xref: /freebsd/sys/arm64/arm64/pmap.c (revision 0957b409)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2003 Peter Wemm
9  * All rights reserved.
10  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11  * All rights reserved.
12  * Copyright (c) 2014 Andrew Turner
13  * All rights reserved.
14  * Copyright (c) 2014-2016 The FreeBSD Foundation
15  * All rights reserved.
16  *
17  * This code is derived from software contributed to Berkeley by
18  * the Systems Programming Group of the University of Utah Computer
19  * Science Department and William Jolitz of UUNET Technologies Inc.
20  *
21  * This software was developed by Andrew Turner under sponsorship from
22  * the FreeBSD Foundation.
23  *
24  * Redistribution and use in source and binary forms, with or without
25  * modification, are permitted provided that the following conditions
26  * are met:
27  * 1. Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  * 2. Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in the
31  *    documentation and/or other materials provided with the distribution.
32  * 3. All advertising materials mentioning features or use of this software
33  *    must display the following acknowledgement:
34  *	This product includes software developed by the University of
35  *	California, Berkeley and its contributors.
36  * 4. Neither the name of the University nor the names of its contributors
37  *    may be used to endorse or promote products derived from this software
38  *    without specific prior written permission.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
53  */
54 /*-
55  * Copyright (c) 2003 Networks Associates Technology, Inc.
56  * All rights reserved.
57  *
58  * This software was developed for the FreeBSD Project by Jake Burkholder,
59  * Safeport Network Services, and Network Associates Laboratories, the
60  * Security Research Division of Network Associates, Inc. under
61  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
62  * CHATS research program.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 /*
90  *	Manages physical address maps.
91  *
92  *	Since the information managed by this module is
93  *	also stored by the logical address mapping module,
94  *	this module may throw away valid virtual-to-physical
95  *	mappings at almost any time.  However, invalidations
96  *	of virtual-to-physical mappings must be done as
97  *	requested.
98  *
99  *	In order to cope with hardware architectures which
100  *	make virtual-to-physical map invalidates expensive,
101  *	this module may delay invalidate or reduced protection
102  *	operations until such time as they are actually
103  *	necessary.  This module is given full information as
104  *	to which processors are currently using which maps,
105  *	and to when physical maps must be made correct.
106  */
107 
108 #include "opt_vm.h"
109 
110 #include <sys/param.h>
111 #include <sys/bitstring.h>
112 #include <sys/bus.h>
113 #include <sys/systm.h>
114 #include <sys/kernel.h>
115 #include <sys/ktr.h>
116 #include <sys/lock.h>
117 #include <sys/malloc.h>
118 #include <sys/mman.h>
119 #include <sys/msgbuf.h>
120 #include <sys/mutex.h>
121 #include <sys/proc.h>
122 #include <sys/rwlock.h>
123 #include <sys/sx.h>
124 #include <sys/vmem.h>
125 #include <sys/vmmeter.h>
126 #include <sys/sched.h>
127 #include <sys/sysctl.h>
128 #include <sys/_unrhdr.h>
129 #include <sys/smp.h>
130 
131 #include <vm/vm.h>
132 #include <vm/vm_param.h>
133 #include <vm/vm_kern.h>
134 #include <vm/vm_page.h>
135 #include <vm/vm_map.h>
136 #include <vm/vm_object.h>
137 #include <vm/vm_extern.h>
138 #include <vm/vm_pageout.h>
139 #include <vm/vm_pager.h>
140 #include <vm/vm_phys.h>
141 #include <vm/vm_radix.h>
142 #include <vm/vm_reserv.h>
143 #include <vm/uma.h>
144 
145 #include <machine/machdep.h>
146 #include <machine/md_var.h>
147 #include <machine/pcb.h>
148 
149 #include <arm/include/physmem.h>
150 
151 #define	NL0PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
152 #define	NL1PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
153 #define	NL2PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
154 #define	NL3PG		(PAGE_SIZE/(sizeof (pt_entry_t)))
155 
156 #define	NUL0E		L0_ENTRIES
157 #define	NUL1E		(NUL0E * NL1PG)
158 #define	NUL2E		(NUL1E * NL2PG)
159 
160 #if !defined(DIAGNOSTIC)
161 #ifdef __GNUC_GNU_INLINE__
162 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
163 #else
164 #define PMAP_INLINE	extern inline
165 #endif
166 #else
167 #define PMAP_INLINE
168 #endif
169 
170 /*
171  * These are configured by the mair_el1 register. This is set up in locore.S
172  */
173 #define	DEVICE_MEMORY	0
174 #define	UNCACHED_MEMORY	1
175 #define	CACHED_MEMORY	2
176 
177 
178 #ifdef PV_STATS
179 #define PV_STAT(x)	do { x ; } while (0)
180 #else
181 #define PV_STAT(x)	do { } while (0)
182 #endif
183 
184 #define	pmap_l2_pindex(v)	((v) >> L2_SHIFT)
185 #define	pa_to_pvh(pa)		(&pv_table[pmap_l2_pindex(pa)])
186 
187 #define	NPV_LIST_LOCKS	MAXCPU
188 
189 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
190 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
