xref: /freebsd/sys/arm/freescale/imx/imx6_anatop.c (revision 4d846d26)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
5  * Copyright (c) 2014 Steven Lawrance <stl@koffein.net>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Analog PLL and power regulator driver for Freescale i.MX6 family of SoCs.
35  * Also, temperature montoring and cpu frequency control.  It was Freescale who
36  * kitchen-sinked this device, not us. :)
37  *
38  * We don't really do anything with analog PLLs, but the registers for
39  * controlling them belong to the same block as the power regulator registers.
40  * Since the newbus hierarchy makes it hard for anyone other than us to get at
41  * them, we just export a couple public functions to allow the imx6 CCM clock
42  * driver to read and write those registers.
43  *
44  * We also don't do anything about power regulation yet, but when the need
45  * arises, this would be the place for that code to live.
46  *
47  * I have no idea where the "anatop" name comes from.  It's in the standard DTS
48  * source describing i.MX6 SoCs, and in the linux and u-boot code which comes
49  * from Freescale, but it's not in the SoC manual.
50  *
51  * Note that temperature values throughout this code are handled in two types of
52  * units.  Items with '_cnt' in the name use the hardware temperature count
53  * units (higher counts are lower temperatures).  Items with '_val' in the name
54  * are deci-Celsius, which are converted to/from deci-Kelvins in the sysctl
55  * handlers (dK is the standard unit for temperature in sysctl).
56  */
57 
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/callout.h>
61 #include <sys/kernel.h>
62 #include <sys/limits.h>
63 #include <sys/sysctl.h>
64 #include <sys/module.h>
65 #include <sys/bus.h>
66 #include <sys/rman.h>
67 
68 #include <dev/ofw/ofw_bus.h>
69 #include <dev/ofw/ofw_bus_subr.h>
70 
71 #include <machine/bus.h>
72 
73 #include <arm/arm/mpcore_timervar.h>
74 #include <arm/freescale/fsl_ocotpreg.h>
75 #include <arm/freescale/fsl_ocotpvar.h>
76 #include <arm/freescale/imx/imx_ccmvar.h>
77 #include <arm/freescale/imx/imx_machdep.h>
78 #include <arm/freescale/imx/imx6_anatopreg.h>
79 #include <arm/freescale/imx/imx6_anatopvar.h>
80 
81 static struct resource_spec imx6_anatop_spec[] = {
82 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
83 	{ -1, 0 }
84 };
85 #define	MEMRES	0
86 #define	IRQRES	1
87 
88 struct imx6_anatop_softc {
89 	device_t	dev;
90 	struct resource	*res[2];
91 	struct intr_config_hook
92 			intr_setup_hook;
93 	uint32_t	cpu_curmhz;
94 	uint32_t	cpu_curmv;
95 	uint32_t	cpu_minmhz;
96 	uint32_t	cpu_minmv;
97 	uint32_t	cpu_maxmhz;
98 	uint32_t	cpu_maxmv;
99 	uint32_t	cpu_maxmhz_hw;
100 	boolean_t	cpu_overclock_enable;
101 	boolean_t	cpu_init_done;
102 	uint32_t	refosc_mhz;
103 	void		*temp_intrhand;
104 	uint32_t	temp_high_val;
105 	uint32_t	temp_high_cnt;
106 	uint32_t	temp_last_cnt;
107 	uint32_t	temp_room_cnt;
108 	struct callout	temp_throttle_callout;
109 	sbintime_t	temp_throttle_delay;
110 	uint32_t	temp_throttle_reset_cnt;
111 	uint32_t	temp_throttle_trigger_cnt;
112 	uint32_t	temp_throttle_val;
113 };
114 
115 static struct imx6_anatop_softc *imx6_anatop_sc;
116 
117 /*
118  * Table of "operating points".
119  * These are combinations of frequency and voltage blessed by Freescale.
