xref: /freebsd/sys/arm64/arm64/busdma_bounce.c (revision 10ff414c)
1 /*-
2  * Copyright (c) 1997, 1998 Justin T. Gibbs.
3  * Copyright (c) 2015-2016 The FreeBSD Foundation
4  * All rights reserved.
5  *
6  * Portions of this software were developed by Andrew Turner
7  * under sponsorship of the FreeBSD Foundation.
8  *
9  * Portions of this software were developed by Semihalf
10  * under sponsorship of the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions, and the following disclaimer,
17  *    without modification, immediately at the beginning of the file.
18  * 2. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
25  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/bus.h>
41 #include <sys/interrupt.h>
42 #include <sys/kernel.h>
43 #include <sys/ktr.h>
44 #include <sys/lock.h>
45 #include <sys/proc.h>
46 #include <sys/memdesc.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_map.h>
56 
57 #include <machine/atomic.h>
58 #include <machine/bus.h>
59 #include <machine/md_var.h>
60 #include <arm64/include/bus_dma_impl.h>
61 
62 #define MAX_BPAGES 4096
63 
64 enum {
65 	BF_COULD_BOUNCE		= 0x01,
66 	BF_MIN_ALLOC_COMP	= 0x02,
67 	BF_KMEM_ALLOC		= 0x04,
68 	BF_COHERENT		= 0x10,
69 };
70 
71 struct bounce_zone;
72 
73 struct bus_dma_tag {
74 	struct bus_dma_tag_common common;
75 	size_t			alloc_size;
76 	size_t			alloc_alignment;
77 	int			map_count;
78 	int			bounce_flags;
79 	bus_dma_segment_t	*segments;
80 	struct bounce_zone	*bounce_zone;
81 };
82 
83 struct bounce_page {
84 	vm_offset_t	vaddr;		/* kva of bounce buffer */
85 	bus_addr_t	busaddr;	/* Physical address */
86 	vm_offset_t	datavaddr;	/* kva of client data */
87 	vm_page_t	datapage;	/* physical page of client data */
88 	vm_offset_t	dataoffs;	/* page offset of client data */
89 	bus_size_t	datacount;	/* client data count */
90 	STAILQ_ENTRY(bounce_page) links;
91 };
92 
93 int busdma_swi_pending;
94 
95 struct bounce_zone {
96 	STAILQ_ENTRY(bounce_zone) links;
97 	STAILQ_HEAD(bp_list, bounce_page) bounce_page_list;
98 	int		total_bpages;
99 	int		free_bpages;
100 	int		reserved_bpages;
101 	int		active_bpages;
102 	int		total_bounced;
103 	int		total_deferred;
104 	int		map_count;
105 	bus_size_t	alignment;
106 	bus_addr_t	lowaddr;
107 	char		zoneid[8];
108 	char		lowaddrid[20];
109 	struct sysctl_ctx_list sysctl_tree;
110 	struct sysctl_oid *sysctl_tree_top;
111 };
112 
113 static struct mtx bounce_lock;
114 static int total_bpages;
115 static int busdma_zonecount;
116 static STAILQ_HEAD(, bounce_zone) bounce_zone_list;
117 
118 static SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
119     "Busdma parameters");
120 SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0,
121 	   "Total bounce pages");
122 
123 struct sync_list {
124 	vm_offset_t	vaddr;		/* kva of client data */
125 	bus_addr_t	paddr;		/* physical address */
126 	vm_page_t	pages;		/* starting page of client data */
127 	bus_size_t	datacount;	/* client data count */
128 };
129 
130 struct bus_dmamap {
131 	struct bp_list	       bpages;
132 	int		       pagesneeded;
133 	int		       pagesreserved;
134 	bus_dma_tag_t	       dmat;
135 	struct memdesc	       mem;
136 	bus_dmamap_callback_t *callback;
137 	void		      *callback_arg;
138 	STAILQ_ENTRY(bus_dmamap) links;
139 	u_int			flags;
140 #define	DMAMAP_COHERENT		(1 << 0)
141 #define	DMAMAP_FROM_DMAMEM	(1 << 1)
142 #define	DMAMAP_MBUF		(1 << 2)
143 	int			sync_count;
144 	struct sync_list	slist[];
145 };
146 
147 static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist;
148 static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist;
149 
150 static void init_bounce_pages(void *dummy);
151 static int alloc_bounce_zone(bus_dma_tag_t dmat);
152 static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages);
153 static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
154     int commit);
155 static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map,
156     vm_offset_t vaddr, bus_addr_t addr, bus_size_t size);
157 static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage);
158 int run_filter(bus_dma_tag_t dmat, bus_addr_t paddr);
159 static bool _bus_dmamap_pagesneeded(bus_dma_tag_t dmat, bus_dmamap_t map,
160     vm_paddr_t buf, bus_size_t buflen, int *pagesneeded);
161 static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
162     pmap_t pmap, void *buf, bus_size_t buflen, int flags);
163 static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
164     vm_paddr_t buf, bus_size_t buflen, int flags);
165 static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
166     int flags);
167 
168 /*
169  * Return true if the DMA should bounce because the start or end does not fall
170  * on a cacheline boundary (which would require a partial cacheline flush).
171  * COHERENT memory doesn't trigger cacheline flushes.  Memory allocated by
172  * bus_dmamem_alloc() is always aligned to cacheline boundaries, and there's a
173  * strict rule that such memory cannot be accessed by the CPU while DMA is in
174  * progress (or by multiple DMA engines at once), so that it's always safe to do
175  * full cacheline flushes even if that affects memory outside the range of a
176  * given DMA operation that doesn't involve the full allocated buffer.  If we're
177  * mapping an mbuf, that follows the same rules as a buffer we allocated.
178  */
179 static bool
180 cacheline_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
181     bus_size_t size)
182 {
183 
184 #define	DMAMAP_CACHELINE_FLAGS						\
185     (DMAMAP_FROM_DMAMEM | DMAMAP_COHERENT | DMAMAP_MBUF)
186 	if ((dmat->bounce_flags & BF_COHERENT) != 0)
187 		return (false);
188 	if (map != NULL && (map->flags & DMAMAP_CACHELINE_FLAGS) != 0)
189 		return (false);
190 	return (((paddr | size) & (dcache_line_size - 1)) != 0);
191 #undef DMAMAP_CACHELINE_FLAGS
192 }
193 
194 /*
195  * Return true if the given address does not fall on the alignment boundary.
