xref: /freebsd/sys/arm/arm/pmap-v6.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause AND BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
8  * Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
9  * Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
41  */
42 /*-
43  * Copyright (c) 2003 Networks Associates Technology, Inc.
44  * All rights reserved.
45  *
46  * This software was developed for the FreeBSD Project by Jake Burkholder,
47  * Safeport Network Services, and Network Associates Laboratories, the
48  * Security Research Division of Network Associates, Inc. under
49  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
50  * CHATS research program.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  *
61  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71  * SUCH DAMAGE.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 /*
78  *	Manages physical address maps.
79  *
80  *	Since the information managed by this module is
81  *	also stored by the logical address mapping module,
82  *	this module may throw away valid virtual-to-physical
83  *	mappings at almost any time.  However, invalidations
84  *	of virtual-to-physical mappings must be done as
85  *	requested.
86  *
87  *	In order to cope with hardware architectures which
88  *	make virtual-to-physical map invalidates expensive,
89  *	this module may delay invalidate or reduced protection
90  *	operations until such time as they are actually
91  *	necessary.  This module is given full information as
92  *	to which processors are currently using which maps,
93  *	and to when physical maps must be made correct.
94  */
95 
96 #include "opt_vm.h"
97 #include "opt_pmap.h"
98 #include "opt_ddb.h"
99 
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/lock.h>
105 #include <sys/proc.h>
106 #include <sys/rwlock.h>
107 #include <sys/malloc.h>
108 #include <sys/vmmeter.h>
109 #include <sys/malloc.h>
110 #include <sys/mman.h>
111 #include <sys/sf_buf.h>
112 #include <sys/smp.h>
113 #include <sys/sched.h>
114 #include <sys/sysctl.h>
115 
116 #ifdef DDB
117 #include <ddb/ddb.h>
118 #endif
119 
120 #include <vm/vm.h>
121 #include <vm/uma.h>
122 #include <vm/pmap.h>
123 #include <vm/vm_param.h>
124 #include <vm/vm_kern.h>
125 #include <vm/vm_object.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_page.h>
128 #include <vm/vm_pageout.h>
129 #include <vm/vm_phys.h>
130 #include <vm/vm_extern.h>
131 #include <vm/vm_reserv.h>
132 #include <sys/lock.h>
133 #include <sys/mutex.h>
134 
135 #include <machine/md_var.h>
136 #include <machine/pmap_var.h>
137 #include <machine/cpu.h>
138 #include <machine/pcb.h>
139 #include <machine/sf_buf.h>
140 #ifdef SMP
141 #include <machine/smp.h>
142 #endif
143 #ifndef PMAP_SHPGPERPROC
144 #define PMAP_SHPGPERPROC 200
145 #endif
146 
147 #ifndef DIAGNOSTIC
148 #define PMAP_INLINE	__inline
149 #else
150 #define PMAP_INLINE
151 #endif
152 
153 #ifdef PMAP_DEBUG
154 static void pmap_zero_page_check(vm_page_t m);
155 void pmap_debug(int level);
156 int pmap_pid_dump(int pid);
157 
158 #define PDEBUG(_lev_,_stat_) \
159 	if (pmap_debug_level >= (_lev_)) \
160 		((_stat_))
161 #define dprintf printf
162 int pmap_debug_level = 1;
163 #else   /* PMAP_DEBUG */
164 #define PDEBUG(_lev_,_stat_) /* Nothing */
165 #define dprintf(x, arg...)
166 #endif  /* PMAP_DEBUG */
167 
168 /*
169  *  Level 2 page tables map definion ('max' is excluded).
170  */
171 
172 #define PT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
173 #define PT2V_MAX_ADDRESS	((vm_offset_t)PT2MAP + PT2MAP_SIZE)
174 
175 #define UPT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
176 #define UPT2V_MAX_ADDRESS \
177     ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
178 
179 /*
180  *  Promotion to a 1MB (PTE1) page mapping requires that the corresponding
181  *  4KB (PTE2) page mappings have identical settings for the following fields:
182  */
183 #define PTE2_PROMOTE	(PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG |	\
184 			 PTE2_NX | PTE2_RO | PTE2_U | PTE2_W |		\
185 			 PTE2_ATTR_MASK)
186 
187 #define PTE1_PROMOTE	(PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG |	\
188 			 PTE1_NX | PTE1_RO | PTE1_U | PTE1_W |		\
189 			 PTE1_ATTR_MASK)
190 
191 #define ATTR_TO_L1(l2_attr)	((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
192 				 (((l2_attr) & L2_C)    ? L1_S_C    : 0) | \
193 				 (((l2_attr) & L2_B)    ? L1_S_B    : 0) | \
194 				 (((l2_attr) & PTE2_A)  ? PTE1_A    : 0) | \
195 				 (((l2_attr) & PTE2_NM) ? PTE1_NM   : 0) | \
196 				 (((l2_attr) & PTE2_S)  ? PTE1_S    : 0) | \
197 				 (((l2_attr) & PTE2_NG) ? PTE1_NG   : 0) | \
198 				 (((l2_attr) & PTE2_NX) ? PTE1_NX   : 0) | \
199 				 (((l2_attr) & PTE2_RO) ? PTE1_RO   : 0) | \
200 				 (((l2_attr) & PTE2_U)  ? PTE1_U    : 0) | \
201 				 (((l2_attr) & PTE2_W)  ? PTE1_W    : 0))
202 
203 #define ATTR_TO_L2(l1_attr)	((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
204 				 (((l1_attr) & L1_S_C)    ? L2_C    : 0) | \
205 				 (((l1_attr) & L1_S_B)    ? L2_B    : 0) | \
206 				 (((l1_attr) & PTE1_A)    ? PTE2_A  : 0) | \
207 				 (((l1_attr) & PTE1_NM)   ? PTE2_NM : 0) | \
208 				 (((l1_attr) & PTE1_S)    ? PTE2_S  : 0) | \
209 				 (((l1_attr) & PTE1_NG)   ? PTE2_NG : 0) | \
210 				 (((l1_attr) & PTE1_NX)   ? PTE2_NX : 0) | \
211 				 (((l1_attr) & PTE1_RO)   ? PTE2_RO : 0) | \
212 				 (((l1_attr) & PTE1_U)    ? PTE2_U  : 0) | \
213 				 (((l1_attr) & PTE1_W)    ? PTE2_W  : 0))
214 
215 /*
216  *  PTE2 descriptors creation macros.
217  */
218 #define PTE2_ATTR_DEFAULT	vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
219 #define PTE2_ATTR_PT		vm_memattr_to_pte2(pt_memattr)
220 
221 #define PTE2_KPT(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
222 #define PTE2_KPT_NG(pa)	PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
223 
224 #define PTE2_KRW(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
225 #define PTE2_KRO(pa)	PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
226 
227 #define PV_STATS
228 #ifdef PV_STATS
229 #define PV_STAT(x)	do { x ; } while (0)
230 #else
231 #define PV_STAT(x)	do { } while (0)
232 #endif
233 
234 /*
235  *  The boot_pt1 is used temporary in very early boot stage as L1 page table.
236  *  We can init many things with no memory allocation thanks to its static
237  *  allocation and this brings two main advantages:
238  *  (1) other cores can be started very simply,
239  *  (2) various boot loaders can be supported as its arguments can be processed
240  *      in virtual address space and can be moved to safe location before
241  *      first allocation happened.
242  *  Only disadvantage is that boot_pt1 is used only in very early boot stage.
243  *  However, the table is uninitialized and so lays in bss. Therefore kernel
244  *  image size is not influenced.
245  *
246  *  QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
247  *       CPU suspend/resume game.
248  */
249 extern pt1_entry_t boot_pt1[];
250 
251 vm_paddr_t base_pt1;
252 pt1_entry_t *kern_pt1;
253 pt2_entry_t *kern_pt2tab;
254 pt2_entry_t *PT2MAP;
255 
256 static uint32_t ttb_flags;
257 static vm_memattr_t pt_memattr;
258 ttb_entry_t pmap_kern_ttb;
259 
260 struct pmap kernel_pmap_store;
261 LIST_HEAD(pmaplist, pmap);
262 static struct pmaplist allpmaps;
263 static struct mtx allpmaps_lock;
264 
265 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
266 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
267 
268 static vm_offset_t kernel_vm_end_new;
269 vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
270 vm_offset_t vm_max_kernel_address;
271 vm_paddr_t kernel_l1pa;
272 
273 static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
274 
275 /*
276  *  Data for the pv entry allocation mechanism
277  */
278 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
279 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
280 static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
281 static int shpgperproc = PMAP_SHPGPERPROC;
282 
283 struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
284 int pv_maxchunks;			/* How many chunks we have KVA for */
285 vm_offset_t pv_vafree;			/* freelist stored in the PTE */
286 
287 vm_paddr_t first_managed_pa;
288 #define	pa_to_pvh(pa)	(&pv_table[pte1_index(pa - first_managed_pa)])
289 
290 /*
291  *  All those kernel PT submaps that BSD is so fond of
292  */
293 caddr_t _tmppt = 0;
294 
295 /*
296  *  Crashdump maps.
297  */
298 static caddr_t crashdumpmap;
299 
300 static pt2_entry_t *PMAP1 = NULL, *PMAP2;
301 static pt2_entry_t *PADDR1 = NULL, *PADDR2;
302 #ifdef DDB
303 static pt2_entry_t *PMAP3;
304 static pt2_entry_t *PADDR3;
305 static int PMAP3cpu __unused; /* for SMP only */
306 #endif
307 #ifdef SMP
308 static int PMAP1cpu;
309 static int PMAP1changedcpu;
310 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
311     &PMAP1changedcpu, 0,
312     "Number of times pmap_pte2_quick changed CPU with same PMAP1");
313 #endif
314 static int PMAP1changed;
315 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
316     &PMAP1changed, 0,
317     "Number of times pmap_pte2_quick changed PMAP1");
318 static int PMAP1unchanged;
319 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
320     &PMAP1unchanged, 0,
321     "Number of times pmap_pte2_quick didn't change PMAP1");
322 static struct mtx PMAP2mutex;
323 
324 /*
325  * Internal flags for pmap_enter()'s helper functions.
326  */
327 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
328 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
329 
330 static __inline void pt2_wirecount_init(vm_page_t m);
331 static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
332     vm_offset_t va);
333 static int pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1,
334     u_int flags, vm_page_t m);
335 void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
336 
337 /*
338  *  Function to set the debug level of the pmap code.
339  */
340 #ifdef PMAP_DEBUG
341 void
342 pmap_debug(int level)
343 {
344 
345 	pmap_debug_level = level;
346 	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
347 }
348 #endif /* PMAP_DEBUG */
349 
350 /*
351  *  This table must corespond with memory attribute configuration in vm.h.
352  *  First entry is used for normal system mapping.
353  *
354  *  Device memory is always marked as shared.
355  *  Normal memory is shared only in SMP .
356  *  Not outer shareable bits are not used yet.
357  *  Class 6 cannot be used on ARM11.
358  */
359 #define TEXDEF_TYPE_SHIFT	0
360 #define TEXDEF_TYPE_MASK	0x3
361 #define TEXDEF_INNER_SHIFT	2
362 #define TEXDEF_INNER_MASK	0x3
363 #define TEXDEF_OUTER_SHIFT	4
364 #define TEXDEF_OUTER_MASK	0x3
365 #define TEXDEF_NOS_SHIFT	6
366 #define TEXDEF_NOS_MASK		0x1
367 
368 #define TEX(t, i, o, s) 			\
369 		((t) << TEXDEF_TYPE_SHIFT) |	\
370 		((i) << TEXDEF_INNER_SHIFT) |	\
371 		((o) << TEXDEF_OUTER_SHIFT | 	\
372 		((s) << TEXDEF_NOS_SHIFT))
373 
374 static uint32_t tex_class[8] = {
375 /*	    type      inner cache outer cache */
376 	TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0),  /* 0 - ATTR_WB_WA	*/
377 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 1 - ATTR_NOCACHE	*/
378 	TEX(PRRR_DEV, NMRR_NC,	  NMRR_NC,    0),  /* 2 - ATTR_DEVICE	*/
379 	TEX(PRRR_SO,  NMRR_NC,	  NMRR_NC,    0),  /* 3 - ATTR_SO	*/
380 	TEX(PRRR_MEM, NMRR_WT,	  NMRR_WT,    0),  /* 4 - ATTR_WT	*/
381 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 5 - NOT USED YET	*/
382 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 6 - NOT USED YET	*/
383 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 7 - NOT USED YET	*/
384 };
385 #undef TEX
386 
387 static uint32_t pte2_attr_tab[8] = {
388 	PTE2_ATTR_WB_WA,	/* 0 - VM_MEMATTR_WB_WA */
389 	PTE2_ATTR_NOCACHE,	/* 1 - VM_MEMATTR_NOCACHE */
390 	PTE2_ATTR_DEVICE,	/* 2 - VM_MEMATTR_DEVICE */
391 	PTE2_ATTR_SO,		/* 3 - VM_MEMATTR_SO */
392 	PTE2_ATTR_WT,		/* 4 - VM_MEMATTR_WRITE_THROUGH */
393 	0,			/* 5 - NOT USED YET */
394 	0,			/* 6 - NOT USED YET */
395 	0			/* 7 - NOT USED YET */
396 };
397 CTASSERT(VM_MEMATTR_WB_WA == 0);
398 CTASSERT(VM_MEMATTR_NOCACHE == 1);
399 CTASSERT(VM_MEMATTR_DEVICE == 2);
400 CTASSERT(VM_MEMATTR_SO == 3);
401 CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
402 #define	VM_MEMATTR_END	(VM_MEMATTR_WRITE_THROUGH + 1)
403 
404 boolean_t
405 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
406 {
407 
408 	return (mode >= 0 && mode < VM_MEMATTR_END);
409 }
410 
411 static inline uint32_t
412 vm_memattr_to_pte2(vm_memattr_t ma)
413 {
414 
415 	KASSERT((u_int)ma < VM_MEMATTR_END,
416 	    ("%s: bad vm_memattr_t %d", __func__, ma));
417 	return (pte2_attr_tab[(u_int)ma]);
418 }
419 
420 static inline uint32_t
421 vm_page_pte2_attr(vm_page_t m)
422 {
423 
424 	return (vm_memattr_to_pte2(m->md.pat_mode));
425 }
426 
427 /*
428  * Convert TEX definition entry to TTB flags.
429  */
430 static uint32_t
431 encode_ttb_flags(int idx)
432 {
433 	uint32_t inner, outer, nos, reg;
434 
435 	inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
436 		TEXDEF_INNER_MASK;
437 	outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
438 		TEXDEF_OUTER_MASK;
439 	nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
440 		TEXDEF_NOS_MASK;
441 
442 	reg = nos << 5;
443 	reg |= outer << 3;
444 	if (cpuinfo.coherent_walk)
445 		reg |= (inner & 0x1) << 6;
446 	reg |= (inner & 0x2) >> 1;
447 #ifdef SMP
448 	ARM_SMP_UP(
449 		reg |= 1 << 1,
450 	);
451 #endif
452 	return reg;
453 }
454 
455 /*
456  *  Set TEX remapping registers in current CPU.
457  */
458 void
459 pmap_set_tex(void)
460 {
461 	uint32_t prrr, nmrr;
462 	uint32_t type, inner, outer, nos;
463 	int i;
464 
465 #ifdef PMAP_PTE_NOCACHE
466 	/* XXX fixme */
467 	if (cpuinfo.coherent_walk) {
468 		pt_memattr = VM_MEMATTR_WB_WA;
469 		ttb_flags = encode_ttb_flags(0);
470 	}
471 	else {
472 		pt_memattr = VM_MEMATTR_NOCACHE;
473 		ttb_flags = encode_ttb_flags(1);
474 	}
475 #else
476 	pt_memattr = VM_MEMATTR_WB_WA;
477 	ttb_flags = encode_ttb_flags(0);
478 #endif
479 
480 	prrr = 0;
481 	nmrr = 0;
482 
483 	/* Build remapping register from TEX classes. */
484 	for (i = 0; i < 8; i++) {
485 		type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
486 			TEXDEF_TYPE_MASK;
487 		inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
488 			TEXDEF_INNER_MASK;
489 		outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
490 			TEXDEF_OUTER_MASK;
491 		nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
492 			TEXDEF_NOS_MASK;
493 
494 		prrr |= type  << (i * 2);
495 		prrr |= nos   << (i + 24);
496 		nmrr |= inner << (i * 2);
497 		nmrr |= outer << (i * 2 + 16);
498 	}
499 	/* Add shareable bits for device memory. */
500 	prrr |= PRRR_DS0 | PRRR_DS1;
501 
502 	/* Add shareable bits for normal memory in SMP case. */
503 #ifdef SMP
504 	ARM_SMP_UP(
505 		prrr |= PRRR_NS1,
506 	);
507 #endif
508 	cp15_prrr_set(prrr);
509 	cp15_nmrr_set(nmrr);
510 
511 	/* Caches are disabled, so full TLB flush should be enough. */
512 	tlb_flush_all_local();
513 }
514 
515 /*
516  * Remap one vm_meattr class to another one. This can be useful as
517  * workaround for SOC errata, e.g. if devices must be accessed using
518  * SO memory class.
519  *
520  * !!! Please note that this function is absolutely last resort thing.
521  * It should not be used under normal circumstances. !!!
522  *
523  * Usage rules:
524  * - it shall be called after pmap_bootstrap_prepare() and before
525  *   cpu_mp_start() (thus only on boot CPU). In practice, it's expected
526  *   to be called from platform_attach() or platform_late_init().
527  *
528  * - if remapping doesn't change caching mode, or until uncached class
529  *   is remapped to any kind of cached one, then no other restriction exists.
530  *
531  * - if pmap_remap_vm_attr() changes caching mode, but both (original and
532  *   remapped) remain cached, then caller is resposible for calling
533  *   of dcache_wbinv_poc_all().
534  *
535  * - remapping of any kind of cached class to uncached is not permitted.
536  */
537 void
538 pmap_remap_vm_attr(vm_memattr_t old_attr, vm_memattr_t new_attr)
539 {
540 	int old_idx, new_idx;
541 
542 	/* Map VM memattrs to indexes to tex_class table. */
543 	old_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)old_attr]);
544 	new_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)new_attr]);
545 
546 	/* Replace TEX attribute and apply it. */
547 	tex_class[old_idx] = tex_class[new_idx];
548 	pmap_set_tex();
549 }
550 
551 /*
552  * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
553  * KERNBASE is mapped by first L2 page table in L2 page table page. It
554  * meets same constrain due to PT2MAP being placed just under KERNBASE.
555  */
556 CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
557 CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
558 
559 /*
560  *  In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
561  *  For now, anyhow, the following check must be fulfilled.
562  */
563 CTASSERT(PAGE_SIZE == PTE2_SIZE);
564 /*
565  *  We don't want to mess up MI code with all MMU and PMAP definitions,
566  *  so some things, which depend on other ones, are defined independently.
567  *  Now, it is time to check that we don't screw up something.
568  */
569 CTASSERT(PDRSHIFT == PTE1_SHIFT);
570 /*
571  *  Check L1 and L2 page table entries definitions consistency.
572  */
573 CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
574 CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
575 /*
576  *  Check L2 page tables page consistency.
577  */
578 CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
579 CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
580 /*
581  *  Check PT2TAB consistency.
582  *  PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
583  *  This should be done without remainder.
584  */
585 CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
586 
587 /*
588  *	A PT2MAP magic.
589  *
590  *  All level 2 page tables (PT2s) are mapped continuously and accordingly
591  *  into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
592  *  be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
593  *  must be used together, but not necessary at once. The first PT2 in a page
594  *  must map things on correctly aligned address and the others must follow
595  *  in right order.
596  */
597 #define NB_IN_PT2TAB	(PT2TAB_ENTRIES * sizeof(pt2_entry_t))
598 #define NPT2_IN_PT2TAB	(NB_IN_PT2TAB / NB_IN_PT2)
599 #define NPG_IN_PT2TAB	(NB_IN_PT2TAB / PAGE_SIZE)
600 
601 /*
602  *  Check PT2TAB consistency.
603  *  NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
604  *  NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
605  *  The both should be done without remainder.
606  */
607 CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
608 CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
609 /*
610  *  The implementation was made general, however, with the assumption
611  *  bellow in mind. In case of another value of NPG_IN_PT2TAB,
612  *  the code should be once more rechecked.
613  */
614 CTASSERT(NPG_IN_PT2TAB == 1);
615 
616 /*
617  *  Get offset of PT2 in a page
618  *  associated with given PT1 index.
619  */
620 static __inline u_int
621 page_pt2off(u_int pt1_idx)
622 {
623 
624 	return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
625 }
626 
627 /*
628  *  Get physical address of PT2
629  *  associated with given PT2s page and PT1 index.
630  */
631 static __inline vm_paddr_t
632 page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
633 {
634 
635 	return (pgpa + page_pt2off(pt1_idx));
636 }
637 
638 /*
639  *  Get first entry of PT2
640  *  associated with given PT2s page and PT1 index.
641  */
642 static __inline pt2_entry_t *
643 page_pt2(vm_offset_t pgva, u_int pt1_idx)
644 {
645 
646 	return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
647 }
648 
649 /*
650  *  Get virtual address of PT2s page (mapped in PT2MAP)
651  *  which holds PT2 which holds entry which maps given virtual address.
652  */
653 static __inline vm_offset_t
654 pt2map_pt2pg(vm_offset_t va)
655 {
656 
657 	va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
658 	return ((vm_offset_t)pt2map_entry(va));
659 }
660 
661 /*****************************************************************************
662  *
663  *     THREE pmap initialization milestones exist:
664  *
665  *  locore.S
666  *    -> fundamental init (including MMU) in ASM
667  *
668  *  initarm()
669  *    -> fundamental init continues in C
670  *    -> first available physical address is known
671  *
672  *    pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
673  *      -> basic (safe) interface for physical address allocation is made
674  *      -> basic (safe) interface for virtual mapping is made
675  *      -> limited not SMP coherent work is possible
676  *
677  *    -> more fundamental init continues in C
678  *    -> locks and some more things are available
679  *    -> all fundamental allocations and mappings are done
680  *
681  *    pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
682  *      -> phys_avail[] and virtual_avail is set
683  *      -> control is passed to vm subsystem
684  *      -> physical and virtual address allocation are off limit
685  *      -> low level mapping functions, some SMP coherent,
686  *         are available, which cannot be used before vm subsystem
687  *         is being inited
688  *
689  *  mi_startup()
690  *    -> vm subsystem is being inited
691  *
692  *      pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
693  *        -> pmap is fully inited
694  *
695  *****************************************************************************/
696 
697 /*****************************************************************************
698  *
699  *	PMAP first stage initialization and utility functions
700  *	for pre-bootstrap epoch.
701  *
702  *  After pmap_bootstrap_prepare() is called, the following functions
703  *  can be used:
704  *
705  *  (1) strictly only for this stage functions for physical page allocations,
706  *      virtual space allocations, and mappings:
707  *
708  *  vm_paddr_t pmap_preboot_get_pages(u_int num);
709  *  void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
710  *  vm_offset_t pmap_preboot_reserve_pages(u_int num);
711  *  vm_offset_t pmap_preboot_get_vpages(u_int num);
712  *  void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
713  *      vm_prot_t prot, vm_memattr_t attr);
714  *
715  *  (2) for all stages:
716  *
717  *  vm_paddr_t pmap_kextract(vm_offset_t va);
718  *
719  *  NOTE: This is not SMP coherent stage.
720  *
721  *****************************************************************************/
722 
723 #define KERNEL_P2V(pa) \
724     ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
725 #define KERNEL_V2P(va) \
726     ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
727 
728 static vm_paddr_t last_paddr;
729 
730 /*
731  *  Pre-bootstrap epoch page allocator.
732  */
733 vm_paddr_t
734 pmap_preboot_get_pages(u_int num)
735 {
736 	vm_paddr_t ret;
737 
738 	ret = last_paddr;
739 	last_paddr += num * PAGE_SIZE;
740 
741 	return (ret);
742 }
743 
744 /*
745  *	The fundamental initialization of PMAP stuff.
746  *
747  *  Some things already happened in locore.S and some things could happen
748  *  before pmap_bootstrap_prepare() is called, so let's recall what is done:
749  *  1. Caches are disabled.
750  *  2. We are running on virtual addresses already with 'boot_pt1'
751  *     as L1 page table.
752  *  3. So far, all virtual addresses can be converted to physical ones and
753  *     vice versa by the following macros:
754  *       KERNEL_P2V(pa) .... physical to virtual ones,
755  *       KERNEL_V2P(va) .... virtual to physical ones.
756  *
757  *  What is done herein:
758  *  1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
759  *  2. PT2MAP magic is brought to live.
760  *  3. Basic preboot functions for page allocations and mappings can be used.
761  *  4. Everything is prepared for L1 cache enabling.
762  *
763  *  Variations:
764  *  1. To use second TTB register, so kernel and users page tables will be
765  *     separated. This way process forking - pmap_pinit() - could be faster,
766  *     it saves physical pages and KVA per a process, and it's simple change.
767  *     However, it will lead, due to hardware matter, to the following:
768  *     (a) 2G space for kernel and 2G space for users.
769  *     (b) 1G space for kernel in low addresses and 3G for users above it.
770  *     A question is: Is the case (b) really an option? Note that case (b)
771  *     does save neither physical memory and KVA.
772  */
773 void
774 pmap_bootstrap_prepare(vm_paddr_t last)
775 {
776 	vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
777 	vm_offset_t pt2pg_va;
778 	pt1_entry_t *pte1p;
779 	pt2_entry_t *pte2p;
780 	u_int i;
781 	uint32_t l1_attr;
782 
783 	/*
784 	 * Now, we are going to make real kernel mapping. Note that we are
785 	 * already running on some mapping made in locore.S and we expect
786 	 * that it's large enough to ensure nofault access to physical memory
787 	 * allocated herein before switch.
788 	 *
789 	 * As kernel image and everything needed before are and will be mapped
790 	 * by section mappings, we align last physical address to PTE1_SIZE.
791 	 */
792 	last_paddr = pte1_roundup(last);
793 
794 	/*
795 	 * Allocate and zero page(s) for kernel L1 page table.
796 	 *
797 	 * Note that it's first allocation on space which was PTE1_SIZE
798 	 * aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
799 	 */
800 	base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
801 	kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
802 	bzero((void*)kern_pt1, NB_IN_PT1);
803 	pte1_sync_range(kern_pt1, NB_IN_PT1);
804 
805 	/* Allocate and zero page(s) for kernel PT2TAB. */
806 	pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
807 	kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
808 	bzero(kern_pt2tab, NB_IN_PT2TAB);
809 	pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
810 
811 	/* Allocate and zero page(s) for kernel L2 page tables. */
812 	pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
813 	pt2pg_va = KERNEL_P2V(pt2pg_pa);
814 	size = NKPT2PG * PAGE_SIZE;
815 	bzero((void*)pt2pg_va, size);
816 	pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
817 
818 	/*
819 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
820 	 * preallocated pages for kernel L2 page tables so that vm_page
821 	 * structures representing these pages will be created. The vm_page
822 	 * structures are required for promotion of the corresponding kernel
823 	 * virtual addresses to section mappings.
824 	 */
825 	vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
826 
827 	/*
828 	 * Insert allocated L2 page table pages to PT2TAB and make
829 	 * link to all PT2s in L1 page table. See how kernel_vm_end
830 	 * is initialized.
831 	 *
832 	 * We play simple and safe. So every KVA will have underlaying
833 	 * L2 page table, even kernel image mapped by sections.
834 	 */
835 	pte2p = kern_pt2tab_entry(KERNBASE);
836 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
837 		pt2tab_store(pte2p++, PTE2_KPT(pa));
838 
839 	pte1p = kern_pte1(KERNBASE);
840 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
841 		pte1_store(pte1p++, PTE1_LINK(pa));
842 
843 	/* Make section mappings for kernel. */
844 	l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
845 	pte1p = kern_pte1(KERNBASE);
846 	for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
847 		pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
848 
849 	/*
850 	 * Get free and aligned space for PT2MAP and make L1 page table links
851 	 * to L2 page tables held in PT2TAB.
852 	 *
853 	 * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
854 	 * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
855 	 * each entry in PT2TAB maps all PT2s in a page. This implies that
856 	 * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
857 	 */
858 	PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
859 	pte1p = kern_pte1((vm_offset_t)PT2MAP);
860 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
861 		pte1_store(pte1p++, PTE1_LINK(pa));
862 	}
863 
864 	/*
865 	 * Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
866 	 * Each pmap will hold own PT2TAB, so the mapping should be not global.
867 	 */
868 	pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
869 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
870 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
871 	}
872 
873 	/*
874 	 * Choose correct L2 page table and make mappings for allocations
875 	 * made herein which replaces temporary locore.S mappings after a while.
876 	 * Note that PT2MAP cannot be used until we switch to kern_pt1.
877 	 *
878 	 * Note, that these allocations started aligned on 1M section and
879 	 * kernel PT1 was allocated first. Making of mappings must follow
880 	 * order of physical allocations as we've used KERNEL_P2V() macro
881 	 * for virtual addresses resolution.
882 	 */
883 	pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
884 	pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
885 
886 	pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
887 
888 	/* Make mapping for kernel L1 page table. */
889 	for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
890 		pte2_store(pte2p++, PTE2_KPT(pa));
891 
892 	/* Make mapping for kernel PT2TAB. */
893 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
894 		pte2_store(pte2p++, PTE2_KPT(pa));
895 
896 	/* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
897 	pmap_kern_ttb = base_pt1 | ttb_flags;
898 	cpuinfo_reinit_mmu(pmap_kern_ttb);
899 	/*
900 	 * Initialize the first available KVA. As kernel image is mapped by
901 	 * sections, we are leaving some gap behind.