120  * While the datasheet says the ARM voltage can be as low as 925mV at
121  * 396MHz, it also says that the ARM and SOC voltages can't differ by
122  * more than 200mV, and the minimum SOC voltage is 1150mV, so that
123  * dictates the 950mV entry in this table.
124  */
125 static struct oppt {
126 	uint32_t	mhz;
127 	uint32_t	mv;
128 } imx6_oppt_table[] = {
129 	{ 396,	 950},
130 	{ 792,	1150},
131 	{ 852,	1225},
132 	{ 996,	1225},
133 	{1200,	1275},
134 };
135 
136 /*
137  * Table of CPU max frequencies.  This is used to translate the max frequency
138  * value (0-3) from the ocotp CFG3 register into a mhz value that can be looked
139  * up in the operating points table.
140  */
141 static uint32_t imx6_ocotp_mhz_tab[] = {792, 852, 996, 1200};
142 
143 #define	TZ_ZEROC	2731	/* deci-Kelvin <-> deci-Celsius offset. */
144 
145 uint32_t
146 imx6_anatop_read_4(bus_size_t offset)
147 {
148 
149 	KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_read_4 sc NULL"));
150 
151 	return (bus_read_4(imx6_anatop_sc->res[MEMRES], offset));
152 }
153 
154 void
155 imx6_anatop_write_4(bus_size_t offset, uint32_t value)
156 {
157 
158 	KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_write_4 sc NULL"));
159 
160 	bus_write_4(imx6_anatop_sc->res[MEMRES], offset, value);
161 }
162 
163 static void
164 vdd_set(struct imx6_anatop_softc *sc, int mv)
165 {
166 	int newtarg, newtargSoc, oldtarg;
167 	uint32_t delay, pmureg;
168 	static boolean_t init_done = false;
169 
170 	/*
171 	 * The datasheet says VDD_PU and VDD_SOC must be equal, and VDD_ARM
172 	 * can't be more than 50mV above or 200mV below them.  We keep them the
173 	 * same except in the case of the lowest operating point, which is
174 	 * handled as a special case below.
175 	 */
176 
177 	pmureg = imx6_anatop_read_4(IMX6_ANALOG_PMU_REG_CORE);
178 	oldtarg = pmureg & IMX6_ANALOG_PMU_REG0_TARG_MASK;
179 
180 	/* Convert mV to target value.  Clamp target to valid range. */
181 	if (mv < 725)
182 		newtarg = 0x00;
183 	else if (mv > 1450)
184 		newtarg = 0x1F;
185 	else
186 		newtarg = (mv - 700) / 25;
187 
188 	/*
189 	 * The SOC voltage can't go below 1150mV, and thus because of the 200mV
190 	 * rule, the ARM voltage can't go below 950mV.  The 950 is encoded in
191 	 * our oppt table, here we handle the SOC 1150 rule as a special case.
192 	 * (1150-700/25=18).
193 	 */
194 	newtargSoc = (newtarg < 18) ? 18 : newtarg;
195 
196 	/*
197 	 * The first time through the 3 voltages might not be equal so use a
198 	 * long conservative delay.  After that we need to delay 3uS for every
199 	 * 25mV step upward; we actually delay 6uS because empirically, it works
200 	 * and the 3uS per step recommended by the docs doesn't (3uS fails when
201 	 * going from 400->1200, but works for smaller changes).
202 	 */
203 	if (init_done) {
204 		if (newtarg == oldtarg)
205 			return;
206 		else if (newtarg > oldtarg)
207 			delay = (newtarg - oldtarg) * 6;
208 		else
209 			delay = 0;
210 	} else {
211 		delay = (700 / 25) * 6;
212 		init_done = true;
213 	}
214 
215 	/*
216 	 * Make the change and wait for it to take effect.
