xref: /freebsd/sys/arm64/arm64/gic_v3.c (revision 9768746b)
1 /*-
2  * Copyright (c) 2015-2016 The FreeBSD Foundation
3  *
4  * This software was developed by Andrew Turner under
5  * the sponsorship of the FreeBSD Foundation.
6  *
7  * This software was developed by Semihalf under
8  * the sponsorship of the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_acpi.h"
33 #include "opt_platform.h"
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bitstring.h>
41 #include <sys/bus.h>
42 #include <sys/kernel.h>
43 #include <sys/ktr.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/rman.h>
47 #include <sys/pcpu.h>
48 #include <sys/proc.h>
49 #include <sys/cpuset.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/smp.h>
53 #include <sys/interrupt.h>
54 
55 #include <vm/vm.h>
56 #include <vm/pmap.h>
57 
58 #include <machine/bus.h>
59 #include <machine/cpu.h>
60 #include <machine/intr.h>
61 
62 #ifdef FDT
63 #include <dev/fdt/fdt_intr.h>
64 #include <dev/ofw/ofw_bus_subr.h>
65 #endif
66 
67 #ifdef DEV_ACPI
68 #include <contrib/dev/acpica/include/acpi.h>
69 #include <dev/acpica/acpivar.h>
70 #endif
71 
72 #include "gic_if.h"
73 #include "pic_if.h"
74 #include "msi_if.h"
75 
76 #include <arm/arm/gic_common.h>
77 #include "gic_v3_reg.h"
78 #include "gic_v3_var.h"
79 
80 static bus_print_child_t gic_v3_print_child;
81 static bus_get_domain_t gic_v3_get_domain;
82 static bus_read_ivar_t gic_v3_read_ivar;
83 static bus_write_ivar_t gic_v3_write_ivar;
84 static bus_alloc_resource_t gic_v3_alloc_resource;
85 
86 static pic_disable_intr_t gic_v3_disable_intr;
87 static pic_enable_intr_t gic_v3_enable_intr;
88 static pic_map_intr_t gic_v3_map_intr;
89 static pic_setup_intr_t gic_v3_setup_intr;
90 static pic_teardown_intr_t gic_v3_teardown_intr;
91 static pic_post_filter_t gic_v3_post_filter;
92 static pic_post_ithread_t gic_v3_post_ithread;
93 static pic_pre_ithread_t gic_v3_pre_ithread;
94 static pic_bind_intr_t gic_v3_bind_intr;
95 #ifdef SMP
96 static pic_init_secondary_t gic_v3_init_secondary;
97 static pic_ipi_send_t gic_v3_ipi_send;
98 static pic_ipi_setup_t gic_v3_ipi_setup;
99 #endif
100 
101 static gic_reserve_msi_range_t gic_v3_reserve_msi_range;
102 static gic_alloc_msi_t gic_v3_gic_alloc_msi;
103 static gic_release_msi_t gic_v3_gic_release_msi;
104 static gic_alloc_msix_t gic_v3_gic_alloc_msix;
105 static gic_release_msix_t gic_v3_gic_release_msix;
106 
107 static msi_alloc_msi_t gic_v3_alloc_msi;
108 static msi_release_msi_t gic_v3_release_msi;
109 static msi_alloc_msix_t gic_v3_alloc_msix;
110 static msi_release_msix_t gic_v3_release_msix;
111 static msi_map_msi_t gic_v3_map_msi;
112 
113 static u_int gic_irq_cpu;
114 #ifdef SMP
115 static u_int sgi_to_ipi[GIC_LAST_SGI - GIC_FIRST_SGI + 1];
116 static u_int sgi_first_unused = GIC_FIRST_SGI;
117 #endif
118 
119 static device_method_t gic_v3_methods[] = {
120 	/* Device interface */
121 	DEVMETHOD(device_detach,	gic_v3_detach),
122 
123 	/* Bus interface */
124 	DEVMETHOD(bus_print_child,	gic_v3_print_child),
125 	DEVMETHOD(bus_get_domain,	gic_v3_get_domain),
126 	DEVMETHOD(bus_read_ivar,	gic_v3_read_ivar),
127 	DEVMETHOD(bus_write_ivar,	gic_v3_write_ivar),
128 	DEVMETHOD(bus_alloc_resource,	gic_v3_alloc_resource),
129 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
130 
131 	/* Interrupt controller interface */
132 	DEVMETHOD(pic_disable_intr,	gic_v3_disable_intr),
133 	DEVMETHOD(pic_enable_intr,	gic_v3_enable_intr),
134 	DEVMETHOD(pic_map_intr,		gic_v3_map_intr),
135 	DEVMETHOD(pic_setup_intr,	gic_v3_setup_intr),
136 	DEVMETHOD(pic_teardown_intr,	gic_v3_teardown_intr),
137 	DEVMETHOD(pic_post_filter,	gic_v3_post_filter),
138 	DEVMETHOD(pic_post_ithread,	gic_v3_post_ithread),
139 	DEVMETHOD(pic_pre_ithread,	gic_v3_pre_ithread),
140 #ifdef SMP
141 	DEVMETHOD(pic_bind_intr,	gic_v3_bind_intr),
142 	DEVMETHOD(pic_init_secondary,	gic_v3_init_secondary),
143 	DEVMETHOD(pic_ipi_send,		gic_v3_ipi_send),
144 	DEVMETHOD(pic_ipi_setup,	gic_v3_ipi_setup),
145 #endif
146 
147 	/* MSI/MSI-X */
148 	DEVMETHOD(msi_alloc_msi,        gic_v3_alloc_msi),
149 	DEVMETHOD(msi_release_msi,      gic_v3_release_msi),
150 	DEVMETHOD(msi_alloc_msix,       gic_v3_alloc_msix),
151 	DEVMETHOD(msi_release_msix,     gic_v3_release_msix),
152 	DEVMETHOD(msi_map_msi,          gic_v3_map_msi),
153 
154 	/* GIC */
155 	DEVMETHOD(gic_reserve_msi_range, gic_v3_reserve_msi_range),
156 	DEVMETHOD(gic_alloc_msi,	gic_v3_gic_alloc_msi),
157 	DEVMETHOD(gic_release_msi,	gic_v3_gic_release_msi),
158 	DEVMETHOD(gic_alloc_msix,	gic_v3_gic_alloc_msix),
159 	DEVMETHOD(gic_release_msix,	gic_v3_gic_release_msix),
160 
161 	/* End */
162 	DEVMETHOD_END
163 };
164 
165 DEFINE_CLASS_0(gic, gic_v3_driver, gic_v3_methods,
166     sizeof(struct gic_v3_softc));
167 
168 /*
169  * Driver-specific definitions.
170  */
171 MALLOC_DEFINE(M_GIC_V3, "GICv3", GIC_V3_DEVSTR);
172 
173 /*
174  * Helper functions and definitions.
