xref: /freebsd/sys/arm/freescale/imx/imx_gpt.c (revision 4e8d558c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012, 2013 The FreeBSD Foundation
5  *
6  * This software was developed by Oleksandr Rybalko under sponsorship
7  * from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1.	Redistributions of source code must retain the above copyright
13  *	notice, this list of conditions and the following disclaimer.
14  * 2.	Redistributions in binary form must reproduce the above copyright
15  *	notice, this list of conditions and the following disclaimer in the
16  *	documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/kernel.h>
38 #include <sys/module.h>
39 #include <sys/rman.h>
40 #include <sys/timeet.h>
41 #include <sys/timetc.h>
42 #include <machine/bus.h>
43 #include <machine/intr.h>
44 #include <machine/machdep.h> /* For arm_set_delay */
45 
46 #include <dev/ofw/openfirm.h>
47 #include <dev/ofw/ofw_bus.h>
48 #include <dev/ofw/ofw_bus_subr.h>
49 
50 #include <arm/freescale/imx/imx_ccmvar.h>
51 #include <arm/freescale/imx/imx_gptreg.h>
52 
53 #define	WRITE4(_sc, _r, _v)						\
54 	    bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v))
55 #define	READ4(_sc, _r)							\
56 	    bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r))
57 #define	SET4(_sc, _r, _m)						\
58 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m))
59 #define	CLEAR4(_sc, _r, _m)						\
60 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m))
61 
62 static u_int	imx_gpt_get_timecount(struct timecounter *);
63 static int	imx_gpt_timer_start(struct eventtimer *, sbintime_t,
64     sbintime_t);
65 static int	imx_gpt_timer_stop(struct eventtimer *);
66 
67 static void imx_gpt_do_delay(int, void *);
68 
69 static int imx_gpt_intr(void *);
70 static int imx_gpt_probe(device_t);
71 static int imx_gpt_attach(device_t);
72 
73 static struct timecounter imx_gpt_timecounter = {
74 	.tc_name           = "iMXGPT",
75 	.tc_get_timecount  = imx_gpt_get_timecount,
76 	.tc_counter_mask   = ~0u,
77 	.tc_frequency      = 0,
78 	.tc_quality        = 1000,
79 };
80 
81 struct imx_gpt_softc {
82 	device_t 		sc_dev;
83 	struct resource *	res[2];
84 	bus_space_tag_t 	sc_iot;
85 	bus_space_handle_t	sc_ioh;
86 	void *			sc_ih;			/* interrupt handler */
87 	uint32_t 		sc_period;
88 	uint32_t 		sc_clksrc;
89 	uint32_t 		clkfreq;
90 	uint32_t		ir_reg;
91 	struct eventtimer 	et;
92 };
93 
94 /* Try to divide down an available fast clock to this frequency. */
95 #define	TARGET_FREQUENCY	1000000000
96 
97 static struct resource_spec imx_gpt_spec[] = {
98 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
99 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
100 	{ -1, 0 }
101 };
102 
103 static struct ofw_compat_data compat_data[] = {
104 	{"fsl,imx6dl-gpt", 1},
105 	{"fsl,imx6q-gpt",  1},
106 	{"fsl,imx6ul-gpt", 1},
107 	{"fsl,imx53-gpt",  1},
108 	{"fsl,imx51-gpt",  1},
109 	{"fsl,imx31-gpt",  1},
110 	{"fsl,imx27-gpt",  1},
111 	{"fsl,imx25-gpt",  1},
112 	{NULL,             0}
113 };
114 
115 static int
116 imx_gpt_probe(device_t dev)
117 {
118 
119 	if (!ofw_bus_status_okay(dev))
120 		return (ENXIO);
121 
122 	/*
123 	 *  We only support a single unit, because the only thing this driver
124 	 *  does with the complex timer hardware is supply the system
125 	 *  timecounter and eventtimer.  There is nothing useful we can do with
126 	 *  the additional device instances that exist in some chips.
127 	 */
128 	if (device_get_unit(dev) > 0)
129 		return (ENXIO);
130 
131 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
132 		device_set_desc(dev, "Freescale i.MX GPT timer");
133 		return (BUS_PROBE_DEFAULT);
134 	}
135 
136 	return (ENXIO);
137 }
138 
139 static int
140 imx_gpt_attach(device_t dev)
141 {
142 	struct imx_gpt_softc *sc;
143 	int ctlreg, err;
144 	uint32_t basefreq, prescale, setup_ticks, t1, t2;
145 
146 	sc = device_get_softc(dev);
147 
148 	if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
149 		device_printf(dev, "could not allocate resources\n");
150 		return (ENXIO);
151 	}
152 
153 	sc->sc_dev = dev;
154 	sc->sc_iot = rman_get_bustag(sc->res[0]);
155 	sc->sc_ioh = rman_get_bushandle(sc->res[0]);
156 
157 	/*
158 	 * For now, just automatically choose a good clock for the hardware
159 	 * we're running on.  Eventually we could allow selection from the fdt;
160 	 * the code in this driver will cope with any clock frequency.