217 	 */
218 	pmureg &= ~(IMX6_ANALOG_PMU_REG0_TARG_MASK |
219 	    IMX6_ANALOG_PMU_REG1_TARG_MASK |
220 	    IMX6_ANALOG_PMU_REG2_TARG_MASK);
221 
222 	pmureg |= newtarg << IMX6_ANALOG_PMU_REG0_TARG_SHIFT;
223 	pmureg |= newtarg << IMX6_ANALOG_PMU_REG1_TARG_SHIFT;
224 	pmureg |= newtargSoc << IMX6_ANALOG_PMU_REG2_TARG_SHIFT;
225 
226 	imx6_anatop_write_4(IMX6_ANALOG_PMU_REG_CORE, pmureg);
227 	DELAY(delay);
228 	sc->cpu_curmv = newtarg * 25 + 700;
229 }
230 
231 static inline uint32_t
232 cpufreq_mhz_from_div(struct imx6_anatop_softc *sc, uint32_t corediv,
233     uint32_t plldiv)
234 {
235 
236 	return ((sc->refosc_mhz * (plldiv / 2)) / (corediv + 1));
237 }
238 
239 static inline void
240 cpufreq_mhz_to_div(struct imx6_anatop_softc *sc, uint32_t cpu_mhz,
241     uint32_t *corediv, uint32_t *plldiv)
242 {
243 
244 	*corediv = (cpu_mhz < 650) ? 1 : 0;
245 	*plldiv = ((*corediv + 1) * cpu_mhz) / (sc->refosc_mhz / 2);
246 }
247 
248 static inline uint32_t
249 cpufreq_actual_mhz(struct imx6_anatop_softc *sc, uint32_t cpu_mhz)
250 {
251 	uint32_t corediv, plldiv;
252 
253 	cpufreq_mhz_to_div(sc, cpu_mhz, &corediv, &plldiv);
254 	return (cpufreq_mhz_from_div(sc, corediv, plldiv));
255 }
256 
257 static struct oppt *
258 cpufreq_nearest_oppt(struct imx6_anatop_softc *sc, uint32_t cpu_newmhz)
259 {
260 	int d, diff, i, nearest;
261 
262 	if (cpu_newmhz > sc->cpu_maxmhz_hw && !sc->cpu_overclock_enable)
263 		cpu_newmhz = sc->cpu_maxmhz_hw;
264 
265 	diff = INT_MAX;
266 	nearest = 0;
267 	for (i = 0; i < nitems(imx6_oppt_table); ++i) {
268 		d = abs((int)cpu_newmhz - (int)imx6_oppt_table[i].mhz);
269 		if (diff > d) {
270 			diff = d;
271 			nearest = i;
272 		}
273 	}
274 	return (&imx6_oppt_table[nearest]);
275 }
276 
277 static void
278 cpufreq_set_clock(struct imx6_anatop_softc * sc, struct oppt *op)
279 {
280 	uint32_t corediv, plldiv, timeout, wrk32;
281 
282 	/* If increasing the frequency, we must first increase the voltage. */
283 	if (op->mhz > sc->cpu_curmhz) {
284 		vdd_set(sc, op->mv);
285 	}
286 
287 	/*
288 	 * I can't find a documented procedure for changing the ARM PLL divisor,
289 	 * but some trial and error came up with this:
290 	 *  - Set the bypass clock source to REF_CLK_24M (source #0).
291 	 *  - Set the PLL into bypass mode; cpu should now be running at 24mhz.
292 	 *  - Change the divisor.
293 	 *  - Wait for the LOCK bit to come on; it takes ~50 loop iterations.
294 	 *  - Turn off bypass mode; cpu should now be running at the new speed.
