF_TYPE_SHIFT	0
362 #define TEXDEF_TYPE_MASK	0x3
363 #define TEXDEF_INNER_SHIFT	2
364 #define TEXDEF_INNER_MASK	0x3
365 #define TEXDEF_OUTER_SHIFT	4
366 #define TEXDEF_OUTER_MASK	0x3
367 #define TEXDEF_NOS_SHIFT	6
368 #define TEXDEF_NOS_MASK		0x1
369 
370 #define TEX(t, i, o, s) 			\
371 		((t) << TEXDEF_TYPE_SHIFT) |	\
372 		((i) << TEXDEF_INNER_SHIFT) |	\
373 		((o) << TEXDEF_OUTER_SHIFT | 	\
374 		((s) << TEXDEF_NOS_SHIFT))
375 
376 static uint32_t tex_class[8] = {
377 /*	    type      inner cache outer cache */
378 	TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0),  /* 0 - ATTR_WB_WA	*/
379 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 1 - ATTR_NOCACHE	*/
380 	TEX(PRRR_DEV, NMRR_NC,	  NMRR_NC,    0),  /* 2 - ATTR_DEVICE	*/
381 	TEX(PRRR_SO,  NMRR_NC,	  NMRR_NC,    0),  /* 3 - ATTR_SO	*/
382 	TEX(PRRR_MEM, NMRR_WT,	  NMRR_WT,    0),  /* 4 - ATTR_WT	*/
383 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 5 - NOT USED YET	*/
384 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 6 - NOT USED YET	*/
385 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 7 - NOT USED YET	*/
386 };
387 #undef TEX
388 
389 static uint32_t pte2_attr_tab[8] = {
390 	PTE2_ATTR_WB_WA,	/* 0 - VM_MEMATTR_WB_WA */
391 	PTE2_ATTR_NOCACHE,	/* 1 - VM_MEMATTR_NOCACHE */
392 	PTE2_ATTR_DEVICE,	/* 2 - VM_MEMATTR_DEVICE */
393 	PTE2_ATTR_SO,		/* 3 - VM_MEMATTR_SO */
394 	PTE2_ATTR_WT,		/* 4 - VM_MEMATTR_WRITE_THROUGH */
395 	0,			/* 5 - NOT USED YET */
396 	0,			/* 6 - NOT USED YET */
397 	0			/* 7 - NOT USED YET */
398 };
399 CTASSERT(VM_MEMATTR_WB_WA == 0);
400 CTASSERT(VM_MEMATTR_NOCACHE == 1);
401 CTASSERT(VM_MEMATTR_DEVICE == 2);
402 CTASSERT(VM_MEMATTR_SO == 3);
403 CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
404 #define	VM_MEMATTR_END	(VM_MEMATTR_WRITE_THROUGH + 1)
405 
406 boolean_t
407 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
408 {
409 
410 	return (mode >= 0 && mode < VM_MEMATTR_END);
411 }
412 
413 static inline uint32_t
414 vm_memattr_to_pte2(vm_memattr_t ma)
415 {
416 
417 	KASSERT((u_int)ma < VM_MEMATTR_END,
418 	    ("%s: bad vm_memattr_t %d", __func__, ma));
419 	return (pte2_attr_tab[(u_int)ma]);
420 }
421 
422 static inline uint32_t
423 vm_page_pte2_attr(vm_page_t m)
424 {
425 
426 	return (vm_memattr_to_pte2(m->md.pat_mode));
427 }
428 
429 /*
430  * Convert TEX definition entry to TTB flags.
431  */
432 static uint32_t
433 encode_ttb_flags(int idx)
434 {
435 	uint32_t inner, outer, nos, reg;
436 
437 	inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
438 		TEXDEF_INNER_MASK;
439 	outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
440 		TEXDEF_OUTER_MASK;
441 	nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
442 		TEXDEF_NOS_MASK;
443 
444 	reg = nos << 5;
445 	reg |= outer << 3;
446 	if (cpuinfo.coherent_walk)
447 		reg |= (inner & 0x1) << 6;
448 	reg |= (inner & 0x2) >> 1;
449 #ifdef SMP
450 	ARM_SMP_UP(
451 		reg |= 1 << 1,
452 	);
453 #endif
454 	return reg;
455 }
456 
457 /*
458  *  Set TEX remapping registers in current CPU.
459  */
460 void
461 pmap_set_tex(void)
462 {
463 	uint32_t prrr, nmrr;
464 	uint32_t type, inner, outer, nos;
465 	int i;
466 
467 #ifdef PMAP_PTE_NOCACHE
468 	/* XXX fixme */
469 	if (cpuinfo.coherent_walk) {
470 		pt_memattr = VM_MEMATTR_WB_WA;
471 		ttb_flags = encode_ttb_flags(0);
472 	}
473 	else {
474 		pt_memattr = VM_MEMATTR_NOCACHE;
475 		ttb_flags = encode_ttb_flags(1);
476 	}
477 #else
478 	pt_memattr = VM_MEMATTR_WB_WA;
479 	ttb_flags = encode_ttb_flags(0);
480 #endif
481 
482 	prrr = 0;
483 	nmrr = 0;
484 
485 	/* Build remapping register from TEX classes. */
486 	for (i = 0; i < 8; i++) {
487 		type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
488 			TEXDEF_TYPE_MASK;
489 		inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
490 			TEXDEF_INNER_MASK;
491 		outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
492 			TEXDEF_OUTER_MASK;
493 		nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
494 			TEXDEF_NOS_MASK;
495 
496 		prrr |= type  << (i * 2);
497 		prrr |= nos   << (i + 24);
498 		nmrr |= inner << (i * 2);
499 		nmrr |= outer << (i * 2 + 16);
500 	}
501 	/* Add shareable bits for device memory. */
502 	prrr |= PRRR_DS0 | PRRR_DS1;
503 
504 	/* Add shareable bits for normal memory in SMP case. */
505 #ifdef SMP
506 	ARM_SMP_UP(
507 		prrr |= PRRR_NS1,
508 	);
509 #endif
510 	cp15_prrr_set(prrr);
511 	cp15_nmrr_set(nmrr);
512 
513 	/* Caches are disabled, so full TLB flush should be enough. */
514 	tlb_flush_all_local();
515 }
516 
517 /*
518  * Remap one vm_meattr class to another one. This can be useful as
519  * workaround for SOC errata, e.g. if devices must be accessed using
520  * SO memory class.
521  *
522  * !!! Please note that this function is absolutely last resort thing.
523  * It should not be used under normal circumstances. !!!
524  *
525  * Usage rules:
526  * - it shall be called after pmap_bootstrap_prepare() and before
527  *   cpu_mp_start() (thus only on boot CPU). In practice, it's expected
528  *   to be called from platform_attach() or platform_late_init().
529  *
530  * - if remapping doesn't change caching mode, or until uncached class
531  *   is remapped to any kind of cached one, then no other restriction exists.
532  *
533  * - if pmap_remap_vm_attr() changes caching mode, but both (original and
534  *   remapped) remain cached, then caller is resposible for calling
535  *   of dcache_wbinv_poc_all().
536  *
537  * - remapping of any kind of cached class to uncached is not permitted.
538  */
539 void
540 pmap_remap_vm_attr(vm_memattr_t old_attr, vm_memattr_t new_attr)
541 {
542 	int old_idx, new_idx;
543 
544 	/* Map VM memattrs to indexes to tex_class table. */
545 	old_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)old_attr]);
546 	new_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)new_attr]);
547 
548 	/* Replace TEX attribute and apply it. */
549 	tex_class[old_idx] = tex_class[new_idx];
550 	pmap_set_tex();
551 }
552 
553 /*
554  * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
555  * KERNBASE is mapped by first L2 page table in L2 page table page. It
556  * meets same constrain due to PT2MAP being placed just under KERNBASE.
557  */
558 CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
559 CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
560 
561 /*
562  *  In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
563  *  For now, anyhow, the following check must be fulfilled.
564  */
565 CTASSERT(PAGE_SIZE == PTE2_SIZE);
566 /*
567  *  We don't want to mess up MI code with all MMU and PMAP definitions,
568  *  so some things, which depend on other ones, are defined independently.
569  *  Now, it is time to check that we don't screw up something.
570  */
571 CTASSERT(PDRSHIFT == PTE1_SHIFT);
572 /*
573  *  Check L1 and L2 page table entries definitions consistency.
574  */
575 CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
576 CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
577 /*
578  *  Check L2 page tables page consistency.
579  */
580 CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
581 CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
582 /*
583  *  Check PT2TAB consistency.
584  *  PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
585  *  This should be done without remainder.
586  */
587 CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
588 
589 /*
590  *	A PT2MAP magic.
591  *
592  *  All level 2 page tables (PT2s) are mapped continuously and accordingly
593  *  into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
594  *  be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
595  *  must be used together, but not necessary at once. The first PT2 in a page
596  *  must map things on correctly aligned address and the others must follow
597  *  in right order.
598  */
599 #define NB_IN_PT2TAB	(PT2TAB_ENTRIES * sizeof(pt2_entry_t))
600 #define NPT2_IN_PT2TAB	(NB_IN_PT2TAB / NB_IN_PT2)
601 #define NPG_IN_PT2TAB	(NB_IN_PT2TAB / PAGE_SIZE)
602 
603 /*
604  *  Check PT2TAB consistency.
605  *  NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
606  *  NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
607  *  The both should be done without remainder.
608  */
609 CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
610 CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
611 /*
612  *  The implementation was made general, however, with the assumption
613  *  bellow in mind. In case of another value of NPG_IN_PT2TAB,
614  *  the code should be once more rechecked.
615  */
616 CTASSERT(NPG_IN_PT2TAB == 1);
617 
618 /*
619  *  Get offset of PT2 in a page
620  *  associated with given PT1 index.
621  */
622 static __inline u_int
623 page_pt2off(u_int pt1_idx)
624 {
625 
626 	return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
627 }
628 
629 /*
630  *  Get physical address of PT2
631  *  associated with given PT2s page and PT1 index.
632  */
633 static __inline vm_paddr_t
634 page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
635 {
636 
637 	return (pgpa + page_pt2off(pt1_idx));
638 }
639 
640 /*
641  *  Get first entry of PT2
642  *  associated with given PT2s page and PT1 index.
643  */
644 static __inline pt2_entry_t *
645 page_pt2(vm_offset_t pgva, u_int pt1_idx)
646 {
647 
648 	return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
649 }
650 
651 /*
652  *  Get virtual address of PT2s page (mapped in PT2MAP)
653  *  which holds PT2 which holds entry which maps given virtual address.
654  */
655 static __inline vm_offset_t
656 pt2map_pt2pg(vm_offset_t va)
657 {
658 
659 	va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
660 	return ((vm_offset_t)pt2map_entry(va));
661 }
662 
663 /*****************************************************************************
664  *
665  *     THREE pmap initialization milestones exist:
666  *
667  *  locore.S
668  *    -> fundamental init (including MMU) in ASM
669  *
670  *  initarm()
671  *    -> fundamental init continues in C
672  *    -> first available physical address is known
673  *
674  *    pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
675  *      -> basic (safe) interface for physical address allocation is made
676  *      -> basic (safe) interface for virtual mapping is made
677  *      -> limited not SMP coherent work is possible
678  *
679  *    -> more fundamental init continues in C
680  *    -> locks and some more things are available
681  *    -> all fundamental allocations and mappings are done
682  *
683  *    pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
684  *      -> phys_avail[] and virtual_avail is set
685  *      -> control is passed to vm subsystem
686  *      -> physical and virtual address allocation are off limit
687  *      -> low level mapping functions, some SMP coherent,
688  *         are available, which cannot be used before vm subsystem
689  *         is being inited
690  *
691  *  mi_startup()
692  *    -> vm subsystem is being inited
693  *
694  *      pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
695  *        -> pmap is fully inited
696  *
697  *****************************************************************************/
698 
699 /*****************************************************************************
700  *
701  *	PMAP first stage initialization and utility functions
702  *	for pre-bootstrap epoch.
703  *
704  *  After pmap_bootstrap_prepare() is called, the following functions
705  *  can be used:
706  *
707  *  (1) strictly only for this stage functions for physical page allocations,
708  *      virtual space allocations, and mappings:
709  *
710  *  vm_paddr_t pmap_preboot_get_pages(u_int num);
711  *  void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
712  *  vm_offset_t pmap_preboot_reserve_pages(u_int num);
713  *  vm_offset_t pmap_preboot_get_vpages(u_int num);
714  *  void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
715  *      vm_prot_t prot, vm_memattr_t attr);
716  *
717  *  (2) for all stages:
718  *
719  *  vm_paddr_t pmap_kextract(vm_offset_t va);
720  *
721  *  NOTE: This is not SMP coherent stage.
722  *
723  *****************************************************************************/
724 
725 #define KERNEL_P2V(pa) \
726     ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
727 #define KERNEL_V2P(va) \
728     ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
729 
730 static vm_paddr_t last_paddr;
731 
732 /*
733  *  Pre-bootstrap epoch page allocator.
734  */
735 vm_paddr_t
736 pmap_preboot_get_pages(u_int num)
737 {
738 	vm_paddr_t ret;
739 
740 	ret = last_paddr;
741 	last_paddr += num * PAGE_SIZE;
742 
743 	return (ret);
744 }
745 
746 /*
747  *	The fundamental initialization of PMAP stuff.
748  *
749  *  Some things already happened in locore.S and some things could happen
750  *  before pmap_bootstrap_prepare() is called, so let's recall what is done:
751  *  1. Caches are disabled.
752  *  2. We are running on virtual addresses already with 'boot_pt1'
753  *     as L1 page table.
754  *  3. So far, all virtual addresses can be converted to physical ones and
755  *     vice versa by the following macros:
756  *       KERNEL_P2V(pa) .... physical to virtual ones,
757  *       KERNEL_V2P(va) .... virtual to physical ones.
758  *
759  *  What is done herein:
760  *  1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
761  *  2. PT2MAP magic is brought to live.
762  *  3. Basic preboot functions for page allocations and mappings can be used.
763  *  4. Everything is prepared for L1 cache enabling.
764  *
765  *  Variations:
766  *  1. To use second TTB register, so kernel and users page tables will be
767  *     separated. This way process forking - pmap_pinit() - could be faster,
768  *     it saves physical pages and KVA per a process, and it's simple change.
769  *     However, it will lead, due to hardware matter, to the following:
770  *     (a) 2G space for kernel and 2G space for users.
771  *     (b) 1G space for kernel in low addresses and 3G for users above it.
772  *     A question is: Is the case (b) really an option? Note that case (b)
773  *     does save neither physical memory and KVA.
774  */
775 void
776 pmap_bootstrap_prepare(vm_paddr_t last)
777 {
778 	vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
779 	vm_offset_t pt2pg_va;
780 	pt1_entry_t *pte1p;
781 	pt2_entry_t *pte2p;
782 	u_int i;
783 	uint32_t l1_attr;
784 
785 	/*
786 	 * Now, we are going to make real kernel mapping. Note that we are
787 	 * already running on some mapping made in locore.S and we expect
788 	 * that it's large enough to ensure nofault access to physical memory
789 	 * allocated herein before switch.
790 	 *
791 	 * As kernel image and everything needed before are and will be mapped
792 	 * by section mappings, we align last physical address to PTE1_SIZE.
793 	 */
794 	last_paddr = pte1_roundup(last);
795 
796 	/*
797 	 * Allocate and zero page(s) for kernel L1 page table.
798 	 *
799 	 * Note that it's first allocation on space which was PTE1_SIZE
800 	 * aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
801 	 */
802 	base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
803 	kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
804 	bzero((void*)kern_pt1, NB_IN_PT1);
805 	pte1_sync_range(kern_pt1, NB_IN_PT1);
806 
807 	/* Allocate and zero page(s) for kernel PT2TAB. */
808 	pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
809 	kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
810 	bzero(kern_pt2tab, NB_IN_PT2TAB);
811 	pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
812 
813 	/* Allocate and zero page(s) for kernel L2 page tables. */
814 	pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
815 	pt2pg_va = KERNEL_P2V(pt2pg_pa);
816 	size = NKPT2PG * PAGE_SIZE;
817 	bzero((void*)pt2pg_va, size);
818 	pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
819 
820 	/*
821 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
822 	 * preallocated pages for kernel L2 page tables so that vm_page
823 	 * structures representing these pages will be created. The vm_page
824 	 * structures are required for promotion of the corresponding kernel
825 	 * virtual addresses to section mappings.
826 	 */
827 	vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
828 
829 	/*
830 	 * Insert allocated L2 page table pages to PT2TAB and make
831 	 * link to all PT2s in L1 page table. See how kernel_vm_end
832 	 * is initialized.
833 	 *
834 	 * We play simple and safe. So every KVA will have underlaying
835 	 * L2 page table, even kernel image mapped by sections.
836 	 */
837 	pte2p = kern_pt2tab_entry(KERNBASE);
838 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
839 		pt2tab_store(pte2p++, PTE2_KPT(pa));
840 
841 	pte1p = kern_pte1(KERNBASE);
842 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
843 		pte1_store(pte1p++, PTE1_LINK(pa));
844 
845 	/* Make section mappings for kernel. */
846 	l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
847 	pte1p = kern_pte1(KERNBASE);
848 	for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
849 		pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
850 
851 	/*
852 	 * Get free and aligned space for PT2MAP and make L1 page table links
853 	 * to L2 page tables held in PT2TAB.
854 	 *
855 	 * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
856 	 * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
857 	 * each entry in PT2TAB maps all PT2s in a page. This implies that
858 	 * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
859 	 */
860 	PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
861 	pte1p = kern_pte1((vm_offset_t)PT2MAP);
862 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
863 		pte1_store(pte1p++, PTE1_LINK(pa));
864 	}
865 
866 	/*
867 	 * Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
868 	 * Each pmap will hold own PT2TAB, so the mapping should be not global.
869 	 */
870 	pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
871 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
872 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
873 	}
874 
875 	/*
876 	 * Choose correct L2 page table and make mappings for allocations
877 	 * made herein which replaces temporary locore.S mappings after a while.
878 	 * Note that PT2MAP cannot be used until we switch to kern_pt1.
879 	 *
880 	 * Note, that these allocations started aligned on 1M section and
881 	 * kernel PT1 was allocated first. Making of mappings must follow
882 	 * order of physical allocations as we've used KERNEL_P2V() macro
883 	 * for virtual addresses resolution.
884 	 */
885 	pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
886 	pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
887 
888 	pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
889 
890 	/* Make mapping for kernel L1 page table. */
891 	for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
892 		pte2_store(pte2p++, PTE2_KPT(pa));
893 
894 	/* Make mapping for kernel PT2TAB. */
895 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
896 		pte2_store(pte2p++, PTE2_KPT(pa));
897 
898 	/* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
899 	pmap_kern_ttb = base_pt1 | ttb_flags;
900 	cpuinfo_reinit_mmu(pmap_kern_ttb);
901 	/*
902 	 * Initialize the first available KVA. As kernel image is mapped by
903 	 * sections, we are leaving some gap behind.
904 	 */
905 	virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
906 }
907 
908 /*
909  *  Setup L2 page table page for given KVA.
910  *  Used in pre-bootstrap epoch.
911  *
912  *  Note that we have allocated NKPT2PG pages for L2 page tables in advance
913  *  and used them for mapping KVA starting from KERNBASE. However, this is not
914  *  enough. Vectors and devices need L2 page tables too. Note that they are
915  *  even above VM_MAX_KERNEL_ADDRESS.
916  */
917 static __inline vm_paddr_t
918 pmap_preboot_pt2pg_setup(vm_offset_t va)
919 {
920 	pt2_entry_t *pte2p, pte2;
921 	vm_paddr_t pt2pg_pa;
922 
923 	/* Get associated entry in PT2TAB. */
924 	pte2p = kern_pt2tab_entry(va);
925 
926 	/* Just return, if PT2s page exists already. */
927 	pte2 = pt2tab_load(pte2p);
928 	if (pte2_is_valid(pte2))
929 		return (pte2_pa(pte2));
930 
931 	KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
932 	    ("%s: NKPT2PG too small", __func__));
933 
934 	/*
935 	 * Allocate page for PT2s and insert it to PT2TAB.
936 	 * In other words, map it into PT2MAP space.
937 	 */
938 	pt2pg_pa = pmap_preboot_get_pages(1);
939 	pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
940 
941 	/* Zero all PT2s in allocated page. */
942 	bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
943 	pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
944 
945 	return (pt2pg_pa);
946 }
947 
948 /*
949  *  Setup L2 page table for given KVA.
950  *  Used in pre-bootstrap epoch.
951  */
952 static void
953 pmap_preboot_pt2_setup(vm_offset_t va)
954 {
955 	pt1_entry_t *pte1p;
956 	vm_paddr_t pt2pg_pa, pt2_pa;
957 
958 	/* Setup PT2's page. */
959 	pt2pg_pa = pmap_preboot_pt2pg_setup(va);
960 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
961 
962 	/* Insert PT2 to PT1. */
963 	pte1p = kern_pte1(va);
964 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
965 }
966 
967 /*
968  *  Get L2 page entry associated with given KVA.
969  *  Used in pre-bootstrap epoch.
970  */
971 static __inline pt2_entry_t*
972 pmap_preboot_vtopte2(vm_offset_t va)
973 {
974 	pt1_entry_t *pte1p;
975 
976 	/* Setup PT2 if needed. */
977 	pte1p = kern_pte1(va);
978 	if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
979 		pmap_preboot_pt2_setup(va);
980 
981 	return (pt2map_entry(va));
982 }
983 
984 /*
985  *  Pre-bootstrap epoch page(s) mapping(s).
986  */
987 void
988 pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
989 {
990 	u_int i;
991 	pt2_entry_t *pte2p;
992 
993 	/* Map all the pages. */
994 	for (i = 0; i < num; i++) {
995 		pte2p = pmap_preboot_vtopte2(va);
996 		pte2_store(pte2p, PTE2_KRW(pa));
997 		va += PAGE_SIZE;
998 		pa += PAGE_SIZE;
999 	}
1000 }
1001 
1002 /*
1003  *  Pre-bootstrap epoch virtual space alocator.
1004  */
1005 vm_offset_t
1006 pmap_preboot_reserve_pages(u_int num)
1007 {
1008 	u_int i;
1009 	vm_offset_t start, va;
1010 	pt2_entry_t *pte2p;
1011 
1012 	/* Allocate virtual space. */
1013 	start = va = virtual_avail;
1014 	virtual_avail += num * PAGE_SIZE;
1015 
1016 	/* Zero the mapping. */
1017 	for (i = 0; i < num; i++) {
1018 		pte2p = pmap_preboot_vtopte2(va);
1019 		pte2_store(pte2p, 0);
1020 		va += PAGE_SIZE;
1021 	}
1022 
1023 	return (start);
1024 }
1025 
1026 /*
1027  *  Pre-bootstrap epoch page(s) allocation and mapping(s).
1028  */
1029 vm_offset_t
1030 pmap_preboot_get_vpages(u_int num)
1031 {
1032 	vm_paddr_t  pa;
1033 	vm_offset_t va;
1034 
1035 	/* Allocate physical page(s). */
1036 	pa = pmap_preboot_get_pages(num);
1037 
1038 	/* Allocate virtual space. */
1039 	va = virtual_avail;
1040 	virtual_avail += num * PAGE_SIZE;
1041 
1042 	/* Map and zero all. */
1043 	pmap_preboot_map_pages(pa, va, num);
1044 	bzero((void *)va, num * PAGE_SIZE);
1045 
1046 	return (va);
1047 }
1048 
1049 /*
1050  *  Pre-bootstrap epoch page mapping(s) with attributes.
1051  */
1052 void
1053 pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
1054     vm_prot_t prot, vm_memattr_t attr)
1055 {
1056 	u_int num;
1057 	u_int l1_attr, l1_prot, l2_prot, l2_attr;
1058 	pt1_entry_t *pte1p;
1059 	pt2_entry_t *pte2p;
1060 
1061 	l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
1062 	l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1063 	l2_attr = vm_memattr_to_pte2(attr);
1064 	l1_prot = ATTR_TO_L1(l2_prot);
1065 	l1_attr = ATTR_TO_L1(l2_attr);
1066 
1067 	/* Map all the pages. */
1068 	num = round_page(size);
1069 	while (num > 0) {
1070 		if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
1071 			pte1p = kern_pte1(va);
1072 			pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
1073 			va += PTE1_SIZE;
1074 			pa += PTE1_SIZE;
1075 			num -= PTE1_SIZE;
1076 		} else {
1077 			pte2p = pmap_preboot_vtopte2(va);
1078 			pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
1079 			va += PAGE_SIZE;
1080 			pa += PAGE_SIZE;
1081 			num -= PAGE_SIZE;
1082 		}
1083 	}
1084 }
1085 
1086 /*
1087  *  Extract from the kernel page table the physical address
1088  *  that is mapped by the given virtual address "va".
1089  */
1090 vm_paddr_t
1091 pmap_kextract(vm_offset_t va)
1092 {
1093 	vm_paddr_t pa;
1094 	pt1_entry_t pte1;
1095 	pt2_entry_t pte2;
1096 
1097 	pte1 = pte1_load(kern_pte1(va));
1098 	if (pte1_is_section(pte1)) {
1099 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1100 	} else if (pte1_is_link(pte1)) {
1101 		/*
1102 		 * We should beware of concurrent promotion that changes
1103 		 * pte1 at this point. However, it's not a problem as PT2
1104 		 * page is preserved by promotion in PT2TAB. So even if
1105 		 * it happens, using of PT2MAP is still safe.
1106 		 *
1107 		 * QQQ: However, concurrent removing is a problem which
1108 		 *      ends in abort on PT2MAP space. Locking must be used
1109 		 *      to deal with this.
1110 		 */
1111 		pte2 = pte2_load(pt2map_entry(va));
1112 		pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
1113 	}
1114 	else {
1115 		panic("%s: va %#x pte1 %#x", __func__, va, pte1);
1116 	}
1117 	return (pa);
1118 }
1119 
1120 /*
1121  *  Extract from the kernel page table the physical address
1122  *  that is mapped by the given virtual address "va". Also
1123  *  return L2 page table entry which maps the address.
1124  *
1125  *  This is only intended to be used for panic dumps.
1126  */
1127 vm_paddr_t
1128 pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
1129 {
1130 	vm_paddr_t pa;
1131 	pt1_entry_t pte1;
1132 	pt2_entry_t pte2;
1133 
1134 	pte1 = pte1_load(kern_pte1(va));
1135 	if (pte1_is_section(pte1)) {
1136 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1137 		pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
1138 	} else if (pte1_is_link(pte1)) {
1139 		pte2 = pte2_load(pt2map_entry(va));
1140 		pa = pte2_pa(pte2);
1141 	} else {
1142 		pte2 = 0;
1143 		pa = 0;
1144 	}
1145 	if (pte2p != NULL)
1146 		*pte2p = pte2;
1147 	return (pa);
1148 }
1149 
1150 /*****************************************************************************
1151  *
1152  *	PMAP second stage initialization and utility functions
1153  *	for bootstrap epoch.
1154  *
1155  *  After pmap_bootstrap() is called, the following functions for
1156  *  mappings can be used:
1157  *
1158  *  void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
1159  *  void pmap_kremove(vm_offset_t va);
1160  *  vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1161  *      int prot);
1162  *
1163  *  NOTE: This is not SMP coherent stage. And physical page allocation is not
1164  *        allowed during this stage.
1165  *
1166  *****************************************************************************/
1167 
1168 /*
1169  *  Initialize kernel PMAP locks and lists, kernel_pmap itself, and
1170  *  reserve various virtual spaces for temporary mappings.
1171  */
1172 void
1173 pmap_bootstrap(vm_offset_t firstaddr)
1174 {
1175 	pt2_entry_t *unused __unused;
1176 	struct pcpu *pc;
1177 
1178 	/*
1179 	 * Initialize the kernel pmap (which is statically allocated).
