xref: /freebsd/sys/arm64/arm64/nexus.c (revision 266f97b5)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  */
30 
31 /*
32  * This code implements a `root nexus' for Arm Architecture
33  * machines.  The function of the root nexus is to serve as an
34  * attachment point for both processors and buses, and to manage
35  * resources which are common to all of them.  In particular,
36  * this code implements the core resource managers for interrupt
37  * requests and I/O memory address space.
38  */
39 
40 #include "opt_acpi.h"
41 #include "opt_platform.h"
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/module.h>
52 #include <machine/bus.h>
53 #include <sys/rman.h>
54 #include <sys/interrupt.h>
55 
56 #include <machine/machdep.h>
57 #include <machine/vmparam.h>
58 #include <machine/pcb.h>
59 #include <vm/vm.h>
60 #include <vm/pmap.h>
61 
62 #include <machine/resource.h>
63 #include <machine/intr.h>
64 
65 #ifdef FDT
66 #include <dev/ofw/ofw_bus_subr.h>
67 #include <dev/ofw/openfirm.h>
68 #include "ofw_bus_if.h"
69 #endif
70 #ifdef DEV_ACPI
71 #include <contrib/dev/acpica/include/acpi.h>
72 #include <dev/acpica/acpivar.h>
73 #include "acpi_bus_if.h"
74 #include "pcib_if.h"
75 #endif
76 
77 extern struct bus_space memmap_bus;
78 
79 static MALLOC_DEFINE(M_NEXUSDEV, "nexusdev", "Nexus device");
80 
81 struct nexus_device {
82 	struct resource_list	nx_resources;
83 };
84 
85 #define DEVTONX(dev)	((struct nexus_device *)device_get_ivars(dev))
86 
87 static struct rman mem_rman;
88 static struct rman irq_rman;
89 
90 static	int nexus_attach(device_t);
91 
92 #ifdef FDT
93 static device_probe_t	nexus_fdt_probe;
94 static device_attach_t	nexus_fdt_attach;
95 #endif
96 #ifdef DEV_ACPI
97 static device_probe_t	nexus_acpi_probe;
98 static device_attach_t	nexus_acpi_attach;
99 #endif
100 
101 static	int nexus_print_child(device_t, device_t);
102 static	device_t nexus_add_child(device_t, u_int, const char *, int);
103 static	struct resource *nexus_alloc_resource(device_t, device_t, int, int *,
104     rman_res_t, rman_res_t, rman_res_t, u_int);
105 static	int nexus_activate_resource(device_t, device_t, int, int,
106     struct resource *);
107 static	int nexus_map_resource(device_t, device_t, int, struct resource *,
108     struct resource_map_request *, struct resource_map *);
109 static int nexus_config_intr(device_t dev, int irq, enum intr_trigger trig,
110     enum intr_polarity pol);
111 static struct resource_list *nexus_get_reslist(device_t, device_t);
112 static	int nexus_set_resource(device_t, device_t, int, int,
113     rman_res_t, rman_res_t);
114 static	int nexus_deactivate_resource(device_t, device_t, int, int,
115     struct resource *);
116 static int nexus_release_resource(device_t, device_t, int, int,
117     struct resource *);
118 
119 static int nexus_setup_intr(device_t dev, device_t child, struct resource *res,
120     int flags, driver_filter_t *filt, driver_intr_t *intr, void *arg, void **cookiep);
121 static int nexus_teardown_intr(device_t, device_t, struct resource *, void *);
122 static bus_space_tag_t nexus_get_bus_tag(device_t, device_t);
123 #ifdef SMP
124 static int nexus_bind_intr(device_t, device_t, struct resource *, int);
125 #endif
126 
127 #ifdef FDT
128 static int nexus_ofw_map_intr(device_t dev, device_t child, phandle_t iparent,