196  */
197 static bool
198 alignment_bounce(bus_dma_tag_t dmat, bus_addr_t addr)
199 {
200 
201 	return ((addr & (dmat->common.alignment - 1)) != 0);
202 }
203 
204 static bool
205 might_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
206     bus_size_t size)
207 {
208 
209 	/* Memory allocated by bounce_bus_dmamem_alloc won't bounce */
210 	if (map && (map->flags & DMAMAP_FROM_DMAMEM) != 0)
211 		return (false);
212 
213 	if ((dmat->bounce_flags & BF_COULD_BOUNCE) != 0)
214 		return (true);
215 
216 	if (cacheline_bounce(dmat, map, paddr, size))
217 		return (true);
218 
219 	if (alignment_bounce(dmat, paddr))
220 		return (true);
221 
222 	return (false);
223 }
224 
225 static bool
226 must_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
227     bus_size_t size)
228 {
229 
230 	if (cacheline_bounce(dmat, map, paddr, size))
231 		return (true);
232 
233 	if (alignment_bounce(dmat, paddr))
234 		return (true);
235 
236 	if ((dmat->bounce_flags & BF_COULD_BOUNCE) != 0 &&
237 	    bus_dma_run_filter(&dmat->common, paddr))
238 		return (true);
239 
240 	return (false);
241 }
242 
243 /*
244  * Allocate a device specific dma_tag.
245  */
246 static int
247 bounce_bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
248     bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
249     bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize,
250     int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
251     void *lockfuncarg, bus_dma_tag_t *dmat)
252 {
253 	bus_dma_tag_t newtag;
254 	int error;
255 
256 	*dmat = NULL;
257 	error = common_bus_dma_tag_create(parent != NULL ? &parent->common :
258 	    NULL, alignment, boundary, lowaddr, highaddr, filter, filterarg,
259 	    maxsize, nsegments, maxsegsz, flags, lockfunc, lockfuncarg,
260 	    sizeof (struct bus_dma_tag), (void **)&newtag);
261 	if (error != 0)
262 		return (error);
263 
264 	newtag->common.impl = &bus_dma_bounce_impl;
265 	newtag->map_count = 0;
266 	newtag->segments = NULL;
267 
268 	if ((flags & BUS_DMA_COHERENT) != 0) {
269 		newtag->bounce_flags |= BF_COHERENT;
270 		newtag->alloc_alignment = newtag->common.alignment;
271 		newtag->alloc_size = newtag->common.maxsize;
272 	} else {
273 		/*
274 		 * Ensure the buffer is aligned to a cacheline when allocating
275 		 * a non-coherent buffer. This is so we don't have any data
276 		 * that another CPU may be accessing around DMA buffer
277 		 * causing the cache to become dirty.
278 		 */
279 		newtag->alloc_alignment = MAX(newtag->common.alignment,
280 		    dcache_line_size);
281 		newtag->alloc_size = roundup2(newtag->common.maxsize,
282 		    dcache_line_size);
283 	}
284 
285 	if (parent != NULL) {
286 		if ((newtag->common.filter != NULL ||
287 		    (parent->bounce_flags & BF_COULD_BOUNCE) != 0))
288 			newtag->bounce_flags |= BF_COULD_BOUNCE;
289 
290 		/* Copy some flags from the parent */
291 		newtag->bounce_flags |= parent->bounce_flags & BF_COHERENT;
292 	}
293 
294 	if (newtag->common.lowaddr < ptoa((vm_paddr_t)Maxmem) ||
295 	    newtag->common.alignment > 1)
296 		newtag->bounce_flags |= BF_COULD_BOUNCE;
297 
298 	if ((flags & BUS_DMA_ALLOCNOW) != 0) {
299 		struct bounce_zone *bz;
300 		/*
301 		 * Round size up to a full page, and add one more page because
302 		 * there can always be one more boundary crossing than the
303 		 * number of pages in a transfer.
304 		 */
305 		maxsize = roundup2(maxsize, PAGE_SIZE) + PAGE_SIZE;
306 
307 		/* Must bounce */
308 		if ((error = alloc_bounce_zone(newtag)) != 0) {
309 			free(newtag, M_DEVBUF);
310 			return (error);
311 		}
312 		bz = newtag->bounce_zone;
313 
314 		if (ptoa(bz->total_bpages) < maxsize) {
315 			int pages;
316 
317 			pages = atop(maxsize) + 1 - bz->total_bpages;
318 
319 			/* Add pages to our bounce pool */
320 			if (alloc_bounce_pages(newtag, pages) < pages)
321 				error = ENOMEM;
322 		}
323 		/* Performed initial allocation */
324 		newtag->bounce_flags |= BF_MIN_ALLOC_COMP;
325 	} else
326 		error = 0;
327 
328 	if (error != 0)
329 		free(newtag, M_DEVBUF);
330 	else
331 		*dmat = newtag;
332 	CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
333 	    __func__, newtag, (newtag != NULL ? newtag->common.flags : 0),
334 	    error);
335 	return (error);
336 }
337 
338 static int
339 bounce_bus_dma_tag_destroy(bus_dma_tag_t dmat)
340 {
341 	bus_dma_tag_t dmat_copy, parent;
342 	int error;
343 
344 	error = 0;
345 	dmat_copy = dmat;
346 
347 	if (dmat != NULL) {
348 		if (dmat->map_count != 0) {
349 			error = EBUSY;
350 			goto out;
351 		}
352 		while (dmat != NULL) {
353 			parent = (bus_dma_tag_t)dmat->common.parent;
354 			atomic_subtract_int(&dmat->common.ref_count, 1);
355 			if (dmat->common.ref_count == 0) {
356 				if (dmat->segments != NULL)
357 					free(dmat->segments, M_DEVBUF);
358 				free(dmat, M_DEVBUF);
359 				/*
360 				 * Last reference count, so
361 				 * release our reference
362 				 * count on our parent.
363 				 */
364 				dmat = parent;
365 			} else
366 				dmat = NULL;
367 		}
368 	}
369 out:
370 	CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
371 	return (error);
372 }
373 
374 static bool
375 bounce_bus_dma_id_mapped(bus_dma_tag_t dmat, vm_paddr_t buf, bus_size_t buflen)
376 {
377 
378 	if (!might_bounce(dmat, NULL, buf, buflen))
379 		return (true);
380 	return (!_bus_dmamap_pagesneeded(dmat, NULL, buf, buflen, NULL));
381 }
382 
383 static bus_dmamap_t
384 alloc_dmamap(bus_dma_tag_t dmat, int flags)
385 {
386 	u_long mapsize;
387 	bus_dmamap_t map;
388 
389 	mapsize = sizeof(*map);
390 	mapsize += sizeof(struct sync_list) * dmat->common.nsegments;
391 	map = malloc(mapsize, M_DEVBUF, flags | M_ZERO);
392 	if (map == NULL)
393 		return (NULL);
394 
395 	/* Initialize the new map */
396 	STAILQ_INIT(&map->bpages);
397 
398 	return (map);
399 }
400 
401 /*
402  * Allocate a handle for mapping from kva/uva/physical
403  * address space into bus device space.
