xref: /freebsd/sys/arm/freescale/vybrid/vf_sai.c (revision fdafd315)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2014 Ruslan Bukin <br@bsdpad.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Vybrid Family Synchronous Audio Interface (SAI)
31  * Chapter 51, Vybrid Reference Manual, Rev. 5, 07/2013
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/kernel.h>
38 #include <sys/module.h>
39 #include <sys/malloc.h>
40 #include <sys/rman.h>
41 #include <sys/timeet.h>
42 #include <sys/timetc.h>
43 #include <sys/watchdog.h>
44 
45 #include <dev/sound/pcm/sound.h>
46 #include <dev/sound/chip.h>
47 #include <mixer_if.h>
48 
49 #include <dev/ofw/openfirm.h>
50 #include <dev/ofw/ofw_bus.h>
51 #include <dev/ofw/ofw_bus_subr.h>
52 
53 #include <machine/bus.h>
54 #include <machine/cpu.h>
55 #include <machine/intr.h>
56 
57 #include <arm/freescale/vybrid/vf_common.h>
58 #include <arm/freescale/vybrid/vf_dmamux.h>
59 #include <arm/freescale/vybrid/vf_edma.h>
60 
61 #define	I2S_TCSR	0x00	/* SAI Transmit Control */
62 #define	I2S_TCR1	0x04	/* SAI Transmit Configuration 1 */
63 #define	I2S_TCR2	0x08	/* SAI Transmit Configuration 2 */
64 #define	I2S_TCR3	0x0C	/* SAI Transmit Configuration 3 */
65 #define	I2S_TCR4	0x10	/* SAI Transmit Configuration 4 */
66 #define	I2S_TCR5	0x14	/* SAI Transmit Configuration 5 */
67 #define	I2S_TDR0	0x20	/* SAI Transmit Data */
68 #define	I2S_TFR0	0x40	/* SAI Transmit FIFO */
69 #define	I2S_TMR		0x60	/* SAI Transmit Mask */
70 #define	I2S_RCSR	0x80	/* SAI Receive Control */
71 #define	I2S_RCR1	0x84	/* SAI Receive Configuration 1 */
72 #define	I2S_RCR2	0x88	/* SAI Receive Configuration 2 */
73 #define	I2S_RCR3	0x8C	/* SAI Receive Configuration 3 */
74 #define	I2S_RCR4	0x90	/* SAI Receive Configuration 4 */
75 #define	I2S_RCR5	0x94	/* SAI Receive Configuration 5 */
76 #define	I2S_RDR0	0xA0	/* SAI Receive Data */
77 #define	I2S_RFR0	0xC0	/* SAI Receive FIFO */
78 #define	I2S_RMR		0xE0	/* SAI Receive Mask */
79 
80 #define	TCR1_TFW_M	0x1f		/* Transmit FIFO Watermark Mask */
81 #define	TCR1_TFW_S	0		/* Transmit FIFO Watermark Shift */
82 #define	TCR2_MSEL_M	0x3		/* MCLK Select Mask*/
83 #define	TCR2_MSEL_S	26		/* MCLK Select Shift*/
84 #define	TCR2_BCP	(1 << 25)	/* Bit Clock Polarity */
85 #define	TCR2_BCD	(1 << 24)	/* Bit Clock Direction */
86 #define	TCR3_TCE	(1 << 16)	/* Transmit Channel Enable */
87 #define	TCR4_FRSZ_M	0x1f		/* Frame size Mask */
88 #define	TCR4_FRSZ_S	16		/* Frame size Shift */
89 #define	TCR4_SYWD_M	0x1f		/* Sync Width Mask */
90 #define	TCR4_SYWD_S	8		/* Sync Width Shift */
91 #define	TCR4_MF		(1 << 4)	/* MSB First */
92 #define	TCR4_FSE	(1 << 3)	/* Frame Sync Early */
93 #define	TCR4_FSP	(1 << 1)	/* Frame Sync Polarity Low */
94 #define	TCR4_FSD	(1 << 0)	/* Frame Sync Direction Master */
95 #define	TCR5_FBT_M	0x1f		/* First Bit Shifted */