191 
192 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
193 	struct rwlock **_lockp = (lockp);		\
194 	struct rwlock *_new_lock;			\
195 							\
196 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
197 	if (_new_lock != *_lockp) {			\
198 		if (*_lockp != NULL)			\
199 			rw_wunlock(*_lockp);		\
200 		*_lockp = _new_lock;			\
201 		rw_wlock(*_lockp);			\
202 	}						\
203 } while (0)
204 
205 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
206 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
207 
208 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
209 	struct rwlock **_lockp = (lockp);		\
210 							\
211 	if (*_lockp != NULL) {				\
212 		rw_wunlock(*_lockp);			\
213 		*_lockp = NULL;				\
214 	}						\
215 } while (0)
216 
217 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
218 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
219 
220 struct pmap kernel_pmap_store;
221 
222 /* Used for mapping ACPI memory before VM is initialized */
223 #define	PMAP_PREINIT_MAPPING_COUNT	32
224 #define	PMAP_PREINIT_MAPPING_SIZE	(PMAP_PREINIT_MAPPING_COUNT * L2_SIZE)
225 static vm_offset_t preinit_map_va;	/* Start VA of pre-init mapping space */
226 static int vm_initialized = 0;		/* No need to use pre-init maps when set */
227 
228 /*
229  * Reserve a few L2 blocks starting from 'preinit_map_va' pointer.
230  * Always map entire L2 block for simplicity.
231  * VA of L2 block = preinit_map_va + i * L2_SIZE
232  */
233 static struct pmap_preinit_mapping {
234 	vm_paddr_t	pa;
235 	vm_offset_t	va;
236 	vm_size_t	size;
237 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
238 
239 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
240 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
241 vm_offset_t kernel_vm_end = 0;
242 
243 /*
244  * Data for the pv entry allocation mechanism.
245  */
246 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
247 static struct mtx pv_chunks_mutex;
248 static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
249 static struct md_page *pv_table;
250 static struct md_page pv_dummy;
251 
252 vm_paddr_t dmap_phys_base;	/* The start of the dmap region */
253 vm_paddr_t dmap_phys_max;	/* The limit of the dmap region */
254 vm_offset_t dmap_max_addr;	/* The virtual address limit of the dmap */
255 
256 /* This code assumes all L1 DMAP entries will be used */
257 CTASSERT((DMAP_MIN_ADDRESS  & ~L0_OFFSET) == DMAP_MIN_ADDRESS);
258 CTASSERT((DMAP_MAX_ADDRESS  & ~L0_OFFSET) == DMAP_MAX_ADDRESS);
259 
260 #define	DMAP_TABLES	((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT)
261 extern pt_entry_t pagetable_dmap[];
262 
263 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
264 static vm_paddr_t physmap[PHYSMAP_SIZE];
265 static u_int physmap_idx;
266 
267 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
268 
269 static int superpages_enabled = 1;
270 SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled,
271     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &superpages_enabled, 0,
272     "Are large page mappings enabled?");
273 
274 /*
275  * Internal flags for pmap_enter()'s helper functions.
276  */
277 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
278 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
279 
280 static void	free_pv_chunk(struct pv_chunk *pc);
281 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
282 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
283 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
284 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
285 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
286 		    vm_offset_t va);
287 
288 static int pmap_change_attr(vm_offset_t va, vm_size_t size, int mode);
289 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
290 static pt_entry_t *pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va);
291 static pt_entry_t *pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2,
292     vm_offset_t va, struct rwlock **lockp);
293 static pt_entry_t *pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va);
294 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
295     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
296 static int pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2,
297     u_int flags, vm_page_t m, struct rwlock **lockp);
298 static int pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
299     pd_entry_t l1e, struct spglist *free, struct rwlock **lockp);
300 static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
301     pd_entry_t l2e, struct spglist *free, struct rwlock **lockp);
302 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
303     vm_page_t m, struct rwlock **lockp);
304 
305 static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
306 		struct rwlock **lockp);
307 
308 static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m,
309     struct spglist *free);
310 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
311 static __inline vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
312 
313 /*
314  * These load the old table data and store the new value.