175  */
176 /* Destination registers, either Distributor or Re-Distributor */
177 enum gic_v3_xdist {
178 	DIST = 0,
179 	REDIST,
180 };
181 
182 struct gic_v3_irqsrc {
183 	struct intr_irqsrc	gi_isrc;
184 	uint32_t		gi_irq;
185 	enum intr_polarity	gi_pol;
186 	enum intr_trigger	gi_trig;
187 #define GI_FLAG_MSI		(1 << 1) /* This interrupt source should only */
188 					 /* be used for MSI/MSI-X interrupts */
189 #define GI_FLAG_MSI_USED	(1 << 2) /* This irq is already allocated */
190 					 /* for a MSI/MSI-X interrupt */
191 	u_int			gi_flags;
192 };
193 
194 /* Helper routines starting with gic_v3_ */
195 static int gic_v3_dist_init(struct gic_v3_softc *);
196 static int gic_v3_redist_alloc(struct gic_v3_softc *);
197 static int gic_v3_redist_find(struct gic_v3_softc *);
198 static int gic_v3_redist_init(struct gic_v3_softc *);
199 static int gic_v3_cpu_init(struct gic_v3_softc *);
200 static void gic_v3_wait_for_rwp(struct gic_v3_softc *, enum gic_v3_xdist);
201 
202 /* A sequence of init functions for primary (boot) CPU */
203 typedef int (*gic_v3_initseq_t) (struct gic_v3_softc *);
204 /* Primary CPU initialization sequence */
205 static gic_v3_initseq_t gic_v3_primary_init[] = {
206 	gic_v3_dist_init,
207 	gic_v3_redist_alloc,
208 	gic_v3_redist_init,
209 	gic_v3_cpu_init,
210 	NULL
211 };
212 
213 #ifdef SMP
214 /* Secondary CPU initialization sequence */
215 static gic_v3_initseq_t gic_v3_secondary_init[] = {
216 	gic_v3_redist_init,
217 	gic_v3_cpu_init,
218 	NULL
219 };
220 #endif
221 
222 uint32_t
223 gic_r_read_4(device_t dev, bus_size_t offset)
224 {
225 	struct gic_v3_softc *sc;
226 	struct resource *rdist;
227 
228 	sc = device_get_softc(dev);
229 	rdist = &sc->gic_redists.pcpu[PCPU_GET(cpuid)]->res;
230 	return (bus_read_4(rdist, offset));
231 }
232 
233 uint64_t
234 gic_r_read_8(device_t dev, bus_size_t offset)
235 {
236 	struct gic_v3_softc *sc;
237 	struct resource *rdist;
238 
239 	sc = device_get_softc(dev);
240 	rdist = &sc->gic_redists.pcpu[PCPU_GET(cpuid)]->res;
241 	return (bus_read_8(rdist, offset));
242 }
243 
244 void
245 gic_r_write_4(device_t dev, bus_size_t offset, uint32_t val)
246 {
247 	struct gic_v3_softc *sc;
248 	struct resource *rdist;
249 
250 	sc = device_get_softc(dev);
251 	rdist = &sc->gic_redists.pcpu[PCPU_GET(cpuid)]->res;
252 	bus_write_4(rdist, offset, val);
253 }
254 
255 void
256 gic_r_write_8(device_t dev, bus_size_t offset, uint64_t val)
257 {
258 	struct gic_v3_softc *sc;
259 	struct resource *rdist;
260 
261 	sc = device_get_softc(dev);
262 	rdist = &sc->gic_redists.pcpu[PCPU_GET(cpuid)]->res;
263 	bus_write_8(rdist, offset, val);
264 }
265 
266 static void
267 gic_v3_reserve_msi_range(device_t dev, u_int start, u_int count)
268 {
269 	struct gic_v3_softc *sc;
270 	int i;
271 
272 	sc = device_get_softc(dev);
273 
274 	KASSERT((start + count) < sc->gic_nirqs,
275 	    ("%s: Trying to allocate too many MSI IRQs: %d + %d > %d", __func__,
276 	    start, count, sc->gic_nirqs));
277 	for (i = 0; i < count; i++) {
278 		KASSERT(sc->gic_irqs[start + i].gi_isrc.isrc_handlers == 0,
279 		    ("%s: MSI interrupt %d already has a handler", __func__,
280 		    count + i));
281 		KASSERT(sc->gic_irqs[start + i].gi_pol == INTR_POLARITY_CONFORM,
282 		    ("%s: MSI interrupt %d already has a polarity", __func__,
283 		    count + i));
284 		KASSERT(sc->gic_irqs[start + i].gi_trig == INTR_TRIGGER_CONFORM,
285 		    ("%s: MSI interrupt %d already has a trigger", __func__,
286 		    count + i));
287 		sc->gic_irqs[start + i].gi_pol = INTR_POLARITY_HIGH;
288 		sc->gic_irqs[start + i].gi_trig = INTR_TRIGGER_EDGE;
289 		sc->gic_irqs[start + i].gi_flags |= GI_FLAG_MSI;
290 	}
291 }
292 
293 /*
294  * Device interface.
295  */
296 int
297 gic_v3_attach(device_t dev)
298 {
299 	struct gic_v3_softc *sc;
300 	gic_v3_initseq_t *init_func;
301 	uint32_t typer;
302 	int rid;
303 	int err;
304 	size_t i;
305 	u_int irq;
306 	const char *name;
307 
308 	sc = device_get_softc(dev);
309 	sc->gic_registered = FALSE;
310 	sc->dev = dev;
311 	err = 0;
312 
313 	/* Initialize mutex */
314 	mtx_init(&sc->gic_mtx, "GICv3 lock", NULL, MTX_SPIN);
315 
316 	/*
317 	 * Allocate array of struct resource.
318 	 * One entry for Distributor and all remaining for Re-Distributor.
319 	 */
320 	sc->gic_res = malloc(
321 	    sizeof(*sc->gic_res) * (sc->gic_redists.nregions + 1),
322 	    M_GIC_V3, M_WAITOK);
323 
324 	/* Now allocate corresponding resources */
325 	for (i = 0, rid = 0; i < (sc->gic_redists.nregions + 1); i++, rid++) {
326 		sc->gic_res[rid] = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
327 		    &rid, RF_ACTIVE);
328 		if (sc->gic_res[rid] == NULL)
329 			return (ENXIO);
330 	}
331 
332 	/*
333 	 * Distributor interface
334 	 */
335 	sc->gic_dist = sc->gic_res[0];
336 
337 	/*
338 	 * Re-Dristributor interface
339 	 */
340 	/* Allocate space under region descriptions */
341 	sc->gic_redists.regions = malloc(
342 	    sizeof(*sc->gic_redists.regions) * sc->gic_redists.nregions,
343 	    M_GIC_V3, M_WAITOK);
344 
345 	/* Fill-up bus_space information for each region. */
346 	for (i = 0, rid = 1; i < sc->gic_redists.nregions; i++, rid++)
347 		sc->gic_redists.regions[i] = sc->gic_res[rid];
348 
349 	/* Get the number of supported SPI interrupts */
350 	typer = gic_d_read(sc, 4, GICD_TYPER);
351 	sc->gic_nirqs = GICD_TYPER_I_NUM(typer);
352 	if (sc->gic_nirqs > GIC_I_NUM_MAX)
353 		sc->gic_nirqs = GIC_I_NUM_MAX;
354 
355 	sc->gic_irqs = malloc(sizeof(*sc->gic_irqs) * sc->gic_nirqs,
356 	    M_GIC_V3, M_WAITOK | M_ZERO);
357 	name = device_get_nameunit(dev);
358 	for (irq = 0; irq < sc->gic_nirqs; irq++) {
359 		struct intr_irqsrc *isrc;
360 
361 		sc->gic_irqs[irq].gi_irq = irq;
362 		sc->gic_irqs[irq].gi_pol = INTR_POLARITY_CONFORM;
363 		sc->gic_irqs[irq].gi_trig = INTR_TRIGGER_CONFORM;
364 
365 		isrc = &sc->gic_irqs[irq].gi_isrc;
366 		if (irq <= GIC_LAST_SGI) {
367 			err = intr_isrc_register(isrc, sc->dev,
368 			    INTR_ISRCF_IPI, "%s,i%u", name, irq - GIC_FIRST_SGI);
369 		} else if (irq <= GIC_LAST_PPI) {
370 			err = intr_isrc_register(isrc, sc->dev,
371 			    INTR_ISRCF_PPI, "%s,p%u", name, irq - GIC_FIRST_PPI);
372 		} else {
373 			err = intr_isrc_register(isrc, sc->dev, 0,
374 			    "%s,s%u", name, irq - GIC_FIRST_SPI);
375 		}
376 		if (err != 0) {
377 			/* XXX call intr_isrc_deregister() */
378 			free(sc->gic_irqs, M_DEVBUF);
379 			return (err);
380 		}
381 	}
382 
383 	mtx_init(&sc->gic_mbi_mtx, "GICv3 mbi lock", NULL, MTX_DEF);
384 	if (sc->gic_mbi_start > 0) {
385 		if (!sc->gic_mbi_end) {
386 			/*
387 			 * This is to address SPI based msi ranges, where
388 			 * SPI range is not specified in ACPI
389 			 */
390 			sc->gic_mbi_end = sc->gic_nirqs - 1;
391 		}
392 		gic_v3_reserve_msi_range(dev, sc->gic_mbi_start,
393 		    sc->gic_mbi_end - sc->gic_mbi_start);
394 
395 		if (bootverbose) {
396 			device_printf(dev, "using spi %u to %u\n", sc->gic_mbi_start,
397 					sc->gic_mbi_end);
398 		}
399 	}
400 
401 	/*
402 	 * Read the Peripheral ID2 register. This is an implementation
403 	 * defined register, but seems to be implemented in all GICv3
404 	 * parts and Linux expects it to be there.