96 #define	TCR5_FBT_S	8		/* First Bit Shifted */
97 #define	TCR5_W0W_M	0x1f		/* Word 0 Width */
98 #define	TCR5_W0W_S	16		/* Word 0 Width */
99 #define	TCR5_WNW_M	0x1f		/* Word N Width */
100 #define	TCR5_WNW_S	24		/* Word N Width */
101 #define	TCSR_TE		(1 << 31)	/* Transmitter Enable */
102 #define	TCSR_BCE	(1 << 28)	/* Bit Clock Enable */
103 #define	TCSR_FRDE	(1 << 0)	/* FIFO Request DMA Enable */
104 
105 #define	SAI_NCHANNELS	1
106 
107 static MALLOC_DEFINE(M_SAI, "sai", "sai audio");
108 
109 struct sai_rate {
110 	uint32_t speed;
111 	uint32_t div; /* Bit Clock Divide. Division value is (div + 1) * 2. */
112 	uint32_t mfi; /* PLL4 Multiplication Factor Integer */
113 	uint32_t mfn; /* PLL4 Multiplication Factor Numerator */
114 	uint32_t mfd; /* PLL4 Multiplication Factor Denominator */
115 };
116 
117 /*
118  * Bit clock divider formula
119  * (div + 1) * 2 = MCLK/(nch * LRCLK * bits/1000000),
120  * where:
121  *   MCLK - master clock
122  *   nch - number of channels
123  *   LRCLK - left right clock
124  * e.g. (div + 1) * 2 = 16.9344/(2 * 44100 * 24/1000000)
125  *
126  * Example for 96khz, 24bit, 18.432 Mhz mclk (192fs)
127  * { 96000, 1, 18, 40176000, 93000000 },
128  */
129 
130 static struct sai_rate rate_map[] = {
131 	{ 44100, 7, 33, 80798400, 93000000 }, /* 33.8688 Mhz */
132 	{ 96000, 3, 36, 80352000, 93000000 }, /* 36.864 Mhz */
133 	{ 192000, 1, 36, 80352000, 93000000 }, /* 36.864 Mhz */
134 	{ 0, 0 },
135 };
136 
137 struct sc_info {
138 	struct resource		*res[2];
139 	bus_space_tag_t		bst;
140 	bus_space_handle_t	bsh;
141 	device_t		dev;
142 	struct mtx		*lock;
143 	uint32_t		speed;
144 	uint32_t		period;
145 	void			*ih;
146 	int			pos;
147 	int			dma_size;
148 	bus_dma_tag_t		dma_tag;
149 	bus_dmamap_t		dma_map;
150 	bus_addr_t		buf_base_phys;
151 	uint32_t		*buf_base;
152 	struct tcd_conf		*tcd;
153 	struct sai_rate		*sr;
154 	struct edma_softc	*edma_sc;
155 	int			edma_chnum;
156 };
157 
158 /* Channel registers */
159 struct sc_chinfo {
160 	struct snd_dbuf		*buffer;
161 	struct pcm_channel	*channel;
162 	struct sc_pcminfo	*parent;
163 
164 	/* Channel information */
165 	uint32_t	dir;
166 	uint32_t	format;
167 
168 	/* Flags */
169 	uint32_t	run;
170 };
171 
172 /* PCM device private data */
173 struct sc_pcminfo {
174 	device_t		dev;
175 	uint32_t		(*ih) (struct sc_pcminfo *scp);
176 	uint32_t		chnum;
177 	struct sc_chinfo	chan[SAI_NCHANNELS];
178 	struct sc_info		*sc;
179 };
180 
181 static struct resource_spec sai_spec[] = {
182 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
183 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
184 	{ -1, 0 }
185 };
186 
187 static int setup_dma(struct sc_pcminfo *scp);
188 static void setup_sai(struct sc_info *);
189 static void sai_configure_clock(struct sc_info *);
190 
191 /*
192  * Mixer interface.