161 	 */
162 	sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
163 
164 	ctlreg = 0;
165 
166 	switch (sc->sc_clksrc) {
167 	case GPT_CR_CLKSRC_32K:
168 		basefreq = 32768;
169 		break;
170 	case GPT_CR_CLKSRC_IPG:
171 		basefreq = imx_ccm_ipg_hz();
172 		break;
173 	case GPT_CR_CLKSRC_IPG_HIGH:
174 		basefreq = imx_ccm_ipg_hz() * 2;
175 		break;
176 	case GPT_CR_CLKSRC_24M:
177 		ctlreg |= GPT_CR_24MEN;
178 		basefreq = 24000000;
179 		break;
180 	case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
181 	case GPT_CR_CLKSRC_EXT:	/* No way to get the freq of an ext clock. */
182 	default:
183 		device_printf(dev, "Unsupported clock source '%d'\n",
184 		    sc->sc_clksrc);
185 		return (EINVAL);
186 	}
187 
188 	/*
189 	 * The following setup sequence is from the I.MX6 reference manual,
190 	 * "Selecting the clock source".  First, disable the clock and
191 	 * interrupts.  This also clears input and output mode bits and in
192 	 * general completes several of the early steps in the procedure.
193 	 */
194 	WRITE4(sc, IMX_GPT_CR, 0);
195 	WRITE4(sc, IMX_GPT_IR, 0);
196 
197 	/* Choose the clock and the power-saving behaviors. */
198 	ctlreg |=
199 	    sc->sc_clksrc |	/* Use selected clock */
200 	    GPT_CR_FRR |	/* Just count (FreeRunner mode) */
201 	    GPT_CR_STOPEN |	/* Run in STOP mode */
202 	    GPT_CR_DOZEEN |	/* Run in DOZE mode */
203 	    GPT_CR_WAITEN |	/* Run in WAIT mode */
204 	    GPT_CR_DBGEN;	/* Run in DEBUG mode */
205 	WRITE4(sc, IMX_GPT_CR, ctlreg);
206 
207 	/*
208 	 * The datasheet says to do the software reset after choosing the clock
209 	 * source.  It says nothing about needing to wait for the reset to
210 	 * complete, but the register description does document the fact that
211 	 * the reset isn't complete until the SWR bit reads 0, so let's be safe.
212 	 * The reset also clears all registers except for a few of the bits in
213 	 * CR, but we'll rewrite all the CR bits when we start the counter.
214 	 */
215 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
216 	while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
217 		continue;
218 
219 	/* Set a prescaler value that gets us near the target frequency. */
220 	if (basefreq < TARGET_FREQUENCY) {
221 		prescale = 0;
222 		sc->clkfreq = basefreq;
223 	} else {
224 		prescale = basefreq / TARGET_FREQUENCY;
225 		sc->clkfreq = basefreq / prescale;
226 		prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
227 	}
228 	WRITE4(sc, IMX_GPT_PR, prescale);
229 
230 	/* Clear the status register. */
231 	WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);
232 
233 	/* Start the counter. */
234 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);
235 
236 	if (bootverbose)
237 		device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
238 		    sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));
239 
240 	/* Setup the timer interrupt. */
241 	err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
242 	    NULL, sc, &sc->sc_ih);
243 	if (err != 0) {
244 		bus_release_resources(dev, imx_gpt_spec, sc->res);
245 		device_printf(dev, "Unable to setup the clock irq handler, "
246 		    "err = %d\n", err);
247 		return (ENXIO);
248 	}
249 
250 	/*
251 	 * Measure how many clock ticks it takes to setup a one-shot event (it's
252 	 * longer than you might think, due to wait states in accessing gpt
253 	 * registers).  Scale up the result by a factor of 1.5 to be safe,
254 	 * and use that to set the minimum eventtimer period we can schedule. In
255 	 * the real world, the value works out to about 750ns on imx5 hardware.