315  * They need to be atomic as the System MMU may write to the table at
316  * the same time as the CPU.
317  */
318 #define	pmap_load_store(table, entry) atomic_swap_64(table, entry)
319 #define	pmap_set(table, mask) atomic_set_64(table, mask)
320 #define	pmap_load_clear(table) atomic_swap_64(table, 0)
321 #define	pmap_load(table) (*table)
322 
323 /********************/
324 /* Inline functions */
325 /********************/
326 
327 static __inline void
328 pagecopy(void *s, void *d)
329 {
330 
331 	memcpy(d, s, PAGE_SIZE);
332 }
333 
334 static __inline pd_entry_t *
335 pmap_l0(pmap_t pmap, vm_offset_t va)
336 {
337 
338 	return (&pmap->pm_l0[pmap_l0_index(va)]);
339 }
340 
341 static __inline pd_entry_t *
342 pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
343 {
344 	pd_entry_t *l1;
345 
346 	l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
347 	return (&l1[pmap_l1_index(va)]);
348 }
349 
350 static __inline pd_entry_t *
351 pmap_l1(pmap_t pmap, vm_offset_t va)
352 {
353 	pd_entry_t *l0;
354 
355 	l0 = pmap_l0(pmap, va);
356 	if ((pmap_load(l0) & ATTR_DESCR_MASK) != L0_TABLE)
357 		return (NULL);
358 
359 	return (pmap_l0_to_l1(l0, va));
360 }
361 
362 static __inline pd_entry_t *
363 pmap_l1_to_l2(pd_entry_t *l1, vm_offset_t va)
364 {
365 	pd_entry_t *l2;
366 
367 	l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
368 	return (&l2[pmap_l2_index(va)]);
369 }
370 
371 static __inline pd_entry_t *
372 pmap_l2(pmap_t pmap, vm_offset_t va)
373 {
374 	pd_entry_t *l1;
375 
376 	l1 = pmap_l1(pmap, va);
377 	if ((pmap_load(l1) & ATTR_DESCR_MASK) != L1_TABLE)
378 		return (NULL);
379 
380 	return (pmap_l1_to_l2(l1, va));
381 }
382 
383 static __inline pt_entry_t *
384 pmap_l2_to_l3(pd_entry_t *l2, vm_offset_t va)
385 {
386 	pt_entry_t *l3;
387 
388 	l3 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l2) & ~ATTR_MASK);
389 	return (&l3[pmap_l3_index(va)]);
390 }
391 
392 /*
393  * Returns the lowest valid pde for a given virtual address.
394  * The next level may or may not point to a valid page or block.
395  */
396 static __inline pd_entry_t *
397 pmap_pde(pmap_t pmap, vm_offset_t va, int *level)
398 {
399 	pd_entry_t *l0, *l1, *l2, desc;
400 
401 	l0 = pmap_l0(pmap, va);
402 	desc = pmap_load(l0) & ATTR_DESCR_MASK;
403 	if (desc != L0_TABLE) {
404 		*level = -1;
405 		return (NULL);
406 	}
407 
408 	l1 = pmap_l0_to_l1(l0, va);
409 	desc = pmap_load(l1) & ATTR_DESCR_MASK;
410 	if (desc != L1_TABLE) {
411 		*level = 0;
412 		return (l0);
413 	}
414 
415 	l2 = pmap_l1_to_l2(l1, va);
416 	desc = pmap_load(l2) & ATTR_DESCR_MASK;
417 	if (desc != L2_TABLE) {
418 		*level = 1;
419 		return (l1);
420 	}
421 
422 	*level = 2;
423 	return (l2);
424 }
425 
426 /*
427  * Returns the lowest valid pte block or table entry for a given virtual
428  * address. If there are no valid entries return NULL and set the level to
429  * the first invalid level.