193  */
194 
195 static int
196 saimixer_init(struct snd_mixer *m)
197 {
198 	struct sc_pcminfo *scp;
199 	struct sc_info *sc;
200 	int mask;
201 
202 	scp = mix_getdevinfo(m);
203 	sc = scp->sc;
204 
205 	if (sc == NULL)
206 		return -1;
207 
208 	mask = SOUND_MASK_PCM;
209 
210 	snd_mtxlock(sc->lock);
211 	pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
212 	mix_setdevs(m, mask);
213 	snd_mtxunlock(sc->lock);
214 
215 	return (0);
216 }
217 
218 static int
219 saimixer_set(struct snd_mixer *m, unsigned dev,
220     unsigned left, unsigned right)
221 {
222 #if 0
223 	struct sc_pcminfo *scp;
224 
225 	scp = mix_getdevinfo(m);
226 
227 	device_printf(scp->dev, "saimixer_set() %d %d\n",
228 	    left, right);
229 #endif
230 
231 	return (0);
232 }
233 
234 static kobj_method_t saimixer_methods[] = {
235 	KOBJMETHOD(mixer_init,      saimixer_init),
236 	KOBJMETHOD(mixer_set,       saimixer_set),
237 	KOBJMETHOD_END
238 };
239 MIXER_DECLARE(saimixer);
240 
241 /*
242  * Channel interface.
243  */
244 
245 static void *
246 saichan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
247     struct pcm_channel *c, int dir)
248 {
249 	struct sc_pcminfo *scp;
250 	struct sc_chinfo *ch;
251 	struct sc_info *sc;
252 
253 	scp = (struct sc_pcminfo *)devinfo;
254 	sc = scp->sc;
255 
256 	snd_mtxlock(sc->lock);
257 	ch = &scp->chan[0];
258 	ch->dir = dir;
259 	ch->run = 0;
260 	ch->buffer = b;
261 	ch->channel = c;
262 	ch->parent = scp;
263 	snd_mtxunlock(sc->lock);
264 
265 	if (sndbuf_setup(ch->buffer, sc->buf_base, sc->dma_size) != 0) {
266 		device_printf(scp->dev, "Can't setup sndbuf.\n");
267 		return NULL;
268 	}
269 
270 	return ch;
271 }
272 
273 static int
274 saichan_free(kobj_t obj, void *data)
275 {
276 	struct sc_chinfo *ch = data;
277 	struct sc_pcminfo *scp = ch->parent;
278 	struct sc_info *sc = scp->sc;
279 
280 #if 0
281 	device_printf(scp->dev, "saichan_free()\n");
282 #endif
283 
284 	snd_mtxlock(sc->lock);
285 	/* TODO: free channel buffer */
286 	snd_mtxunlock(sc->lock);
287 
288 	return (0);
289 }
290 
291 static int
292 saichan_setformat(kobj_t obj, void *data, uint32_t format)
293 {
294 	struct sc_chinfo *ch = data;
295 
296 	ch->format = format;
297 
298 	return (0);
299 }
300 
301 static uint32_t
302 saichan_setspeed(kobj_t obj, void *data, uint32_t speed)
303 {
304 	struct sc_pcminfo *scp;
305 	struct sc_chinfo *ch;
306 	struct sai_rate *sr;
307 	struct sc_info *sc;
308 	int threshold;
309 	int i;
310 
311 	ch = data;
312 	scp = ch->parent;
313 	sc = scp->sc;
314 
315 	sr = NULL;
316 
317 	/* First look for equal frequency. */
318 	for (i = 0; rate_map[i].speed != 0; i++) {
319 		if (rate_map[i].speed == speed)
320 			sr = &rate_map[i];
321 	}
322 
323 	/* If no match, just find nearest. */
324 	if (sr == NULL) {
325 		for (i = 0; rate_map[i].speed != 0; i++) {
326 			sr = &rate_map[i];
327 			threshold = sr->speed + ((rate_map[i + 1].speed != 0) ?
328 			    ((rate_map[i + 1].speed - sr->speed) >> 1) : 0);
329 			if (speed < threshold)
330 				break;
331 		}
332 	}
333 
334 	sc->sr = sr;
335 
336 	sai_configure_clock(sc);
337 
338 	return (sr->speed);
339 }
340 
341 static void
342 sai_configure_clock(struct sc_info *sc)
343 {
344 	struct sai_rate *sr;
345 	int reg;
346 
347 	sr = sc->sr;
348 
349 	/*
350 	 * Manual says that TCR/RCR registers must not be
351 	 * altered when TCSR[TE] is set.