295 	 */
296 	cpufreq_mhz_to_div(sc, op->mhz, &corediv, &plldiv);
297 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR,
298 	    IMX6_ANALOG_CCM_PLL_ARM_CLK_SRC_MASK);
299 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_SET,
300 	    IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
301 
302 	wrk32 = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM);
303 	wrk32 &= ~IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
304 	wrk32 |= plldiv;
305 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM, wrk32);
306 
307 	timeout = 10000;
308 	while ((imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
309 	    IMX6_ANALOG_CCM_PLL_ARM_LOCK) == 0)
310 		if (--timeout == 0)
311 			panic("imx6_set_cpu_clock(): PLL never locked");
312 
313 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR,
314 	    IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
315 	imx_ccm_set_cacrr(corediv);
316 
317 	/* If lowering the frequency, it is now safe to lower the voltage. */
318 	if (op->mhz < sc->cpu_curmhz)
319 		vdd_set(sc, op->mv);
320 	sc->cpu_curmhz = op->mhz;
321 
322 	/* Tell the mpcore timer that its frequency has changed. */
323 	arm_tmr_change_frequency(
324 	    cpufreq_actual_mhz(sc, sc->cpu_curmhz) * 1000000 / 2);
325 }
326 
327 static int
328 cpufreq_sysctl_minmhz(SYSCTL_HANDLER_ARGS)
329 {
330 	struct imx6_anatop_softc *sc;
331 	struct oppt * op;
332 	uint32_t temp;
333 	int err;
334 
335 	sc = arg1;
336 
337 	temp = sc->cpu_minmhz;
338 	err = sysctl_handle_int(oidp, &temp, 0, req);
339 	if (err != 0 || req->newptr == NULL)
340 		return (err);
341 
342 	op = cpufreq_nearest_oppt(sc, temp);
343 	if (op->mhz > sc->cpu_maxmhz)
344 		return (ERANGE);
345 	else if (op->mhz == sc->cpu_minmhz)
346 		return (0);
347 
348 	/*
349 	 * Value changed, update softc.  If the new min is higher than the
350 	 * current speed, raise the current speed to match.
351 	 */
352 	sc->cpu_minmhz = op->mhz;
353 	if (sc->cpu_minmhz > sc->cpu_curmhz) {
354 		cpufreq_set_clock(sc, op);
355 	}
356 	return (err);
357 }
358 
359 static int
360 cpufreq_sysctl_maxmhz(SYSCTL_HANDLER_ARGS)
361 {
362 	struct imx6_anatop_softc *sc;
363 	struct oppt * op;
364 	uint32_t temp;
365 	int err;
366 
367 	sc = arg1;
368 
369 	temp = sc->cpu_maxmhz;
370 	err = sysctl_handle_int(oidp, &temp, 0, req);
371 	if (err != 0 || req->newptr == NULL)
372 		return (err);
373 
374 	op = cpufreq_nearest_oppt(sc, temp);
375 	if (op->mhz < sc->cpu_minmhz)
376 		return (ERANGE);
377 	else if (op->mhz == sc->cpu_maxmhz)
378 		return (0);
379 
380 	/*
381 	 *  Value changed, update softc and hardware.  The hardware update is
382 	 *  unconditional.  We always try to run at max speed, so any change of
383 	 *  the max means we need to change the current speed too, regardless of
384 	 *  whether it is higher or lower than the old max.
385 	 */
386 	sc->cpu_maxmhz = op->mhz;
387 	cpufreq_set_clock(sc, op);
388 
389 	return (err);
390 }
391 
392 static void
393 cpufreq_initialize(struct imx6_anatop_softc *sc)
394 {
395 	uint32_t cfg3speed;
396 	struct oppt * op;
397 
398 	SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
399 	    OID_AUTO, "cpu_mhz", CTLFLAG_RD, &sc->cpu_curmhz, 0,
400 	    "CPU frequency");
401 
402 	SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
403 	    OID_AUTO, "cpu_minmhz",
404 	    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_NEEDGIANT,
405 	    sc, 0, cpufreq_sysctl_minmhz, "IU", "Minimum CPU frequency");
406 
407 	SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
408 	    OID_AUTO, "cpu_maxmhz",
409 	    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_NEEDGIANT,
410 	    sc, 0, cpufreq_sysctl_maxmhz, "IU", "Maximum CPU frequency");
411 
412 	SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
413 	    OID_AUTO, "cpu_maxmhz_hw", CTLFLAG_RD, &sc->cpu_maxmhz_hw, 0,
414 	    "Maximum CPU frequency allowed by hardware");
415 
416 	SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
417 	    OID_AUTO, "cpu_overclock_enable", CTLFLAG_RWTUN,
418 	    &sc->cpu_overclock_enable, 0,
419 	    "Allow setting CPU frequency higher than cpu_maxmhz_hw");
420 
421 	/*
422 	 * XXX 24mhz shouldn't be hard-coded, should get this from imx6_ccm
423 	 * (even though in the real world it will always be 24mhz).  Oh wait a
424 	 * sec, I never wrote imx6_ccm.