404  */
405 static int
406 bounce_bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
407 {
408 	struct bounce_zone *bz;
409 	int error, maxpages, pages;
410 
411 	error = 0;
412 
413 	if (dmat->segments == NULL) {
414 		dmat->segments = (bus_dma_segment_t *)malloc(
415 		    sizeof(bus_dma_segment_t) * dmat->common.nsegments,
416 		    M_DEVBUF, M_NOWAIT);
417 		if (dmat->segments == NULL) {
418 			CTR3(KTR_BUSDMA, "%s: tag %p error %d",
419 			    __func__, dmat, ENOMEM);
420 			return (ENOMEM);
421 		}
422 	}
423 
424 	*mapp = alloc_dmamap(dmat, M_NOWAIT);
425 	if (*mapp == NULL) {
426 		CTR3(KTR_BUSDMA, "%s: tag %p error %d",
427 		    __func__, dmat, ENOMEM);
428 		return (ENOMEM);
429 	}
430 
431 	/*
432 	 * Bouncing might be required if the driver asks for an active
433 	 * exclusion region, a data alignment that is stricter than 1, and/or
434 	 * an active address boundary.
435 	 */
436 	if (dmat->bounce_zone == NULL) {
437 		if ((error = alloc_bounce_zone(dmat)) != 0) {
438 			free(*mapp, M_DEVBUF);
439 			return (error);
440 		}
441 	}
442 	bz = dmat->bounce_zone;
443 
444 	/*
445 	 * Attempt to add pages to our pool on a per-instance basis up to a sane
446 	 * limit. Even if the tag isn't subject of bouncing due to alignment
447 	 * and boundary constraints, it could still auto-bounce due to
448 	 * cacheline alignment, which requires at most two bounce pages.
449 	 */
450 	if (dmat->common.alignment > 1)
451 		maxpages = MAX_BPAGES;
452 	else
453 		maxpages = MIN(MAX_BPAGES, Maxmem -
454 		    atop(dmat->common.lowaddr));
455 	if ((dmat->bounce_flags & BF_MIN_ALLOC_COMP) == 0 ||
456 	    (bz->map_count > 0 && bz->total_bpages < maxpages)) {
457 		pages = atop(roundup2(dmat->common.maxsize, PAGE_SIZE)) + 1;
458 		pages = MIN(maxpages - bz->total_bpages, pages);
459 		pages = MAX(pages, 2);
460 		if (alloc_bounce_pages(dmat, pages) < pages)
461 			error = ENOMEM;
462 		if ((dmat->bounce_flags & BF_MIN_ALLOC_COMP) == 0) {
463 			if (error == 0) {
464 				dmat->bounce_flags |= BF_MIN_ALLOC_COMP;
465 			}
466 		} else
467 			error = 0;
468 	}
469 	bz->map_count++;
470 
471 	if (error == 0) {
472 		dmat->map_count++;
473 		if ((dmat->bounce_flags & BF_COHERENT) != 0)
474 			(*mapp)->flags |= DMAMAP_COHERENT;
475 	} else {
476 		free(*mapp, M_DEVBUF);
477 	}
478 	CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
479 	    __func__, dmat, dmat->common.flags, error);
480 	return (error);
481 }
482 
483 /*
484  * Destroy a handle for mapping from kva/uva/physical
485  * address space into bus device space.
486  */
487 static int
488 bounce_bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
489 {
490 
491 	/* Check we are destroying the correct map type */
492 	if ((map->flags & DMAMAP_FROM_DMAMEM) != 0)
493 		panic("bounce_bus_dmamap_destroy: Invalid map freed\n");
494 
495 	if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) {
496 		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, EBUSY);
497 		return (EBUSY);
498 	}
499 	if (dmat->bounce_zone)
500 		dmat->bounce_zone->map_count--;
501 	free(map, M_DEVBUF);
502 	dmat->map_count--;
503 	CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat);
504 	return (0);
505 }
506 
507 /*
508  * Allocate a piece of memory that can be efficiently mapped into
509  * bus device space based on the constraints lited in the dma tag.
510  * A dmamap to for use with dmamap_load is also allocated.
511  */
512 static int
513 bounce_bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
514     bus_dmamap_t *mapp)
515 {
516 	vm_memattr_t attr;
517 	int mflags;
518 
519 	if (flags & BUS_DMA_NOWAIT)
520 		mflags = M_NOWAIT;
521 	else
522 		mflags = M_WAITOK;
523 
524 	if (dmat->segments == NULL) {
525 		dmat->segments = (bus_dma_segment_t *)malloc(
526 		    sizeof(bus_dma_segment_t) * dmat->common.nsegments,
527 		    M_DEVBUF, mflags);
528 		if (dmat->segments == NULL) {
529 			CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
530 			    __func__, dmat, dmat->common.flags, ENOMEM);
531 			return (ENOMEM);
532 		}
533 	}
534 	if (flags & BUS_DMA_ZERO)
535 		mflags |= M_ZERO;
536 	if (flags & BUS_DMA_NOCACHE)
537 		attr = VM_MEMATTR_UNCACHEABLE;
538 	else if ((flags & BUS_DMA_COHERENT) != 0 &&
539 	    (dmat->bounce_flags & BF_COHERENT) == 0)
540 		/*
541 		 * If we have a non-coherent tag, and are trying to allocate
542 		 * a coherent block of memory it needs to be uncached.
543 		 */
544 		attr = VM_MEMATTR_UNCACHEABLE;
545 	else
546 		attr = VM_MEMATTR_DEFAULT;
547 
548 	/*
549 	 * Create the map, but don't set the could bounce flag as
550 	 * this allocation should never bounce;
551 	 */
552 	*mapp = alloc_dmamap(dmat, mflags);
553 	if (*mapp == NULL) {
554 		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
555 		    __func__, dmat, dmat->common.flags, ENOMEM);
556 		return (ENOMEM);
557 	}
558 
559 	/*
560 	 * Mark the map as coherent if we used uncacheable memory or the
561 	 * tag was already marked as coherent.
562 	 */
563 	if (attr == VM_MEMATTR_UNCACHEABLE ||
564 	    (dmat->bounce_flags & BF_COHERENT) != 0)
565 		(*mapp)->flags |= DMAMAP_COHERENT;
566 
567 	(*mapp)->flags |= DMAMAP_FROM_DMAMEM;
568 
569 	/*
570 	 * Allocate the buffer from the malloc(9) allocator if...
571 	 *  - It's small enough to fit into a single power of two sized bucket.
572 	 *  - The alignment is less than or equal to the maximum size
573 	 *  - The low address requirement is fulfilled.
574 	 * else allocate non-contiguous pages if...
575 	 *  - The page count that could get allocated doesn't exceed
576 	 *    nsegments also when the maximum segment size is less
577 	 *    than PAGE_SIZE.