405 	 */
406 	sc->gic_pidr2 = gic_d_read(sc, 4, GICD_PIDR2);
407 
408 	/* Get the number of supported interrupt identifier bits */
409 	sc->gic_idbits = GICD_TYPER_IDBITS(typer);
410 
411 	if (bootverbose) {
412 		device_printf(dev, "SPIs: %u, IDs: %u\n",
413 		    sc->gic_nirqs, (1 << sc->gic_idbits) - 1);
414 	}
415 
416 	/* Train init sequence for boot CPU */
417 	for (init_func = gic_v3_primary_init; *init_func != NULL; init_func++) {
418 		err = (*init_func)(sc);
419 		if (err != 0)
420 			return (err);
421 	}
422 
423 	return (0);
424 }
425 
426 int
427 gic_v3_detach(device_t dev)
428 {
429 	struct gic_v3_softc *sc;
430 	size_t i;
431 	int rid;
432 
433 	sc = device_get_softc(dev);
434 
435 	if (device_is_attached(dev)) {
436 		/*
437 		 * XXX: We should probably deregister PIC
438 		 */
439 		if (sc->gic_registered)
440 			panic("Trying to detach registered PIC");
441 	}
442 	for (rid = 0; rid < (sc->gic_redists.nregions + 1); rid++)
443 		bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->gic_res[rid]);
444 
445 	for (i = 0; i <= mp_maxid; i++)
446 		free(sc->gic_redists.pcpu[i], M_GIC_V3);
447 
448 	free(sc->ranges, M_GIC_V3);
449 	free(sc->gic_res, M_GIC_V3);
450 	free(sc->gic_redists.regions, M_GIC_V3);
451 
452 	return (0);
453 }
454 
455 static int
456 gic_v3_print_child(device_t bus, device_t child)
457 {
458 	struct resource_list *rl;
459 	int retval = 0;
460 
461 	rl = BUS_GET_RESOURCE_LIST(bus, child);
462 	KASSERT(rl != NULL, ("%s: No resource list", __func__));
463 	retval += bus_print_child_header(bus, child);
464 	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
465 	retval += bus_print_child_footer(bus, child);
466 
467 	return (retval);
468 }
469 
470 static int
471 gic_v3_get_domain(device_t dev, device_t child, int *domain)
472 {
473 	struct gic_v3_devinfo *di;
474 
475 	di = device_get_ivars(child);
476 	if (di->gic_domain < 0)
477 		return (ENOENT);
478 
479 	*domain = di->gic_domain;
480 	return (0);
481 }
482 
483 static int
484 gic_v3_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
485 {
486 	struct gic_v3_softc *sc;
487 	struct gic_v3_devinfo *di;
488 
489 	sc = device_get_softc(dev);
490 
491 	switch (which) {
492 	case GICV3_IVAR_NIRQS:
493 		*result = (intr_nirq - sc->gic_nirqs) / sc->gic_nchildren;
494 		return (0);
495 	case GICV3_IVAR_REDIST:
496 		*result = (uintptr_t)sc->gic_redists.pcpu[PCPU_GET(cpuid)];
497 		return (0);
498 	case GIC_IVAR_HW_REV:
499 		KASSERT(
500 		    GICR_PIDR2_ARCH(sc->gic_pidr2) == GICR_PIDR2_ARCH_GICv3 ||
501 		    GICR_PIDR2_ARCH(sc->gic_pidr2) == GICR_PIDR2_ARCH_GICv4,
502 		    ("gic_v3_read_ivar: Invalid GIC architecture: %d (%.08X)",
503 		     GICR_PIDR2_ARCH(sc->gic_pidr2), sc->gic_pidr2));
504 		*result = GICR_PIDR2_ARCH(sc->gic_pidr2);
505 		return (0);
506 	case GIC_IVAR_BUS:
507 		KASSERT(sc->gic_bus != GIC_BUS_UNKNOWN,
508 		    ("gic_v3_read_ivar: Unknown bus type"));
509 		KASSERT(sc->gic_bus <= GIC_BUS_MAX,
510 		    ("gic_v3_read_ivar: Invalid bus type %u", sc->gic_bus));
511 		*result = sc->gic_bus;
512 		return (0);
513 	case GIC_IVAR_VGIC:
514 		di = device_get_ivars(child);
515 		if (di == NULL)
516 			return (EINVAL);
517 		*result = di->is_vgic;
518 		return (0);
519 	}
520 
521 	return (ENOENT);
522 }
523 
524 static int
525 gic_v3_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
526 {
527 	switch(which) {
528 	case GICV3_IVAR_NIRQS:
529 	case GICV3_IVAR_REDIST:
530 	case GIC_IVAR_HW_REV:
531 	case GIC_IVAR_BUS:
532 		return (EINVAL);
533 	}
534 
535 	return (ENOENT);
536 }
537 
538 static struct resource *
539 gic_v3_alloc_resource(device_t bus, device_t child, int type, int *rid,
540     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
541 {
542 	struct gic_v3_softc *sc;
543 	struct resource_list_entry *rle;
544 	struct resource_list *rl;
545 	int j;
546 
547 	/* We only allocate memory */
548 	if (type != SYS_RES_MEMORY)
549 		return (NULL);
550 
551 	sc = device_get_softc(bus);
552 
553 	if (RMAN_IS_DEFAULT_RANGE(start, end)) {
554 		rl = BUS_GET_RESOURCE_LIST(bus, child);
555 		if (rl == NULL)
556 			return (NULL);
557 
558 		/* Find defaults for this rid */
559 		rle = resource_list_find(rl, type, *rid);
560 		if (rle == NULL)
561 			return (NULL);
562 
563 		start = rle->start;
564 		end = rle->end;
565 		count = rle->count;
566 	}
567 
568 	/* Remap through ranges property */
569 	for (j = 0; j < sc->nranges; j++) {
570 		if (start >= sc->ranges[j].bus && end <
571 		    sc->ranges[j].bus + sc->ranges[j].size) {
572 			start -= sc->ranges[j].bus;
573 			start += sc->ranges[j].host;
574 			end -= sc->ranges[j].bus;
575 			end += sc->ranges[j].host;
576 			break;
577 		}
578 	}
579 	if (j == sc->nranges && sc->nranges != 0) {
580 		if (bootverbose)
581 			device_printf(bus, "Could not map resource "
582 			    "%#jx-%#jx\n", (uintmax_t)start, (uintmax_t)end);
583 
584 		return (NULL);
585 	}
586 
587 	return (bus_generic_alloc_resource(bus, child, type, rid, start, end,
588 	    count, flags));
589 }
590 
591 int
592 arm_gic_v3_intr(void *arg)
593 {
594 	struct gic_v3_softc *sc = arg;
595 	struct gic_v3_irqsrc *gi;
596 	struct intr_pic *pic;
597 	uint64_t active_irq;
598 	struct trapframe *tf;
599 
600 	pic = sc->gic_pic;
601 
602 	while (1) {
603 		if (CPU_MATCH_ERRATA_CAVIUM_THUNDERX_1_1) {
604 			/*
605 			 * Hardware:		Cavium ThunderX
606 			 * Chip revision:	Pass 1.0 (early version)
607 			 *			Pass 1.1 (production)
608 			 * ERRATUM:		22978, 23154
609 			 */
610 			__asm __volatile(
611 			    "nop;nop;nop;nop;nop;nop;nop;nop;	\n"
612 			    "mrs %0, ICC_IAR1_EL1		\n"
613 			    "nop;nop;nop;nop;			\n"
614 			    "dsb sy				\n"
615 			    : "=&r" (active_irq));
616 		} else {
617 			active_irq = gic_icc_read(IAR1);
618 		}
619 
620 		if (active_irq >= GIC_FIRST_LPI) {
621 			intr_child_irq_handler(pic, active_irq);
622 			continue;
623 		}
624 
625 		if (__predict_false(active_irq >= sc->gic_nirqs))
626 			return (FILTER_HANDLED);
627 
628 		tf = curthread->td_intr_frame;
629 		gi = &sc->gic_irqs[active_irq];
630 		if (active_irq <= GIC_LAST_SGI) {
631 			/* Call EOI for all IPI before dispatch. */
632 			gic_icc_write(EOIR1, (uint64_t)active_irq);
633 #ifdef SMP
634 			intr_ipi_dispatch(sgi_to_ipi[gi->gi_irq], tf);
635 #else
636 			device_printf(sc->dev, "SGI %ju on UP system detected\n",
637 			    (uintmax_t)(active_irq - GIC_FIRST_SGI));
638 #endif
639 		} else if (active_irq >= GIC_FIRST_PPI &&