425 	 */
426 	sc->refosc_mhz = 24;
427 
428 	/*
429 	 * Get the maximum speed this cpu can be set to.  The values in the
430 	 * OCOTP CFG3 register are not documented in the reference manual.
431 	 * The following info was in an archived email found via web search:
432 	 *   - 2b'11: 1200000000Hz;
433 	 *   - 2b'10: 996000000Hz;
434 	 *   - 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
435 	 *   - 2b'00: 792000000Hz;
436 	 * The default hardware max speed can be overridden by a tunable.
437 	 */
438 	cfg3speed = (fsl_ocotp_read_4(FSL_OCOTP_CFG3) &
439 	    FSL_OCOTP_CFG3_SPEED_MASK) >> FSL_OCOTP_CFG3_SPEED_SHIFT;
440 	sc->cpu_maxmhz_hw = imx6_ocotp_mhz_tab[cfg3speed];
441 	sc->cpu_maxmhz = sc->cpu_maxmhz_hw;
442 
443 	TUNABLE_INT_FETCH("hw.imx6.cpu_minmhz", &sc->cpu_minmhz);
444 	op = cpufreq_nearest_oppt(sc, sc->cpu_minmhz);
445 	sc->cpu_minmhz = op->mhz;
446 	sc->cpu_minmv = op->mv;
447 
448 	TUNABLE_INT_FETCH("hw.imx6.cpu_maxmhz", &sc->cpu_maxmhz);
449 	op = cpufreq_nearest_oppt(sc, sc->cpu_maxmhz);
450 	sc->cpu_maxmhz = op->mhz;
451 	sc->cpu_maxmv = op->mv;
452 
453 	/*
454 	 * Set the CPU to maximum speed.
455 	 *
456 	 * We won't have thermal throttling until interrupts are enabled, but we
457 	 * want to run at full speed through all the device init stuff.  This
458 	 * basically assumes that a single core can't overheat before interrupts
459 	 * are enabled; empirical testing shows that to be a safe assumption.
460 	 */
461 	cpufreq_set_clock(sc, op);
462 }
463 
464 static inline uint32_t
465 temp_from_count(struct imx6_anatop_softc *sc, uint32_t count)
466 {
467 
468 	return (((sc->temp_high_val - (count - sc->temp_high_cnt) *
469 	    (sc->temp_high_val - 250) /
470 	    (sc->temp_room_cnt - sc->temp_high_cnt))));
471 }
472 
473 static inline uint32_t
474 temp_to_count(struct imx6_anatop_softc *sc, uint32_t temp)
475 {
476 
477 	return ((sc->temp_room_cnt - sc->temp_high_cnt) *
478 	    (sc->temp_high_val - temp) / (sc->temp_high_val - 250) +
479 	    sc->temp_high_cnt);
480 }
481 
482 static void
483 temp_update_count(struct imx6_anatop_softc *sc)
484 {
485 	uint32_t val;
486 
487 	val = imx6_anatop_read_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0);
488 	if (!(val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_VALID))
489 		return;
490 	sc->temp_last_cnt =
491 	    (val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_MASK) >>
492 	    IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_SHIFT;
493 }
494 
495 static int
496 temp_sysctl_handler(SYSCTL_HANDLER_ARGS)
497 {
498 	struct imx6_anatop_softc *sc = arg1;
499 	uint32_t t;
500 
501 	temp_update_count(sc);
502 
503 	t = temp_from_count(sc, sc->temp_last_cnt) + TZ_ZEROC;
504 
505 	return (sysctl_handle_int(oidp, &t, 0, req));
506 }
507 
508 static int
509 temp_throttle_sysctl_handler(SYSCTL_HANDLER_ARGS)
510 {