1180 	 */
1181 	PMAP_LOCK_INIT(kernel_pmap);
1182 	kernel_l1pa = (vm_paddr_t)kern_pt1;  /* for libkvm */
1183 	kernel_pmap->pm_pt1 = kern_pt1;
1184 	kernel_pmap->pm_pt2tab = kern_pt2tab;
1185 	CPU_FILL(&kernel_pmap->pm_active);  /* don't allow deactivation */
1186 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1187 
1188 	/*
1189 	 * Initialize the global pv list lock.
1190 	 */
1191 	rw_init(&pvh_global_lock, "pmap pv global");
1192 
1193 	LIST_INIT(&allpmaps);
1194 
1195 	/*
1196 	 * Request a spin mutex so that changes to allpmaps cannot be
1197 	 * preempted by smp_rendezvous_cpus().
1198 	 */
1199 	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
1200 	mtx_lock_spin(&allpmaps_lock);
1201 	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
1202 	mtx_unlock_spin(&allpmaps_lock);
1203 
1204 	/*
1205 	 * Reserve some special page table entries/VA space for temporary
1206 	 * mapping of pages.
1207 	 */
1208 #define	SYSMAP(c, p, v, n)  do {		\
1209 	v = (c)pmap_preboot_reserve_pages(n);	\
1210 	p = pt2map_entry((vm_offset_t)v);	\
1211 	} while (0)
1212 
1213 	/*
1214 	 * Local CMAP1/CMAP2 are used for zeroing and copying pages.
1215 	 * Local CMAP2 is also used for data cache cleaning.
1216 	 */
1217 	pc = get_pcpu();
1218 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1219 	SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
1220 	SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
1221 	SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
1222 
1223 	/*
1224 	 * Crashdump maps.
1225 	 */
1226 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
1227 
1228 	/*
1229 	 * _tmppt is used for reading arbitrary physical pages via /dev/mem.
1230 	 */
1231 	SYSMAP(caddr_t, unused, _tmppt, 1);
1232 
1233 	/*
1234 	 * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
1235 	 * respectively. PADDR3 is used by pmap_pte2_ddb().
1236 	 */
1237 	SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
1238 	SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
1239 #ifdef DDB
1240 	SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
1241 #endif
1242 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
1243 
1244 	/*
1245 	 * Note that in very short time in initarm(), we are going to
1246 	 * initialize phys_avail[] array and no further page allocation
1247 	 * can happen after that until vm subsystem will be initialized.
1248 	 */
1249 	kernel_vm_end_new = kernel_vm_end;
1250 	virtual_end = vm_max_kernel_address;
1251 }
1252 
1253 static void
1254 pmap_init_reserved_pages(void)
1255 {
1256 	struct pcpu *pc;
1257 	vm_offset_t pages;
1258 	int i;
1259 
1260 	CPU_FOREACH(i) {
1261 		pc = pcpu_find(i);
1262 		/*
1263 		 * Skip if the mapping has already been initialized,
1264 		 * i.e. this is the BSP.
1265 		 */
1266 		if (pc->pc_cmap1_addr != 0)
1267 			continue;
1268 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1269 		pages = kva_alloc(PAGE_SIZE * 3);
1270 		if (pages == 0)
1271 			panic("%s: unable to allocate KVA", __func__);
1272 		pc->pc_cmap1_pte2p = pt2map_entry(pages);
1273 		pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
1274 		pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
1275 		pc->pc_cmap1_addr = (caddr_t)pages;
1276 		pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
1277 		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
1278 	}
1279 }
1280 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
1281 
1282 /*
1283  *  The function can already be use in second initialization stage.
1284  *  As such, the function DOES NOT call pmap_growkernel() where PT2
1285  *  allocation can happen. So if used, be sure that PT2 for given
1286  *  virtual address is allocated already!
1287  *
1288  *  Add a wired page to the kva.
1289  *  Note: not SMP coherent.
1290  */
1291 static __inline void
1292 pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
1293     uint32_t attr)
1294 {
1295 	pt1_entry_t *pte1p;
1296 	pt2_entry_t *pte2p;
1297 
1298 	pte1p = kern_pte1(va);
1299 	if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
1300 		/*
1301 		 * This is a very low level function, so PT2 and particularly
1302 		 * PT2PG associated with given virtual address must be already
1303 		 * allocated. It's a pain mainly during pmap initialization
1304 		 * stage. However, called after pmap initialization with
1305 		 * virtual address not under kernel_vm_end will lead to
1306 		 * the same misery.
1307 		 */
1308 		if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
1309 			panic("%s: kernel PT2 not allocated!", __func__);
1310 	}
1311 
1312 	pte2p = pt2map_entry(va);
1313 	pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
1314 }
1315 
1316 PMAP_INLINE void
1317 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1318 {
1319 
1320 	pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
1321 }
1322 
1323 /*
1324  *  Remove a page from the kernel pagetables.
1325  *  Note: not SMP coherent.
1326  */
1327 PMAP_INLINE void
1328 pmap_kremove(vm_offset_t va)
1329 {
1330 	pt1_entry_t *pte1p;
1331 	pt2_entry_t *pte2p;
1332 
1333 	pte1p = kern_pte1(va);
1334 	if (pte1_is_section(pte1_load(pte1p))) {
1335 		pte1_clear(pte1p);
1336 	} else {
1337 		pte2p = pt2map_entry(va);
1338 		pte2_clear(pte2p);
1339 	}
1340 }
1341 
1342 /*
1343  *  Share new kernel PT2PG with all pmaps.
1344  *  The caller is responsible for maintaining TLB consistency.
1345  */
1346 static void
1347 pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
1348 {
1349 	pmap_t pmap;
1350 	pt2_entry_t *pte2p;
1351 
1352 	mtx_lock_spin(&allpmaps_lock);
1353 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1354 		pte2p = pmap_pt2tab_entry(pmap, va);
1355 		pt2tab_store(pte2p, npte2);
1356 	}
1357 	mtx_unlock_spin(&allpmaps_lock);
1358 }
1359 
1360 /*
1361  *  Share new kernel PTE1 with all pmaps.
1362  *  The caller is responsible for maintaining TLB consistency.
1363  */
1364 static void
1365 pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
1366 {
1367 	pmap_t pmap;
1368 	pt1_entry_t *pte1p;
1369 
1370 	mtx_lock_spin(&allpmaps_lock);
1371 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1372 		pte1p = pmap_pte1(pmap, va);
1373 		pte1_store(pte1p, npte1);
1374 	}
1375 	mtx_unlock_spin(&allpmaps_lock);
1376 }
1377 
1378 /*
1379  *  Used to map a range of physical addresses into kernel
1380  *  virtual address space.
1381  *
1382  *  The value passed in '*virt' is a suggested virtual address for
1383  *  the mapping. Architectures which can support a direct-mapped
1384  *  physical to virtual region can return the appropriate address
1385  *  within that region, leaving '*virt' unchanged. Other
1386  *  architectures should map the pages starting at '*virt' and
1387  *  update '*virt' with the first usable address after the mapped
1388  *  region.
1389  *
1390  *  NOTE: Read the comments above pmap_kenter_prot_attr() as
1391  *        the function is used herein!
1392  */
1393 vm_offset_t
1394 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1395 {
1396 	vm_offset_t va, sva;
1397 	vm_paddr_t pte1_offset;
1398 	pt1_entry_t npte1;
1399 	uint32_t l1prot, l2prot;
1400 	uint32_t l1attr, l2attr;
1401 
1402 	PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
1403 	    " prot = %d\n", __func__, *virt, start, end, end - start,  prot));
1404 
1405 	l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
1406 	l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1407 	l1prot = ATTR_TO_L1(l2prot);
1408 
1409 	l2attr = PTE2_ATTR_DEFAULT;
1410 	l1attr = ATTR_TO_L1(l2attr);
1411 
1412 	va = *virt;
1413 	/*
1414 	 * Does the physical address range's size and alignment permit at
1415 	 * least one section mapping to be created?
1416 	 */
1417 	pte1_offset = start & PTE1_OFFSET;
1418 	if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
1419 	    PTE1_SIZE) {
1420 		/*
1421 		 * Increase the starting virtual address so that its alignment
1422 		 * does not preclude the use of section mappings.
1423 		 */
1424 		if ((va & PTE1_OFFSET) < pte1_offset)
1425 			va = pte1_trunc(va) + pte1_offset;
1426 		else if ((va & PTE1_OFFSET) > pte1_offset)
1427 			va = pte1_roundup(va) + pte1_offset;
1428 	}
1429 	sva = va;
1430 	while (start < end) {
1431 		if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
1432 			KASSERT((va & PTE1_OFFSET) == 0,
1433 			    ("%s: misaligned va %#x", __func__, va));
1434 			npte1 = PTE1_KERN(start, l1prot, l1attr);
1435 			pmap_kenter_pte1(va, npte1);
1436 			va += PTE1_SIZE;
1437 			start += PTE1_SIZE;
1438 		} else {
1439 			pmap_kenter_prot_attr(va, start, l2prot, l2attr);
1440 			va += PAGE_SIZE;
1441 			start += PAGE_SIZE;
1442 		}
1443 	}
1444 	tlb_flush_range(sva, va - sva);
1445 	*virt = va;
1446 	return (sva);
1447 }
1448 
1449 /*
1450  *  Make a temporary mapping for a physical address.
1451  *  This is only intended to be used for panic dumps.
1452  */
1453 void *
1454 pmap_kenter_temporary(vm_paddr_t pa, int i)
1455 {
1456 	vm_offset_t va;
1457 
1458 	/* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
1459 
1460 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
1461 	pmap_kenter(va, pa);
1462 	tlb_flush_local(va);
1463 	return ((void *)crashdumpmap);
1464 }
1465 
1466 
1467 /*************************************
1468  *
1469  *  TLB & cache maintenance routines.
1470  *
1471  *************************************/
1472 
1473 /*
1474  *  We inline these within pmap.c for speed.
1475  */
1476 PMAP_INLINE void
1477 pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
1478 {
1479 
1480 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1481 		tlb_flush(va);
1482 }
1483 
1484 PMAP_INLINE void
1485 pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
1486 {
1487 
1488 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1489 		tlb_flush_range(sva, size);
1490 }
1491 
1492 /*
1493  *  Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
1494  *  Requirements:
1495  *   - Must deal with pages in order to ensure that none of the PTE2_* bits
1496  *     are ever set, PTE2_V in particular.
1497  *   - Assumes we can write to pte2s without pte2_store() atomic ops.
1498  *   - Assumes nothing will ever test these addresses for 0 to indicate
1499  *     no mapping instead of correctly checking PTE2_V.
1500  *   - Assumes a vm_offset_t will fit in a pte2 (true for arm).
1501  *  Because PTE2_V is never set, there can be no mappings to invalidate.
1502  */
1503 static vm_offset_t
1504 pmap_pte2list_alloc(vm_offset_t *head)
1505 {
1506 	pt2_entry_t *pte2p;
1507 	vm_offset_t va;
1508 
1509 	va = *head;
1510 	if (va == 0)
1511 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
1512 	pte2p = pt2map_entry(va);
1513 	*head = *pte2p;
1514 	if (*head & PTE2_V)
1515 		panic("%s: va with PTE2_V set!", __func__);
1516 	*pte2p = 0;
1517 	return (va);
1518 }
1519 
1520 static void
1521 pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
1522 {
1523 	pt2_entry_t *pte2p;
1524 
1525 	if (va & PTE2_V)
1526 		panic("%s: freeing va with PTE2_V set!", __func__);
1527 	pte2p = pt2map_entry(va);
1528 	*pte2p = *head;		/* virtual! PTE2_V is 0 though */
1529 	*head = va;
1530 }
1531 
1532 static void
1533 pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
1534 {
1535 	int i;
1536 	vm_offset_t va;
1537 
1538 	*head = 0;
1539 	for (i = npages - 1; i >= 0; i--) {
1540 		va = (vm_offset_t)base + i * PAGE_SIZE;
1541 		pmap_pte2list_free(head, va);
1542 	}
1543 }
1544 
1545 /*****************************************************************************
1546  *
1547  *	PMAP third and final stage initialization.
1548  *
1549  *  After pmap_init() is called, PMAP subsystem is fully initialized.
1550  *
1551  *****************************************************************************/
1552 
1553 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1554     "VM/pmap parameters");
1555 
1556 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1557     "Max number of PV entries");
1558 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1559     "Page share factor per proc");
1560 
1561 static u_long nkpt2pg = NKPT2PG;
1562 SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
1563     &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
1564 
1565 static int sp_enabled = 1;
1566 SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
1567     &sp_enabled, 0, "Are large page mappings enabled?");
1568 
1569 bool
1570 pmap_ps_enabled(pmap_t pmap __unused)
1571 {
1572 
1573 	return (sp_enabled != 0);
1574 }
1575 
1576 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1577     "1MB page mapping counters");
1578 
1579 static u_long pmap_pte1_demotions;
1580 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
1581     &pmap_pte1_demotions, 0, "1MB page demotions");
1582 
1583 static u_long pmap_pte1_mappings;
1584 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
1585     &pmap_pte1_mappings, 0, "1MB page mappings");
1586 
1587 static u_long pmap_pte1_p_failures;
1588 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
1589     &pmap_pte1_p_failures, 0, "1MB page promotion failures");
1590 
1591 static u_long pmap_pte1_promotions;
1592 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
1593     &pmap_pte1_promotions, 0, "1MB page promotions");
1594 
1595 static u_long pmap_pte1_kern_demotions;
1596 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
1597     &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
1598 
1599 static u_long pmap_pte1_kern_promotions;
1600 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
1601     &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
1602 
1603 static __inline ttb_entry_t
1604 pmap_ttb_get(pmap_t pmap)
1605 {
1606 
1607 	return (vtophys(pmap->pm_pt1) | ttb_flags);
1608 }
1609 
1610 /*
1611  *  Initialize a vm_page's machine-dependent fields.
1612  *
1613  *  Variations:
1614  *  1. Pages for L2 page tables are always not managed. So, pv_list and
1615  *     pt2_wirecount can share same physical space. However, proper
1616  *     initialization on a page alloc for page tables and reinitialization
1617  *     on the page free must be ensured.
1618  */
1619 void
1620 pmap_page_init(vm_page_t m)
1621 {
1622 
1623 	TAILQ_INIT(&m->md.pv_list);
1624 	pt2_wirecount_init(m);
1625 	m->md.pat_mode = VM_MEMATTR_DEFAULT;
1626 }
1627 
1628 /*
1629  *  Virtualization for faster way how to zero whole page.
1630  */
1631 static __inline void
1632 pagezero(void *page)
1633 {
1634 
1635 	bzero(page, PAGE_SIZE);
1636 }
1637 
1638 /*
1639  *  Zero L2 page table page.
1640  *  Use same KVA as in pmap_zero_page().
1641  */
1642 static __inline vm_paddr_t
1643 pmap_pt2pg_zero(vm_page_t m)
1644 {
1645 	pt2_entry_t *cmap2_pte2p;
1646 	vm_paddr_t pa;
1647 	struct pcpu *pc;
1648 
1649 	pa = VM_PAGE_TO_PHYS(m);
1650 
1651 	/*
1652 	 * XXX: For now, we map whole page even if it's already zero,
1653 	 *      to sync it even if the sync is only DSB.
1654 	 */
1655 	sched_pin();
1656 	pc = get_pcpu();
1657 	cmap2_pte2p = pc->pc_cmap2_pte2p;
1658 	mtx_lock(&pc->pc_cmap_lock);
1659 	if (pte2_load(cmap2_pte2p) != 0)
1660 		panic("%s: CMAP2 busy", __func__);
1661 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
1662 	    vm_page_pte2_attr(m)));
1663 	/*  Even VM_ALLOC_ZERO request is only advisory. */
1664 	if ((m->flags & PG_ZERO) == 0)
1665 		pagezero(pc->pc_cmap2_addr);
1666 	pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
1667 	pte2_clear(cmap2_pte2p);
1668 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
1669 
1670 	/*
1671 	 * Unpin the thread before releasing the lock.  Otherwise the thread
1672 	 * could be rescheduled while still bound to the current CPU, only
1673 	 * to unpin itself immediately upon resuming execution.
1674 	 */
1675 	sched_unpin();
1676 	mtx_unlock(&pc->pc_cmap_lock);
1677 
1678 	return (pa);
1679 }
1680 
1681 /*
1682  *  Init just allocated page as L2 page table(s) holder
1683  *  and return its physical address.
1684  */
1685 static __inline vm_paddr_t
1686 pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
1687 {
1688 	vm_paddr_t pa;
1689 	pt2_entry_t *pte2p;
1690 
1691 	/* Check page attributes. */
1692 	if (m->md.pat_mode != pt_memattr)
1693 		pmap_page_set_memattr(m, pt_memattr);
1694 
1695 	/* Zero page and init wire counts. */
1696 	pa = pmap_pt2pg_zero(m);
1697 	pt2_wirecount_init(m);
1698 
1699 	/*
1700 	 * Map page to PT2MAP address space for given pmap.
1701 	 * Note that PT2MAP space is shared with all pmaps.
1702 	 */
1703 	if (pmap == kernel_pmap)
1704 		pmap_kenter_pt2tab(va, PTE2_KPT(pa));
1705 	else {
1706 		pte2p = pmap_pt2tab_entry(pmap, va);
1707 		pt2tab_store(pte2p, PTE2_KPT_NG(pa));
1708 	}
1709 
1710 	return (pa);
1711 }
1712 
1713 /*
1714  *  Initialize the pmap module.
1715  *  Called by vm_init, to initialize any structures that the pmap
1716  *  system needs to map virtual memory.
1717  */
1718 void
1719 pmap_init(void)
1720 {
1721 	vm_size_t s;
1722 	pt2_entry_t *pte2p, pte2;
1723 	u_int i, pte1_idx, pv_npg;
1724 
1725 	PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
1726 
1727 	/*
1728 	 * Initialize the vm page array entries for kernel pmap's
1729 	 * L2 page table pages allocated in advance.
1730 	 */
1731 	pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
1732 	pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
1733 	for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
1734 		vm_paddr_t pa;
1735 		vm_page_t m;
1736 
1737 		pte2 = pte2_load(pte2p);
1738 		KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
1739 
1740 		pa = pte2_pa(pte2);
1741 		m = PHYS_TO_VM_PAGE(pa);
1742 		KASSERT(m >= vm_page_array &&
1743 		    m < &vm_page_array[vm_page_array_size],
1744 		    ("%s: L2 page table page is out of range", __func__));
1745 
1746 		m->pindex = pte1_idx;
1747 		m->phys_addr = pa;
1748 		pte1_idx += NPT2_IN_PG;
1749 	}
1750 
1751 	/*
1752 	 * Initialize the address space (zone) for the pv entries.  Set a
1753 	 * high water mark so that the system can recover from excessive
1754 	 * numbers of pv entries.
1755 	 */
1756 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1757 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1758 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1759 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1760 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1761 
1762 	/*
1763 	 * Are large page mappings enabled?
1764 	 */
1765 	TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
1766 	if (sp_enabled) {
1767 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1768 		    ("%s: can't assign to pagesizes[1]", __func__));
1769 		pagesizes[1] = PTE1_SIZE;
1770 	}
1771 
1772 	/*
1773 	 * Calculate the size of the pv head table for sections.
1774 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1775 	 * Note that the table is only for sections which could be promoted.
1776 	 */
1777 	first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
1778 	pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
1779 	    - first_managed_pa) / PTE1_SIZE + 1;
1780 
1781 	/*
1782 	 * Allocate memory for the pv head table for sections.
1783 	 */
1784 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1785 	s = round_page(s);
1786 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
1787 	for (i = 0; i < pv_npg; i++)
1788 		TAILQ_INIT(&pv_table[i].pv_list);
1789 
1790 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1791 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1792 	if (pv_chunkbase == NULL)
1793 		panic("%s: not enough kvm for pv chunks", __func__);
1794 	pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1795 }
1796 
1797 /*
1798  *  Add a list of wired pages to the kva
1799  *  this routine is only used for temporary
1800  *  kernel mappings that do not need to have
1801  *  page modification or references recorded.
1802  *  Note that old mappings are simply written
1803  *  over.  The page *must* be wired.
1804  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1805  */
1806 void
1807 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1808 {
1809 	u_int anychanged;
1810 	pt2_entry_t *epte2p, *pte2p, pte2;
1811 	vm_page_t m;
1812 	vm_paddr_t pa;
1813 
1814 	anychanged = 0;
1815 	pte2p = pt2map_entry(sva);
1816 	epte2p = pte2p + count;
1817 	while (pte2p < epte2p) {
1818 		m = *ma++;
1819 		pa = VM_PAGE_TO_PHYS(m);
1820 		pte2 = pte2_load(pte2p);
1821 		if ((pte2_pa(pte2) != pa) ||
1822 		    (pte2_attr(pte2) != vm_page_pte2_attr(m))) {
1823 			anychanged++;
1824 			pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
1825 			    vm_page_pte2_attr(m)));
1826 		}
1827 		pte2p++;
1828 	}
1829 	if (__predict_false(anychanged))
1830 		tlb_flush_range(sva, count * PAGE_SIZE);
1831 }
1832 
1833 /*
1834  *  This routine tears out page mappings from the
1835  *  kernel -- it is meant only for temporary mappings.
1836  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1837  */
1838 void
1839 pmap_qremove(vm_offset_t sva, int count)
1840 {
1841 	vm_offset_t va;
1842 
1843 	va = sva;
1844 	while (count-- > 0) {
1845 		pmap_kremove(va);
1846 		va += PAGE_SIZE;
1847 	}
1848 	tlb_flush_range(sva, va - sva);
1849 }
1850 
1851 /*
1852  *  Are we current address space or kernel?
1853  */
1854 static __inline int
1855 pmap_is_current(pmap_t pmap)
1856 {
1857 
1858 	return (pmap == kernel_pmap ||
1859 		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
1860 }
1861 
1862 /*
1863  *  If the given pmap is not the current or kernel pmap, the returned
1864  *  pte2 must be released by passing it to pmap_pte2_release().
1865  */
1866 static pt2_entry_t *
1867 pmap_pte2(pmap_t pmap, vm_offset_t va)
1868 {
1869 	pt1_entry_t pte1;
1870 	vm_paddr_t pt2pg_pa;
1871 
1872 	pte1 = pte1_load(pmap_pte1(pmap, va));
1873 	if (pte1_is_section(pte1))
1874 		panic("%s: attempt to map PTE1", __func__);
1875 	if (pte1_is_link(pte1)) {
1876 		/* Are we current address space or kernel? */
1877 		if (pmap_is_current(pmap))
1878 			return (pt2map_entry(va));
1879 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1880 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1881 		mtx_lock(&PMAP2mutex);
1882 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
1883 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
1884 			tlb_flush((vm_offset_t)PADDR2);
1885 		}
1886 		return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1887 	}
1888 	return (NULL);
1889 }
1890 
1891 /*
1892  *  Releases a pte2 that was obtained from pmap_pte2().
1893  *  Be prepared for the pte2p being NULL.
1894  */
1895 static __inline void
1896 pmap_pte2_release(pt2_entry_t *pte2p)
1897 {
1898 
1899 	if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
1900 		mtx_unlock(&PMAP2mutex);
1901 	}
1902 }
1903 
1904 /*
1905  *  Super fast pmap_pte2 routine best used when scanning
1906  *  the pv lists.  This eliminates many coarse-grained
1907  *  invltlb calls.  Note that many of the pv list
1908  *  scans are across different pmaps.  It is very wasteful
1909  *  to do an entire tlb flush for checking a single mapping.
1910  *
1911  *  If the given pmap is not the current pmap, pvh_global_lock
1912  *  must be held and curthread pinned to a CPU.
1913  */
1914 static pt2_entry_t *
1915 pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
1916 {
1917 	pt1_entry_t pte1;
1918 	vm_paddr_t pt2pg_pa;
1919 
1920 	pte1 = pte1_load(pmap_pte1(pmap, va));
1921 	if (pte1_is_section(pte1))
1922 		panic("%s: attempt to map PTE1", __func__);
1923 	if (pte1_is_link(pte1)) {
1924 		/* Are we current address space or kernel? */
1925 		if (pmap_is_current(pmap))
1926 			return (pt2map_entry(va));
1927 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1928 		KASSERT(curthread->td_pinned > 0,
1929 		    ("%s: curthread not pinned", __func__));
1930 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1931 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1932 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
1933 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
1934 #ifdef SMP
1935 			PMAP1cpu = PCPU_GET(cpuid);
1936 #endif
1937 			tlb_flush_local((vm_offset_t)PADDR1);
1938 			PMAP1changed++;
1939 		} else
1940 #ifdef SMP
1941 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1942 			PMAP1cpu = PCPU_GET(cpuid);
1943 			tlb_flush_local((vm_offset_t)PADDR1);
1944 			PMAP1changedcpu++;
1945 		} else
1946 #endif
1947 			PMAP1unchanged++;
1948 		return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1949 	}
1950 	return (NULL);
1951 }
1952 
1953 /*
1954  *  Routine: pmap_extract
1955  *  Function:
1956  * 	Extract the physical page address associated
1957  *	with the given map/virtual_address pair.
1958  */
1959 vm_paddr_t
1960 pmap_extract(pmap_t pmap, vm_offset_t va)
1961 {
1962 	vm_paddr_t pa;
1963 	pt1_entry_t pte1;
1964 	pt2_entry_t *pte2p;
1965 
1966 	PMAP_LOCK(pmap);
1967 	pte1 = pte1_load(pmap_pte1(pmap, va));
1968 	if (pte1_is_section(pte1))
1969 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1970 	else if (pte1_is_link(pte1)) {
1971 		pte2p = pmap_pte2(pmap, va);
1972 		pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
1973 		pmap_pte2_release(pte2p);
1974 	} else
1975 		pa = 0;
1976 	PMAP_UNLOCK(pmap);
1977 	return (pa);
1978 }
1979 
1980 /*
1981  *  Routine: pmap_extract_and_hold
1982  *  Function:
1983  *	Atomically extract and hold the physical page
1984  *	with the given pmap and virtual address pair
1985  *	if that mapping permits the given protection.
1986  */
1987 vm_page_t
1988 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1989 {
1990 	vm_paddr_t pa;
1991 	pt1_entry_t pte1;
1992 	pt2_entry_t pte2, *pte2p;
1993 	vm_page_t m;
1994 
1995 	m = NULL;
1996 	PMAP_LOCK(pmap);
1997 	pte1 = pte1_load(pmap_pte1(pmap, va));
1998 	if (pte1_is_section(pte1)) {
1999 		if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
2000 			pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
2001 			m = PHYS_TO_VM_PAGE(pa);
2002 			if (!vm_page_wire_mapped(m))
2003 				m = NULL;
2004 		}
2005 	} else if (pte1_is_link(pte1)) {
2006 		pte2p = pmap_pte2(pmap, va);
2007 		pte2 = pte2_load(pte2p);
2008 		pmap_pte2_release(pte2p);
2009 		if (pte2_is_valid(pte2) &&
2010 		    (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
2011 			pa = pte2_pa(pte2);
2012 			m = PHYS_TO_VM_PAGE(pa);
2013 			if (!vm_page_wire_mapped(m))
2014 				m = NULL;
2015 		}
2016 	}
2017 	PMAP_UNLOCK(pmap);
2018 	return (m);
2019 }
2020 
2021 /*
2022  *  Grow the number of kernel L2 page table entries, if needed.
2023  */
2024 void
2025 pmap_growkernel(vm_offset_t addr)
2026 {
2027 	vm_page_t m;
2028 	vm_paddr_t pt2pg_pa, pt2_pa;
2029 	pt1_entry_t pte1;
2030 	pt2_entry_t pte2;
2031 
2032 	PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
2033 	/*
2034 	 * All the time kernel_vm_end is first KVA for which underlying
2035 	 * L2 page table is either not allocated or linked from L1 page table
2036 	 * (not considering sections). Except for two possible cases:
2037 	 *
2038 	 *   (1) in the very beginning as long as pmap_growkernel() was
2039 	 *       not called, it could be first unused KVA (which is not
2040 	 *       rounded up to PTE1_SIZE),
2041 	 *
2042 	 *   (2) when all KVA space is mapped and vm_map_max(kernel_map)
2043 	 *       address is not rounded up to PTE1_SIZE. (For example,
2044 	 *       it could be 0xFFFFFFFF.)