640 		    active_irq <= GIC_LAST_SPI) {
641 			if (gi->gi_trig == INTR_TRIGGER_EDGE)
642 				gic_icc_write(EOIR1, gi->gi_irq);
643 
644 			if (intr_isrc_dispatch(&gi->gi_isrc, tf) != 0) {
645 				if (gi->gi_trig != INTR_TRIGGER_EDGE)
646 					gic_icc_write(EOIR1, gi->gi_irq);
647 				gic_v3_disable_intr(sc->dev, &gi->gi_isrc);
648 				device_printf(sc->dev,
649 				    "Stray irq %lu disabled\n", active_irq);
650 			}
651 		}
652 	}
653 }
654 
655 #ifdef FDT
656 static int
657 gic_map_fdt(device_t dev, u_int ncells, pcell_t *cells, u_int *irqp,
658     enum intr_polarity *polp, enum intr_trigger *trigp)
659 {
660 	u_int irq;
661 
662 	if (ncells < 3)
663 		return (EINVAL);
664 
665 	/*
666 	 * The 1st cell is the interrupt type:
667 	 *	0 = SPI
668 	 *	1 = PPI
669 	 * The 2nd cell contains the interrupt number:
670 	 *	[0 - 987] for SPI
671 	 *	[0 -  15] for PPI
672 	 * The 3rd cell is the flags, encoded as follows:
673 	 *   bits[3:0] trigger type and level flags
674 	 *	1 = edge triggered
675 	 *      2 = edge triggered (PPI only)
676 	 *	4 = level-sensitive
677 	 *	8 = level-sensitive (PPI only)
678 	 */
679 	switch (cells[0]) {
680 	case 0:
681 		irq = GIC_FIRST_SPI + cells[1];
682 		/* SPI irq is checked later. */
683 		break;
684 	case 1:
685 		irq = GIC_FIRST_PPI + cells[1];
686 		if (irq > GIC_LAST_PPI) {
687 			device_printf(dev, "unsupported PPI interrupt "
688 			    "number %u\n", cells[1]);
689 			return (EINVAL);
690 		}
691 		break;
692 	default:
693 		device_printf(dev, "unsupported interrupt type "
694 		    "configuration %u\n", cells[0]);
695 		return (EINVAL);
696 	}
697 
698 	switch (cells[2] & FDT_INTR_MASK) {
699 	case FDT_INTR_EDGE_RISING:
700 		*trigp = INTR_TRIGGER_EDGE;
701 		*polp = INTR_POLARITY_HIGH;
702 		break;
703 	case FDT_INTR_EDGE_FALLING:
704 		*trigp = INTR_TRIGGER_EDGE;
705 		*polp = INTR_POLARITY_LOW;
706 		break;
707 	case FDT_INTR_LEVEL_HIGH:
708 		*trigp = INTR_TRIGGER_LEVEL;
709 		*polp = INTR_POLARITY_HIGH;
710 		break;
711 	case FDT_INTR_LEVEL_LOW:
712 		*trigp = INTR_TRIGGER_LEVEL;
713 		*polp = INTR_POLARITY_LOW;
714 		break;
715 	default:
716 		device_printf(dev, "unsupported trigger/polarity "
717 		    "configuration 0x%02x\n", cells[2]);
718 		return (EINVAL);
719 	}
720 
721 	/* Check the interrupt is valid */
722 	if (irq >= GIC_FIRST_SPI && *polp != INTR_POLARITY_HIGH)
723 		return (EINVAL);
724 
725 	*irqp = irq;
726 	return (0);
727 }
728 #endif
729 
730 static int
731 gic_map_msi(device_t dev, struct intr_map_data_msi *msi_data, u_int *irqp,
732     enum intr_polarity *polp, enum intr_trigger *trigp)
733 {
734 	struct gic_v3_irqsrc *gi;
735 
736 	/* SPI-mapped MSI */
737 	gi = (struct gic_v3_irqsrc *)msi_data->isrc;
738 	if (gi == NULL)
739 		return (ENXIO);
740 
741 	*irqp = gi->gi_irq;
742 
743 	/* MSI/MSI-X interrupts are always edge triggered with high polarity */
744 	*polp = INTR_POLARITY_HIGH;
745 	*trigp = INTR_TRIGGER_EDGE;
746 
747 	return (0);
748 }
749 
750 static int
751 do_gic_v3_map_intr(device_t dev, struct intr_map_data *data, u_int *irqp,
752     enum intr_polarity *polp, enum intr_trigger *trigp)
753 {
754 	struct gic_v3_softc *sc;
755 	enum intr_polarity pol;
756 	enum intr_trigger trig;
757 	struct intr_map_data_msi *dam;
758 #ifdef FDT
759 	struct intr_map_data_fdt *daf;
760 #endif
761 #ifdef DEV_ACPI
762 	struct intr_map_data_acpi *daa;
763 #endif
764 	u_int irq;
765 
766 	sc = device_get_softc(dev);
767 
768 	switch (data->type) {
769 #ifdef FDT
770 	case INTR_MAP_DATA_FDT:
771 		daf = (struct intr_map_data_fdt *)data;
772 		if (gic_map_fdt(dev, daf->ncells, daf->cells, &irq, &pol,
773 		    &trig) != 0)
774 			return (EINVAL);
775 		break;
776 #endif
777 #ifdef DEV_ACPI
778 	case INTR_MAP_DATA_ACPI:
779 		daa = (struct intr_map_data_acpi *)data;
780 		irq = daa->irq;
781 		pol = daa->pol;
782 		trig = daa->trig;
783 		break;
784 #endif
785 	case INTR_MAP_DATA_MSI:
786 		/* SPI-mapped MSI */
787 		dam = (struct intr_map_data_msi *)data;
788 		if (gic_map_msi(dev, dam, &irq, &pol, &trig) != 0)
789 			return (EINVAL);
790 		break;
791 	default:
792 		return (EINVAL);
793 	}
794 
795 	if (irq >= sc->gic_nirqs)
796 		return (EINVAL);
797 	switch (pol) {
798 	case INTR_POLARITY_CONFORM:
799 	case INTR_POLARITY_LOW:
800 	case INTR_POLARITY_HIGH:
801 		break;
802 	default:
803 		return (EINVAL);
804 	}
805 	switch (trig) {
806 	case INTR_TRIGGER_CONFORM:
807 	case INTR_TRIGGER_EDGE:
808 	case INTR_TRIGGER_LEVEL:
809 		break;
810 	default:
811 		return (EINVAL);
812 	}
813 
814 	*irqp = irq;
815 	if (polp != NULL)
816 		*polp = pol;
817 	if (trigp != NULL)
818 		*trigp = trig;
819 	return (0);
820 }
821 
822 static int
823 gic_v3_map_intr(device_t dev, struct intr_map_data *data,
824     struct intr_irqsrc **isrcp)
825 {
826 	struct gic_v3_softc *sc;
827 	int error;
828 	u_int irq;
829 
830 	error = do_gic_v3_map_intr(dev, data, &irq, NULL, NULL);
831 	if (error == 0) {
832 		sc = device_get_softc(dev);
833 		*isrcp = GIC_INTR_ISRC(sc, irq);
834 	}
835 	return (error);
836 }
837 
838 static int
839 gic_v3_setup_intr(device_t dev, struct intr_irqsrc *isrc,
840     struct resource *res, struct intr_map_data *data)
841 {
842 	struct gic_v3_softc *sc = device_get_softc(dev);
843 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
844 	enum intr_trigger trig;
845 	enum intr_polarity pol;
846 	uint32_t reg;
847 	u_int irq;
848 	int error;
849 
850 	if (data == NULL)
851 		return (ENOTSUP);
852 
853 	error = do_gic_v3_map_intr(dev, data, &irq, &pol, &trig);
854 	if (error != 0)
855 		return (error);
856 
857 	if (gi->gi_irq != irq || pol == INTR_POLARITY_CONFORM ||
858 	    trig == INTR_TRIGGER_CONFORM)
859 		return (EINVAL);
860 
861 	/* Compare config if this is not first setup. */
862 	if (isrc->isrc_handlers != 0) {
863 		if (pol != gi->gi_pol || trig != gi->gi_trig)
864 			return (EINVAL);
865 		else
866 			return (0);
867 	}
868 
869 	/* For MSI/MSI-X we should have already configured these */
870 	if ((gi->gi_flags & GI_FLAG_MSI) == 0) {
871 		gi->gi_pol = pol;
872 		gi->gi_trig = trig;
873 	}
874 
875 	/*
876 	 * XXX - In case that per CPU interrupt is going to be enabled in time
877 	 *       when SMP is already started, we need some IPI call which
878 	 *       enables it on others CPUs. Further, it's more complicated as
879 	 *       pic_enable_source() and pic_disable_source() should act on
880 	 *       per CPU basis only. Thus, it should be solved here somehow.