129     int icells, pcell_t *intr);
130 #endif
131 
132 static device_method_t nexus_methods[] = {
133 	/* Bus interface */
134 	DEVMETHOD(bus_print_child,	nexus_print_child),
135 	DEVMETHOD(bus_add_child,	nexus_add_child),
136 	DEVMETHOD(bus_alloc_resource,	nexus_alloc_resource),
137 	DEVMETHOD(bus_activate_resource,	nexus_activate_resource),
138 	DEVMETHOD(bus_map_resource,	nexus_map_resource),
139 	DEVMETHOD(bus_config_intr,	nexus_config_intr),
140 	DEVMETHOD(bus_get_resource_list, nexus_get_reslist),
141 	DEVMETHOD(bus_set_resource,	nexus_set_resource),
142 	DEVMETHOD(bus_deactivate_resource,	nexus_deactivate_resource),
143 	DEVMETHOD(bus_release_resource,	nexus_release_resource),
144 	DEVMETHOD(bus_setup_intr,	nexus_setup_intr),
145 	DEVMETHOD(bus_teardown_intr,	nexus_teardown_intr),
146 	DEVMETHOD(bus_get_bus_tag,	nexus_get_bus_tag),
147 #ifdef SMP
148 	DEVMETHOD(bus_bind_intr,	nexus_bind_intr),
149 #endif
150 	{ 0, 0 }
151 };
152 
153 static driver_t nexus_driver = {
154 	"nexus",
155 	nexus_methods,
156 	1			/* no softc */
157 };
158 
159 static int
160 nexus_attach(device_t dev)
161 {
162 
163 	mem_rman.rm_start = 0;
164 	mem_rman.rm_end = BUS_SPACE_MAXADDR;
165 	mem_rman.rm_type = RMAN_ARRAY;
166 	mem_rman.rm_descr = "I/O memory addresses";
167 	if (rman_init(&mem_rman) ||
168 	    rman_manage_region(&mem_rman, 0, BUS_SPACE_MAXADDR))
169 		panic("nexus_attach mem_rman");
170 	irq_rman.rm_start = 0;
171 	irq_rman.rm_end = ~0;
172 	irq_rman.rm_type = RMAN_ARRAY;
173 	irq_rman.rm_descr = "Interrupts";
174 	if (rman_init(&irq_rman) || rman_manage_region(&irq_rman, 0, ~0))
175 		panic("nexus_attach irq_rman");
176 
177 	bus_generic_probe(dev);
178 	bus_generic_attach(dev);
179 
180 	return (0);
181 }
182 
183 static int
184 nexus_print_child(device_t bus, device_t child)
185 {
186 	int retval = 0;
187 
188 	retval += bus_print_child_header(bus, child);
189 	retval += printf("\n");
190 
191 	return (retval);
192 }
193 
194 static device_t
195 nexus_add_child(device_t bus, u_int order, const char *name, int unit)
196 {
197 	device_t child;
198 	struct nexus_device *ndev;
199 
200 	ndev = malloc(sizeof(struct nexus_device), M_NEXUSDEV, M_NOWAIT|M_ZERO);
201 	if (!ndev)
202 		return (0);
203 	resource_list_init(&ndev->nx_resources);
204 
205 	child = device_add_child_ordered(bus, order, name, unit);
206 
207 	/* should we free this in nexus_child_detached? */
208 	device_set_ivars(child, ndev);
209 
210 	return (child);
211 }
212 
213 /*
214  * Allocate a resource on behalf of child.  NB: child is usually going to be a
215  * child of one of our descendants, not a direct child of nexus0.
216  * (Exceptions include footbridge.)
217  */
218 static struct resource *
219 nexus_alloc_resource(device_t bus, device_t child, int type, int *rid,
220     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
221 {
222 	struct nexus_device *ndev = DEVTONX(child);
223 	struct resource *rv;
224 	struct resource_list_entry *rle;
225 	struct rman *rm;
226 	int needactivate = flags & RF_ACTIVE;
227 
228 	/*
229 	 * If this is an allocation of the "default" range for a given
230 	 * RID, and we know what the resources for this device are
231 	 * (ie. they aren't maintained by a child bus), then work out
232 	 * the start/end values.