511 	struct imx6_anatop_softc *sc = arg1;
512 	int err;
513 	uint32_t temp;
514 
515 	temp = sc->temp_throttle_val + TZ_ZEROC;
516 	err = sysctl_handle_int(oidp, &temp, 0, req);
517 	if (temp < TZ_ZEROC)
518 		return (ERANGE);
519 	temp -= TZ_ZEROC;
520 	if (err != 0 || req->newptr == NULL || temp == sc->temp_throttle_val)
521 		return (err);
522 
523 	/* Value changed, update counts in softc and hardware. */
524 	sc->temp_throttle_val = temp;
525 	sc->temp_throttle_trigger_cnt = temp_to_count(sc, sc->temp_throttle_val);
526 	sc->temp_throttle_reset_cnt = temp_to_count(sc, sc->temp_throttle_val - 100);
527 	imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_CLR,
528 	    IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_MASK);
529 	imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_SET,
530 	    (sc->temp_throttle_trigger_cnt <<
531 	     IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT));
532 	return (err);
533 }
534 
535 static void
536 tempmon_gofast(struct imx6_anatop_softc *sc)
537 {
538 
539 	if (sc->cpu_curmhz < sc->cpu_maxmhz) {
540 		cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_maxmhz));
541 	}
542 }
543 
544 static void
545 tempmon_goslow(struct imx6_anatop_softc *sc)
546 {
547 
548 	if (sc->cpu_curmhz > sc->cpu_minmhz) {
549 		cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_minmhz));
550 	}
551 }
552 
553 static int
554 tempmon_intr(void *arg)
555 {
556 	struct imx6_anatop_softc *sc = arg;
557 
558 	/*
559 	 * XXX Note that this code doesn't currently run (for some mysterious
560 	 * reason we just never get an interrupt), so the real monitoring is
561 	 * done by tempmon_throttle_check().
562 	 */
563 	tempmon_goslow(sc);
564 	/* XXX Schedule callout to speed back up eventually. */
565 	return (FILTER_HANDLED);
566 }
567 
568 static void
569 tempmon_throttle_check(void *arg)
570 {
571 	struct imx6_anatop_softc *sc = arg;
572 
573 	/* Lower counts are higher temperatures. */
574 	if (sc->temp_last_cnt < sc->temp_throttle_trigger_cnt)
575 		tempmon_goslow(sc);
576 	else if (sc->temp_last_cnt > (sc->temp_throttle_reset_cnt))
577 		tempmon_gofast(sc);
578 
579 	callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
580 		0, tempmon_throttle_check, sc, 0);
581 
582 }
583 
584 static void
585 initialize_tempmon(struct imx6_anatop_softc *sc)
586 {
587 	uint32_t cal;
588 
589 	/*
590 	 * Fetch calibration data: a sensor count at room temperature (25C),
591 	 * a sensor count at a high temperature, and that temperature
592 	 */
593 	cal = fsl_ocotp_read_4(FSL_OCOTP_ANA1);
594 	sc->temp_room_cnt = (cal & 0xFFF00000) >> 20;
595 	sc->temp_high_cnt = (cal & 0x000FFF00) >> 8;
596 	sc->temp_high_val = (cal & 0x000000FF) * 10;
597 
598 	/*
599 	 * Throttle to a lower cpu freq at 10C below the "hot" temperature, and
600 	 * reset back to max cpu freq at 5C below the trigger.