881 	 */
882 	if (isrc->isrc_flags & INTR_ISRCF_PPI)
883 		CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu);
884 
885 	if (irq >= GIC_FIRST_PPI && irq <= GIC_LAST_SPI) {
886 		mtx_lock_spin(&sc->gic_mtx);
887 
888 		/* Set the trigger and polarity */
889 		if (irq <= GIC_LAST_PPI)
890 			reg = gic_r_read(sc, 4,
891 			    GICR_SGI_BASE_SIZE + GICD_ICFGR(irq));
892 		else
893 			reg = gic_d_read(sc, 4, GICD_ICFGR(irq));
894 		if (trig == INTR_TRIGGER_LEVEL)
895 			reg &= ~(2 << ((irq % 16) * 2));
896 		else
897 			reg |= 2 << ((irq % 16) * 2);
898 
899 		if (irq <= GIC_LAST_PPI) {
900 			gic_r_write(sc, 4,
901 			    GICR_SGI_BASE_SIZE + GICD_ICFGR(irq), reg);
902 			gic_v3_wait_for_rwp(sc, REDIST);
903 		} else {
904 			gic_d_write(sc, 4, GICD_ICFGR(irq), reg);
905 			gic_v3_wait_for_rwp(sc, DIST);
906 		}
907 
908 		mtx_unlock_spin(&sc->gic_mtx);
909 
910 		gic_v3_bind_intr(dev, isrc);
911 	}
912 
913 	return (0);
914 }
915 
916 static int
917 gic_v3_teardown_intr(device_t dev, struct intr_irqsrc *isrc,
918     struct resource *res, struct intr_map_data *data)
919 {
920 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
921 
922 	if (isrc->isrc_handlers == 0 && (gi->gi_flags & GI_FLAG_MSI) == 0) {
923 		gi->gi_pol = INTR_POLARITY_CONFORM;
924 		gi->gi_trig = INTR_TRIGGER_CONFORM;
925 	}
926 
927 	return (0);
928 }
929 
930 static void
931 gic_v3_disable_intr(device_t dev, struct intr_irqsrc *isrc)
932 {
933 	struct gic_v3_softc *sc;
934 	struct gic_v3_irqsrc *gi;
935 	u_int irq;
936 
937 	sc = device_get_softc(dev);
938 	gi = (struct gic_v3_irqsrc *)isrc;
939 	irq = gi->gi_irq;
940 
941 	if (irq <= GIC_LAST_PPI) {
942 		/* SGIs and PPIs in corresponding Re-Distributor */
943 		gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_ICENABLER(irq),
944 		    GICD_I_MASK(irq));
945 		gic_v3_wait_for_rwp(sc, REDIST);
946 	} else if (irq >= GIC_FIRST_SPI && irq <= GIC_LAST_SPI) {
947 		/* SPIs in distributor */
948 		gic_d_write(sc, 4, GICD_ICENABLER(irq), GICD_I_MASK(irq));
949 		gic_v3_wait_for_rwp(sc, DIST);
950 	} else
951 		panic("%s: Unsupported IRQ %u", __func__, irq);
952 }
953 
954 static void
955 gic_v3_enable_intr(device_t dev, struct intr_irqsrc *isrc)
956 {
957 	struct gic_v3_softc *sc;
958 	struct gic_v3_irqsrc *gi;
959 	u_int irq;
960 
961 	sc = device_get_softc(dev);
962 	gi = (struct gic_v3_irqsrc *)isrc;
963 	irq = gi->gi_irq;
964 
965 	if (irq <= GIC_LAST_PPI) {
966 		/* SGIs and PPIs in corresponding Re-Distributor */
967 		gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_ISENABLER(irq),
968 		    GICD_I_MASK(irq));
969 		gic_v3_wait_for_rwp(sc, REDIST);
970 	} else if (irq >= GIC_FIRST_SPI && irq <= GIC_LAST_SPI) {
971 		/* SPIs in distributor */
972 		gic_d_write(sc, 4, GICD_ISENABLER(irq), GICD_I_MASK(irq));
973 		gic_v3_wait_for_rwp(sc, DIST);
974 	} else
975 		panic("%s: Unsupported IRQ %u", __func__, irq);
976 }
977 
978 static void
979 gic_v3_pre_ithread(device_t dev, struct intr_irqsrc *isrc)
980 {
981 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
982 
983 	gic_v3_disable_intr(dev, isrc);
984 	gic_icc_write(EOIR1, gi->gi_irq);
985 }
986 
987 static void
988 gic_v3_post_ithread(device_t dev, struct intr_irqsrc *isrc)
989 {
990 
991 	gic_v3_enable_intr(dev, isrc);
992 }
993 
994 static void
995 gic_v3_post_filter(device_t dev, struct intr_irqsrc *isrc)
996 {
997 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
998 
999 	if (gi->gi_trig == INTR_TRIGGER_EDGE)
1000 		return;
1001 
1002 	gic_icc_write(EOIR1, gi->gi_irq);
1003 }
1004 
1005 static int
1006 gic_v3_bind_intr(device_t dev, struct intr_irqsrc *isrc)
1007 {
1008 	struct gic_v3_softc *sc;
1009 	struct gic_v3_irqsrc *gi;
1010 	int cpu;
1011 
1012 	gi = (struct gic_v3_irqsrc *)isrc;
1013 	if (gi->gi_irq <= GIC_LAST_PPI)
1014 		return (EINVAL);
1015 
1016 	KASSERT(gi->gi_irq >= GIC_FIRST_SPI && gi->gi_irq <= GIC_LAST_SPI,
1017 	    ("%s: Attempting to bind an invalid IRQ", __func__));
1018 
1019 	sc = device_get_softc(dev);
1020 
1021 	if (CPU_EMPTY(&isrc->isrc_cpu)) {
1022 		gic_irq_cpu = intr_irq_next_cpu(gic_irq_cpu, &all_cpus);
1023 		CPU_SETOF(gic_irq_cpu, &isrc->isrc_cpu);
1024 		gic_d_write(sc, 8, GICD_IROUTER(gi->gi_irq),
1025 		    CPU_AFFINITY(gic_irq_cpu));
1026 	} else {
1027 		/*
1028 		 * We can only bind to a single CPU so select
1029 		 * the first CPU found.