902 	 */
903 	virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
904 }
905 
906 /*
907  *  Setup L2 page table page for given KVA.
908  *  Used in pre-bootstrap epoch.
909  *
910  *  Note that we have allocated NKPT2PG pages for L2 page tables in advance
911  *  and used them for mapping KVA starting from KERNBASE. However, this is not
912  *  enough. Vectors and devices need L2 page tables too. Note that they are
913  *  even above VM_MAX_KERNEL_ADDRESS.
914  */
915 static __inline vm_paddr_t
916 pmap_preboot_pt2pg_setup(vm_offset_t va)
917 {
918 	pt2_entry_t *pte2p, pte2;
919 	vm_paddr_t pt2pg_pa;
920 
921 	/* Get associated entry in PT2TAB. */
922 	pte2p = kern_pt2tab_entry(va);
923 
924 	/* Just return, if PT2s page exists already. */
925 	pte2 = pt2tab_load(pte2p);
926 	if (pte2_is_valid(pte2))
927 		return (pte2_pa(pte2));
928 
929 	KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
930 	    ("%s: NKPT2PG too small", __func__));
931 
932 	/*
933 	 * Allocate page for PT2s and insert it to PT2TAB.
934 	 * In other words, map it into PT2MAP space.
935 	 */
936 	pt2pg_pa = pmap_preboot_get_pages(1);
937 	pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
938 
939 	/* Zero all PT2s in allocated page. */
940 	bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
941 	pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
942 
943 	return (pt2pg_pa);
944 }
945 
946 /*
947  *  Setup L2 page table for given KVA.
948  *  Used in pre-bootstrap epoch.
949  */
950 static void
951 pmap_preboot_pt2_setup(vm_offset_t va)
952 {
953 	pt1_entry_t *pte1p;
954 	vm_paddr_t pt2pg_pa, pt2_pa;
955 
956 	/* Setup PT2's page. */
957 	pt2pg_pa = pmap_preboot_pt2pg_setup(va);
958 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
959 
960 	/* Insert PT2 to PT1. */
961 	pte1p = kern_pte1(va);
962 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
963 }
964 
965 /*
966  *  Get L2 page entry associated with given KVA.
967  *  Used in pre-bootstrap epoch.
968  */
969 static __inline pt2_entry_t*
970 pmap_preboot_vtopte2(vm_offset_t va)
971 {
972 	pt1_entry_t *pte1p;
973 
974 	/* Setup PT2 if needed. */
975 	pte1p = kern_pte1(va);
976 	if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
977 		pmap_preboot_pt2_setup(va);
978 
979 	return (pt2map_entry(va));
980 }
981 
982 /*
983  *  Pre-bootstrap epoch page(s) mapping(s).
984  */
985 void
986 pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
987 {
988 	u_int i;
989 	pt2_entry_t *pte2p;
990 
991 	/* Map all the pages. */
992 	for (i = 0; i < num; i++) {
993 		pte2p = pmap_preboot_vtopte2(va);
994 		pte2_store(pte2p, PTE2_KRW(pa));
995 		va += PAGE_SIZE;
996 		pa += PAGE_SIZE;
997 	}
998 }
999 
1000 /*
1001  *  Pre-bootstrap epoch virtual space alocator.
1002  */
1003 vm_offset_t
1004 pmap_preboot_reserve_pages(u_int num)
1005 {
1006 	u_int i;
1007 	vm_offset_t start, va;
1008 	pt2_entry_t *pte2p;
1009 
1010 	/* Allocate virtual space. */
1011 	start = va = virtual_avail;
1012 	virtual_avail += num * PAGE_SIZE;
1013 
1014 	/* Zero the mapping. */
1015 	for (i = 0; i < num; i++) {
1016 		pte2p = pmap_preboot_vtopte2(va);
1017 		pte2_store(pte2p, 0);
1018 		va += PAGE_SIZE;
1019 	}
1020 
1021 	return (start);
1022 }
1023 
1024 /*
1025  *  Pre-bootstrap epoch page(s) allocation and mapping(s).
1026  */
1027 vm_offset_t
1028 pmap_preboot_get_vpages(u_int num)
1029 {
1030 	vm_paddr_t  pa;
1031 	vm_offset_t va;
1032 
1033 	/* Allocate physical page(s). */
1034 	pa = pmap_preboot_get_pages(num);
1035 
1036 	/* Allocate virtual space. */
1037 	va = virtual_avail;
1038 	virtual_avail += num * PAGE_SIZE;
1039 
1040 	/* Map and zero all. */
1041 	pmap_preboot_map_pages(pa, va, num);
1042 	bzero((void *)va, num * PAGE_SIZE);
1043 
1044 	return (va);
1045 }
1046 
1047 /*
1048  *  Pre-bootstrap epoch page mapping(s) with attributes.
1049  */
1050 void
1051 pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
1052     vm_prot_t prot, vm_memattr_t attr)
1053 {
1054 	u_int num;
1055 	u_int l1_attr, l1_prot, l2_prot, l2_attr;
1056 	pt1_entry_t *pte1p;
1057 	pt2_entry_t *pte2p;
1058 
1059 	l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
1060 	l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1061 	l2_attr = vm_memattr_to_pte2(attr);
1062 	l1_prot = ATTR_TO_L1(l2_prot);
1063 	l1_attr = ATTR_TO_L1(l2_attr);
1064 
1065 	/* Map all the pages. */
1066 	num = round_page(size);
1067 	while (num > 0) {
1068 		if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
1069 			pte1p = kern_pte1(va);
1070 			pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
1071 			va += PTE1_SIZE;
1072 			pa += PTE1_SIZE;
1073 			num -= PTE1_SIZE;
1074 		} else {
1075 			pte2p = pmap_preboot_vtopte2(va);
1076 			pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
1077 			va += PAGE_SIZE;
1078 			pa += PAGE_SIZE;
1079 			num -= PAGE_SIZE;
1080 		}
1081 	}
1082 }
1083 
1084 /*
1085  *  Extract from the kernel page table the physical address
1086  *  that is mapped by the given virtual address "va".
1087  */
1088 vm_paddr_t
1089 pmap_kextract(vm_offset_t va)
1090 {
1091 	vm_paddr_t pa;
1092 	pt1_entry_t pte1;
1093 	pt2_entry_t pte2;
1094 
1095 	pte1 = pte1_load(kern_pte1(va));
1096 	if (pte1_is_section(pte1)) {
1097 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1098 	} else if (pte1_is_link(pte1)) {
1099 		/*
1100 		 * We should beware of concurrent promotion that changes
1101 		 * pte1 at this point. However, it's not a problem as PT2
1102 		 * page is preserved by promotion in PT2TAB. So even if
1103 		 * it happens, using of PT2MAP is still safe.
1104 		 *
1105 		 * QQQ: However, concurrent removing is a problem which
1106 		 *      ends in abort on PT2MAP space. Locking must be used
1107 		 *      to deal with this.
1108 		 */
1109 		pte2 = pte2_load(pt2map_entry(va));
1110 		pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
1111 	}
1112 	else {
1113 		panic("%s: va %#x pte1 %#x", __func__, va, pte1);
1114 	}
1115 	return (pa);
1116 }
1117 
1118 /*
1119  *  Extract from the kernel page table the physical address
1120  *  that is mapped by the given virtual address "va". Also
1121  *  return L2 page table entry which maps the address.
1122  *
1123  *  This is only intended to be used for panic dumps.
1124  */
1125 vm_paddr_t
1126 pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
1127 {
1128 	vm_paddr_t pa;
1129 	pt1_entry_t pte1;
1130 	pt2_entry_t pte2;
1131 
1132 	pte1 = pte1_load(kern_pte1(va));
1133 	if (pte1_is_section(pte1)) {
1134 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1135 		pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
1136 	} else if (pte1_is_link(pte1)) {
1137 		pte2 = pte2_load(pt2map_entry(va));
1138 		pa = pte2_pa(pte2);
1139 	} else {
1140 		pte2 = 0;
1141 		pa = 0;
1142 	}
1143 	if (pte2p != NULL)
1144 		*pte2p = pte2;
1145 	return (pa);
1146 }
1147 
1148 /*****************************************************************************
1149  *
1150  *	PMAP second stage initialization and utility functions
1151  *	for bootstrap epoch.
1152  *
1153  *  After pmap_bootstrap() is called, the following functions for
1154  *  mappings can be used:
1155  *
1156  *  void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
1157  *  void pmap_kremove(vm_offset_t va);
1158  *  vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1159  *      int prot);
1160  *
1161  *  NOTE: This is not SMP coherent stage. And physical page allocation is not
1162  *        allowed during this stage.
1163  *
1164  *****************************************************************************/
1165 
1166 /*
1167  *  Initialize kernel PMAP locks and lists, kernel_pmap itself, and
1168  *  reserve various virtual spaces for temporary mappings.
1169  */
1170 void
1171 pmap_bootstrap(vm_offset_t firstaddr)
1172 {
1173 	pt2_entry_t *unused __unused;
1174 	struct pcpu *pc;
1175 
1176 	/*
1177 	 * Initialize the kernel pmap (which is statically allocated).
1178 	 */
1179 	PMAP_LOCK_INIT(kernel_pmap);
1180 	kernel_l1pa = (vm_paddr_t)kern_pt1;  /* for libkvm */
1181 	kernel_pmap->pm_pt1 = kern_pt1;
1182 	kernel_pmap->pm_pt2tab = kern_pt2tab;
1183 	CPU_FILL(&kernel_pmap->pm_active);  /* don't allow deactivation */
1184 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1185 
1186 	/*
1187 	 * Initialize the global pv list lock.
1188 	 */
1189 	rw_init(&pvh_global_lock, "pmap pv global");
1190 
1191 	LIST_INIT(&allpmaps);
1192 
1193 	/*
1194 	 * Request a spin mutex so that changes to allpmaps cannot be
1195 	 * preempted by smp_rendezvous_cpus().
1196 	 */
1197 	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
1198 	mtx_lock_spin(&allpmaps_lock);
1199 	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
1200 	mtx_unlock_spin(&allpmaps_lock);
1201 
1202 	/*
1203 	 * Reserve some special page table entries/VA space for temporary
1204 	 * mapping of pages.
1205 	 */
1206 #define	SYSMAP(c, p, v, n)  do {		\
1207 	v = (c)pmap_preboot_reserve_pages(n);	\
1208 	p = pt2map_entry((vm_offset_t)v);	\
1209 	} while (0)
1210 
1211 	/*
1212 	 * Local CMAP1/CMAP2 are used for zeroing and copying pages.
1213 	 * Local CMAP2 is also used for data cache cleaning.
1214 	 */
1215 	pc = get_pcpu();
1216 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1217 	SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
1218 	SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
1219 	SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
1220 
1221 	/*
1222 	 * Crashdump maps.
1223 	 */
1224 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
1225 
1226 	/*
1227 	 * _tmppt is used for reading arbitrary physical pages via /dev/mem.
1228 	 */
1229 	SYSMAP(caddr_t, unused, _tmppt, 1);
1230 
1231 	/*
1232 	 * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
1233 	 * respectively. PADDR3 is used by pmap_pte2_ddb().
1234 	 */
1235 	SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
1236 	SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
1237 #ifdef DDB
1238 	SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
1239 #endif
1240 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
1241 
1242 	/*
1243 	 * Note that in very short time in initarm(), we are going to
1244 	 * initialize phys_avail[] array and no further page allocation
1245 	 * can happen after that until vm subsystem will be initialized.
1246 	 */
1247 	kernel_vm_end_new = kernel_vm_end;
1248 	virtual_end = vm_max_kernel_address;
1249 }
1250 
1251 static void
1252 pmap_init_reserved_pages(void)
1253 {
1254 	struct pcpu *pc;
1255 	vm_offset_t pages;
1256 	int i;
1257 
1258 	CPU_FOREACH(i) {
1259 		pc = pcpu_find(i);
1260 		/*
1261 		 * Skip if the mapping has already been initialized,
1262 		 * i.e. this is the BSP.
1263 		 */
1264 		if (pc->pc_cmap1_addr != 0)
1265 			continue;
1266 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1267 		pages = kva_alloc(PAGE_SIZE * 3);
1268 		if (pages == 0)
1269 			panic("%s: unable to allocate KVA", __func__);
1270 		pc->pc_cmap1_pte2p = pt2map_entry(pages);
1271 		pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
1272 		pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
1273 		pc->pc_cmap1_addr = (caddr_t)pages;
1274 		pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
1275 		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
1276 	}
1277 }
1278 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
1279 
1280 /*
1281  *  The function can already be use in second initialization stage.
1282  *  As such, the function DOES NOT call pmap_growkernel() where PT2
1283  *  allocation can happen. So if used, be sure that PT2 for given
1284  *  virtual address is allocated already!
1285  *
1286  *  Add a wired page to the kva.
1287  *  Note: not SMP coherent.
1288  */
1289 static __inline void
1290 pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
1291     uint32_t attr)
1292 {
1293 	pt1_entry_t *pte1p;
1294 	pt2_entry_t *pte2p;
1295 
1296 	pte1p = kern_pte1(va);
1297 	if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
1298 		/*
1299 		 * This is a very low level function, so PT2 and particularly
1300 		 * PT2PG associated with given virtual address must be already
1301 		 * allocated. It's a pain mainly during pmap initialization
1302 		 * stage. However, called after pmap initialization with
1303 		 * virtual address not under kernel_vm_end will lead to
1304 		 * the same misery.
1305 		 */
1306 		if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
1307 			panic("%s: kernel PT2 not allocated!", __func__);
1308 	}
1309 
1310 	pte2p = pt2map_entry(va);
1311 	pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
1312 }
1313 
1314 PMAP_INLINE void
1315 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1316 {
1317 
1318 	pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
1319 }
1320 
1321 /*
1322  *  Remove a page from the kernel pagetables.
1323  *  Note: not SMP coherent.
1324  */
1325 PMAP_INLINE void
1326 pmap_kremove(vm_offset_t va)
1327 {
1328 	pt1_entry_t *pte1p;
1329 	pt2_entry_t *pte2p;
1330 
1331 	pte1p = kern_pte1(va);
1332 	if (pte1_is_section(pte1_load(pte1p))) {
1333 		pte1_clear(pte1p);
1334 	} else {
1335 		pte2p = pt2map_entry(va);
1336 		pte2_clear(pte2p);
1337 	}
1338 }
1339 
1340 /*
1341  *  Share new kernel PT2PG with all pmaps.
1342  *  The caller is responsible for maintaining TLB consistency.
1343  */
1344 static void
1345 pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
1346 {
1347 	pmap_t pmap;
1348 	pt2_entry_t *pte2p;
1349 
1350 	mtx_lock_spin(&allpmaps_lock);
1351 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1352 		pte2p = pmap_pt2tab_entry(pmap, va);
1353 		pt2tab_store(pte2p, npte2);
1354 	}
1355 	mtx_unlock_spin(&allpmaps_lock);
1356 }
1357 
1358 /*
1359  *  Share new kernel PTE1 with all pmaps.
1360  *  The caller is responsible for maintaining TLB consistency.
1361  */
1362 static void
1363 pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
1364 {
1365 	pmap_t pmap;
1366 	pt1_entry_t *pte1p;
1367 
1368 	mtx_lock_spin(&allpmaps_lock);
1369 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1370 		pte1p = pmap_pte1(pmap, va);
1371 		pte1_store(pte1p, npte1);
1372 	}
1373 	mtx_unlock_spin(&allpmaps_lock);
1374 }
1375 
1376 /*
1377  *  Used to map a range of physical addresses into kernel
1378  *  virtual address space.
1379  *
1380  *  The value passed in '*virt' is a suggested virtual address for
1381  *  the mapping. Architectures which can support a direct-mapped
1382  *  physical to virtual region can return the appropriate address
1383  *  within that region, leaving '*virt' unchanged. Other
1384  *  architectures should map the pages starting at '*virt' and
1385  *  update '*virt' with the first usable address after the mapped
1386  *  region.
1387  *
1388  *  NOTE: Read the comments above pmap_kenter_prot_attr() as
1389  *        the function is used herein!
1390  */
1391 vm_offset_t
1392 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1393 {
1394 	vm_offset_t va, sva;
1395 	vm_paddr_t pte1_offset;
1396 	pt1_entry_t npte1;
1397 	uint32_t l1prot, l2prot;
1398 	uint32_t l1attr, l2attr;
1399 
1400 	PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
1401 	    " prot = %d\n", __func__, *virt, start, end, end - start,  prot));
1402 
1403 	l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
1404 	l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1405 	l1prot = ATTR_TO_L1(l2prot);
1406 
1407 	l2attr = PTE2_ATTR_DEFAULT;
1408 	l1attr = ATTR_TO_L1(l2attr);
1409 
1410 	va = *virt;
1411 	/*
1412 	 * Does the physical address range's size and alignment permit at
1413 	 * least one section mapping to be created?
1414 	 */
1415 	pte1_offset = start & PTE1_OFFSET;
1416 	if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
1417 	    PTE1_SIZE) {
1418 		/*
1419 		 * Increase the starting virtual address so that its alignment
1420 		 * does not preclude the use of section mappings.
1421 		 */
1422 		if ((va & PTE1_OFFSET) < pte1_offset)
1423 			va = pte1_trunc(va) + pte1_offset;
1424 		else if ((va & PTE1_OFFSET) > pte1_offset)
1425 			va = pte1_roundup(va) + pte1_offset;
1426 	}
1427 	sva = va;
1428 	while (start < end) {
1429 		if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
1430 			KASSERT((va & PTE1_OFFSET) == 0,
1431 			    ("%s: misaligned va %#x", __func__, va));
1432 			npte1 = PTE1_KERN(start, l1prot, l1attr);
1433 			pmap_kenter_pte1(va, npte1);
1434 			va += PTE1_SIZE;
1435 			start += PTE1_SIZE;
1436 		} else {
1437 			pmap_kenter_prot_attr(va, start, l2prot, l2attr);
1438 			va += PAGE_SIZE;
1439 			start += PAGE_SIZE;
1440 		}
1441 	}
1442 	tlb_flush_range(sva, va - sva);
1443 	*virt = va;
1444 	return (sva);
1445 }
1446 
1447 /*
1448  *  Make a temporary mapping for a physical address.
1449  *  This is only intended to be used for panic dumps.
1450  */
1451 void *
1452 pmap_kenter_temporary(vm_paddr_t pa, int i)
1453 {
1454 	vm_offset_t va;
1455 
1456 	/* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
1457 
1458 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
1459 	pmap_kenter(va, pa);
1460 	tlb_flush_local(va);
1461 	return ((void *)crashdumpmap);
1462 }
1463 
1464 
1465 /*************************************
1466  *
1467  *  TLB & cache maintenance routines.
1468  *
1469  *************************************/
1470 
1471 /*
1472  *  We inline these within pmap.c for speed.
1473  */
1474 PMAP_INLINE void
1475 pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
1476 {
1477 
1478 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1479 		tlb_flush(va);
1480 }
1481 
1482 PMAP_INLINE void
1483 pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
1484 {
1485 
1486 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1487 		tlb_flush_range(sva, size);
1488 }
1489 
1490 /*
1491  *  Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
1492  *  Requirements:
1493  *   - Must deal with pages in order to ensure that none of the PTE2_* bits
1494  *     are ever set, PTE2_V in particular.
1495  *   - Assumes we can write to pte2s without pte2_store() atomic ops.
1496  *   - Assumes nothing will ever test these addresses for 0 to indicate
1497  *     no mapping instead of correctly checking PTE2_V.
1498  *   - Assumes a vm_offset_t will fit in a pte2 (true for arm).
1499  *  Because PTE2_V is never set, there can be no mappings to invalidate.
1500  */
1501 static vm_offset_t
1502 pmap_pte2list_alloc(vm_offset_t *head)
1503 {
1504 	pt2_entry_t *pte2p;
1505 	vm_offset_t va;
1506 
1507 	va = *head;
1508 	if (va == 0)
1509 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
1510 	pte2p = pt2map_entry(va);
1511 	*head = *pte2p;
1512 	if (*head & PTE2_V)
1513 		panic("%s: va with PTE2_V set!", __func__);
1514 	*pte2p = 0;
1515 	return (va);
1516 }
1517 
1518 static void
1519 pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
1520 {
1521 	pt2_entry_t *pte2p;
1522 
1523 	if (va & PTE2_V)
1524 		panic("%s: freeing va with PTE2_V set!", __func__);
1525 	pte2p = pt2map_entry(va);
1526 	*pte2p = *head;		/* virtual! PTE2_V is 0 though */
1527 	*head = va;
1528 }
1529 
1530 static void
1531 pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
1532 {
1533 	int i;
1534 	vm_offset_t va;
1535 
1536 	*head = 0;
1537 	for (i = npages - 1; i >= 0; i--) {
1538 		va = (vm_offset_t)base + i * PAGE_SIZE;
1539 		pmap_pte2list_free(head, va);
1540 	}
1541 }
1542 
1543 /*****************************************************************************
1544  *
1545  *	PMAP third and final stage initialization.
1546  *
1547  *  After pmap_init() is called, PMAP subsystem is fully initialized.
1548  *
1549  *****************************************************************************/
1550 
1551 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1552     "VM/pmap parameters");
1553 
1554 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1555     "Max number of PV entries");
1556 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1557     "Page share factor per proc");
1558 
1559 static u_long nkpt2pg = NKPT2PG;
1560 SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
1561     &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
1562 
1563 static int sp_enabled = 1;
1564 SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
1565     &sp_enabled, 0, "Are large page mappings enabled?");
1566 
1567 bool
1568 pmap_ps_enabled(pmap_t pmap __unused)
1569 {
1570 
1571 	return (sp_enabled != 0);
1572 }
1573 
1574 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1575     "1MB page mapping counters");
1576 
1577 static u_long pmap_pte1_demotions;
1578 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
1579     &pmap_pte1_demotions, 0, "1MB page demotions");
1580 
1581 static u_long pmap_pte1_mappings;
1582 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
1583     &pmap_pte1_mappings, 0, "1MB page mappings");
1584 
1585 static u_long pmap_pte1_p_failures;
1586 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
1587     &pmap_pte1_p_failures, 0, "1MB page promotion failures");
1588 
1589 static u_long pmap_pte1_promotions;
1590 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
1591     &pmap_pte1_promotions, 0, "1MB page promotions");
1592 
1593 static u_long pmap_pte1_kern_demotions;
1594 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
1595     &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
1596 
1597 static u_long pmap_pte1_kern_promotions;
1598 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
1599     &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
1600 
1601 static __inline ttb_entry_t
1602 pmap_ttb_get(pmap_t pmap)
1603 {
1604 
1605 	return (vtophys(pmap->pm_pt1) | ttb_flags);
1606 }
1607 
1608 /*
1609  *  Initialize a vm_page's machine-dependent fields.
1610  *
1611  *  Variations:
1612  *  1. Pages for L2 page tables are always not managed. So, pv_list and
1613  *     pt2_wirecount can share same physical space. However, proper
1614  *     initialization on a page alloc for page tables and reinitialization
1615  *     on the page free must be ensured.
1616  */
1617 void
1618 pmap_page_init(vm_page_t m)
1619 {
1620 
1621 	TAILQ_INIT(&m->md.pv_list);
1622 	pt2_wirecount_init(m);
1623 	m->md.pat_mode = VM_MEMATTR_DEFAULT;
1624 }
1625 
1626 /*
1627  *  Virtualization for faster way how to zero whole page.
1628  */
1629 static __inline void
1630 pagezero(void *page)
1631 {
1632 
1633 	bzero(page, PAGE_SIZE);
1634 }
1635 
1636 /*
1637  *  Zero L2 page table page.
1638  *  Use same KVA as in pmap_zero_page().
1639  */
1640 static __inline vm_paddr_t
1641 pmap_pt2pg_zero(vm_page_t m)
1642 {
1643 	pt2_entry_t *cmap2_pte2p;
1644 	vm_paddr_t pa;
1645 	struct pcpu *pc;
1646 
1647 	pa = VM_PAGE_TO_PHYS(m);
1648 
1649 	/*
1650 	 * XXX: For now, we map whole page even if it's already zero,
1651 	 *      to sync it even if the sync is only DSB.
1652 	 */
1653 	sched_pin();
1654 	pc = get_pcpu();
1655 	cmap2_pte2p = pc->pc_cmap2_pte2p;
1656 	mtx_lock(&pc->pc_cmap_lock);
1657 	if (pte2_load(cmap2_pte2p) != 0)
1658 		panic("%s: CMAP2 busy", __func__);
1659 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
1660 	    vm_page_pte2_attr(m)));
1661 	/*  Even VM_ALLOC_ZERO request is only advisory. */
1662 	if ((m->flags & PG_ZERO) == 0)
1663 		pagezero(pc->pc_cmap2_addr);
1664 	pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
1665 	pte2_clear(cmap2_pte2p);
1666 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
1667 
1668 	/*
1669 	 * Unpin the thread before releasing the lock.  Otherwise the thread
1670 	 * could be rescheduled while still bound to the current CPU, only
1671 	 * to unpin itself immediately upon resuming execution.
1672 	 */
1673 	sched_unpin();
1674 	mtx_unlock(&pc->pc_cmap_lock);
1675 
1676 	return (pa);
1677 }
1678 
1679 /*
1680  *  Init just allocated page as L2 page table(s) holder
1681  *  and return its physical address.
1682  */
1683 static __inline vm_paddr_t
1684 pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
1685 {
1686 	vm_paddr_t pa;
1687 	pt2_entry_t *pte2p;
1688 
1689 	/* Check page attributes. */
1690 	if (m->md.pat_mode != pt_memattr)
1691 		pmap_page_set_memattr(m, pt_memattr);
1692 
1693 	/* Zero page and init wire counts. */
1694 	pa = pmap_pt2pg_zero(m);
1695 	pt2_wirecount_init(m);
1696 
1697 	/*
1698 	 * Map page to PT2MAP address space for given pmap.
1699 	 * Note that PT2MAP space is shared with all pmaps.
1700 	 */
1701 	if (pmap == kernel_pmap)
1702 		pmap_kenter_pt2tab(va, PTE2_KPT(pa));
1703 	else {
1704 		pte2p = pmap_pt2tab_entry(pmap, va);
1705 		pt2tab_store(pte2p, PTE2_KPT_NG(pa));
1706 	}
1707 
1708 	return (pa);
1709 }
1710 
1711 /*
1712  *  Initialize the pmap module.
1713  *  Called by vm_init, to initialize any structures that the pmap
1714  *  system needs to map virtual memory.
1715  */
1716 void
1717 pmap_init(void)
1718 {
1719 	vm_size_t s;
1720 	pt2_entry_t *pte2p, pte2;
1721 	u_int i, pte1_idx, pv_npg;
1722 
1723 	PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
1724 
1725 	/*
1726 	 * Initialize the vm page array entries for kernel pmap's
1727 	 * L2 page table pages allocated in advance.
1728 	 */
1729 	pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
1730 	pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
1731 	for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
1732 		vm_paddr_t pa;
1733 		vm_page_t m;
1734 
1735 		pte2 = pte2_load(pte2p);
1736 		KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
1737 
1738 		pa = pte2_pa(pte2);
1739 		m = PHYS_TO_VM_PAGE(pa);
1740 		KASSERT(m >= vm_page_array &&
1741 		    m < &vm_page_array[vm_page_array_size],
1742 		    ("%s: L2 page table page is out of range", __func__));
1743 
1744 		m->pindex = pte1_idx;
1745 		m->phys_addr = pa;
1746 		pte1_idx += NPT2_IN_PG;
1747 	}
1748 
1749 	/*
1750 	 * Initialize the address space (zone) for the pv entries.  Set a
1751 	 * high water mark so that the system can recover from excessive
1752 	 * numbers of pv entries.
1753 	 */
1754 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1755 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1756 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1757 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1758 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1759 
1760 	/*
1761 	 * Are large page mappings enabled?
1762 	 */
1763 	TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
1764 	if (sp_enabled) {
1765 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1766 		    ("%s: can't assign to pagesizes[1]", __func__));
1767 		pagesizes[1] = PTE1_SIZE;
1768 	}
1769 
1770 	/*
1771 	 * Calculate the size of the pv head table for sections.
1772 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1773 	 * Note that the table is only for sections which could be promoted.
1774 	 */
1775 	first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
1776 	pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
1777 	    - first_managed_pa) / PTE1_SIZE + 1;
1778 
1779 	/*
1780 	 * Allocate memory for the pv head table for sections.
1781 	 */
1782 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1783 	s = round_page(s);
1784 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
1785 	for (i = 0; i < pv_npg; i++)
1786 		TAILQ_INIT(&pv_table[i].pv_list);
1787 
1788 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1789 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1790 	if (pv_chunkbase == NULL)
1791 		panic("%s: not enough kvm for pv chunks", __func__);
1792 	pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1793 }
1794 
1795 /*
1796  *  Add a list of wired pages to the kva
1797  *  this routine is only used for temporary
1798  *  kernel mappings that do not need to have
1799  *  page modification or references recorded.
1800  *  Note that old mappings are simply written
1801  *  over.  The page *must* be wired.