601 	 */
602 	sc->temp_throttle_val = sc->temp_high_val - 100;
603 	sc->temp_throttle_trigger_cnt =
604 	    temp_to_count(sc, sc->temp_throttle_val);
605 	sc->temp_throttle_reset_cnt =
606 	    temp_to_count(sc, sc->temp_throttle_val - 50);
607 
608 	/*
609 	 * Set the sensor to sample automatically at 16Hz (32.768KHz/0x800), set
610 	 * the throttle count, and begin making measurements.
611 	 */
612 	imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE1, 0x0800);
613 	imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0,
614 	    (sc->temp_throttle_trigger_cnt <<
615 	    IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT) |
616 	    IMX6_ANALOG_TEMPMON_TEMPSENSE0_MEASURE);
617 
618 	/*
619 	 * XXX Note that the alarm-interrupt feature isn't working yet, so
620 	 * we'll use a callout handler to check at 10Hz.  Make sure we have an
621 	 * initial temperature reading before starting up the callouts so we
622 	 * don't get a bogus reading of zero.
623 	 */
624 	while (sc->temp_last_cnt == 0)
625 		temp_update_count(sc);
626 	sc->temp_throttle_delay = 100 * SBT_1MS;
627 	callout_init(&sc->temp_throttle_callout, 0);
628 	callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
629 	    0, tempmon_throttle_check, sc, 0);
630 
631 	SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
632 	    OID_AUTO, "temperature",
633 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
634 	    temp_sysctl_handler, "IK", "Current die temperature");
635 	SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
636 	    OID_AUTO, "throttle_temperature",
637 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc,
638 	    0, temp_throttle_sysctl_handler, "IK",
639 	    "Throttle CPU when exceeding this temperature");
640 }
641 
642 static void
643 intr_setup(void *arg)
644 {
645 	int rid;
646 	struct imx6_anatop_softc *sc;
647 
648 	sc = arg;
649 	rid = 0;
650 	sc->res[IRQRES] = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &rid,
651 	    RF_ACTIVE);
652 	if (sc->res[IRQRES] != NULL) {
653 		bus_setup_intr(sc->dev, sc->res[IRQRES],
654 		    INTR_TYPE_MISC | INTR_MPSAFE, tempmon_intr, NULL, sc,
655 		    &sc->temp_intrhand);
656 	} else {
657 		device_printf(sc->dev, "Cannot allocate IRQ resource\n");
658 	}
659 	config_intrhook_disestablish(&sc->intr_setup_hook);
660 }
661 
662 static void
663 imx6_anatop_new_pass(device_t dev)
664 {
665 	struct imx6_anatop_softc *sc;
666 	const int cpu_init_pass = BUS_PASS_CPU + BUS_PASS_ORDER_MIDDLE;
667 
668 	/*
669 	 * We attach during BUS_PASS_BUS (because some day we will be a
670 	 * simplebus that has regulator devices as children), but some of our
671 	 * init work cannot be done until BUS_PASS_CPU (we rely on other devices
672 	 * that attach on the CPU pass).
673 	 */
674 	sc = device_get_softc(dev);
675 	if (!sc->cpu_init_done && bus_current_pass >= cpu_init_pass) {
676 		sc->cpu_init_done = true;
677 		cpufreq_initialize(sc);
678 		initialize_tempmon(sc);
679 		if (bootverbose) {
680 			device_printf(sc->dev, "CPU %uMHz @ %umV\n",
681 			    sc->cpu_curmhz, sc->cpu_curmv);
682 		}
683 	}
684 	bus_generic_new_pass(dev);
685 }
686 
687 static int
688 imx6_anatop_detach(device_t dev)
689 {
690 
691 	/* This device can never detach. */
692 	return (EBUSY);
693 }
694 
695 static int
696 imx6_anatop_attach(device_t dev)
697 {
698 	struct imx6_anatop_softc *sc;
699 	int err;
700 
701 	sc = device_get_softc(dev);
702 	sc->dev = dev;
703 
704 	/* Allocate bus_space resources. */
705 	if (bus_alloc_resources(dev, imx6_anatop_spec, sc->res)) {
706 		device_printf(dev, "Cannot allocate resources\n");
707 		err = ENXIO;
708 		goto out;
709 	}
710 
711 	sc->intr_setup_hook.ich_func = intr_setup;
712 	sc->intr_setup_hook.ich_arg = sc;
713 	config_intrhook_establish(&sc->intr_setup_hook);
714 
715 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
716 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
717 	    OID_AUTO, "cpu_voltage", CTLFLAG_RD,
718 	    &sc->cpu_curmv, 0, "Current CPU voltage in millivolts");
719 
720 	imx6_anatop_sc = sc;
721 
722 	/*
723 	 * Other code seen on the net sets this SELFBIASOFF flag around the same
724 	 * time the temperature sensor is set up, although it's unclear how the
725 	 * two are related (if at all).