1030 		 */
1031 		cpu = CPU_FFS(&isrc->isrc_cpu) - 1;
1032 		gic_d_write(sc, 8, GICD_IROUTER(gi->gi_irq), CPU_AFFINITY(cpu));
1033 	}
1034 
1035 	return (0);
1036 }
1037 
1038 #ifdef SMP
1039 static void
1040 gic_v3_init_secondary(device_t dev)
1041 {
1042 	device_t child;
1043 	struct gic_v3_softc *sc;
1044 	gic_v3_initseq_t *init_func;
1045 	struct intr_irqsrc *isrc;
1046 	u_int cpu, irq;
1047 	int err, i;
1048 
1049 	sc = device_get_softc(dev);
1050 	cpu = PCPU_GET(cpuid);
1051 
1052 	/* Train init sequence for boot CPU */
1053 	for (init_func = gic_v3_secondary_init; *init_func != NULL;
1054 	    init_func++) {
1055 		err = (*init_func)(sc);
1056 		if (err != 0) {
1057 			device_printf(dev,
1058 			    "Could not initialize GIC for CPU%u\n", cpu);
1059 			return;
1060 		}
1061 	}
1062 
1063 	/* Unmask attached SGI interrupts. */
1064 	for (irq = GIC_FIRST_SGI; irq <= GIC_LAST_SGI; irq++) {
1065 		isrc = GIC_INTR_ISRC(sc, irq);
1066 		if (intr_isrc_init_on_cpu(isrc, cpu))
1067 			gic_v3_enable_intr(dev, isrc);
1068 	}
1069 
1070 	/* Unmask attached PPI interrupts. */
1071 	for (irq = GIC_FIRST_PPI; irq <= GIC_LAST_PPI; irq++) {
1072 		isrc = GIC_INTR_ISRC(sc, irq);
1073 		if (intr_isrc_init_on_cpu(isrc, cpu))
1074 			gic_v3_enable_intr(dev, isrc);
1075 	}
1076 
1077 	for (i = 0; i < sc->gic_nchildren; i++) {
1078 		child = sc->gic_children[i];
1079 		PIC_INIT_SECONDARY(child);
1080 	}
1081 }
1082 
1083 static void
1084 gic_v3_ipi_send(device_t dev, struct intr_irqsrc *isrc, cpuset_t cpus,
1085     u_int ipi)
1086 {
1087 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
1088 	uint64_t aff, val, irq;
1089 	int i;
1090 
1091 #define	GIC_AFF_MASK	(CPU_AFF3_MASK | CPU_AFF2_MASK | CPU_AFF1_MASK)
1092 #define	GIC_AFFINITY(i)	(CPU_AFFINITY(i) & GIC_AFF_MASK)
1093 	aff = GIC_AFFINITY(0);
1094 	irq = gi->gi_irq;
1095 	val = 0;
1096 
1097 	/* Iterate through all CPUs in set */
1098 	for (i = 0; i <= mp_maxid; i++) {
1099 		/* Move to the next affinity group */
1100 		if (aff != GIC_AFFINITY(i)) {
1101 			/* Send the IPI */
1102 			if (val != 0) {
1103 				gic_icc_write(SGI1R, val);
1104 				val = 0;
1105 			}
1106 			aff = GIC_AFFINITY(i);
1107 		}
1108 
1109 		/* Send the IPI to this cpu */
1110 		if (CPU_ISSET(i, &cpus)) {
1111 #define	ICC_SGI1R_AFFINITY(aff)					\
1112     (((uint64_t)CPU_AFF3(aff) << ICC_SGI1R_EL1_AFF3_SHIFT) |	\
1113      ((uint64_t)CPU_AFF2(aff) << ICC_SGI1R_EL1_AFF2_SHIFT) |	\
1114      ((uint64_t)CPU_AFF1(aff) << ICC_SGI1R_EL1_AFF1_SHIFT))
1115 			/* Set the affinity when the first at this level */
1116 			if (val == 0)
1117 				val = ICC_SGI1R_AFFINITY(aff) |
1118 				    irq << ICC_SGI1R_EL1_SGIID_SHIFT;
1119 			/* Set the bit to send the IPI to te CPU */
1120 			val |= 1 << CPU_AFF0(CPU_AFFINITY(i));
1121 		}
1122 	}
1123 
1124 	/* Send the IPI to the last cpu affinity group */
1125 	if (val != 0)
1126 		gic_icc_write(SGI1R, val);
1127 #undef GIC_AFF_MASK
1128 #undef GIC_AFFINITY
1129 }
1130 
1131 static int
1132 gic_v3_ipi_setup(device_t dev, u_int ipi, struct intr_irqsrc **isrcp)
1133 {
1134 	struct intr_irqsrc *isrc;
1135 	struct gic_v3_softc *sc = device_get_softc(dev);
1136 
1137 	if (sgi_first_unused > GIC_LAST_SGI)
1138 		return (ENOSPC);
1139 
1140 	isrc = GIC_INTR_ISRC(sc, sgi_first_unused);
1141 	sgi_to_ipi[sgi_first_unused++] = ipi;
1142 
1143 	CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu);
1144 
1145 	*isrcp = isrc;
1146 	return (0);
1147 }
1148 #endif /* SMP */
1149 
1150 /*
1151  * Helper routines
1152  */
1153 static void
1154 gic_v3_wait_for_rwp(struct gic_v3_softc *sc, enum gic_v3_xdist xdist)
1155 {
1156 	struct resource *res;
1157 	u_int cpuid;
1158 	size_t us_left = 1000000;
1159 
1160 	cpuid = PCPU_GET(cpuid);
1161 
1162 	switch (xdist) {
1163 	case DIST:
1164 		res = sc->gic_dist;
1165 		break;
1166 	case REDIST:
1167 		res = &sc->gic_redists.pcpu[cpuid]->res;
1168 		break;
1169 	default:
1170 		KASSERT(0, ("%s: Attempt to wait for unknown RWP", __func__));
1171 		return;
1172 	}
1173 
1174 	while ((bus_read_4(res, GICD_CTLR) & GICD_CTLR_RWP) != 0) {
1175 		DELAY(1);
1176 		if (us_left-- == 0)
1177 			panic("GICD Register write pending for too long");
1178 	}
1179 }
1180 
1181 /* CPU interface. */
1182 static __inline void
1183 gic_v3_cpu_priority(uint64_t mask)
1184 {
1185 
1186 	/* Set prority mask */
1187 	gic_icc_write(PMR, mask & ICC_PMR_EL1_PRIO_MASK);
1188 }
1189 
1190 static int
1191 gic_v3_cpu_enable_sre(struct gic_v3_softc *sc)
1192 {
1193 	uint64_t sre;
1194 	u_int cpuid;
1195 
1196 	cpuid = PCPU_GET(cpuid);
1197 	/*
1198 	 * Set the SRE bit to enable access to GIC CPU interface
1199 	 * via system registers.
1200 	 */
1201 	sre = READ_SPECIALREG(icc_sre_el1);
1202 	sre |= ICC_SRE_EL1_SRE;
1203 	WRITE_SPECIALREG(icc_sre_el1, sre);
1204 	isb();
1205 	/*
1206 	 * Now ensure that the bit is set.
1207 	 */
1208 	sre = READ_SPECIALREG(icc_sre_el1);
1209 	if ((sre & ICC_SRE_EL1_SRE) == 0) {
1210 		/* We are done. This was disabled in EL2 */
1211 		device_printf(sc->dev, "ERROR: CPU%u cannot enable CPU interface "
1212 		    "via system registers\n", cpuid);
1213 		return (ENXIO);
1214 	} else if (bootverbose) {
1215 		device_printf(sc->dev,
1216 		    "CPU%u enabled CPU interface via system registers\n",
1217 		    cpuid);
1218 	}
1219 
1220 	return (0);
1221 }
1222 
1223 static int
1224 gic_v3_cpu_init(struct gic_v3_softc *sc)
1225 {
1226 	int err;
1227 
1228 	/* Enable access to CPU interface via system registers */
1229 	err = gic_v3_cpu_enable_sre(sc);
1230 	if (err != 0)
1231 		return (err);
1232 	/* Priority mask to minimum - accept all interrupts */
1233 	gic_v3_cpu_priority(GIC_PRIORITY_MIN);
1234 	/* Disable EOI mode */
1235 	gic_icc_clear(CTLR, ICC_CTLR_EL1_EOIMODE);
1236 	/* Enable group 1 (insecure) interrups */
1237 	gic_icc_set(IGRPEN1, ICC_IGRPEN0_EL1_EN);
1238 
1239 	return (0);
1240 }
1241 
1242 /* Distributor */
1243 static int
1244 gic_v3_dist_init(struct gic_v3_softc *sc)
1245 {
1246 	uint64_t aff;
1247 	u_int i;
1248 
1249 	/*
1250 	 * 1. Disable the Distributor
1251 	 */
1252 	gic_d_write(sc, 4, GICD_CTLR, 0);
1253 	gic_v3_wait_for_rwp(sc, DIST);
1254 
1255 	/*
1256 	 * 2. Configure the Distributor
1257 	 */
1258 	/* Set all SPIs to be Group 1 Non-secure */
1259 	for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_IGROUPRn)
1260 		gic_d_write(sc, 4, GICD_IGROUPR(i), 0xFFFFFFFF);
1261 
1262 	/* Set all global interrupts to be level triggered, active low. */
1263 	for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_ICFGRn)
1264 		gic_d_write(sc, 4, GICD_ICFGR(i), 0x00000000);
1265 
1266 	/* Set priority to all shared interrupts */
1267 	for (i = GIC_FIRST_SPI;
1268 	    i < sc->gic_nirqs; i += GICD_I_PER_IPRIORITYn) {
1269 		/* Set highest priority */
1270 		gic_d_write(sc, 4, GICD_IPRIORITYR(i), GIC_PRIORITY_MAX);
1271 	}
1272 
1273 	/*
1274 	 * Disable all interrupts. Leave PPI and SGIs as they are enabled in
1275 	 * Re-Distributor registers.