233 	 */
234 	if (RMAN_IS_DEFAULT_RANGE(start, end) && (count == 1)) {
235 		if (device_get_parent(child) != bus || ndev == NULL)
236 			return(NULL);
237 		rle = resource_list_find(&ndev->nx_resources, type, *rid);
238 		if (rle == NULL)
239 			return(NULL);
240 		start = rle->start;
241 		end = rle->end;
242 		count = rle->count;
243 	}
244 
245 	switch (type) {
246 	case SYS_RES_IRQ:
247 		rm = &irq_rman;
248 		break;
249 
250 	case SYS_RES_MEMORY:
251 	case SYS_RES_IOPORT:
252 		rm = &mem_rman;
253 		break;
254 
255 	default:
256 		return (NULL);
257 	}
258 
259 	rv = rman_reserve_resource(rm, start, end, count, flags, child);
260 	if (rv == NULL)
261 		return (NULL);
262 
263 	rman_set_rid(rv, *rid);
264 	rman_set_bushandle(rv, rman_get_start(rv));
265 
266 	if (needactivate) {
267 		if (bus_activate_resource(child, type, *rid, rv)) {
268 			rman_release_resource(rv);
269 			return (NULL);
270 		}
271 	}
272 
273 	return (rv);
274 }
275 
276 static int
277 nexus_release_resource(device_t bus, device_t child, int type, int rid,
278     struct resource *res)
279 {
280 	int error;
281 
282 	if (rman_get_flags(res) & RF_ACTIVE) {
283 		error = bus_deactivate_resource(child, type, rid, res);
284 		if (error)
285 			return (error);
286 	}
287 	return (rman_release_resource(res));
288 }
289 
290 static int
291 nexus_config_intr(device_t dev, int irq, enum intr_trigger trig,
292     enum intr_polarity pol)
293 {
294 
295 	/*
296 	 * On arm64 (due to INTRNG), ACPI interrupt configuration is
297 	 * done in nexus_acpi_map_intr().
298 	 */
299 	return (0);
300 }
301 
302 static int
303 nexus_setup_intr(device_t dev, device_t child, struct resource *res, int flags,
304     driver_filter_t *filt, driver_intr_t *intr, void *arg, void **cookiep)
305 {
306 	int error;
307 
308 	if ((rman_get_flags(res) & RF_SHAREABLE) == 0)
309 		flags |= INTR_EXCL;
310 
311 	/* We depend here on rman_activate_resource() being idempotent. */
312 	error = rman_activate_resource(res);
313 	if (error)
314 		return (error);
315 
316 	error = intr_setup_irq(child, res, filt, intr, arg, flags, cookiep);
317 
318 	return (error);
319 }
320 
321 static int
322 nexus_teardown_intr(device_t dev, device_t child, struct resource *r, void *ih)
323 {
324 
325 	return (intr_teardown_irq(child, r, ih));
326 }
327 
328 #ifdef SMP
329 static int
330 nexus_bind_intr(device_t dev, device_t child, struct resource *irq, int cpu)
331 {
332 
333 	return (intr_bind_irq(child, irq, cpu));
334 }
335 #endif
336 
337 static bus_space_tag_t
338 nexus_get_bus_tag(device_t bus __unused, device_t child __unused)
339 {
340 
341 	return(&memmap_bus);
342 }
343 
344 static int
345 nexus_activate_resource(device_t bus, device_t child, int type, int rid,
346     struct resource *r)
347 {
348 	struct resource_map map;
349 	int err;
350 
351 	if ((err = rman_activate_resource(r)) != 0)
352 		return (err);
353 
354 	/*
355 	 * If this is a memory resource, map it into the kernel.