1802  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1803  */
1804 void
1805 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1806 {
1807 	u_int anychanged;
1808 	pt2_entry_t *epte2p, *pte2p, pte2;
1809 	vm_page_t m;
1810 	vm_paddr_t pa;
1811 
1812 	anychanged = 0;
1813 	pte2p = pt2map_entry(sva);
1814 	epte2p = pte2p + count;
1815 	while (pte2p < epte2p) {
1816 		m = *ma++;
1817 		pa = VM_PAGE_TO_PHYS(m);
1818 		pte2 = pte2_load(pte2p);
1819 		if ((pte2_pa(pte2) != pa) ||
1820 		    (pte2_attr(pte2) != vm_page_pte2_attr(m))) {
1821 			anychanged++;
1822 			pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
1823 			    vm_page_pte2_attr(m)));
1824 		}
1825 		pte2p++;
1826 	}
1827 	if (__predict_false(anychanged))
1828 		tlb_flush_range(sva, count * PAGE_SIZE);
1829 }
1830 
1831 /*
1832  *  This routine tears out page mappings from the
1833  *  kernel -- it is meant only for temporary mappings.
1834  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1835  */
1836 void
1837 pmap_qremove(vm_offset_t sva, int count)
1838 {
1839 	vm_offset_t va;
1840 
1841 	va = sva;
1842 	while (count-- > 0) {
1843 		pmap_kremove(va);
1844 		va += PAGE_SIZE;
1845 	}
1846 	tlb_flush_range(sva, va - sva);
1847 }
1848 
1849 /*
1850  *  Are we current address space or kernel?
1851  */
1852 static __inline int
1853 pmap_is_current(pmap_t pmap)
1854 {
1855 
1856 	return (pmap == kernel_pmap ||
1857 		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
1858 }
1859 
1860 /*
1861  *  If the given pmap is not the current or kernel pmap, the returned
1862  *  pte2 must be released by passing it to pmap_pte2_release().
1863  */
1864 static pt2_entry_t *
1865 pmap_pte2(pmap_t pmap, vm_offset_t va)
1866 {
1867 	pt1_entry_t pte1;
1868 	vm_paddr_t pt2pg_pa;
1869 
1870 	pte1 = pte1_load(pmap_pte1(pmap, va));
1871 	if (pte1_is_section(pte1))
1872 		panic("%s: attempt to map PTE1", __func__);
1873 	if (pte1_is_link(pte1)) {
1874 		/* Are we current address space or kernel? */
1875 		if (pmap_is_current(pmap))
1876 			return (pt2map_entry(va));
1877 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1878 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1879 		mtx_lock(&PMAP2mutex);
1880 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
1881 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
1882 			tlb_flush((vm_offset_t)PADDR2);
1883 		}
1884 		return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1885 	}
1886 	return (NULL);
1887 }
1888 
1889 /*
1890  *  Releases a pte2 that was obtained from pmap_pte2().
1891  *  Be prepared for the pte2p being NULL.
1892  */
1893 static __inline void
1894 pmap_pte2_release(pt2_entry_t *pte2p)
1895 {
1896 
1897 	if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
1898 		mtx_unlock(&PMAP2mutex);
1899 	}
1900 }
1901 
1902 /*
1903  *  Super fast pmap_pte2 routine best used when scanning
1904  *  the pv lists.  This eliminates many coarse-grained
1905  *  invltlb calls.  Note that many of the pv list
1906  *  scans are across different pmaps.  It is very wasteful
1907  *  to do an entire tlb flush for checking a single mapping.
1908  *
1909  *  If the given pmap is not the current pmap, pvh_global_lock
1910  *  must be held and curthread pinned to a CPU.
1911  */
1912 static pt2_entry_t *
1913 pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
1914 {
1915 	pt1_entry_t pte1;
1916 	vm_paddr_t pt2pg_pa;
1917 
1918 	pte1 = pte1_load(pmap_pte1(pmap, va));
1919 	if (pte1_is_section(pte1))
1920 		panic("%s: attempt to map PTE1", __func__);
1921 	if (pte1_is_link(pte1)) {
1922 		/* Are we current address space or kernel? */
1923 		if (pmap_is_current(pmap))
1924 			return (pt2map_entry(va));
1925 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1926 		KASSERT(curthread->td_pinned > 0,
1927 		    ("%s: curthread not pinned", __func__));
1928 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1929 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1930 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
1931 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
1932 #ifdef SMP
1933 			PMAP1cpu = PCPU_GET(cpuid);
1934 #endif
1935 			tlb_flush_local((vm_offset_t)PADDR1);
1936 			PMAP1changed++;
1937 		} else
1938 #ifdef SMP
1939 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1940 			PMAP1cpu = PCPU_GET(cpuid);
1941 			tlb_flush_local((vm_offset_t)PADDR1);
1942 			PMAP1changedcpu++;
1943 		} else
1944 #endif
1945 			PMAP1unchanged++;
1946 		return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1947 	}
1948 	return (NULL);
1949 }
1950 
1951 /*
1952  *  Routine: pmap_extract
1953  *  Function:
1954  * 	Extract the physical page address associated
1955  *	with the given map/virtual_address pair.
1956  */
1957 vm_paddr_t
1958 pmap_extract(pmap_t pmap, vm_offset_t va)
1959 {
1960 	vm_paddr_t pa;
1961 	pt1_entry_t pte1;
1962 	pt2_entry_t *pte2p;
1963 
1964 	PMAP_LOCK(pmap);
1965 	pte1 = pte1_load(pmap_pte1(pmap, va));
1966 	if (pte1_is_section(pte1))
1967 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1968 	else if (pte1_is_link(pte1)) {
1969 		pte2p = pmap_pte2(pmap, va);
1970 		pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
1971 		pmap_pte2_release(pte2p);
1972 	} else
1973 		pa = 0;
1974 	PMAP_UNLOCK(pmap);
1975 	return (pa);
1976 }
1977 
1978 /*
1979  *  Routine: pmap_extract_and_hold
1980  *  Function:
1981  *	Atomically extract and hold the physical page
1982  *	with the given pmap and virtual address pair
1983  *	if that mapping permits the given protection.
1984  */
1985 vm_page_t
1986 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1987 {
1988 	vm_paddr_t pa;
1989 	pt1_entry_t pte1;
1990 	pt2_entry_t pte2, *pte2p;
1991 	vm_page_t m;
1992 
1993 	m = NULL;
1994 	PMAP_LOCK(pmap);
1995 	pte1 = pte1_load(pmap_pte1(pmap, va));
1996 	if (pte1_is_section(pte1)) {
1997 		if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
1998 			pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1999 			m = PHYS_TO_VM_PAGE(pa);
2000 			if (!vm_page_wire_mapped(m))
2001 				m = NULL;
2002 		}
2003 	} else if (pte1_is_link(pte1)) {
2004 		pte2p = pmap_pte2(pmap, va);
2005 		pte2 = pte2_load(pte2p);
2006 		pmap_pte2_release(pte2p);
2007 		if (pte2_is_valid(pte2) &&
2008 		    (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
2009 			pa = pte2_pa(pte2);
2010 			m = PHYS_TO_VM_PAGE(pa);
2011 			if (!vm_page_wire_mapped(m))
2012 				m = NULL;
2013 		}
2014 	}
2015 	PMAP_UNLOCK(pmap);
2016 	return (m);
2017 }
2018 
2019 /*
2020  *  Grow the number of kernel L2 page table entries, if needed.
2021  */
2022 void
2023 pmap_growkernel(vm_offset_t addr)
2024 {
2025 	vm_page_t m;
2026 	vm_paddr_t pt2pg_pa, pt2_pa;
2027 	pt1_entry_t pte1;
2028 	pt2_entry_t pte2;
2029 
2030 	PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
2031 	/*
2032 	 * All the time kernel_vm_end is first KVA for which underlying
2033 	 * L2 page table is either not allocated or linked from L1 page table
2034 	 * (not considering sections). Except for two possible cases:
2035 	 *
2036 	 *   (1) in the very beginning as long as pmap_growkernel() was
2037 	 *       not called, it could be first unused KVA (which is not
2038 	 *       rounded up to PTE1_SIZE),
2039 	 *
2040 	 *   (2) when all KVA space is mapped and vm_map_max(kernel_map)
2041 	 *       address is not rounded up to PTE1_SIZE. (For example,
2042 	 *       it could be 0xFFFFFFFF.)
2043 	 */
2044 	kernel_vm_end = pte1_roundup(kernel_vm_end);
2045 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2046 	addr = roundup2(addr, PTE1_SIZE);
2047 	if (addr - 1 >= vm_map_max(kernel_map))
2048 		addr = vm_map_max(kernel_map);
2049 	while (kernel_vm_end < addr) {
2050 		pte1 = pte1_load(kern_pte1(kernel_vm_end));
2051 		if (pte1_is_valid(pte1)) {
2052 			kernel_vm_end += PTE1_SIZE;
2053 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2054 				kernel_vm_end = vm_map_max(kernel_map);
2055 				break;
2056 			}
2057 			continue;
2058 		}
2059 
2060 		/*
2061 		 * kernel_vm_end_new is used in pmap_pinit() when kernel
2062 		 * mappings are entered to new pmap all at once to avoid race
2063 		 * between pmap_kenter_pte1() and kernel_vm_end increase.
2064 		 * The same aplies to pmap_kenter_pt2tab().
2065 		 */
2066 		kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
2067 
2068 		pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
2069 		if (!pte2_is_valid(pte2)) {
2070 			/*
2071 			 * Install new PT2s page into kernel PT2TAB.
2072 			 */
2073 			m = vm_page_alloc(NULL,
2074 			    pte1_index(kernel_vm_end) & ~PT2PG_MASK,
2075 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2076 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2077 			if (m == NULL)
2078 				panic("%s: no memory to grow kernel", __func__);
2079 			/*
2080 			 * QQQ: To link all new L2 page tables from L1 page
2081 			 *      table now and so pmap_kenter_pte1() them
2082 			 *      at once together with pmap_kenter_pt2tab()
2083 			 *      could be nice speed up. However,
2084 			 *      pmap_growkernel() does not happen so often...
2085 			 * QQQ: The other TTBR is another option.
2086 			 */
2087 			pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
2088 			    m);
2089 		} else
2090 			pt2pg_pa = pte2_pa(pte2);
2091 
2092 		pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
2093 		pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
2094 
2095 		kernel_vm_end = kernel_vm_end_new;
2096 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2097 			kernel_vm_end = vm_map_max(kernel_map);
2098 			break;
2099 		}
2100 	}
2101 }
2102 
2103 static int
2104 kvm_size(SYSCTL_HANDLER_ARGS)
2105 {
2106 	unsigned long ksize = vm_max_kernel_address - KERNBASE;
2107 
2108 	return (sysctl_handle_long(oidp, &ksize, 0, req));
2109 }
2110 SYSCTL_PROC(_vm, OID_AUTO, kvm_size,
2111     CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_size, "IU",
2112     "Size of KVM");
2113 
2114 static int
2115 kvm_free(SYSCTL_HANDLER_ARGS)
2116 {
2117 	unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
2118 
2119 	return (sysctl_handle_long(oidp, &kfree, 0, req));
2120 }
2121 SYSCTL_PROC(_vm, OID_AUTO, kvm_free,
2122     CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_free, "IU",
2123     "Amount of KVM free");
2124 
2125 /***********************************************
2126  *
2127  *  Pmap allocation/deallocation routines.
2128  *
2129  ***********************************************/
2130 
2131 /*
2132  *  Initialize the pmap for the swapper process.
2133  */
2134 void
2135 pmap_pinit0(pmap_t pmap)
2136 {
2137 	PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
2138 
2139 	PMAP_LOCK_INIT(pmap);
2140 
2141 	/*
2142 	 * Kernel page table directory and pmap stuff around is already
2143 	 * initialized, we are using it right now and here. So, finish
2144 	 * only PMAP structures initialization for process0 ...
2145 	 *
2146 	 * Since the L1 page table and PT2TAB is shared with the kernel pmap,
2147 	 * which is already included in the list "allpmaps", this pmap does
2148 	 * not need to be inserted into that list.
2149 	 */
2150 	pmap->pm_pt1 = kern_pt1;
2151 	pmap->pm_pt2tab = kern_pt2tab;
2152 	CPU_ZERO(&pmap->pm_active);
2153 	PCPU_SET(curpmap, pmap);
2154 	TAILQ_INIT(&pmap->pm_pvchunk);
2155 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2156 	CPU_SET(0, &pmap->pm_active);
2157 }
2158 
2159 static __inline void
2160 pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
2161     vm_offset_t eva)
2162 {
2163 	u_int idx, count;
2164 
2165 	idx = pte1_index(sva);
2166 	count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
2167 	bcopy(spte1p + idx, dpte1p + idx, count);
2168 }
2169 
2170 static __inline void
2171 pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
2172     vm_offset_t eva)
2173 {
2174 	u_int idx, count;
2175 
2176 	idx = pt2tab_index(sva);
2177 	count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
2178 	bcopy(spte2p + idx, dpte2p + idx, count);
2179 }
2180 
2181 /*
2182  *  Initialize a preallocated and zeroed pmap structure,
2183  *  such as one in a vmspace structure.
2184  */
2185 int
2186 pmap_pinit(pmap_t pmap)
2187 {
2188 	pt1_entry_t *pte1p;
2189 	pt2_entry_t *pte2p;
2190 	vm_paddr_t pa, pt2tab_pa;
2191 	u_int i;
2192 
2193 	PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
2194 	    pmap->pm_pt1));
2195 
2196 	/*
2197 	 * No need to allocate L2 page table space yet but we do need
2198 	 * a valid L1 page table and PT2TAB table.
2199 	 *
2200 	 * Install shared kernel mappings to these tables. It's a little
2201 	 * tricky as some parts of KVA are reserved for vectors, devices,
2202 	 * and whatever else. These parts are supposed to be above
2203 	 * vm_max_kernel_address. Thus two regions should be installed:
2204 	 *
2205 	 *   (1) <KERNBASE, kernel_vm_end),
2206 	 *   (2) <vm_max_kernel_address, 0xFFFFFFFF>.
2207 	 *
2208 	 * QQQ: The second region should be stable enough to be installed
2209 	 *      only once in time when the tables are allocated.
2210 	 * QQQ: Maybe copy of both regions at once could be faster ...
2211 	 * QQQ: Maybe the other TTBR is an option.
2212 	 *
2213 	 * Finally, install own PT2TAB table to these tables.
2214 	 */
2215 
2216 	if (pmap->pm_pt1 == NULL) {
2217 		pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(NB_IN_PT1,
2218 		    M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0, pt_memattr);
2219 		if (pmap->pm_pt1 == NULL)
2220 			return (0);
2221 	}
2222 	if (pmap->pm_pt2tab == NULL) {
2223 		/*
2224 		 * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
2225 		 *      only, what should be the only size for 32 bit systems,
2226 		 *      then we could allocate it with vm_page_alloc() and all
2227 		 *      the stuff needed as other L2 page table pages.
2228 		 *      (2) Note that a process PT2TAB is special L2 page table
2229 		 *      page. Its mapping in kernel_arena is permanent and can
2230 		 *      be used no matter which process is current. Its mapping
2231 		 *      in PT2MAP can be used only for current process.
2232 		 */
2233 		pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(NB_IN_PT2TAB,
2234 		    M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
2235 		if (pmap->pm_pt2tab == NULL) {
2236 			/*
2237 			 * QQQ: As struct pmap is allocated from UMA with
2238 			 *      UMA_ZONE_NOFREE flag, it's important to leave
2239 			 *      no allocation in pmap if initialization failed.
2240 			 */
2241 			kmem_free((vm_offset_t)pmap->pm_pt1, NB_IN_PT1);
2242 			pmap->pm_pt1 = NULL;
2243 			return (0);
2244 		}
2245 		/*
2246 		 * QQQ: Each L2 page table page vm_page_t has pindex set to
2247 		 *      pte1 index of virtual address mapped by this page.
2248 		 *      It's not valid for non kernel PT2TABs themselves.
2249 		 *      The pindex of these pages can not be altered because
2250 		 *      of the way how they are allocated now. However, it
2251 		 *      should not be a problem.
2252 		 */
2253 	}
2254 
2255 	mtx_lock_spin(&allpmaps_lock);
2256 	/*
2257 	 * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
2258 	 * kernel_vm_end_new is used here instead of kernel_vm_end.
2259 	 */
2260 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
2261 	    kernel_vm_end_new - 1);
2262 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
2263 	    0xFFFFFFFF);
2264 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
2265 	    kernel_vm_end_new - 1);
2266 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
2267 	    0xFFFFFFFF);
2268 	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
2269 	mtx_unlock_spin(&allpmaps_lock);
2270 
2271 	/*
2272 	 * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
2273 	 * I.e. self reference mapping.  The PT2TAB is private, however mapped
2274 	 * into shared PT2MAP space, so the mapping should be not global.
2275 	 */
2276 	pt2tab_pa = vtophys(pmap->pm_pt2tab);
2277 	pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
2278 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
2279 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
2280 	}
2281 
2282 	/* Insert PT2MAP PT2s into pmap PT1. */
2283 	pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
2284 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
2285 		pte1_store(pte1p++, PTE1_LINK(pa));
2286 	}
2287 
2288 	/*
2289 	 * Now synchronize new mapping which was made above.
2290 	 */
2291 	pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
2292 	pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
2293 
2294 	CPU_ZERO(&pmap->pm_active);
2295 	TAILQ_INIT(&pmap->pm_pvchunk);
2296 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2297 
2298 	return (1);
2299 }
2300 
2301 #ifdef INVARIANTS
2302 static boolean_t
2303 pt2tab_user_is_empty(pt2_entry_t *tab)
2304 {
2305 	u_int i, end;
2306 
2307 	end = pt2tab_index(VM_MAXUSER_ADDRESS);
2308 	for (i = 0; i < end; i++)
2309 		if (tab[i] != 0) return (FALSE);
2310 	return (TRUE);
2311 }
2312 #endif
2313 /*
2314  *  Release any resources held by the given physical map.
2315  *  Called when a pmap initialized by pmap_pinit is being released.
2316  *  Should only be called if the map contains no valid mappings.
2317  */
2318 void
2319 pmap_release(pmap_t pmap)
2320 {
2321 #ifdef INVARIANTS
2322 	vm_offset_t start, end;
2323 #endif
2324 	KASSERT(pmap->pm_stats.resident_count == 0,
2325 	    ("%s: pmap resident count %ld != 0", __func__,
2326 	    pmap->pm_stats.resident_count));
2327 	KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
2328 	    ("%s: has allocated user PT2(s)", __func__));
2329 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2330 	    ("%s: pmap %p is active on some CPU(s)", __func__, pmap));
2331 
2332 	mtx_lock_spin(&allpmaps_lock);
2333 	LIST_REMOVE(pmap, pm_list);
2334 	mtx_unlock_spin(&allpmaps_lock);
2335 
2336 #ifdef INVARIANTS
2337 	start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
2338 	end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
2339 	bzero((char *)pmap->pm_pt1 + start, end - start);
2340 
2341 	start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
2342 	end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
2343 	bzero((char *)pmap->pm_pt2tab + start, end - start);
2344 #endif
2345 	/*
2346 	 * We are leaving PT1 and PT2TAB allocated on released pmap,
2347 	 * so hopefully UMA vmspace_zone will always be inited with
2348 	 * UMA_ZONE_NOFREE flag.
2349 	 */
2350 }
2351 
2352 /*********************************************************
2353  *
2354  *  L2 table pages and their pages management routines.
2355  *
2356  *********************************************************/
2357 
2358 /*
2359  *  Virtual interface for L2 page table wire counting.
2360  *
2361  *  Each L2 page table in a page has own counter which counts a number of
2362  *  valid mappings in a table. Global page counter counts mappings in all
2363  *  tables in a page plus a single itself mapping in PT2TAB.
2364  *
2365  *  During a promotion we leave the associated L2 page table counter
2366  *  untouched, so the table (strictly speaking a page which holds it)
2367  *  is never freed if promoted.
2368  *
2369  *  If a page m->ref_count == 1 then no valid mappings exist in any L2 page
2370  *  table in the page and the page itself is only mapped in PT2TAB.
2371  */
2372 
2373 static __inline void
2374 pt2_wirecount_init(vm_page_t m)
2375 {
2376 	u_int i;
2377 
2378 	/*
2379 	 * Note: A page m is allocated with VM_ALLOC_WIRED flag and
2380 	 *       m->ref_count should be already set correctly.
2381 	 *       So, there is no need to set it again herein.
2382 	 */
2383 	for (i = 0; i < NPT2_IN_PG; i++)
2384 		m->md.pt2_wirecount[i] = 0;
2385 }
2386 
2387 static __inline void
2388 pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
2389 {
2390 
2391 	/*
2392 	 * Note: A just modificated pte2 (i.e. already allocated)
2393 	 *       is acquiring one extra reference which must be
2394 	 *       explicitly cleared. It influences the KASSERTs herein.
2395 	 *       All L2 page tables in a page always belong to the same
2396 	 *       pmap, so we allow only one extra reference for the page.
2397 	 */
2398 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
2399 	    ("%s: PT2 is overflowing ...", __func__));
2400 	KASSERT(m->ref_count <= (NPTE2_IN_PG + 1),
2401 	    ("%s: PT2PG is overflowing ...", __func__));
2402 
2403 	m->ref_count++;
2404 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
2405 }
2406 
2407 static __inline void
2408 pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
2409 {
2410 
2411 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
2412 	    ("%s: PT2 is underflowing ...", __func__));
2413 	KASSERT(m->ref_count > 1,
2414 	    ("%s: PT2PG is underflowing ...", __func__));
2415 
2416 	m->ref_count--;
2417 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
2418 }
2419 
2420 static __inline void
2421 pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
2422 {
2423 
2424 	KASSERT(count <= NPTE2_IN_PT2,
2425 	    ("%s: invalid count %u", __func__, count));
2426 	KASSERT(m->ref_count >  m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
2427 	    ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->ref_count,
2428 	    m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
2429 
2430 	m->ref_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
2431 	m->ref_count += count;
2432 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
2433 
2434 	KASSERT(m->ref_count <= (NPTE2_IN_PG + 1),
2435 	    ("%s: PT2PG is overflowed (%u) ...", __func__, m->ref_count));
2436 }
2437 
2438 static __inline uint32_t
2439 pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
2440 {
2441 
2442 	return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
2443 }
2444 
2445 static __inline boolean_t
2446 pt2_is_empty(vm_page_t m, vm_offset_t va)
2447 {
2448 
2449 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
2450 }
2451 
2452 static __inline boolean_t
2453 pt2_is_full(vm_page_t m, vm_offset_t va)
2454 {
2455 
2456 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
2457 	    NPTE2_IN_PT2);
2458 }
2459 
2460 static __inline boolean_t
2461 pt2pg_is_empty(vm_page_t m)
2462 {
2463 
2464 	return (m->ref_count == 1);
2465 }
2466 
2467 /*
2468  *  This routine is called if the L2 page table
2469  *  is not mapped correctly.
2470  */
2471 static vm_page_t
2472 _pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2473 {
2474 	uint32_t pte1_idx;
2475 	pt1_entry_t *pte1p;
2476 	pt2_entry_t pte2;
2477 	vm_page_t  m;
2478 	vm_paddr_t pt2pg_pa, pt2_pa;
2479 
2480 	pte1_idx = pte1_index(va);
2481 	pte1p = pmap->pm_pt1 + pte1_idx;
2482 
2483 	KASSERT(pte1_load(pte1p) == 0,
2484 	    ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
2485 	    pte1_load(pte1p)));
2486 
2487 	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
2488 	if (!pte2_is_valid(pte2)) {
2489 		/*
2490 		 * Install new PT2s page into pmap PT2TAB.
2491 		 */
2492 		m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK,
2493 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2494 		if (m == NULL) {
2495 			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2496 				PMAP_UNLOCK(pmap);
2497 				rw_wunlock(&pvh_global_lock);
2498 				vm_wait(NULL);
2499 				rw_wlock(&pvh_global_lock);
2500 				PMAP_LOCK(pmap);
2501 			}
2502 
2503 			/*
2504 			 * Indicate the need to retry.  While waiting,
2505 			 * the L2 page table page may have been allocated.
2506 			 */
2507 			return (NULL);
2508 		}
2509 		pmap->pm_stats.resident_count++;
2510 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
2511 	} else {
2512 		pt2pg_pa = pte2_pa(pte2);
2513 		m = PHYS_TO_VM_PAGE(pt2pg_pa);
2514 	}
2515 
2516 	pt2_wirecount_inc(m, pte1_idx);
2517 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
2518 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
2519 
2520 	return (m);
2521 }
2522 
2523 static vm_page_t
2524 pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2525 {
2526 	u_int pte1_idx;
2527 	pt1_entry_t *pte1p, pte1;
2528 	vm_page_t m;
2529 
2530 	pte1_idx = pte1_index(va);
2531 retry:
2532 	pte1p = pmap->pm_pt1 + pte1_idx;
2533 	pte1 = pte1_load(pte1p);
2534 
2535 	/*
2536 	 * This supports switching from a 1MB page to a
2537 	 * normal 4K page.
2538 	 */
2539 	if (pte1_is_section(pte1)) {
2540 		(void)pmap_demote_pte1(pmap, pte1p, va);
2541 		/*
2542 		 * Reload pte1 after demotion.
2543 		 *
2544 		 * Note: Demotion can even fail as either PT2 is not find for
2545 		 *       the virtual address or PT2PG can not be allocated.
2546 		 */
2547 		pte1 = pte1_load(pte1p);
2548 	}
2549 
2550 	/*
2551 	 * If the L2 page table page is mapped, we just increment the
2552 	 * hold count, and activate it.
2553 	 */
2554 	if (pte1_is_link(pte1)) {
2555 		m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2556 		pt2_wirecount_inc(m, pte1_idx);
2557 	} else  {
2558 		/*
2559 		 * Here if the PT2 isn't mapped, or if it has
2560 		 * been deallocated.
2561 		 */
2562 		m = _pmap_allocpte2(pmap, va, flags);
2563 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2564 			goto retry;
2565 	}
2566 
2567 	return (m);
2568 }
2569 
2570 /*
2571  *  Schedule the specified unused L2 page table page to be freed. Specifically,
2572  *  add the page to the specified list of pages that will be released to the
2573  *  physical memory manager after the TLB has been updated.
2574  */
2575 static __inline void
2576 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
2577 {
2578 
2579 	/*
2580 	 * Put page on a list so that it is released after
2581 	 * *ALL* TLB shootdown is done
2582 	 */
2583 #ifdef PMAP_DEBUG
2584 	pmap_zero_page_check(m);
2585 #endif
2586 	m->flags |= PG_ZERO;
2587 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2588 }
2589 
2590 /*
2591  *  Unwire L2 page tables page.
2592  */
2593 static void
2594 pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
2595 {
2596 	pt1_entry_t *pte1p, opte1 __unused;
2597 	pt2_entry_t *pte2p;
2598 	uint32_t i;
2599 
2600 	KASSERT(pt2pg_is_empty(m),
2601 	    ("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
2602 
2603 	/*
2604 	 * Unmap all L2 page tables in the page from L1 page table.
2605 	 *
2606 	 * QQQ: Individual L2 page tables (except the last one) can be unmapped
2607 	 * earlier. However, we are doing that this way.
2608 	 */
2609 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
2610 	    ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
2611 	pte1p = pmap->pm_pt1 + m->pindex;
2612 	for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
2613 		KASSERT(m->md.pt2_wirecount[i] == 0,
2614 		    ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
2615 		opte1 = pte1_load(pte1p);
2616 		if (pte1_is_link(opte1)) {
2617 			pte1_clear(pte1p);
2618 			/*
2619 			 * Flush intermediate TLB cache.
2620 			 */
2621 			pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
2622 		}
2623 #ifdef INVARIANTS
2624 		else
2625 			KASSERT((opte1 == 0) || pte1_is_section(opte1),
2626 			    ("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
2627 			    pmap, va, opte1, i));
2628 #endif
2629 	}
2630 
2631 	/*
2632 	 * Unmap the page from PT2TAB.
2633 	 */
2634 	pte2p = pmap_pt2tab_entry(pmap, va);
2635 	(void)pt2tab_load_clear(pte2p);
2636 	pmap_tlb_flush(pmap, pt2map_pt2pg(va));
2637 
2638 	m->ref_count = 0;
2639 	pmap->pm_stats.resident_count--;
2640 
2641 	/*
2642 	 * This barrier is so that the ordinary store unmapping
2643 	 * the L2 page table page is globally performed before TLB shoot-
2644 	 * down is begun.
2645 	 */
2646 	wmb();
2647 	vm_wire_sub(1);
2648 }
2649 
2650 /*
2651  *  Decrements a L2 page table page's wire count, which is used to record the
2652  *  number of valid page table entries within the page.  If the wire count
2653  *  drops to zero, then the page table page is unmapped.  Returns TRUE if the
2654  *  page table page was unmapped and FALSE otherwise.
2655  */
2656 static __inline boolean_t
2657 pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2658 {
2659 	pt2_wirecount_dec(m, pte1_index(va));
2660 	if (pt2pg_is_empty(m)) {
2661 		/*
2662 		 * QQQ: Wire count is zero, so whole page should be zero and
2663 		 *      we can set PG_ZERO flag to it.
2664 		 *      Note that when promotion is enabled, it takes some
2665 		 *      more efforts. See pmap_unwire_pt2_all() below.
