xref: /freebsd/sys/arm/freescale/imx/imx_gpt.c (revision 3494f7c0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012, 2013 The FreeBSD Foundation
5  *
6  * This software was developed by Oleksandr Rybalko under sponsorship
7  * from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1.	Redistributions of source code must retain the above copyright
13  *	notice, this list of conditions and the following disclaimer.
14  * 2.	Redistributions in binary form must reproduce the above copyright
15  *	notice, this list of conditions and the following disclaimer in the
16  *	documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/rman.h>
37 #include <sys/timeet.h>
38 #include <sys/timetc.h>
39 #include <machine/bus.h>
40 #include <machine/intr.h>
41 #include <machine/machdep.h> /* For arm_set_delay */
42 
43 #include <dev/ofw/openfirm.h>
44 #include <dev/ofw/ofw_bus.h>
45 #include <dev/ofw/ofw_bus_subr.h>
46 
47 #include <arm/freescale/imx/imx_ccmvar.h>
48 #include <arm/freescale/imx/imx_gptreg.h>
49 
50 #define	WRITE4(_sc, _r, _v)						\
51 	    bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v))
52 #define	READ4(_sc, _r)							\
53 	    bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r))
54 #define	SET4(_sc, _r, _m)						\
55 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m))
56 #define	CLEAR4(_sc, _r, _m)						\
57 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m))
58 
59 static u_int	imx_gpt_get_timecount(struct timecounter *);
60 static int	imx_gpt_timer_start(struct eventtimer *, sbintime_t,
61     sbintime_t);
62 static int	imx_gpt_timer_stop(struct eventtimer *);
63 
64 static void imx_gpt_do_delay(int, void *);
65 
66 static int imx_gpt_intr(void *);
67 static int imx_gpt_probe(device_t);
68 static int imx_gpt_attach(device_t);
69 
70 static struct timecounter imx_gpt_timecounter = {
71 	.tc_name           = "iMXGPT",
72 	.tc_get_timecount  = imx_gpt_get_timecount,
73 	.tc_counter_mask   = ~0u,
74 	.tc_frequency      = 0,
75 	.tc_quality        = 1000,
76 };
77 
78 struct imx_gpt_softc {
79 	device_t 		sc_dev;
80 	struct resource *	res[2];
81 	bus_space_tag_t 	sc_iot;
82 	bus_space_handle_t	sc_ioh;
83 	void *			sc_ih;			/* interrupt handler */
84 	uint32_t 		sc_period;
85 	uint32_t 		sc_clksrc;
86 	uint32_t 		clkfreq;
87 	uint32_t		ir_reg;
88 	struct eventtimer 	et;
89 };
90 
91 /* Try to divide down an available fast clock to this frequency. */
92 #define	TARGET_FREQUENCY	1000000000
93 
94 static struct resource_spec imx_gpt_spec[] = {
95 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
96 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
97 	{ -1, 0 }
98 };
99 
100 static struct ofw_compat_data compat_data[] = {
101 	{"fsl,imx6dl-gpt", 1},
102 	{"fsl,imx6q-gpt",  1},
103 	{"fsl,imx6ul-gpt", 1},
104 	{"fsl,imx53-gpt",  1},
105 	{"fsl,imx51-gpt",  1},
106 	{"fsl,imx31-gpt",  1},
107 	{"fsl,imx27-gpt",  1},
108 	{"fsl,imx25-gpt",  1},
109 	{NULL,             0}
110 };
111 
112 static int
113 imx_gpt_probe(device_t dev)
114 {
115 
116 	if (!ofw_bus_status_okay(dev))
117 		return (ENXIO);
118 
119 	/*
120 	 *  We only support a single unit, because the only thing this driver
121 	 *  does with the complex timer hardware is supply the system
122 	 *  timecounter and eventtimer.  There is nothing useful we can do with
123 	 *  the additional device instances that exist in some chips.
124 	 */
125 	if (device_get_unit(dev) > 0)
126 		return (ENXIO);
127 
128 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
129 		device_set_desc(dev, "Freescale i.MX GPT timer");
130 		return (BUS_PROBE_DEFAULT);
131 	}
132 
133 	return (ENXIO);
134 }
135 
136 static int
137 imx_gpt_attach(device_t dev)
138 {
139 	struct imx_gpt_softc *sc;
140 	int ctlreg, err;
141 	uint32_t basefreq, prescale, setup_ticks, t1, t2;
142 
143 	sc = device_get_softc(dev);
144 
145 	if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
146 		device_printf(dev, "could not allocate resources\n");
147 		return (ENXIO);
148 	}
149 
150 	sc->sc_dev = dev;
151 	sc->sc_iot = rman_get_bustag(sc->res[0]);
152 	sc->sc_ioh = rman_get_bushandle(sc->res[0]);
153 
154 	/*
155 	 * For now, just automatically choose a good clock for the hardware
156 	 * we're running on.  Eventually we could allow selection from the fdt;
157 	 * the code in this driver will cope with any clock frequency.