2045 	 */
2046 	kernel_vm_end = pte1_roundup(kernel_vm_end);
2047 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2048 	addr = roundup2(addr, PTE1_SIZE);
2049 	if (addr - 1 >= vm_map_max(kernel_map))
2050 		addr = vm_map_max(kernel_map);
2051 	while (kernel_vm_end < addr) {
2052 		pte1 = pte1_load(kern_pte1(kernel_vm_end));
2053 		if (pte1_is_valid(pte1)) {
2054 			kernel_vm_end += PTE1_SIZE;
2055 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2056 				kernel_vm_end = vm_map_max(kernel_map);
2057 				break;
2058 			}
2059 			continue;
2060 		}
2061 
2062 		/*
2063 		 * kernel_vm_end_new is used in pmap_pinit() when kernel
2064 		 * mappings are entered to new pmap all at once to avoid race
2065 		 * between pmap_kenter_pte1() and kernel_vm_end increase.
2066 		 * The same aplies to pmap_kenter_pt2tab().
2067 		 */
2068 		kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
2069 
2070 		pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
2071 		if (!pte2_is_valid(pte2)) {
2072 			/*
2073 			 * Install new PT2s page into kernel PT2TAB.
2074 			 */
2075 			m = vm_page_alloc(NULL,
2076 			    pte1_index(kernel_vm_end) & ~PT2PG_MASK,
2077 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2078 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2079 			if (m == NULL)
2080 				panic("%s: no memory to grow kernel", __func__);
2081 			/*
2082 			 * QQQ: To link all new L2 page tables from L1 page
2083 			 *      table now and so pmap_kenter_pte1() them
2084 			 *      at once together with pmap_kenter_pt2tab()
2085 			 *      could be nice speed up. However,
2086 			 *      pmap_growkernel() does not happen so often...
2087 			 * QQQ: The other TTBR is another option.
2088 			 */
2089 			pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
2090 			    m);
2091 		} else
2092 			pt2pg_pa = pte2_pa(pte2);
2093 
2094 		pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
2095 		pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
2096 
2097 		kernel_vm_end = kernel_vm_end_new;
2098 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2099 			kernel_vm_end = vm_map_max(kernel_map);
2100 			break;
2101 		}
2102 	}
2103 }
2104 
2105 static int
2106 kvm_size(SYSCTL_HANDLER_ARGS)
2107 {
2108 	unsigned long ksize = vm_max_kernel_address - KERNBASE;
2109 
2110 	return (sysctl_handle_long(oidp, &ksize, 0, req));
2111 }
2112 SYSCTL_PROC(_vm, OID_AUTO, kvm_size,
2113     CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_size, "IU",
2114     "Size of KVM");
2115 
2116 static int
2117 kvm_free(SYSCTL_HANDLER_ARGS)
2118 {
2119 	unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
2120 
2121 	return (sysctl_handle_long(oidp, &kfree, 0, req));
2122 }
2123 SYSCTL_PROC(_vm, OID_AUTO, kvm_free,
2124     CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_free, "IU",
2125     "Amount of KVM free");
2126 
2127 /***********************************************
2128  *
2129  *  Pmap allocation/deallocation routines.
2130  *
2131  ***********************************************/
2132 
2133 /*
2134  *  Initialize the pmap for the swapper process.
2135  */
2136 void
2137 pmap_pinit0(pmap_t pmap)
2138 {
2139 	PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
2140 
2141 	PMAP_LOCK_INIT(pmap);
2142 
2143 	/*
2144 	 * Kernel page table directory and pmap stuff around is already
2145 	 * initialized, we are using it right now and here. So, finish
2146 	 * only PMAP structures initialization for process0 ...
2147 	 *
2148 	 * Since the L1 page table and PT2TAB is shared with the kernel pmap,
2149 	 * which is already included in the list "allpmaps", this pmap does
2150 	 * not need to be inserted into that list.
2151 	 */
2152 	pmap->pm_pt1 = kern_pt1;
2153 	pmap->pm_pt2tab = kern_pt2tab;
2154 	CPU_ZERO(&pmap->pm_active);
2155 	PCPU_SET(curpmap, pmap);
2156 	TAILQ_INIT(&pmap->pm_pvchunk);
2157 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2158 	CPU_SET(0, &pmap->pm_active);
2159 }
2160 
2161 static __inline void
2162 pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
2163     vm_offset_t eva)
2164 {
2165 	u_int idx, count;
2166 
2167 	idx = pte1_index(sva);
2168 	count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
2169 	bcopy(spte1p + idx, dpte1p + idx, count);
2170 }
2171 
2172 static __inline void
2173 pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
2174     vm_offset_t eva)
2175 {
2176 	u_int idx, count;
2177 
2178 	idx = pt2tab_index(sva);
2179 	count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
2180 	bcopy(spte2p + idx, dpte2p + idx, count);
2181 }
2182 
2183 /*
2184  *  Initialize a preallocated and zeroed pmap structure,
2185  *  such as one in a vmspace structure.
2186  */
2187 int
2188 pmap_pinit(pmap_t pmap)
2189 {
2190 	pt1_entry_t *pte1p;
2191 	pt2_entry_t *pte2p;
2192 	vm_paddr_t pa, pt2tab_pa;
2193 	u_int i;
2194 
2195 	PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
2196 	    pmap->pm_pt1));
2197 
2198 	/*
2199 	 * No need to allocate L2 page table space yet but we do need
2200 	 * a valid L1 page table and PT2TAB table.
2201 	 *
2202 	 * Install shared kernel mappings to these tables. It's a little
2203 	 * tricky as some parts of KVA are reserved for vectors, devices,
2204 	 * and whatever else. These parts are supposed to be above
2205 	 * vm_max_kernel_address. Thus two regions should be installed:
2206 	 *
2207 	 *   (1) <KERNBASE, kernel_vm_end),
2208 	 *   (2) <vm_max_kernel_address, 0xFFFFFFFF>.
2209 	 *
2210 	 * QQQ: The second region should be stable enough to be installed
2211 	 *      only once in time when the tables are allocated.
2212 	 * QQQ: Maybe copy of both regions at once could be faster ...
2213 	 * QQQ: Maybe the other TTBR is an option.
2214 	 *
2215 	 * Finally, install own PT2TAB table to these tables.
2216 	 */
2217 
2218 	if (pmap->pm_pt1 == NULL) {
2219 		pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(NB_IN_PT1,
2220 		    M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0, pt_memattr);
2221 		if (pmap->pm_pt1 == NULL)
2222 			return (0);
2223 	}
2224 	if (pmap->pm_pt2tab == NULL) {
2225 		/*
2226 		 * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
2227 		 *      only, what should be the only size for 32 bit systems,
2228 		 *      then we could allocate it with vm_page_alloc() and all
2229 		 *      the stuff needed as other L2 page table pages.
2230 		 *      (2) Note that a process PT2TAB is special L2 page table
2231 		 *      page. Its mapping in kernel_arena is permanent and can
2232 		 *      be used no matter which process is current. Its mapping
2233 		 *      in PT2MAP can be used only for current process.
2234 		 */
2235 		pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(NB_IN_PT2TAB,
2236 		    M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
2237 		if (pmap->pm_pt2tab == NULL) {
2238 			/*
2239 			 * QQQ: As struct pmap is allocated from UMA with
2240 			 *      UMA_ZONE_NOFREE flag, it's important to leave
2241 			 *      no allocation in pmap if initialization failed.
2242 			 */
2243 			kmem_free((vm_offset_t)pmap->pm_pt1, NB_IN_PT1);
2244 			pmap->pm_pt1 = NULL;
2245 			return (0);
2246 		}
2247 		/*
2248 		 * QQQ: Each L2 page table page vm_page_t has pindex set to
2249 		 *      pte1 index of virtual address mapped by this page.
2250 		 *      It's not valid for non kernel PT2TABs themselves.
2251 		 *      The pindex of these pages can not be altered because
2252 		 *      of the way how they are allocated now. However, it
2253 		 *      should not be a problem.
2254 		 */
2255 	}
2256 
2257 	mtx_lock_spin(&allpmaps_lock);
2258 	/*
2259 	 * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
2260 	 * kernel_vm_end_new is used here instead of kernel_vm_end.
2261 	 */
2262 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
2263 	    kernel_vm_end_new - 1);
2264 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
2265 	    0xFFFFFFFF);
2266 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
2267 	    kernel_vm_end_new - 1);
2268 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
2269 	    0xFFFFFFFF);
2270 	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
2271 	mtx_unlock_spin(&allpmaps_lock);
2272 
2273 	/*
2274 	 * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
2275 	 * I.e. self reference mapping.  The PT2TAB is private, however mapped
2276 	 * into shared PT2MAP space, so the mapping should be not global.
2277 	 */
2278 	pt2tab_pa = vtophys(pmap->pm_pt2tab);
2279 	pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
2280 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
2281 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
2282 	}
2283 
2284 	/* Insert PT2MAP PT2s into pmap PT1. */
2285 	pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
2286 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
2287 		pte1_store(pte1p++, PTE1_LINK(pa));
2288 	}
2289 
2290 	/*
2291 	 * Now synchronize new mapping which was made above.
2292 	 */
2293 	pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
2294 	pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
2295 
2296 	CPU_ZERO(&pmap->pm_active);
2297 	TAILQ_INIT(&pmap->pm_pvchunk);
2298 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2299 
2300 	return (1);
2301 }
2302 
2303 #ifdef INVARIANTS
2304 static boolean_t
2305 pt2tab_user_is_empty(pt2_entry_t *tab)
2306 {
2307 	u_int i, end;
2308 
2309 	end = pt2tab_index(VM_MAXUSER_ADDRESS);
2310 	for (i = 0; i < end; i++)
2311 		if (tab[i] != 0) return (FALSE);
2312 	return (TRUE);
2313 }
2314 #endif
2315 /*
2316  *  Release any resources held by the given physical map.
2317  *  Called when a pmap initialized by pmap_pinit is being released.
2318  *  Should only be called if the map contains no valid mappings.
2319  */
2320 void
2321 pmap_release(pmap_t pmap)
2322 {
2323 #ifdef INVARIANTS
2324 	vm_offset_t start, end;
2325 #endif
2326 	KASSERT(pmap->pm_stats.resident_count == 0,
2327 	    ("%s: pmap resident count %ld != 0", __func__,
2328 	    pmap->pm_stats.resident_count));
2329 	KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
2330 	    ("%s: has allocated user PT2(s)", __func__));
2331 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2332 	    ("%s: pmap %p is active on some CPU(s)", __func__, pmap));
2333 
2334 	mtx_lock_spin(&allpmaps_lock);
2335 	LIST_REMOVE(pmap, pm_list);
2336 	mtx_unlock_spin(&allpmaps_lock);
2337 
2338 #ifdef INVARIANTS
2339 	start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
2340 	end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
2341 	bzero((char *)pmap->pm_pt1 + start, end - start);
2342 
2343 	start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
2344 	end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
2345 	bzero((char *)pmap->pm_pt2tab + start, end - start);
2346 #endif
2347 	/*
2348 	 * We are leaving PT1 and PT2TAB allocated on released pmap,
2349 	 * so hopefully UMA vmspace_zone will always be inited with
2350 	 * UMA_ZONE_NOFREE flag.
2351 	 */
2352 }
2353 
2354 /*********************************************************
2355  *
2356  *  L2 table pages and their pages management routines.
2357  *
2358  *********************************************************/
2359 
2360 /*
2361  *  Virtual interface for L2 page table wire counting.
2362  *
2363  *  Each L2 page table in a page has own counter which counts a number of
2364  *  valid mappings in a table. Global page counter counts mappings in all
2365  *  tables in a page plus a single itself mapping in PT2TAB.
2366  *
2367  *  During a promotion we leave the associated L2 page table counter
2368  *  untouched, so the table (strictly speaking a page which holds it)
2369  *  is never freed if promoted.
2370  *
2371  *  If a page m->ref_count == 1 then no valid mappings exist in any L2 page
2372  *  table in the page and the page itself is only mapped in PT2TAB.
2373  */
2374 
2375 static __inline void
2376 pt2_wirecount_init(vm_page_t m)
2377 {
2378 	u_int i;
2379 
2380 	/*
2381 	 * Note: A page m is allocated with VM_ALLOC_WIRED flag and
2382 	 *       m->ref_count should be already set correctly.
2383 	 *       So, there is no need to set it again herein.
2384 	 */
2385 	for (i = 0; i < NPT2_IN_PG; i++)
2386 		m->md.pt2_wirecount[i] = 0;
2387 }
2388 
2389 static __inline void
2390 pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
2391 {
2392 
2393 	/*
2394 	 * Note: A just modificated pte2 (i.e. already allocated)
2395 	 *       is acquiring one extra reference which must be
2396 	 *       explicitly cleared. It influences the KASSERTs herein.
2397 	 *       All L2 page tables in a page always belong to the same
2398 	 *       pmap, so we allow only one extra reference for the page.
2399 	 */
2400 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
2401 	    ("%s: PT2 is overflowing ...", __func__));
2402 	KASSERT(m->ref_count <= (NPTE2_IN_PG + 1),
2403 	    ("%s: PT2PG is overflowing ...", __func__));
2404 
2405 	m->ref_count++;
2406 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
2407 }
2408 
2409 static __inline void
2410 pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
2411 {
2412 
2413 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
2414 	    ("%s: PT2 is underflowing ...", __func__));
2415 	KASSERT(m->ref_count > 1,
2416 	    ("%s: PT2PG is underflowing ...", __func__));
2417 
2418 	m->ref_count--;
2419 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
2420 }
2421 
2422 static __inline void
2423 pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
2424 {
2425 
2426 	KASSERT(count <= NPTE2_IN_PT2,
2427 	    ("%s: invalid count %u", __func__, count));
2428 	KASSERT(m->ref_count >  m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
2429 	    ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->ref_count,
2430 	    m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
2431 
2432 	m->ref_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
2433 	m->ref_count += count;
2434 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
2435 
2436 	KASSERT(m->ref_count <= (NPTE2_IN_PG + 1),
2437 	    ("%s: PT2PG is overflowed (%u) ...", __func__, m->ref_count));
2438 }
2439 
2440 static __inline uint32_t
2441 pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
2442 {
2443 
2444 	return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
2445 }
2446 
2447 static __inline boolean_t
2448 pt2_is_empty(vm_page_t m, vm_offset_t va)
2449 {
2450 
2451 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
2452 }
2453 
2454 static __inline boolean_t
2455 pt2_is_full(vm_page_t m, vm_offset_t va)
2456 {
2457 
2458 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
2459 	    NPTE2_IN_PT2);
2460 }
2461 
2462 static __inline boolean_t
2463 pt2pg_is_empty(vm_page_t m)
2464 {
2465 
2466 	return (m->ref_count == 1);
2467 }
2468 
2469 /*
2470  *  This routine is called if the L2 page table
2471  *  is not mapped correctly.
2472  */
2473 static vm_page_t
2474 _pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2475 {
2476 	uint32_t pte1_idx;
2477 	pt1_entry_t *pte1p;
2478 	pt2_entry_t pte2;
2479 	vm_page_t  m;
2480 	vm_paddr_t pt2pg_pa, pt2_pa;
2481 
2482 	pte1_idx = pte1_index(va);
2483 	pte1p = pmap->pm_pt1 + pte1_idx;
2484 
2485 	KASSERT(pte1_load(pte1p) == 0,
2486 	    ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
2487 	    pte1_load(pte1p)));
2488 
2489 	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
2490 	if (!pte2_is_valid(pte2)) {
2491 		/*
2492 		 * Install new PT2s page into pmap PT2TAB.
2493 		 */
2494 		m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK,
2495 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2496 		if (m == NULL) {
2497 			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2498 				PMAP_UNLOCK(pmap);
2499 				rw_wunlock(&pvh_global_lock);
2500 				vm_wait(NULL);
2501 				rw_wlock(&pvh_global_lock);
2502 				PMAP_LOCK(pmap);
2503 			}
2504 
2505 			/*
2506 			 * Indicate the need to retry.  While waiting,
2507 			 * the L2 page table page may have been allocated.
2508 			 */
2509 			return (NULL);
2510 		}
2511 		pmap->pm_stats.resident_count++;
2512 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
2513 	} else {
2514 		pt2pg_pa = pte2_pa(pte2);
2515 		m = PHYS_TO_VM_PAGE(pt2pg_pa);
2516 	}
2517 
2518 	pt2_wirecount_inc(m, pte1_idx);
2519 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
2520 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
2521 
2522 	return (m);
2523 }
2524 
2525 static vm_page_t
2526 pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2527 {
2528 	u_int pte1_idx;
2529 	pt1_entry_t *pte1p, pte1;
2530 	vm_page_t m;
2531 
2532 	pte1_idx = pte1_index(va);
2533 retry:
2534 	pte1p = pmap->pm_pt1 + pte1_idx;
2535 	pte1 = pte1_load(pte1p);
2536 
2537 	/*
2538 	 * This supports switching from a 1MB page to a
2539 	 * normal 4K page.
2540 	 */
2541 	if (pte1_is_section(pte1)) {
2542 		(void)pmap_demote_pte1(pmap, pte1p, va);
2543 		/*
2544 		 * Reload pte1 after demotion.
2545 		 *
2546 		 * Note: Demotion can even fail as either PT2 is not find for
2547 		 *       the virtual address or PT2PG can not be allocated.
2548 		 */
2549 		pte1 = pte1_load(pte1p);
2550 	}
2551 
2552 	/*
2553 	 * If the L2 page table page is mapped, we just increment the
2554 	 * hold count, and activate it.
2555 	 */
2556 	if (pte1_is_link(pte1)) {
2557 		m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2558 		pt2_wirecount_inc(m, pte1_idx);
2559 	} else  {
2560 		/*
2561 		 * Here if the PT2 isn't mapped, or if it has
2562 		 * been deallocated.
2563 		 */
2564 		m = _pmap_allocpte2(pmap, va, flags);
2565 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2566 			goto retry;
2567 	}
2568 
2569 	return (m);
2570 }
2571 
2572 /*
2573  *  Schedule the specified unused L2 page table page to be freed. Specifically,
2574  *  add the page to the specified list of pages that will be released to the
2575  *  physical memory manager after the TLB has been updated.
2576  */
2577 static __inline void
2578 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
2579 {
2580 
2581 	/*
2582 	 * Put page on a list so that it is released after
2583 	 * *ALL* TLB shootdown is done
2584 	 */
2585 #ifdef PMAP_DEBUG
2586 	pmap_zero_page_check(m);
2587 #endif
2588 	m->flags |= PG_ZERO;
2589 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2590 }
2591 
2592 /*
2593  *  Unwire L2 page tables page.
2594  */
2595 static void
2596 pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
2597 {
2598 	pt1_entry_t *pte1p, opte1 __unused;
2599 	pt2_entry_t *pte2p;
2600 	uint32_t i;
2601 
2602 	KASSERT(pt2pg_is_empty(m),
2603 	    ("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
2604 
2605 	/*
2606 	 * Unmap all L2 page tables in the page from L1 page table.
2607 	 *
2608 	 * QQQ: Individual L2 page tables (except the last one) can be unmapped
2609 	 * earlier. However, we are doing that this way.
2610 	 */
2611 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
2612 	    ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
2613 	pte1p = pmap->pm_pt1 + m->pindex;
2614 	for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
2615 		KASSERT(m->md.pt2_wirecount[i] == 0,
2616 		    ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
2617 		opte1 = pte1_load(pte1p);
2618 		if (pte1_is_link(opte1)) {
2619 			pte1_clear(pte1p);
2620 			/*
2621 			 * Flush intermediate TLB cache.
2622 			 */
2623 			pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
2624 		}
2625 #ifdef INVARIANTS
2626 		else
2627 			KASSERT((opte1 == 0) || pte1_is_section(opte1),
2628 			    ("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
2629 			    pmap, va, opte1, i));
2630 #endif
2631 	}
2632 
2633 	/*
2634 	 * Unmap the page from PT2TAB.
2635 	 */
2636 	pte2p = pmap_pt2tab_entry(pmap, va);
2637 	(void)pt2tab_load_clear(pte2p);
2638 	pmap_tlb_flush(pmap, pt2map_pt2pg(va));
2639 
2640 	m->ref_count = 0;
2641 	pmap->pm_stats.resident_count--;
2642 
2643 	/*
2644 	 * This barrier is so that the ordinary store unmapping
2645 	 * the L2 page table page is globally performed before TLB shoot-
2646 	 * down is begun.
2647 	 */
2648 	wmb();
2649 	vm_wire_sub(1);
2650 }
2651 
2652 /*
2653  *  Decrements a L2 page table page's wire count, which is used to record the
2654  *  number of valid page table entries within the page.  If the wire count
2655  *  drops to zero, then the page table page is unmapped.  Returns TRUE if the
2656  *  page table page was unmapped and FALSE otherwise.
2657  */
2658 static __inline boolean_t
2659 pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2660 {
2661 	pt2_wirecount_dec(m, pte1_index(va));
2662 	if (pt2pg_is_empty(m)) {
2663 		/*
2664 		 * QQQ: Wire count is zero, so whole page should be zero and
2665 		 *      we can set PG_ZERO flag to it.
2666 		 *      Note that when promotion is enabled, it takes some
2667 		 *      more efforts. See pmap_unwire_pt2_all() below.
2668 		 */
2669 		pmap_unwire_pt2pg(pmap, va, m);
2670 		pmap_add_delayed_free_list(m, free);
2671 		return (TRUE);
2672 	} else
2673 		return (FALSE);
2674 }
2675 
2676 /*
2677  *  Drop a L2 page table page's wire count at once, which is used to record
2678  *  the number of valid L2 page table entries within the page. If the wire
2679  *  count drops to zero, then the L2 page table page is unmapped.
2680  */
2681 static __inline void
2682 pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
2683     struct spglist *free)
2684 {
2685 	u_int pte1_idx = pte1_index(va);
2686 
2687 	KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
2688 		("%s: PT2 page's pindex is wrong", __func__));
2689 	KASSERT(m->ref_count > pt2_wirecount_get(m, pte1_idx),
2690 	    ("%s: bad pt2 wire count %u > %u", __func__, m->ref_count,
2691 	    pt2_wirecount_get(m, pte1_idx)));
2692 
2693 	/*
2694 	 * It's possible that the L2 page table was never used.
2695 	 * It happened in case that a section was created without promotion.
2696 	 */
2697 	if (pt2_is_full(m, va)) {
2698 		pt2_wirecount_set(m, pte1_idx, 0);
2699 
2700 		/*
2701 		 * QQQ: We clear L2 page table now, so when L2 page table page
2702 		 *      is going to be freed, we can set it PG_ZERO flag ...
2703 		 *      This function is called only on section mappings, so
2704 		 *      hopefully it's not to big overload.
2705 		 *
2706 		 * XXX: If pmap is current, existing PT2MAP mapping could be
2707 		 *      used for zeroing.
2708 		 */
2709 		pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
2710 	}
2711 #ifdef INVARIANTS
2712 	else
2713 		KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
2714 		    __func__, pt2_wirecount_get(m, pte1_idx)));
2715 #endif
2716 	if (pt2pg_is_empty(m)) {
2717 		pmap_unwire_pt2pg(pmap, va, m);
2718 		pmap_add_delayed_free_list(m, free);
2719 	}
2720 }
2721 
2722 /*
2723  *  After removing a L2 page table entry, this routine is used to
2724  *  conditionally free the page, and manage the hold/wire counts.
2725  */
2726 static boolean_t
2727 pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
2728 {
2729 	pt1_entry_t pte1;
2730 	vm_page_t mpte;
2731 
2732 	if (va >= VM_MAXUSER_ADDRESS)
2733 		return (FALSE);
2734 	pte1 = pte1_load(pmap_pte1(pmap, va));
2735 	mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2736 	return (pmap_unwire_pt2(pmap, va, mpte, free));
2737 }
2738 
2739 /*************************************
2740  *
2741  *  Page management routines.
2742  *
2743  *************************************/
2744 
2745 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2746 CTASSERT(_NPCM == 11);
2747 CTASSERT(_NPCPV == 336);
2748 
2749 static __inline struct pv_chunk *
2750 pv_to_chunk(pv_entry_t pv)
2751 {
2752 
2753 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2754 }
2755 
2756 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2757 
2758 #define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2759 #define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2760 
2761 static const uint32_t pc_freemask[_NPCM] = {
2762 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2763 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2764 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2765 	PC_FREE0_9, PC_FREE10
2766 };
2767 
2768 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2769 	"Current number of pv entries");
2770 
2771 #ifdef PV_STATS
2772 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2773 
2774 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2775     "Current number of pv entry chunks");
2776 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2777     "Current number of pv entry chunks allocated");
2778 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2779     "Current number of pv entry chunks frees");
2780 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
2781     0, "Number of times tried to get a chunk page but failed.");
2782 
2783 static long pv_entry_frees, pv_entry_allocs;
2784 static int pv_entry_spare;
2785 
2786 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2787     "Current number of pv entry frees");
2788 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
2789     0, "Current number of pv entry allocs");
2790 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2791     "Current number of spare pv entries");
2792 #endif
2793 
2794 /*
2795  *  Is given page managed?
2796  */
2797 static __inline bool
2798 is_managed(vm_paddr_t pa)
2799 {
2800 	vm_page_t m;
2801 
2802 	m = PHYS_TO_VM_PAGE(pa);
2803 	if (m == NULL)
2804 		return (false);
2805 	return ((m->oflags & VPO_UNMANAGED) == 0);
2806 }
2807 
2808 static __inline bool
2809 pte1_is_managed(pt1_entry_t pte1)
2810 {
2811 
2812 	return (is_managed(pte1_pa(pte1)));
2813 }
2814 
2815 static __inline bool
2816 pte2_is_managed(pt2_entry_t pte2)
2817 {
2818 
2819 	return (is_managed(pte2_pa(pte2)));
2820 }
2821 
2822 /*
2823  *  We are in a serious low memory condition.  Resort to
2824  *  drastic measures to free some pages so we can allocate
2825  *  another pv entry chunk.
2826  */
2827 static vm_page_t
2828 pmap_pv_reclaim(pmap_t locked_pmap)
2829 {
2830 	struct pch newtail;
2831 	struct pv_chunk *pc;
2832 	struct md_page *pvh;
2833 	pt1_entry_t *pte1p;
2834 	pmap_t pmap;
2835 	pt2_entry_t *pte2p, tpte2;
2836 	pv_entry_t pv;
2837 	vm_offset_t va;
2838 	vm_page_t m, m_pc;
2839 	struct spglist free;
2840 	uint32_t inuse;
2841 	int bit, field, freed;
2842 
2843 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2844 	pmap = NULL;
2845 	m_pc = NULL;
2846 	SLIST_INIT(&free);
2847 	TAILQ_INIT(&newtail);
2848 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2849 	    SLIST_EMPTY(&free))) {
2850 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2851 		if (pmap != pc->pc_pmap) {
2852 			if (pmap != NULL) {
2853 				if (pmap != locked_pmap)
2854 					PMAP_UNLOCK(pmap);
2855 			}
2856 			pmap = pc->pc_pmap;
2857 			/* Avoid deadlock and lock recursion. */
2858 			if (pmap > locked_pmap)
2859 				PMAP_LOCK(pmap);
2860 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2861 				pmap = NULL;
2862 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2863 				continue;
2864 			}
2865 		}
2866 
2867 		/*
2868 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2869 		 */
2870 		freed = 0;
2871 		for (field = 0; field < _NPCM; field++) {
2872 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2873 			    inuse != 0; inuse &= ~(1UL << bit)) {
2874 				bit = ffs(inuse) - 1;
2875 				pv = &pc->pc_pventry[field * 32 + bit];
2876 				va = pv->pv_va;
2877 				pte1p = pmap_pte1(pmap, va);
2878 				if (pte1_is_section(pte1_load(pte1p)))
2879 					continue;
2880 				pte2p = pmap_pte2(pmap, va);
2881 				tpte2 = pte2_load(pte2p);
2882 				if ((tpte2 & PTE2_W) == 0)
2883 					tpte2 = pte2_load_clear(pte2p);
2884 				pmap_pte2_release(pte2p);
2885 				if ((tpte2 & PTE2_W) != 0)
2886 					continue;
2887 				KASSERT(tpte2 != 0,
2888 				    ("pmap_pv_reclaim: pmap %p va %#x zero pte",
2889 				    pmap, va));
2890 				pmap_tlb_flush(pmap, va);
2891 				m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
2892 				if (pte2_is_dirty(tpte2))
2893 					vm_page_dirty(m);
2894 				if ((tpte2 & PTE2_A) != 0)
2895 					vm_page_aflag_set(m, PGA_REFERENCED);
2896 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2897 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2898 				    (m->flags & PG_FICTITIOUS) == 0) {
2899 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2900 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2901 						vm_page_aflag_clear(m,
2902 						    PGA_WRITEABLE);
2903 					}
2904 				}
2905 				pc->pc_map[field] |= 1UL << bit;
2906 				pmap_unuse_pt2(pmap, va, &free);
2907 				freed++;
2908 			}
2909 		}
2910 		if (freed == 0) {
2911 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2912 			continue;
2913 		}
2914 		/* Every freed mapping is for a 4 KB page. */
2915 		pmap->pm_stats.resident_count -= freed;
2916 		PV_STAT(pv_entry_frees += freed);
2917 		PV_STAT(pv_entry_spare += freed);
2918 		pv_entry_count -= freed;
2919 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2920 		for (field = 0; field < _NPCM; field++)
2921 			if (pc->pc_map[field] != pc_freemask[field]) {
2922 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2923 				    pc_list);
2924 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2925 
2926 				/*
2927 				 * One freed pv entry in locked_pmap is
2928 				 * sufficient.