578 	 *  - The alignment constraint isn't larger than a page boundary.
579 	 *  - There are no boundary-crossing constraints.
580 	 * else allocate a block of contiguous pages because one or more of the
581 	 * constraints is something that only the contig allocator can fulfill.
582 	 *
583 	 * NOTE: The (dmat->common.alignment <= dmat->maxsize) check
584 	 * below is just a quick hack. The exact alignment guarantees
585 	 * of malloc(9) need to be nailed down, and the code below
586 	 * should be rewritten to take that into account.
587 	 *
588 	 * In the meantime warn the user if malloc gets it wrong.
589 	 */
590 	if ((dmat->alloc_size <= PAGE_SIZE) &&
591 	   (dmat->alloc_alignment <= dmat->alloc_size) &&
592 	    dmat->common.lowaddr >= ptoa((vm_paddr_t)Maxmem) &&
593 	    attr == VM_MEMATTR_DEFAULT) {
594 		*vaddr = malloc(dmat->alloc_size, M_DEVBUF, mflags);
595 	} else if (dmat->common.nsegments >=
596 	    howmany(dmat->alloc_size, MIN(dmat->common.maxsegsz, PAGE_SIZE)) &&
597 	    dmat->alloc_alignment <= PAGE_SIZE &&
598 	    (dmat->common.boundary % PAGE_SIZE) == 0) {
599 		/* Page-based multi-segment allocations allowed */
600 		*vaddr = (void *)kmem_alloc_attr(dmat->alloc_size, mflags,
601 		    0ul, dmat->common.lowaddr, attr);
602 		dmat->bounce_flags |= BF_KMEM_ALLOC;
603 	} else {
604 		*vaddr = (void *)kmem_alloc_contig(dmat->alloc_size, mflags,
605 		    0ul, dmat->common.lowaddr, dmat->alloc_alignment != 0 ?
606 		    dmat->alloc_alignment : 1ul, dmat->common.boundary, attr);
607 		dmat->bounce_flags |= BF_KMEM_ALLOC;
608 	}
609 	if (*vaddr == NULL) {
610 		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
611 		    __func__, dmat, dmat->common.flags, ENOMEM);
612 		free(*mapp, M_DEVBUF);
613 		return (ENOMEM);
614 	} else if (vtophys(*vaddr) & (dmat->alloc_alignment - 1)) {
615 		printf("bus_dmamem_alloc failed to align memory properly.\n");
616 	}
617 	dmat->map_count++;
618 	CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
619 	    __func__, dmat, dmat->common.flags, 0);
620 	return (0);
621 }
622 
623 /*
624  * Free a piece of memory and it's allociated dmamap, that was allocated
625  * via bus_dmamem_alloc.  Make the same choice for free/contigfree.
626  */
627 static void
628 bounce_bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
629 {
630 
631 	/*
632 	 * Check the map came from bounce_bus_dmamem_alloc, so the map
633 	 * should be NULL and the BF_KMEM_ALLOC flag cleared if malloc()
634 	 * was used and set if kmem_alloc_contig() was used.
635 	 */
636 	if ((map->flags & DMAMAP_FROM_DMAMEM) == 0)
637 		panic("bus_dmamem_free: Invalid map freed\n");
638 	if ((dmat->bounce_flags & BF_KMEM_ALLOC) == 0)
639 		free(vaddr, M_DEVBUF);
640 	else
641 		kmem_free((vm_offset_t)vaddr, dmat->alloc_size);
642 	free(map, M_DEVBUF);
643 	dmat->map_count--;
644 	CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat,
645 	    dmat->bounce_flags);
646 }
647 
648 static bool
649 _bus_dmamap_pagesneeded(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
650     bus_size_t buflen, int *pagesneeded)
651 {
652 	bus_addr_t curaddr;
653 	bus_size_t sgsize;
654 	int count;
655 
656 	/*
657 	 * Count the number of bounce pages needed in order to
658 	 * complete this transfer
659 	 */
660 	count = 0;
661 	curaddr = buf;
662 	while (buflen != 0) {
663 		sgsize = MIN(buflen, dmat->common.maxsegsz);
664 		if (must_bounce(dmat, map, curaddr, sgsize)) {
665 			sgsize = MIN(sgsize,
666 			    PAGE_SIZE - (curaddr & PAGE_MASK));
667 			if (pagesneeded == NULL)
668 				return (true);
669 			count++;
670 		}
671 		curaddr += sgsize;
672 		buflen -= sgsize;
673 	}
674 
675 	if (pagesneeded != NULL)
676 		*pagesneeded = count;
677 	return (count != 0);
678 }
679 
680 static void
681 _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
682     bus_size_t buflen, int flags)
683 {
684 
685 	if (map->pagesneeded == 0) {
686 		_bus_dmamap_pagesneeded(dmat, map, buf, buflen,
687 		    &map->pagesneeded);
688 		CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded);
689 	}
690 }
691 
692 static void
693 _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map, pmap_t pmap,
694     void *buf, bus_size_t buflen, int flags)
695 {
696 	vm_offset_t vaddr;
697 	vm_offset_t vendaddr;
698 	bus_addr_t paddr;
699 	bus_size_t sg_len;
700 
701 	if (map->pagesneeded == 0) {
702 		CTR4(KTR_BUSDMA, "lowaddr= %d Maxmem= %d, boundary= %d, "
703 		    "alignment= %d", dmat->common.lowaddr,
704 		    ptoa((vm_paddr_t)Maxmem),
705 		    dmat->common.boundary, dmat->common.alignment);
706 		CTR2(KTR_BUSDMA, "map= %p, pagesneeded= %d", map,
707 		    map->pagesneeded);
708 		/*
709 		 * Count the number of bounce pages
710 		 * needed in order to complete this transfer
711 		 */
712 		vaddr = (vm_offset_t)buf;
713 		vendaddr = (vm_offset_t)buf + buflen;
714 
715 		while (vaddr < vendaddr) {
716 			sg_len = PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK);
717 			if (pmap == kernel_pmap)
718 				paddr = pmap_kextract(vaddr);
719 			else
720 				paddr = pmap_extract(pmap, vaddr);
721 			if (must_bounce(dmat, map, paddr,
722 			    min(vendaddr - vaddr, (PAGE_SIZE - ((vm_offset_t)vaddr &
723 			    PAGE_MASK)))) != 0) {
724 				sg_len = roundup2(sg_len,
725 				    dmat->common.alignment);
726 				map->pagesneeded++;
727 			}
728 			vaddr += sg_len;
729 		}
730 		CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded);
731 	}
732 }
733 
734 static int
735 _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags)
736 {
737 
738 	/* Reserve Necessary Bounce Pages */
739 	mtx_lock(&bounce_lock);
740 	if (flags & BUS_DMA_NOWAIT) {
741 		if (reserve_bounce_pages(dmat, map, 0) != 0) {
742 			mtx_unlock(&bounce_lock);
743 			return (ENOMEM);
744 		}
745 	} else {
746 		if (reserve_bounce_pages(dmat, map, 1) != 0) {
747 			/* Queue us for resources */
748 			STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links);
749 			mtx_unlock(&bounce_lock);
750 			return (EINPROGRESS);
751 		}
752 	}
753 	mtx_unlock(&bounce_lock);
754 
755 	return (0);
756 }
757 
758 /*
759  * Add a single contiguous physical range to the segment list.