726 	 */
727 	imx6_anatop_write_4(IMX6_ANALOG_PMU_MISC0_SET,
728 	    IMX6_ANALOG_PMU_MISC0_SELFBIASOFF);
729 
730 	/*
731 	 * Some day, when we're ready to deal with the actual anatop regulators
732 	 * that are described in fdt data as children of this "bus", this would
733 	 * be the place to invoke a simplebus helper routine to instantiate the
734 	 * children from the fdt data.
735 	 */
736 
737 	err = 0;
738 
739 out:
740 
741 	if (err != 0) {
742 		bus_release_resources(dev, imx6_anatop_spec, sc->res);
743 	}
744 
745 	return (err);
746 }
747 
748 uint32_t
749 pll4_configure_output(uint32_t mfi, uint32_t mfn, uint32_t mfd)
750 {
751 	int reg;
752 
753 	/*
754 	 * Audio PLL (PLL4).
755 	 * PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM)
756 	 */
757 
758 	reg = (IMX6_ANALOG_CCM_PLL_AUDIO_ENABLE);
759 	reg &= ~(IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_MASK << \
760 		IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT);
761 	reg |= (mfi << IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT);
762 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO, reg);
763 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_NUM, mfn);
764 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_DENOM, mfd);
765 
766 	return (0);
767 }
768 
769 static int
770 imx6_anatop_probe(device_t dev)
771 {
772 
773 	if (!ofw_bus_status_okay(dev))
774 		return (ENXIO);
775 
776 	if (ofw_bus_is_compatible(dev, "fsl,imx6q-anatop") == 0)
777 		return (ENXIO);
778 
779 	device_set_desc(dev, "Freescale i.MX6 Analog PLLs and Power");
780 
781 	return (BUS_PROBE_DEFAULT);
782 }
783 
784 uint32_t
785 imx6_get_cpu_clock(void)
786 {
787 	uint32_t corediv, plldiv;
788 
789 	corediv = imx_ccm_get_cacrr();
790 	plldiv = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
791 	    IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
792 	return (cpufreq_mhz_from_div(imx6_anatop_sc, corediv, plldiv));
793 }
794 
795 static device_method_t imx6_anatop_methods[] = {
796 	/* Device interface */
797 	DEVMETHOD(device_probe,  imx6_anatop_probe),
798 	DEVMETHOD(device_attach, imx6_anatop_attach),
799 	DEVMETHOD(device_detach, imx6_anatop_detach),
800 
801 	/* Bus interface */
802 	DEVMETHOD(bus_new_pass,  imx6_anatop_new_pass),
803 
804 	DEVMETHOD_END
805 };
806 
807 static driver_t imx6_anatop_driver = {
808 	"imx6_anatop",
809 	imx6_anatop_methods,
810 	sizeof(struct imx6_anatop_softc)
811 };
812 
813 EARLY_DRIVER_MODULE(imx6_anatop, simplebus, imx6_anatop_driver, 0, 0,
814     BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
815 EARLY_DRIVER_MODULE(imx6_anatop, ofwbus, imx6_anatop_driver, 0, 0,
816     BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
817