158 	 */
159 	sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
160 
161 	ctlreg = 0;
162 
163 	switch (sc->sc_clksrc) {
164 	case GPT_CR_CLKSRC_32K:
165 		basefreq = 32768;
166 		break;
167 	case GPT_CR_CLKSRC_IPG:
168 		basefreq = imx_ccm_ipg_hz();
169 		break;
170 	case GPT_CR_CLKSRC_IPG_HIGH:
171 		basefreq = imx_ccm_ipg_hz() * 2;
172 		break;
173 	case GPT_CR_CLKSRC_24M:
174 		ctlreg |= GPT_CR_24MEN;
175 		basefreq = 24000000;
176 		break;
177 	case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
178 	case GPT_CR_CLKSRC_EXT:	/* No way to get the freq of an ext clock. */
179 	default:
180 		device_printf(dev, "Unsupported clock source '%d'\n",
181 		    sc->sc_clksrc);
182 		return (EINVAL);
183 	}
184 
185 	/*
186 	 * The following setup sequence is from the I.MX6 reference manual,
187 	 * "Selecting the clock source".  First, disable the clock and
188 	 * interrupts.  This also clears input and output mode bits and in
189 	 * general completes several of the early steps in the procedure.
190 	 */
191 	WRITE4(sc, IMX_GPT_CR, 0);
192 	WRITE4(sc, IMX_GPT_IR, 0);
193 
194 	/* Choose the clock and the power-saving behaviors. */
195 	ctlreg |=
196 	    sc->sc_clksrc |	/* Use selected clock */
197 	    GPT_CR_FRR |	/* Just count (FreeRunner mode) */
198 	    GPT_CR_STOPEN |	/* Run in STOP mode */
199 	    GPT_CR_DOZEEN |	/* Run in DOZE mode */
200 	    GPT_CR_WAITEN |	/* Run in WAIT mode */
201 	    GPT_CR_DBGEN;	/* Run in DEBUG mode */
202 	WRITE4(sc, IMX_GPT_CR, ctlreg);
203 
204 	/*
205 	 * The datasheet says to do the software reset after choosing the clock
206 	 * source.  It says nothing about needing to wait for the reset to
207 	 * complete, but the register description does document the fact that
208 	 * the reset isn't complete until the SWR bit reads 0, so let's be safe.
209 	 * The reset also clears all registers except for a few of the bits in
210 	 * CR, but we'll rewrite all the CR bits when we start the counter.
211 	 */
212 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
213 	while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
214 		continue;
215 
216 	/* Set a prescaler value that gets us near the target frequency. */
217 	if (basefreq < TARGET_FREQUENCY) {
218 		prescale = 0;
219 		sc->clkfreq = basefreq;
220 	} else {
221 		prescale = basefreq / TARGET_FREQUENCY;
222 		sc->clkfreq = basefreq / prescale;
223 		prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
224 	}
225 	WRITE4(sc, IMX_GPT_PR, prescale);
226 
227 	/* Clear the status register. */
228 	WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);
229 
230 	/* Start the counter. */
231 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);
232 
233 	if (bootverbose)
234 		device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
235 		    sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));
236 
237 	/* Setup the timer interrupt. */
238 	err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
239 	    NULL, sc, &sc->sc_ih);
240 	if (err != 0) {
241 		bus_release_resources(dev, imx_gpt_spec, sc->res);
242 		device_printf(dev, "Unable to setup the clock irq handler, "
243 		    "err = %d\n", err);
244 		return (ENXIO);
245 	}
246 
247 	/*
248 	 * Measure how many clock ticks it takes to setup a one-shot event (it's
249 	 * longer than you might think, due to wait states in accessing gpt
250 	 * registers).  Scale up the result by a factor of 1.5 to be safe,
251 	 * and use that to set the minimum eventtimer period we can schedule. In
252 	 * the real world, the value works out to about 750ns on imx5 hardware.