760  */
761 static bus_size_t
762 _bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr,
763     bus_size_t sgsize, bus_dma_segment_t *segs, int *segp)
764 {
765 	bus_addr_t baddr, bmask;
766 	int seg;
767 
768 	/*
769 	 * Make sure we don't cross any boundaries.
770 	 */
771 	bmask = ~(dmat->common.boundary - 1);
772 	if (dmat->common.boundary > 0) {
773 		baddr = (curaddr + dmat->common.boundary) & bmask;
774 		if (sgsize > (baddr - curaddr))
775 			sgsize = (baddr - curaddr);
776 	}
777 
778 	/*
779 	 * Insert chunk into a segment, coalescing with
780 	 * previous segment if possible.
781 	 */
782 	seg = *segp;
783 	if (seg == -1) {
784 		seg = 0;
785 		segs[seg].ds_addr = curaddr;
786 		segs[seg].ds_len = sgsize;
787 	} else {
788 		if (curaddr == segs[seg].ds_addr + segs[seg].ds_len &&
789 		    (segs[seg].ds_len + sgsize) <= dmat->common.maxsegsz &&
790 		    (dmat->common.boundary == 0 ||
791 		     (segs[seg].ds_addr & bmask) == (curaddr & bmask)))
792 			segs[seg].ds_len += sgsize;
793 		else {
794 			if (++seg >= dmat->common.nsegments)
795 				return (0);
796 			segs[seg].ds_addr = curaddr;
797 			segs[seg].ds_len = sgsize;
798 		}
799 	}
800 	*segp = seg;
801 	return (sgsize);
802 }
803 
804 /*
805  * Utility function to load a physical buffer.  segp contains
806  * the starting segment on entrace, and the ending segment on exit.
807  */
808 static int
809 bounce_bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
810     vm_paddr_t buf, bus_size_t buflen, int flags, bus_dma_segment_t *segs,
811     int *segp)
812 {
813 	struct sync_list *sl;
814 	bus_size_t sgsize;
815 	bus_addr_t curaddr, sl_end;
816 	int error;
817 
818 	if (segs == NULL)
819 		segs = dmat->segments;
820 
821 	if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
822 		_bus_dmamap_count_phys(dmat, map, buf, buflen, flags);
823 		if (map->pagesneeded != 0) {
824 			error = _bus_dmamap_reserve_pages(dmat, map, flags);
825 			if (error)
826 				return (error);
827 		}
828 	}
829 
830 	sl = map->slist + map->sync_count - 1;
831 	sl_end = 0;
832 
833 	while (buflen > 0) {
834 		curaddr = buf;
835 		sgsize = MIN(buflen, dmat->common.maxsegsz);
836 		if (map->pagesneeded != 0 &&
837 		    must_bounce(dmat, map, curaddr, sgsize)) {
838 			/*
839 			 * The attempt to split a physically continuous buffer
840 			 * seems very controversial, it's unclear whether we
841 			 * can do this in all cases. Also, memory for bounced
842 			 * buffers is allocated as pages, so we cannot
843 			 * guarantee multipage alignment.
844 			 */
845 			KASSERT(dmat->common.alignment <= PAGE_SIZE,
846 			    ("bounced buffer cannot have alignment bigger "
847 			    "than PAGE_SIZE: %lu", dmat->common.alignment));
848 			sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK));
849 			curaddr = add_bounce_page(dmat, map, 0, curaddr,
850 			    sgsize);
851 		} else if ((map->flags & DMAMAP_COHERENT) == 0) {
852 			if (map->sync_count > 0)
853 				sl_end = sl->paddr + sl->datacount;
854 
855 			if (map->sync_count == 0 || curaddr != sl_end) {
856 				if (++map->sync_count > dmat->common.nsegments)
857 					break;
858 				sl++;
859 				sl->vaddr = 0;
860 				sl->paddr = curaddr;
861 				sl->pages = PHYS_TO_VM_PAGE(curaddr);
862 				KASSERT(sl->pages != NULL,
863 				    ("%s: page at PA:0x%08lx is not in "
864 				    "vm_page_array", __func__, curaddr));
865 				sl->datacount = sgsize;
866 			} else
867 				sl->datacount += sgsize;
868 		}
869 		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
870 		    segp);
871 		if (sgsize == 0)
872 			break;
873 		buf += sgsize;
874 		buflen -= sgsize;
875 	}
876 
877 	/*
878 	 * Did we fit?
879 	 */
880 	if (buflen != 0) {
881 		bus_dmamap_unload(dmat, map);
882 		return (EFBIG); /* XXX better return value here? */
883 	}
884 	return (0);
885 }
886 
887 /*
888  * Utility function to load a linear buffer.  segp contains
889  * the starting segment on entrace, and the ending segment on exit.
890  */
891 static int
892 bounce_bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
893     bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs,
894     int *segp)
895 {
896 	struct sync_list *sl;
897 	bus_size_t sgsize;
898 	bus_addr_t curaddr, sl_pend;
899 	vm_offset_t kvaddr, vaddr, sl_vend;
900 	int error;
901 
902 	KASSERT((map->flags & DMAMAP_FROM_DMAMEM) != 0 ||
903 	    dmat->common.alignment <= PAGE_SIZE,
904 	    ("loading user buffer with alignment bigger than PAGE_SIZE is not "
905 	    "supported"));
906 
907 	if (segs == NULL)
908 		segs = dmat->segments;
909 
910 	if (flags & BUS_DMA_LOAD_MBUF)
911 		map->flags |= DMAMAP_MBUF;
912 
913 	if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
914 		_bus_dmamap_count_pages(dmat, map, pmap, buf, buflen, flags);
915 		if (map->pagesneeded != 0) {
916 			error = _bus_dmamap_reserve_pages(dmat, map, flags);
917 			if (error)
918 				return (error);
919 		}
920 	}
921 
922 	/*
923 	 * XXX Optimally we should parse input buffer for physically
924 	 * continuous segments first and then pass these segment into
925 	 * load loop.