352 	 * We ignore it since we have problem sometimes
353 	 * after re-enabling transmitter (DMA goes stall).
354 	 */
355 
356 	reg = READ4(sc, I2S_TCR2);
357 	reg &= ~(0xff << 0);
358 	reg |= (sr->div << 0);
359 	WRITE4(sc, I2S_TCR2, reg);
360 
361 	pll4_configure_output(sr->mfi, sr->mfn, sr->mfd);
362 }
363 
364 static uint32_t
365 saichan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
366 {
367 	struct sc_chinfo *ch = data;
368 	struct sc_pcminfo *scp = ch->parent;
369 	struct sc_info *sc = scp->sc;
370 
371 	sndbuf_resize(ch->buffer, sc->dma_size / blocksize, blocksize);
372 
373 	sc->period = sndbuf_getblksz(ch->buffer);
374 	return (sc->period);
375 }
376 
377 uint32_t sai_dma_intr(void *arg, int chn);
378 uint32_t
379 sai_dma_intr(void *arg, int chn)
380 {
381 	struct sc_pcminfo *scp;
382 	struct sc_chinfo *ch;
383 	struct sc_info *sc;
384 	struct tcd_conf *tcd;
385 
386 	scp = arg;
387 	ch = &scp->chan[0];
388 
389 	sc = scp->sc;
390 	tcd = sc->tcd;
391 
392 	sc->pos += (tcd->nbytes * tcd->nmajor);
393 	if (sc->pos >= sc->dma_size)
394 		sc->pos -= sc->dma_size;
395 
396 	if (ch->run)
397 		chn_intr(ch->channel);
398 
399 	return (0);
400 }
401 
402 static int
403 find_edma_controller(struct sc_info *sc)
404 {
405 	struct edma_softc *edma_sc;
406 	phandle_t node, edma_node;
407 	int edma_src_transmit;
408 	int edma_mux_group;
409 	int edma_device_id;
410 	device_t edma_dev;
411 	int dts_value;
412 	int len;
413 	int i;
414 
415 	if ((node = ofw_bus_get_node(sc->dev)) == -1)
416 		return (ENXIO);
417 
418 	if ((len = OF_getproplen(node, "edma-controller")) <= 0)
419 		return (ENXIO);
420 	if ((len = OF_getproplen(node, "edma-src-transmit")) <= 0)
421 		return (ENXIO);
422 	if ((len = OF_getproplen(node, "edma-mux-group")) <= 0)
423 		return (ENXIO);
424 
425 	OF_getencprop(node, "edma-src-transmit", &dts_value, len);
426 	edma_src_transmit = dts_value;
427 	OF_getencprop(node, "edma-mux-group", &dts_value, len);
428 	edma_mux_group = dts_value;
429 	OF_getencprop(node, "edma-controller", &dts_value, len);
430 	edma_node = OF_node_from_xref(dts_value);
431 
432 	if ((len = OF_getproplen(edma_node, "device-id")) <= 0) {
433 		return (ENXIO);
434 	}
435 
436 	OF_getencprop(edma_node, "device-id", &dts_value, len);
437 	edma_device_id = dts_value;
438 
439 	edma_sc = NULL;
440 
441 	for (i = 0; i < EDMA_NUM_DEVICES; i++) {
442 		edma_dev = devclass_get_device(devclass_find("edma"), i);
443 		if (edma_dev) {
444 			edma_sc = device_get_softc(edma_dev);
445 			if (edma_sc->device_id == edma_device_id) {
446 				/* found */
447 				break;
448 			}
449 
450 			edma_sc = NULL;
451 		}
452 	}
453 
454 	if (edma_sc == NULL) {
455 		device_printf(sc->dev, "no eDMA. can't operate\n");
456 		return (ENXIO);
457 	}
458 
459 	sc->edma_sc = edma_sc;
460 
461 	sc->edma_chnum = edma_sc->channel_configure(edma_sc, edma_mux_group,
462 	    edma_src_transmit);
463 	if (sc->edma_chnum < 0) {
464 		/* cant setup eDMA */
465 		return (ENXIO);
466 	}
467 
468 	return (0);
469 };
470 
471 static int
472 setup_dma(struct sc_pcminfo *scp)
473 {
474 	struct tcd_conf *tcd;
475 	struct sc_info *sc;
476 
477 	sc = scp->sc;
478 
479 	tcd = malloc(sizeof(struct tcd_conf), M_DEVBUF, M_WAITOK | M_ZERO);
480 	tcd->channel = sc->edma_chnum;
481 	tcd->ih = sai_dma_intr;
482 	tcd->ih_user = scp;
483 	tcd->saddr = sc->buf_base_phys;
484 	tcd->daddr = rman_get_start(sc->res[0]) + I2S_TDR0;
485 
486 	/*
487 	 * Bytes to transfer per each minor loop.