2666 		 */
2667 		pmap_unwire_pt2pg(pmap, va, m);
2668 		pmap_add_delayed_free_list(m, free);
2669 		return (TRUE);
2670 	} else
2671 		return (FALSE);
2672 }
2673 
2674 /*
2675  *  Drop a L2 page table page's wire count at once, which is used to record
2676  *  the number of valid L2 page table entries within the page. If the wire
2677  *  count drops to zero, then the L2 page table page is unmapped.
2678  */
2679 static __inline void
2680 pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
2681     struct spglist *free)
2682 {
2683 	u_int pte1_idx = pte1_index(va);
2684 
2685 	KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
2686 		("%s: PT2 page's pindex is wrong", __func__));
2687 	KASSERT(m->ref_count > pt2_wirecount_get(m, pte1_idx),
2688 	    ("%s: bad pt2 wire count %u > %u", __func__, m->ref_count,
2689 	    pt2_wirecount_get(m, pte1_idx)));
2690 
2691 	/*
2692 	 * It's possible that the L2 page table was never used.
2693 	 * It happened in case that a section was created without promotion.
2694 	 */
2695 	if (pt2_is_full(m, va)) {
2696 		pt2_wirecount_set(m, pte1_idx, 0);
2697 
2698 		/*
2699 		 * QQQ: We clear L2 page table now, so when L2 page table page
2700 		 *      is going to be freed, we can set it PG_ZERO flag ...
2701 		 *      This function is called only on section mappings, so
2702 		 *      hopefully it's not to big overload.
2703 		 *
2704 		 * XXX: If pmap is current, existing PT2MAP mapping could be
2705 		 *      used for zeroing.
2706 		 */
2707 		pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
2708 	}
2709 #ifdef INVARIANTS
2710 	else
2711 		KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
2712 		    __func__, pt2_wirecount_get(m, pte1_idx)));
2713 #endif
2714 	if (pt2pg_is_empty(m)) {
2715 		pmap_unwire_pt2pg(pmap, va, m);
2716 		pmap_add_delayed_free_list(m, free);
2717 	}
2718 }
2719 
2720 /*
2721  *  After removing a L2 page table entry, this routine is used to
2722  *  conditionally free the page, and manage the hold/wire counts.
2723  */
2724 static boolean_t
2725 pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
2726 {
2727 	pt1_entry_t pte1;
2728 	vm_page_t mpte;
2729 
2730 	if (va >= VM_MAXUSER_ADDRESS)
2731 		return (FALSE);
2732 	pte1 = pte1_load(pmap_pte1(pmap, va));
2733 	mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2734 	return (pmap_unwire_pt2(pmap, va, mpte, free));
2735 }
2736 
2737 /*************************************
2738  *
2739  *  Page management routines.
2740  *
2741  *************************************/
2742 
2743 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2744 CTASSERT(_NPCM == 11);
2745 CTASSERT(_NPCPV == 336);
2746 
2747 static __inline struct pv_chunk *
2748 pv_to_chunk(pv_entry_t pv)
2749 {
2750 
2751 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2752 }
2753 
2754 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2755 
2756 #define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2757 #define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2758 
2759 static const uint32_t pc_freemask[_NPCM] = {
2760 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2761 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2762 	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2763 	PC_FREE0_9, PC_FREE10
2764 };
2765 
2766 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2767 	"Current number of pv entries");
2768 
2769 #ifdef PV_STATS
2770 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2771 
2772 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2773     "Current number of pv entry chunks");
2774 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2775     "Current number of pv entry chunks allocated");
2776 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2777     "Current number of pv entry chunks frees");
2778 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
2779     0, "Number of times tried to get a chunk page but failed.");
2780 
2781 static long pv_entry_frees, pv_entry_allocs;
2782 static int pv_entry_spare;
2783 
2784 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2785     "Current number of pv entry frees");
2786 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
2787     0, "Current number of pv entry allocs");
2788 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2789     "Current number of spare pv entries");
2790 #endif
2791 
2792 /*
2793  *  Is given page managed?
2794  */
2795 static __inline bool
2796 is_managed(vm_paddr_t pa)
2797 {
2798 	vm_page_t m;
2799 
2800 	m = PHYS_TO_VM_PAGE(pa);
2801 	if (m == NULL)
2802 		return (false);
2803 	return ((m->oflags & VPO_UNMANAGED) == 0);
2804 }
2805 
2806 static __inline bool
2807 pte1_is_managed(pt1_entry_t pte1)
2808 {
2809 
2810 	return (is_managed(pte1_pa(pte1)));
2811 }
2812 
2813 static __inline bool
2814 pte2_is_managed(pt2_entry_t pte2)
2815 {
2816 
2817 	return (is_managed(pte2_pa(pte2)));
2818 }
2819 
2820 /*
2821  *  We are in a serious low memory condition.  Resort to
2822  *  drastic measures to free some pages so we can allocate
2823  *  another pv entry chunk.
2824  */
2825 static vm_page_t
2826 pmap_pv_reclaim(pmap_t locked_pmap)
2827 {
2828 	struct pch newtail;
2829 	struct pv_chunk *pc;
2830 	struct md_page *pvh;
2831 	pt1_entry_t *pte1p;
2832 	pmap_t pmap;
2833 	pt2_entry_t *pte2p, tpte2;
2834 	pv_entry_t pv;
2835 	vm_offset_t va;
2836 	vm_page_t m, m_pc;
2837 	struct spglist free;
2838 	uint32_t inuse;
2839 	int bit, field, freed;
2840 
2841 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2842 	pmap = NULL;
2843 	m_pc = NULL;
2844 	SLIST_INIT(&free);
2845 	TAILQ_INIT(&newtail);
2846 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2847 	    SLIST_EMPTY(&free))) {
2848 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2849 		if (pmap != pc->pc_pmap) {
2850 			if (pmap != NULL) {
2851 				if (pmap != locked_pmap)
2852 					PMAP_UNLOCK(pmap);
2853 			}
2854 			pmap = pc->pc_pmap;
2855 			/* Avoid deadlock and lock recursion. */
2856 			if (pmap > locked_pmap)
2857 				PMAP_LOCK(pmap);
2858 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2859 				pmap = NULL;
2860 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2861 				continue;
2862 			}
2863 		}
2864 
2865 		/*
2866 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2867 		 */
2868 		freed = 0;
2869 		for (field = 0; field < _NPCM; field++) {
2870 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2871 			    inuse != 0; inuse &= ~(1UL << bit)) {
2872 				bit = ffs(inuse) - 1;
2873 				pv = &pc->pc_pventry[field * 32 + bit];
2874 				va = pv->pv_va;
2875 				pte1p = pmap_pte1(pmap, va);
2876 				if (pte1_is_section(pte1_load(pte1p)))
2877 					continue;
2878 				pte2p = pmap_pte2(pmap, va);
2879 				tpte2 = pte2_load(pte2p);
2880 				if ((tpte2 & PTE2_W) == 0)
2881 					tpte2 = pte2_load_clear(pte2p);
2882 				pmap_pte2_release(pte2p);
2883 				if ((tpte2 & PTE2_W) != 0)
2884 					continue;
2885 				KASSERT(tpte2 != 0,
2886 				    ("pmap_pv_reclaim: pmap %p va %#x zero pte",
2887 				    pmap, va));
2888 				pmap_tlb_flush(pmap, va);
2889 				m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
2890 				if (pte2_is_dirty(tpte2))
2891 					vm_page_dirty(m);
2892 				if ((tpte2 & PTE2_A) != 0)
2893 					vm_page_aflag_set(m, PGA_REFERENCED);
2894 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2895 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2896 				    (m->flags & PG_FICTITIOUS) == 0) {
2897 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2898 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2899 						vm_page_aflag_clear(m,
2900 						    PGA_WRITEABLE);
2901 					}
2902 				}
2903 				pc->pc_map[field] |= 1UL << bit;
2904 				pmap_unuse_pt2(pmap, va, &free);
2905 				freed++;
2906 			}
2907 		}
2908 		if (freed == 0) {
2909 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2910 			continue;
2911 		}
2912 		/* Every freed mapping is for a 4 KB page. */
2913 		pmap->pm_stats.resident_count -= freed;
2914 		PV_STAT(pv_entry_frees += freed);
2915 		PV_STAT(pv_entry_spare += freed);
2916 		pv_entry_count -= freed;
2917 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2918 		for (field = 0; field < _NPCM; field++)
2919 			if (pc->pc_map[field] != pc_freemask[field]) {
2920 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2921 				    pc_list);
2922 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2923 
2924 				/*
2925 				 * One freed pv entry in locked_pmap is
2926 				 * sufficient.
2927 				 */
2928 				if (pmap == locked_pmap)
2929 					goto out;
2930 				break;
2931 			}
2932 		if (field == _NPCM) {
2933 			PV_STAT(pv_entry_spare -= _NPCPV);
2934 			PV_STAT(pc_chunk_count--);
2935 			PV_STAT(pc_chunk_frees++);
2936 			/* Entire chunk is free; return it. */
2937 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2938 			pmap_qremove((vm_offset_t)pc, 1);
2939 			pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2940 			break;
2941 		}
2942 	}
2943 out:
2944 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2945 	if (pmap != NULL) {
2946 		if (pmap != locked_pmap)
2947 			PMAP_UNLOCK(pmap);
2948 	}
2949 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2950 		m_pc = SLIST_FIRST(&free);
2951 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2952 		/* Recycle a freed page table page. */
2953 		m_pc->ref_count = 1;
2954 		vm_wire_add(1);
2955 	}
2956 	vm_page_free_pages_toq(&free, false);
2957 	return (m_pc);
2958 }
2959 
2960 static void
2961 free_pv_chunk(struct pv_chunk *pc)
2962 {
2963 	vm_page_t m;
2964 
2965 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2966 	PV_STAT(pv_entry_spare -= _NPCPV);
2967 	PV_STAT(pc_chunk_count--);
2968 	PV_STAT(pc_chunk_frees++);
2969 	/* entire chunk is free, return it */
2970 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2971 	pmap_qremove((vm_offset_t)pc, 1);
2972 	vm_page_unwire_noq(m);
2973 	vm_page_free(m);
2974 	pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2975 }
2976 
2977 /*
2978  *  Free the pv_entry back to the free list.
2979  */
2980 static void
2981 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2982 {
2983 	struct pv_chunk *pc;
2984 	int idx, field, bit;
2985 
2986 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2987 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2988 	PV_STAT(pv_entry_frees++);
2989 	PV_STAT(pv_entry_spare++);
2990 	pv_entry_count--;
2991 	pc = pv_to_chunk(pv);
2992 	idx = pv - &pc->pc_pventry[0];
2993 	field = idx / 32;
2994 	bit = idx % 32;
2995 	pc->pc_map[field] |= 1ul << bit;
2996 	for (idx = 0; idx < _NPCM; idx++)
2997 		if (pc->pc_map[idx] != pc_freemask[idx]) {
2998 			/*
2999 			 * 98% of the time, pc is already at the head of the
3000 			 * list.  If it isn't already, move it to the head.
3001 			 */
3002 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
3003 			    pc)) {
3004 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3005 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
3006 				    pc_list);
3007 			}
3008 			return;
3009 		}
3010 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3011 	free_pv_chunk(pc);
3012 }
3013 
3014 /*
3015  *  Get a new pv_entry, allocating a block from the system
3016  *  when needed.
3017  */
3018 static pv_entry_t
3019 get_pv_entry(pmap_t pmap, boolean_t try)
3020 {
3021 	static const struct timeval printinterval = { 60, 0 };
3022 	static struct timeval lastprint;
3023 	int bit, field;
3024 	pv_entry_t pv;
3025 	struct pv_chunk *pc;
3026 	vm_page_t m;
3027 
3028 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3029 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3030 	PV_STAT(pv_entry_allocs++);
3031 	pv_entry_count++;
3032 	if (pv_entry_count > pv_entry_high_water)
3033 		if (ratecheck(&lastprint, &printinterval))
3034 			printf("Approaching the limit on PV entries, consider "
3035 			    "increasing either the vm.pmap.shpgperproc or the "
3036 			    "vm.pmap.pv_entries tunable.\n");
3037 retry:
3038 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3039 	if (pc != NULL) {
3040 		for (field = 0; field < _NPCM; field++) {
3041 			if (pc->pc_map[field]) {
3042 				bit = ffs(pc->pc_map[field]) - 1;
3043 				break;
3044 			}
3045 		}
3046 		if (field < _NPCM) {
3047 			pv = &pc->pc_pventry[field * 32 + bit];
3048 			pc->pc_map[field] &= ~(1ul << bit);
3049 			/* If this was the last item, move it to tail */
3050 			for (field = 0; field < _NPCM; field++)
3051 				if (pc->pc_map[field] != 0) {
3052 					PV_STAT(pv_entry_spare--);
3053 					return (pv);	/* not full, return */
3054 				}
3055 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3056 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3057 			PV_STAT(pv_entry_spare--);
3058 			return (pv);
3059 		}
3060 	}
3061 	/*
3062 	 * Access to the pte2list "pv_vafree" is synchronized by the pvh
3063 	 * global lock.  If "pv_vafree" is currently non-empty, it will
3064 	 * remain non-empty until pmap_pte2list_alloc() completes.
3065 	 */
3066 	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
3067 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
3068 		if (try) {
3069 			pv_entry_count--;
3070 			PV_STAT(pc_chunk_tryfail++);
3071 			return (NULL);
3072 		}
3073 		m = pmap_pv_reclaim(pmap);
3074 		if (m == NULL)
3075 			goto retry;
3076 	}
3077 	PV_STAT(pc_chunk_count++);
3078 	PV_STAT(pc_chunk_allocs++);
3079 	pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
3080 	pmap_qenter((vm_offset_t)pc, &m, 1);
3081 	pc->pc_pmap = pmap;
3082 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
3083 	for (field = 1; field < _NPCM; field++)
3084 		pc->pc_map[field] = pc_freemask[field];
3085 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3086 	pv = &pc->pc_pventry[0];
3087 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3088 	PV_STAT(pv_entry_spare += _NPCPV - 1);
3089 	return (pv);
3090 }
3091 
3092 /*
3093  *  Create a pv entry for page at pa for
3094  *  (pmap, va).
3095  */
3096 static void
3097 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3098 {
3099 	pv_entry_t pv;
3100 
3101 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3102 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3103 	pv = get_pv_entry(pmap, FALSE);
3104 	pv->pv_va = va;
3105 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3106 }
3107 
3108 static __inline pv_entry_t
3109 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3110 {
3111 	pv_entry_t pv;
3112 
3113 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3114 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3115 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3116 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3117 			break;
3118 		}
3119 	}
3120 	return (pv);
3121 }
3122 
3123 static void
3124 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3125 {
3126 	pv_entry_t pv;
3127 
3128 	pv = pmap_pvh_remove(pvh, pmap, va);
3129 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3130 	free_pv_entry(pmap, pv);
3131 }
3132 
3133 static void
3134 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
3135 {
3136 	struct md_page *pvh;
3137 
3138 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3139 	pmap_pvh_free(&m->md, pmap, va);
3140 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
3141 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3142 		if (TAILQ_EMPTY(&pvh->pv_list))
3143 			vm_page_aflag_clear(m, PGA_WRITEABLE);
3144 	}
3145 }
3146 
3147 static void
3148 pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3149 {
3150 	struct md_page *pvh;
3151 	pv_entry_t pv;
3152 	vm_offset_t va_last;
3153 	vm_page_t m;
3154 
3155 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3156 	KASSERT((pa & PTE1_OFFSET) == 0,
3157 	    ("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
3158 
3159 	/*
3160 	 * Transfer the 1mpage's pv entry for this mapping to the first
3161 	 * page's pv list.
3162 	 */
3163 	pvh = pa_to_pvh(pa);
3164 	va = pte1_trunc(va);
3165 	pv = pmap_pvh_remove(pvh, pmap, va);
3166 	KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
3167 	m = PHYS_TO_VM_PAGE(pa);
3168 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3169 	/* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
3170 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3171 	do {
3172 		m++;
3173 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3174 		    ("pmap_pv_demote_pte1: page %p is not managed", m));
3175 		va += PAGE_SIZE;
3176 		pmap_insert_entry(pmap, va, m);
3177 	} while (va < va_last);
3178 }
3179 
3180 #if VM_NRESERVLEVEL > 0
3181 static void
3182 pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3183 {
3184 	struct md_page *pvh;
3185 	pv_entry_t pv;
3186 	vm_offset_t va_last;
3187 	vm_page_t m;
3188 
3189 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3190 	KASSERT((pa & PTE1_OFFSET) == 0,
3191 	    ("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
3192 
3193 	/*
3194 	 * Transfer the first page's pv entry for this mapping to the
3195 	 * 1mpage's pv list.  Aside from avoiding the cost of a call
3196 	 * to get_pv_entry(), a transfer avoids the possibility that
3197 	 * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
3198 	 * removes one of the mappings that is being promoted.
3199 	 */
3200 	m = PHYS_TO_VM_PAGE(pa);
3201 	va = pte1_trunc(va);
3202 	pv = pmap_pvh_remove(&m->md, pmap, va);
3203 	KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
3204 	pvh = pa_to_pvh(pa);
3205 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3206 	/* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
3207 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3208 	do {
3209 		m++;
3210 		va += PAGE_SIZE;
3211 		pmap_pvh_free(&m->md, pmap, va);
3212 	} while (va < va_last);
3213 }
3214 #endif
3215 
3216 /*
3217  *  Conditionally create a pv entry.
3218  */
3219 static boolean_t
3220 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3221 {
3222 	pv_entry_t pv;
3223 
3224 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3225 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3226 	if (pv_entry_count < pv_entry_high_water &&
3227 	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3228 		pv->pv_va = va;
3229 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3230 		return (TRUE);
3231 	} else
3232 		return (FALSE);
3233 }
3234 
3235 /*
3236  *  Create the pv entries for each of the pages within a section.
3237  */
3238 static bool
3239 pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags)
3240 {
3241 	struct md_page *pvh;
3242 	pv_entry_t pv;
3243 	bool noreclaim;
3244 
3245 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3246 	noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
3247 	if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
3248 	    (pv = get_pv_entry(pmap, noreclaim)) == NULL)
3249 		return (false);
3250 	pv->pv_va = va;
3251 	pvh = pa_to_pvh(pte1_pa(pte1));
3252 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3253 	return (true);
3254 }
3255 
3256 static inline void
3257 pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
3258 {
3259 
3260 	/* Kill all the small mappings or the big one only. */
3261 	if (pte1_is_section(npte1))
3262 		pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
3263 	else
3264 		pmap_tlb_flush(pmap, pte1_trunc(va));
3265 }
3266 
3267 /*
3268  *  Update kernel pte1 on all pmaps.
3269  *
3270  *  The following function is called only on one cpu with disabled interrupts.
3271  *  In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
3272  *  nobody can invoke explicit hardware table walk during the update of pte1.
3273  *  Unsolicited hardware table walk can still happen, invoked by speculative
3274  *  data or instruction prefetch or even by speculative hardware table walk.
3275  *
3276  *  The break-before-make approach should be implemented here. However, it's
3277  *  not so easy to do that for kernel mappings as it would be unhappy to unmap
3278  *  itself unexpectedly but voluntarily.
3279  */
3280 static void
3281 pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
3282 {
3283 	pmap_t pmap;
3284 	pt1_entry_t *pte1p;
3285 
3286 	/*
3287 	 * Get current pmap. Interrupts should be disabled here
3288 	 * so PCPU_GET() is done atomically.
3289 	 */
3290 	pmap = PCPU_GET(curpmap);
3291 	if (pmap == NULL)
3292 		pmap = kernel_pmap;
3293 
3294 	/*
3295 	 * (1) Change pte1 on current pmap.
3296 	 * (2) Flush all obsolete TLB entries on current CPU.
3297 	 * (3) Change pte1 on all pmaps.
3298 	 * (4) Flush all obsolete TLB entries on all CPUs in SMP case.
3299 	 */
3300 
3301 	pte1p = pmap_pte1(pmap, va);
3302 	pte1_store(pte1p, npte1);
3303 
3304 	/* Kill all the small mappings or the big one only. */
3305 	if (pte1_is_section(npte1)) {
3306 		pmap_pte1_kern_promotions++;
3307 		tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
3308 	} else {
3309 		pmap_pte1_kern_demotions++;
3310 		tlb_flush_local(pte1_trunc(va));
3311 	}
3312 
3313 	/*
3314 	 * In SMP case, this function is called when all cpus are at smp
3315 	 * rendezvous, so there is no need to use 'allpmaps_lock' lock here.
3316 	 * In UP case, the function is called with this lock locked.
3317 	 */
3318 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
3319 		pte1p = pmap_pte1(pmap, va);
3320 		pte1_store(pte1p, npte1);
3321 	}
3322 
3323 #ifdef SMP
3324 	/* Kill all the small mappings or the big one only. */
3325 	if (pte1_is_section(npte1))
3326 		tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
3327 	else
3328 		tlb_flush(pte1_trunc(va));
3329 #endif
3330 }
3331 
3332 #ifdef SMP
3333 struct pte1_action {
3334 	vm_offset_t va;
3335 	pt1_entry_t npte1;
3336 	u_int update;		/* CPU that updates the PTE1 */
3337 };
3338 
3339 static void
3340 pmap_update_pte1_action(void *arg)
3341 {
3342 	struct pte1_action *act = arg;
3343 
3344 	if (act->update == PCPU_GET(cpuid))
3345 		pmap_update_pte1_kernel(act->va, act->npte1);
3346 }
3347 
3348 /*
3349  *  Change pte1 on current pmap.
3350  *  Note that kernel pte1 must be changed on all pmaps.
3351  *
3352  *  According to the architecture reference manual published by ARM,
3353  *  the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
3354  *  According to this manual, UNPREDICTABLE behaviours must never happen in
3355  *  a viable system. In contrast, on x86 processors, it is not specified which
3356  *  TLB entry mapping the virtual address will be used, but the MMU doesn't
3357  *  generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
3358  *  Black).
3359  *
3360  *  It's a problem when either promotion or demotion is being done. The pte1
3361  *  update and appropriate TLB flush must be done atomically in general.
3362  */
3363 static void
3364 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3365     pt1_entry_t npte1)
3366 {
3367 
3368 	if (pmap == kernel_pmap) {
3369 		struct pte1_action act;
3370 
3371 		sched_pin();
3372 		act.va = va;
3373 		act.npte1 = npte1;
3374 		act.update = PCPU_GET(cpuid);
3375 		smp_rendezvous_cpus(all_cpus, smp_no_rendezvous_barrier,
3376 		    pmap_update_pte1_action, NULL, &act);
3377 		sched_unpin();
3378 	} else {
3379 		register_t cspr;
3380 
3381 		/*
3382 		 * Use break-before-make approach for changing userland
3383 		 * mappings. It can cause L1 translation aborts on other
3384 		 * cores in SMP case. So, special treatment is implemented
3385 		 * in pmap_fault(). To reduce the likelihood that another core
3386 		 * will be affected by the broken mapping, disable interrupts
3387 		 * until the mapping change is completed.
3388 		 */
3389 		cspr = disable_interrupts(PSR_I | PSR_F);
3390 		pte1_clear(pte1p);
3391 		pmap_tlb_flush_pte1(pmap, va, npte1);
3392 		pte1_store(pte1p, npte1);
3393 		restore_interrupts(cspr);
3394 	}
3395 }
3396 #else
3397 static void
3398 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3399     pt1_entry_t npte1)
3400 {
3401 
3402 	if (pmap == kernel_pmap) {
3403 		mtx_lock_spin(&allpmaps_lock);
3404 		pmap_update_pte1_kernel(va, npte1);
3405 		mtx_unlock_spin(&allpmaps_lock);
3406 	} else {
3407 		register_t cspr;
3408 
3409 		/*
3410 		 * Use break-before-make approach for changing userland
3411 		 * mappings. It's absolutely safe in UP case when interrupts
3412 		 * are disabled.
3413 		 */
3414 		cspr = disable_interrupts(PSR_I | PSR_F);
3415 		pte1_clear(pte1p);
3416 		pmap_tlb_flush_pte1(pmap, va, npte1);
3417 		pte1_store(pte1p, npte1);
3418 		restore_interrupts(cspr);
3419 	}
3420 }
3421 #endif
3422 
3423 #if VM_NRESERVLEVEL > 0
3424 /*
3425  *  Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
3426  *  within a single page table page (PT2) to a single 1MB page mapping.
3427  *  For promotion to occur, two conditions must be met: (1) the 4KB page
3428  *  mappings must map aligned, contiguous physical memory and (2) the 4KB page
3429  *  mappings must have identical characteristics.
3430  *
3431  *  Managed (PG_MANAGED) mappings within the kernel address space are not
3432  *  promoted.  The reason is that kernel PTE1s are replicated in each pmap but
3433  *  pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
3434  *  read the PTE1 from the kernel pmap.
3435  */
3436 static void
3437 pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3438 {
3439 	pt1_entry_t npte1;
3440 	pt2_entry_t *fpte2p, fpte2, fpte2_fav;
3441 	pt2_entry_t *pte2p, pte2;
3442 	vm_offset_t pteva __unused;
3443 	vm_page_t m __unused;
3444 
3445 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3446 	    pmap, va, pte1_load(pte1p), pte1p));
3447 
3448 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3449 
3450 	/*
3451 	 * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
3452 	 * either invalid, unused, or does not map the first 4KB physical page
3453 	 * within a 1MB page.
3454 	 */
3455 	fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
3456 	fpte2 = pte2_load(fpte2p);
3457 	if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
3458 	    (PTE2_A | PTE2_V)) {
3459 		pmap_pte1_p_failures++;
3460 		CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
3461 		    __func__, va, pmap);
3462 		return;
3463 	}
3464 	if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
3465 		pmap_pte1_p_failures++;
3466 		CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
3467 		    __func__, va, pmap);
3468 		return;
3469 	}
3470 	if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3471 		/*
3472 		 * When page is not modified, PTE2_RO can be set without
3473 		 * a TLB invalidation.
3474 		 */
3475 		fpte2 |= PTE2_RO;
3476 		pte2_store(fpte2p, fpte2);
3477 	}
3478 
3479 	/*
3480 	 * Examine each of the other PTE2s in the specified PT2. Abort if this
3481 	 * PTE2 maps an unexpected 4KB physical page or does not have identical
3482 	 * characteristics to the first PTE2.
3483 	 */
3484 	fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
3485 	fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
3486 	for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
3487 		pte2 = pte2_load(pte2p);
3488 		if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
3489 			pmap_pte1_p_failures++;
3490 			CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
3491 			    __func__, va, pmap);
3492 			return;
3493 		}
3494 		if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3495 			/*
3496 			 * When page is not modified, PTE2_RO can be set
3497 			 * without a TLB invalidation. See note above.
3498 			 */
3499 			pte2 |= PTE2_RO;
3500 			pte2_store(pte2p, pte2);
3501 			pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
3502 			    PTE2_FRAME);
3503 			CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
3504 			    __func__, pteva, pmap);
3505 		}
3506 		if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
3507 			pmap_pte1_p_failures++;
3508 			CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
3509 			    __func__, va, pmap);
3510 			return;
3511 		}
3512 
3513 		fpte2_fav -= PTE2_SIZE;
3514 	}
3515 	/*
3516 	 * The page table page in its current state will stay in PT2TAB
3517 	 * until the PTE1 mapping the section is demoted by pmap_demote_pte1()
3518 	 * or destroyed by pmap_remove_pte1().
3519 	 *
3520 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3521 	 */
3522 	m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
3523 	KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
3524 	    ("%s: PT2 page is out of range", __func__));
3525 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
3526 	    ("%s: PT2 page's pindex is wrong", __func__));
3527 
3528 	/*
3529 	 * Get pte1 from pte2 format.
3530 	 */
3531 	npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
3532 
3533 	/*
3534 	 * Promote the pv entries.
3535 	 */
3536 	if (pte2_is_managed(fpte2))
3537 		pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
3538 
3539 	/*
3540 	 * Promote the mappings.
3541 	 */
3542 	pmap_change_pte1(pmap, pte1p, va, npte1);
3543 
3544 	pmap_pte1_promotions++;
3545 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3546 	    __func__, va, pmap);
3547 
3548 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3549 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3550 }
3551 #endif /* VM_NRESERVLEVEL > 0 */
3552 
3553 /*
3554  *  Zero L2 page table page.
3555  */
3556 static __inline void
3557 pmap_clear_pt2(pt2_entry_t *fpte2p)
3558 {
3559 	pt2_entry_t *pte2p;
3560 
3561 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
3562 		pte2_clear(pte2p);
3563 
3564 }
3565 
3566 /*
3567  *  Removes a 1MB page mapping from the kernel pmap.
3568  */
3569 static void
3570 pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3571 {
3572 	vm_page_t m;
3573 	uint32_t pte1_idx;
3574 	pt2_entry_t *fpte2p;
3575 	vm_paddr_t pt2_pa;
3576 
3577 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3578 	m = pmap_pt2_page(pmap, va);
3579 	if (m == NULL)
3580 		/*
3581 		 * QQQ: Is this function called only on promoted pte1?
3582 		 *      We certainly do section mappings directly
3583 		 *      (without promotion) in kernel !!!
3584 		 */
3585 		panic("%s: missing pt2 page", __func__);
3586 
3587 	pte1_idx = pte1_index(va);
3588 
3589 	/*
3590 	 * Initialize the L2 page table.
3591 	 */
3592 	fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3593 	pmap_clear_pt2(fpte2p);
3594 
3595 	/*
3596 	 * Remove the mapping.