926 	 */
927 	sl = map->slist + map->sync_count - 1;
928 	vaddr = (vm_offset_t)buf;
929 	sl_pend = 0;
930 	sl_vend = 0;
931 
932 	while (buflen > 0) {
933 		/*
934 		 * Get the physical address for this segment.
935 		 */
936 		if (__predict_true(pmap == kernel_pmap)) {
937 			curaddr = pmap_kextract(vaddr);
938 			kvaddr = vaddr;
939 		} else {
940 			curaddr = pmap_extract(pmap, vaddr);
941 			kvaddr = 0;
942 		}
943 
944 		/*
945 		 * Compute the segment size, and adjust counts.
946 		 */
947 		sgsize = MIN(buflen, dmat->common.maxsegsz);
948 		if ((map->flags & DMAMAP_FROM_DMAMEM) == 0)
949 			sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK));
950 
951 		if (map->pagesneeded != 0 &&
952 		    must_bounce(dmat, map, curaddr, sgsize)) {
953 			/* See comment in bounce_bus_dmamap_load_phys */
954 			KASSERT(dmat->common.alignment <= PAGE_SIZE,
955 			    ("bounced buffer cannot have alignment bigger "
956 			    "than PAGE_SIZE: %lu", dmat->common.alignment));
957 			curaddr = add_bounce_page(dmat, map, kvaddr, curaddr,
958 			    sgsize);
959 		} else if ((map->flags & DMAMAP_COHERENT) == 0) {
960 			if (map->sync_count > 0) {
961 				sl_pend = sl->paddr + sl->datacount;
962 				sl_vend = sl->vaddr + sl->datacount;
963 			}
964 
965 			if (map->sync_count == 0 ||
966 			    (kvaddr != 0 && kvaddr != sl_vend) ||
967 			    (curaddr != sl_pend)) {
968 				if (++map->sync_count > dmat->common.nsegments)
969 					break;
970 				sl++;
971 				sl->vaddr = kvaddr;
972 				sl->paddr = curaddr;
973 				if (kvaddr != 0) {
974 					sl->pages = NULL;
975 				} else {
976 					sl->pages = PHYS_TO_VM_PAGE(curaddr);
977 					KASSERT(sl->pages != NULL,
978 					    ("%s: page at PA:0x%08lx is not "
979 					    "in vm_page_array", __func__,
980 					    curaddr));
981 				}
982 				sl->datacount = sgsize;
983 			} else
984 				sl->datacount += sgsize;
985 		}
986 		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
987 		    segp);
988 		if (sgsize == 0)
989 			break;
990 		vaddr += sgsize;
991 		buflen -= sgsize;
992 	}
993 
994 	/*
995 	 * Did we fit?
996 	 */
997 	if (buflen != 0) {
998 		bus_dmamap_unload(dmat, map);
999 		return (EFBIG); /* XXX better return value here? */
1000 	}
1001 	return (0);
1002 }
1003 
1004 static void
1005 bounce_bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map,
1006     struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg)
1007 {
1008 
1009 	map->mem = *mem;
1010 	map->dmat = dmat;
1011 	map->callback = callback;
1012 	map->callback_arg = callback_arg;
1013 }
1014 
1015 static bus_dma_segment_t *
1016 bounce_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map,
1017     bus_dma_segment_t *segs, int nsegs, int error)
1018 {
1019 
1020 	if (segs == NULL)
1021 		segs = dmat->segments;
1022 	return (segs);
1023 }
1024 
1025 /*
1026  * Release the mapping held by map.
1027  */
1028 static void
1029 bounce_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
1030 {
1031 	struct bounce_page *bpage;
1032 
1033 	while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1034 		STAILQ_REMOVE_HEAD(&map->bpages, links);
1035 		free_bounce_page(dmat, bpage);
1036 	}
1037 
1038 	map->sync_count = 0;
1039 	map->flags &= ~DMAMAP_MBUF;
1040 }
1041 
1042 static void
1043 dma_preread_safe(vm_offset_t va, vm_size_t size)
1044 {
1045 	/*
1046 	 * Write back any partial cachelines immediately before and
1047 	 * after the DMA region.
1048 	 */
1049 	if (va & (dcache_line_size - 1))
1050 		cpu_dcache_wb_range(va, 1);
1051 	if ((va + size) & (dcache_line_size - 1))
1052 		cpu_dcache_wb_range(va + size, 1);
1053 
1054 	cpu_dcache_inv_range(va, size);
1055 }
1056 
1057 static void
1058 dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op)
1059 {
1060 	uint32_t len, offset;
1061 	vm_page_t m;
1062 	vm_paddr_t pa;
1063 	vm_offset_t va, tempva;
1064 	bus_size_t size;
1065 
1066 	offset = sl->paddr & PAGE_MASK;
1067 	m = sl->pages;
1068 	size = sl->datacount;
1069 	pa = sl->paddr;
1070 
1071 	for ( ; size != 0; size -= len, pa += len, offset = 0, ++m) {
1072 		tempva = 0;
1073 		if (sl->vaddr == 0) {
1074 			len = min(PAGE_SIZE - offset, size);
1075 			tempva = pmap_quick_enter_page(m);
1076 			va = tempva | offset;
1077 			KASSERT(pa == (VM_PAGE_TO_PHYS(m) | offset),
1078 			    ("unexpected vm_page_t phys: 0x%16lx != 0x%16lx",
1079 			    VM_PAGE_TO_PHYS(m) | offset, pa));
1080 		} else {
1081 			len = sl->datacount;
1082 			va = sl->vaddr;
1083 		}
1084 
1085 		switch (op) {
1086 		case BUS_DMASYNC_PREWRITE:
1087 		case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD:
1088 			cpu_dcache_wb_range(va, len);
1089 			break;
1090 		case BUS_DMASYNC_PREREAD:
1091 			/*
1092 			 * An mbuf may start in the middle of a cacheline. There
1093 			 * will be no cpu writes to the beginning of that line
1094 			 * (which contains the mbuf header) while dma is in
1095 			 * progress.  Handle that case by doing a writeback of
1096 			 * just the first cacheline before invalidating the
1097 			 * overall buffer.  Any mbuf in a chain may have this
1098 			 * misalignment.  Buffers which are not mbufs bounce if
1099 			 * they are not aligned to a cacheline.
1100 			 */
1101 			dma_preread_safe(va, len);
1102 			break;
1103 		case BUS_DMASYNC_POSTREAD:
1104 		case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
1105 			cpu_dcache_inv_range(va, len);
1106 			break;
1107 		default:
1108 			panic("unsupported combination of sync operations: "
1109                               "0x%08x\n", op);
1110 		}
1111 
1112 		if (tempva != 0)
1113 			pmap_quick_remove_page(tempva);
1114 	}
1115 }
1116 
1117 static void
1118 bounce_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map,
1119     bus_dmasync_op_t op)
1120 {
1121 	struct bounce_page *bpage;
1122 	struct sync_list *sl, *end;
1123 	vm_offset_t datavaddr, tempvaddr;
1124 
1125 	if (op == BUS_DMASYNC_POSTWRITE)
1126 		return;
1127 
1128 	if ((op & BUS_DMASYNC_POSTREAD) != 0) {
1129 		/*
1130 		 * Wait for any DMA operations to complete before the bcopy.