2929 				 */
2930 				if (pmap == locked_pmap)
2931 					goto out;
2932 				break;
2933 			}
2934 		if (field == _NPCM) {
2935 			PV_STAT(pv_entry_spare -= _NPCPV);
2936 			PV_STAT(pc_chunk_count--);
2937 			PV_STAT(pc_chunk_frees++);
2938 			/* Entire chunk is free; return it. */
2939 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2940 			pmap_qremove((vm_offset_t)pc, 1);
2941 			pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2942 			break;
2943 		}
2944 	}
2945 out:
2946 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2947 	if (pmap != NULL) {
2948 		if (pmap != locked_pmap)
2949 			PMAP_UNLOCK(pmap);
2950 	}
2951 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2952 		m_pc = SLIST_FIRST(&free);
2953 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2954 		/* Recycle a freed page table page. */
2955 		m_pc->ref_count = 1;
2956 		vm_wire_add(1);
2957 	}
2958 	vm_page_free_pages_toq(&free, false);
2959 	return (m_pc);
2960 }
2961 
2962 static void
2963 free_pv_chunk(struct pv_chunk *pc)
2964 {
2965 	vm_page_t m;
2966 
2967 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2968 	PV_STAT(pv_entry_spare -= _NPCPV);
2969 	PV_STAT(pc_chunk_count--);
2970 	PV_STAT(pc_chunk_frees++);
2971 	/* entire chunk is free, return it */
2972 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2973 	pmap_qremove((vm_offset_t)pc, 1);
2974 	vm_page_unwire_noq(m);
2975 	vm_page_free(m);
2976 	pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2977 }
2978 
2979 /*
2980  *  Free the pv_entry back to the free list.
2981  */
2982 static void
2983 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2984 {
2985 	struct pv_chunk *pc;
2986 	int idx, field, bit;
2987 
2988 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2989 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2990 	PV_STAT(pv_entry_frees++);
2991 	PV_STAT(pv_entry_spare++);
2992 	pv_entry_count--;
2993 	pc = pv_to_chunk(pv);
2994 	idx = pv - &pc->pc_pventry[0];
2995 	field = idx / 32;
2996 	bit = idx % 32;
2997 	pc->pc_map[field] |= 1ul << bit;
2998 	for (idx = 0; idx < _NPCM; idx++)
2999 		if (pc->pc_map[idx] != pc_freemask[idx]) {
3000 			/*
3001 			 * 98% of the time, pc is already at the head of the
3002 			 * list.  If it isn't already, move it to the head.
3003 			 */
3004 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
3005 			    pc)) {
3006 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3007 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
3008 				    pc_list);
3009 			}
3010 			return;
3011 		}
3012 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3013 	free_pv_chunk(pc);
3014 }
3015 
3016 /*
3017  *  Get a new pv_entry, allocating a block from the system
3018  *  when needed.
3019  */
3020 static pv_entry_t
3021 get_pv_entry(pmap_t pmap, boolean_t try)
3022 {
3023 	static const struct timeval printinterval = { 60, 0 };
3024 	static struct timeval lastprint;
3025 	int bit, field;
3026 	pv_entry_t pv;
3027 	struct pv_chunk *pc;
3028 	vm_page_t m;
3029 
3030 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3031 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3032 	PV_STAT(pv_entry_allocs++);
3033 	pv_entry_count++;
3034 	if (pv_entry_count > pv_entry_high_water)
3035 		if (ratecheck(&lastprint, &printinterval))
3036 			printf("Approaching the limit on PV entries, consider "
3037 			    "increasing either the vm.pmap.shpgperproc or the "
3038 			    "vm.pmap.pv_entries tunable.\n");
3039 retry:
3040 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3041 	if (pc != NULL) {
3042 		for (field = 0; field < _NPCM; field++) {
3043 			if (pc->pc_map[field]) {
3044 				bit = ffs(pc->pc_map[field]) - 1;
3045 				break;
3046 			}
3047 		}
3048 		if (field < _NPCM) {
3049 			pv = &pc->pc_pventry[field * 32 + bit];
3050 			pc->pc_map[field] &= ~(1ul << bit);
3051 			/* If this was the last item, move it to tail */
3052 			for (field = 0; field < _NPCM; field++)
3053 				if (pc->pc_map[field] != 0) {
3054 					PV_STAT(pv_entry_spare--);
3055 					return (pv);	/* not full, return */
3056 				}
3057 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3058 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3059 			PV_STAT(pv_entry_spare--);
3060 			return (pv);
3061 		}
3062 	}
3063 	/*
3064 	 * Access to the pte2list "pv_vafree" is synchronized by the pvh
3065 	 * global lock.  If "pv_vafree" is currently non-empty, it will
3066 	 * remain non-empty until pmap_pte2list_alloc() completes.
3067 	 */
3068 	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
3069 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
3070 		if (try) {
3071 			pv_entry_count--;
3072 			PV_STAT(pc_chunk_tryfail++);
3073 			return (NULL);
3074 		}
3075 		m = pmap_pv_reclaim(pmap);
3076 		if (m == NULL)
3077 			goto retry;
3078 	}
3079 	PV_STAT(pc_chunk_count++);
3080 	PV_STAT(pc_chunk_allocs++);
3081 	pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
3082 	pmap_qenter((vm_offset_t)pc, &m, 1);
3083 	pc->pc_pmap = pmap;
3084 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
3085 	for (field = 1; field < _NPCM; field++)
3086 		pc->pc_map[field] = pc_freemask[field];
3087 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3088 	pv = &pc->pc_pventry[0];
3089 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3090 	PV_STAT(pv_entry_spare += _NPCPV - 1);
3091 	return (pv);
3092 }
3093 
3094 /*
3095  *  Create a pv entry for page at pa for
3096  *  (pmap, va).
3097  */
3098 static void
3099 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3100 {
3101 	pv_entry_t pv;
3102 
3103 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3104 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3105 	pv = get_pv_entry(pmap, FALSE);
3106 	pv->pv_va = va;
3107 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3108 }
3109 
3110 static __inline pv_entry_t
3111 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3112 {
3113 	pv_entry_t pv;
3114 
3115 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3116 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3117 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3118 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3119 			break;
3120 		}
3121 	}
3122 	return (pv);
3123 }
3124 
3125 static void
3126 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3127 {
3128 	pv_entry_t pv;
3129 
3130 	pv = pmap_pvh_remove(pvh, pmap, va);
3131 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3132 	free_pv_entry(pmap, pv);
3133 }
3134 
3135 static void
3136 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
3137 {
3138 	struct md_page *pvh;
3139 
3140 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3141 	pmap_pvh_free(&m->md, pmap, va);
3142 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
3143 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3144 		if (TAILQ_EMPTY(&pvh->pv_list))
3145 			vm_page_aflag_clear(m, PGA_WRITEABLE);
3146 	}
3147 }
3148 
3149 static void
3150 pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3151 {
3152 	struct md_page *pvh;
3153 	pv_entry_t pv;
3154 	vm_offset_t va_last;
3155 	vm_page_t m;
3156 
3157 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3158 	KASSERT((pa & PTE1_OFFSET) == 0,
3159 	    ("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
3160 
3161 	/*
3162 	 * Transfer the 1mpage's pv entry for this mapping to the first
3163 	 * page's pv list.
3164 	 */
3165 	pvh = pa_to_pvh(pa);
3166 	va = pte1_trunc(va);
3167 	pv = pmap_pvh_remove(pvh, pmap, va);
3168 	KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
3169 	m = PHYS_TO_VM_PAGE(pa);
3170 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3171 	/* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
3172 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3173 	do {
3174 		m++;
3175 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3176 		    ("pmap_pv_demote_pte1: page %p is not managed", m));
3177 		va += PAGE_SIZE;
3178 		pmap_insert_entry(pmap, va, m);
3179 	} while (va < va_last);
3180 }
3181 
3182 #if VM_NRESERVLEVEL > 0
3183 static void
3184 pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3185 {
3186 	struct md_page *pvh;
3187 	pv_entry_t pv;
3188 	vm_offset_t va_last;
3189 	vm_page_t m;
3190 
3191 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3192 	KASSERT((pa & PTE1_OFFSET) == 0,
3193 	    ("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
3194 
3195 	/*
3196 	 * Transfer the first page's pv entry for this mapping to the
3197 	 * 1mpage's pv list.  Aside from avoiding the cost of a call
3198 	 * to get_pv_entry(), a transfer avoids the possibility that
3199 	 * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
3200 	 * removes one of the mappings that is being promoted.
3201 	 */
3202 	m = PHYS_TO_VM_PAGE(pa);
3203 	va = pte1_trunc(va);
3204 	pv = pmap_pvh_remove(&m->md, pmap, va);
3205 	KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
3206 	pvh = pa_to_pvh(pa);
3207 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3208 	/* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
3209 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3210 	do {
3211 		m++;
3212 		va += PAGE_SIZE;
3213 		pmap_pvh_free(&m->md, pmap, va);
3214 	} while (va < va_last);
3215 }
3216 #endif
3217 
3218 /*
3219  *  Conditionally create a pv entry.
3220  */
3221 static boolean_t
3222 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3223 {
3224 	pv_entry_t pv;
3225 
3226 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3227 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3228 	if (pv_entry_count < pv_entry_high_water &&
3229 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3230 		pv->pv_va = va;
3231 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3232 		return (TRUE);
3233 	} else
3234 		return (FALSE);
3235 }
3236 
3237 /*
3238  *  Create the pv entries for each of the pages within a section.
3239  */
3240 static bool
3241 pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags)
3242 {
3243 	struct md_page *pvh;
3244 	pv_entry_t pv;
3245 	bool noreclaim;
3246 
3247 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3248 	noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
3249 	if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
3250 	    (pv = get_pv_entry(pmap, noreclaim)) == NULL)
3251 		return (false);
3252 	pv->pv_va = va;
3253 	pvh = pa_to_pvh(pte1_pa(pte1));
3254 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3255 	return (true);
3256 }
3257 
3258 static inline void
3259 pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
3260 {
3261 
3262 	/* Kill all the small mappings or the big one only. */
3263 	if (pte1_is_section(npte1))
3264 		pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
3265 	else
3266 		pmap_tlb_flush(pmap, pte1_trunc(va));
3267 }
3268 
3269 /*
3270  *  Update kernel pte1 on all pmaps.
3271  *
3272  *  The following function is called only on one cpu with disabled interrupts.
3273  *  In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
3274  *  nobody can invoke explicit hardware table walk during the update of pte1.
3275  *  Unsolicited hardware table walk can still happen, invoked by speculative
3276  *  data or instruction prefetch or even by speculative hardware table walk.
3277  *
3278  *  The break-before-make approach should be implemented here. However, it's
3279  *  not so easy to do that for kernel mappings as it would be unhappy to unmap
3280  *  itself unexpectedly but voluntarily.
3281  */
3282 static void
3283 pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
3284 {
3285 	pmap_t pmap;
3286 	pt1_entry_t *pte1p;
3287 
3288 	/*
3289 	 * Get current pmap. Interrupts should be disabled here
3290 	 * so PCPU_GET() is done atomically.
3291 	 */
3292 	pmap = PCPU_GET(curpmap);
3293 	if (pmap == NULL)
3294 		pmap = kernel_pmap;
3295 
3296 	/*
3297 	 * (1) Change pte1 on current pmap.
3298 	 * (2) Flush all obsolete TLB entries on current CPU.
3299 	 * (3) Change pte1 on all pmaps.
3300 	 * (4) Flush all obsolete TLB entries on all CPUs in SMP case.
3301 	 */
3302 
3303 	pte1p = pmap_pte1(pmap, va);
3304 	pte1_store(pte1p, npte1);
3305 
3306 	/* Kill all the small mappings or the big one only. */
3307 	if (pte1_is_section(npte1)) {
3308 		pmap_pte1_kern_promotions++;
3309 		tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
3310 	} else {
3311 		pmap_pte1_kern_demotions++;
3312 		tlb_flush_local(pte1_trunc(va));
3313 	}
3314 
3315 	/*
3316 	 * In SMP case, this function is called when all cpus are at smp
3317 	 * rendezvous, so there is no need to use 'allpmaps_lock' lock here.
3318 	 * In UP case, the function is called with this lock locked.
3319 	 */
3320 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
3321 		pte1p = pmap_pte1(pmap, va);
3322 		pte1_store(pte1p, npte1);
3323 	}
3324 
3325 #ifdef SMP
3326 	/* Kill all the small mappings or the big one only. */
3327 	if (pte1_is_section(npte1))
3328 		tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
3329 	else
3330 		tlb_flush(pte1_trunc(va));
3331 #endif
3332 }
3333 
3334 #ifdef SMP
3335 struct pte1_action {
3336 	vm_offset_t va;
3337 	pt1_entry_t npte1;
3338 	u_int update;		/* CPU that updates the PTE1 */
3339 };
3340 
3341 static void
3342 pmap_update_pte1_action(void *arg)
3343 {
3344 	struct pte1_action *act = arg;
3345 
3346 	if (act->update == PCPU_GET(cpuid))
3347 		pmap_update_pte1_kernel(act->va, act->npte1);
3348 }
3349 
3350 /*
3351  *  Change pte1 on current pmap.
3352  *  Note that kernel pte1 must be changed on all pmaps.
3353  *
3354  *  According to the architecture reference manual published by ARM,
3355  *  the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
3356  *  According to this manual, UNPREDICTABLE behaviours must never happen in
3357  *  a viable system. In contrast, on x86 processors, it is not specified which
3358  *  TLB entry mapping the virtual address will be used, but the MMU doesn't
3359  *  generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
3360  *  Black).
3361  *
3362  *  It's a problem when either promotion or demotion is being done. The pte1
3363  *  update and appropriate TLB flush must be done atomically in general.
3364  */
3365 static void
3366 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3367     pt1_entry_t npte1)
3368 {
3369 
3370 	if (pmap == kernel_pmap) {
3371 		struct pte1_action act;
3372 
3373 		sched_pin();
3374 		act.va = va;
3375 		act.npte1 = npte1;
3376 		act.update = PCPU_GET(cpuid);
3377 		smp_rendezvous_cpus(all_cpus, smp_no_rendezvous_barrier,
3378 		    pmap_update_pte1_action, NULL, &act);
3379 		sched_unpin();
3380 	} else {
3381 		register_t cspr;
3382 
3383 		/*
3384 		 * Use break-before-make approach for changing userland
3385 		 * mappings. It can cause L1 translation aborts on other
3386 		 * cores in SMP case. So, special treatment is implemented
3387 		 * in pmap_fault(). To reduce the likelihood that another core
3388 		 * will be affected by the broken mapping, disable interrupts
3389 		 * until the mapping change is completed.
3390 		 */
3391 		cspr = disable_interrupts(PSR_I | PSR_F);
3392 		pte1_clear(pte1p);
3393 		pmap_tlb_flush_pte1(pmap, va, npte1);
3394 		pte1_store(pte1p, npte1);
3395 		restore_interrupts(cspr);
3396 	}
3397 }
3398 #else
3399 static void
3400 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3401     pt1_entry_t npte1)
3402 {
3403 
3404 	if (pmap == kernel_pmap) {
3405 		mtx_lock_spin(&allpmaps_lock);
3406 		pmap_update_pte1_kernel(va, npte1);
3407 		mtx_unlock_spin(&allpmaps_lock);
3408 	} else {
3409 		register_t cspr;
3410 
3411 		/*
3412 		 * Use break-before-make approach for changing userland
3413 		 * mappings. It's absolutely safe in UP case when interrupts
3414 		 * are disabled.
3415 		 */
3416 		cspr = disable_interrupts(PSR_I | PSR_F);
3417 		pte1_clear(pte1p);
3418 		pmap_tlb_flush_pte1(pmap, va, npte1);
3419 		pte1_store(pte1p, npte1);
3420 		restore_interrupts(cspr);
3421 	}
3422 }
3423 #endif
3424 
3425 #if VM_NRESERVLEVEL > 0
3426 /*
3427  *  Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
3428  *  within a single page table page (PT2) to a single 1MB page mapping.
3429  *  For promotion to occur, two conditions must be met: (1) the 4KB page
3430  *  mappings must map aligned, contiguous physical memory and (2) the 4KB page
3431  *  mappings must have identical characteristics.
3432  *
3433  *  Managed (PG_MANAGED) mappings within the kernel address space are not
3434  *  promoted.  The reason is that kernel PTE1s are replicated in each pmap but
3435  *  pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
3436  *  read the PTE1 from the kernel pmap.
3437  */
3438 static void
3439 pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3440 {
3441 	pt1_entry_t npte1;
3442 	pt2_entry_t *fpte2p, fpte2, fpte2_fav;
3443 	pt2_entry_t *pte2p, pte2;
3444 	vm_offset_t pteva __unused;
3445 	vm_page_t m __unused;
3446 
3447 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3448 	    pmap, va, pte1_load(pte1p), pte1p));
3449 
3450 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3451 
3452 	/*
3453 	 * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
3454 	 * either invalid, unused, or does not map the first 4KB physical page
3455 	 * within a 1MB page.
3456 	 */
3457 	fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
3458 	fpte2 = pte2_load(fpte2p);
3459 	if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
3460 	    (PTE2_A | PTE2_V)) {
3461 		pmap_pte1_p_failures++;
3462 		CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
3463 		    __func__, va, pmap);
3464 		return;
3465 	}
3466 	if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
3467 		pmap_pte1_p_failures++;
3468 		CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
3469 		    __func__, va, pmap);
3470 		return;
3471 	}
3472 	if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3473 		/*
3474 		 * When page is not modified, PTE2_RO can be set without
3475 		 * a TLB invalidation.
3476 		 */
3477 		fpte2 |= PTE2_RO;
3478 		pte2_store(fpte2p, fpte2);
3479 	}
3480 
3481 	/*
3482 	 * Examine each of the other PTE2s in the specified PT2. Abort if this
3483 	 * PTE2 maps an unexpected 4KB physical page or does not have identical
3484 	 * characteristics to the first PTE2.
3485 	 */
3486 	fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
3487 	fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
3488 	for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
3489 		pte2 = pte2_load(pte2p);
3490 		if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
3491 			pmap_pte1_p_failures++;
3492 			CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
3493 			    __func__, va, pmap);
3494 			return;
3495 		}
3496 		if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3497 			/*
3498 			 * When page is not modified, PTE2_RO can be set
3499 			 * without a TLB invalidation. See note above.
3500 			 */
3501 			pte2 |= PTE2_RO;
3502 			pte2_store(pte2p, pte2);
3503 			pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
3504 			    PTE2_FRAME);
3505 			CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
3506 			    __func__, pteva, pmap);
3507 		}
3508 		if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
3509 			pmap_pte1_p_failures++;
3510 			CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
3511 			    __func__, va, pmap);
3512 			return;
3513 		}
3514 
3515 		fpte2_fav -= PTE2_SIZE;
3516 	}
3517 	/*
3518 	 * The page table page in its current state will stay in PT2TAB
3519 	 * until the PTE1 mapping the section is demoted by pmap_demote_pte1()
3520 	 * or destroyed by pmap_remove_pte1().
3521 	 *
3522 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3523 	 */
3524 	m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
3525 	KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
3526 	    ("%s: PT2 page is out of range", __func__));
3527 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
3528 	    ("%s: PT2 page's pindex is wrong", __func__));
3529 
3530 	/*
3531 	 * Get pte1 from pte2 format.
3532 	 */
3533 	npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
3534 
3535 	/*
3536 	 * Promote the pv entries.
3537 	 */
3538 	if (pte2_is_managed(fpte2))
3539 		pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
3540 
3541 	/*
3542 	 * Promote the mappings.
3543 	 */
3544 	pmap_change_pte1(pmap, pte1p, va, npte1);
3545 
3546 	pmap_pte1_promotions++;
3547 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3548 	    __func__, va, pmap);
3549 
3550 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3551 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3552 }
3553 #endif /* VM_NRESERVLEVEL > 0 */
3554 
3555 /*
3556  *  Zero L2 page table page.
3557  */
3558 static __inline void
3559 pmap_clear_pt2(pt2_entry_t *fpte2p)
3560 {
3561 	pt2_entry_t *pte2p;
3562 
3563 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
3564 		pte2_clear(pte2p);
3565 
3566 }
3567 
3568 /*
3569  *  Removes a 1MB page mapping from the kernel pmap.
3570  */
3571 static void
3572 pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3573 {
3574 	vm_page_t m;
3575 	uint32_t pte1_idx;
3576 	pt2_entry_t *fpte2p;
3577 	vm_paddr_t pt2_pa;
3578 
3579 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3580 	m = pmap_pt2_page(pmap, va);
3581 	if (m == NULL)
3582 		/*
3583 		 * QQQ: Is this function called only on promoted pte1?
3584 		 *      We certainly do section mappings directly
3585 		 *      (without promotion) in kernel !!!
3586 		 */
3587 		panic("%s: missing pt2 page", __func__);
3588 
3589 	pte1_idx = pte1_index(va);
3590 
3591 	/*
3592 	 * Initialize the L2 page table.
3593 	 */
3594 	fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3595 	pmap_clear_pt2(fpte2p);
3596 
3597 	/*
3598 	 * Remove the mapping.
3599 	 */
3600 	pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
3601 	pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
3602 
3603 	/*
3604 	 * QQQ: We do not need to invalidate PT2MAP mapping
3605 	 * as we did not change it. I.e. the L2 page table page
3606 	 * was and still is mapped the same way.
3607 	 */
3608 }
3609 
3610 /*
3611  *  Do the things to unmap a section in a process
3612  */
3613 static void
3614 pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
3615     struct spglist *free)
3616 {
3617 	pt1_entry_t opte1;
3618 	struct md_page *pvh;
3619 	vm_offset_t eva, va;
3620 	vm_page_t m;
3621 
3622 	PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
3623 	    pte1_load(pte1p), pte1p));
3624 
3625 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3626 	KASSERT((sva & PTE1_OFFSET) == 0,
3627 	    ("%s: sva is not 1mpage aligned", __func__));
3628 
3629 	/*
3630 	 * Clear and invalidate the mapping. It should occupy one and only TLB
3631 	 * entry. So, pmap_tlb_flush() called with aligned address should be
3632 	 * sufficient.
3633 	 */
3634 	opte1 = pte1_load_clear(pte1p);
3635 	pmap_tlb_flush(pmap, sva);
3636 
3637 	if (pte1_is_wired(opte1))
3638 		pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
3639 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
3640 	if (pte1_is_managed(opte1)) {
3641 		pvh = pa_to_pvh(pte1_pa(opte1));
3642 		pmap_pvh_free(pvh, pmap, sva);
3643 		eva = sva + PTE1_SIZE;
3644 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
3645 		    va < eva; va += PAGE_SIZE, m++) {
3646 			if (pte1_is_dirty(opte1))
3647 				vm_page_dirty(m);
3648 			if (opte1 & PTE1_A)
3649 				vm_page_aflag_set(m, PGA_REFERENCED);
3650 			if (TAILQ_EMPTY(&m->md.pv_list) &&
3651 			    TAILQ_EMPTY(&pvh->pv_list))
3652 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3653 		}
3654 	}
3655 	if (pmap == kernel_pmap) {
3656 		/*
3657 		 * L2 page table(s) can't be removed from kernel map as
3658 		 * kernel counts on it (stuff around pmap_growkernel()).
3659 		 */
3660 		 pmap_remove_kernel_pte1(pmap, pte1p, sva);
3661 	} else {
3662 		/*
3663 		 * Get associated L2 page table page.
3664 		 * It's possible that the page was never allocated.
3665 		 */
3666 		m = pmap_pt2_page(pmap, sva);
3667 		if (m != NULL)
3668 			pmap_unwire_pt2_all(pmap, sva, m, free);
3669 	}
3670 }
3671 
3672 /*
3673  *  Fills L2 page table page with mappings to consecutive physical pages.
3674  */
3675 static __inline void
3676 pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
3677 {
3678 	pt2_entry_t *pte2p;
3679 
3680 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
3681 		pte2_store(pte2p, npte2);
3682 		npte2 += PTE2_SIZE;
3683 	}
3684 }
3685 
3686 /*
3687  *  Tries to demote a 1MB page mapping. If demotion fails, the
3688  *  1MB page mapping is invalidated.
3689  */
3690 static boolean_t
3691 pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3692 {
3693 	pt1_entry_t opte1, npte1;
3694 	pt2_entry_t *fpte2p, npte2;
3695 	vm_paddr_t pt2pg_pa, pt2_pa;
3696 	vm_page_t m;
3697 	struct spglist free;
3698 	uint32_t pte1_idx, isnew = 0;
3699 
3700 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3701 	    pmap, va, pte1_load(pte1p), pte1p));
3702 
3703 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3704 
3705 	opte1 = pte1_load(pte1p);
3706 	KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
3707 
3708 	if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
3709 		KASSERT(!pte1_is_wired(opte1),
3710 		    ("%s: PT2 page for a wired mapping is missing", __func__));
3711 
3712 		/*
3713 		 * Invalidate the 1MB page mapping and return
3714 		 * "failure" if the mapping was never accessed or the
3715 		 * allocation of the new page table page fails.
3716 		 */
3717 		if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL,
3718 		    pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ |
3719 		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) {
3720 			SLIST_INIT(&free);
3721 			pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
3722 			vm_page_free_pages_toq(&free, false);
3723 			CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
3724 			    __func__, va, pmap);
3725 			return (FALSE);
3726 		}
3727 		if (va < VM_MAXUSER_ADDRESS)
3728 			pmap->pm_stats.resident_count++;
3729 
3730 		isnew = 1;
3731 
3732 		/*
3733 		 * We init all L2 page tables in the page even if
3734 		 * we are going to change everything for one L2 page
3735 		 * table in a while.
3736 		 */
3737 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
3738 	} else {
3739 		if (va < VM_MAXUSER_ADDRESS) {
3740 			if (pt2_is_empty(m, va))
3741 				isnew = 1; /* Demoting section w/o promotion. */
3742 #ifdef INVARIANTS
3743 			else
3744 				KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
3745 				    " count %u", __func__,
3746 				    pt2_wirecount_get(m, pte1_index(va))));
3747 #endif
3748 		}
3749 	}
3750 
3751 	pt2pg_pa = VM_PAGE_TO_PHYS(m);
3752 	pte1_idx = pte1_index(va);
3753 	/*
3754 	 * If the pmap is current, then the PT2MAP can provide access to
3755 	 * the page table page (promoted L2 page tables are not unmapped).
3756 	 * Otherwise, temporarily map the L2 page table page (m) into
3757 	 * the kernel's address space at either PADDR1 or PADDR2.