3597 	 */
3598 	pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
3599 	pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
3600 
3601 	/*
3602 	 * QQQ: We do not need to invalidate PT2MAP mapping
3603 	 * as we did not change it. I.e. the L2 page table page
3604 	 * was and still is mapped the same way.
3605 	 */
3606 }
3607 
3608 /*
3609  *  Do the things to unmap a section in a process
3610  */
3611 static void
3612 pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
3613     struct spglist *free)
3614 {
3615 	pt1_entry_t opte1;
3616 	struct md_page *pvh;
3617 	vm_offset_t eva, va;
3618 	vm_page_t m;
3619 
3620 	PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
3621 	    pte1_load(pte1p), pte1p));
3622 
3623 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3624 	KASSERT((sva & PTE1_OFFSET) == 0,
3625 	    ("%s: sva is not 1mpage aligned", __func__));
3626 
3627 	/*
3628 	 * Clear and invalidate the mapping. It should occupy one and only TLB
3629 	 * entry. So, pmap_tlb_flush() called with aligned address should be
3630 	 * sufficient.
3631 	 */
3632 	opte1 = pte1_load_clear(pte1p);
3633 	pmap_tlb_flush(pmap, sva);
3634 
3635 	if (pte1_is_wired(opte1))
3636 		pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
3637 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
3638 	if (pte1_is_managed(opte1)) {
3639 		pvh = pa_to_pvh(pte1_pa(opte1));
3640 		pmap_pvh_free(pvh, pmap, sva);
3641 		eva = sva + PTE1_SIZE;
3642 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
3643 		    va < eva; va += PAGE_SIZE, m++) {
3644 			if (pte1_is_dirty(opte1))
3645 				vm_page_dirty(m);
3646 			if (opte1 & PTE1_A)
3647 				vm_page_aflag_set(m, PGA_REFERENCED);
3648 			if (TAILQ_EMPTY(&m->md.pv_list) &&
3649 			    TAILQ_EMPTY(&pvh->pv_list))
3650 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3651 		}
3652 	}
3653 	if (pmap == kernel_pmap) {
3654 		/*
3655 		 * L2 page table(s) can't be removed from kernel map as
3656 		 * kernel counts on it (stuff around pmap_growkernel()).
3657 		 */
3658 		 pmap_remove_kernel_pte1(pmap, pte1p, sva);
3659 	} else {
3660 		/*
3661 		 * Get associated L2 page table page.
3662 		 * It's possible that the page was never allocated.
3663 		 */
3664 		m = pmap_pt2_page(pmap, sva);
3665 		if (m != NULL)
3666 			pmap_unwire_pt2_all(pmap, sva, m, free);
3667 	}
3668 }
3669 
3670 /*
3671  *  Fills L2 page table page with mappings to consecutive physical pages.
3672  */
3673 static __inline void
3674 pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
3675 {
3676 	pt2_entry_t *pte2p;
3677 
3678 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
3679 		pte2_store(pte2p, npte2);
3680 		npte2 += PTE2_SIZE;
3681 	}
3682 }
3683 
3684 /*
3685  *  Tries to demote a 1MB page mapping. If demotion fails, the
3686  *  1MB page mapping is invalidated.
3687  */
3688 static boolean_t
3689 pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3690 {
3691 	pt1_entry_t opte1, npte1;
3692 	pt2_entry_t *fpte2p, npte2;
3693 	vm_paddr_t pt2pg_pa, pt2_pa;
3694 	vm_page_t m;
3695 	struct spglist free;
3696 	uint32_t pte1_idx, isnew = 0;
3697 
3698 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3699 	    pmap, va, pte1_load(pte1p), pte1p));
3700 
3701 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3702 
3703 	opte1 = pte1_load(pte1p);
3704 	KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
3705 
3706 	if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
3707 		KASSERT(!pte1_is_wired(opte1),
3708 		    ("%s: PT2 page for a wired mapping is missing", __func__));
3709 
3710 		/*
3711 		 * Invalidate the 1MB page mapping and return
3712 		 * "failure" if the mapping was never accessed or the
3713 		 * allocation of the new page table page fails.
3714 		 */
3715 		if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL,
3716 		    pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ |
3717 		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) {
3718 			SLIST_INIT(&free);
3719 			pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
3720 			vm_page_free_pages_toq(&free, false);
3721 			CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
3722 			    __func__, va, pmap);
3723 			return (FALSE);
3724 		}
3725 		if (va < VM_MAXUSER_ADDRESS)
3726 			pmap->pm_stats.resident_count++;
3727 
3728 		isnew = 1;
3729 
3730 		/*
3731 		 * We init all L2 page tables in the page even if
3732 		 * we are going to change everything for one L2 page
3733 		 * table in a while.
3734 		 */
3735 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
3736 	} else {
3737 		if (va < VM_MAXUSER_ADDRESS) {
3738 			if (pt2_is_empty(m, va))
3739 				isnew = 1; /* Demoting section w/o promotion. */
3740 #ifdef INVARIANTS
3741 			else
3742 				KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
3743 				    " count %u", __func__,
3744 				    pt2_wirecount_get(m, pte1_index(va))));
3745 #endif
3746 		}
3747 	}
3748 
3749 	pt2pg_pa = VM_PAGE_TO_PHYS(m);
3750 	pte1_idx = pte1_index(va);
3751 	/*
3752 	 * If the pmap is current, then the PT2MAP can provide access to
3753 	 * the page table page (promoted L2 page tables are not unmapped).
3754 	 * Otherwise, temporarily map the L2 page table page (m) into
3755 	 * the kernel's address space at either PADDR1 or PADDR2.
3756 	 *
3757 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3758 	 */
3759 	if (pmap_is_current(pmap))
3760 		fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3761 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
3762 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
3763 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
3764 #ifdef SMP
3765 			PMAP1cpu = PCPU_GET(cpuid);
3766 #endif
3767 			tlb_flush_local((vm_offset_t)PADDR1);
3768 			PMAP1changed++;
3769 		} else
3770 #ifdef SMP
3771 		if (PMAP1cpu != PCPU_GET(cpuid)) {
3772 			PMAP1cpu = PCPU_GET(cpuid);
3773 			tlb_flush_local((vm_offset_t)PADDR1);
3774 			PMAP1changedcpu++;
3775 		} else
3776 #endif
3777 			PMAP1unchanged++;
3778 		fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
3779 	} else {
3780 		mtx_lock(&PMAP2mutex);
3781 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
3782 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
3783 			tlb_flush((vm_offset_t)PADDR2);
3784 		}
3785 		fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
3786 	}
3787 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
3788 	npte1 = PTE1_LINK(pt2_pa);
3789 
3790 	KASSERT((opte1 & PTE1_A) != 0,
3791 	    ("%s: opte1 is missing PTE1_A", __func__));
3792 	KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
3793 	    ("%s: opte1 has PTE1_NM", __func__));
3794 
3795 	/*
3796 	 *  Get pte2 from pte1 format.
3797 	*/
3798 	npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
3799 
3800 	/*
3801 	 * If the L2 page table page is new, initialize it. If the mapping
3802 	 * has changed attributes, update the page table entries.
3803 	 */
3804 	if (isnew != 0) {
3805 		pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
3806 		pmap_fill_pt2(fpte2p, npte2);
3807 	} else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
3808 		    (npte2 & PTE2_PROMOTE))
3809 		pmap_fill_pt2(fpte2p, npte2);
3810 
3811 	KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
3812 	    ("%s: fpte2p and npte2 map different physical addresses",
3813 	    __func__));
3814 
3815 	if (fpte2p == PADDR2)
3816 		mtx_unlock(&PMAP2mutex);
3817 
3818 	/*
3819 	 * Demote the mapping. This pmap is locked. The old PTE1 has
3820 	 * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
3821 	 * has not PTE1_NM set. Thus, there is no danger of a race with
3822 	 * another processor changing the setting of PTE1_A and/or PTE1_NM
3823 	 * between the read above and the store below.
3824 	 */
3825 	pmap_change_pte1(pmap, pte1p, va, npte1);
3826 
3827 	/*
3828 	 * Demote the pv entry. This depends on the earlier demotion
3829 	 * of the mapping. Specifically, the (re)creation of a per-
3830 	 * page pv entry might trigger the execution of pmap_pv_reclaim(),
3831 	 * which might reclaim a newly (re)created per-page pv entry
3832 	 * and destroy the associated mapping. In order to destroy
3833 	 * the mapping, the PTE1 must have already changed from mapping
3834 	 * the 1mpage to referencing the page table page.
3835 	 */
3836 	if (pte1_is_managed(opte1))
3837 		pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
3838 
3839 	pmap_pte1_demotions++;
3840 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3841 	    __func__, va, pmap);
3842 
3843 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3844 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3845 	return (TRUE);
3846 }
3847 
3848 /*
3849  *	Insert the given physical page (p) at
3850  *	the specified virtual address (v) in the
3851  *	target physical map with the protection requested.
3852  *
3853  *	If specified, the page will be wired down, meaning
3854  *	that the related pte can not be reclaimed.
3855  *
3856  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3857  *	or lose information.  That is, this routine must actually
3858  *	insert this page into the given map NOW.
3859  */
3860 int
3861 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3862     u_int flags, int8_t psind)
3863 {
3864 	pt1_entry_t *pte1p;
3865 	pt2_entry_t *pte2p;
3866 	pt2_entry_t npte2, opte2;
3867 	pv_entry_t pv;
3868 	vm_paddr_t opa, pa;
3869 	vm_page_t mpte2, om;
3870 	int rv;
3871 
3872 	va = trunc_page(va);
3873 	KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
3874 	KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
3875 	    ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
3876 	    va));
3877 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
3878 	    va >= kmi.clean_eva,
3879 	    ("%s: managed mapping within the clean submap", __func__));
3880 	if ((m->oflags & VPO_UNMANAGED) == 0)
3881 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3882 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3883 	    ("%s: flags %u has reserved bits set", __func__, flags));
3884 	pa = VM_PAGE_TO_PHYS(m);
3885 	npte2 = PTE2(pa, PTE2_A, vm_page_pte2_attr(m));
3886 	if ((flags & VM_PROT_WRITE) == 0)
3887 		npte2 |= PTE2_NM;
3888 	if ((prot & VM_PROT_WRITE) == 0)
3889 		npte2 |= PTE2_RO;
3890 	KASSERT((npte2 & (PTE2_NM | PTE2_RO)) != PTE2_RO,
3891 	    ("%s: flags includes VM_PROT_WRITE but prot doesn't", __func__));
3892 	if ((prot & VM_PROT_EXECUTE) == 0)
3893 		npte2 |= PTE2_NX;
3894 	if ((flags & PMAP_ENTER_WIRED) != 0)
3895 		npte2 |= PTE2_W;
3896 	if (va < VM_MAXUSER_ADDRESS)
3897 		npte2 |= PTE2_U;
3898 	if (pmap != kernel_pmap)
3899 		npte2 |= PTE2_NG;
3900 
3901 	rw_wlock(&pvh_global_lock);
3902 	PMAP_LOCK(pmap);
3903 	sched_pin();
3904 	if (psind == 1) {
3905 		/* Assert the required virtual and physical alignment. */
3906 		KASSERT((va & PTE1_OFFSET) == 0,
3907 		    ("%s: va unaligned", __func__));
3908 		KASSERT(m->psind > 0, ("%s: m->psind < psind", __func__));
3909 		rv = pmap_enter_pte1(pmap, va, PTE1_PA(pa) | ATTR_TO_L1(npte2) |
3910 		    PTE1_V, flags, m);
3911 		goto out;
3912 	}
3913 
3914 	/*
3915 	 * In the case that a page table page is not
3916 	 * resident, we are creating it here.
3917 	 */
3918 	if (va < VM_MAXUSER_ADDRESS) {
3919 		mpte2 = pmap_allocpte2(pmap, va, flags);
3920 		if (mpte2 == NULL) {
3921 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3922 			    ("pmap_allocpte2 failed with sleep allowed"));
3923 			rv = KERN_RESOURCE_SHORTAGE;
3924 			goto out;
3925 		}
3926 	} else
3927 		mpte2 = NULL;
3928 	pte1p = pmap_pte1(pmap, va);
3929 	if (pte1_is_section(pte1_load(pte1p)))
3930 		panic("%s: attempted on 1MB page", __func__);
3931 	pte2p = pmap_pte2_quick(pmap, va);
3932 	if (pte2p == NULL)
3933 		panic("%s: invalid L1 page table entry va=%#x", __func__, va);
3934 
3935 	om = NULL;
3936 	opte2 = pte2_load(pte2p);
3937 	opa = pte2_pa(opte2);
3938 	/*
3939 	 * Mapping has not changed, must be protection or wiring change.
3940 	 */
3941 	if (pte2_is_valid(opte2) && (opa == pa)) {
3942 		/*
3943 		 * Wiring change, just update stats. We don't worry about
3944 		 * wiring PT2 pages as they remain resident as long as there
3945 		 * are valid mappings in them. Hence, if a user page is wired,
3946 		 * the PT2 page will be also.
3947 		 */
3948 		if (pte2_is_wired(npte2) && !pte2_is_wired(opte2))
3949 			pmap->pm_stats.wired_count++;
3950 		else if (!pte2_is_wired(npte2) && pte2_is_wired(opte2))
3951 			pmap->pm_stats.wired_count--;
3952 
3953 		/*
3954 		 * Remove extra pte2 reference
3955 		 */
3956 		if (mpte2)
3957 			pt2_wirecount_dec(mpte2, pte1_index(va));
3958 		if ((m->oflags & VPO_UNMANAGED) == 0)
3959 			om = m;
3960 		goto validate;
3961 	}
3962 
3963 	/*
3964 	 * QQQ: We think that changing physical address on writeable mapping
3965 	 *      is not safe. Well, maybe on kernel address space with correct
3966 	 *      locking, it can make a sense. However, we have no idea why
3967 	 *      anyone should do that on user address space. Are we wrong?
3968 	 */
3969 	KASSERT((opa == 0) || (opa == pa) ||
3970 	    !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
3971 	    ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
3972 	    __func__, pmap, va, opte2, opa, pa, flags, prot));
3973 
3974 	pv = NULL;
3975 
3976 	/*
3977 	 * Mapping has changed, invalidate old range and fall through to
3978 	 * handle validating new mapping.
3979 	 */
3980 	if (opa) {
3981 		if (pte2_is_wired(opte2))
3982 			pmap->pm_stats.wired_count--;
3983 		om = PHYS_TO_VM_PAGE(opa);
3984 		if (om != NULL && (om->oflags & VPO_UNMANAGED) != 0)
3985 			om = NULL;
3986 		if (om != NULL)
3987 			pv = pmap_pvh_remove(&om->md, pmap, va);
3988 
3989 		/*
3990 		 * Remove extra pte2 reference
3991 		 */
3992 		if (mpte2 != NULL)
3993 			pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
3994 	} else
3995 		pmap->pm_stats.resident_count++;
3996 
3997 	/*
3998 	 * Enter on the PV list if part of our managed memory.
3999 	 */
4000 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4001 		if (pv == NULL) {
4002 			pv = get_pv_entry(pmap, FALSE);
4003 			pv->pv_va = va;
4004 		}
4005 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4006 	} else if (pv != NULL)
4007 		free_pv_entry(pmap, pv);
4008 
4009 	/*
4010 	 * Increment counters
4011 	 */
4012 	if (pte2_is_wired(npte2))
4013 		pmap->pm_stats.wired_count++;
4014 
4015 validate:
4016 	/*
4017 	 * Now validate mapping with desired protection/wiring.
4018 	 */
4019 	if (prot & VM_PROT_WRITE) {
4020 		if ((m->oflags & VPO_UNMANAGED) == 0)
4021 			vm_page_aflag_set(m, PGA_WRITEABLE);
4022 	}
4023 
4024 	/*
4025 	 * If the mapping or permission bits are different, we need
4026 	 * to update the pte2.
4027 	 *
4028 	 * QQQ: Think again and again what to do
4029 	 *      if the mapping is going to be changed!
4030 	 */
4031 	if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
4032 		/*
4033 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4034 		 * is set. Do it now, before the mapping is stored and made
4035 		 * valid for hardware table walk. If done later, there is a race
4036 		 * for other threads of current process in lazy loading case.
4037 		 * Don't do it for kernel memory which is mapped with exec
4038 		 * permission even if the memory isn't going to hold executable
4039 		 * code. The only time when icache sync is needed is after
4040 		 * kernel module is loaded and the relocation info is processed.
4041 		 * And it's done in elf_cpu_load_file().
4042 		 *
4043 		 * QQQ: (1) Does it exist any better way where
4044 		 *          or how to sync icache?
4045 		 *      (2) Now, we do it on a page basis.
4046 		 */
4047 		if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
4048 		    m->md.pat_mode == VM_MEMATTR_WB_WA &&
4049 		    (opa != pa || (opte2 & PTE2_NX)))
4050 			cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4051 
4052 		if (opte2 & PTE2_V) {
4053 			/* Change mapping with break-before-make approach. */
4054 			opte2 = pte2_load_clear(pte2p);
4055 			pmap_tlb_flush(pmap, va);
4056 			pte2_store(pte2p, npte2);
4057 			if (om != NULL) {
4058 				KASSERT((om->oflags & VPO_UNMANAGED) == 0,
4059 				    ("%s: om %p unmanaged", __func__, om));
4060 				if ((opte2 & PTE2_A) != 0)
4061 					vm_page_aflag_set(om, PGA_REFERENCED);
4062 				if (pte2_is_dirty(opte2))
4063 					vm_page_dirty(om);
4064 				if (TAILQ_EMPTY(&om->md.pv_list) &&
4065 				    ((om->flags & PG_FICTITIOUS) != 0 ||
4066 				    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4067 					vm_page_aflag_clear(om, PGA_WRITEABLE);
4068 			}
4069 		} else
4070 			pte2_store(pte2p, npte2);
4071 	}
4072 #if 0
4073 	else {
4074 		/*
4075 		 * QQQ: In time when both access and not mofified bits are
4076 		 *      emulated by software, this should not happen. Some
4077 		 *      analysis is need, if this really happen. Missing
4078 		 *      tlb flush somewhere could be the reason.
4079 		 */
4080 		panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
4081 		    va, opte2, npte2);
4082 	}
4083 #endif
4084 
4085 #if VM_NRESERVLEVEL > 0
4086 	/*
4087 	 * If both the L2 page table page and the reservation are fully
4088 	 * populated, then attempt promotion.
4089 	 */
4090 	if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
4091 	    sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
4092 	    vm_reserv_level_iffullpop(m) == 0)
4093 		pmap_promote_pte1(pmap, pte1p, va);
4094 #endif
4095 
4096 	rv = KERN_SUCCESS;
4097 out:
4098 	sched_unpin();
4099 	rw_wunlock(&pvh_global_lock);
4100 	PMAP_UNLOCK(pmap);
4101 	return (rv);
4102 }
4103 
4104 /*
4105  *  Do the things to unmap a page in a process.
4106  */
4107 static int
4108 pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
4109     struct spglist *free)
4110 {
4111 	pt2_entry_t opte2;
4112 	vm_page_t m;
4113 
4114 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4115 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4116 
4117 	/* Clear and invalidate the mapping. */
4118 	opte2 = pte2_load_clear(pte2p);
4119 	pmap_tlb_flush(pmap, va);
4120 
4121 	KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
4122 	    __func__, pmap, va, opte2));
4123 
4124 	if (opte2 & PTE2_W)
4125 		pmap->pm_stats.wired_count -= 1;
4126 	pmap->pm_stats.resident_count -= 1;
4127 	if (pte2_is_managed(opte2)) {
4128 		m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4129 		if (pte2_is_dirty(opte2))
4130 			vm_page_dirty(m);
4131 		if (opte2 & PTE2_A)
4132 			vm_page_aflag_set(m, PGA_REFERENCED);
4133 		pmap_remove_entry(pmap, m, va);
4134 	}
4135 	return (pmap_unuse_pt2(pmap, va, free));
4136 }
4137 
4138 /*
4139  *  Remove a single page from a process address space.
4140  */
4141 static void
4142 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
4143 {
4144 	pt2_entry_t *pte2p;
4145 
4146 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4147 	KASSERT(curthread->td_pinned > 0,
4148 	    ("%s: curthread not pinned", __func__));
4149 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4150 	if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
4151 	    !pte2_is_valid(pte2_load(pte2p)))
4152 		return;
4153 	pmap_remove_pte2(pmap, pte2p, va, free);
4154 }
4155 
4156 /*
4157  *  Remove the given range of addresses from the specified map.
4158  *
4159  *  It is assumed that the start and end are properly
4160  *  rounded to the page size.
4161  */
4162 void
4163 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4164 {
4165 	vm_offset_t nextva;
4166 	pt1_entry_t *pte1p, pte1;
4167 	pt2_entry_t *pte2p, pte2;
4168 	struct spglist free;
4169 
4170 	/*
4171 	 * Perform an unsynchronized read. This is, however, safe.
4172 	 */
4173 	if (pmap->pm_stats.resident_count == 0)
4174 		return;
4175 
4176 	SLIST_INIT(&free);
4177 
4178 	rw_wlock(&pvh_global_lock);
4179 	sched_pin();
4180 	PMAP_LOCK(pmap);
4181 
4182 	/*
4183 	 * Special handling of removing one page. A very common
4184 	 * operation and easy to short circuit some code.
4185 	 */
4186 	if (sva + PAGE_SIZE == eva) {
4187 		pte1 = pte1_load(pmap_pte1(pmap, sva));
4188 		if (pte1_is_link(pte1)) {
4189 			pmap_remove_page(pmap, sva, &free);
4190 			goto out;
4191 		}
4192 	}
4193 
4194 	for (; sva < eva; sva = nextva) {
4195 		/*
4196 		 * Calculate address for next L2 page table.
4197 		 */
4198 		nextva = pte1_trunc(sva + PTE1_SIZE);
4199 		if (nextva < sva)
4200 			nextva = eva;
4201 		if (pmap->pm_stats.resident_count == 0)
4202 			break;
4203 
4204 		pte1p = pmap_pte1(pmap, sva);
4205 		pte1 = pte1_load(pte1p);
4206 
4207 		/*
4208 		 * Weed out invalid mappings. Note: we assume that the L1 page
4209 		 * table is always allocated, and in kernel virtual.
4210 		 */
4211 		if (pte1 == 0)
4212 			continue;
4213 
4214 		if (pte1_is_section(pte1)) {
4215 			/*
4216 			 * Are we removing the entire large page?  If not,
4217 			 * demote the mapping and fall through.
4218 			 */
4219 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4220 				pmap_remove_pte1(pmap, pte1p, sva, &free);
4221 				continue;
4222 			} else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4223 				/* The large page mapping was destroyed. */
4224 				continue;
4225 			}
4226 #ifdef INVARIANTS
4227 			else {
4228 				/* Update pte1 after demotion. */
4229 				pte1 = pte1_load(pte1p);
4230 			}
4231 #endif
4232 		}
4233 
4234 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4235 		    " is not link", __func__, pmap, sva, pte1, pte1p));
4236 
4237 		/*
4238 		 * Limit our scan to either the end of the va represented
4239 		 * by the current L2 page table page, or to the end of the
4240 		 * range being removed.
4241 		 */
4242 		if (nextva > eva)
4243 			nextva = eva;
4244 
4245 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
4246 		    pte2p++, sva += PAGE_SIZE) {
4247 			pte2 = pte2_load(pte2p);
4248 			if (!pte2_is_valid(pte2))
4249 				continue;
4250 			if (pmap_remove_pte2(pmap, pte2p, sva, &free))
4251 				break;
4252 		}
4253 	}
4254 out:
4255 	sched_unpin();
4256 	rw_wunlock(&pvh_global_lock);
4257 	PMAP_UNLOCK(pmap);
4258 	vm_page_free_pages_toq(&free, false);
4259 }
4260 
4261 /*
4262  *	Routine:	pmap_remove_all
4263  *	Function:
4264  *		Removes this physical page from
4265  *		all physical maps in which it resides.
4266  *		Reflects back modify bits to the pager.
4267  *
4268  *	Notes:
4269  *		Original versions of this routine were very
4270  *		inefficient because they iteratively called
4271  *		pmap_remove (slow...)
4272  */
4273 
4274 void
4275 pmap_remove_all(vm_page_t m)
4276 {
4277 	struct md_page *pvh;
4278 	pv_entry_t pv;
4279 	pmap_t pmap;
4280 	pt2_entry_t *pte2p, opte2;
4281 	pt1_entry_t *pte1p;
4282 	vm_offset_t va;
4283 	struct spglist free;
4284 
4285 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4286 	    ("%s: page %p is not managed", __func__, m));
4287 	SLIST_INIT(&free);
4288 	rw_wlock(&pvh_global_lock);
4289 	sched_pin();
4290 	if ((m->flags & PG_FICTITIOUS) != 0)
4291 		goto small_mappings;
4292 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4293 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4294 		va = pv->pv_va;
4295 		pmap = PV_PMAP(pv);
4296 		PMAP_LOCK(pmap);
4297 		pte1p = pmap_pte1(pmap, va);
4298 		(void)pmap_demote_pte1(pmap, pte1p, va);
4299 		PMAP_UNLOCK(pmap);
4300 	}
4301 small_mappings:
4302 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4303 		pmap = PV_PMAP(pv);
4304 		PMAP_LOCK(pmap);
4305 		pmap->pm_stats.resident_count--;
4306 		pte1p = pmap_pte1(pmap, pv->pv_va);
4307 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
4308 		    "a 1mpage in page %p's pv list", __func__, m));
4309 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
4310 		opte2 = pte2_load_clear(pte2p);
4311 		pmap_tlb_flush(pmap, pv->pv_va);
4312 		KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
4313 		    __func__, pmap, pv->pv_va));
4314 		if (pte2_is_wired(opte2))
4315 			pmap->pm_stats.wired_count--;
4316 		if (opte2 & PTE2_A)
4317 			vm_page_aflag_set(m, PGA_REFERENCED);
4318 
4319 		/*
4320 		 * Update the vm_page_t clean and reference bits.
4321 		 */
4322 		if (pte2_is_dirty(opte2))
4323 			vm_page_dirty(m);
4324 		pmap_unuse_pt2(pmap, pv->pv_va, &free);
4325 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4326 		free_pv_entry(pmap, pv);
4327 		PMAP_UNLOCK(pmap);
4328 	}
4329 	vm_page_aflag_clear(m, PGA_WRITEABLE);
4330 	sched_unpin();
4331 	rw_wunlock(&pvh_global_lock);
4332 	vm_page_free_pages_toq(&free, false);
4333 }
4334 
4335 /*
4336  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4337  *  good coding style, a.k.a. 80 character line width limit hell.
4338  */
4339 static __inline void
4340 pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
4341     struct spglist *free)
4342 {
4343 	vm_paddr_t pa;
4344 	vm_page_t m, mt, mpt2pg;
4345 	struct md_page *pvh;
4346 
4347 	pa = pte1_pa(pte1);
4348 	m = PHYS_TO_VM_PAGE(pa);
4349 
4350 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4351 	    __func__, m, m->phys_addr, pa));
4352 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4353 	    m < &vm_page_array[vm_page_array_size],
4354 	    ("%s: bad pte1 %#x", __func__, pte1));
4355 
4356 	if (pte1_is_dirty(pte1)) {
4357 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4358 			vm_page_dirty(mt);
4359 	}
4360 
4361 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
4362 	pvh = pa_to_pvh(pa);
4363 	TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4364 	if (TAILQ_EMPTY(&pvh->pv_list)) {
4365 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4366 			if (TAILQ_EMPTY(&mt->md.pv_list))
4367 				vm_page_aflag_clear(mt, PGA_WRITEABLE);
4368 	}
4369 	mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
4370 	if (mpt2pg != NULL)
4371 		pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
4372 }
4373 
4374 /*
4375  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4376  *  good coding style, a.k.a. 80 character line width limit hell.
4377  */
4378 static __inline void
4379 pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
4380     struct spglist *free)
4381 {
4382 	vm_paddr_t pa;
4383 	vm_page_t m;
4384 	struct md_page *pvh;
4385 
4386 	pa = pte2_pa(pte2);
4387 	m = PHYS_TO_VM_PAGE(pa);
4388 
4389 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4390 	    __func__, m, m->phys_addr, pa));
4391 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4392 	    m < &vm_page_array[vm_page_array_size],
4393 	    ("%s: bad pte2 %#x", __func__, pte2));
4394 
4395 	if (pte2_is_dirty(pte2))
4396 		vm_page_dirty(m);
4397 
4398 	pmap->pm_stats.resident_count--;
4399 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4400 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
4401 		pvh = pa_to_pvh(pa);
4402 		if (TAILQ_EMPTY(&pvh->pv_list))
4403 			vm_page_aflag_clear(m, PGA_WRITEABLE);
4404 	}
4405 	pmap_unuse_pt2(pmap, pv->pv_va, free);
4406 }
4407 
4408 /*
4409  *  Remove all pages from specified address space this aids process
4410  *  exit speeds. Also, this code is special cased for current process
4411  *  only, but can have the more generic (and slightly slower) mode enabled.
4412  *  This is much faster than pmap_remove in the case of running down
4413  *  an entire address space.
4414  */
4415 void
4416 pmap_remove_pages(pmap_t pmap)
4417 {
4418 	pt1_entry_t *pte1p, pte1;
4419 	pt2_entry_t *pte2p, pte2;
4420 	pv_entry_t pv;
4421 	struct pv_chunk *pc, *npc;
4422 	struct spglist free;
4423 	int field, idx;
4424 	int32_t bit;
4425 	uint32_t inuse, bitmask;
4426 	boolean_t allfree;
4427 
4428 	/*
4429 	 * Assert that the given pmap is only active on the current
4430 	 * CPU.  Unfortunately, we cannot block another CPU from
4431 	 * activating the pmap while this function is executing.