1131 		 */
1132 		dsb(sy);
1133 	}
1134 
1135 	if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1136 		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1137 		    "performing bounce", __func__, dmat, dmat->common.flags,
1138 		    op);
1139 
1140 		if ((op & BUS_DMASYNC_PREWRITE) != 0) {
1141 			while (bpage != NULL) {
1142 				tempvaddr = 0;
1143 				datavaddr = bpage->datavaddr;
1144 				if (datavaddr == 0) {
1145 					tempvaddr = pmap_quick_enter_page(
1146 					    bpage->datapage);
1147 					datavaddr = tempvaddr | bpage->dataoffs;
1148 				}
1149 
1150 				bcopy((void *)datavaddr,
1151 				    (void *)bpage->vaddr, bpage->datacount);
1152 				if (tempvaddr != 0)
1153 					pmap_quick_remove_page(tempvaddr);
1154 				if ((map->flags & DMAMAP_COHERENT) == 0)
1155 					cpu_dcache_wb_range(bpage->vaddr,
1156 					    bpage->datacount);
1157 				bpage = STAILQ_NEXT(bpage, links);
1158 			}
1159 			dmat->bounce_zone->total_bounced++;
1160 		} else if ((op & BUS_DMASYNC_PREREAD) != 0) {
1161 			while (bpage != NULL) {
1162 				if ((map->flags & DMAMAP_COHERENT) == 0)
1163 					cpu_dcache_wbinv_range(bpage->vaddr,
1164 					    bpage->datacount);
1165 				bpage = STAILQ_NEXT(bpage, links);
1166 			}
1167 		}
1168 
1169 		if ((op & BUS_DMASYNC_POSTREAD) != 0) {
1170 			while (bpage != NULL) {
1171 				if ((map->flags & DMAMAP_COHERENT) == 0)
1172 					cpu_dcache_inv_range(bpage->vaddr,
1173 					    bpage->datacount);
1174 				tempvaddr = 0;
1175 				datavaddr = bpage->datavaddr;
1176 				if (datavaddr == 0) {
1177 					tempvaddr = pmap_quick_enter_page(
1178 					    bpage->datapage);
1179 					datavaddr = tempvaddr | bpage->dataoffs;
1180 				}
1181 
1182 				bcopy((void *)bpage->vaddr,
1183 				    (void *)datavaddr, bpage->datacount);
1184 
1185 				if (tempvaddr != 0)
1186 					pmap_quick_remove_page(tempvaddr);
1187 				bpage = STAILQ_NEXT(bpage, links);
1188 			}
1189 			dmat->bounce_zone->total_bounced++;
1190 		}
1191 	}
1192 
1193 	/*
1194 	 * Cache maintenance for normal (non-COHERENT non-bounce) buffers.
1195 	 */
1196 	if (map->sync_count != 0) {
1197 		sl = &map->slist[0];
1198 		end = &map->slist[map->sync_count];
1199 		CTR3(KTR_BUSDMA, "%s: tag %p op 0x%x "
1200 		    "performing sync", __func__, dmat, op);
1201 
1202 		for ( ; sl != end; ++sl)
1203 			dma_dcache_sync(sl, op);
1204 	}
1205 
1206 	if ((op & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)) != 0) {
1207 		/*
1208 		 * Wait for the bcopy to complete before any DMA operations.
1209 		 */
1210 		dsb(sy);
1211 	}
1212 }
1213 
1214 static void
1215 init_bounce_pages(void *dummy __unused)
1216 {
1217 
1218 	total_bpages = 0;
1219 	STAILQ_INIT(&bounce_zone_list);
1220 	STAILQ_INIT(&bounce_map_waitinglist);
1221 	STAILQ_INIT(&bounce_map_callbacklist);
1222 	mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF);
1223 }
1224 SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL);
1225 
1226 static struct sysctl_ctx_list *
1227 busdma_sysctl_tree(struct bounce_zone *bz)
1228 {
1229 
1230 	return (&bz->sysctl_tree);
1231 }
1232 
1233 static struct sysctl_oid *
1234 busdma_sysctl_tree_top(struct bounce_zone *bz)
1235 {
1236 
1237 	return (bz->sysctl_tree_top);
1238 }
1239 
1240 static int
1241 alloc_bounce_zone(bus_dma_tag_t dmat)
1242 {
1243 	struct bounce_zone *bz;
1244 
1245 	/* Check to see if we already have a suitable zone */
1246 	STAILQ_FOREACH(bz, &bounce_zone_list, links) {
1247 		if ((dmat->common.alignment <= bz->alignment) &&
1248 		    (dmat->common.lowaddr >= bz->lowaddr)) {
1249 			dmat->bounce_zone = bz;
1250 			return (0);
1251 		}
1252 	}
1253 
1254 	if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF,
1255 	    M_NOWAIT | M_ZERO)) == NULL)
1256 		return (ENOMEM);
1257 
1258 	STAILQ_INIT(&bz->bounce_page_list);
1259 	bz->free_bpages = 0;
1260 	bz->reserved_bpages = 0;
1261 	bz->active_bpages = 0;
1262 	bz->lowaddr = dmat->common.lowaddr;
1263 	bz->alignment = MAX(dmat->common.alignment, PAGE_SIZE);
1264 	bz->map_count = 0;
1265 	snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount);
1266 	busdma_zonecount++;
1267 	snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr);
1268 	STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links);
1269 	dmat->bounce_zone = bz;
1270 
1271 	sysctl_ctx_init(&bz->sysctl_tree);
1272 	bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree,
1273 	    SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid,
1274 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
1275 	if (bz->sysctl_tree_top == NULL) {
1276 		sysctl_ctx_free(&bz->sysctl_tree);
1277 		return (0);	/* XXX error code? */
1278 	}
1279 
1280 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1281 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1282 	    "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0,
1283 	    "Total bounce pages");
1284 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1285 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1286 	    "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0,
1287 	    "Free bounce pages");
1288 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1289 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1290 	    "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0,
1291 	    "Reserved bounce pages");
1292 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1293 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1294 	    "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0,
1295 	    "Active bounce pages");
1296 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1297 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1298 	    "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0,
1299 	    "Total bounce requests");
1300 	SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
1301 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1302 	    "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0,