488 	 * Hardware FIFO buffer size is 32x32bits.
489 	 */
490 	tcd->nbytes = 64;
491 
492 	tcd->nmajor = 512;
493 	tcd->smod = 17;	/* dma_size range */
494 	tcd->dmod = 0;
495 	tcd->esg = 0;
496 	tcd->soff = 0x4;
497 	tcd->doff = 0;
498 	tcd->ssize = 0x2;
499 	tcd->dsize = 0x2;
500 	tcd->slast = 0;
501 	tcd->dlast_sga = 0;
502 
503 	sc->tcd = tcd;
504 
505 	sc->edma_sc->dma_setup(sc->edma_sc, sc->tcd);
506 
507 	return (0);
508 }
509 
510 static int
511 saichan_trigger(kobj_t obj, void *data, int go)
512 {
513 	struct sc_chinfo *ch = data;
514 	struct sc_pcminfo *scp = ch->parent;
515 	struct sc_info *sc = scp->sc;
516 
517 	snd_mtxlock(sc->lock);
518 
519 	switch (go) {
520 	case PCMTRIG_START:
521 #if 0
522 		device_printf(scp->dev, "trigger start\n");
523 #endif
524 		ch->run = 1;
525 		break;
526 
527 	case PCMTRIG_STOP:
528 	case PCMTRIG_ABORT:
529 #if 0
530 		device_printf(scp->dev, "trigger stop or abort\n");
531 #endif
532 		ch->run = 0;
533 		break;
534 	}
535 
536 	snd_mtxunlock(sc->lock);
537 
538 	return (0);
539 }
540 
541 static uint32_t
542 saichan_getptr(kobj_t obj, void *data)
543 {
544 	struct sc_pcminfo *scp;
545 	struct sc_chinfo *ch;
546 	struct sc_info *sc;
547 
548 	ch = data;
549 	scp = ch->parent;
550 	sc = scp->sc;
551 
552 	return (sc->pos);
553 }
554 
555 static uint32_t sai_pfmt[] = {
556 	/*
557 	 * eDMA doesn't allow 24-bit coping,
558 	 * so we use 32.
559 	 */
560 	SND_FORMAT(AFMT_S32_LE, 2, 0),
561 	0
562 };
563 
564 static struct pcmchan_caps sai_pcaps = {44100, 192000, sai_pfmt, 0};
565 
566 static struct pcmchan_caps *
567 saichan_getcaps(kobj_t obj, void *data)
568 {
569 
570 	return (&sai_pcaps);
571 }
572 
573 static kobj_method_t saichan_methods[] = {
574 	KOBJMETHOD(channel_init,         saichan_init),
575 	KOBJMETHOD(channel_free,         saichan_free),
576 	KOBJMETHOD(channel_setformat,    saichan_setformat),
577 	KOBJMETHOD(channel_setspeed,     saichan_setspeed),
578 	KOBJMETHOD(channel_setblocksize, saichan_setblocksize),
579 	KOBJMETHOD(channel_trigger,      saichan_trigger),
580 	KOBJMETHOD(channel_getptr,       saichan_getptr),
581 	KOBJMETHOD(channel_getcaps,      saichan_getcaps),
582 	KOBJMETHOD_END
583 };
584 CHANNEL_DECLARE(saichan);
585 
586 static int
587 sai_probe(device_t dev)
588 {
589 
590 	if (!ofw_bus_status_okay(dev))
591 		return (ENXIO);
592 
593 	if (!ofw_bus_is_compatible(dev, "fsl,mvf600-sai"))
594 		return (ENXIO);
595 
596 	device_set_desc(dev, "Vybrid Family Synchronous Audio Interface");
597 	return (BUS_PROBE_DEFAULT);
598 }
599 
600 static void
601 sai_intr(void *arg)
602 {
603 	struct sc_pcminfo *scp;
604 	struct sc_info *sc;
605 
606 	scp = arg;
607 	sc = scp->sc;
608 
609 	device_printf(sc->dev, "Error I2S_TCSR == 0x%08x\n",
610 	    READ4(sc, I2S_TCSR));
611 }
612 
613 static void
614 setup_sai(struct sc_info *sc)
615 {
616 	int reg;
617 
618 	/*
619 	 * TCR/RCR registers must not be altered when TCSR[TE] is set.