356 	 */
357 	switch (type) {
358 	case SYS_RES_IOPORT:
359 	case SYS_RES_MEMORY:
360 		if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
361 			err = nexus_map_resource(bus, child, type, r, NULL,
362 			    &map);
363 			if (err != 0) {
364 				rman_deactivate_resource(r);
365 				return (err);
366 			}
367 
368 			rman_set_mapping(r, &map);
369 		}
370 		break;
371 	case SYS_RES_IRQ:
372 		err = intr_activate_irq(child, r);
373 		if (err != 0) {
374 			rman_deactivate_resource(r);
375 			return (err);
376 		}
377 	}
378 	return (0);
379 }
380 
381 static struct resource_list *
382 nexus_get_reslist(device_t dev, device_t child)
383 {
384 	struct nexus_device *ndev = DEVTONX(child);
385 
386 	return (&ndev->nx_resources);
387 }
388 
389 static int
390 nexus_set_resource(device_t dev, device_t child, int type, int rid,
391     rman_res_t start, rman_res_t count)
392 {
393 	struct nexus_device	*ndev = DEVTONX(child);
394 	struct resource_list	*rl = &ndev->nx_resources;
395 
396 	/* XXX this should return a success/failure indicator */
397 	resource_list_add(rl, type, rid, start, start + count - 1, count);
398 
399 	return(0);
400 }
401 
402 static int
403 nexus_deactivate_resource(device_t bus, device_t child, int type, int rid,
404     struct resource *r)
405 {
406 	bus_size_t psize;
407 	bus_space_handle_t vaddr;
408 
409 	if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) {
410 		psize = (bus_size_t)rman_get_size(r);
411 		vaddr = rman_get_bushandle(r);
412 
413 		if (vaddr != 0) {
414 			bus_space_unmap(&memmap_bus, vaddr, psize);
415 			rman_set_virtual(r, NULL);
416 			rman_set_bushandle(r, 0);
417 		}
418 	} else if (type == SYS_RES_IRQ) {
419 		intr_deactivate_irq(child, r);
420 	}
421 
422 	return (rman_deactivate_resource(r));
423 }
424 
425 static int
426 nexus_map_resource(device_t bus, device_t child, int type, struct resource *r,
427     struct resource_map_request *argsp, struct resource_map *map)
428 {
429 	struct resource_map_request args;
430 	rman_res_t end, length, start;
431 
432 	/* Resources must be active to be mapped. */
433 	if ((rman_get_flags(r) & RF_ACTIVE) == 0)
434 		return (ENXIO);
435 
436 	/* Mappings are only supported on I/O and memory resources. */
437 	switch (type) {
438 	case SYS_RES_IOPORT:
439 	case SYS_RES_MEMORY:
440 		break;
441 	default:
442 		return (EINVAL);
443 	}
444 
445 	resource_init_map_request(&args);
446 	if (argsp != NULL)
447 		bcopy(argsp, &args, imin(argsp->size, args.size));
448 	start = rman_get_start(r) + args.offset;
449 	if (args.length == 0)
450 		length = rman_get_size(r);
451 	else
452 		length = args.length;
453 	end = start + length - 1;
454 	if (start > rman_get_end(r) || start < rman_get_start(r))
455 		return (EINVAL);
456 	if (end > rman_get_end(r) || end < start)
457 		return (EINVAL);
458 
459 	map->r_vaddr = pmap_mapdev_attr(start, length, args.memattr);
460 	map->r_bustag = &memmap_bus;
461 	map->r_size = length;
462 
463 	/*
464 	 * The handle is the virtual address.