430  */
431 static __inline pt_entry_t *
432 pmap_pte(pmap_t pmap, vm_offset_t va, int *level)
433 {
434 	pd_entry_t *l1, *l2, desc;
435 	pt_entry_t *l3;
436 
437 	l1 = pmap_l1(pmap, va);
438 	if (l1 == NULL) {
439 		*level = 0;
440 		return (NULL);
441 	}
442 	desc = pmap_load(l1) & ATTR_DESCR_MASK;
443 	if (desc == L1_BLOCK) {
444 		*level = 1;
445 		return (l1);
446 	}
447 
448 	if (desc != L1_TABLE) {
449 		*level = 1;
450 		return (NULL);
451 	}
452 
453 	l2 = pmap_l1_to_l2(l1, va);
454 	desc = pmap_load(l2) & ATTR_DESCR_MASK;
455 	if (desc == L2_BLOCK) {
456 		*level = 2;
457 		return (l2);
458 	}
459 
460 	if (desc != L2_TABLE) {
461 		*level = 2;
462 		return (NULL);
463 	}
464 
465 	*level = 3;
466 	l3 = pmap_l2_to_l3(l2, va);
467 	if ((pmap_load(l3) & ATTR_DESCR_MASK) != L3_PAGE)
468 		return (NULL);
469 
470 	return (l3);
471 }
472 
473 bool
474 pmap_ps_enabled(pmap_t pmap __unused)
475 {
476 
477 	return (superpages_enabled != 0);
478 }
479 
480 bool
481 pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l0, pd_entry_t **l1,
482     pd_entry_t **l2, pt_entry_t **l3)
483 {
484 	pd_entry_t *l0p, *l1p, *l2p;
485 
486 	if (pmap->pm_l0 == NULL)
487 		return (false);
488 
489 	l0p = pmap_l0(pmap, va);
490 	*l0 = l0p;
491 
492 	if ((pmap_load(l0p) & ATTR_DESCR_MASK) != L0_TABLE)
493 		return (false);
494 
495 	l1p = pmap_l0_to_l1(l0p, va);
496 	*l1 = l1p;
497 
498 	if ((pmap_load(l1p) & ATTR_DESCR_MASK) == L1_BLOCK) {
499 		*l2 = NULL;
500 		*l3 = NULL;
501 		return (true);
502 	}
503 
504 	if ((pmap_load(l1p) & ATTR_DESCR_MASK) != L1_TABLE)
505 		return (false);
506 
507 	l2p = pmap_l1_to_l2(l1p, va);
508 	*l2 = l2p;
509 
510 	if ((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK) {
511 		*l3 = NULL;
512 		return (true);
513 	}
514 
515 	if ((pmap_load(l2p) & ATTR_DESCR_MASK) != L2_TABLE)
516 		return (false);
517 
518 	*l3 = pmap_l2_to_l3(l2p, va);
519 
520 	return (true);
521 }
522 
523 static __inline int
524 pmap_l3_valid(pt_entry_t l3)
525 {
526 
527 	return ((l3 & ATTR_DESCR_MASK) == L3_PAGE);
528 }
529 
530 
531 CTASSERT(L1_BLOCK == L2_BLOCK);
532 
533 /*
534  * Checks if the page is dirty. We currently lack proper tracking of this on
535  * arm64 so for now assume is a page mapped as rw was accessed it is.
536  */
537 static inline int
538 pmap_page_dirty(pt_entry_t pte)
539 {
540 
541 	return ((pte & (ATTR_AF | ATTR_AP_RW_BIT)) ==
542 	    (ATTR_AF | ATTR_AP(ATTR_AP_RW)));
543 }
544 
545 static __inline void
546 pmap_resident_count_inc(pmap_t pmap, int count)
547 {
548 
549 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
550 	pmap->pm_stats.resident_count += count;
551 }
552 
553 static __inline void
554 pmap_resident_count_dec(pmap_t pmap, int count)
555 {
556 
557 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
558 	KASSERT(pmap->pm_stats.resident_count >= count,
559 	    ("pmap %p resident count underflow %ld %d", pmap,
560 	    pmap->pm_stats.resident_count, count));
561 	pmap->pm_stats.resident_count -= count;
562 }
563 
564 static pt_entry_t *
565 pmap_early_page_idx(vm_offset_t l1pt, vm_offset_t va, u_int *l1_slot,
566     u_int *l2_slot)
567 {
568 	pt_entry_t *l2;
569 	pd_entry_t *l1;
570 
571 	l1 = (pd_entry_t *)l1pt;
572 	*l1_slot = (va >> L1_SHIFT) & Ln_ADDR_MASK;
573 
574 	/* Check locore has used a table L1 map */
575 	KASSERT((l1[*l1_slot] & ATTR_DESCR_MASK) == L1_TABLE,
576 	   ("Invalid bootstrap L1 table"));
577 	/* Find the address of the L2 table */
