xref: /freebsd/sys/arm64/arm64/nexus.c (revision 7cc42f6d)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  */
30 
31 /*
32  * This code implements a `root nexus' for Arm Architecture
33  * machines.  The function of the root nexus is to serve as an
34  * attachment point for both processors and buses, and to manage
35  * resources which are common to all of them.  In particular,
36  * this code implements the core resource managers for interrupt
37  * requests, DMA requests (which rightfully should be a part of the
38  * ISA code but it's easier to do it here for now), I/O port addresses,
39  * and I/O memory address space.
40  */
41 
42 #include "opt_acpi.h"
43 #include "opt_platform.h"
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/module.h>
54 #include <machine/bus.h>
55 #include <sys/rman.h>
56 #include <sys/interrupt.h>
57 
58 #include <machine/machdep.h>
59 #include <machine/vmparam.h>
60 #include <machine/pcb.h>
61 #include <vm/vm.h>
62 #include <vm/pmap.h>
63 
64 #include <machine/resource.h>
65 #include <machine/intr.h>
66 
67 #ifdef FDT
68 #include <dev/ofw/ofw_bus_subr.h>
69 #include <dev/ofw/openfirm.h>
70 #include "ofw_bus_if.h"
71 #endif
72 #ifdef DEV_ACPI
73 #include <contrib/dev/acpica/include/acpi.h>
74 #include <dev/acpica/acpivar.h>
75 #include "acpi_bus_if.h"
76 #include "pcib_if.h"
77 #endif
78 
79 extern struct bus_space memmap_bus;
80 
81 static MALLOC_DEFINE(M_NEXUSDEV, "nexusdev", "Nexus device");
82 
83 struct nexus_device {
84 	struct resource_list	nx_resources;
85 };
86 
87 #define DEVTONX(dev)	((struct nexus_device *)device_get_ivars(dev))
88 
89 static struct rman mem_rman;
90 static struct rman irq_rman;
91 
92 static	int nexus_attach(device_t);
93 
94 #ifdef FDT
95 static device_probe_t	nexus_fdt_probe;
96 static device_attach_t	nexus_fdt_attach;
97 #endif
98 #ifdef DEV_ACPI
99 static device_probe_t	nexus_acpi_probe;
100 static device_attach_t	nexus_acpi_attach;
101 #endif
102 
103 static	int nexus_print_child(device_t, device_t);
104 static	device_t nexus_add_child(device_t, u_int, const char *, int);
105 static	struct resource *nexus_alloc_resource(device_t, device_t, int, int *,
106     rman_res_t, rman_res_t, rman_res_t, u_int);
107 static	int nexus_activate_resource(device_t, device_t, int, int,
108     struct resource *);
109 static int nexus_config_intr(device_t dev, int irq, enum intr_trigger trig,
110     enum intr_polarity pol);
111 static struct resource_list *nexus_get_reslist(device_t, device_t);
112 static	int nexus_set_resource(device_t, device_t, int, int,
113     rman_res_t, rman_res_t);
114 static	int nexus_deactivate_resource(device_t, device_t, int, int,
115     struct resource *);
116 static int nexus_release_resource(device_t, device_t, int, int,
117     struct resource *);
118 
119 static int nexus_setup_intr(device_t dev, device_t child, struct resource *res,
120     int flags, driver_filter_t *filt, driver_intr_t *intr, void *arg, void **cookiep);
121 static int nexus_teardown_intr(device_t, device_t, struct resource *, void *);
122 static bus_space_tag_t nexus_get_bus_tag(device_t, device_t);
123 #ifdef SMP
124 static int nexus_bind_intr(device_t, device_t, struct resource *, int);
125 #endif
126 
127 #ifdef FDT
128 static int nexus_ofw_map_intr(device_t dev, device_t child, phandle_t iparent,
129     int icells, pcell_t *intr);
130 #endif
131 
132 static device_method_t nexus_methods[] = {
133 	/* Bus interface */
134 	DEVMETHOD(bus_print_child,	nexus_print_child),
135 	DEVMETHOD(bus_add_child,	nexus_add_child),
136 	DEVMETHOD(bus_alloc_resource,	nexus_alloc_resource),
137 	DEVMETHOD(bus_activate_resource,	nexus_activate_resource),
138 	DEVMETHOD(bus_config_intr,	nexus_config_intr),
139 	DEVMETHOD(bus_get_resource_list, nexus_get_reslist),
140 	DEVMETHOD(bus_set_resource,	nexus_set_resource),
141 	DEVMETHOD(bus_deactivate_resource,	nexus_deactivate_resource),
142 	DEVMETHOD(bus_release_resource,	nexus_release_resource),
143 	DEVMETHOD(bus_setup_intr,	nexus_setup_intr),
144 	DEVMETHOD(bus_teardown_intr,	nexus_teardown_intr),