465 	 */
466 	map->r_bushandle = (bus_space_handle_t)map->r_vaddr;
467 	return (0);
468 }
469 
470 #ifdef FDT
471 static device_method_t nexus_fdt_methods[] = {
472 	/* Device interface */
473 	DEVMETHOD(device_probe,		nexus_fdt_probe),
474 	DEVMETHOD(device_attach,	nexus_fdt_attach),
475 
476 	/* OFW interface */
477 	DEVMETHOD(ofw_bus_map_intr,	nexus_ofw_map_intr),
478 
479 	DEVMETHOD_END,
480 };
481 
482 #define nexus_baseclasses nexus_fdt_baseclasses
483 DEFINE_CLASS_1(nexus, nexus_fdt_driver, nexus_fdt_methods, 1, nexus_driver);
484 #undef nexus_baseclasses
485 static devclass_t nexus_fdt_devclass;
486 
487 EARLY_DRIVER_MODULE(nexus_fdt, root, nexus_fdt_driver, nexus_fdt_devclass,
488     0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_FIRST);
489 
490 static int
491 nexus_fdt_probe(device_t dev)
492 {
493 
494 	if (arm64_bus_method != ARM64_BUS_FDT)
495 		return (ENXIO);
496 
497 	device_quiet(dev);
498 	return (BUS_PROBE_DEFAULT);
499 }
500 
501 static int
502 nexus_fdt_attach(device_t dev)
503 {
504 
505 	nexus_add_child(dev, 10, "ofwbus", 0);
506 	return (nexus_attach(dev));
507 }
508 
509 static int
510 nexus_ofw_map_intr(device_t dev, device_t child, phandle_t iparent, int icells,
511     pcell_t *intr)
512 {
513 	u_int irq;
514 	struct intr_map_data_fdt *fdt_data;
515 	size_t len;
516 
517 	len = sizeof(*fdt_data) + icells * sizeof(pcell_t);
518 	fdt_data = (struct intr_map_data_fdt *)intr_alloc_map_data(
519 	    INTR_MAP_DATA_FDT, len, M_WAITOK | M_ZERO);
520 	fdt_data->iparent = iparent;
521 	fdt_data->ncells = icells;
522 	memcpy(fdt_data->cells, intr, icells * sizeof(pcell_t));
523 	irq = intr_map_irq(NULL, iparent, (struct intr_map_data *)fdt_data);
524 	return (irq);
525 }
526 #endif
527 
528 #ifdef DEV_ACPI
529 static int nexus_acpi_map_intr(device_t dev, device_t child, u_int irq, int trig, int pol);
530 
531 static device_method_t nexus_acpi_methods[] = {
532 	/* Device interface */
533 	DEVMETHOD(device_probe,		nexus_acpi_probe),
534 	DEVMETHOD(device_attach,	nexus_acpi_attach),
535 
536 	/* ACPI interface */
537 	DEVMETHOD(acpi_bus_map_intr,	nexus_acpi_map_intr),
538 
539 	DEVMETHOD_END,
540 };
541 
542 #define nexus_baseclasses nexus_acpi_baseclasses
543 DEFINE_CLASS_1(nexus, nexus_acpi_driver, nexus_acpi_methods, 1,
544     nexus_driver);
545 #undef nexus_baseclasses
546 static devclass_t nexus_acpi_devclass;
547 
548 EARLY_DRIVER_MODULE(nexus_acpi, root, nexus_acpi_driver, nexus_acpi_devclass,
549     0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_FIRST);
550 
551 static int
552 nexus_acpi_probe(device_t dev)
553 {
554 
555 	if (arm64_bus_method != ARM64_BUS_ACPI || acpi_identify() != 0)
556 		return (ENXIO);
557 
558 	device_quiet(dev);
559 	return (BUS_PROBE_LOW_PRIORITY);
560 }
561 
562 static int
563 nexus_acpi_attach(device_t dev)
564 {
565 
566 	nexus_add_child(dev, 10, "acpi", 0);
567 	return (nexus_attach(dev));
568 }
569 
570 static int
571 nexus_acpi_map_intr(device_t dev, device_t child, u_int irq, int trig, int pol)
572 {
573 	struct intr_map_data_acpi *acpi_data;
574 	size_t len;
575 
576 	len = sizeof(*acpi_data);
577 	acpi_data = (struct intr_map_data_acpi *)intr_alloc_map_data(
578 	    INTR_MAP_DATA_ACPI, len, M_WAITOK | M_ZERO);
579 	acpi_data->irq = irq;
580 	acpi_data->pol = pol;
581 	acpi_data->trig = trig;
582 
583 	/*
584 	 * TODO: This will only handle a single interrupt controller.
585 	 * ACPI will map multiple controllers into a single virtual IRQ
586 	 * space. Each controller has a System Vector Base to hold the
587 	 * first irq it handles in this space. As such the correct way
588 	 * to handle interrupts with ACPI is to search through the
589 	 * controllers for the largest base value that is no larger than
590 	 * the IRQ value.
591 	 */
592 	irq = intr_map_irq(NULL, ACPI_INTR_XREF,
593 	    (struct intr_map_data *)acpi_data);
594 	return (irq);
595 }
596 #endif
597