4432 	 */
4433 	KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
4434 	    ("%s: non-current pmap %p", __func__, pmap));
4435 #if defined(SMP) && defined(INVARIANTS)
4436 	{
4437 		cpuset_t other_cpus;
4438 
4439 		sched_pin();
4440 		other_cpus = pmap->pm_active;
4441 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
4442 		sched_unpin();
4443 		KASSERT(CPU_EMPTY(&other_cpus),
4444 		    ("%s: pmap %p active on other cpus", __func__, pmap));
4445 	}
4446 #endif
4447 	SLIST_INIT(&free);
4448 	rw_wlock(&pvh_global_lock);
4449 	PMAP_LOCK(pmap);
4450 	sched_pin();
4451 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4452 		KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
4453 		    __func__, pmap, pc->pc_pmap));
4454 		allfree = TRUE;
4455 		for (field = 0; field < _NPCM; field++) {
4456 			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4457 			while (inuse != 0) {
4458 				bit = ffs(inuse) - 1;
4459 				bitmask = 1UL << bit;
4460 				idx = field * 32 + bit;
4461 				pv = &pc->pc_pventry[idx];
4462 				inuse &= ~bitmask;
4463 
4464 				/*
4465 				 * Note that we cannot remove wired pages
4466 				 * from a process' mapping at this time
4467 				 */
4468 				pte1p = pmap_pte1(pmap, pv->pv_va);
4469 				pte1 = pte1_load(pte1p);
4470 				if (pte1_is_section(pte1)) {
4471 					if (pte1_is_wired(pte1))  {
4472 						allfree = FALSE;
4473 						continue;
4474 					}
4475 					pte1_clear(pte1p);
4476 					pmap_remove_pte1_quick(pmap, pte1, pv,
4477 					    &free);
4478 				}
4479 				else if (pte1_is_link(pte1)) {
4480 					pte2p = pt2map_entry(pv->pv_va);
4481 					pte2 = pte2_load(pte2p);
4482 
4483 					if (!pte2_is_valid(pte2)) {
4484 						printf("%s: pmap %p va %#x "
4485 						    "pte2 %#x\n", __func__,
4486 						    pmap, pv->pv_va, pte2);
4487 						panic("bad pte2");
4488 					}
4489 
4490 					if (pte2_is_wired(pte2))   {
4491 						allfree = FALSE;
4492 						continue;
4493 					}
4494 					pte2_clear(pte2p);
4495 					pmap_remove_pte2_quick(pmap, pte2, pv,
4496 					    &free);
4497 				} else {
4498 					printf("%s: pmap %p va %#x pte1 %#x\n",
4499 					    __func__, pmap, pv->pv_va, pte1);
4500 					panic("bad pte1");
4501 				}
4502 
4503 				/* Mark free */
4504 				PV_STAT(pv_entry_frees++);
4505 				PV_STAT(pv_entry_spare++);
4506 				pv_entry_count--;
4507 				pc->pc_map[field] |= bitmask;
4508 			}
4509 		}
4510 		if (allfree) {
4511 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4512 			free_pv_chunk(pc);
4513 		}
4514 	}
4515 	tlb_flush_all_ng_local();
4516 	sched_unpin();
4517 	rw_wunlock(&pvh_global_lock);
4518 	PMAP_UNLOCK(pmap);
4519 	vm_page_free_pages_toq(&free, false);
4520 }
4521 
4522 /*
4523  *  This code makes some *MAJOR* assumptions:
4524  *  1. Current pmap & pmap exists.
4525  *  2. Not wired.
4526  *  3. Read access.
4527  *  4. No L2 page table pages.
4528  *  but is *MUCH* faster than pmap_enter...
4529  */
4530 static vm_page_t
4531 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4532     vm_prot_t prot, vm_page_t mpt2pg)
4533 {
4534 	pt2_entry_t *pte2p, pte2;
4535 	vm_paddr_t pa;
4536 	struct spglist free;
4537 	uint32_t l2prot;
4538 
4539 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4540 	    (m->oflags & VPO_UNMANAGED) != 0,
4541 	    ("%s: managed mapping within the clean submap", __func__));
4542 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4543 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4544 
4545 	/*
4546 	 * In the case that a L2 page table page is not
4547 	 * resident, we are creating it here.
4548 	 */
4549 	if (va < VM_MAXUSER_ADDRESS) {
4550 		u_int pte1_idx;
4551 		pt1_entry_t pte1, *pte1p;
4552 		vm_paddr_t pt2_pa;
4553 
4554 		/*
4555 		 * Get L1 page table things.
4556 		 */
4557 		pte1_idx = pte1_index(va);
4558 		pte1p = pmap_pte1(pmap, va);
4559 		pte1 = pte1_load(pte1p);
4560 
4561 		if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
4562 			/*
4563 			 * Each of NPT2_IN_PG L2 page tables on the page can
4564 			 * come here. Make sure that associated L1 page table
4565 			 * link is established.
4566 			 *
4567 			 * QQQ: It comes that we don't establish all links to
4568 			 *      L2 page tables for newly allocated L2 page
4569 			 *      tables page.
4570 			 */
4571 			KASSERT(!pte1_is_section(pte1),
4572 			    ("%s: pte1 %#x is section", __func__, pte1));
4573 			if (!pte1_is_link(pte1)) {
4574 				pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
4575 				    pte1_idx);
4576 				pte1_store(pte1p, PTE1_LINK(pt2_pa));
4577 			}
4578 			pt2_wirecount_inc(mpt2pg, pte1_idx);
4579 		} else {
4580 			/*
4581 			 * If the L2 page table page is mapped, we just
4582 			 * increment the hold count, and activate it.
4583 			 */
4584 			if (pte1_is_section(pte1)) {
4585 				return (NULL);
4586 			} else if (pte1_is_link(pte1)) {
4587 				mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
4588 				pt2_wirecount_inc(mpt2pg, pte1_idx);
4589 			} else {
4590 				mpt2pg = _pmap_allocpte2(pmap, va,
4591 				    PMAP_ENTER_NOSLEEP);
4592 				if (mpt2pg == NULL)
4593 					return (NULL);
4594 			}
4595 		}
4596 	} else {
4597 		mpt2pg = NULL;
4598 	}
4599 
4600 	/*
4601 	 * This call to pt2map_entry() makes the assumption that we are
4602 	 * entering the page into the current pmap.  In order to support
4603 	 * quick entry into any pmap, one would likely use pmap_pte2_quick().
4604 	 * But that isn't as quick as pt2map_entry().
4605 	 */
4606 	pte2p = pt2map_entry(va);
4607 	pte2 = pte2_load(pte2p);
4608 	if (pte2_is_valid(pte2)) {
4609 		if (mpt2pg != NULL) {
4610 			/*
4611 			 * Remove extra pte2 reference
4612 			 */
4613 			pt2_wirecount_dec(mpt2pg, pte1_index(va));
4614 			mpt2pg = NULL;
4615 		}
4616 		return (NULL);
4617 	}
4618 
4619 	/*
4620 	 * Enter on the PV list if part of our managed memory.
4621 	 */
4622 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4623 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4624 		if (mpt2pg != NULL) {
4625 			SLIST_INIT(&free);
4626 			if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
4627 				pmap_tlb_flush(pmap, va);
4628 				vm_page_free_pages_toq(&free, false);
4629 			}
4630 
4631 			mpt2pg = NULL;
4632 		}
4633 		return (NULL);
4634 	}
4635 
4636 	/*
4637 	 * Increment counters
4638 	 */
4639 	pmap->pm_stats.resident_count++;
4640 
4641 	/*
4642 	 * Now validate mapping with RO protection
4643 	 */
4644 	pa = VM_PAGE_TO_PHYS(m);
4645 	l2prot = PTE2_RO | PTE2_NM;
4646 	if (va < VM_MAXUSER_ADDRESS)
4647 		l2prot |= PTE2_U | PTE2_NG;
4648 	if ((prot & VM_PROT_EXECUTE) == 0)
4649 		l2prot |= PTE2_NX;
4650 	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4651 		/*
4652 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4653 		 * is set. QQQ: For more info, see comments in pmap_enter().
4654 		 */
4655 		cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4656 	}
4657 	pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
4658 
4659 	return (mpt2pg);
4660 }
4661 
4662 void
4663 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4664 {
4665 
4666 	rw_wlock(&pvh_global_lock);
4667 	PMAP_LOCK(pmap);
4668 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4669 	rw_wunlock(&pvh_global_lock);
4670 	PMAP_UNLOCK(pmap);
4671 }
4672 
4673 /*
4674  *  Tries to create a read- and/or execute-only 1 MB page mapping.  Returns
4675  *  true if successful.  Returns false if (1) a mapping already exists at the
4676  *  specified virtual address or (2) a PV entry cannot be allocated without
4677  *  reclaiming another PV entry.
4678  */
4679 static bool
4680 pmap_enter_1mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4681 {
4682 	pt1_entry_t pte1;
4683 	vm_paddr_t pa;
4684 
4685 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4686 	pa = VM_PAGE_TO_PHYS(m);
4687 	pte1 = PTE1(pa, PTE1_NM | PTE1_RO, ATTR_TO_L1(vm_page_pte2_attr(m)));
4688 	if ((prot & VM_PROT_EXECUTE) == 0)
4689 		pte1 |= PTE1_NX;
4690 	if (va < VM_MAXUSER_ADDRESS)
4691 		pte1 |= PTE1_U;
4692 	if (pmap != kernel_pmap)
4693 		pte1 |= PTE1_NG;
4694 	return (pmap_enter_pte1(pmap, va, pte1, PMAP_ENTER_NOSLEEP |
4695 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, m) == KERN_SUCCESS);
4696 }
4697 
4698 /*
4699  *  Tries to create the specified 1 MB page mapping.  Returns KERN_SUCCESS if
4700  *  the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
4701  *  otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
4702  *  a mapping already exists at the specified virtual address.  Returns
4703  *  KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NORECLAIM was specified and PV entry
4704  *  allocation failed.
4705  */
4706 static int
4707 pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags,
4708     vm_page_t m)
4709 {
4710 	struct spglist free;
4711 	pt1_entry_t opte1, *pte1p;
4712 	pt2_entry_t pte2, *pte2p;
4713 	vm_offset_t cur, end;
4714 	vm_page_t mt;
4715 
4716 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4717 	KASSERT((pte1 & (PTE1_NM | PTE1_RO)) == 0 ||
4718 	    (pte1 & (PTE1_NM | PTE1_RO)) == (PTE1_NM | PTE1_RO),
4719 	    ("%s: pte1 has inconsistent NM and RO attributes", __func__));
4720 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4721 	pte1p = pmap_pte1(pmap, va);
4722 	opte1 = pte1_load(pte1p);
4723 	if (pte1_is_valid(opte1)) {
4724 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
4725 			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4726 			    __func__, va, pmap);
4727 			return (KERN_FAILURE);
4728 		}
4729 		/* Break the existing mapping(s). */
4730 		SLIST_INIT(&free);
4731 		if (pte1_is_section(opte1)) {
4732 			/*
4733 			 * If the section resulted from a promotion, then a
4734 			 * reserved PT page could be freed.
4735 			 */
4736 			pmap_remove_pte1(pmap, pte1p, va, &free);
4737 		} else {
4738 			sched_pin();
4739 			end = va + PTE1_SIZE;
4740 			for (cur = va, pte2p = pmap_pte2_quick(pmap, va);
4741 			    cur != end; cur += PAGE_SIZE, pte2p++) {
4742 				pte2 = pte2_load(pte2p);
4743 				if (!pte2_is_valid(pte2))
4744 					continue;
4745 				if (pmap_remove_pte2(pmap, pte2p, cur, &free))
4746 					break;
4747 			}
4748 			sched_unpin();
4749 		}
4750 		vm_page_free_pages_toq(&free, false);
4751 	}
4752 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4753 		/*
4754 		 * Abort this mapping if its PV entry could not be created.
4755 		 */
4756 		if (!pmap_pv_insert_pte1(pmap, va, pte1, flags)) {
4757 			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4758 			    __func__, va, pmap);
4759 			return (KERN_RESOURCE_SHORTAGE);
4760 		}
4761 		if ((pte1 & PTE1_RO) == 0) {
4762 			for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4763 				vm_page_aflag_set(mt, PGA_WRITEABLE);
4764 		}
4765 	}
4766 
4767 	/*
4768 	 * Increment counters.
4769 	 */
4770 	if (pte1_is_wired(pte1))
4771 		pmap->pm_stats.wired_count += PTE1_SIZE / PAGE_SIZE;
4772 	pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
4773 
4774 	/*
4775 	 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4776 	 * is set.  QQQ: For more info, see comments in pmap_enter().
4777 	 */
4778 	if ((pte1 & PTE1_NX) == 0 && m->md.pat_mode == VM_MEMATTR_WB_WA &&
4779 	    pmap != kernel_pmap && (!pte1_is_section(opte1) ||
4780 	    pte1_pa(opte1) != VM_PAGE_TO_PHYS(m) || (opte1 & PTE2_NX) != 0))
4781 		cache_icache_sync_fresh(va, VM_PAGE_TO_PHYS(m), PTE1_SIZE);
4782 
4783 	/*
4784 	 * Map the section.
4785 	 */
4786 	pte1_store(pte1p, pte1);
4787 
4788 	pmap_pte1_mappings++;
4789 	CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
4790 	    pmap);
4791 	return (KERN_SUCCESS);
4792 }
4793 
4794 /*
4795  *  Maps a sequence of resident pages belonging to the same object.
4796  *  The sequence begins with the given page m_start.  This page is
4797  *  mapped at the given virtual address start.  Each subsequent page is
4798  *  mapped at a virtual address that is offset from start by the same
4799  *  amount as the page is offset from m_start within the object.  The
4800  *  last page in the sequence is the page with the largest offset from
4801  *  m_start that can be mapped at a virtual address less than the given
4802  *  virtual address end.  Not every virtual page between start and end
4803  *  is mapped; only those for which a resident page exists with the
4804  *  corresponding offset from m_start are mapped.
4805  */
4806 void
4807 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4808     vm_page_t m_start, vm_prot_t prot)
4809 {
4810 	vm_offset_t va;
4811 	vm_page_t m, mpt2pg;
4812 	vm_pindex_t diff, psize;
4813 
4814 	PDEBUG(6, printf("%s: pmap %p start %#x end  %#x m %p prot %#x\n",
4815 	    __func__, pmap, start, end, m_start, prot));
4816 
4817 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4818 	psize = atop(end - start);
4819 	mpt2pg = NULL;
4820 	m = m_start;
4821 	rw_wlock(&pvh_global_lock);
4822 	PMAP_LOCK(pmap);
4823 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4824 		va = start + ptoa(diff);
4825 		if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
4826 		    m->psind == 1 && sp_enabled &&
4827 		    pmap_enter_1mpage(pmap, va, m, prot))
4828 			m = &m[PTE1_SIZE / PAGE_SIZE - 1];
4829 		else
4830 			mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
4831 			    mpt2pg);
4832 		m = TAILQ_NEXT(m, listq);
4833 	}
4834 	rw_wunlock(&pvh_global_lock);
4835 	PMAP_UNLOCK(pmap);
4836 }
4837 
4838 /*
4839  *  This code maps large physical mmap regions into the
4840  *  processor address space.  Note that some shortcuts
4841  *  are taken, but the code works.
4842  */
4843 void
4844 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4845     vm_pindex_t pindex, vm_size_t size)
4846 {
4847 	pt1_entry_t *pte1p;
4848 	vm_paddr_t pa, pte2_pa;
4849 	vm_page_t p;
4850 	vm_memattr_t pat_mode;
4851 	u_int l1attr, l1prot;
4852 
4853 	VM_OBJECT_ASSERT_WLOCKED(object);
4854 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4855 	    ("%s: non-device object", __func__));
4856 	if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
4857 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4858 			return;
4859 		p = vm_page_lookup(object, pindex);
4860 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4861 		    ("%s: invalid page %p", __func__, p));
4862 		pat_mode = p->md.pat_mode;
4863 
4864 		/*
4865 		 * Abort the mapping if the first page is not physically
4866 		 * aligned to a 1MB page boundary.
4867 		 */
4868 		pte2_pa = VM_PAGE_TO_PHYS(p);
4869 		if (pte2_pa & PTE1_OFFSET)
4870 			return;
4871 
4872 		/*
4873 		 * Skip the first page. Abort the mapping if the rest of
4874 		 * the pages are not physically contiguous or have differing
4875 		 * memory attributes.
4876 		 */
4877 		p = TAILQ_NEXT(p, listq);
4878 		for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
4879 		    pa += PAGE_SIZE) {
4880 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4881 			    ("%s: invalid page %p", __func__, p));
4882 			if (pa != VM_PAGE_TO_PHYS(p) ||
4883 			    pat_mode != p->md.pat_mode)
4884 				return;
4885 			p = TAILQ_NEXT(p, listq);
4886 		}
4887 
4888 		/*
4889 		 * Map using 1MB pages.
4890 		 *
4891 		 * QQQ: Well, we are mapping a section, so same condition must
4892 		 * be hold like during promotion. It looks that only RW mapping
4893 		 * is done here, so readonly mapping must be done elsewhere.
4894 		 */
4895 		l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
4896 		l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
4897 		PMAP_LOCK(pmap);
4898 		for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
4899 			pte1p = pmap_pte1(pmap, addr);
4900 			if (!pte1_is_valid(pte1_load(pte1p))) {
4901 				pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
4902 				pmap->pm_stats.resident_count += PTE1_SIZE /
4903 				    PAGE_SIZE;
4904 				pmap_pte1_mappings++;
4905 			}
4906 			/* Else continue on if the PTE1 is already valid. */
4907 			addr += PTE1_SIZE;
4908 		}
4909 		PMAP_UNLOCK(pmap);
4910 	}
4911 }
4912 
4913 /*
4914  *  Do the things to protect a 1mpage in a process.
4915  */
4916 static void
4917 pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
4918     vm_prot_t prot)
4919 {
4920 	pt1_entry_t npte1, opte1;
4921 	vm_offset_t eva, va;
4922 	vm_page_t m;
4923 
4924 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4925 	KASSERT((sva & PTE1_OFFSET) == 0,
4926 	    ("%s: sva is not 1mpage aligned", __func__));
4927 
4928 	opte1 = npte1 = pte1_load(pte1p);
4929 	if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
4930 		eva = sva + PTE1_SIZE;
4931 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
4932 		    va < eva; va += PAGE_SIZE, m++)
4933 			vm_page_dirty(m);
4934 	}
4935 	if ((prot & VM_PROT_WRITE) == 0)
4936 		npte1 |= PTE1_RO | PTE1_NM;
4937 	if ((prot & VM_PROT_EXECUTE) == 0)
4938 		npte1 |= PTE1_NX;
4939 
4940 	/*
4941 	 * QQQ: Herein, execute permission is never set.
4942 	 *      It only can be cleared. So, no icache
4943 	 *      syncing is needed.
4944 	 */
4945 
4946 	if (npte1 != opte1) {
4947 		pte1_store(pte1p, npte1);
4948 		pmap_tlb_flush(pmap, sva);
4949 	}
4950 }
4951 
4952 /*
4953  *	Set the physical protection on the
4954  *	specified range of this map as requested.
4955  */
4956 void
4957 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4958 {
4959 	boolean_t pv_lists_locked;
4960 	vm_offset_t nextva;
4961 	pt1_entry_t *pte1p, pte1;
4962 	pt2_entry_t *pte2p, opte2, npte2;
4963 
4964 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4965 	if (prot == VM_PROT_NONE) {
4966 		pmap_remove(pmap, sva, eva);
4967 		return;
4968 	}
4969 
4970 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
4971 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
4972 		return;
4973 
4974 	if (pmap_is_current(pmap))
4975 		pv_lists_locked = FALSE;
4976 	else {
4977 		pv_lists_locked = TRUE;
4978 resume:
4979 		rw_wlock(&pvh_global_lock);
4980 		sched_pin();
4981 	}
4982 
4983 	PMAP_LOCK(pmap);
4984 	for (; sva < eva; sva = nextva) {
4985 		/*
4986 		 * Calculate address for next L2 page table.
4987 		 */
4988 		nextva = pte1_trunc(sva + PTE1_SIZE);
4989 		if (nextva < sva)
4990 			nextva = eva;
4991 
4992 		pte1p = pmap_pte1(pmap, sva);
4993 		pte1 = pte1_load(pte1p);
4994 
4995 		/*
4996 		 * Weed out invalid mappings. Note: we assume that L1 page
4997 		 * page table is always allocated, and in kernel virtual.
4998 		 */
4999 		if (pte1 == 0)
5000 			continue;
5001 
5002 		if (pte1_is_section(pte1)) {
5003 			/*
5004 			 * Are we protecting the entire large page?  If not,
5005 			 * demote the mapping and fall through.
5006 			 */
5007 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5008 				pmap_protect_pte1(pmap, pte1p, sva, prot);
5009 				continue;
5010 			} else {
5011 				if (!pv_lists_locked) {
5012 					pv_lists_locked = TRUE;
5013 					if (!rw_try_wlock(&pvh_global_lock)) {
5014 						PMAP_UNLOCK(pmap);
5015 						goto resume;
5016 					}
5017 					sched_pin();
5018 				}
5019 				if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5020 					/*
5021 					 * The large page mapping
5022 					 * was destroyed.
5023 					 */
5024 					continue;
5025 				}
5026 #ifdef INVARIANTS
5027 				else {
5028 					/* Update pte1 after demotion */
5029 					pte1 = pte1_load(pte1p);
5030 				}
5031 #endif
5032 			}
5033 		}
5034 
5035 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5036 		    " is not link", __func__, pmap, sva, pte1, pte1p));
5037 
5038 		/*
5039 		 * Limit our scan to either the end of the va represented
5040 		 * by the current L2 page table page, or to the end of the
5041 		 * range being protected.
5042 		 */
5043 		if (nextva > eva)
5044 			nextva = eva;
5045 
5046 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5047 		    sva += PAGE_SIZE) {
5048 			vm_page_t m;
5049 
5050 			opte2 = npte2 = pte2_load(pte2p);
5051 			if (!pte2_is_valid(opte2))
5052 				continue;
5053 
5054 			if ((prot & VM_PROT_WRITE) == 0) {
5055 				if (pte2_is_managed(opte2) &&
5056 				    pte2_is_dirty(opte2)) {
5057 					m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
5058 					vm_page_dirty(m);
5059 				}
5060 				npte2 |= PTE2_RO | PTE2_NM;
5061 			}
5062 
5063 			if ((prot & VM_PROT_EXECUTE) == 0)
5064 				npte2 |= PTE2_NX;
5065 
5066 			/*
5067 			 * QQQ: Herein, execute permission is never set.
5068 			 *      It only can be cleared. So, no icache
5069 			 *      syncing is needed.
5070 			 */
5071 
5072 			if (npte2 != opte2) {
5073 				pte2_store(pte2p, npte2);
5074 				pmap_tlb_flush(pmap, sva);
5075 			}
5076 		}
5077 	}
5078 	if (pv_lists_locked) {
5079 		sched_unpin();
5080 		rw_wunlock(&pvh_global_lock);
5081 	}
5082 	PMAP_UNLOCK(pmap);
5083 }
5084 
5085 /*
5086  *	pmap_pvh_wired_mappings:
5087  *
5088  *	Return the updated number "count" of managed mappings that are wired.
5089  */
5090 static int
5091 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
5092 {
5093 	pmap_t pmap;
5094 	pt1_entry_t pte1;
5095 	pt2_entry_t pte2;
5096 	pv_entry_t pv;
5097 
5098 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5099 	sched_pin();
5100 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5101 		pmap = PV_PMAP(pv);
5102 		PMAP_LOCK(pmap);
5103 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5104 		if (pte1_is_section(pte1)) {
5105 			if (pte1_is_wired(pte1))
5106 				count++;
5107 		} else {
5108 			KASSERT(pte1_is_link(pte1),
5109 			    ("%s: pte1 %#x is not link", __func__, pte1));
5110 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5111 			if (pte2_is_wired(pte2))
5112 				count++;
5113 		}
5114 		PMAP_UNLOCK(pmap);
5115 	}
5116 	sched_unpin();
5117 	return (count);
5118 }
5119 
5120 /*
5121  *	pmap_page_wired_mappings:
5122  *
5123  *	Return the number of managed mappings to the given physical page
5124  *	that are wired.
5125  */
5126 int
5127 pmap_page_wired_mappings(vm_page_t m)
5128 {
5129 	int count;
5130 
5131 	count = 0;
5132 	if ((m->oflags & VPO_UNMANAGED) != 0)
5133 		return (count);
5134 	rw_wlock(&pvh_global_lock);
5135 	count = pmap_pvh_wired_mappings(&m->md, count);
5136 	if ((m->flags & PG_FICTITIOUS) == 0) {
5137 		count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
5138 		    count);
5139 	}
5140 	rw_wunlock(&pvh_global_lock);
5141 	return (count);
5142 }
5143 
5144 /*
5145  *  Returns TRUE if any of the given mappings were used to modify
5146  *  physical memory.  Otherwise, returns FALSE.  Both page and 1mpage
5147  *  mappings are supported.
5148  */
5149 static boolean_t
5150 pmap_is_modified_pvh(struct md_page *pvh)
5151 {
5152 	pv_entry_t pv;
5153 	pt1_entry_t pte1;
5154 	pt2_entry_t pte2;
5155 	pmap_t pmap;
5156 	boolean_t rv;
5157 
5158 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5159 	rv = FALSE;
5160 	sched_pin();
5161 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5162 		pmap = PV_PMAP(pv);
5163 		PMAP_LOCK(pmap);
5164 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5165 		if (pte1_is_section(pte1)) {
5166 			rv = pte1_is_dirty(pte1);
5167 		} else {
5168 			KASSERT(pte1_is_link(pte1),
5169 			    ("%s: pte1 %#x is not link", __func__, pte1));
5170 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5171 			rv = pte2_is_dirty(pte2);
5172 		}
5173 		PMAP_UNLOCK(pmap);
5174 		if (rv)
5175 			break;
5176 	}
5177 	sched_unpin();
5178 	return (rv);
5179 }
5180 
5181 /*
5182  *	pmap_is_modified:
5183  *
5184  *	Return whether or not the specified physical page was modified
5185  *	in any physical maps.
5186  */
5187 boolean_t
5188 pmap_is_modified(vm_page_t m)
5189 {
5190 	boolean_t rv;
5191 
5192 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5193 	    ("%s: page %p is not managed", __func__, m));
5194 
5195 	/*
5196 	 * If the page is not busied then this check is racy.
5197 	 */
5198 	if (!pmap_page_is_write_mapped(m))
5199 		return (FALSE);
5200 	rw_wlock(&pvh_global_lock);
5201 	rv = pmap_is_modified_pvh(&m->md) ||
5202 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5203 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5204 	rw_wunlock(&pvh_global_lock);
5205 	return (rv);
5206 }
5207 
5208 /*
5209  *	pmap_is_prefaultable:
5210  *
5211  *	Return whether or not the specified virtual address is eligible
5212  *	for prefault.
5213  */
5214 boolean_t
5215 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5216 {
5217 	pt1_entry_t pte1;
5218 	pt2_entry_t pte2;
5219 	boolean_t rv;
5220 
5221 	rv = FALSE;
5222 	PMAP_LOCK(pmap);
5223 	pte1 = pte1_load(pmap_pte1(pmap, addr));
5224 	if (pte1_is_link(pte1)) {
5225 		pte2 = pte2_load(pt2map_entry(addr));
5226 		rv = !pte2_is_valid(pte2) ;
5227 	}
5228 	PMAP_UNLOCK(pmap);
5229 	return (rv);
5230 }
5231 
5232 /*
5233  *  Returns TRUE if any of the given mappings were referenced and FALSE
5234  *  otherwise. Both page and 1mpage mappings are supported.
5235  */
5236 static boolean_t
5237 pmap_is_referenced_pvh(struct md_page *pvh)
5238 {
5239 
5240 	pv_entry_t pv;
5241 	pt1_entry_t pte1;
5242 	pt2_entry_t pte2;
5243 	pmap_t pmap;
5244 	boolean_t rv;
5245 
5246 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5247 	rv = FALSE;
5248 	sched_pin();
5249 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5250 		pmap = PV_PMAP(pv);
5251 		PMAP_LOCK(pmap);
5252 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5253 		if (pte1_is_section(pte1)) {
5254 			rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
5255 		} else {
5256 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5257 			rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
5258 		}
5259 		PMAP_UNLOCK(pmap);
5260 		if (rv)
5261 			break;
5262 	}
5263 	sched_unpin();
5264 	return (rv);
5265 }
5266 
5267 /*
5268  *	pmap_is_referenced:
5269  *
5270  *	Return whether or not the specified physical page was referenced
5271  *	in any physical maps.
5272  */
5273 boolean_t
5274 pmap_is_referenced(vm_page_t m)
5275 {
5276 	boolean_t rv;
5277 
5278 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5279 	    ("%s: page %p is not managed", __func__, m));
5280 	rw_wlock(&pvh_global_lock);
5281 	rv = pmap_is_referenced_pvh(&m->md) ||
5282 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5283 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5284 	rw_wunlock(&pvh_global_lock);
5285 	return (rv);
5286 }
5287 
5288 /*
5289  *	pmap_ts_referenced:
5290  *
5291  *	Return a count of reference bits for a page, clearing those bits.