620 	 */
621 
622 	reg = READ4(sc, I2S_TCSR);
623 	reg &= ~(TCSR_BCE | TCSR_TE | TCSR_FRDE);
624 	WRITE4(sc, I2S_TCSR, reg);
625 
626 	reg = READ4(sc, I2S_TCR3);
627 	reg &= ~(TCR3_TCE);
628 	WRITE4(sc, I2S_TCR3, reg);
629 
630 	reg = (64 << TCR1_TFW_S);
631 	WRITE4(sc, I2S_TCR1, reg);
632 
633 	reg = READ4(sc, I2S_TCR2);
634 	reg &= ~(TCR2_MSEL_M << TCR2_MSEL_S);
635 	reg |= (1 << TCR2_MSEL_S);
636 	reg |= (TCR2_BCP | TCR2_BCD);
637 	WRITE4(sc, I2S_TCR2, reg);
638 
639 	sai_configure_clock(sc);
640 
641 	reg = READ4(sc, I2S_TCR3);
642 	reg |= (TCR3_TCE);
643 	WRITE4(sc, I2S_TCR3, reg);
644 
645 	/* Configure to 32-bit I2S mode */
646 	reg = READ4(sc, I2S_TCR4);
647 	reg &= ~(TCR4_FRSZ_M << TCR4_FRSZ_S);
648 	reg |= (1 << TCR4_FRSZ_S); /* 2 words per frame */
649 	reg &= ~(TCR4_SYWD_M << TCR4_SYWD_S);
650 	reg |= (23 << TCR4_SYWD_S);
651 	reg |= (TCR4_MF | TCR4_FSE | TCR4_FSP | TCR4_FSD);
652 	WRITE4(sc, I2S_TCR4, reg);
653 
654 	reg = READ4(sc, I2S_TCR5);
655 	reg &= ~(TCR5_W0W_M << TCR5_W0W_S);
656 	reg |= (23 << TCR5_W0W_S);
657 	reg &= ~(TCR5_WNW_M << TCR5_WNW_S);
658 	reg |= (23 << TCR5_WNW_S);
659 	reg &= ~(TCR5_FBT_M << TCR5_FBT_S);
660 	reg |= (31 << TCR5_FBT_S);
661 	WRITE4(sc, I2S_TCR5, reg);
662 
663 	/* Enable transmitter */
664 	reg = READ4(sc, I2S_TCSR);
665 	reg |= (TCSR_BCE | TCSR_TE | TCSR_FRDE);
666 	reg |= (1 << 10); /* FEIE */
667 	WRITE4(sc, I2S_TCSR, reg);
668 }
669 
670 static void
671 sai_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
672 {
673 	bus_addr_t *addr;
674 
675 	if (err)
676 		return;
677 
678 	addr = (bus_addr_t*)arg;
679 	*addr = segs[0].ds_addr;
680 }
681 
682 static int
683 sai_attach(device_t dev)
684 {
685 	char status[SND_STATUSLEN];
686 	struct sc_pcminfo *scp;
687 	struct sc_info *sc;
688 	int err;
689 
690 	sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
691 	sc->dev = dev;
692 	sc->sr = &rate_map[0];
693 	sc->pos = 0;
694 
695 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "sai softc");
696 	if (sc->lock == NULL) {
697 		device_printf(dev, "Cant create mtx\n");
698 		return (ENXIO);
699 	}
700 
701 	if (bus_alloc_resources(dev, sai_spec, sc->res)) {
702 		device_printf(dev, "could not allocate resources\n");
703 		return (ENXIO);
704 	}
705 
706 	/* Memory interface */
707 	sc->bst = rman_get_bustag(sc->res[0]);
708 	sc->bsh = rman_get_bushandle(sc->res[0]);
709 
710 	/* eDMA */
711 	if (find_edma_controller(sc)) {
712 		device_printf(dev, "could not find active eDMA\n");
713 		return (ENXIO);
714 	}
715 
716 	/* Setup PCM */
717 	scp = malloc(sizeof(struct sc_pcminfo), M_DEVBUF, M_NOWAIT | M_ZERO);
718 	scp->sc = sc;
719 	scp->dev = dev;
720 
721 	/* DMA */
722 	sc->dma_size = 131072;
723 
724 	/*
725 	 * Must use dma_size boundary as modulo feature required.