256 	 */
257 	t1 = READ4(sc, IMX_GPT_CNT);
258 	WRITE4(sc, IMX_GPT_OCR3, 0);
259 	t2 = READ4(sc, IMX_GPT_CNT);
260 	setup_ticks = ((t2 - t1 + 1) * 3) / 2;
261 
262 	/* Register as an eventtimer. */
263 	sc->et.et_name = "iMXGPT";
264 	sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
265 	sc->et.et_quality = 800;
266 	sc->et.et_frequency = sc->clkfreq;
267 	sc->et.et_min_period = ((uint64_t)setup_ticks << 32) / sc->clkfreq;
268 	sc->et.et_max_period = ((uint64_t)0xfffffffe  << 32) / sc->clkfreq;
269 	sc->et.et_start = imx_gpt_timer_start;
270 	sc->et.et_stop = imx_gpt_timer_stop;
271 	sc->et.et_priv = sc;
272 	et_register(&sc->et);
273 
274 	/* Register as a timecounter. */
275 	imx_gpt_timecounter.tc_frequency = sc->clkfreq;
276 	imx_gpt_timecounter.tc_priv = sc;
277 	tc_init(&imx_gpt_timecounter);
278 
279 	/* If this is the first unit, store the softc for use in DELAY. */
280 	if (device_get_unit(dev) == 0) {
281 		arm_set_delay(imx_gpt_do_delay, sc);
282 	}
283 
284 	return (0);
285 }
286 
287 static int
288 imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
289 {
290 	struct imx_gpt_softc *sc;
291 	uint32_t ticks;
292 
293 	sc = (struct imx_gpt_softc *)et->et_priv;
294 
295 	if (period != 0) {
296 		sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32;
297 		/* Set expected value */
298 		WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period);
299 		/* Enable compare register 2 Interrupt */
300 		sc->ir_reg |= GPT_IR_OF2;
301 		WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
302 		return (0);
303 	} else if (first != 0) {
304 		/* Enable compare register 3 interrupt if not already on. */
305 		if ((sc->ir_reg & GPT_IR_OF3) == 0) {
306 			sc->ir_reg |= GPT_IR_OF3;
307 			WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
308 		}
309 		ticks = ((uint32_t)et->et_frequency * first) >> 32;
310 		/* Do not disturb, otherwise event will be lost */
311 		spinlock_enter();
312 		/* Set expected value */
313 		WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks);
314 		/* Now everybody can relax */
315 		spinlock_exit();
316 		return (0);
317 	}
318 
319 	return (EINVAL);
320 }
321 
322 static int
323 imx_gpt_timer_stop(struct eventtimer *et)
324 {
325 	struct imx_gpt_softc *sc;
326 
327 	sc = (struct imx_gpt_softc *)et->et_priv;
328 
329 	/* Disable interrupts and clear any pending status. */
330 	sc->ir_reg &= ~(GPT_IR_OF2 | GPT_IR_OF3);
331 	WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
332 	WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2 | GPT_IR_OF3);
333 	sc->sc_period = 0;
334 
335 	return (0);
336 }
337 
338 static int
339 imx_gpt_intr(void *arg)
340 {
341 	struct imx_gpt_softc *sc;
342 	uint32_t status;
343 
344 	sc = (struct imx_gpt_softc *)arg;
345 
346 	status = READ4(sc, IMX_GPT_SR);
347 
348 	/*
349 	* Clear interrupt status before invoking event callbacks.  The callback
350 	* often sets up a new one-shot timer event and if the interval is short
351 	* enough it can fire before we get out of this function.  If we cleared
352 	* at the bottom we'd miss the interrupt and hang until the clock wraps.
353 	*/
354 	WRITE4(sc, IMX_GPT_SR, status);
355 
356 	/* Handle one-shot timer events. */
357 	if (status & GPT_IR_OF3) {
358 		if (sc->et.et_active) {
359 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
360 		}
361 	}
362 
363 	/* Handle periodic timer events. */
364 	if (status & GPT_IR_OF2) {
365 		if (sc->et.et_active)
366 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
367 		if (sc->sc_period != 0)
368 			WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) +
369 			    sc->sc_period);
370 	}
371 
372 	return (FILTER_HANDLED);
373 }
374 
375 static u_int
376 imx_gpt_get_timecount(struct timecounter *tc)
377 {
378 	struct imx_gpt_softc *sc;
379 
380 	sc = tc->tc_priv;
381 	return (READ4(sc, IMX_GPT_CNT));
382 }
383 
384 static device_method_t imx_gpt_methods[] = {
385 	DEVMETHOD(device_probe,		imx_gpt_probe),
386 	DEVMETHOD(device_attach,	imx_gpt_attach),
387 
388 	DEVMETHOD_END
389 };
390 
391 static driver_t imx_gpt_driver = {
392 	"imx_gpt",
393 	imx_gpt_methods,
394 	sizeof(struct imx_gpt_softc),
395 };
396 
397 EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, 0, 0, BUS_PASS_TIMER);
398 
399 static void
400 imx_gpt_do_delay(int usec, void *arg)
401 {
402 	struct imx_gpt_softc *sc = arg;
403 	uint64_t curcnt, endcnt, startcnt, ticks;
404 
405 	/*
406 	 * Calculate the tick count with 64-bit values so that it works for any
407 	 * clock frequency.  Loop until the hardware count reaches start+ticks.
408 	 * If the 32-bit hardware count rolls over while we're looping, just
409 	 * manually do a carry into the high bits after each read; don't worry
410 	 * that doing this on each loop iteration is inefficient -- we're trying
411 	 * to waste time here.
412 	 */
413 	ticks = 1 + ((uint64_t)usec * sc->clkfreq) / 1000000;
414 	curcnt = startcnt = READ4(sc, IMX_GPT_CNT);
415 	endcnt = startcnt + ticks;
416 	while (curcnt < endcnt) {
417 		curcnt = READ4(sc, IMX_GPT_CNT);
418 		if (curcnt < startcnt)
419 			curcnt += 1ULL << 32;
420 	}
421 }
422