253 	 */
254 	t1 = READ4(sc, IMX_GPT_CNT);
255 	WRITE4(sc, IMX_GPT_OCR3, 0);
256 	t2 = READ4(sc, IMX_GPT_CNT);
257 	setup_ticks = ((t2 - t1 + 1) * 3) / 2;
258 
259 	/* Register as an eventtimer. */
260 	sc->et.et_name = "iMXGPT";
261 	sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
262 	sc->et.et_quality = 800;
263 	sc->et.et_frequency = sc->clkfreq;
264 	sc->et.et_min_period = ((uint64_t)setup_ticks << 32) / sc->clkfreq;
265 	sc->et.et_max_period = ((uint64_t)0xfffffffe  << 32) / sc->clkfreq;
266 	sc->et.et_start = imx_gpt_timer_start;
267 	sc->et.et_stop = imx_gpt_timer_stop;
268 	sc->et.et_priv = sc;
269 	et_register(&sc->et);
270 
271 	/* Register as a timecounter. */
272 	imx_gpt_timecounter.tc_frequency = sc->clkfreq;
273 	imx_gpt_timecounter.tc_priv = sc;
274 	tc_init(&imx_gpt_timecounter);
275 
276 	/* If this is the first unit, store the softc for use in DELAY. */
277 	if (device_get_unit(dev) == 0) {
278 		arm_set_delay(imx_gpt_do_delay, sc);
279 	}
280 
281 	return (0);
282 }
283 
284 static int
285 imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
286 {
287 	struct imx_gpt_softc *sc;
288 	uint32_t ticks;
289 
290 	sc = (struct imx_gpt_softc *)et->et_priv;
291 
292 	if (period != 0) {
293 		sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32;
294 		/* Set expected value */
295 		WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period);
296 		/* Enable compare register 2 Interrupt */
297 		sc->ir_reg |= GPT_IR_OF2;
298 		WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
299 		return (0);
300 	} else if (first != 0) {
301 		/* Enable compare register 3 interrupt if not already on. */
302 		if ((sc->ir_reg & GPT_IR_OF3) == 0) {
303 			sc->ir_reg |= GPT_IR_OF3;
304 			WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
305 		}
306 		ticks = ((uint32_t)et->et_frequency * first) >> 32;
307 		/* Do not disturb, otherwise event will be lost */
308 		spinlock_enter();
309 		/* Set expected value */
310 		WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks);
311 		/* Now everybody can relax */
312 		spinlock_exit();
313 		return (0);
314 	}
315 
316 	return (EINVAL);
317 }
318 
319 static int
320 imx_gpt_timer_stop(struct eventtimer *et)
321 {
322 	struct imx_gpt_softc *sc;
323 
324 	sc = (struct imx_gpt_softc *)et->et_priv;
325 
326 	/* Disable interrupts and clear any pending status. */
327 	sc->ir_reg &= ~(GPT_IR_OF2 | GPT_IR_OF3);
328 	WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
329 	WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2 | GPT_IR_OF3);
330 	sc->sc_period = 0;
331 
332 	return (0);
333 }
334 
335 static int
336 imx_gpt_intr(void *arg)
337 {
338 	struct imx_gpt_softc *sc;
339 	uint32_t status;
340 
341 	sc = (struct imx_gpt_softc *)arg;
342 
343 	status = READ4(sc, IMX_GPT_SR);
344 
345 	/*
346 	* Clear interrupt status before invoking event callbacks.  The callback
347 	* often sets up a new one-shot timer event and if the interval is short
348 	* enough it can fire before we get out of this function.  If we cleared
349 	* at the bottom we'd miss the interrupt and hang until the clock wraps.
350 	*/
351 	WRITE4(sc, IMX_GPT_SR, status);
352 
353 	/* Handle one-shot timer events. */
354 	if (status & GPT_IR_OF3) {
355 		if (sc->et.et_active) {
356 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
357 		}
358 	}
359 
360 	/* Handle periodic timer events. */
361 	if (status & GPT_IR_OF2) {
362 		if (sc->et.et_active)
363 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
364 		if (sc->sc_period != 0)
365 			WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) +
366 			    sc->sc_period);
367 	}
368 
369 	return (FILTER_HANDLED);
370 }
371 
372 static u_int
373 imx_gpt_get_timecount(struct timecounter *tc)
374 {
375 	struct imx_gpt_softc *sc;
376 
377 	sc = tc->tc_priv;
378 	return (READ4(sc, IMX_GPT_CNT));
379 }
380 
381 static device_method_t imx_gpt_methods[] = {
382 	DEVMETHOD(device_probe,		imx_gpt_probe),
383 	DEVMETHOD(device_attach,	imx_gpt_attach),
384 
385 	DEVMETHOD_END
386 };
387 
388 static driver_t imx_gpt_driver = {
389 	"imx_gpt",
390 	imx_gpt_methods,
391 	sizeof(struct imx_gpt_softc),
392 };
393 
394 EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, 0, 0, BUS_PASS_TIMER);
395 
396 static void
397 imx_gpt_do_delay(int usec, void *arg)
398 {
399 	struct imx_gpt_softc *sc = arg;
400 	uint64_t curcnt, endcnt, startcnt, ticks;
401 
402 	/*
403 	 * Calculate the tick count with 64-bit values so that it works for any
404 	 * clock frequency.  Loop until the hardware count reaches start+ticks.
405 	 * If the 32-bit hardware count rolls over while we're looping, just
406 	 * manually do a carry into the high bits after each read; don't worry
407 	 * that doing this on each loop iteration is inefficient -- we're trying
408 	 * to waste time here.
409 	 */
410 	ticks = 1 + ((uint64_t)usec * sc->clkfreq) / 1000000;
411 	curcnt = startcnt = READ4(sc, IMX_GPT_CNT);
412 	endcnt = startcnt + ticks;
413 	while (curcnt < endcnt) {
414 		curcnt = READ4(sc, IMX_GPT_CNT);
415 		if (curcnt < startcnt)
416 			curcnt += 1ULL << 32;
417 	}
418 }
419