726 	 * Modulo feature allows setup circular buffer.
727 	 */
728 
729 	err = bus_dma_tag_create(
730 	    bus_get_dma_tag(sc->dev),
731 	    4, sc->dma_size,		/* alignment, boundary */
732 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
733 	    BUS_SPACE_MAXADDR,		/* highaddr */
734 	    NULL, NULL,			/* filter, filterarg */
735 	    sc->dma_size, 1,		/* maxsize, nsegments */
736 	    sc->dma_size, 0,		/* maxsegsize, flags */
737 	    NULL, NULL,			/* lockfunc, lockarg */
738 	    &sc->dma_tag);
739 
740 	err = bus_dmamem_alloc(sc->dma_tag, (void **)&sc->buf_base,
741 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->dma_map);
742 	if (err) {
743 		device_printf(dev, "cannot allocate framebuffer\n");
744 		return (ENXIO);
745 	}
746 
747 	err = bus_dmamap_load(sc->dma_tag, sc->dma_map, sc->buf_base,
748 	    sc->dma_size, sai_dmamap_cb, &sc->buf_base_phys, BUS_DMA_NOWAIT);
749 	if (err) {
750 		device_printf(dev, "cannot load DMA map\n");
751 		return (ENXIO);
752 	}
753 
754 	bzero(sc->buf_base, sc->dma_size);
755 
756 	/* Setup interrupt handler */
757 	err = bus_setup_intr(dev, sc->res[1], INTR_MPSAFE | INTR_TYPE_AV,
758 	    NULL, sai_intr, scp, &sc->ih);
759 	if (err) {
760 		device_printf(dev, "Unable to alloc interrupt resource.\n");
761 		return (ENXIO);
762 	}
763 
764 	pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE);
765 
766 	err = pcm_register(dev, scp, 1, 0);
767 	if (err) {
768 		device_printf(dev, "Can't register pcm.\n");
769 		return (ENXIO);
770 	}
771 
772 	scp->chnum = 0;
773 	pcm_addchan(dev, PCMDIR_PLAY, &saichan_class, scp);
774 	scp->chnum++;
775 
776 	snprintf(status, SND_STATUSLEN, "at simplebus");
777 	pcm_setstatus(dev, status);
778 
779 	mixer_init(dev, &saimixer_class, scp);
780 
781 	setup_dma(scp);
782 	setup_sai(sc);
783 
784 	return (0);
785 }
786 
787 static device_method_t sai_pcm_methods[] = {
788 	DEVMETHOD(device_probe,		sai_probe),
789 	DEVMETHOD(device_attach,	sai_attach),
790 	{ 0, 0 }
791 };
792 
793 static driver_t sai_pcm_driver = {
794 	"pcm",
795 	sai_pcm_methods,
796 	PCM_SOFTC_SIZE,
797 };
798 
799 DRIVER_MODULE(sai, simplebus, sai_pcm_driver, 0, 0);
800 MODULE_DEPEND(sai, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
801 MODULE_VERSION(sai, 1);
802