3758 	 *
3759 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3760 	 */
3761 	if (pmap_is_current(pmap))
3762 		fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3763 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
3764 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
3765 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
3766 #ifdef SMP
3767 			PMAP1cpu = PCPU_GET(cpuid);
3768 #endif
3769 			tlb_flush_local((vm_offset_t)PADDR1);
3770 			PMAP1changed++;
3771 		} else
3772 #ifdef SMP
3773 		if (PMAP1cpu != PCPU_GET(cpuid)) {
3774 			PMAP1cpu = PCPU_GET(cpuid);
3775 			tlb_flush_local((vm_offset_t)PADDR1);
3776 			PMAP1changedcpu++;
3777 		} else
3778 #endif
3779 			PMAP1unchanged++;
3780 		fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
3781 	} else {
3782 		mtx_lock(&PMAP2mutex);
3783 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
3784 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
3785 			tlb_flush((vm_offset_t)PADDR2);
3786 		}
3787 		fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
3788 	}
3789 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
3790 	npte1 = PTE1_LINK(pt2_pa);
3791 
3792 	KASSERT((opte1 & PTE1_A) != 0,
3793 	    ("%s: opte1 is missing PTE1_A", __func__));
3794 	KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
3795 	    ("%s: opte1 has PTE1_NM", __func__));
3796 
3797 	/*
3798 	 *  Get pte2 from pte1 format.
3799 	*/
3800 	npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
3801 
3802 	/*
3803 	 * If the L2 page table page is new, initialize it. If the mapping
3804 	 * has changed attributes, update the page table entries.
3805 	 */
3806 	if (isnew != 0) {
3807 		pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
3808 		pmap_fill_pt2(fpte2p, npte2);
3809 	} else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
3810 		    (npte2 & PTE2_PROMOTE))
3811 		pmap_fill_pt2(fpte2p, npte2);
3812 
3813 	KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
3814 	    ("%s: fpte2p and npte2 map different physical addresses",
3815 	    __func__));
3816 
3817 	if (fpte2p == PADDR2)
3818 		mtx_unlock(&PMAP2mutex);
3819 
3820 	/*
3821 	 * Demote the mapping. This pmap is locked. The old PTE1 has
3822 	 * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
3823 	 * has not PTE1_NM set. Thus, there is no danger of a race with
3824 	 * another processor changing the setting of PTE1_A and/or PTE1_NM
3825 	 * between the read above and the store below.
3826 	 */
3827 	pmap_change_pte1(pmap, pte1p, va, npte1);
3828 
3829 	/*
3830 	 * Demote the pv entry. This depends on the earlier demotion
3831 	 * of the mapping. Specifically, the (re)creation of a per-
3832 	 * page pv entry might trigger the execution of pmap_pv_reclaim(),
3833 	 * which might reclaim a newly (re)created per-page pv entry
3834 	 * and destroy the associated mapping. In order to destroy
3835 	 * the mapping, the PTE1 must have already changed from mapping
3836 	 * the 1mpage to referencing the page table page.
3837 	 */
3838 	if (pte1_is_managed(opte1))
3839 		pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
3840 
3841 	pmap_pte1_demotions++;
3842 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3843 	    __func__, va, pmap);
3844 
3845 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3846 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3847 	return (TRUE);
3848 }
3849 
3850 /*
3851  *	Insert the given physical page (p) at
3852  *	the specified virtual address (v) in the
3853  *	target physical map with the protection requested.
3854  *
3855  *	If specified, the page will be wired down, meaning
3856  *	that the related pte can not be reclaimed.
3857  *
3858  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3859  *	or lose information.  That is, this routine must actually
3860  *	insert this page into the given map NOW.
3861  */
3862 int
3863 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3864     u_int flags, int8_t psind)
3865 {
3866 	pt1_entry_t *pte1p;
3867 	pt2_entry_t *pte2p;
3868 	pt2_entry_t npte2, opte2;
3869 	pv_entry_t pv;
3870 	vm_paddr_t opa, pa;
3871 	vm_page_t mpte2, om;
3872 	int rv;
3873 
3874 	va = trunc_page(va);
3875 	KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
3876 	KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
3877 	    ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
3878 	    va));
3879 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
3880 	    va >= kmi.clean_eva,
3881 	    ("%s: managed mapping within the clean submap", __func__));
3882 	if ((m->oflags & VPO_UNMANAGED) == 0)
3883 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3884 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3885 	    ("%s: flags %u has reserved bits set", __func__, flags));
3886 	pa = VM_PAGE_TO_PHYS(m);
3887 	npte2 = PTE2(pa, PTE2_A, vm_page_pte2_attr(m));
3888 	if ((flags & VM_PROT_WRITE) == 0)
3889 		npte2 |= PTE2_NM;
3890 	if ((prot & VM_PROT_WRITE) == 0)
3891 		npte2 |= PTE2_RO;
3892 	KASSERT((npte2 & (PTE2_NM | PTE2_RO)) != PTE2_RO,
3893 	    ("%s: flags includes VM_PROT_WRITE but prot doesn't", __func__));
3894 	if ((prot & VM_PROT_EXECUTE) == 0)
3895 		npte2 |= PTE2_NX;
3896 	if ((flags & PMAP_ENTER_WIRED) != 0)
3897 		npte2 |= PTE2_W;
3898 	if (va < VM_MAXUSER_ADDRESS)
3899 		npte2 |= PTE2_U;
3900 	if (pmap != kernel_pmap)
3901 		npte2 |= PTE2_NG;
3902 
3903 	rw_wlock(&pvh_global_lock);
3904 	PMAP_LOCK(pmap);
3905 	sched_pin();
3906 	if (psind == 1) {
3907 		/* Assert the required virtual and physical alignment. */
3908 		KASSERT((va & PTE1_OFFSET) == 0,
3909 		    ("%s: va unaligned", __func__));
3910 		KASSERT(m->psind > 0, ("%s: m->psind < psind", __func__));
3911 		rv = pmap_enter_pte1(pmap, va, PTE1_PA(pa) | ATTR_TO_L1(npte2) |
3912 		    PTE1_V, flags, m);
3913 		goto out;
3914 	}
3915 
3916 	/*
3917 	 * In the case that a page table page is not
3918 	 * resident, we are creating it here.
3919 	 */
3920 	if (va < VM_MAXUSER_ADDRESS) {
3921 		mpte2 = pmap_allocpte2(pmap, va, flags);
3922 		if (mpte2 == NULL) {
3923 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3924 			    ("pmap_allocpte2 failed with sleep allowed"));
3925 			rv = KERN_RESOURCE_SHORTAGE;
3926 			goto out;
3927 		}
3928 	} else
3929 		mpte2 = NULL;
3930 	pte1p = pmap_pte1(pmap, va);
3931 	if (pte1_is_section(pte1_load(pte1p)))
3932 		panic("%s: attempted on 1MB page", __func__);
3933 	pte2p = pmap_pte2_quick(pmap, va);
3934 	if (pte2p == NULL)
3935 		panic("%s: invalid L1 page table entry va=%#x", __func__, va);
3936 
3937 	om = NULL;
3938 	opte2 = pte2_load(pte2p);
3939 	opa = pte2_pa(opte2);
3940 	/*
3941 	 * Mapping has not changed, must be protection or wiring change.
3942 	 */
3943 	if (pte2_is_valid(opte2) && (opa == pa)) {
3944 		/*
3945 		 * Wiring change, just update stats. We don't worry about
3946 		 * wiring PT2 pages as they remain resident as long as there
3947 		 * are valid mappings in them. Hence, if a user page is wired,
3948 		 * the PT2 page will be also.
3949 		 */
3950 		if (pte2_is_wired(npte2) && !pte2_is_wired(opte2))
3951 			pmap->pm_stats.wired_count++;
3952 		else if (!pte2_is_wired(npte2) && pte2_is_wired(opte2))
3953 			pmap->pm_stats.wired_count--;
3954 
3955 		/*
3956 		 * Remove extra pte2 reference
3957 		 */
3958 		if (mpte2)
3959 			pt2_wirecount_dec(mpte2, pte1_index(va));
3960 		if ((m->oflags & VPO_UNMANAGED) == 0)
3961 			om = m;
3962 		goto validate;
3963 	}
3964 
3965 	/*
3966 	 * QQQ: We think that changing physical address on writeable mapping
3967 	 *      is not safe. Well, maybe on kernel address space with correct
3968 	 *      locking, it can make a sense. However, we have no idea why
3969 	 *      anyone should do that on user address space. Are we wrong?
3970 	 */
3971 	KASSERT((opa == 0) || (opa == pa) ||
3972 	    !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
3973 	    ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
3974 	    __func__, pmap, va, opte2, opa, pa, flags, prot));
3975 
3976 	pv = NULL;
3977 
3978 	/*
3979 	 * Mapping has changed, invalidate old range and fall through to
3980 	 * handle validating new mapping.
3981 	 */
3982 	if (opa) {
3983 		if (pte2_is_wired(opte2))
3984 			pmap->pm_stats.wired_count--;
3985 		om = PHYS_TO_VM_PAGE(opa);
3986 		if (om != NULL && (om->oflags & VPO_UNMANAGED) != 0)
3987 			om = NULL;
3988 		if (om != NULL)
3989 			pv = pmap_pvh_remove(&om->md, pmap, va);
3990 
3991 		/*
3992 		 * Remove extra pte2 reference
3993 		 */
3994 		if (mpte2 != NULL)
3995 			pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
3996 	} else
3997 		pmap->pm_stats.resident_count++;
3998 
3999 	/*
4000 	 * Enter on the PV list if part of our managed memory.
4001 	 */
4002 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4003 		if (pv == NULL) {
4004 			pv = get_pv_entry(pmap, FALSE);
4005 			pv->pv_va = va;
4006 		}
4007 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4008 	} else if (pv != NULL)
4009 		free_pv_entry(pmap, pv);
4010 
4011 	/*
4012 	 * Increment counters
4013 	 */
4014 	if (pte2_is_wired(npte2))
4015 		pmap->pm_stats.wired_count++;
4016 
4017 validate:
4018 	/*
4019 	 * Now validate mapping with desired protection/wiring.
4020 	 */
4021 	if (prot & VM_PROT_WRITE) {
4022 		if ((m->oflags & VPO_UNMANAGED) == 0)
4023 			vm_page_aflag_set(m, PGA_WRITEABLE);
4024 	}
4025 
4026 	/*
4027 	 * If the mapping or permission bits are different, we need
4028 	 * to update the pte2.
4029 	 *
4030 	 * QQQ: Think again and again what to do
4031 	 *      if the mapping is going to be changed!
4032 	 */
4033 	if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
4034 		/*
4035 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4036 		 * is set. Do it now, before the mapping is stored and made
4037 		 * valid for hardware table walk. If done later, there is a race
4038 		 * for other threads of current process in lazy loading case.
4039 		 * Don't do it for kernel memory which is mapped with exec
4040 		 * permission even if the memory isn't going to hold executable
4041 		 * code. The only time when icache sync is needed is after
4042 		 * kernel module is loaded and the relocation info is processed.
4043 		 * And it's done in elf_cpu_load_file().
4044 		 *
4045 		 * QQQ: (1) Does it exist any better way where
4046 		 *          or how to sync icache?
4047 		 *      (2) Now, we do it on a page basis.
4048 		 */
4049 		if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
4050 		    m->md.pat_mode == VM_MEMATTR_WB_WA &&
4051 		    (opa != pa || (opte2 & PTE2_NX)))
4052 			cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4053 
4054 		if (opte2 & PTE2_V) {
4055 			/* Change mapping with break-before-make approach. */
4056 			opte2 = pte2_load_clear(pte2p);
4057 			pmap_tlb_flush(pmap, va);
4058 			pte2_store(pte2p, npte2);
4059 			if (om != NULL) {
4060 				KASSERT((om->oflags & VPO_UNMANAGED) == 0,
4061 				    ("%s: om %p unmanaged", __func__, om));
4062 				if ((opte2 & PTE2_A) != 0)
4063 					vm_page_aflag_set(om, PGA_REFERENCED);
4064 				if (pte2_is_dirty(opte2))
4065 					vm_page_dirty(om);
4066 				if (TAILQ_EMPTY(&om->md.pv_list) &&
4067 				    ((om->flags & PG_FICTITIOUS) != 0 ||
4068 				    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4069 					vm_page_aflag_clear(om, PGA_WRITEABLE);
4070 			}
4071 		} else
4072 			pte2_store(pte2p, npte2);
4073 	}
4074 #if 0
4075 	else {
4076 		/*
4077 		 * QQQ: In time when both access and not mofified bits are
4078 		 *      emulated by software, this should not happen. Some
4079 		 *      analysis is need, if this really happen. Missing
4080 		 *      tlb flush somewhere could be the reason.
4081 		 */
4082 		panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
4083 		    va, opte2, npte2);
4084 	}
4085 #endif
4086 
4087 #if VM_NRESERVLEVEL > 0
4088 	/*
4089 	 * If both the L2 page table page and the reservation are fully
4090 	 * populated, then attempt promotion.
4091 	 */
4092 	if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
4093 	    sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
4094 	    vm_reserv_level_iffullpop(m) == 0)
4095 		pmap_promote_pte1(pmap, pte1p, va);
4096 #endif
4097 
4098 	rv = KERN_SUCCESS;
4099 out:
4100 	sched_unpin();
4101 	rw_wunlock(&pvh_global_lock);
4102 	PMAP_UNLOCK(pmap);
4103 	return (rv);
4104 }
4105 
4106 /*
4107  *  Do the things to unmap a page in a process.
4108  */
4109 static int
4110 pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
4111     struct spglist *free)
4112 {
4113 	pt2_entry_t opte2;
4114 	vm_page_t m;
4115 
4116 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4117 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4118 
4119 	/* Clear and invalidate the mapping. */
4120 	opte2 = pte2_load_clear(pte2p);
4121 	pmap_tlb_flush(pmap, va);
4122 
4123 	KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
4124 	    __func__, pmap, va, opte2));
4125 
4126 	if (opte2 & PTE2_W)
4127 		pmap->pm_stats.wired_count -= 1;
4128 	pmap->pm_stats.resident_count -= 1;
4129 	if (pte2_is_managed(opte2)) {
4130 		m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4131 		if (pte2_is_dirty(opte2))
4132 			vm_page_dirty(m);
4133 		if (opte2 & PTE2_A)
4134 			vm_page_aflag_set(m, PGA_REFERENCED);
4135 		pmap_remove_entry(pmap, m, va);
4136 	}
4137 	return (pmap_unuse_pt2(pmap, va, free));
4138 }
4139 
4140 /*
4141  *  Remove a single page from a process address space.
4142  */
4143 static void
4144 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
4145 {
4146 	pt2_entry_t *pte2p;
4147 
4148 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4149 	KASSERT(curthread->td_pinned > 0,
4150 	    ("%s: curthread not pinned", __func__));
4151 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4152 	if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
4153 	    !pte2_is_valid(pte2_load(pte2p)))
4154 		return;
4155 	pmap_remove_pte2(pmap, pte2p, va, free);
4156 }
4157 
4158 /*
4159  *  Remove the given range of addresses from the specified map.
4160  *
4161  *  It is assumed that the start and end are properly
4162  *  rounded to the page size.
4163  */
4164 void
4165 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4166 {
4167 	vm_offset_t nextva;
4168 	pt1_entry_t *pte1p, pte1;
4169 	pt2_entry_t *pte2p, pte2;
4170 	struct spglist free;
4171 
4172 	/*
4173 	 * Perform an unsynchronized read. This is, however, safe.
4174 	 */
4175 	if (pmap->pm_stats.resident_count == 0)
4176 		return;
4177 
4178 	SLIST_INIT(&free);
4179 
4180 	rw_wlock(&pvh_global_lock);
4181 	sched_pin();
4182 	PMAP_LOCK(pmap);
4183 
4184 	/*
4185 	 * Special handling of removing one page. A very common
4186 	 * operation and easy to short circuit some code.
4187 	 */
4188 	if (sva + PAGE_SIZE == eva) {
4189 		pte1 = pte1_load(pmap_pte1(pmap, sva));
4190 		if (pte1_is_link(pte1)) {
4191 			pmap_remove_page(pmap, sva, &free);
4192 			goto out;
4193 		}
4194 	}
4195 
4196 	for (; sva < eva; sva = nextva) {
4197 		/*
4198 		 * Calculate address for next L2 page table.
4199 		 */
4200 		nextva = pte1_trunc(sva + PTE1_SIZE);
4201 		if (nextva < sva)
4202 			nextva = eva;
4203 		if (pmap->pm_stats.resident_count == 0)
4204 			break;
4205 
4206 		pte1p = pmap_pte1(pmap, sva);
4207 		pte1 = pte1_load(pte1p);
4208 
4209 		/*
4210 		 * Weed out invalid mappings. Note: we assume that the L1 page
4211 		 * table is always allocated, and in kernel virtual.
4212 		 */
4213 		if (pte1 == 0)
4214 			continue;
4215 
4216 		if (pte1_is_section(pte1)) {
4217 			/*
4218 			 * Are we removing the entire large page?  If not,
4219 			 * demote the mapping and fall through.
4220 			 */
4221 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4222 				pmap_remove_pte1(pmap, pte1p, sva, &free);
4223 				continue;
4224 			} else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4225 				/* The large page mapping was destroyed. */
4226 				continue;
4227 			}
4228 #ifdef INVARIANTS
4229 			else {
4230 				/* Update pte1 after demotion. */
4231 				pte1 = pte1_load(pte1p);
4232 			}
4233 #endif
4234 		}
4235 
4236 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4237 		    " is not link", __func__, pmap, sva, pte1, pte1p));
4238 
4239 		/*
4240 		 * Limit our scan to either the end of the va represented
4241 		 * by the current L2 page table page, or to the end of the
4242 		 * range being removed.
4243 		 */
4244 		if (nextva > eva)
4245 			nextva = eva;
4246 
4247 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
4248 		    pte2p++, sva += PAGE_SIZE) {
4249 			pte2 = pte2_load(pte2p);
4250 			if (!pte2_is_valid(pte2))
4251 				continue;
4252 			if (pmap_remove_pte2(pmap, pte2p, sva, &free))
4253 				break;
4254 		}
4255 	}
4256 out:
4257 	sched_unpin();
4258 	rw_wunlock(&pvh_global_lock);
4259 	PMAP_UNLOCK(pmap);
4260 	vm_page_free_pages_toq(&free, false);
4261 }
4262 
4263 /*
4264  *	Routine:	pmap_remove_all
4265  *	Function:
4266  *		Removes this physical page from
4267  *		all physical maps in which it resides.
4268  *		Reflects back modify bits to the pager.
4269  *
4270  *	Notes:
4271  *		Original versions of this routine were very
4272  *		inefficient because they iteratively called
4273  *		pmap_remove (slow...)
4274  */
4275 
4276 void
4277 pmap_remove_all(vm_page_t m)
4278 {
4279 	struct md_page *pvh;
4280 	pv_entry_t pv;
4281 	pmap_t pmap;
4282 	pt2_entry_t *pte2p, opte2;
4283 	pt1_entry_t *pte1p;
4284 	vm_offset_t va;
4285 	struct spglist free;
4286 
4287 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4288 	    ("%s: page %p is not managed", __func__, m));
4289 	SLIST_INIT(&free);
4290 	rw_wlock(&pvh_global_lock);
4291 	sched_pin();
4292 	if ((m->flags & PG_FICTITIOUS) != 0)
4293 		goto small_mappings;
4294 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4295 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4296 		va = pv->pv_va;
4297 		pmap = PV_PMAP(pv);
4298 		PMAP_LOCK(pmap);
4299 		pte1p = pmap_pte1(pmap, va);
4300 		(void)pmap_demote_pte1(pmap, pte1p, va);
4301 		PMAP_UNLOCK(pmap);
4302 	}
4303 small_mappings:
4304 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4305 		pmap = PV_PMAP(pv);
4306 		PMAP_LOCK(pmap);
4307 		pmap->pm_stats.resident_count--;
4308 		pte1p = pmap_pte1(pmap, pv->pv_va);
4309 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
4310 		    "a 1mpage in page %p's pv list", __func__, m));
4311 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
4312 		opte2 = pte2_load_clear(pte2p);
4313 		pmap_tlb_flush(pmap, pv->pv_va);
4314 		KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
4315 		    __func__, pmap, pv->pv_va));
4316 		if (pte2_is_wired(opte2))
4317 			pmap->pm_stats.wired_count--;
4318 		if (opte2 & PTE2_A)
4319 			vm_page_aflag_set(m, PGA_REFERENCED);
4320 
4321 		/*
4322 		 * Update the vm_page_t clean and reference bits.
4323 		 */
4324 		if (pte2_is_dirty(opte2))
4325 			vm_page_dirty(m);
4326 		pmap_unuse_pt2(pmap, pv->pv_va, &free);
4327 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4328 		free_pv_entry(pmap, pv);
4329 		PMAP_UNLOCK(pmap);
4330 	}
4331 	vm_page_aflag_clear(m, PGA_WRITEABLE);
4332 	sched_unpin();
4333 	rw_wunlock(&pvh_global_lock);
4334 	vm_page_free_pages_toq(&free, false);
4335 }
4336 
4337 /*
4338  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4339  *  good coding style, a.k.a. 80 character line width limit hell.
4340  */
4341 static __inline void
4342 pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
4343     struct spglist *free)
4344 {
4345 	vm_paddr_t pa;
4346 	vm_page_t m, mt, mpt2pg;
4347 	struct md_page *pvh;
4348 
4349 	pa = pte1_pa(pte1);
4350 	m = PHYS_TO_VM_PAGE(pa);
4351 
4352 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4353 	    __func__, m, m->phys_addr, pa));
4354 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4355 	    m < &vm_page_array[vm_page_array_size],
4356 	    ("%s: bad pte1 %#x", __func__, pte1));
4357 
4358 	if (pte1_is_dirty(pte1)) {
4359 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4360 			vm_page_dirty(mt);
4361 	}
4362 
4363 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
4364 	pvh = pa_to_pvh(pa);
4365 	TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4366 	if (TAILQ_EMPTY(&pvh->pv_list)) {
4367 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4368 			if (TAILQ_EMPTY(&mt->md.pv_list))
4369 				vm_page_aflag_clear(mt, PGA_WRITEABLE);
4370 	}
4371 	mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
4372 	if (mpt2pg != NULL)
4373 		pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
4374 }
4375 
4376 /*
4377  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4378  *  good coding style, a.k.a. 80 character line width limit hell.
4379  */
4380 static __inline void
4381 pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
4382     struct spglist *free)
4383 {
4384 	vm_paddr_t pa;
4385 	vm_page_t m;
4386 	struct md_page *pvh;
4387 
4388 	pa = pte2_pa(pte2);
4389 	m = PHYS_TO_VM_PAGE(pa);
4390 
4391 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4392 	    __func__, m, m->phys_addr, pa));
4393 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4394 	    m < &vm_page_array[vm_page_array_size],
4395 	    ("%s: bad pte2 %#x", __func__, pte2));
4396 
4397 	if (pte2_is_dirty(pte2))
4398 		vm_page_dirty(m);
4399 
4400 	pmap->pm_stats.resident_count--;
4401 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4402 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
4403 		pvh = pa_to_pvh(pa);
4404 		if (TAILQ_EMPTY(&pvh->pv_list))
4405 			vm_page_aflag_clear(m, PGA_WRITEABLE);
4406 	}
4407 	pmap_unuse_pt2(pmap, pv->pv_va, free);
4408 }
4409 
4410 /*
4411  *  Remove all pages from specified address space this aids process
4412  *  exit speeds. Also, this code is special cased for current process
4413  *  only, but can have the more generic (and slightly slower) mode enabled.
4414  *  This is much faster than pmap_remove in the case of running down
4415  *  an entire address space.
4416  */
4417 void
4418 pmap_remove_pages(pmap_t pmap)
4419 {
4420 	pt1_entry_t *pte1p, pte1;
4421 	pt2_entry_t *pte2p, pte2;
4422 	pv_entry_t pv;
4423 	struct pv_chunk *pc, *npc;
4424 	struct spglist free;
4425 	int field, idx;
4426 	int32_t bit;
4427 	uint32_t inuse, bitmask;
4428 	boolean_t allfree;
4429 
4430 	/*
4431 	 * Assert that the given pmap is only active on the current
4432 	 * CPU.  Unfortunately, we cannot block another CPU from
4433 	 * activating the pmap while this function is executing.
4434 	 */
4435 	KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
4436 	    ("%s: non-current pmap %p", __func__, pmap));
4437 #if defined(SMP) && defined(INVARIANTS)
4438 	{
4439 		cpuset_t other_cpus;
4440 
4441 		sched_pin();
4442 		other_cpus = pmap->pm_active;
4443 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
4444 		sched_unpin();
4445 		KASSERT(CPU_EMPTY(&other_cpus),
4446 		    ("%s: pmap %p active on other cpus", __func__, pmap));
4447 	}
4448 #endif
4449 	SLIST_INIT(&free);
4450 	rw_wlock(&pvh_global_lock);
4451 	PMAP_LOCK(pmap);
4452 	sched_pin();
4453 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4454 		KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
4455 		    __func__, pmap, pc->pc_pmap));
4456 		allfree = TRUE;
4457 		for (field = 0; field < _NPCM; field++) {
4458 			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4459 			while (inuse != 0) {
4460 				bit = ffs(inuse) - 1;
4461 				bitmask = 1UL << bit;
4462 				idx = field * 32 + bit;
4463 				pv = &pc->pc_pventry[idx];
4464 				inuse &= ~bitmask;
4465 
4466 				/*
4467 				 * Note that we cannot remove wired pages
4468 				 * from a process' mapping at this time
4469 				 */
4470 				pte1p = pmap_pte1(pmap, pv->pv_va);
4471 				pte1 = pte1_load(pte1p);
4472 				if (pte1_is_section(pte1)) {
4473 					if (pte1_is_wired(pte1))  {
4474 						allfree = FALSE;
4475 						continue;
4476 					}
4477 					pte1_clear(pte1p);
4478 					pmap_remove_pte1_quick(pmap, pte1, pv,
4479 					    &free);
4480 				}
4481 				else if (pte1_is_link(pte1)) {
4482 					pte2p = pt2map_entry(pv->pv_va);
4483 					pte2 = pte2_load(pte2p);
4484 
4485 					if (!pte2_is_valid(pte2)) {
4486 						printf("%s: pmap %p va %#x "
4487 						    "pte2 %#x\n", __func__,
4488 						    pmap, pv->pv_va, pte2);
4489 						panic("bad pte2");
4490 					}
4491 
4492 					if (pte2_is_wired(pte2))   {
4493 						allfree = FALSE;
4494 						continue;
4495 					}
4496 					pte2_clear(pte2p);
4497 					pmap_remove_pte2_quick(pmap, pte2, pv,
4498 					    &free);
4499 				} else {
4500 					printf("%s: pmap %p va %#x pte1 %#x\n",
4501 					    __func__, pmap, pv->pv_va, pte1);
4502 					panic("bad pte1");
4503 				}
4504 
4505 				/* Mark free */
4506 				PV_STAT(pv_entry_frees++);
4507 				PV_STAT(pv_entry_spare++);
4508 				pv_entry_count--;
4509 				pc->pc_map[field] |= bitmask;
4510 			}
4511 		}
4512 		if (allfree) {
4513 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4514 			free_pv_chunk(pc);
4515 		}
4516 	}
4517 	tlb_flush_all_ng_local();
4518 	sched_unpin();
4519 	rw_wunlock(&pvh_global_lock);
4520 	PMAP_UNLOCK(pmap);
4521 	vm_page_free_pages_toq(&free, false);
4522 }
4523 
4524 /*
4525  *  This code makes some *MAJOR* assumptions:
4526  *  1. Current pmap & pmap exists.
4527  *  2. Not wired.
4528  *  3. Read access.
4529  *  4. No L2 page table pages.
4530  *  but is *MUCH* faster than pmap_enter...