5292  *	It is not necessary for every reference bit to be cleared, but it
5293  *	is necessary that 0 only be returned when there are truly no
5294  *	reference bits set.
5295  *
5296  *	As an optimization, update the page's dirty field if a modified bit is
5297  *	found while counting reference bits.  This opportunistic update can be
5298  *	performed at low cost and can eliminate the need for some future calls
5299  *	to pmap_is_modified().  However, since this function stops after
5300  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5301  *	dirty pages.  Those dirty pages will only be detected by a future call
5302  *	to pmap_is_modified().
5303  */
5304 int
5305 pmap_ts_referenced(vm_page_t m)
5306 {
5307 	struct md_page *pvh;
5308 	pv_entry_t pv, pvf;
5309 	pmap_t pmap;
5310 	pt1_entry_t  *pte1p, opte1;
5311 	pt2_entry_t *pte2p, opte2;
5312 	vm_paddr_t pa;
5313 	int rtval = 0;
5314 
5315 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5316 	    ("%s: page %p is not managed", __func__, m));
5317 	pa = VM_PAGE_TO_PHYS(m);
5318 	pvh = pa_to_pvh(pa);
5319 	rw_wlock(&pvh_global_lock);
5320 	sched_pin();
5321 	if ((m->flags & PG_FICTITIOUS) != 0 ||
5322 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5323 		goto small_mappings;
5324 	pv = pvf;
5325 	do {
5326 		pmap = PV_PMAP(pv);
5327 		PMAP_LOCK(pmap);
5328 		pte1p = pmap_pte1(pmap, pv->pv_va);
5329 		opte1 = pte1_load(pte1p);
5330 		if (pte1_is_dirty(opte1)) {
5331 			/*
5332 			 * Although "opte1" is mapping a 1MB page, because
5333 			 * this function is called at a 4KB page granularity,
5334 			 * we only update the 4KB page under test.
5335 			 */
5336 			vm_page_dirty(m);
5337 		}
5338 		if ((opte1 & PTE1_A) != 0) {
5339 			/*
5340 			 * Since this reference bit is shared by 256 4KB pages,
5341 			 * it should not be cleared every time it is tested.
5342 			 * Apply a simple "hash" function on the physical page
5343 			 * number, the virtual section number, and the pmap
5344 			 * address to select one 4KB page out of the 256
5345 			 * on which testing the reference bit will result
5346 			 * in clearing that bit. This function is designed
5347 			 * to avoid the selection of the same 4KB page
5348 			 * for every 1MB page mapping.
5349 			 *
5350 			 * On demotion, a mapping that hasn't been referenced
5351 			 * is simply destroyed.  To avoid the possibility of a
5352 			 * subsequent page fault on a demoted wired mapping,
5353 			 * always leave its reference bit set.  Moreover,
5354 			 * since the section is wired, the current state of
5355 			 * its reference bit won't affect page replacement.
5356 			 */
5357 			 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
5358 			    (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
5359 			    !pte1_is_wired(opte1)) {
5360 				pte1_clear_bit(pte1p, PTE1_A);
5361 				pmap_tlb_flush(pmap, pv->pv_va);
5362 			}
5363 			rtval++;
5364 		}
5365 		PMAP_UNLOCK(pmap);
5366 		/* Rotate the PV list if it has more than one entry. */
5367 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5368 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5369 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5370 		}
5371 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5372 			goto out;
5373 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5374 small_mappings:
5375 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5376 		goto out;
5377 	pv = pvf;
5378 	do {
5379 		pmap = PV_PMAP(pv);
5380 		PMAP_LOCK(pmap);
5381 		pte1p = pmap_pte1(pmap, pv->pv_va);
5382 		KASSERT(pte1_is_link(pte1_load(pte1p)),
5383 		    ("%s: not found a link in page %p's pv list", __func__, m));
5384 
5385 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5386 		opte2 = pte2_load(pte2p);
5387 		if (pte2_is_dirty(opte2))
5388 			vm_page_dirty(m);
5389 		if ((opte2 & PTE2_A) != 0) {
5390 			pte2_clear_bit(pte2p, PTE2_A);
5391 			pmap_tlb_flush(pmap, pv->pv_va);
5392 			rtval++;
5393 		}
5394 		PMAP_UNLOCK(pmap);
5395 		/* Rotate the PV list if it has more than one entry. */
5396 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5397 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5398 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5399 		}
5400 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5401 	    PMAP_TS_REFERENCED_MAX);
5402 out:
5403 	sched_unpin();
5404 	rw_wunlock(&pvh_global_lock);
5405 	return (rtval);
5406 }
5407 
5408 /*
5409  *	Clear the wired attribute from the mappings for the specified range of
5410  *	addresses in the given pmap.  Every valid mapping within that range
5411  *	must have the wired attribute set.  In contrast, invalid mappings
5412  *	cannot have the wired attribute set, so they are ignored.
5413  *
5414  *	The wired attribute of the page table entry is not a hardware feature,
5415  *	so there is no need to invalidate any TLB entries.
5416  */
5417 void
5418 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5419 {
5420 	vm_offset_t nextva;
5421 	pt1_entry_t *pte1p, pte1;
5422 	pt2_entry_t *pte2p, pte2;
5423 	boolean_t pv_lists_locked;
5424 
5425 	if (pmap_is_current(pmap))
5426 		pv_lists_locked = FALSE;
5427 	else {
5428 		pv_lists_locked = TRUE;
5429 resume:
5430 		rw_wlock(&pvh_global_lock);
5431 		sched_pin();
5432 	}
5433 	PMAP_LOCK(pmap);
5434 	for (; sva < eva; sva = nextva) {
5435 		nextva = pte1_trunc(sva + PTE1_SIZE);
5436 		if (nextva < sva)
5437 			nextva = eva;
5438 
5439 		pte1p = pmap_pte1(pmap, sva);
5440 		pte1 = pte1_load(pte1p);
5441 
5442 		/*
5443 		 * Weed out invalid mappings. Note: we assume that L1 page
5444 		 * page table is always allocated, and in kernel virtual.
5445 		 */
5446 		if (pte1 == 0)
5447 			continue;
5448 
5449 		if (pte1_is_section(pte1)) {
5450 			if (!pte1_is_wired(pte1))
5451 				panic("%s: pte1 %#x not wired", __func__, pte1);
5452 
5453 			/*
5454 			 * Are we unwiring the entire large page?  If not,
5455 			 * demote the mapping and fall through.
5456 			 */
5457 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5458 				pte1_clear_bit(pte1p, PTE1_W);
5459 				pmap->pm_stats.wired_count -= PTE1_SIZE /
5460 				    PAGE_SIZE;
5461 				continue;
5462 			} else {
5463 				if (!pv_lists_locked) {
5464 					pv_lists_locked = TRUE;
5465 					if (!rw_try_wlock(&pvh_global_lock)) {
5466 						PMAP_UNLOCK(pmap);
5467 						/* Repeat sva. */
5468 						goto resume;
5469 					}
5470 					sched_pin();
5471 				}
5472 				if (!pmap_demote_pte1(pmap, pte1p, sva))
5473 					panic("%s: demotion failed", __func__);
5474 #ifdef INVARIANTS
5475 				else {
5476 					/* Update pte1 after demotion */
5477 					pte1 = pte1_load(pte1p);
5478 				}
5479 #endif
5480 			}
5481 		}
5482 
5483 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5484 		    " is not link", __func__, pmap, sva, pte1, pte1p));
5485 
5486 		/*
5487 		 * Limit our scan to either the end of the va represented
5488 		 * by the current L2 page table page, or to the end of the
5489 		 * range being protected.
5490 		 */
5491 		if (nextva > eva)
5492 			nextva = eva;
5493 
5494 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5495 		    sva += PAGE_SIZE) {
5496 			pte2 = pte2_load(pte2p);
5497 			if (!pte2_is_valid(pte2))
5498 				continue;
5499 			if (!pte2_is_wired(pte2))
5500 				panic("%s: pte2 %#x is missing PTE2_W",
5501 				    __func__, pte2);
5502 
5503 			/*
5504 			 * PTE2_W must be cleared atomically. Although the pmap
5505 			 * lock synchronizes access to PTE2_W, another processor
5506 			 * could be changing PTE2_NM and/or PTE2_A concurrently.
5507 			 */
5508 			pte2_clear_bit(pte2p, PTE2_W);
5509 			pmap->pm_stats.wired_count--;
5510 		}
5511 	}
5512 	if (pv_lists_locked) {
5513 		sched_unpin();
5514 		rw_wunlock(&pvh_global_lock);
5515 	}
5516 	PMAP_UNLOCK(pmap);
5517 }
5518 
5519 /*
5520  *  Clear the write and modified bits in each of the given page's mappings.
5521  */
5522 void
5523 pmap_remove_write(vm_page_t m)
5524 {
5525 	struct md_page *pvh;
5526 	pv_entry_t next_pv, pv;
5527 	pmap_t pmap;
5528 	pt1_entry_t *pte1p;
5529 	pt2_entry_t *pte2p, opte2;
5530 	vm_offset_t va;
5531 
5532 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5533 	    ("%s: page %p is not managed", __func__, m));
5534 	vm_page_assert_busied(m);
5535 
5536 	if (!pmap_page_is_write_mapped(m))
5537 		return;
5538 	rw_wlock(&pvh_global_lock);
5539 	sched_pin();
5540 	if ((m->flags & PG_FICTITIOUS) != 0)
5541 		goto small_mappings;
5542 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5543 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5544 		va = pv->pv_va;
5545 		pmap = PV_PMAP(pv);
5546 		PMAP_LOCK(pmap);
5547 		pte1p = pmap_pte1(pmap, va);
5548 		if (!(pte1_load(pte1p) & PTE1_RO))
5549 			(void)pmap_demote_pte1(pmap, pte1p, va);
5550 		PMAP_UNLOCK(pmap);
5551 	}
5552 small_mappings:
5553 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5554 		pmap = PV_PMAP(pv);
5555 		PMAP_LOCK(pmap);
5556 		pte1p = pmap_pte1(pmap, pv->pv_va);
5557 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5558 		    " a section in page %p's pv list", __func__, m));
5559 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5560 		opte2 = pte2_load(pte2p);
5561 		if (!(opte2 & PTE2_RO)) {
5562 			pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
5563 			if (pte2_is_dirty(opte2))
5564 				vm_page_dirty(m);
5565 			pmap_tlb_flush(pmap, pv->pv_va);
5566 		}
5567 		PMAP_UNLOCK(pmap);
5568 	}
5569 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5570 	sched_unpin();
5571 	rw_wunlock(&pvh_global_lock);
5572 }
5573 
5574 /*
5575  *	Apply the given advice to the specified range of addresses within the
5576  *	given pmap.  Depending on the advice, clear the referenced and/or
5577  *	modified flags in each mapping and set the mapped page's dirty field.
5578  */
5579 void
5580 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5581 {
5582 	pt1_entry_t *pte1p, opte1;
5583 	pt2_entry_t *pte2p, pte2;
5584 	vm_offset_t pdnxt;
5585 	vm_page_t m;
5586 	boolean_t pv_lists_locked;
5587 
5588 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5589 		return;
5590 	if (pmap_is_current(pmap))
5591 		pv_lists_locked = FALSE;
5592 	else {
5593 		pv_lists_locked = TRUE;
5594 resume:
5595 		rw_wlock(&pvh_global_lock);
5596 		sched_pin();
5597 	}
5598 	PMAP_LOCK(pmap);
5599 	for (; sva < eva; sva = pdnxt) {
5600 		pdnxt = pte1_trunc(sva + PTE1_SIZE);
5601 		if (pdnxt < sva)
5602 			pdnxt = eva;
5603 		pte1p = pmap_pte1(pmap, sva);
5604 		opte1 = pte1_load(pte1p);
5605 		if (!pte1_is_valid(opte1)) /* XXX */
5606 			continue;
5607 		else if (pte1_is_section(opte1)) {
5608 			if (!pte1_is_managed(opte1))
5609 				continue;
5610 			if (!pv_lists_locked) {
5611 				pv_lists_locked = TRUE;
5612 				if (!rw_try_wlock(&pvh_global_lock)) {
5613 					PMAP_UNLOCK(pmap);
5614 					goto resume;
5615 				}
5616 				sched_pin();
5617 			}
5618 			if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5619 				/*
5620 				 * The large page mapping was destroyed.
5621 				 */
5622 				continue;
5623 			}
5624 
5625 			/*
5626 			 * Unless the page mappings are wired, remove the
5627 			 * mapping to a single page so that a subsequent
5628 			 * access may repromote.  Since the underlying L2 page
5629 			 * table is fully populated, this removal never
5630 			 * frees a L2 page table page.
5631 			 */
5632 			if (!pte1_is_wired(opte1)) {
5633 				pte2p = pmap_pte2_quick(pmap, sva);
5634 				KASSERT(pte2_is_valid(pte2_load(pte2p)),
5635 				    ("%s: invalid PTE2", __func__));
5636 				pmap_remove_pte2(pmap, pte2p, sva, NULL);
5637 			}
5638 		}
5639 		if (pdnxt > eva)
5640 			pdnxt = eva;
5641 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
5642 		    sva += PAGE_SIZE) {
5643 			pte2 = pte2_load(pte2p);
5644 			if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
5645 				continue;
5646 			else if (pte2_is_dirty(pte2)) {
5647 				if (advice == MADV_DONTNEED) {
5648 					/*
5649 					 * Future calls to pmap_is_modified()
5650 					 * can be avoided by making the page
5651 					 * dirty now.
5652 					 */
5653 					m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
5654 					vm_page_dirty(m);
5655 				}
5656 				pte2_set_bit(pte2p, PTE2_NM);
5657 				pte2_clear_bit(pte2p, PTE2_A);
5658 			} else if ((pte2 & PTE2_A) != 0)
5659 				pte2_clear_bit(pte2p, PTE2_A);
5660 			else
5661 				continue;
5662 			pmap_tlb_flush(pmap, sva);
5663 		}
5664 	}
5665 	if (pv_lists_locked) {
5666 		sched_unpin();
5667 		rw_wunlock(&pvh_global_lock);
5668 	}
5669 	PMAP_UNLOCK(pmap);
5670 }
5671 
5672 /*
5673  *	Clear the modify bits on the specified physical page.
5674  */
5675 void
5676 pmap_clear_modify(vm_page_t m)
5677 {
5678 	struct md_page *pvh;
5679 	pv_entry_t next_pv, pv;
5680 	pmap_t pmap;
5681 	pt1_entry_t *pte1p, opte1;
5682 	pt2_entry_t *pte2p, opte2;
5683 	vm_offset_t va;
5684 
5685 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5686 	    ("%s: page %p is not managed", __func__, m));
5687 	vm_page_assert_busied(m);
5688 
5689 	if (!pmap_page_is_write_mapped(m))
5690 		return;
5691 	rw_wlock(&pvh_global_lock);
5692 	sched_pin();
5693 	if ((m->flags & PG_FICTITIOUS) != 0)
5694 		goto small_mappings;
5695 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5696 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5697 		va = pv->pv_va;
5698 		pmap = PV_PMAP(pv);
5699 		PMAP_LOCK(pmap);
5700 		pte1p = pmap_pte1(pmap, va);
5701 		opte1 = pte1_load(pte1p);
5702 		if (!(opte1 & PTE1_RO)) {
5703 			if (pmap_demote_pte1(pmap, pte1p, va) &&
5704 			    !pte1_is_wired(opte1)) {
5705 				/*
5706 				 * Write protect the mapping to a
5707 				 * single page so that a subsequent
5708 				 * write access may repromote.
5709 				 */
5710 				va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
5711 				pte2p = pmap_pte2_quick(pmap, va);
5712 				opte2 = pte2_load(pte2p);
5713 				if ((opte2 & PTE2_V)) {
5714 					pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
5715 					vm_page_dirty(m);
5716 					pmap_tlb_flush(pmap, va);
5717 				}
5718 			}
5719 		}
5720 		PMAP_UNLOCK(pmap);
5721 	}
5722 small_mappings:
5723 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5724 		pmap = PV_PMAP(pv);
5725 		PMAP_LOCK(pmap);
5726 		pte1p = pmap_pte1(pmap, pv->pv_va);
5727 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5728 		    " a section in page %p's pv list", __func__, m));
5729 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5730 		if (pte2_is_dirty(pte2_load(pte2p))) {
5731 			pte2_set_bit(pte2p, PTE2_NM);
5732 			pmap_tlb_flush(pmap, pv->pv_va);
5733 		}
5734 		PMAP_UNLOCK(pmap);
5735 	}
5736 	sched_unpin();
5737 	rw_wunlock(&pvh_global_lock);
5738 }
5739 
5740 
5741 /*
5742  *  Sets the memory attribute for the specified page.
5743  */
5744 void
5745 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5746 {
5747 	pt2_entry_t *cmap2_pte2p;
5748 	vm_memattr_t oma;
5749 	vm_paddr_t pa;
5750 	struct pcpu *pc;
5751 
5752 	oma = m->md.pat_mode;
5753 	m->md.pat_mode = ma;
5754 
5755 	CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
5756 	    VM_PAGE_TO_PHYS(m), oma, ma);
5757 	if ((m->flags & PG_FICTITIOUS) != 0)
5758 		return;
5759 #if 0
5760 	/*
5761 	 * If "m" is a normal page, flush it from the cache.
5762 	 *
5763 	 * First, try to find an existing mapping of the page by sf
5764 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5765 	 * flushes the cache.
5766 	 */
5767 	if (sf_buf_invalidate_cache(m, oma))
5768 		return;
5769 #endif
5770 	/*
5771 	 * If page is not mapped by sf buffer, map the page
5772 	 * transient and do invalidation.
5773 	 */
5774 	if (ma != oma) {
5775 		pa = VM_PAGE_TO_PHYS(m);
5776 		sched_pin();
5777 		pc = get_pcpu();
5778 		cmap2_pte2p = pc->pc_cmap2_pte2p;
5779 		mtx_lock(&pc->pc_cmap_lock);
5780 		if (pte2_load(cmap2_pte2p) != 0)
5781 			panic("%s: CMAP2 busy", __func__);
5782 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
5783 		    vm_memattr_to_pte2(ma)));
5784 		dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
5785 		pte2_clear(cmap2_pte2p);
5786 		tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5787 		sched_unpin();
5788 		mtx_unlock(&pc->pc_cmap_lock);
5789 	}
5790 }
5791 
5792 /*
5793  *  Miscellaneous support routines follow
5794  */
5795 
5796 /*
5797  *  Returns TRUE if the given page is mapped individually or as part of
5798  *  a 1mpage.  Otherwise, returns FALSE.
5799  */
5800 boolean_t
5801 pmap_page_is_mapped(vm_page_t m)
5802 {
5803 	boolean_t rv;
5804 
5805 	if ((m->oflags & VPO_UNMANAGED) != 0)
5806 		return (FALSE);
5807 	rw_wlock(&pvh_global_lock);
5808 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5809 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5810 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5811 	rw_wunlock(&pvh_global_lock);
5812 	return (rv);
5813 }
5814 
5815 /*
5816  *  Returns true if the pmap's pv is one of the first
5817  *  16 pvs linked to from this page.  This count may
5818  *  be changed upwards or downwards in the future; it
5819  *  is only necessary that true be returned for a small
5820  *  subset of pmaps for proper page aging.
5821  */
5822 boolean_t
5823 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5824 {
5825 	struct md_page *pvh;
5826 	pv_entry_t pv;
5827 	int loops = 0;
5828 	boolean_t rv;
5829 
5830 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5831 	    ("%s: page %p is not managed", __func__, m));
5832 	rv = FALSE;
5833 	rw_wlock(&pvh_global_lock);
5834 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5835 		if (PV_PMAP(pv) == pmap) {
5836 			rv = TRUE;
5837 			break;
5838 		}
5839 		loops++;
5840 		if (loops >= 16)
5841 			break;
5842 	}
5843 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5844 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5845 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5846 			if (PV_PMAP(pv) == pmap) {
5847 				rv = TRUE;
5848 				break;
5849 			}
5850 			loops++;
5851 			if (loops >= 16)
5852 				break;
5853 		}
5854 	}
5855 	rw_wunlock(&pvh_global_lock);
5856 	return (rv);
5857 }
5858 
5859 /*
5860  *	pmap_zero_page zeros the specified hardware page by mapping
5861  *	the page into KVM and using bzero to clear its contents.
5862  */
5863 void
5864 pmap_zero_page(vm_page_t m)
5865 {
5866 	pt2_entry_t *cmap2_pte2p;
5867 	struct pcpu *pc;
5868 
5869 	sched_pin();
5870 	pc = get_pcpu();
5871 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5872 	mtx_lock(&pc->pc_cmap_lock);
5873 	if (pte2_load(cmap2_pte2p) != 0)
5874 		panic("%s: CMAP2 busy", __func__);
5875 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5876 	    vm_page_pte2_attr(m)));
5877 	pagezero(pc->pc_cmap2_addr);
5878 	pte2_clear(cmap2_pte2p);
5879 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5880 	sched_unpin();
5881 	mtx_unlock(&pc->pc_cmap_lock);
5882 }
5883 
5884 /*
5885  *	pmap_zero_page_area zeros the specified hardware page by mapping
5886  *	the page into KVM and using bzero to clear its contents.
5887  *
5888  *	off and size may not cover an area beyond a single hardware page.
5889  */
5890 void
5891 pmap_zero_page_area(vm_page_t m, int off, int size)
5892 {
5893 	pt2_entry_t *cmap2_pte2p;
5894 	struct pcpu *pc;
5895 
5896 	sched_pin();
5897 	pc = get_pcpu();
5898 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5899 	mtx_lock(&pc->pc_cmap_lock);
5900 	if (pte2_load(cmap2_pte2p) != 0)
5901 		panic("%s: CMAP2 busy", __func__);
5902 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5903 	    vm_page_pte2_attr(m)));
5904 	if (off == 0 && size == PAGE_SIZE)
5905 		pagezero(pc->pc_cmap2_addr);
5906 	else
5907 		bzero(pc->pc_cmap2_addr + off, size);
5908 	pte2_clear(cmap2_pte2p);
5909 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5910 	sched_unpin();
5911 	mtx_unlock(&pc->pc_cmap_lock);
5912 }
5913 
5914 /*
5915  *	pmap_copy_page copies the specified (machine independent)
5916  *	page by mapping the page into virtual memory and using
5917  *	bcopy to copy the page, one machine dependent page at a
5918  *	time.
5919  */
5920 void
5921 pmap_copy_page(vm_page_t src, vm_page_t dst)
5922 {
5923 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5924 	struct pcpu *pc;
5925 
5926 	sched_pin();
5927 	pc = get_pcpu();
5928 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5929 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5930 	mtx_lock(&pc->pc_cmap_lock);
5931 	if (pte2_load(cmap1_pte2p) != 0)
5932 		panic("%s: CMAP1 busy", __func__);
5933 	if (pte2_load(cmap2_pte2p) != 0)
5934 		panic("%s: CMAP2 busy", __func__);
5935 	pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
5936 	    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
5937 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
5938 	    PTE2_AP_KRW, vm_page_pte2_attr(dst)));
5939 	bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
5940 	pte2_clear(cmap1_pte2p);
5941 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5942 	pte2_clear(cmap2_pte2p);
5943 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5944 	sched_unpin();
5945 	mtx_unlock(&pc->pc_cmap_lock);
5946 }
5947 
5948 int unmapped_buf_allowed = 1;
5949 
5950 void
5951 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5952     vm_offset_t b_offset, int xfersize)
5953 {
5954 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5955 	vm_page_t a_pg, b_pg;
5956 	char *a_cp, *b_cp;
5957 	vm_offset_t a_pg_offset, b_pg_offset;
5958 	struct pcpu *pc;
5959 	int cnt;
5960 
5961 	sched_pin();
5962 	pc = get_pcpu();
5963 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5964 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5965 	mtx_lock(&pc->pc_cmap_lock);
5966 	if (pte2_load(cmap1_pte2p) != 0)
5967 		panic("pmap_copy_pages: CMAP1 busy");
5968 	if (pte2_load(cmap2_pte2p) != 0)
5969 		panic("pmap_copy_pages: CMAP2 busy");
5970 	while (xfersize > 0) {
5971 		a_pg = ma[a_offset >> PAGE_SHIFT];
5972 		a_pg_offset = a_offset & PAGE_MASK;
5973 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5974 		b_pg = mb[b_offset >> PAGE_SHIFT];
5975 		b_pg_offset = b_offset & PAGE_MASK;
5976 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5977 		pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
5978 		    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
5979 		tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
5980 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
5981 		    PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
5982 		tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
5983 		a_cp = pc->pc_cmap1_addr + a_pg_offset;
5984 		b_cp = pc->pc_cmap2_addr + b_pg_offset;
5985 		bcopy(a_cp, b_cp, cnt);
5986 		a_offset += cnt;
5987 		b_offset += cnt;
5988 		xfersize -= cnt;
5989 	}
5990 	pte2_clear(cmap1_pte2p);
5991 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5992 	pte2_clear(cmap2_pte2p);
5993 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5994 	sched_unpin();
5995 	mtx_unlock(&pc->pc_cmap_lock);
5996 }
5997 
5998 vm_offset_t
5999 pmap_quick_enter_page(vm_page_t m)
6000 {
6001 	struct pcpu *pc;
6002 	pt2_entry_t *pte2p;
6003 
6004 	critical_enter();
6005 	pc = get_pcpu();
6006 	pte2p = pc->pc_qmap_pte2p;
6007 
6008 	KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
6009 
6010 	pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6011 	    vm_page_pte2_attr(m)));
6012 	return (pc->pc_qmap_addr);
6013 }
6014 
6015 void
6016 pmap_quick_remove_page(vm_offset_t addr)
6017 {
6018 	struct pcpu *pc;
6019 	pt2_entry_t *pte2p;
6020 
6021 	pc = get_pcpu();
6022 	pte2p = pc->pc_qmap_pte2p;
6023 
6024 	KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
6025 	KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
6026 
6027 	pte2_clear(pte2p);
6028 	tlb_flush(pc->pc_qmap_addr);
6029 	critical_exit();
6030 }
6031 
6032 /*
6033  *	Copy the range specified by src_addr/len
6034  *	from the source map to the range dst_addr/len
6035  *	in the destination map.
6036  *
6037  *	This routine is only advisory and need not do anything.
6038  */
6039 void
6040 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
6041     vm_offset_t src_addr)
6042 {
6043 	struct spglist free;
6044 	vm_offset_t addr;
6045 	vm_offset_t end_addr = src_addr + len;
6046 	vm_offset_t nextva;
6047 
6048 	if (dst_addr != src_addr)
6049 		return;
6050 
6051 	if (!pmap_is_current(src_pmap))
6052 		return;
6053 
6054 	rw_wlock(&pvh_global_lock);
6055 	if (dst_pmap < src_pmap) {
6056 		PMAP_LOCK(dst_pmap);
6057 		PMAP_LOCK(src_pmap);
6058 	} else {
6059 		PMAP_LOCK(src_pmap);
6060 		PMAP_LOCK(dst_pmap);
6061 	}
6062 	sched_pin();
6063 	for (addr = src_addr; addr < end_addr; addr = nextva) {
6064 		pt2_entry_t *src_pte2p, *dst_pte2p;
6065 		vm_page_t dst_mpt2pg, src_mpt2pg;
6066 		pt1_entry_t src_pte1;
6067 		u_int pte1_idx;
6068 
6069 		KASSERT(addr < VM_MAXUSER_ADDRESS,
6070 		    ("%s: invalid to pmap_copy page tables", __func__));
6071 
6072 		nextva = pte1_trunc(addr + PTE1_SIZE);
6073 		if (nextva < addr)
6074 			nextva = end_addr;
6075 
6076 		pte1_idx = pte1_index(addr);
6077 		src_pte1 = src_pmap->pm_pt1[pte1_idx];
6078 		if (pte1_is_section(src_pte1)) {
6079 			if ((addr & PTE1_OFFSET) != 0 ||
6080 			    (addr + PTE1_SIZE) > end_addr)
6081 				continue;
6082 			if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
6083 			    (!pte1_is_managed(src_pte1) ||
6084 			    pmap_pv_insert_pte1(dst_pmap, addr, src_pte1,
6085 			    PMAP_ENTER_NORECLAIM))) {
6086 				dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
6087 				    ~PTE1_W;
6088 				dst_pmap->pm_stats.resident_count +=
6089 				    PTE1_SIZE / PAGE_SIZE;
6090 				pmap_pte1_mappings++;
6091 			}
6092 			continue;
6093 		} else if (!pte1_is_link(src_pte1))
6094 			continue;
6095 
6096 		src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
6097 
6098 		/*
6099 		 * We leave PT2s to be linked from PT1 even if they are not
6100 		 * referenced until all PT2s in a page are without reference.
6101 		 *
6102 		 * QQQ: It could be changed ...