1276 	 */
1277 	for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_ISENABLERn)
1278 		gic_d_write(sc, 4, GICD_ICENABLER(i), 0xFFFFFFFF);
1279 
1280 	gic_v3_wait_for_rwp(sc, DIST);
1281 
1282 	/*
1283 	 * 3. Enable Distributor
1284 	 */
1285 	/* Enable Distributor with ARE, Group 1 */
1286 	gic_d_write(sc, 4, GICD_CTLR, GICD_CTLR_ARE_NS | GICD_CTLR_G1A |
1287 	    GICD_CTLR_G1);
1288 
1289 	/*
1290 	 * 4. Route all interrupts to boot CPU.
1291 	 */
1292 	aff = CPU_AFFINITY(0);
1293 	for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i++)
1294 		gic_d_write(sc, 8, GICD_IROUTER(i), aff);
1295 
1296 	return (0);
1297 }
1298 
1299 /* Re-Distributor */
1300 static int
1301 gic_v3_redist_alloc(struct gic_v3_softc *sc)
1302 {
1303 	u_int cpuid;
1304 
1305 	/* Allocate struct resource for all CPU's Re-Distributor registers */
1306 	for (cpuid = 0; cpuid <= mp_maxid; cpuid++)
1307 		if (CPU_ISSET(cpuid, &all_cpus) != 0)
1308 			sc->gic_redists.pcpu[cpuid] =
1309 				malloc(sizeof(*sc->gic_redists.pcpu[0]),
1310 				    M_GIC_V3, M_WAITOK);
1311 		else
1312 			sc->gic_redists.pcpu[cpuid] = NULL;
1313 	return (0);
1314 }
1315 
1316 static int
1317 gic_v3_redist_find(struct gic_v3_softc *sc)
1318 {
1319 	struct resource r_res;
1320 	bus_space_handle_t r_bsh;
1321 	uint64_t aff;
1322 	uint64_t typer;
1323 	uint32_t pidr2;
1324 	u_int cpuid;
1325 	size_t i;
1326 
1327 	cpuid = PCPU_GET(cpuid);
1328 
1329 	aff = CPU_AFFINITY(cpuid);
1330 	/* Affinity in format for comparison with typer */
1331 	aff = (CPU_AFF3(aff) << 24) | (CPU_AFF2(aff) << 16) |
1332 	    (CPU_AFF1(aff) << 8) | CPU_AFF0(aff);
1333 
1334 	if (bootverbose) {
1335 		device_printf(sc->dev,
1336 		    "Start searching for Re-Distributor\n");
1337 	}
1338 	/* Iterate through Re-Distributor regions */
1339 	for (i = 0; i < sc->gic_redists.nregions; i++) {
1340 		/* Take a copy of the region's resource */
1341 		r_res = *sc->gic_redists.regions[i];
1342 		r_bsh = rman_get_bushandle(&r_res);
1343 
1344 		pidr2 = bus_read_4(&r_res, GICR_PIDR2);
1345 		switch (GICR_PIDR2_ARCH(pidr2)) {
1346 		case GICR_PIDR2_ARCH_GICv3: /* fall through */
1347 		case GICR_PIDR2_ARCH_GICv4:
1348 			break;
1349 		default:
1350 			device_printf(sc->dev,
1351 			    "No Re-Distributor found for CPU%u\n", cpuid);
1352 			return (ENODEV);
1353 		}
1354 
1355 		do {
1356 			typer = bus_read_8(&r_res, GICR_TYPER);
1357 			if ((typer >> GICR_TYPER_AFF_SHIFT) == aff) {
1358 				KASSERT(sc->gic_redists.pcpu[cpuid] != NULL,
1359 				    ("Invalid pointer to per-CPU redistributor"));
1360 				/* Copy res contents to its final destination */
1361 				sc->gic_redists.pcpu[cpuid]->res = r_res;
1362 				sc->gic_redists.pcpu[cpuid]->lpi_enabled = false;
1363 				if (bootverbose) {
1364 					device_printf(sc->dev,
1365 					    "CPU%u Re-Distributor has been found\n",
1366 					    cpuid);
1367 				}
1368 				return (0);
1369 			}
1370 
1371 			r_bsh += (GICR_RD_BASE_SIZE + GICR_SGI_BASE_SIZE);
1372 			if ((typer & GICR_TYPER_VLPIS) != 0) {
1373 				r_bsh +=
1374 				    (GICR_VLPI_BASE_SIZE + GICR_RESERVED_SIZE);
1375 			}
1376 
1377 			rman_set_bushandle(&r_res, r_bsh);
1378 		} while ((typer & GICR_TYPER_LAST) == 0);
1379 	}
1380 
1381 	device_printf(sc->dev, "No Re-Distributor found for CPU%u\n", cpuid);
1382 	return (ENXIO);
1383 }
1384 
1385 static int
1386 gic_v3_redist_wake(struct gic_v3_softc *sc)
1387 {
1388 	uint32_t waker;
1389 	size_t us_left = 1000000;
1390 
1391 	waker = gic_r_read(sc, 4, GICR_WAKER);
1392 	/* Wake up Re-Distributor for this CPU */
1393 	waker &= ~GICR_WAKER_PS;
1394 	gic_r_write(sc, 4, GICR_WAKER, waker);
1395 	/*
1396 	 * When clearing ProcessorSleep bit it is required to wait for
1397 	 * ChildrenAsleep to become zero following the processor power-on.
1398 	 */
1399 	while ((gic_r_read(sc, 4, GICR_WAKER) & GICR_WAKER_CA) != 0) {
1400 		DELAY(1);
1401 		if (us_left-- == 0) {
1402 			panic("Could not wake Re-Distributor for CPU%u",
1403 			    PCPU_GET(cpuid));
1404 		}
1405 	}
1406 
1407 	if (bootverbose) {
1408 		device_printf(sc->dev, "CPU%u Re-Distributor woke up\n",
1409 		    PCPU_GET(cpuid));
1410 	}
1411 
1412 	return (0);
1413 }
1414 
1415 static int
1416 gic_v3_redist_init(struct gic_v3_softc *sc)
1417 {
1418 	int err;
1419 	size_t i;
1420 
1421 	err = gic_v3_redist_find(sc);
1422 	if (err != 0)
1423 		return (err);
1424 
1425 	err = gic_v3_redist_wake(sc);
1426 	if (err != 0)
1427 		return (err);
1428 
1429 	/* Configure SGIs and PPIs to be Group1 Non-secure */
1430 	gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_IGROUPR0,
1431 	    0xFFFFFFFF);
1432 
1433 	/* Disable SPIs */
1434 	gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_ICENABLER0,
1435 	    GICR_I_ENABLER_PPI_MASK);
1436 	/* Enable SGIs */
1437 	gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_ISENABLER0,
1438 	    GICR_I_ENABLER_SGI_MASK);
1439 
1440 	/* Set priority for SGIs and PPIs */
1441 	for (i = 0; i <= GIC_LAST_PPI; i += GICR_I_PER_IPRIORITYn) {
1442 		gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_IPRIORITYR(i),
1443 		    GIC_PRIORITY_MAX);
1444 	}
1445 
1446 	gic_v3_wait_for_rwp(sc, REDIST);
1447 
1448 	return (0);
1449 }
1450 
1451 /*
1452  * SPI-mapped Message Based Interrupts -- a GICv3 MSI/MSI-X controller.