4531  */
4532 static vm_page_t
4533 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4534     vm_prot_t prot, vm_page_t mpt2pg)
4535 {
4536 	pt2_entry_t *pte2p, pte2;
4537 	vm_paddr_t pa;
4538 	struct spglist free;
4539 	uint32_t l2prot;
4540 
4541 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4542 	    (m->oflags & VPO_UNMANAGED) != 0,
4543 	    ("%s: managed mapping within the clean submap", __func__));
4544 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4545 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4546 
4547 	/*
4548 	 * In the case that a L2 page table page is not
4549 	 * resident, we are creating it here.
4550 	 */
4551 	if (va < VM_MAXUSER_ADDRESS) {
4552 		u_int pte1_idx;
4553 		pt1_entry_t pte1, *pte1p;
4554 		vm_paddr_t pt2_pa;
4555 
4556 		/*
4557 		 * Get L1 page table things.
4558 		 */
4559 		pte1_idx = pte1_index(va);
4560 		pte1p = pmap_pte1(pmap, va);
4561 		pte1 = pte1_load(pte1p);
4562 
4563 		if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
4564 			/*
4565 			 * Each of NPT2_IN_PG L2 page tables on the page can
4566 			 * come here. Make sure that associated L1 page table
4567 			 * link is established.
4568 			 *
4569 			 * QQQ: It comes that we don't establish all links to
4570 			 *      L2 page tables for newly allocated L2 page
4571 			 *      tables page.
4572 			 */
4573 			KASSERT(!pte1_is_section(pte1),
4574 			    ("%s: pte1 %#x is section", __func__, pte1));
4575 			if (!pte1_is_link(pte1)) {
4576 				pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
4577 				    pte1_idx);
4578 				pte1_store(pte1p, PTE1_LINK(pt2_pa));
4579 			}
4580 			pt2_wirecount_inc(mpt2pg, pte1_idx);
4581 		} else {
4582 			/*
4583 			 * If the L2 page table page is mapped, we just
4584 			 * increment the hold count, and activate it.
4585 			 */
4586 			if (pte1_is_section(pte1)) {
4587 				return (NULL);
4588 			} else if (pte1_is_link(pte1)) {
4589 				mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
4590 				pt2_wirecount_inc(mpt2pg, pte1_idx);
4591 			} else {
4592 				mpt2pg = _pmap_allocpte2(pmap, va,
4593 				    PMAP_ENTER_NOSLEEP);
4594 				if (mpt2pg == NULL)
4595 					return (NULL);
4596 			}
4597 		}
4598 	} else {
4599 		mpt2pg = NULL;
4600 	}
4601 
4602 	/*
4603 	 * This call to pt2map_entry() makes the assumption that we are
4604 	 * entering the page into the current pmap.  In order to support
4605 	 * quick entry into any pmap, one would likely use pmap_pte2_quick().
4606 	 * But that isn't as quick as pt2map_entry().
4607 	 */
4608 	pte2p = pt2map_entry(va);
4609 	pte2 = pte2_load(pte2p);
4610 	if (pte2_is_valid(pte2)) {
4611 		if (mpt2pg != NULL) {
4612 			/*
4613 			 * Remove extra pte2 reference
4614 			 */
4615 			pt2_wirecount_dec(mpt2pg, pte1_index(va));
4616 			mpt2pg = NULL;
4617 		}
4618 		return (NULL);
4619 	}
4620 
4621 	/*
4622 	 * Enter on the PV list if part of our managed memory.
4623 	 */
4624 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4625 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4626 		if (mpt2pg != NULL) {
4627 			SLIST_INIT(&free);
4628 			if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
4629 				pmap_tlb_flush(pmap, va);
4630 				vm_page_free_pages_toq(&free, false);
4631 			}
4632 
4633 			mpt2pg = NULL;
4634 		}
4635 		return (NULL);
4636 	}
4637 
4638 	/*
4639 	 * Increment counters
4640 	 */
4641 	pmap->pm_stats.resident_count++;
4642 
4643 	/*
4644 	 * Now validate mapping with RO protection
4645 	 */
4646 	pa = VM_PAGE_TO_PHYS(m);
4647 	l2prot = PTE2_RO | PTE2_NM;
4648 	if (va < VM_MAXUSER_ADDRESS)
4649 		l2prot |= PTE2_U | PTE2_NG;
4650 	if ((prot & VM_PROT_EXECUTE) == 0)
4651 		l2prot |= PTE2_NX;
4652 	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4653 		/*
4654 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4655 		 * is set. QQQ: For more info, see comments in pmap_enter().
4656 		 */
4657 		cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4658 	}
4659 	pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
4660 
4661 	return (mpt2pg);
4662 }
4663 
4664 void
4665 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4666 {
4667 
4668 	rw_wlock(&pvh_global_lock);
4669 	PMAP_LOCK(pmap);
4670 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4671 	rw_wunlock(&pvh_global_lock);
4672 	PMAP_UNLOCK(pmap);
4673 }
4674 
4675 /*
4676  *  Tries to create a read- and/or execute-only 1 MB page mapping.  Returns
4677  *  true if successful.  Returns false if (1) a mapping already exists at the
4678  *  specified virtual address or (2) a PV entry cannot be allocated without
4679  *  reclaiming another PV entry.
4680  */
4681 static bool
4682 pmap_enter_1mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4683 {
4684 	pt1_entry_t pte1;
4685 	vm_paddr_t pa;
4686 
4687 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4688 	pa = VM_PAGE_TO_PHYS(m);
4689 	pte1 = PTE1(pa, PTE1_NM | PTE1_RO, ATTR_TO_L1(vm_page_pte2_attr(m)));
4690 	if ((prot & VM_PROT_EXECUTE) == 0)
4691 		pte1 |= PTE1_NX;
4692 	if (va < VM_MAXUSER_ADDRESS)
4693 		pte1 |= PTE1_U;
4694 	if (pmap != kernel_pmap)
4695 		pte1 |= PTE1_NG;
4696 	return (pmap_enter_pte1(pmap, va, pte1, PMAP_ENTER_NOSLEEP |
4697 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, m) == KERN_SUCCESS);
4698 }
4699 
4700 /*
4701  *  Tries to create the specified 1 MB page mapping.  Returns KERN_SUCCESS if
4702  *  the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
4703  *  otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
4704  *  a mapping already exists at the specified virtual address.  Returns
4705  *  KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NORECLAIM was specified and PV entry
4706  *  allocation failed.
4707  */
4708 static int
4709 pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags,
4710     vm_page_t m)
4711 {
4712 	struct spglist free;
4713 	pt1_entry_t opte1, *pte1p;
4714 	pt2_entry_t pte2, *pte2p;
4715 	vm_offset_t cur, end;
4716 	vm_page_t mt;
4717 
4718 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4719 	KASSERT((pte1 & (PTE1_NM | PTE1_RO)) == 0 ||
4720 	    (pte1 & (PTE1_NM | PTE1_RO)) == (PTE1_NM | PTE1_RO),
4721 	    ("%s: pte1 has inconsistent NM and RO attributes", __func__));
4722 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4723 	pte1p = pmap_pte1(pmap, va);
4724 	opte1 = pte1_load(pte1p);
4725 	if (pte1_is_valid(opte1)) {
4726 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
4727 			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4728 			    __func__, va, pmap);
4729 			return (KERN_FAILURE);
4730 		}
4731 		/* Break the existing mapping(s). */
4732 		SLIST_INIT(&free);
4733 		if (pte1_is_section(opte1)) {
4734 			/*
4735 			 * If the section resulted from a promotion, then a
4736 			 * reserved PT page could be freed.
4737 			 */
4738 			pmap_remove_pte1(pmap, pte1p, va, &free);
4739 		} else {
4740 			sched_pin();
4741 			end = va + PTE1_SIZE;
4742 			for (cur = va, pte2p = pmap_pte2_quick(pmap, va);
4743 			    cur != end; cur += PAGE_SIZE, pte2p++) {
4744 				pte2 = pte2_load(pte2p);
4745 				if (!pte2_is_valid(pte2))
4746 					continue;
4747 				if (pmap_remove_pte2(pmap, pte2p, cur, &free))
4748 					break;
4749 			}
4750 			sched_unpin();
4751 		}
4752 		vm_page_free_pages_toq(&free, false);
4753 	}
4754 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4755 		/*
4756 		 * Abort this mapping if its PV entry could not be created.
4757 		 */
4758 		if (!pmap_pv_insert_pte1(pmap, va, pte1, flags)) {
4759 			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4760 			    __func__, va, pmap);
4761 			return (KERN_RESOURCE_SHORTAGE);
4762 		}
4763 		if ((pte1 & PTE1_RO) == 0) {
4764 			for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4765 				vm_page_aflag_set(mt, PGA_WRITEABLE);
4766 		}
4767 	}
4768 
4769 	/*
4770 	 * Increment counters.
4771 	 */
4772 	if (pte1_is_wired(pte1))
4773 		pmap->pm_stats.wired_count += PTE1_SIZE / PAGE_SIZE;
4774 	pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
4775 
4776 	/*
4777 	 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4778 	 * is set.  QQQ: For more info, see comments in pmap_enter().
4779 	 */
4780 	if ((pte1 & PTE1_NX) == 0 && m->md.pat_mode == VM_MEMATTR_WB_WA &&
4781 	    pmap != kernel_pmap && (!pte1_is_section(opte1) ||
4782 	    pte1_pa(opte1) != VM_PAGE_TO_PHYS(m) || (opte1 & PTE2_NX) != 0))
4783 		cache_icache_sync_fresh(va, VM_PAGE_TO_PHYS(m), PTE1_SIZE);
4784 
4785 	/*
4786 	 * Map the section.
4787 	 */
4788 	pte1_store(pte1p, pte1);
4789 
4790 	pmap_pte1_mappings++;
4791 	CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
4792 	    pmap);
4793 	return (KERN_SUCCESS);
4794 }
4795 
4796 /*
4797  *  Maps a sequence of resident pages belonging to the same object.
4798  *  The sequence begins with the given page m_start.  This page is
4799  *  mapped at the given virtual address start.  Each subsequent page is
4800  *  mapped at a virtual address that is offset from start by the same
4801  *  amount as the page is offset from m_start within the object.  The
4802  *  last page in the sequence is the page with the largest offset from
4803  *  m_start that can be mapped at a virtual address less than the given
4804  *  virtual address end.  Not every virtual page between start and end
4805  *  is mapped; only those for which a resident page exists with the
4806  *  corresponding offset from m_start are mapped.
4807  */
4808 void
4809 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4810     vm_page_t m_start, vm_prot_t prot)
4811 {
4812 	vm_offset_t va;
4813 	vm_page_t m, mpt2pg;
4814 	vm_pindex_t diff, psize;
4815 
4816 	PDEBUG(6, printf("%s: pmap %p start %#x end  %#x m %p prot %#x\n",
4817 	    __func__, pmap, start, end, m_start, prot));
4818 
4819 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4820 	psize = atop(end - start);
4821 	mpt2pg = NULL;
4822 	m = m_start;
4823 	rw_wlock(&pvh_global_lock);
4824 	PMAP_LOCK(pmap);
4825 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4826 		va = start + ptoa(diff);
4827 		if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
4828 		    m->psind == 1 && sp_enabled &&
4829 		    pmap_enter_1mpage(pmap, va, m, prot))
4830 			m = &m[PTE1_SIZE / PAGE_SIZE - 1];
4831 		else
4832 			mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
4833 			    mpt2pg);
4834 		m = TAILQ_NEXT(m, listq);
4835 	}
4836 	rw_wunlock(&pvh_global_lock);
4837 	PMAP_UNLOCK(pmap);
4838 }
4839 
4840 /*
4841  *  This code maps large physical mmap regions into the
4842  *  processor address space.  Note that some shortcuts
4843  *  are taken, but the code works.
4844  */
4845 void
4846 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4847     vm_pindex_t pindex, vm_size_t size)
4848 {
4849 	pt1_entry_t *pte1p;
4850 	vm_paddr_t pa, pte2_pa;
4851 	vm_page_t p;
4852 	vm_memattr_t pat_mode;
4853 	u_int l1attr, l1prot;
4854 
4855 	VM_OBJECT_ASSERT_WLOCKED(object);
4856 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4857 	    ("%s: non-device object", __func__));
4858 	if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
4859 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4860 			return;
4861 		p = vm_page_lookup(object, pindex);
4862 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4863 		    ("%s: invalid page %p", __func__, p));
4864 		pat_mode = p->md.pat_mode;
4865 
4866 		/*
4867 		 * Abort the mapping if the first page is not physically
4868 		 * aligned to a 1MB page boundary.
4869 		 */
4870 		pte2_pa = VM_PAGE_TO_PHYS(p);
4871 		if (pte2_pa & PTE1_OFFSET)
4872 			return;
4873 
4874 		/*
4875 		 * Skip the first page. Abort the mapping if the rest of
4876 		 * the pages are not physically contiguous or have differing
4877 		 * memory attributes.
4878 		 */
4879 		p = TAILQ_NEXT(p, listq);
4880 		for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
4881 		    pa += PAGE_SIZE) {
4882 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4883 			    ("%s: invalid page %p", __func__, p));
4884 			if (pa != VM_PAGE_TO_PHYS(p) ||
4885 			    pat_mode != p->md.pat_mode)
4886 				return;
4887 			p = TAILQ_NEXT(p, listq);
4888 		}
4889 
4890 		/*
4891 		 * Map using 1MB pages.
4892 		 *
4893 		 * QQQ: Well, we are mapping a section, so same condition must
4894 		 * be hold like during promotion. It looks that only RW mapping
4895 		 * is done here, so readonly mapping must be done elsewhere.
4896 		 */
4897 		l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
4898 		l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
4899 		PMAP_LOCK(pmap);
4900 		for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
4901 			pte1p = pmap_pte1(pmap, addr);
4902 			if (!pte1_is_valid(pte1_load(pte1p))) {
4903 				pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
4904 				pmap->pm_stats.resident_count += PTE1_SIZE /
4905 				    PAGE_SIZE;
4906 				pmap_pte1_mappings++;
4907 			}
4908 			/* Else continue on if the PTE1 is already valid. */
4909 			addr += PTE1_SIZE;
4910 		}
4911 		PMAP_UNLOCK(pmap);
4912 	}
4913 }
4914 
4915 /*
4916  *  Do the things to protect a 1mpage in a process.
4917  */
4918 static void
4919 pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
4920     vm_prot_t prot)
4921 {
4922 	pt1_entry_t npte1, opte1;
4923 	vm_offset_t eva, va;
4924 	vm_page_t m;
4925 
4926 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4927 	KASSERT((sva & PTE1_OFFSET) == 0,
4928 	    ("%s: sva is not 1mpage aligned", __func__));
4929 
4930 	opte1 = npte1 = pte1_load(pte1p);
4931 	if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
4932 		eva = sva + PTE1_SIZE;
4933 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
4934 		    va < eva; va += PAGE_SIZE, m++)
4935 			vm_page_dirty(m);
4936 	}
4937 	if ((prot & VM_PROT_WRITE) == 0)
4938 		npte1 |= PTE1_RO | PTE1_NM;
4939 	if ((prot & VM_PROT_EXECUTE) == 0)
4940 		npte1 |= PTE1_NX;
4941 
4942 	/*
4943 	 * QQQ: Herein, execute permission is never set.
4944 	 *      It only can be cleared. So, no icache
4945 	 *      syncing is needed.
4946 	 */
4947 
4948 	if (npte1 != opte1) {
4949 		pte1_store(pte1p, npte1);
4950 		pmap_tlb_flush(pmap, sva);
4951 	}
4952 }
4953 
4954 /*
4955  *	Set the physical protection on the
4956  *	specified range of this map as requested.
4957  */
4958 void
4959 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4960 {
4961 	boolean_t pv_lists_locked;
4962 	vm_offset_t nextva;
4963 	pt1_entry_t *pte1p, pte1;
4964 	pt2_entry_t *pte2p, opte2, npte2;
4965 
4966 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4967 	if (prot == VM_PROT_NONE) {
4968 		pmap_remove(pmap, sva, eva);
4969 		return;
4970 	}
4971 
4972 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
4973 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
4974 		return;
4975 
4976 	if (pmap_is_current(pmap))
4977 		pv_lists_locked = FALSE;
4978 	else {
4979 		pv_lists_locked = TRUE;
4980 resume:
4981 		rw_wlock(&pvh_global_lock);
4982 		sched_pin();
4983 	}
4984 
4985 	PMAP_LOCK(pmap);
4986 	for (; sva < eva; sva = nextva) {
4987 		/*
4988 		 * Calculate address for next L2 page table.
4989 		 */
4990 		nextva = pte1_trunc(sva + PTE1_SIZE);
4991 		if (nextva < sva)
4992 			nextva = eva;
4993 
4994 		pte1p = pmap_pte1(pmap, sva);
4995 		pte1 = pte1_load(pte1p);
4996 
4997 		/*
4998 		 * Weed out invalid mappings. Note: we assume that L1 page
4999 		 * page table is always allocated, and in kernel virtual.
5000 		 */
5001 		if (pte1 == 0)
5002 			continue;
5003 
5004 		if (pte1_is_section(pte1)) {
5005 			/*
5006 			 * Are we protecting the entire large page?  If not,
5007 			 * demote the mapping and fall through.
5008 			 */
5009 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5010 				pmap_protect_pte1(pmap, pte1p, sva, prot);
5011 				continue;
5012 			} else {
5013 				if (!pv_lists_locked) {
5014 					pv_lists_locked = TRUE;
5015 					if (!rw_try_wlock(&pvh_global_lock)) {
5016 						PMAP_UNLOCK(pmap);
5017 						goto resume;
5018 					}
5019 					sched_pin();
5020 				}
5021 				if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5022 					/*
5023 					 * The large page mapping
5024 					 * was destroyed.
5025 					 */
5026 					continue;
5027 				}
5028 #ifdef INVARIANTS
5029 				else {
5030 					/* Update pte1 after demotion */
5031 					pte1 = pte1_load(pte1p);
5032 				}
5033 #endif
5034 			}
5035 		}
5036 
5037 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5038 		    " is not link", __func__, pmap, sva, pte1, pte1p));
5039 
5040 		/*
5041 		 * Limit our scan to either the end of the va represented
5042 		 * by the current L2 page table page, or to the end of the
5043 		 * range being protected.
5044 		 */
5045 		if (nextva > eva)
5046 			nextva = eva;
5047 
5048 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5049 		    sva += PAGE_SIZE) {
5050 			vm_page_t m;
5051 
5052 			opte2 = npte2 = pte2_load(pte2p);
5053 			if (!pte2_is_valid(opte2))
5054 				continue;
5055 
5056 			if ((prot & VM_PROT_WRITE) == 0) {
5057 				if (pte2_is_managed(opte2) &&
5058 				    pte2_is_dirty(opte2)) {
5059 					m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
5060 					vm_page_dirty(m);
5061 				}
5062 				npte2 |= PTE2_RO | PTE2_NM;
5063 			}
5064 
5065 			if ((prot & VM_PROT_EXECUTE) == 0)
5066 				npte2 |= PTE2_NX;
5067 
5068 			/*
5069 			 * QQQ: Herein, execute permission is never set.
5070 			 *      It only can be cleared. So, no icache
5071 			 *      syncing is needed.
5072 			 */
5073 
5074 			if (npte2 != opte2) {
5075 				pte2_store(pte2p, npte2);
5076 				pmap_tlb_flush(pmap, sva);
5077 			}
5078 		}
5079 	}
5080 	if (pv_lists_locked) {
5081 		sched_unpin();
5082 		rw_wunlock(&pvh_global_lock);
5083 	}
5084 	PMAP_UNLOCK(pmap);
5085 }
5086 
5087 /*
5088  *	pmap_pvh_wired_mappings:
5089  *
5090  *	Return the updated number "count" of managed mappings that are wired.
5091  */
5092 static int
5093 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
5094 {
5095 	pmap_t pmap;
5096 	pt1_entry_t pte1;
5097 	pt2_entry_t pte2;
5098 	pv_entry_t pv;
5099 
5100 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5101 	sched_pin();
5102 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5103 		pmap = PV_PMAP(pv);
5104 		PMAP_LOCK(pmap);
5105 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5106 		if (pte1_is_section(pte1)) {
5107 			if (pte1_is_wired(pte1))
5108 				count++;
5109 		} else {
5110 			KASSERT(pte1_is_link(pte1),
5111 			    ("%s: pte1 %#x is not link", __func__, pte1));
5112 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5113 			if (pte2_is_wired(pte2))
5114 				count++;
5115 		}
5116 		PMAP_UNLOCK(pmap);
5117 	}
5118 	sched_unpin();
5119 	return (count);
5120 }
5121 
5122 /*
5123  *	pmap_page_wired_mappings:
5124  *
5125  *	Return the number of managed mappings to the given physical page
5126  *	that are wired.
5127  */
5128 int
5129 pmap_page_wired_mappings(vm_page_t m)
5130 {
5131 	int count;
5132 
5133 	count = 0;
5134 	if ((m->oflags & VPO_UNMANAGED) != 0)
5135 		return (count);
5136 	rw_wlock(&pvh_global_lock);
5137 	count = pmap_pvh_wired_mappings(&m->md, count);
5138 	if ((m->flags & PG_FICTITIOUS) == 0) {
5139 		count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
5140 		    count);
5141 	}
5142 	rw_wunlock(&pvh_global_lock);
5143 	return (count);
5144 }
5145 
5146 /*
5147  *  Returns TRUE if any of the given mappings were used to modify
5148  *  physical memory.  Otherwise, returns FALSE.  Both page and 1mpage
5149  *  mappings are supported.
5150  */
5151 static boolean_t
5152 pmap_is_modified_pvh(struct md_page *pvh)
5153 {
5154 	pv_entry_t pv;
5155 	pt1_entry_t pte1;
5156 	pt2_entry_t pte2;
5157 	pmap_t pmap;
5158 	boolean_t rv;
5159 
5160 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5161 	rv = FALSE;
5162 	sched_pin();
5163 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5164 		pmap = PV_PMAP(pv);
5165 		PMAP_LOCK(pmap);
5166 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5167 		if (pte1_is_section(pte1)) {
5168 			rv = pte1_is_dirty(pte1);
5169 		} else {
5170 			KASSERT(pte1_is_link(pte1),
5171 			    ("%s: pte1 %#x is not link", __func__, pte1));
5172 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5173 			rv = pte2_is_dirty(pte2);
5174 		}
5175 		PMAP_UNLOCK(pmap);
5176 		if (rv)
5177 			break;
5178 	}
5179 	sched_unpin();
5180 	return (rv);
5181 }
5182 
5183 /*
5184  *	pmap_is_modified:
5185  *
5186  *	Return whether or not the specified physical page was modified
5187  *	in any physical maps.
5188  */
5189 boolean_t
5190 pmap_is_modified(vm_page_t m)
5191 {
5192 	boolean_t rv;
5193 
5194 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5195 	    ("%s: page %p is not managed", __func__, m));
5196 
5197 	/*
5198 	 * If the page is not busied then this check is racy.
5199 	 */
5200 	if (!pmap_page_is_write_mapped(m))
5201 		return (FALSE);
5202 	rw_wlock(&pvh_global_lock);
5203 	rv = pmap_is_modified_pvh(&m->md) ||
5204 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5205 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5206 	rw_wunlock(&pvh_global_lock);
5207 	return (rv);
5208 }
5209 
5210 /*
5211  *	pmap_is_prefaultable:
5212  *
5213  *	Return whether or not the specified virtual address is eligible
5214  *	for prefault.
5215  */
5216 boolean_t
5217 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5218 {
5219 	pt1_entry_t pte1;
5220 	pt2_entry_t pte2;
5221 	boolean_t rv;
5222 
5223 	rv = FALSE;
5224 	PMAP_LOCK(pmap);
5225 	pte1 = pte1_load(pmap_pte1(pmap, addr));
5226 	if (pte1_is_link(pte1)) {
5227 		pte2 = pte2_load(pt2map_entry(addr));
5228 		rv = !pte2_is_valid(pte2) ;
5229 	}
5230 	PMAP_UNLOCK(pmap);
5231 	return (rv);
5232 }
5233 
5234 /*
5235  *  Returns TRUE if any of the given mappings were referenced and FALSE
5236  *  otherwise. Both page and 1mpage mappings are supported.
5237  */
5238 static boolean_t
5239 pmap_is_referenced_pvh(struct md_page *pvh)
5240 {
5241 
5242 	pv_entry_t pv;
5243 	pt1_entry_t pte1;
5244 	pt2_entry_t pte2;
5245 	pmap_t pmap;
5246 	boolean_t rv;
5247 
5248 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5249 	rv = FALSE;
5250 	sched_pin();
5251 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5252 		pmap = PV_PMAP(pv);
5253 		PMAP_LOCK(pmap);
5254 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5255 		if (pte1_is_section(pte1)) {
5256 			rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
5257 		} else {
5258 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5259 			rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
5260 		}
5261 		PMAP_UNLOCK(pmap);
5262 		if (rv)
5263 			break;
5264 	}
5265 	sched_unpin();
5266 	return (rv);
5267 }
5268 
5269 /*
5270  *	pmap_is_referenced:
5271  *
5272  *	Return whether or not the specified physical page was referenced
5273  *	in any physical maps.
5274  */
5275 boolean_t
5276 pmap_is_referenced(vm_page_t m)
5277 {
5278 	boolean_t rv;
5279 
5280 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5281 	    ("%s: page %p is not managed", __func__, m));
5282 	rw_wlock(&pvh_global_lock);
5283 	rv = pmap_is_referenced_pvh(&m->md) ||
5284 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5285 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5286 	rw_wunlock(&pvh_global_lock);
5287 	return (rv);
5288 }
5289 
5290 /*
5291  *	pmap_ts_referenced:
5292  *
5293  *	Return a count of reference bits for a page, clearing those bits.
5294  *	It is not necessary for every reference bit to be cleared, but it
5295  *	is necessary that 0 only be returned when there are truly no
5296  *	reference bits set.
5297  *
5298  *	As an optimization, update the page's dirty field if a modified bit is
5299  *	found while counting reference bits.  This opportunistic update can be
5300  *	performed at low cost and can eliminate the need for some future calls
5301  *	to pmap_is_modified().  However, since this function stops after
5302  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5303  *	dirty pages.  Those dirty pages will only be detected by a future call
5304  *	to pmap_is_modified().
5305  */
5306 int
5307 pmap_ts_referenced(vm_page_t m)
5308 {
5309 	struct md_page *pvh;
5310 	pv_entry_t pv, pvf;
5311 	pmap_t pmap;
5312 	pt1_entry_t  *pte1p, opte1;
5313 	pt2_entry_t *pte2p, opte2;
5314 	vm_paddr_t pa;
5315 	int rtval = 0;
5316 
5317 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5318 	    ("%s: page %p is not managed", __func__, m));
5319 	pa = VM_PAGE_TO_PHYS(m);
5320 	pvh = pa_to_pvh(pa);
5321 	rw_wlock(&pvh_global_lock);
5322 	sched_pin();
5323 	if ((m->flags & PG_FICTITIOUS) != 0 ||
5324 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5325 		goto small_mappings;
5326 	pv = pvf;
5327 	do {
5328 		pmap = PV_PMAP(pv);
5329 		PMAP_LOCK(pmap);
5330 		pte1p = pmap_pte1(pmap, pv->pv_va);
5331 		opte1 = pte1_load(pte1p);
5332 		if (pte1_is_dirty(opte1)) {
5333 			/*
5334 			 * Although "opte1" is mapping a 1MB page, because
5335 			 * this function is called at a 4KB page granularity,
5336 			 * we only update the 4KB page under test.
5337 			 */
5338 			vm_page_dirty(m);
5339 		}
5340 		if ((opte1 & PTE1_A) != 0) {
5341 			/*
5342 			 * Since this reference bit is shared by 256 4KB pages,
5343 			 * it should not be cleared every time it is tested.
5344 			 * Apply a simple "hash" function on the physical page
5345 			 * number, the virtual section number, and the pmap
5346 			 * address to select one 4KB page out of the 256
5347 			 * on which testing the reference bit will result
5348 			 * in clearing that bit. This function is designed
5349 			 * to avoid the selection of the same 4KB page
5350 			 * for every 1MB page mapping.