6103 		 */
6104 #if 0 /* single_pt2_link_is_cleared */
6105 		KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
6106 		    ("%s: source page table page is unused", __func__));
6107 #else
6108 		if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
6109 			continue;
6110 #endif
6111 		if (nextva > end_addr)
6112 			nextva = end_addr;
6113 
6114 		src_pte2p = pt2map_entry(addr);
6115 		while (addr < nextva) {
6116 			pt2_entry_t temp_pte2;
6117 			temp_pte2 = pte2_load(src_pte2p);
6118 			/*
6119 			 * we only virtual copy managed pages
6120 			 */
6121 			if (pte2_is_managed(temp_pte2)) {
6122 				dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
6123 				    PMAP_ENTER_NOSLEEP);
6124 				if (dst_mpt2pg == NULL)
6125 					goto out;
6126 				dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
6127 				if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
6128 				    pmap_try_insert_pv_entry(dst_pmap, addr,
6129 				    PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
6130 					/*
6131 					 * Clear the wired, modified, and
6132 					 * accessed (referenced) bits
6133 					 * during the copy.
6134 					 */
6135 					temp_pte2 &=  ~(PTE2_W | PTE2_A);
6136 					temp_pte2 |= PTE2_NM;
6137 					pte2_store(dst_pte2p, temp_pte2);
6138 					dst_pmap->pm_stats.resident_count++;
6139 				} else {
6140 					SLIST_INIT(&free);
6141 					if (pmap_unwire_pt2(dst_pmap, addr,
6142 					    dst_mpt2pg, &free)) {
6143 						pmap_tlb_flush(dst_pmap, addr);
6144 						vm_page_free_pages_toq(&free,
6145 						    false);
6146 					}
6147 					goto out;
6148 				}
6149 				if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
6150 				    pt2_wirecount_get(src_mpt2pg, pte1_idx))
6151 					break;
6152 			}
6153 			addr += PAGE_SIZE;
6154 			src_pte2p++;
6155 		}
6156 	}
6157 out:
6158 	sched_unpin();
6159 	rw_wunlock(&pvh_global_lock);
6160 	PMAP_UNLOCK(src_pmap);
6161 	PMAP_UNLOCK(dst_pmap);
6162 }
6163 
6164 /*
6165  *	Increase the starting virtual address of the given mapping if a
6166  *	different alignment might result in more section mappings.
6167  */
6168 void
6169 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6170     vm_offset_t *addr, vm_size_t size)
6171 {
6172 	vm_offset_t pte1_offset;
6173 
6174 	if (size < PTE1_SIZE)
6175 		return;
6176 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6177 		offset += ptoa(object->pg_color);
6178 	pte1_offset = offset & PTE1_OFFSET;
6179 	if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
6180 	    (*addr & PTE1_OFFSET) == pte1_offset)
6181 		return;
6182 	if ((*addr & PTE1_OFFSET) < pte1_offset)
6183 		*addr = pte1_trunc(*addr) + pte1_offset;
6184 	else
6185 		*addr = pte1_roundup(*addr) + pte1_offset;
6186 }
6187 
6188 void
6189 pmap_activate(struct thread *td)
6190 {
6191 	pmap_t pmap, oldpmap;
6192 	u_int cpuid, ttb;
6193 
6194 	PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
6195 
6196 	critical_enter();
6197 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6198 	oldpmap = PCPU_GET(curpmap);
6199 	cpuid = PCPU_GET(cpuid);
6200 
6201 #if defined(SMP)
6202 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6203 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6204 #else
6205 	CPU_CLR(cpuid, &oldpmap->pm_active);
6206 	CPU_SET(cpuid, &pmap->pm_active);
6207 #endif
6208 
6209 	ttb = pmap_ttb_get(pmap);
6210 
6211 	/*
6212 	 * pmap_activate is for the current thread on the current cpu
6213 	 */
6214 	td->td_pcb->pcb_pagedir = ttb;
6215 	cp15_ttbr_set(ttb);
6216 	PCPU_SET(curpmap, pmap);
6217 	critical_exit();
6218 }
6219 
6220 /*
6221  * Perform the pmap work for mincore(2).  If the page is not both referenced and
6222  * modified by this pmap, returns its physical address so that the caller can
6223  * find other mappings.
6224  */
6225 int
6226 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
6227 {
6228 	pt1_entry_t *pte1p, pte1;
6229 	pt2_entry_t *pte2p, pte2;
6230 	vm_paddr_t pa;
6231 	bool managed;
6232 	int val;
6233 
6234 	PMAP_LOCK(pmap);
6235 	pte1p = pmap_pte1(pmap, addr);
6236 	pte1 = pte1_load(pte1p);
6237 	if (pte1_is_section(pte1)) {
6238 		pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
6239 		managed = pte1_is_managed(pte1);
6240 		val = MINCORE_SUPER | MINCORE_INCORE;
6241 		if (pte1_is_dirty(pte1))
6242 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6243 		if (pte1 & PTE1_A)
6244 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6245 	} else if (pte1_is_link(pte1)) {
6246 		pte2p = pmap_pte2(pmap, addr);
6247 		pte2 = pte2_load(pte2p);
6248 		pmap_pte2_release(pte2p);
6249 		pa = pte2_pa(pte2);
6250 		managed = pte2_is_managed(pte2);
6251 		val = MINCORE_INCORE;
6252 		if (pte2_is_dirty(pte2))
6253 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6254 		if (pte2 & PTE2_A)
6255 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6256 	} else {
6257 		managed = false;
6258 		val = 0;
6259 	}
6260 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6261 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6262 		*pap = pa;
6263 	}
6264 	PMAP_UNLOCK(pmap);
6265 	return (val);
6266 }
6267 
6268 void
6269 pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
6270 {
6271 	vm_offset_t sva;
6272 	uint32_t l2attr;
6273 
6274 	KASSERT((size & PAGE_MASK) == 0,
6275 	    ("%s: device mapping not page-sized", __func__));
6276 
6277 	sva = va;
6278 	l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
6279 	while (size != 0) {
6280 		pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
6281 		va += PAGE_SIZE;
6282 		pa += PAGE_SIZE;
6283 		size -= PAGE_SIZE;
6284 	}
6285 	tlb_flush_range(sva, va - sva);
6286 }
6287 
6288 void
6289 pmap_kremove_device(vm_offset_t va, vm_size_t size)
6290 {
6291 	vm_offset_t sva;
6292 
6293 	KASSERT((size & PAGE_MASK) == 0,
6294 	    ("%s: device mapping not page-sized", __func__));
6295 
6296 	sva = va;
6297 	while (size != 0) {
6298 		pmap_kremove(va);
6299 		va += PAGE_SIZE;
6300 		size -= PAGE_SIZE;
6301 	}
6302 	tlb_flush_range(sva, va - sva);
6303 }
6304 
6305 void
6306 pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
6307 {
6308 
6309 	pcb->pcb_pagedir = pmap_ttb_get(pmap);
6310 }
6311 
6312 
6313 /*
6314  *  Clean L1 data cache range by physical address.
6315  *  The range must be within a single page.
6316  */
6317 static void
6318 pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
6319 {
6320 	pt2_entry_t *cmap2_pte2p;
6321 	struct pcpu *pc;
6322 
6323 	KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
6324 	    ("%s: not on single page", __func__));
6325 
6326 	sched_pin();
6327 	pc = get_pcpu();
6328 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6329 	mtx_lock(&pc->pc_cmap_lock);
6330 	if (pte2_load(cmap2_pte2p) != 0)
6331 		panic("%s: CMAP2 busy", __func__);
6332 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
6333 	dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
6334 	pte2_clear(cmap2_pte2p);
6335 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6336 	sched_unpin();
6337 	mtx_unlock(&pc->pc_cmap_lock);
6338 }
6339 
6340 /*
6341  *  Sync instruction cache range which is not mapped yet.
6342  */
6343 void
6344 cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
6345 {
6346 	uint32_t len, offset;
6347 	vm_page_t m;
6348 
6349 	/* Write back d-cache on given address range. */
6350 	offset = pa & PAGE_MASK;
6351 	for ( ; size != 0; size -= len, pa += len, offset = 0) {
6352 		len = min(PAGE_SIZE - offset, size);
6353 		m = PHYS_TO_VM_PAGE(pa);
6354 		KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6355 		  __func__, pa));
6356 		pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6357 	}
6358 	/*
6359 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6360 	 * on given physical address is to invalidate all i-cache.
6361 	 */
6362 	icache_inv_all();
6363 }
6364 
6365 void
6366 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
6367 {
6368 
6369 	/* Write back d-cache on given address range. */
6370 	if (va >= VM_MIN_KERNEL_ADDRESS) {
6371 		dcache_wb_pou(va, size);
6372 	} else {
6373 		uint32_t len, offset;
6374 		vm_paddr_t pa;
6375 		vm_page_t m;
6376 
6377 		offset = va & PAGE_MASK;
6378 		for ( ; size != 0; size -= len, va += len, offset = 0) {
6379 			pa = pmap_extract(pmap, va); /* offset is preserved */
6380 			len = min(PAGE_SIZE - offset, size);
6381 			m = PHYS_TO_VM_PAGE(pa);
6382 			KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6383 				__func__, pa));
6384 			pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6385 		}
6386 	}
6387 	/*
6388 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6389 	 * on given physical address is to invalidate all i-cache.
6390 	 */
6391 	icache_inv_all();
6392 }
6393 
6394 /*
6395  *  The implementation of pmap_fault() uses IN_RANGE2() macro which
6396  *  depends on the fact that given range size is a power of 2.
6397  */
6398 CTASSERT(powerof2(NB_IN_PT1));
6399 CTASSERT(powerof2(PT2MAP_SIZE));
6400 
6401 #define IN_RANGE2(addr, start, size)	\
6402     ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
6403 
6404 /*
6405  *  Handle access and R/W emulation faults.
6406  */
6407 int
6408 pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
6409 {
6410 	pt1_entry_t *pte1p, pte1;
6411 	pt2_entry_t *pte2p, pte2;
6412 
6413 	if (pmap == NULL)
6414 		pmap = kernel_pmap;
6415 
6416 	/*
6417 	 * In kernel, we should never get abort with FAR which is in range of
6418 	 * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
6419 	 * and print out a useful abort message and even get to the debugger
6420 	 * otherwise it likely ends with never ending loop of aborts.
6421 	 */
6422 	if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
6423 		/*
6424 		 * All L1 tables should always be mapped and present.
6425 		 * However, we check only current one herein. For user mode,
6426 		 * only permission abort from malicious user is not fatal.
6427 		 * And alignment abort as it may have higher priority.
6428 		 */
6429 		if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
6430 			CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
6431 			    __func__, pmap, pmap->pm_pt1, far);
6432 			panic("%s: pm_pt1 abort", __func__);
6433 		}
6434 		return (KERN_INVALID_ADDRESS);
6435 	}
6436 	if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
6437 		/*
6438 		 * PT2MAP should be always mapped and present in current
6439 		 * L1 table. However, only existing L2 tables are mapped
6440 		 * in PT2MAP. For user mode, only L2 translation abort and
6441 		 * permission abort from malicious user is not fatal.
6442 		 * And alignment abort as it may have higher priority.
6443 		 */
6444 		if (!usermode || (idx != FAULT_ALIGN &&
6445 		    idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
6446 			CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
6447 			    __func__, pmap, PT2MAP, far);
6448 			panic("%s: PT2MAP abort", __func__);
6449 		}
6450 		return (KERN_INVALID_ADDRESS);
6451 	}
6452 
6453 	/*
6454 	 * A pmap lock is used below for handling of access and R/W emulation
6455 	 * aborts. They were handled by atomic operations before so some
6456 	 * analysis of new situation is needed to answer the following question:
6457 	 * Is it safe to use the lock even for these aborts?
6458 	 *
6459 	 * There may happen two cases in general:
6460 	 *
6461 	 * (1) Aborts while the pmap lock is locked already - this should not
6462 	 * happen as pmap lock is not recursive. However, under pmap lock only
6463 	 * internal kernel data should be accessed and such data should be
6464 	 * mapped with A bit set and NM bit cleared. If double abort happens,
6465 	 * then a mapping of data which has caused it must be fixed. Further,
6466 	 * all new mappings are always made with A bit set and the bit can be
6467 	 * cleared only on managed mappings.
6468 	 *
6469 	 * (2) Aborts while another lock(s) is/are locked - this already can
6470 	 * happen. However, there is no difference here if it's either access or
6471 	 * R/W emulation abort, or if it's some other abort.
6472 	 */
6473 
6474 	PMAP_LOCK(pmap);
6475 #ifdef INVARIANTS
6476 	pte1 = pte1_load(pmap_pte1(pmap, far));
6477 	if (pte1_is_link(pte1)) {
6478 		/*
6479 		 * Check in advance that associated L2 page table is mapped into
6480 		 * PT2MAP space. Note that faulty access to not mapped L2 page
6481 		 * table is caught in more general check above where "far" is
6482 		 * checked that it does not lay in PT2MAP space. Note also that
6483 		 * L1 page table and PT2TAB always exist and are mapped.
6484 		 */
6485 		pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
6486 		if (!pte2_is_valid(pte2))
6487 			panic("%s: missing L2 page table (%p, %#x)",
6488 			    __func__, pmap, far);
6489 	}
6490 #endif
6491 #ifdef SMP
6492 	/*
6493 	 * Special treatment is due to break-before-make approach done when
6494 	 * pte1 is updated for userland mapping during section promotion or
6495 	 * demotion. If not caught here, pmap_enter() can find a section
6496 	 * mapping on faulting address. That is not allowed.
6497 	 */
6498 	if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
6499 		PMAP_UNLOCK(pmap);
6500 		return (KERN_SUCCESS);
6501 	}
6502 #endif
6503 	/*
6504 	 * Accesss bits for page and section. Note that the entry
6505 	 * is not in TLB yet, so TLB flush is not necessary.
6506 	 *
6507 	 * QQQ: This is hardware emulation, we do not call userret()
6508 	 *      for aborts from user mode.
6509 	 */
6510 	if (idx == FAULT_ACCESS_L2) {
6511 		pte1 = pte1_load(pmap_pte1(pmap, far));
6512 		if (pte1_is_link(pte1)) {
6513 			/* L2 page table should exist and be mapped. */
6514 			pte2p = pt2map_entry(far);
6515 			pte2 = pte2_load(pte2p);
6516 			if (pte2_is_valid(pte2)) {
6517 				pte2_store(pte2p, pte2 | PTE2_A);
6518 				PMAP_UNLOCK(pmap);
6519 				return (KERN_SUCCESS);
6520 			}
6521 		} else {
6522 			/*
6523 			 * We got L2 access fault but PTE1 is not a link.
6524 			 * Probably some race happened, do nothing.
6525 			 */
6526 			CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L2 - pmap %#x far %#x",
6527 			    __func__, pmap, far);
6528 			PMAP_UNLOCK(pmap);
6529 			return (KERN_SUCCESS);
6530 		}
6531 	}
6532 	if (idx == FAULT_ACCESS_L1) {
6533 		pte1p = pmap_pte1(pmap, far);
6534 		pte1 = pte1_load(pte1p);
6535 		if (pte1_is_section(pte1)) {
6536 			pte1_store(pte1p, pte1 | PTE1_A);
6537 			PMAP_UNLOCK(pmap);
6538 			return (KERN_SUCCESS);
6539 		} else {
6540 			/*
6541 			 * We got L1 access fault but PTE1 is not section
6542 			 * mapping. Probably some race happened, do nothing.
6543 			 */
6544 			CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L1 - pmap %#x far %#x",
6545 			    __func__, pmap, far);
6546 			PMAP_UNLOCK(pmap);
6547 			return (KERN_SUCCESS);
6548 		}
6549 	}
6550 
6551 	/*
6552 	 * Handle modify bits for page and section. Note that the modify
6553 	 * bit is emulated by software. So PTEx_RO is software read only
6554 	 * bit and PTEx_NM flag is real hardware read only bit.
6555 	 *
6556 	 * QQQ: This is hardware emulation, we do not call userret()
6557 	 *      for aborts from user mode.
6558 	 */
6559 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
6560 		pte1 = pte1_load(pmap_pte1(pmap, far));
6561 		if (pte1_is_link(pte1)) {
6562 			/* L2 page table should exist and be mapped. */
6563 			pte2p = pt2map_entry(far);
6564 			pte2 = pte2_load(pte2p);
6565 			if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
6566 			    (pte2 & PTE2_NM)) {
6567 				pte2_store(pte2p, pte2 & ~PTE2_NM);
6568 				tlb_flush(trunc_page(far));
6569 				PMAP_UNLOCK(pmap);
6570 				return (KERN_SUCCESS);
6571 			}
6572 		} else {
6573 			/*
6574 			 * We got L2 permission fault but PTE1 is not a link.
6575 			 * Probably some race happened, do nothing.
6576 			 */
6577 			CTR3(KTR_PMAP, "%s: FAULT_PERM_L2 - pmap %#x far %#x",
6578 			    __func__, pmap, far);
6579 			PMAP_UNLOCK(pmap);
6580 			return (KERN_SUCCESS);
6581 		}
6582 	}
6583 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
6584 		pte1p = pmap_pte1(pmap, far);
6585 		pte1 = pte1_load(pte1p);
6586 		if (pte1_is_section(pte1)) {
6587 			if (!(pte1 & PTE1_RO) && (pte1 & PTE1_NM)) {
6588 				pte1_store(pte1p, pte1 & ~PTE1_NM);
6589 				tlb_flush(pte1_trunc(far));
6590 				PMAP_UNLOCK(pmap);
6591 				return (KERN_SUCCESS);
6592 			}
6593 		} else {
6594 			/*
6595 			 * We got L1 permission fault but PTE1 is not section
6596 			 * mapping. Probably some race happened, do nothing.
6597 			 */
6598 			CTR3(KTR_PMAP, "%s: FAULT_PERM_L1 - pmap %#x far %#x",
6599 			    __func__, pmap, far);
6600 			PMAP_UNLOCK(pmap);
6601 			return (KERN_SUCCESS);
6602 		}
6603 	}
6604 
6605 	/*
6606 	 * QQQ: The previous code, mainly fast handling of access and
6607 	 *      modify bits aborts, could be moved to ASM. Now we are
6608 	 *      starting to deal with not fast aborts.
6609 	 */
6610 	PMAP_UNLOCK(pmap);
6611 	return (KERN_FAILURE);
6612 }
6613 
6614 #if defined(PMAP_DEBUG)
6615 /*
6616  *  Reusing of KVA used in pmap_zero_page function !!!
6617  */
6618 static void
6619 pmap_zero_page_check(vm_page_t m)
6620 {
6621 	pt2_entry_t *cmap2_pte2p;
6622 	uint32_t *p, *end;
6623 	struct pcpu *pc;
6624 
6625 	sched_pin();
6626 	pc = get_pcpu();
6627 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6628 	mtx_lock(&pc->pc_cmap_lock);
6629 	if (pte2_load(cmap2_pte2p) != 0)
6630 		panic("%s: CMAP2 busy", __func__);
6631 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6632 	    vm_page_pte2_attr(m)));
6633 	end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
6634 	for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
6635 		if (*p != 0)
6636 			panic("%s: page %p not zero, va: %p", __func__, m,
6637 			    pc->pc_cmap2_addr);
6638 	pte2_clear(cmap2_pte2p);
6639 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6640 	sched_unpin();
6641 	mtx_unlock(&pc->pc_cmap_lock);
6642 }
6643 
6644 int
6645 pmap_pid_dump(int pid)
6646 {
6647 	pmap_t pmap;
6648 	struct proc *p;
6649 	int npte2 = 0;
6650 	int i, j, index;
6651 
6652 	sx_slock(&allproc_lock);
6653 	FOREACH_PROC_IN_SYSTEM(p) {
6654 		if (p->p_pid != pid || p->p_vmspace == NULL)
6655 			continue;
6656 		index = 0;
6657 		pmap = vmspace_pmap(p->p_vmspace);
6658 		for (i = 0; i < NPTE1_IN_PT1; i++) {
6659 			pt1_entry_t pte1;
6660 			pt2_entry_t *pte2p, pte2;
6661 			vm_offset_t base, va;
6662 			vm_paddr_t pa;
6663 			vm_page_t m;
6664 
6665 			base = i << PTE1_SHIFT;
6666 			pte1 = pte1_load(&pmap->pm_pt1[i]);
6667 
6668 			if (pte1_is_section(pte1)) {
6669 				/*
6670 				 * QQQ: Do something here!
6671 				 */
6672 			} else if (pte1_is_link(pte1)) {
6673 				for (j = 0; j < NPTE2_IN_PT2; j++) {
6674 					va = base + (j << PAGE_SHIFT);
6675 					if (va >= VM_MIN_KERNEL_ADDRESS) {
6676 						if (index) {
6677 							index = 0;
6678 							printf("\n");
6679 						}
6680 						sx_sunlock(&allproc_lock);
6681 						return (npte2);
6682 					}
6683 					pte2p = pmap_pte2(pmap, va);
6684 					pte2 = pte2_load(pte2p);
6685 					pmap_pte2_release(pte2p);
6686 					if (!pte2_is_valid(pte2))
6687 						continue;
6688 
6689 					pa = pte2_pa(pte2);
6690 					m = PHYS_TO_VM_PAGE(pa);
6691 					printf("va: 0x%x, pa: 0x%x, w: %d, "
6692 					    "f: 0x%x", va, pa,
6693 					    m->ref_count, m->flags);
6694 					npte2++;
6695 					index++;
6696 					if (index >= 2) {
6697 						index = 0;
6698 						printf("\n");
6699 					} else {
6700 						printf(" ");
6701 					}
6702 				}
6703 			}
6704 		}
6705 	}
6706 	sx_sunlock(&allproc_lock);
6707 	return (npte2);
6708 }
6709 
6710 #endif
6711 
6712 #ifdef DDB
6713 static pt2_entry_t *
6714 pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
6715 {
6716 	pt1_entry_t pte1;
6717 	vm_paddr_t pt2pg_pa;
6718 
6719 	pte1 = pte1_load(pmap_pte1(pmap, va));
6720 	if (!pte1_is_link(pte1))
6721 		return (NULL);
6722 
6723 	if (pmap_is_current(pmap))
6724 		return (pt2map_entry(va));
6725 
6726 	/* Note that L2 page table size is not equal to PAGE_SIZE. */
6727 	pt2pg_pa = trunc_page(pte1_link_pa(pte1));
6728 	if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
6729 		pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
6730 #ifdef SMP
6731 		PMAP3cpu = PCPU_GET(cpuid);
6732 #endif
6733 		tlb_flush_local((vm_offset_t)PADDR3);
6734 	}
6735 #ifdef SMP
6736 	else if (PMAP3cpu != PCPU_GET(cpuid)) {
6737 		PMAP3cpu = PCPU_GET(cpuid);
6738 		tlb_flush_local((vm_offset_t)PADDR3);
6739 	}
6740 #endif
6741 	return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
6742 }
6743 
6744 static void
6745 dump_pmap(pmap_t pmap)
6746 {
6747 
6748 	printf("pmap %p\n", pmap);
6749 	printf("  pm_pt1: %p\n", pmap->pm_pt1);
6750 	printf("  pm_pt2tab: %p\n", pmap->pm_pt2tab);
6751 	printf("  pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
6752 }
6753 
6754 DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
6755 {
6756 
6757 	pmap_t pmap;
6758 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
6759 		dump_pmap(pmap);
6760 	}
6761 }
6762 
6763 static int
6764 pte2_class(pt2_entry_t pte2)
6765 {
6766 	int cls;
6767 
6768 	cls = (pte2 >> 2) & 0x03;
6769 	cls |= (pte2 >> 4) & 0x04;
6770 	return (cls);
6771 }
6772 
6773 static void
6774 dump_section(pmap_t pmap, uint32_t pte1_idx)
6775 {
6776 }
6777 
6778 static void
6779 dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok)
6780 {
6781 	uint32_t i;
6782 	vm_offset_t va;
6783 	pt2_entry_t *pte2p, pte2;
6784 	vm_page_t m;
6785 
6786 	va = pte1_idx << PTE1_SHIFT;
6787 	pte2p = pmap_pte2_ddb(pmap, va);
6788 	for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
6789 		pte2 = pte2_load(pte2p);
6790 		if (pte2 == 0)
6791 			continue;
6792 		if (!pte2_is_valid(pte2)) {
6793 			printf(" 0x%08X: 0x%08X", va, pte2);
6794 			if (!invalid_ok)
6795 				printf(" - not valid !!!");
6796 			printf("\n");
6797 			continue;
6798 		}
6799 		m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
6800 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
6801 		    pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
6802 		if (m != NULL) {
6803 			printf(" v:%d w:%d f:0x%04X\n", m->valid,
6804 			    m->ref_count, m->flags);
6805 		} else {
6806 			printf("\n");
6807 		}
6808 	}
6809 }
6810 
6811 static __inline boolean_t
6812 is_pv_chunk_space(vm_offset_t va)
6813 {
6814 
6815 	if ((((vm_offset_t)pv_chunkbase) <= va) &&
6816 	    (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
6817 		return (TRUE);
6818 	return (FALSE);
6819 }
6820 
6821 DB_SHOW_COMMAND(pmap, pmap_pmap_print)
6822 {
6823 	/* XXX convert args. */
6824 	pmap_t pmap = (pmap_t)addr;
6825 	pt1_entry_t pte1;
6826 	pt2_entry_t pte2;
6827 	vm_offset_t va, eva;
6828 	vm_page_t m;
6829 	uint32_t i;
6830 	boolean_t invalid_ok, dump_link_ok, dump_pv_chunk;
6831 
6832 	if (have_addr) {
6833 		pmap_t pm;
6834 
6835 		LIST_FOREACH(pm, &allpmaps, pm_list)
6836 			if (pm == pmap) break;
6837 		if (pm == NULL) {
6838 			printf("given pmap %p is not in allpmaps list\n", pmap);
6839 			return;
6840 		}
6841 	} else
6842 		pmap = PCPU_GET(curpmap);
6843 
6844 	eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
6845 	dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */
6846 
6847 	printf("pmap: 0x%08X\n", (uint32_t)pmap);
6848 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6849 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6850 
6851 	for(i = 0; i < NPTE1_IN_PT1; i++) {
6852 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6853 		if (pte1 == 0)
6854 			continue;
6855 		va = i << PTE1_SHIFT;
6856 		if (va >= eva)
6857 			break;
6858 
6859 		if (pte1_is_section(pte1)) {
6860 			printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
6861 			    !!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
6862 			dump_section(pmap, i);
6863 		} else if (pte1_is_link(pte1)) {
6864 			dump_link_ok = TRUE;
6865 			invalid_ok = FALSE;
6866 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6867 			m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
6868 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
6869 			    va, pte1, pte2, m);
6870 			if (is_pv_chunk_space(va)) {
6871 				printf(" - pv_chunk space");
6872 				if (dump_pv_chunk)
6873 					invalid_ok = TRUE;
6874 				else
6875 					dump_link_ok = FALSE;
6876 			}
6877 			else if (m != NULL)
6878 				printf(" w:%d w2:%u", m->ref_count,
6879 				    pt2_wirecount_get(m, pte1_index(va)));
6880 			if (pte2 == 0)
6881 				printf(" !!! pt2tab entry is ZERO");
6882 			else if (pte2_pa(pte1) != pte2_pa(pte2))
6883 				printf(" !!! pt2tab entry is DIFFERENT - m: %p",
6884 				    PHYS_TO_VM_PAGE(pte2_pa(pte2)));
6885 			printf("\n");
6886 			if (dump_link_ok)
6887 				dump_link(pmap, i, invalid_ok);
6888 		} else
6889 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6890 	}
6891 }
6892 
6893 static void
6894 dump_pt2tab(pmap_t pmap)
6895 {
6896 	uint32_t i;
6897 	pt2_entry_t pte2;
6898 	vm_offset_t va;
6899 	vm_paddr_t pa;
6900 	vm_page_t m;
6901 
6902 	printf("PT2TAB:\n");
6903 	for (i = 0; i < PT2TAB_ENTRIES; i++) {
6904 		pte2 = pte2_load(&pmap->pm_pt2tab[i]);
6905 		if (!pte2_is_valid(pte2))
6906 			continue;
6907 		va = i << PT2TAB_SHIFT;
6908 		pa = pte2_pa(pte2);
6909 		m = PHYS_TO_VM_PAGE(pa);
6910 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
6911 		    pte2_class(pte2), !!(pte2 & PTE2_S), m);
6912 		if (m != NULL)
6913 			printf(" , w: %d, f: 0x%04X pidx: %lld",
6914 			    m->ref_count, m->flags, m->pindex);
6915 		printf("\n");
6916 	}
6917 }
6918 
6919 DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
6920 {
6921 	/* XXX convert args. */
6922 	pmap_t pmap = (pmap_t)addr;
6923 	pt1_entry_t pte1;
6924 	pt2_entry_t pte2;
6925 	vm_offset_t va;
6926 	uint32_t i, start;
6927 
6928 	if (have_addr) {
6929 		printf("supported only on current pmap\n");
6930 		return;
6931 	}
6932 
6933 	pmap = PCPU_GET(curpmap);
6934 	printf("curpmap: 0x%08X\n", (uint32_t)pmap);
6935 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6936 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6937 
6938 	start = pte1_index((vm_offset_t)PT2MAP);
6939 	for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
6940 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6941 		if (pte1 == 0)
6942 			continue;
6943 		va = i << PTE1_SHIFT;
6944 		if (pte1_is_section(pte1)) {
6945 			printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
6946 			    !!(pte1 & PTE1_S));
6947 			dump_section(pmap, i);
6948 		} else if (pte1_is_link(pte1)) {
6949 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6950 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
6951 			    pte1, pte2);
6952 			if (pte2 == 0)
6953 				printf("  !!! pt2tab entry is ZERO\n");
6954 		} else
6955 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6956 	}
6957 	dump_pt2tab(pmap);
6958 }
6959 #endif
6960