145 	DEVMETHOD(bus_get_bus_tag,	nexus_get_bus_tag),
146 #ifdef SMP
147 	DEVMETHOD(bus_bind_intr,	nexus_bind_intr),
148 #endif
149 	{ 0, 0 }
150 };
151 
152 static driver_t nexus_driver = {
153 	"nexus",
154 	nexus_methods,
155 	1			/* no softc */
156 };
157 
158 static int
159 nexus_attach(device_t dev)
160 {
161 
162 	mem_rman.rm_start = 0;
163 	mem_rman.rm_end = BUS_SPACE_MAXADDR;
164 	mem_rman.rm_type = RMAN_ARRAY;
165 	mem_rman.rm_descr = "I/O memory addresses";
166 	if (rman_init(&mem_rman) ||
167 	    rman_manage_region(&mem_rman, 0, BUS_SPACE_MAXADDR))
168 		panic("nexus_attach mem_rman");
169 	irq_rman.rm_start = 0;
170 	irq_rman.rm_end = ~0;
171 	irq_rman.rm_type = RMAN_ARRAY;
172 	irq_rman.rm_descr = "Interrupts";
173 	if (rman_init(&irq_rman) || rman_manage_region(&irq_rman, 0, ~0))
174 		panic("nexus_attach irq_rman");
175 
176 	bus_generic_probe(dev);
177 	bus_generic_attach(dev);
178 
179 	return (0);
180 }
181 
182 static int
183 nexus_print_child(device_t bus, device_t child)
184 {
185 	int retval = 0;
186 
187 	retval += bus_print_child_header(bus, child);
188 	retval += printf("\n");
189 
190 	return (retval);
191 }
192 
193 static device_t
194 nexus_add_child(device_t bus, u_int order, const char *name, int unit)
195 {
196 	device_t child;
197 	struct nexus_device *ndev;
198 
199 	ndev = malloc(sizeof(struct nexus_device), M_NEXUSDEV, M_NOWAIT|M_ZERO);
200 	if (!ndev)
201 		return (0);
202 	resource_list_init(&ndev->nx_resources);
203 
204 	child = device_add_child_ordered(bus, order, name, unit);
205 
206 	/* should we free this in nexus_child_detached? */
207 	device_set_ivars(child, ndev);
208 
209 	return (child);
210 }
211 
212 /*
213  * Allocate a resource on behalf of child.  NB: child is usually going to be a
214  * child of one of our descendants, not a direct child of nexus0.
215  * (Exceptions include footbridge.)
216  */
217 static struct resource *
218 nexus_alloc_resource(device_t bus, device_t child, int type, int *rid,
219     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
220 {
221 	struct nexus_device *ndev = DEVTONX(child);
222 	struct resource *rv;
223 	struct resource_list_entry *rle;
224 	struct rman *rm;
225 	int needactivate = flags & RF_ACTIVE;
226 
227 	/*
228 	 * If this is an allocation of the "default" range for a given
229 	 * RID, and we know what the resources for this device are
230 	 * (ie. they aren't maintained by a child bus), then work out
231 	 * the start/end values.
232 	 */
233 	if (RMAN_IS_DEFAULT_RANGE(start, end) && (count == 1)) {
234 		if (device_get_parent(child) != bus || ndev == NULL)
235 			return(NULL);
236 		rle = resource_list_find(&ndev->nx_resources, type, *rid);
237 		if (rle == NULL)
238 			return(NULL);
239 		start = rle->start;
240 		end = rle->end;
241 		count = rle->count;
242 	}
243 
244 	switch (type) {
245 	case SYS_RES_IRQ:
246 		rm = &irq_rman;
247 		break;
248 
249 	case SYS_RES_MEMORY:
250 	case SYS_RES_IOPORT:
251 		rm = &mem_rman;
252 		break;
253 
254 	default:
255 		return (NULL);
256 	}
257 
258 	rv = rman_reserve_resource(rm, start, end, count, flags, child);
259 	if (rv == NULL)
260 		return (NULL);
261 
262 	rman_set_rid(rv, *rid);
263 	rman_set_bushandle(rv, rman_get_start(rv));
264 
265 	if (needactivate) {
266 		if (bus_activate_resource(child, type, *rid, rv)) {
267 			rman_release_resource(rv);
268 			return (NULL);
269 		}
270 	}
271 
272 	return (rv);
273 }
274 
275 static int
276 nexus_release_resource(device_t bus, device_t child, int type, int rid,
277     struct resource *res)
278 {
279 	int error;
280 
281 	if (rman_get_flags(res) & RF_ACTIVE) {
282 		error = bus_deactivate_resource(child, type, rid, res);
283 		if (error)
284 			return (error);
285 	}
286 	return (rman_release_resource(res));
287 }
288 
289 static int
290 nexus_config_intr(device_t dev, int irq, enum intr_trigger trig,
291     enum intr_polarity pol)
292 {
293 
294 	/*
295 	 * On arm64 (due to INTRNG), ACPI interrupt configuration is
296 	 * done in nexus_acpi_map_intr().