1303 	    "Total bounce requests that were deferred");
1304 	SYSCTL_ADD_STRING(busdma_sysctl_tree(bz),
1305 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1306 	    "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, "");
1307 	SYSCTL_ADD_UAUTO(busdma_sysctl_tree(bz),
1308 	    SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
1309 	    "alignment", CTLFLAG_RD, &bz->alignment, "");
1310 
1311 	return (0);
1312 }
1313 
1314 static int
1315 alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages)
1316 {
1317 	struct bounce_zone *bz;
1318 	int count;
1319 
1320 	bz = dmat->bounce_zone;
1321 	count = 0;
1322 	while (numpages > 0) {
1323 		struct bounce_page *bpage;
1324 
1325 		bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF,
1326 						     M_NOWAIT | M_ZERO);
1327 
1328 		if (bpage == NULL)
1329 			break;
1330 		bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF,
1331 		    M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0);
1332 		if (bpage->vaddr == 0) {
1333 			free(bpage, M_DEVBUF);
1334 			break;
1335 		}
1336 		bpage->busaddr = pmap_kextract(bpage->vaddr);
1337 		mtx_lock(&bounce_lock);
1338 		STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links);
1339 		total_bpages++;
1340 		bz->total_bpages++;
1341 		bz->free_bpages++;
1342 		mtx_unlock(&bounce_lock);
1343 		count++;
1344 		numpages--;
1345 	}
1346 	return (count);
1347 }
1348 
1349 static int
1350 reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit)
1351 {
1352 	struct bounce_zone *bz;
1353 	int pages;
1354 
1355 	mtx_assert(&bounce_lock, MA_OWNED);
1356 	bz = dmat->bounce_zone;
1357 	pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved);
1358 	if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages))
1359 		return (map->pagesneeded - (map->pagesreserved + pages));
1360 	bz->free_bpages -= pages;
1361 	bz->reserved_bpages += pages;
1362 	map->pagesreserved += pages;
1363 	pages = map->pagesneeded - map->pagesreserved;
1364 
1365 	return (pages);
1366 }
1367 
1368 static bus_addr_t
1369 add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr,
1370 		bus_addr_t addr, bus_size_t size)
1371 {
1372 	struct bounce_zone *bz;
1373 	struct bounce_page *bpage;
1374 
1375 	KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag"));
1376 
1377 	bz = dmat->bounce_zone;
1378 	if (map->pagesneeded == 0)
1379 		panic("add_bounce_page: map doesn't need any pages");
1380 	map->pagesneeded--;
1381 
1382 	if (map->pagesreserved == 0)
1383 		panic("add_bounce_page: map doesn't need any pages");
1384 	map->pagesreserved--;
1385 
1386 	mtx_lock(&bounce_lock);
1387 	bpage = STAILQ_FIRST(&bz->bounce_page_list);
1388 	if (bpage == NULL)
1389 		panic("add_bounce_page: free page list is empty");
1390 
1391 	STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links);
1392 	bz->reserved_bpages--;
1393 	bz->active_bpages++;
1394 	mtx_unlock(&bounce_lock);
1395 
1396 	if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) {
1397 		/* Page offset needs to be preserved. */
1398 		bpage->vaddr |= addr & PAGE_MASK;
1399 		bpage->busaddr |= addr & PAGE_MASK;
1400 	}
1401 	bpage->datavaddr = vaddr;
1402 	bpage->datapage = PHYS_TO_VM_PAGE(addr);
1403 	bpage->dataoffs = addr & PAGE_MASK;
1404 	bpage->datacount = size;
1405 	STAILQ_INSERT_TAIL(&(map->bpages), bpage, links);
1406 	return (bpage->busaddr);
1407 }
1408 
1409 static void
1410 free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage)
1411 {
1412 	struct bus_dmamap *map;
1413 	struct bounce_zone *bz;
1414 
1415 	bz = dmat->bounce_zone;
1416 	bpage->datavaddr = 0;
1417 	bpage->datacount = 0;
1418 	if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) {
1419 		/*
1420 		 * Reset the bounce page to start at offset 0.  Other uses
1421 		 * of this bounce page may need to store a full page of
1422 		 * data and/or assume it starts on a page boundary.
1423 		 */
1424 		bpage->vaddr &= ~PAGE_MASK;
1425 		bpage->busaddr &= ~PAGE_MASK;
1426 	}
1427 
1428 	mtx_lock(&bounce_lock);
1429 	STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links);
1430 	bz->free_bpages++;
1431 	bz->active_bpages--;
1432 	if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) {
1433 		if (reserve_bounce_pages(map->dmat, map, 1) == 0) {
1434 			STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links);
1435 			STAILQ_INSERT_TAIL(&bounce_map_callbacklist,
1436 			    map, links);
1437 			busdma_swi_pending = 1;
1438 			bz->total_deferred++;
1439 			swi_sched(vm_ih, 0);
1440 		}
1441 	}
1442 	mtx_unlock(&bounce_lock);
1443 }
1444 
1445 void
1446 busdma_swi(void)
1447 {
1448 	bus_dma_tag_t dmat;
1449 	struct bus_dmamap *map;
1450 
1451 	mtx_lock(&bounce_lock);
1452 	while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) {
1453 		STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links);
1454 		mtx_unlock(&bounce_lock);
1455 		dmat = map->dmat;
1456 		(dmat->common.lockfunc)(dmat->common.lockfuncarg, BUS_DMA_LOCK);
1457 		bus_dmamap_load_mem(map->dmat, map, &map->mem,
1458 		    map->callback, map->callback_arg, BUS_DMA_WAITOK);
1459 		(dmat->common.lockfunc)(dmat->common.lockfuncarg,
1460 		    BUS_DMA_UNLOCK);
1461 		mtx_lock(&bounce_lock);
1462 	}
1463 	mtx_unlock(&bounce_lock);
1464 }
1465 
1466 struct bus_dma_impl bus_dma_bounce_impl = {
1467 	.tag_create = bounce_bus_dma_tag_create,
1468 	.tag_destroy = bounce_bus_dma_tag_destroy,
1469 	.id_mapped = bounce_bus_dma_id_mapped,
1470 	.map_create = bounce_bus_dmamap_create,
1471 	.map_destroy = bounce_bus_dmamap_destroy,
1472 	.mem_alloc = bounce_bus_dmamem_alloc,
1473 	.mem_free = bounce_bus_dmamem_free,
1474 	.load_phys = bounce_bus_dmamap_load_phys,
1475 	.load_buffer = bounce_bus_dmamap_load_buffer,
1476 	.load_ma = bus_dmamap_load_ma_triv,
1477 	.map_waitok = bounce_bus_dmamap_waitok,
1478 	.map_complete = bounce_bus_dmamap_complete,
1479 	.map_unload = bounce_bus_dmamap_unload,
1480 	.map_sync = bounce_bus_dmamap_sync
1481 };
1482