5351 			 *
5352 			 * On demotion, a mapping that hasn't been referenced
5353 			 * is simply destroyed.  To avoid the possibility of a
5354 			 * subsequent page fault on a demoted wired mapping,
5355 			 * always leave its reference bit set.  Moreover,
5356 			 * since the section is wired, the current state of
5357 			 * its reference bit won't affect page replacement.
5358 			 */
5359 			 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
5360 			    (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
5361 			    !pte1_is_wired(opte1)) {
5362 				pte1_clear_bit(pte1p, PTE1_A);
5363 				pmap_tlb_flush(pmap, pv->pv_va);
5364 			}
5365 			rtval++;
5366 		}
5367 		PMAP_UNLOCK(pmap);
5368 		/* Rotate the PV list if it has more than one entry. */
5369 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5370 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5371 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5372 		}
5373 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5374 			goto out;
5375 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5376 small_mappings:
5377 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5378 		goto out;
5379 	pv = pvf;
5380 	do {
5381 		pmap = PV_PMAP(pv);
5382 		PMAP_LOCK(pmap);
5383 		pte1p = pmap_pte1(pmap, pv->pv_va);
5384 		KASSERT(pte1_is_link(pte1_load(pte1p)),
5385 		    ("%s: not found a link in page %p's pv list", __func__, m));
5386 
5387 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5388 		opte2 = pte2_load(pte2p);
5389 		if (pte2_is_dirty(opte2))
5390 			vm_page_dirty(m);
5391 		if ((opte2 & PTE2_A) != 0) {
5392 			pte2_clear_bit(pte2p, PTE2_A);
5393 			pmap_tlb_flush(pmap, pv->pv_va);
5394 			rtval++;
5395 		}
5396 		PMAP_UNLOCK(pmap);
5397 		/* Rotate the PV list if it has more than one entry. */
5398 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5399 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5400 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5401 		}
5402 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5403 	    PMAP_TS_REFERENCED_MAX);
5404 out:
5405 	sched_unpin();
5406 	rw_wunlock(&pvh_global_lock);
5407 	return (rtval);
5408 }
5409 
5410 /*
5411  *	Clear the wired attribute from the mappings for the specified range of
5412  *	addresses in the given pmap.  Every valid mapping within that range
5413  *	must have the wired attribute set.  In contrast, invalid mappings
5414  *	cannot have the wired attribute set, so they are ignored.
5415  *
5416  *	The wired attribute of the page table entry is not a hardware feature,
5417  *	so there is no need to invalidate any TLB entries.
5418  */
5419 void
5420 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5421 {
5422 	vm_offset_t nextva;
5423 	pt1_entry_t *pte1p, pte1;
5424 	pt2_entry_t *pte2p, pte2;
5425 	boolean_t pv_lists_locked;
5426 
5427 	if (pmap_is_current(pmap))
5428 		pv_lists_locked = FALSE;
5429 	else {
5430 		pv_lists_locked = TRUE;
5431 resume:
5432 		rw_wlock(&pvh_global_lock);
5433 		sched_pin();
5434 	}
5435 	PMAP_LOCK(pmap);
5436 	for (; sva < eva; sva = nextva) {
5437 		nextva = pte1_trunc(sva + PTE1_SIZE);
5438 		if (nextva < sva)
5439 			nextva = eva;
5440 
5441 		pte1p = pmap_pte1(pmap, sva);
5442 		pte1 = pte1_load(pte1p);
5443 
5444 		/*
5445 		 * Weed out invalid mappings. Note: we assume that L1 page
5446 		 * page table is always allocated, and in kernel virtual.
5447 		 */
5448 		if (pte1 == 0)
5449 			continue;
5450 
5451 		if (pte1_is_section(pte1)) {
5452 			if (!pte1_is_wired(pte1))
5453 				panic("%s: pte1 %#x not wired", __func__, pte1);
5454 
5455 			/*
5456 			 * Are we unwiring the entire large page?  If not,
5457 			 * demote the mapping and fall through.
5458 			 */
5459 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5460 				pte1_clear_bit(pte1p, PTE1_W);
5461 				pmap->pm_stats.wired_count -= PTE1_SIZE /
5462 				    PAGE_SIZE;
5463 				continue;
5464 			} else {
5465 				if (!pv_lists_locked) {
5466 					pv_lists_locked = TRUE;
5467 					if (!rw_try_wlock(&pvh_global_lock)) {
5468 						PMAP_UNLOCK(pmap);
5469 						/* Repeat sva. */
5470 						goto resume;
5471 					}
5472 					sched_pin();
5473 				}
5474 				if (!pmap_demote_pte1(pmap, pte1p, sva))
5475 					panic("%s: demotion failed", __func__);
5476 #ifdef INVARIANTS
5477 				else {
5478 					/* Update pte1 after demotion */
5479 					pte1 = pte1_load(pte1p);
5480 				}
5481 #endif
5482 			}
5483 		}
5484 
5485 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5486 		    " is not link", __func__, pmap, sva, pte1, pte1p));
5487 
5488 		/*
5489 		 * Limit our scan to either the end of the va represented
5490 		 * by the current L2 page table page, or to the end of the
5491 		 * range being protected.
5492 		 */
5493 		if (nextva > eva)
5494 			nextva = eva;
5495 
5496 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5497 		    sva += PAGE_SIZE) {
5498 			pte2 = pte2_load(pte2p);
5499 			if (!pte2_is_valid(pte2))
5500 				continue;
5501 			if (!pte2_is_wired(pte2))
5502 				panic("%s: pte2 %#x is missing PTE2_W",
5503 				    __func__, pte2);
5504 
5505 			/*
5506 			 * PTE2_W must be cleared atomically. Although the pmap
5507 			 * lock synchronizes access to PTE2_W, another processor
5508 			 * could be changing PTE2_NM and/or PTE2_A concurrently.
5509 			 */
5510 			pte2_clear_bit(pte2p, PTE2_W);
5511 			pmap->pm_stats.wired_count--;
5512 		}
5513 	}
5514 	if (pv_lists_locked) {
5515 		sched_unpin();
5516 		rw_wunlock(&pvh_global_lock);
5517 	}
5518 	PMAP_UNLOCK(pmap);
5519 }
5520 
5521 /*
5522  *  Clear the write and modified bits in each of the given page's mappings.
5523  */
5524 void
5525 pmap_remove_write(vm_page_t m)
5526 {
5527 	struct md_page *pvh;
5528 	pv_entry_t next_pv, pv;
5529 	pmap_t pmap;
5530 	pt1_entry_t *pte1p;
5531 	pt2_entry_t *pte2p, opte2;
5532 	vm_offset_t va;
5533 
5534 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5535 	    ("%s: page %p is not managed", __func__, m));
5536 	vm_page_assert_busied(m);
5537 
5538 	if (!pmap_page_is_write_mapped(m))
5539 		return;
5540 	rw_wlock(&pvh_global_lock);
5541 	sched_pin();
5542 	if ((m->flags & PG_FICTITIOUS) != 0)
5543 		goto small_mappings;
5544 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5545 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5546 		va = pv->pv_va;
5547 		pmap = PV_PMAP(pv);
5548 		PMAP_LOCK(pmap);
5549 		pte1p = pmap_pte1(pmap, va);
5550 		if (!(pte1_load(pte1p) & PTE1_RO))
5551 			(void)pmap_demote_pte1(pmap, pte1p, va);
5552 		PMAP_UNLOCK(pmap);
5553 	}
5554 small_mappings:
5555 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5556 		pmap = PV_PMAP(pv);
5557 		PMAP_LOCK(pmap);
5558 		pte1p = pmap_pte1(pmap, pv->pv_va);
5559 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5560 		    " a section in page %p's pv list", __func__, m));
5561 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5562 		opte2 = pte2_load(pte2p);
5563 		if (!(opte2 & PTE2_RO)) {
5564 			pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
5565 			if (pte2_is_dirty(opte2))
5566 				vm_page_dirty(m);
5567 			pmap_tlb_flush(pmap, pv->pv_va);
5568 		}
5569 		PMAP_UNLOCK(pmap);
5570 	}
5571 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5572 	sched_unpin();
5573 	rw_wunlock(&pvh_global_lock);
5574 }
5575 
5576 /*
5577  *	Apply the given advice to the specified range of addresses within the
5578  *	given pmap.  Depending on the advice, clear the referenced and/or
5579  *	modified flags in each mapping and set the mapped page's dirty field.
5580  */
5581 void
5582 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5583 {
5584 	pt1_entry_t *pte1p, opte1;
5585 	pt2_entry_t *pte2p, pte2;
5586 	vm_offset_t pdnxt;
5587 	vm_page_t m;
5588 	boolean_t pv_lists_locked;
5589 
5590 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5591 		return;
5592 	if (pmap_is_current(pmap))
5593 		pv_lists_locked = FALSE;
5594 	else {
5595 		pv_lists_locked = TRUE;
5596 resume:
5597 		rw_wlock(&pvh_global_lock);
5598 		sched_pin();
5599 	}
5600 	PMAP_LOCK(pmap);
5601 	for (; sva < eva; sva = pdnxt) {
5602 		pdnxt = pte1_trunc(sva + PTE1_SIZE);
5603 		if (pdnxt < sva)
5604 			pdnxt = eva;
5605 		pte1p = pmap_pte1(pmap, sva);
5606 		opte1 = pte1_load(pte1p);
5607 		if (!pte1_is_valid(opte1)) /* XXX */
5608 			continue;
5609 		else if (pte1_is_section(opte1)) {
5610 			if (!pte1_is_managed(opte1))
5611 				continue;
5612 			if (!pv_lists_locked) {
5613 				pv_lists_locked = TRUE;
5614 				if (!rw_try_wlock(&pvh_global_lock)) {
5615 					PMAP_UNLOCK(pmap);
5616 					goto resume;
5617 				}
5618 				sched_pin();
5619 			}
5620 			if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5621 				/*
5622 				 * The large page mapping was destroyed.
5623 				 */
5624 				continue;
5625 			}
5626 
5627 			/*
5628 			 * Unless the page mappings are wired, remove the
5629 			 * mapping to a single page so that a subsequent
5630 			 * access may repromote.  Since the underlying L2 page
5631 			 * table is fully populated, this removal never
5632 			 * frees a L2 page table page.
5633 			 */
5634 			if (!pte1_is_wired(opte1)) {
5635 				pte2p = pmap_pte2_quick(pmap, sva);
5636 				KASSERT(pte2_is_valid(pte2_load(pte2p)),
5637 				    ("%s: invalid PTE2", __func__));
5638 				pmap_remove_pte2(pmap, pte2p, sva, NULL);
5639 			}
5640 		}
5641 		if (pdnxt > eva)
5642 			pdnxt = eva;
5643 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
5644 		    sva += PAGE_SIZE) {
5645 			pte2 = pte2_load(pte2p);
5646 			if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
5647 				continue;
5648 			else if (pte2_is_dirty(pte2)) {
5649 				if (advice == MADV_DONTNEED) {
5650 					/*
5651 					 * Future calls to pmap_is_modified()
5652 					 * can be avoided by making the page
5653 					 * dirty now.
5654 					 */
5655 					m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
5656 					vm_page_dirty(m);
5657 				}
5658 				pte2_set_bit(pte2p, PTE2_NM);
5659 				pte2_clear_bit(pte2p, PTE2_A);
5660 			} else if ((pte2 & PTE2_A) != 0)
5661 				pte2_clear_bit(pte2p, PTE2_A);
5662 			else
5663 				continue;
5664 			pmap_tlb_flush(pmap, sva);
5665 		}
5666 	}
5667 	if (pv_lists_locked) {
5668 		sched_unpin();
5669 		rw_wunlock(&pvh_global_lock);
5670 	}
5671 	PMAP_UNLOCK(pmap);
5672 }
5673 
5674 /*
5675  *	Clear the modify bits on the specified physical page.
5676  */
5677 void
5678 pmap_clear_modify(vm_page_t m)
5679 {
5680 	struct md_page *pvh;
5681 	pv_entry_t next_pv, pv;
5682 	pmap_t pmap;
5683 	pt1_entry_t *pte1p, opte1;
5684 	pt2_entry_t *pte2p, opte2;
5685 	vm_offset_t va;
5686 
5687 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5688 	    ("%s: page %p is not managed", __func__, m));
5689 	vm_page_assert_busied(m);
5690 
5691 	if (!pmap_page_is_write_mapped(m))
5692 		return;
5693 	rw_wlock(&pvh_global_lock);
5694 	sched_pin();
5695 	if ((m->flags & PG_FICTITIOUS) != 0)
5696 		goto small_mappings;
5697 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5698 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5699 		va = pv->pv_va;
5700 		pmap = PV_PMAP(pv);
5701 		PMAP_LOCK(pmap);
5702 		pte1p = pmap_pte1(pmap, va);
5703 		opte1 = pte1_load(pte1p);
5704 		if (!(opte1 & PTE1_RO)) {
5705 			if (pmap_demote_pte1(pmap, pte1p, va) &&
5706 			    !pte1_is_wired(opte1)) {
5707 				/*
5708 				 * Write protect the mapping to a
5709 				 * single page so that a subsequent
5710 				 * write access may repromote.
5711 				 */
5712 				va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
5713 				pte2p = pmap_pte2_quick(pmap, va);
5714 				opte2 = pte2_load(pte2p);
5715 				if ((opte2 & PTE2_V)) {
5716 					pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
5717 					vm_page_dirty(m);
5718 					pmap_tlb_flush(pmap, va);
5719 				}
5720 			}
5721 		}
5722 		PMAP_UNLOCK(pmap);
5723 	}
5724 small_mappings:
5725 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5726 		pmap = PV_PMAP(pv);
5727 		PMAP_LOCK(pmap);
5728 		pte1p = pmap_pte1(pmap, pv->pv_va);
5729 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5730 		    " a section in page %p's pv list", __func__, m));
5731 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5732 		if (pte2_is_dirty(pte2_load(pte2p))) {
5733 			pte2_set_bit(pte2p, PTE2_NM);
5734 			pmap_tlb_flush(pmap, pv->pv_va);
5735 		}
5736 		PMAP_UNLOCK(pmap);
5737 	}
5738 	sched_unpin();
5739 	rw_wunlock(&pvh_global_lock);
5740 }
5741 
5742 
5743 /*
5744  *  Sets the memory attribute for the specified page.
5745  */
5746 void
5747 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5748 {
5749 	pt2_entry_t *cmap2_pte2p;
5750 	vm_memattr_t oma;
5751 	vm_paddr_t pa;
5752 	struct pcpu *pc;
5753 
5754 	oma = m->md.pat_mode;
5755 	m->md.pat_mode = ma;
5756 
5757 	CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
5758 	    VM_PAGE_TO_PHYS(m), oma, ma);
5759 	if ((m->flags & PG_FICTITIOUS) != 0)
5760 		return;
5761 #if 0
5762 	/*
5763 	 * If "m" is a normal page, flush it from the cache.
5764 	 *
5765 	 * First, try to find an existing mapping of the page by sf
5766 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5767 	 * flushes the cache.
5768 	 */
5769 	if (sf_buf_invalidate_cache(m, oma))
5770 		return;
5771 #endif
5772 	/*
5773 	 * If page is not mapped by sf buffer, map the page
5774 	 * transient and do invalidation.
5775 	 */
5776 	if (ma != oma) {
5777 		pa = VM_PAGE_TO_PHYS(m);
5778 		sched_pin();
5779 		pc = get_pcpu();
5780 		cmap2_pte2p = pc->pc_cmap2_pte2p;
5781 		mtx_lock(&pc->pc_cmap_lock);
5782 		if (pte2_load(cmap2_pte2p) != 0)
5783 			panic("%s: CMAP2 busy", __func__);
5784 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
5785 		    vm_memattr_to_pte2(ma)));
5786 		dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
5787 		pte2_clear(cmap2_pte2p);
5788 		tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5789 		sched_unpin();
5790 		mtx_unlock(&pc->pc_cmap_lock);
5791 	}
5792 }
5793 
5794 /*
5795  *  Miscellaneous support routines follow
5796  */
5797 
5798 /*
5799  *  Returns TRUE if the given page is mapped individually or as part of
5800  *  a 1mpage.  Otherwise, returns FALSE.
5801  */
5802 boolean_t
5803 pmap_page_is_mapped(vm_page_t m)
5804 {
5805 	boolean_t rv;
5806 
5807 	if ((m->oflags & VPO_UNMANAGED) != 0)
5808 		return (FALSE);
5809 	rw_wlock(&pvh_global_lock);
5810 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5811 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5812 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5813 	rw_wunlock(&pvh_global_lock);
5814 	return (rv);
5815 }
5816 
5817 /*
5818  *  Returns true if the pmap's pv is one of the first
5819  *  16 pvs linked to from this page.  This count may
5820  *  be changed upwards or downwards in the future; it
5821  *  is only necessary that true be returned for a small
5822  *  subset of pmaps for proper page aging.
5823  */
5824 boolean_t
5825 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5826 {
5827 	struct md_page *pvh;
5828 	pv_entry_t pv;
5829 	int loops = 0;
5830 	boolean_t rv;
5831 
5832 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5833 	    ("%s: page %p is not managed", __func__, m));
5834 	rv = FALSE;
5835 	rw_wlock(&pvh_global_lock);
5836 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5837 		if (PV_PMAP(pv) == pmap) {
5838 			rv = TRUE;
5839 			break;
5840 		}
5841 		loops++;
5842 		if (loops >= 16)
5843 			break;
5844 	}
5845 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5846 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5847 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5848 			if (PV_PMAP(pv) == pmap) {
5849 				rv = TRUE;
5850 				break;
5851 			}
5852 			loops++;
5853 			if (loops >= 16)
5854 				break;
5855 		}
5856 	}
5857 	rw_wunlock(&pvh_global_lock);
5858 	return (rv);
5859 }
5860 
5861 /*
5862  *	pmap_zero_page zeros the specified hardware page by mapping
5863  *	the page into KVM and using bzero to clear its contents.
5864  */
5865 void
5866 pmap_zero_page(vm_page_t m)
5867 {
5868 	pt2_entry_t *cmap2_pte2p;
5869 	struct pcpu *pc;
5870 
5871 	sched_pin();
5872 	pc = get_pcpu();
5873 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5874 	mtx_lock(&pc->pc_cmap_lock);
5875 	if (pte2_load(cmap2_pte2p) != 0)
5876 		panic("%s: CMAP2 busy", __func__);
5877 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5878 	    vm_page_pte2_attr(m)));
5879 	pagezero(pc->pc_cmap2_addr);
5880 	pte2_clear(cmap2_pte2p);
5881 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5882 	sched_unpin();
5883 	mtx_unlock(&pc->pc_cmap_lock);
5884 }
5885 
5886 /*
5887  *	pmap_zero_page_area zeros the specified hardware page by mapping
5888  *	the page into KVM and using bzero to clear its contents.
5889  *
5890  *	off and size may not cover an area beyond a single hardware page.
5891  */
5892 void
5893 pmap_zero_page_area(vm_page_t m, int off, int size)
5894 {
5895 	pt2_entry_t *cmap2_pte2p;
5896 	struct pcpu *pc;
5897 
5898 	sched_pin();
5899 	pc = get_pcpu();
5900 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5901 	mtx_lock(&pc->pc_cmap_lock);
5902 	if (pte2_load(cmap2_pte2p) != 0)
5903 		panic("%s: CMAP2 busy", __func__);
5904 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5905 	    vm_page_pte2_attr(m)));
5906 	if (off == 0 && size == PAGE_SIZE)
5907 		pagezero(pc->pc_cmap2_addr);
5908 	else
5909 		bzero(pc->pc_cmap2_addr + off, size);
5910 	pte2_clear(cmap2_pte2p);
5911 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5912 	sched_unpin();
5913 	mtx_unlock(&pc->pc_cmap_lock);
5914 }
5915 
5916 /*
5917  *	pmap_copy_page copies the specified (machine independent)
5918  *	page by mapping the page into virtual memory and using
5919  *	bcopy to copy the page, one machine dependent page at a
5920  *	time.
5921  */
5922 void
5923 pmap_copy_page(vm_page_t src, vm_page_t dst)
5924 {
5925 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5926 	struct pcpu *pc;
5927 
5928 	sched_pin();
5929 	pc = get_pcpu();
5930 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5931 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5932 	mtx_lock(&pc->pc_cmap_lock);
5933 	if (pte2_load(cmap1_pte2p) != 0)
5934 		panic("%s: CMAP1 busy", __func__);
5935 	if (pte2_load(cmap2_pte2p) != 0)
5936 		panic("%s: CMAP2 busy", __func__);
5937 	pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
5938 	    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
5939 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
5940 	    PTE2_AP_KRW, vm_page_pte2_attr(dst)));
5941 	bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
5942 	pte2_clear(cmap1_pte2p);
5943 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5944 	pte2_clear(cmap2_pte2p);
5945 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5946 	sched_unpin();
5947 	mtx_unlock(&pc->pc_cmap_lock);
5948 }
5949 
5950 int unmapped_buf_allowed = 1;
5951 
5952 void
5953 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5954     vm_offset_t b_offset, int xfersize)
5955 {
5956 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5957 	vm_page_t a_pg, b_pg;
5958 	char *a_cp, *b_cp;
5959 	vm_offset_t a_pg_offset, b_pg_offset;
5960 	struct pcpu *pc;
5961 	int cnt;
5962 
5963 	sched_pin();
5964 	pc = get_pcpu();
5965 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5966 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5967 	mtx_lock(&pc->pc_cmap_lock);
5968 	if (pte2_load(cmap1_pte2p) != 0)
5969 		panic("pmap_copy_pages: CMAP1 busy");
5970 	if (pte2_load(cmap2_pte2p) != 0)
5971 		panic("pmap_copy_pages: CMAP2 busy");
5972 	while (xfersize > 0) {
5973 		a_pg = ma[a_offset >> PAGE_SHIFT];
5974 		a_pg_offset = a_offset & PAGE_MASK;
5975 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5976 		b_pg = mb[b_offset >> PAGE_SHIFT];
5977 		b_pg_offset = b_offset & PAGE_MASK;
5978 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5979 		pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
5980 		    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
5981 		tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
5982 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
5983 		    PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
5984 		tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
5985 		a_cp = pc->pc_cmap1_addr + a_pg_offset;
5986 		b_cp = pc->pc_cmap2_addr + b_pg_offset;
5987 		bcopy(a_cp, b_cp, cnt);
5988 		a_offset += cnt;
5989 		b_offset += cnt;
5990 		xfersize -= cnt;
5991 	}
5992 	pte2_clear(cmap1_pte2p);
5993 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5994 	pte2_clear(cmap2_pte2p);
5995 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5996 	sched_unpin();
5997 	mtx_unlock(&pc->pc_cmap_lock);
5998 }
5999 
6000 vm_offset_t
6001 pmap_quick_enter_page(vm_page_t m)
6002 {
6003 	struct pcpu *pc;
6004 	pt2_entry_t *pte2p;
6005 
6006 	critical_enter();
6007 	pc = get_pcpu();
6008 	pte2p = pc->pc_qmap_pte2p;
6009 
6010 	KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
6011 
6012 	pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6013 	    vm_page_pte2_attr(m)));
6014 	return (pc->pc_qmap_addr);
6015 }
6016 
6017 void
6018 pmap_quick_remove_page(vm_offset_t addr)
6019 {
6020 	struct pcpu *pc;
6021 	pt2_entry_t *pte2p;
6022 
6023 	pc = get_pcpu();
6024 	pte2p = pc->pc_qmap_pte2p;
6025 
6026 	KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
6027 	KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
6028 
6029 	pte2_clear(pte2p);
6030 	tlb_flush(pc->pc_qmap_addr);
6031 	critical_exit();
6032 }
6033 
6034 /*
6035  *	Copy the range specified by src_addr/len
6036  *	from the source map to the range dst_addr/len
6037  *	in the destination map.
6038  *
6039  *	This routine is only advisory and need not do anything.
6040  */
6041 void
6042 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
6043     vm_offset_t src_addr)
6044 {
6045 	struct spglist free;
6046 	vm_offset_t addr;
6047 	vm_offset_t end_addr = src_addr + len;
6048 	vm_offset_t nextva;
6049 
6050 	if (dst_addr != src_addr)
6051 		return;
6052 
6053 	if (!pmap_is_current(src_pmap))
6054 		return;
6055 
6056 	rw_wlock(&pvh_global_lock);
6057 	if (dst_pmap < src_pmap) {
6058 		PMAP_LOCK(dst_pmap);
6059 		PMAP_LOCK(src_pmap);
6060 	} else {
6061 		PMAP_LOCK(src_pmap);
6062 		PMAP_LOCK(dst_pmap);
6063 	}
6064 	sched_pin();
6065 	for (addr = src_addr; addr < end_addr; addr = nextva) {
6066 		pt2_entry_t *src_pte2p, *dst_pte2p;
6067 		vm_page_t dst_mpt2pg, src_mpt2pg;
6068 		pt1_entry_t src_pte1;
6069 		u_int pte1_idx;
6070 
6071 		KASSERT(addr < VM_MAXUSER_ADDRESS,
6072 		    ("%s: invalid to pmap_copy page tables", __func__));
6073 
6074 		nextva = pte1_trunc(addr + PTE1_SIZE);
6075 		if (nextva < addr)
6076 			nextva = end_addr;
6077 
6078 		pte1_idx = pte1_index(addr);
6079 		src_pte1 = src_pmap->pm_pt1[pte1_idx];
6080 		if (pte1_is_section(src_pte1)) {
6081 			if ((addr & PTE1_OFFSET) != 0 ||
6082 			    (addr + PTE1_SIZE) > end_addr)
6083 				continue;
6084 			if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
6085 			    (!pte1_is_managed(src_pte1) ||
6086 			    pmap_pv_insert_pte1(dst_pmap, addr, src_pte1,
6087 			    PMAP_ENTER_NORECLAIM))) {
6088 				dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
6089 				    ~PTE1_W;
6090 				dst_pmap->pm_stats.resident_count +=
6091 				    PTE1_SIZE / PAGE_SIZE;
6092 				pmap_pte1_mappings++;
6093 			}
6094 			continue;
6095 		} else if (!pte1_is_link(src_pte1))
6096 			continue;
6097 
6098 		src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
6099 
6100 		/*
6101 		 * We leave PT2s to be linked from PT1 even if they are not
6102 		 * referenced until all PT2s in a page are without reference.
6103 		 *
6104 		 * QQQ: It could be changed ...
6105 		 */
6106 #if 0 /* single_pt2_link_is_cleared */
6107 		KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
6108 		    ("%s: source page table page is unused", __func__));
6109 #else
6110 		if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
6111 			continue;
6112 #endif
6113 		if (nextva > end_addr)
6114 			nextva = end_addr;
6115 
6116 		src_pte2p = pt2map_entry(addr);
6117 		while (addr < nextva) {
6118 			pt2_entry_t temp_pte2;
6119 			temp_pte2 = pte2_load(src_pte2p);
6120 			/*
6121 			 * we only virtual copy managed pages
6122 			 */
6123 			if (pte2_is_managed(temp_pte2)) {
6124 				dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
6125 				    PMAP_ENTER_NOSLEEP);
6126 				if (dst_mpt2pg == NULL)
6127 					goto out;
6128 				dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
6129 				if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
6130 				    pmap_try_insert_pv_entry(dst_pmap, addr,
6131 				    PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
6132 					/*
6133 					 * Clear the wired, modified, and
6134 					 * accessed (referenced) bits
6135 					 * during the copy.
6136 					 */
6137 					temp_pte2 &=  ~(PTE2_W | PTE2_A);
6138 					temp_pte2 |= PTE2_NM;
6139 					pte2_store(dst_pte2p, temp_pte2);
6140 					dst_pmap->pm_stats.resident_count++;
6141 				} else {
6142 					SLIST_INIT(&free);
6143 					if (pmap_unwire_pt2(dst_pmap, addr,
6144 					    dst_mpt2pg, &free)) {
6145 						pmap_tlb_flush(dst_pmap, addr);
6146 						vm_page_free_pages_toq(&free,
6147 						    false);
6148 					}
6149 					goto out;
6150 				}
6151 				if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
6152 				    pt2_wirecount_get(src_mpt2pg, pte1_idx))
6153 					break;
6154 			}
6155 			addr += PAGE_SIZE;
6156 			src_pte2p++;
6157 		}
6158 	}
6159 out:
6160 	sched_unpin();
6161 	rw_wunlock(&pvh_global_lock);
6162 	PMAP_UNLOCK(src_pmap);
6163 	PMAP_UNLOCK(dst_pmap);
6164 }
6165 
6166 /*
6167  *	Increase the starting virtual address of the given mapping if a
6168  *	different alignment might result in more section mappings.