297 	 */
298 	return (0);
299 }
300 
301 static int
302 nexus_setup_intr(device_t dev, device_t child, struct resource *res, int flags,
303     driver_filter_t *filt, driver_intr_t *intr, void *arg, void **cookiep)
304 {
305 	int error;
306 
307 	if ((rman_get_flags(res) & RF_SHAREABLE) == 0)
308 		flags |= INTR_EXCL;
309 
310 	/* We depend here on rman_activate_resource() being idempotent. */
311 	error = rman_activate_resource(res);
312 	if (error)
313 		return (error);
314 
315 	error = intr_setup_irq(child, res, filt, intr, arg, flags, cookiep);
316 
317 	return (error);
318 }
319 
320 static int
321 nexus_teardown_intr(device_t dev, device_t child, struct resource *r, void *ih)
322 {
323 
324 	return (intr_teardown_irq(child, r, ih));
325 }
326 
327 #ifdef SMP
328 static int
329 nexus_bind_intr(device_t dev, device_t child, struct resource *irq, int cpu)
330 {
331 
332 	return (intr_bind_irq(child, irq, cpu));
333 }
334 #endif
335 
336 static bus_space_tag_t
337 nexus_get_bus_tag(device_t bus __unused, device_t child __unused)
338 {
339 
340 	return(&memmap_bus);
341 }
342 
343 static int
344 nexus_activate_resource(device_t bus, device_t child, int type, int rid,
345     struct resource *r)
346 {
347 	int err;
348 	bus_addr_t paddr;
349 	bus_size_t psize;
350 	bus_space_handle_t vaddr;
351 
352 	if ((err = rman_activate_resource(r)) != 0)
353 		return (err);
354 
355 	/*
356 	 * If this is a memory resource, map it into the kernel.
357 	 */
358 	if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) {
359 		paddr = (bus_addr_t)rman_get_start(r);
360 		psize = (bus_size_t)rman_get_size(r);
361 		err = bus_space_map(&memmap_bus, paddr, psize, 0, &vaddr);
362 		if (err != 0) {
363 			rman_deactivate_resource(r);
364 			return (err);
365 		}
366 		rman_set_bustag(r, &memmap_bus);
367 		rman_set_virtual(r, (void *)vaddr);
368 		rman_set_bushandle(r, vaddr);
369 	} else if (type == SYS_RES_IRQ) {
370 		err = intr_activate_irq(child, r);
371 		if (err != 0) {
372 			rman_deactivate_resource(r);
373 			return (err);
374 		}
375 	}
376 	return (0);
377 }
378 
379 static struct resource_list *
380 nexus_get_reslist(device_t dev, device_t child)
381 {
382 	struct nexus_device *ndev = DEVTONX(child);
383 
384 	return (&ndev->nx_resources);
385 }
386 
387 static int
388 nexus_set_resource(device_t dev, device_t child, int type, int rid,
389     rman_res_t start, rman_res_t count)
390 {
391 	struct nexus_device	*ndev = DEVTONX(child);
392 	struct resource_list	*rl = &ndev->nx_resources;
393 
394 	/* XXX this should return a success/failure indicator */
395 	resource_list_add(rl, type, rid, start, start + count - 1, count);
396 
397 	return(0);
398 }
399 
400 static int
401 nexus_deactivate_resource(device_t bus, device_t child, int type, int rid,
402     struct resource *r)
403 {
404 	bus_size_t psize;
405 	bus_space_handle_t vaddr;
406 
407 	if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) {
408 		psize = (bus_size_t)rman_get_size(r);
409 		vaddr = rman_get_bushandle(r);
410 
411 		if (vaddr != 0) {
412 			bus_space_unmap(&memmap_bus, vaddr, psize);
413 			rman_set_virtual(r, NULL);
414 			rman_set_bushandle(r, 0);
415 		}
416 	} else if (type == SYS_RES_IRQ) {
417 		intr_deactivate_irq(child, r);
418 	}
419 
420 	return (rman_deactivate_resource(r));
421 }
422 
423 #ifdef FDT
424 static device_method_t nexus_fdt_methods[] = {
425 	/* Device interface */
426 	DEVMETHOD(device_probe,		nexus_fdt_probe),
427 	DEVMETHOD(device_attach,	nexus_fdt_attach),
428 
429 	/* OFW interface */