1453  */
1454 
1455 static int
1456 gic_v3_gic_alloc_msi(device_t dev, u_int mbi_start, u_int mbi_count,
1457     int count, int maxcount, struct intr_irqsrc **isrc)
1458 {
1459 	struct gic_v3_softc *sc;
1460 	int i, irq, end_irq;
1461 	bool found;
1462 
1463 	KASSERT(powerof2(count), ("%s: bad count", __func__));
1464 	KASSERT(powerof2(maxcount), ("%s: bad maxcount", __func__));
1465 
1466 	sc = device_get_softc(dev);
1467 
1468 	mtx_lock(&sc->gic_mbi_mtx);
1469 
1470 	found = false;
1471 	for (irq = mbi_start; irq < mbi_start + mbi_count; irq++) {
1472 		/* Start on an aligned interrupt */
1473 		if ((irq & (maxcount - 1)) != 0)
1474 			continue;
1475 
1476 		/* Assume we found a valid range until shown otherwise */
1477 		found = true;
1478 
1479 		/* Check this range is valid */
1480 		for (end_irq = irq; end_irq != irq + count; end_irq++) {
1481 			/* No free interrupts */
1482 			if (end_irq == mbi_start + mbi_count) {
1483 				found = false;
1484 				break;
1485 			}
1486 
1487 			KASSERT((sc->gic_irqs[end_irq].gi_flags & GI_FLAG_MSI)!= 0,
1488 			    ("%s: Non-MSI interrupt found", __func__));
1489 
1490 			/* This is already used */
1491 			if ((sc->gic_irqs[end_irq].gi_flags & GI_FLAG_MSI_USED) ==
1492 			    GI_FLAG_MSI_USED) {
1493 				found = false;
1494 				break;
1495 			}
1496 		}
1497 		if (found)
1498 			break;
1499 	}
1500 
1501 	/* Not enough interrupts were found */
1502 	if (!found || irq == mbi_start + mbi_count) {
1503 		mtx_unlock(&sc->gic_mbi_mtx);
1504 		return (ENXIO);
1505 	}
1506 
1507 	for (i = 0; i < count; i++) {
1508 		/* Mark the interrupt as used */
1509 		sc->gic_irqs[irq + i].gi_flags |= GI_FLAG_MSI_USED;
1510 	}
1511 	mtx_unlock(&sc->gic_mbi_mtx);
1512 
1513 	for (i = 0; i < count; i++)
1514 		isrc[i] = (struct intr_irqsrc *)&sc->gic_irqs[irq + i];
1515 
1516 	return (0);
1517 }
1518 
1519 static int
1520 gic_v3_gic_release_msi(device_t dev, int count, struct intr_irqsrc **isrc)
1521 {
1522 	struct gic_v3_softc *sc;
1523 	struct gic_v3_irqsrc *gi;
1524 	int i;
1525 
1526 	sc = device_get_softc(dev);
1527 
1528 	mtx_lock(&sc->gic_mbi_mtx);
1529 	for (i = 0; i < count; i++) {
1530 		gi = (struct gic_v3_irqsrc *)isrc[i];
1531 
1532 		KASSERT((gi->gi_flags & GI_FLAG_MSI_USED) == GI_FLAG_MSI_USED,
1533 		    ("%s: Trying to release an unused MSI-X interrupt",
1534 		    __func__));
1535 
1536 		gi->gi_flags &= ~GI_FLAG_MSI_USED;
1537 	}
1538 	mtx_unlock(&sc->gic_mbi_mtx);
1539 
1540 	return (0);
1541 }
1542 
1543 static int
1544 gic_v3_gic_alloc_msix(device_t dev, u_int mbi_start, u_int mbi_count,
1545     struct intr_irqsrc **isrcp)
1546 {
1547 	struct gic_v3_softc *sc;
1548 	int irq;
1549 
1550 	sc = device_get_softc(dev);
1551 
1552 	mtx_lock(&sc->gic_mbi_mtx);
1553 	/* Find an unused interrupt */
1554 	for (irq = mbi_start; irq < mbi_start + mbi_count; irq++) {
1555 		KASSERT((sc->gic_irqs[irq].gi_flags & GI_FLAG_MSI) != 0,
1556 		    ("%s: Non-MSI interrupt found", __func__));
1557 		if ((sc->gic_irqs[irq].gi_flags & GI_FLAG_MSI_USED) == 0)
1558 			break;
1559 	}
1560 	/* No free interrupt was found */
1561 	if (irq == mbi_start + mbi_count) {
1562 		mtx_unlock(&sc->gic_mbi_mtx);
1563 		return (ENXIO);
1564 	}
1565 
1566 	/* Mark the interrupt as used */
1567 	sc->gic_irqs[irq].gi_flags |= GI_FLAG_MSI_USED;
1568 	mtx_unlock(&sc->gic_mbi_mtx);
1569 
1570 	*isrcp = (struct intr_irqsrc *)&sc->gic_irqs[irq];
1571 
1572 	return (0);
1573 }
1574 
1575 static int
1576 gic_v3_gic_release_msix(device_t dev, struct intr_irqsrc *isrc)
1577 {
1578 	struct gic_v3_softc *sc;
1579 	struct gic_v3_irqsrc *gi;
1580 
1581 	sc = device_get_softc(dev);
1582 	gi = (struct gic_v3_irqsrc *)isrc;
1583 
1584 	KASSERT((gi->gi_flags & GI_FLAG_MSI_USED) == GI_FLAG_MSI_USED,
1585 	    ("%s: Trying to release an unused MSI-X interrupt", __func__));
1586 
1587 	mtx_lock(&sc->gic_mbi_mtx);
1588 	gi->gi_flags &= ~GI_FLAG_MSI_USED;
1589 	mtx_unlock(&sc->gic_mbi_mtx);
1590 
1591 	return (0);
1592 }
1593 
1594 static int
1595 gic_v3_alloc_msi(device_t dev, device_t child, int count, int maxcount,
1596     device_t *pic, struct intr_irqsrc **isrc)
1597 {
1598 	struct gic_v3_softc *sc;
1599 	int error;
1600 
1601 	sc = device_get_softc(dev);
1602 	error = gic_v3_gic_alloc_msi(dev, sc->gic_mbi_start,
1603 	    sc->gic_mbi_end - sc->gic_mbi_start, count, maxcount, isrc);
1604 	if (error != 0)
1605 		return (error);
1606 
1607 	*pic = dev;
1608 	return (0);
1609 }
1610 
1611 static int
1612 gic_v3_release_msi(device_t dev, device_t child, int count,
1613     struct intr_irqsrc **isrc)
1614 {
1615 	return (gic_v3_gic_release_msi(dev, count, isrc));
1616 }
1617 
1618 static int
1619 gic_v3_alloc_msix(device_t dev, device_t child, device_t *pic,
1620     struct intr_irqsrc **isrc)
1621 {
1622 	struct gic_v3_softc *sc;
1623 	int error;
1624 
1625 	sc = device_get_softc(dev);
1626 	error = gic_v3_gic_alloc_msix(dev, sc->gic_mbi_start,
1627 	    sc->gic_mbi_end - sc->gic_mbi_start, isrc);
1628 	if (error != 0)
1629 		return (error);
1630 
1631 	*pic = dev;
1632 
1633 	return (0);
1634 }
1635 
1636 static int
1637 gic_v3_release_msix(device_t dev, device_t child, struct intr_irqsrc *isrc)
1638 {
1639 	return (gic_v3_gic_release_msix(dev, isrc));
1640 }
1641 
1642 static int
1643 gic_v3_map_msi(device_t dev, device_t child, struct intr_irqsrc *isrc,
1644     uint64_t *addr, uint32_t *data)
1645 {
1646 	struct gic_v3_softc *sc = device_get_softc(dev);
1647 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
1648 
1649 	*addr = vtophys(rman_get_virtual(sc->gic_dist)) + GICD_SETSPI_NSR;
1650 	*data = gi->gi_irq;
1651 
1652 	return (0);
1653 }
1654