6169  */
6170 void
6171 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6172     vm_offset_t *addr, vm_size_t size)
6173 {
6174 	vm_offset_t pte1_offset;
6175 
6176 	if (size < PTE1_SIZE)
6177 		return;
6178 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6179 		offset += ptoa(object->pg_color);
6180 	pte1_offset = offset & PTE1_OFFSET;
6181 	if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
6182 	    (*addr & PTE1_OFFSET) == pte1_offset)
6183 		return;
6184 	if ((*addr & PTE1_OFFSET) < pte1_offset)
6185 		*addr = pte1_trunc(*addr) + pte1_offset;
6186 	else
6187 		*addr = pte1_roundup(*addr) + pte1_offset;
6188 }
6189 
6190 void
6191 pmap_activate(struct thread *td)
6192 {
6193 	pmap_t pmap, oldpmap;
6194 	u_int cpuid, ttb;
6195 
6196 	PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
6197 
6198 	critical_enter();
6199 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6200 	oldpmap = PCPU_GET(curpmap);
6201 	cpuid = PCPU_GET(cpuid);
6202 
6203 #if defined(SMP)
6204 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6205 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6206 #else
6207 	CPU_CLR(cpuid, &oldpmap->pm_active);
6208 	CPU_SET(cpuid, &pmap->pm_active);
6209 #endif
6210 
6211 	ttb = pmap_ttb_get(pmap);
6212 
6213 	/*
6214 	 * pmap_activate is for the current thread on the current cpu
6215 	 */
6216 	td->td_pcb->pcb_pagedir = ttb;
6217 	cp15_ttbr_set(ttb);
6218 	PCPU_SET(curpmap, pmap);
6219 	critical_exit();
6220 }
6221 
6222 /*
6223  * Perform the pmap work for mincore(2).  If the page is not both referenced and
6224  * modified by this pmap, returns its physical address so that the caller can
6225  * find other mappings.
6226  */
6227 int
6228 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
6229 {
6230 	pt1_entry_t *pte1p, pte1;
6231 	pt2_entry_t *pte2p, pte2;
6232 	vm_paddr_t pa;
6233 	bool managed;
6234 	int val;
6235 
6236 	PMAP_LOCK(pmap);
6237 	pte1p = pmap_pte1(pmap, addr);
6238 	pte1 = pte1_load(pte1p);
6239 	if (pte1_is_section(pte1)) {
6240 		pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
6241 		managed = pte1_is_managed(pte1);
6242 		val = MINCORE_SUPER | MINCORE_INCORE;
6243 		if (pte1_is_dirty(pte1))
6244 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6245 		if (pte1 & PTE1_A)
6246 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6247 	} else if (pte1_is_link(pte1)) {
6248 		pte2p = pmap_pte2(pmap, addr);
6249 		pte2 = pte2_load(pte2p);
6250 		pmap_pte2_release(pte2p);
6251 		pa = pte2_pa(pte2);
6252 		managed = pte2_is_managed(pte2);
6253 		val = MINCORE_INCORE;
6254 		if (pte2_is_dirty(pte2))
6255 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6256 		if (pte2 & PTE2_A)
6257 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6258 	} else {
6259 		managed = false;
6260 		val = 0;
6261 	}
6262 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6263 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6264 		*pap = pa;
6265 	}
6266 	PMAP_UNLOCK(pmap);
6267 	return (val);
6268 }
6269 
6270 void
6271 pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
6272 {
6273 	vm_offset_t sva;
6274 	uint32_t l2attr;
6275 
6276 	KASSERT((size & PAGE_MASK) == 0,
6277 	    ("%s: device mapping not page-sized", __func__));
6278 
6279 	sva = va;
6280 	l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
6281 	while (size != 0) {
6282 		pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
6283 		va += PAGE_SIZE;
6284 		pa += PAGE_SIZE;
6285 		size -= PAGE_SIZE;
6286 	}
6287 	tlb_flush_range(sva, va - sva);
6288 }
6289 
6290 void
6291 pmap_kremove_device(vm_offset_t va, vm_size_t size)
6292 {
6293 	vm_offset_t sva;
6294 
6295 	KASSERT((size & PAGE_MASK) == 0,
6296 	    ("%s: device mapping not page-sized", __func__));
6297 
6298 	sva = va;
6299 	while (size != 0) {
6300 		pmap_kremove(va);
6301 		va += PAGE_SIZE;
6302 		size -= PAGE_SIZE;
6303 	}
6304 	tlb_flush_range(sva, va - sva);
6305 }
6306 
6307 void
6308 pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
6309 {
6310 
6311 	pcb->pcb_pagedir = pmap_ttb_get(pmap);
6312 }
6313 
6314 
6315 /*
6316  *  Clean L1 data cache range by physical address.
6317  *  The range must be within a single page.
6318  */
6319 static void
6320 pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
6321 {
6322 	pt2_entry_t *cmap2_pte2p;
6323 	struct pcpu *pc;
6324 
6325 	KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
6326 	    ("%s: not on single page", __func__));
6327 
6328 	sched_pin();
6329 	pc = get_pcpu();
6330 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6331 	mtx_lock(&pc->pc_cmap_lock);
6332 	if (pte2_load(cmap2_pte2p) != 0)
6333 		panic("%s: CMAP2 busy", __func__);
6334 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
6335 	dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
6336 	pte2_clear(cmap2_pte2p);
6337 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6338 	sched_unpin();
6339 	mtx_unlock(&pc->pc_cmap_lock);
6340 }
6341 
6342 /*
6343  *  Sync instruction cache range which is not mapped yet.
6344  */
6345 void
6346 cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
6347 {
6348 	uint32_t len, offset;
6349 	vm_page_t m;
6350 
6351 	/* Write back d-cache on given address range. */
6352 	offset = pa & PAGE_MASK;
6353 	for ( ; size != 0; size -= len, pa += len, offset = 0) {
6354 		len = min(PAGE_SIZE - offset, size);
6355 		m = PHYS_TO_VM_PAGE(pa);
6356 		KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6357 		  __func__, pa));
6358 		pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6359 	}
6360 	/*
6361 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6362 	 * on given physical address is to invalidate all i-cache.
6363 	 */
6364 	icache_inv_all();
6365 }
6366 
6367 void
6368 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
6369 {
6370 
6371 	/* Write back d-cache on given address range. */
6372 	if (va >= VM_MIN_KERNEL_ADDRESS) {
6373 		dcache_wb_pou(va, size);
6374 	} else {
6375 		uint32_t len, offset;
6376 		vm_paddr_t pa;
6377 		vm_page_t m;
6378 
6379 		offset = va & PAGE_MASK;
6380 		for ( ; size != 0; size -= len, va += len, offset = 0) {
6381 			pa = pmap_extract(pmap, va); /* offset is preserved */
6382 			len = min(PAGE_SIZE - offset, size);
6383 			m = PHYS_TO_VM_PAGE(pa);
6384 			KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6385 				__func__, pa));
6386 			pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6387 		}
6388 	}
6389 	/*
6390 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6391 	 * on given physical address is to invalidate all i-cache.
6392 	 */
6393 	icache_inv_all();
6394 }
6395 
6396 /*
6397  *  The implementation of pmap_fault() uses IN_RANGE2() macro which
6398  *  depends on the fact that given range size is a power of 2.
6399  */
6400 CTASSERT(powerof2(NB_IN_PT1));
6401 CTASSERT(powerof2(PT2MAP_SIZE));
6402 
6403 #define IN_RANGE2(addr, start, size)	\
6404     ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
6405 
6406 /*
6407  *  Handle access and R/W emulation faults.
6408  */
6409 int
6410 pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
6411 {
6412 	pt1_entry_t *pte1p, pte1;
6413 	pt2_entry_t *pte2p, pte2;
6414 
6415 	if (pmap == NULL)
6416 		pmap = kernel_pmap;
6417 
6418 	/*
6419 	 * In kernel, we should never get abort with FAR which is in range of
6420 	 * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
6421 	 * and print out a useful abort message and even get to the debugger
6422 	 * otherwise it likely ends with never ending loop of aborts.
6423 	 */
6424 	if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
6425 		/*
6426 		 * All L1 tables should always be mapped and present.
6427 		 * However, we check only current one herein. For user mode,
6428 		 * only permission abort from malicious user is not fatal.
6429 		 * And alignment abort as it may have higher priority.
6430 		 */
6431 		if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
6432 			CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
6433 			    __func__, pmap, pmap->pm_pt1, far);
6434 			panic("%s: pm_pt1 abort", __func__);
6435 		}
6436 		return (KERN_INVALID_ADDRESS);
6437 	}
6438 	if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
6439 		/*
6440 		 * PT2MAP should be always mapped and present in current
6441 		 * L1 table. However, only existing L2 tables are mapped
6442 		 * in PT2MAP. For user mode, only L2 translation abort and
6443 		 * permission abort from malicious user is not fatal.
6444 		 * And alignment abort as it may have higher priority.
6445 		 */
6446 		if (!usermode || (idx != FAULT_ALIGN &&
6447 		    idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
6448 			CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
6449 			    __func__, pmap, PT2MAP, far);
6450 			panic("%s: PT2MAP abort", __func__);
6451 		}
6452 		return (KERN_INVALID_ADDRESS);
6453 	}
6454 
6455 	/*
6456 	 * A pmap lock is used below for handling of access and R/W emulation
6457 	 * aborts. They were handled by atomic operations before so some
6458 	 * analysis of new situation is needed to answer the following question:
6459 	 * Is it safe to use the lock even for these aborts?
6460 	 *
6461 	 * There may happen two cases in general:
6462 	 *
6463 	 * (1) Aborts while the pmap lock is locked already - this should not
6464 	 * happen as pmap lock is not recursive. However, under pmap lock only
6465 	 * internal kernel data should be accessed and such data should be
6466 	 * mapped with A bit set and NM bit cleared. If double abort happens,
6467 	 * then a mapping of data which has caused it must be fixed. Further,
6468 	 * all new mappings are always made with A bit set and the bit can be
6469 	 * cleared only on managed mappings.
6470 	 *
6471 	 * (2) Aborts while another lock(s) is/are locked - this already can
6472 	 * happen. However, there is no difference here if it's either access or
6473 	 * R/W emulation abort, or if it's some other abort.
6474 	 */
6475 
6476 	PMAP_LOCK(pmap);
6477 #ifdef INVARIANTS
6478 	pte1 = pte1_load(pmap_pte1(pmap, far));
6479 	if (pte1_is_link(pte1)) {
6480 		/*
6481 		 * Check in advance that associated L2 page table is mapped into
6482 		 * PT2MAP space. Note that faulty access to not mapped L2 page
6483 		 * table is caught in more general check above where "far" is
6484 		 * checked that it does not lay in PT2MAP space. Note also that
6485 		 * L1 page table and PT2TAB always exist and are mapped.
6486 		 */
6487 		pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
6488 		if (!pte2_is_valid(pte2))
6489 			panic("%s: missing L2 page table (%p, %#x)",
6490 			    __func__, pmap, far);
6491 	}
6492 #endif
6493 #ifdef SMP
6494 	/*
6495 	 * Special treatment is due to break-before-make approach done when
6496 	 * pte1 is updated for userland mapping during section promotion or
6497 	 * demotion. If not caught here, pmap_enter() can find a section
6498 	 * mapping on faulting address. That is not allowed.
6499 	 */
6500 	if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
6501 		PMAP_UNLOCK(pmap);
6502 		return (KERN_SUCCESS);
6503 	}
6504 #endif
6505 	/*
6506 	 * Accesss bits for page and section. Note that the entry
6507 	 * is not in TLB yet, so TLB flush is not necessary.
6508 	 *
6509 	 * QQQ: This is hardware emulation, we do not call userret()
6510 	 *      for aborts from user mode.
6511 	 */
6512 	if (idx == FAULT_ACCESS_L2) {
6513 		pte1 = pte1_load(pmap_pte1(pmap, far));
6514 		if (pte1_is_link(pte1)) {
6515 			/* L2 page table should exist and be mapped. */
6516 			pte2p = pt2map_entry(far);
6517 			pte2 = pte2_load(pte2p);
6518 			if (pte2_is_valid(pte2)) {
6519 				pte2_store(pte2p, pte2 | PTE2_A);
6520 				PMAP_UNLOCK(pmap);
6521 				return (KERN_SUCCESS);
6522 			}
6523 		} else {
6524 			/*
6525 			 * We got L2 access fault but PTE1 is not a link.
6526 			 * Probably some race happened, do nothing.
6527 			 */
6528 			CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L2 - pmap %#x far %#x",
6529 			    __func__, pmap, far);
6530 			PMAP_UNLOCK(pmap);
6531 			return (KERN_SUCCESS);
6532 		}
6533 	}
6534 	if (idx == FAULT_ACCESS_L1) {
6535 		pte1p = pmap_pte1(pmap, far);
6536 		pte1 = pte1_load(pte1p);
6537 		if (pte1_is_section(pte1)) {
6538 			pte1_store(pte1p, pte1 | PTE1_A);
6539 			PMAP_UNLOCK(pmap);
6540 			return (KERN_SUCCESS);
6541 		} else {
6542 			/*
6543 			 * We got L1 access fault but PTE1 is not section
6544 			 * mapping. Probably some race happened, do nothing.
6545 			 */
6546 			CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L1 - pmap %#x far %#x",
6547 			    __func__, pmap, far);
6548 			PMAP_UNLOCK(pmap);
6549 			return (KERN_SUCCESS);
6550 		}
6551 	}
6552 
6553 	/*
6554 	 * Handle modify bits for page and section. Note that the modify
6555 	 * bit is emulated by software. So PTEx_RO is software read only
6556 	 * bit and PTEx_NM flag is real hardware read only bit.
6557 	 *
6558 	 * QQQ: This is hardware emulation, we do not call userret()
6559 	 *      for aborts from user mode.
6560 	 */
6561 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
6562 		pte1 = pte1_load(pmap_pte1(pmap, far));
6563 		if (pte1_is_link(pte1)) {
6564 			/* L2 page table should exist and be mapped. */
6565 			pte2p = pt2map_entry(far);
6566 			pte2 = pte2_load(pte2p);
6567 			if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
6568 			    (pte2 & PTE2_NM)) {
6569 				pte2_store(pte2p, pte2 & ~PTE2_NM);
6570 				tlb_flush(trunc_page(far));
6571 				PMAP_UNLOCK(pmap);
6572 				return (KERN_SUCCESS);
6573 			}
6574 		} else {
6575 			/*
6576 			 * We got L2 permission fault but PTE1 is not a link.
6577 			 * Probably some race happened, do nothing.
6578 			 */
6579 			CTR3(KTR_PMAP, "%s: FAULT_PERM_L2 - pmap %#x far %#x",
6580 			    __func__, pmap, far);
6581 			PMAP_UNLOCK(pmap);
6582 			return (KERN_SUCCESS);
6583 		}
6584 	}
6585 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
6586 		pte1p = pmap_pte1(pmap, far);
6587 		pte1 = pte1_load(pte1p);
6588 		if (pte1_is_section(pte1)) {
6589 			if (!(pte1 & PTE1_RO) && (pte1 & PTE1_NM)) {
6590 				pte1_store(pte1p, pte1 & ~PTE1_NM);
6591 				tlb_flush(pte1_trunc(far));
6592 				PMAP_UNLOCK(pmap);
6593 				return (KERN_SUCCESS);
6594 			}
6595 		} else {
6596 			/*
6597 			 * We got L1 permission fault but PTE1 is not section
6598 			 * mapping. Probably some race happened, do nothing.
6599 			 */
6600 			CTR3(KTR_PMAP, "%s: FAULT_PERM_L1 - pmap %#x far %#x",
6601 			    __func__, pmap, far);
6602 			PMAP_UNLOCK(pmap);
6603 			return (KERN_SUCCESS);
6604 		}
6605 	}
6606 
6607 	/*
6608 	 * QQQ: The previous code, mainly fast handling of access and
6609 	 *      modify bits aborts, could be moved to ASM. Now we are
6610 	 *      starting to deal with not fast aborts.
6611 	 */
6612 	PMAP_UNLOCK(pmap);
6613 	return (KERN_FAILURE);
6614 }
6615 
6616 #if defined(PMAP_DEBUG)
6617 /*
6618  *  Reusing of KVA used in pmap_zero_page function !!!
6619  */
6620 static void
6621 pmap_zero_page_check(vm_page_t m)
6622 {
6623 	pt2_entry_t *cmap2_pte2p;
6624 	uint32_t *p, *end;
6625 	struct pcpu *pc;
6626 
6627 	sched_pin();
6628 	pc = get_pcpu();
6629 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6630 	mtx_lock(&pc->pc_cmap_lock);
6631 	if (pte2_load(cmap2_pte2p) != 0)
6632 		panic("%s: CMAP2 busy", __func__);
6633 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6634 	    vm_page_pte2_attr(m)));
6635 	end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
6636 	for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
6637 		if (*p != 0)
6638 			panic("%s: page %p not zero, va: %p", __func__, m,
6639 			    pc->pc_cmap2_addr);
6640 	pte2_clear(cmap2_pte2p);
6641 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6642 	sched_unpin();
6643 	mtx_unlock(&pc->pc_cmap_lock);
6644 }
6645 
6646 int
6647 pmap_pid_dump(int pid)
6648 {
6649 	pmap_t pmap;
6650 	struct proc *p;
6651 	int npte2 = 0;
6652 	int i, j, index;
6653 
6654 	sx_slock(&allproc_lock);
6655 	FOREACH_PROC_IN_SYSTEM(p) {
6656 		if (p->p_pid != pid || p->p_vmspace == NULL)
6657 			continue;
6658 		index = 0;
6659 		pmap = vmspace_pmap(p->p_vmspace);
6660 		for (i = 0; i < NPTE1_IN_PT1; i++) {
6661 			pt1_entry_t pte1;
6662 			pt2_entry_t *pte2p, pte2;
6663 			vm_offset_t base, va;
6664 			vm_paddr_t pa;
6665 			vm_page_t m;
6666 
6667 			base = i << PTE1_SHIFT;
6668 			pte1 = pte1_load(&pmap->pm_pt1[i]);
6669 
6670 			if (pte1_is_section(pte1)) {
6671 				/*
6672 				 * QQQ: Do something here!
6673 				 */
6674 			} else if (pte1_is_link(pte1)) {
6675 				for (j = 0; j < NPTE2_IN_PT2; j++) {
6676 					va = base + (j << PAGE_SHIFT);
6677 					if (va >= VM_MIN_KERNEL_ADDRESS) {
6678 						if (index) {
6679 							index = 0;
6680 							printf("\n");
6681 						}
6682 						sx_sunlock(&allproc_lock);
6683 						return (npte2);
6684 					}
6685 					pte2p = pmap_pte2(pmap, va);
6686 					pte2 = pte2_load(pte2p);
6687 					pmap_pte2_release(pte2p);
6688 					if (!pte2_is_valid(pte2))
6689 						continue;
6690 
6691 					pa = pte2_pa(pte2);
6692 					m = PHYS_TO_VM_PAGE(pa);
6693 					printf("va: 0x%x, pa: 0x%x, w: %d, "
6694 					    "f: 0x%x", va, pa,
6695 					    m->ref_count, m->flags);
6696 					npte2++;
6697 					index++;
6698 					if (index >= 2) {
6699 						index = 0;
6700 						printf("\n");
6701 					} else {
6702 						printf(" ");
6703 					}
6704 				}
6705 			}
6706 		}
6707 	}
6708 	sx_sunlock(&allproc_lock);
6709 	return (npte2);
6710 }
6711 
6712 #endif
6713 
6714 #ifdef DDB
6715 static pt2_entry_t *
6716 pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
6717 {
6718 	pt1_entry_t pte1;
6719 	vm_paddr_t pt2pg_pa;
6720 
6721 	pte1 = pte1_load(pmap_pte1(pmap, va));
6722 	if (!pte1_is_link(pte1))
6723 		return (NULL);
6724 
6725 	if (pmap_is_current(pmap))
6726 		return (pt2map_entry(va));
6727 
6728 	/* Note that L2 page table size is not equal to PAGE_SIZE. */
6729 	pt2pg_pa = trunc_page(pte1_link_pa(pte1));
6730 	if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
6731 		pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
6732 #ifdef SMP
6733 		PMAP3cpu = PCPU_GET(cpuid);
6734 #endif
6735 		tlb_flush_local((vm_offset_t)PADDR3);
6736 	}
6737 #ifdef SMP
6738 	else if (PMAP3cpu != PCPU_GET(cpuid)) {
6739 		PMAP3cpu = PCPU_GET(cpuid);
6740 		tlb_flush_local((vm_offset_t)PADDR3);
6741 	}
6742 #endif
6743 	return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
6744 }
6745 
6746 static void
6747 dump_pmap(pmap_t pmap)
6748 {
6749 
6750 	printf("pmap %p\n", pmap);
6751 	printf("  pm_pt1: %p\n", pmap->pm_pt1);
6752 	printf("  pm_pt2tab: %p\n", pmap->pm_pt2tab);
6753 	printf("  pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
6754 }
6755 
6756 DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
6757 {
6758 
6759 	pmap_t pmap;
6760 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
6761 		dump_pmap(pmap);
6762 	}
6763 }
6764 
6765 static int
6766 pte2_class(pt2_entry_t pte2)
6767 {
6768 	int cls;
6769 
6770 	cls = (pte2 >> 2) & 0x03;
6771 	cls |= (pte2 >> 4) & 0x04;
6772 	return (cls);
6773 }
6774 
6775 static void
6776 dump_section(pmap_t pmap, uint32_t pte1_idx)
6777 {
6778 }
6779 
6780 static void
6781 dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok)
6782 {
6783 	uint32_t i;
6784 	vm_offset_t va;
6785 	pt2_entry_t *pte2p, pte2;
6786 	vm_page_t m;
6787 
6788 	va = pte1_idx << PTE1_SHIFT;
6789 	pte2p = pmap_pte2_ddb(pmap, va);
6790 	for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
6791 		pte2 = pte2_load(pte2p);
6792 		if (pte2 == 0)
6793 			continue;
6794 		if (!pte2_is_valid(pte2)) {
6795 			printf(" 0x%08X: 0x%08X", va, pte2);
6796 			if (!invalid_ok)
6797 				printf(" - not valid !!!");
6798 			printf("\n");
6799 			continue;
6800 		}
6801 		m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
6802 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
6803 		    pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
6804 		if (m != NULL) {
6805 			printf(" v:%d w:%d f:0x%04X\n", m->valid,
6806 			    m->ref_count, m->flags);
6807 		} else {
6808 			printf("\n");
6809 		}
6810 	}
6811 }
6812 
6813 static __inline boolean_t
6814 is_pv_chunk_space(vm_offset_t va)
6815 {
6816 
6817 	if ((((vm_offset_t)pv_chunkbase) <= va) &&
6818 	    (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
6819 		return (TRUE);
6820 	return (FALSE);
6821 }
6822 
6823 DB_SHOW_COMMAND(pmap, pmap_pmap_print)
6824 {
6825 	/* XXX convert args. */
6826 	pmap_t pmap = (pmap_t)addr;
6827 	pt1_entry_t pte1;
6828 	pt2_entry_t pte2;
6829 	vm_offset_t va, eva;
6830 	vm_page_t m;
6831 	uint32_t i;
6832 	boolean_t invalid_ok, dump_link_ok, dump_pv_chunk;
6833 
6834 	if (have_addr) {
6835 		pmap_t pm;
6836 
6837 		LIST_FOREACH(pm, &allpmaps, pm_list)
6838 			if (pm == pmap) break;
6839 		if (pm == NULL) {
6840 			printf("given pmap %p is not in allpmaps list\n", pmap);
6841 			return;
6842 		}
6843 	} else
6844 		pmap = PCPU_GET(curpmap);
6845 
6846 	eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
6847 	dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */
6848 
6849 	printf("pmap: 0x%08X\n", (uint32_t)pmap);
6850 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6851 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6852 
6853 	for(i = 0; i < NPTE1_IN_PT1; i++) {
6854 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6855 		if (pte1 == 0)
6856 			continue;
6857 		va = i << PTE1_SHIFT;
6858 		if (va >= eva)
6859 			break;
6860 
6861 		if (pte1_is_section(pte1)) {
6862 			printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
6863 			    !!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
6864 			dump_section(pmap, i);
6865 		} else if (pte1_is_link(pte1)) {
6866 			dump_link_ok = TRUE;
6867 			invalid_ok = FALSE;
6868 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6869 			m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
6870 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
6871 			    va, pte1, pte2, m);
6872 			if (is_pv_chunk_space(va)) {
6873 				printf(" - pv_chunk space");
6874 				if (dump_pv_chunk)
6875 					invalid_ok = TRUE;
6876 				else
6877 					dump_link_ok = FALSE;
6878 			}
6879 			else if (m != NULL)
6880 				printf(" w:%d w2:%u", m->ref_count,
6881 				    pt2_wirecount_get(m, pte1_index(va)));
6882 			if (pte2 == 0)
6883 				printf(" !!! pt2tab entry is ZERO");
6884 			else if (pte2_pa(pte1) != pte2_pa(pte2))
6885 				printf(" !!! pt2tab entry is DIFFERENT - m: %p",
6886 				    PHYS_TO_VM_PAGE(pte2_pa(pte2)));
6887 			printf("\n");
6888 			if (dump_link_ok)
6889 				dump_link(pmap, i, invalid_ok);
6890 		} else
6891 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6892 	}
6893 }
6894 
6895 static void
6896 dump_pt2tab(pmap_t pmap)
6897 {
6898 	uint32_t i;
6899 	pt2_entry_t pte2;
6900 	vm_offset_t va;
6901 	vm_paddr_t pa;
6902 	vm_page_t m;
6903 
6904 	printf("PT2TAB:\n");
6905 	for (i = 0; i < PT2TAB_ENTRIES; i++) {
6906 		pte2 = pte2_load(&pmap->pm_pt2tab[i]);
6907 		if (!pte2_is_valid(pte2))
6908 			continue;
6909 		va = i << PT2TAB_SHIFT;
6910 		pa = pte2_pa(pte2);
6911 		m = PHYS_TO_VM_PAGE(pa);
6912 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
6913 		    pte2_class(pte2), !!(pte2 & PTE2_S), m);
6914 		if (m != NULL)
6915 			printf(" , w: %d, f: 0x%04X pidx: %lld",
6916 			    m->ref_count, m->flags, m->pindex);
6917 		printf("\n");
6918 	}
6919 }
6920 
6921 DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
6922 {
6923 	/* XXX convert args. */
6924 	pmap_t pmap = (pmap_t)addr;
6925 	pt1_entry_t pte1;
6926 	pt2_entry_t pte2;
6927 	vm_offset_t va;
6928 	uint32_t i, start;
6929 
6930 	if (have_addr) {
6931 		printf("supported only on current pmap\n");
6932 		return;
6933 	}
6934 
6935 	pmap = PCPU_GET(curpmap);
6936 	printf("curpmap: 0x%08X\n", (uint32_t)pmap);
6937 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6938 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6939 
6940 	start = pte1_index((vm_offset_t)PT2MAP);
6941 	for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
6942 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6943 		if (pte1 == 0)
6944 			continue;
6945 		va = i << PTE1_SHIFT;
6946 		if (pte1_is_section(pte1)) {
6947 			printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
6948 			    !!(pte1 & PTE1_S));
6949 			dump_section(pmap, i);
6950 		} else if (pte1_is_link(pte1)) {
6951 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6952 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
6953 			    pte1, pte2);
6954 			if (pte2 == 0)
6955 				printf("  !!! pt2tab entry is ZERO\n");
6956 		} else
6957 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6958 	}
6959 	dump_pt2tab(pmap);
6960 }
6961 #endif
6962