430 	DEVMETHOD(ofw_bus_map_intr,	nexus_ofw_map_intr),
431 
432 	DEVMETHOD_END,
433 };
434 
435 #define nexus_baseclasses nexus_fdt_baseclasses
436 DEFINE_CLASS_1(nexus, nexus_fdt_driver, nexus_fdt_methods, 1, nexus_driver);
437 #undef nexus_baseclasses
438 static devclass_t nexus_fdt_devclass;
439 
440 EARLY_DRIVER_MODULE(nexus_fdt, root, nexus_fdt_driver, nexus_fdt_devclass,
441     0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_FIRST);
442 
443 static int
444 nexus_fdt_probe(device_t dev)
445 {
446 
447 	if (arm64_bus_method != ARM64_BUS_FDT)
448 		return (ENXIO);
449 
450 	device_quiet(dev);
451 	return (BUS_PROBE_DEFAULT);
452 }
453 
454 static int
455 nexus_fdt_attach(device_t dev)
456 {
457 
458 	nexus_add_child(dev, 10, "ofwbus", 0);
459 	return (nexus_attach(dev));
460 }
461 
462 static int
463 nexus_ofw_map_intr(device_t dev, device_t child, phandle_t iparent, int icells,
464     pcell_t *intr)
465 {
466 	u_int irq;
467 	struct intr_map_data_fdt *fdt_data;
468 	size_t len;
469 
470 	len = sizeof(*fdt_data) + icells * sizeof(pcell_t);
471 	fdt_data = (struct intr_map_data_fdt *)intr_alloc_map_data(
472 	    INTR_MAP_DATA_FDT, len, M_WAITOK | M_ZERO);
473 	fdt_data->iparent = iparent;
474 	fdt_data->ncells = icells;
475 	memcpy(fdt_data->cells, intr, icells * sizeof(pcell_t));
476 	irq = intr_map_irq(NULL, iparent, (struct intr_map_data *)fdt_data);
477 	return (irq);
478 }
479 #endif
480 
481 #ifdef DEV_ACPI
482 static int nexus_acpi_map_intr(device_t dev, device_t child, u_int irq, int trig, int pol);
483 
484 static device_method_t nexus_acpi_methods[] = {
485 	/* Device interface */
486 	DEVMETHOD(device_probe,		nexus_acpi_probe),
487 	DEVMETHOD(device_attach,	nexus_acpi_attach),
488 
489 	/* ACPI interface */
490 	DEVMETHOD(acpi_bus_map_intr,	nexus_acpi_map_intr),
491 
492 	DEVMETHOD_END,
493 };
494 
495 #define nexus_baseclasses nexus_acpi_baseclasses
496 DEFINE_CLASS_1(nexus, nexus_acpi_driver, nexus_acpi_methods, 1,
497     nexus_driver);
498 #undef nexus_baseclasses
499 static devclass_t nexus_acpi_devclass;
500 
501 EARLY_DRIVER_MODULE(nexus_acpi, root, nexus_acpi_driver, nexus_acpi_devclass,
502     0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_FIRST);
503 
504 static int
505 nexus_acpi_probe(device_t dev)
506 {
507 
508 	if (arm64_bus_method != ARM64_BUS_ACPI || acpi_identify() != 0)
509 		return (ENXIO);
510 
511 	device_quiet(dev);
512 	return (BUS_PROBE_LOW_PRIORITY);
513 }
514 
515 static int
516 nexus_acpi_attach(device_t dev)
517 {
518 
519 	nexus_add_child(dev, 10, "acpi", 0);
520 	return (nexus_attach(dev));
521 }
522 
523 static int
524 nexus_acpi_map_intr(device_t dev, device_t child, u_int irq, int trig, int pol)
525 {
526 	struct intr_map_data_acpi *acpi_data;
527 	size_t len;
528 
529 	len = sizeof(*acpi_data);
530 	acpi_data = (struct intr_map_data_acpi *)intr_alloc_map_data(
531 	    INTR_MAP_DATA_ACPI, len, M_WAITOK | M_ZERO);
532 	acpi_data->irq = irq;
533 	acpi_data->pol = pol;
534 	acpi_data->trig = trig;
535 
536 	/*
537 	 * TODO: This will only handle a single interrupt controller.
538 	 * ACPI will map multiple controllers into a single virtual IRQ
539 	 * space. Each controller has a System Vector Base to hold the
540 	 * first irq it handles in this space. As such the correct way
541 	 * to handle interrupts with ACPI is to search through the
542 	 * controllers for the largest base value that is no larger than
543 	 * the IRQ value.
544 	 */
545 	irq = intr_map_irq(NULL, ACPI_INTR_XREF,
546 	    (struct intr_map_data *)acpi_data);
547 	return (irq);
548 }
549 #endif
550