578 	l2 = (pt_entry_t *)init_pt_va;
579 	*l2_slot = pmap_l2_index(va);
580 
581 	return (l2);
582 }
583 
584 static vm_paddr_t
585 pmap_early_vtophys(vm_offset_t l1pt, vm_offset_t va)
586 {
587 	u_int l1_slot, l2_slot;
588 	pt_entry_t *l2;
589 
590 	l2 = pmap_early_page_idx(l1pt, va, &l1_slot, &l2_slot);
591 
592 	return ((l2[l2_slot] & ~ATTR_MASK) + (va & L2_OFFSET));
593 }
594 
595 static vm_offset_t
596 pmap_bootstrap_dmap(vm_offset_t kern_l1, vm_paddr_t min_pa,
597     vm_offset_t freemempos)
598 {
599 	pt_entry_t *l2;
600 	vm_offset_t va;
601 	vm_paddr_t l2_pa, pa;
602 	u_int l1_slot, l2_slot, prev_l1_slot;
603 	int i;
604 
605 	dmap_phys_base = min_pa & ~L1_OFFSET;
606 	dmap_phys_max = 0;
607 	dmap_max_addr = 0;
608 	l2 = NULL;
609 	prev_l1_slot = -1;
610 
611 #define	DMAP_TABLES	((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT)
612 	memset(pagetable_dmap, 0, PAGE_SIZE * DMAP_TABLES);
613 
614 	for (i = 0; i < (physmap_idx * 2); i += 2) {
615 		pa = physmap[i] & ~L2_OFFSET;
616 		va = pa - dmap_phys_base + DMAP_MIN_ADDRESS;
617 
618 		/* Create L2 mappings at the start of the region */
619 		if ((pa & L1_OFFSET) != 0) {
620 			l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
621 			if (l1_slot != prev_l1_slot) {
622 				prev_l1_slot = l1_slot;
623 				l2 = (pt_entry_t *)freemempos;
624 				l2_pa = pmap_early_vtophys(kern_l1,
625 				    (vm_offset_t)l2);
626 				freemempos += PAGE_SIZE;
627 
628 				pmap_load_store(&pagetable_dmap[l1_slot],
629 				    (l2_pa & ~Ln_TABLE_MASK) | L1_TABLE);
630 
631 				memset(l2, 0, PAGE_SIZE);
632 			}
633 			KASSERT(l2 != NULL,
634 			    ("pmap_bootstrap_dmap: NULL l2 map"));
635 			for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1];
636 			    pa += L2_SIZE, va += L2_SIZE) {
637 				/*
638 				 * We are on a boundary, stop to
639 				 * create a level 1 block
640 				 */
641 				if ((pa & L1_OFFSET) == 0)
642 					break;
643 
644 				l2_slot = pmap_l2_index(va);
645 				KASSERT(l2_slot != 0, ("..."));
646 				pmap_load_store(&l2[l2_slot],
647 				    (pa & ~L2_OFFSET) | ATTR_DEFAULT | ATTR_XN |
648 				    ATTR_IDX(CACHED_MEMORY) | L2_BLOCK);
649 			}
650 			KASSERT(va == (pa - dmap_phys_base + DMAP_MIN_ADDRESS),
651 			    ("..."));
652 		}
653 
654 		for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1] &&
655 		    (physmap[i + 1] - pa) >= L1_SIZE;
656 		    pa += L1_SIZE, va += L1_SIZE) {
657 			l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
658 			pmap_load_store(&pagetable_dmap[l1_slot],
659 			    (pa & ~L1_OFFSET) | ATTR_DEFAULT | ATTR_XN |
660 			    ATTR_IDX(CACHED_MEMORY) | L1_BLOCK);
661 		}
662 
663 		/* Create L2 mappings at the end of the region */
664 		if (pa < physmap[i + 1]) {
665 			l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
666 			if (l1_slot != prev_l1_slot) {
667 				prev_l1_slot = l1_slot;
668 				l2 = (pt_entry_t *)freemempos;
669 				l2_pa = pmap_early_vtophys(kern_l1,
670 				    (vm_offset_t)l2);
671 				freemempos += PAGE_SIZE;
672 
673 				pmap_load_store(&pagetable_dmap[l1_slot],
674 				    (l2_pa & ~Ln_TABLE_MASK) | L1_TABLE);
675 
676 				memset(l2, 0, PAGE_SIZE);
677 			}
678 			KASSERT(l2 != NULL,
679 			    ("pmap_bootstrap_dmap: NULL l2 map"));
680 			for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1];
681 			    pa += L2_SIZE, va += L2_SIZE) {
682 				l2_slot = pmap_l2_index(va);
683 				pmap_load_store(&l2[l2_slot],
684 				    (pa & ~L2_OFFSET) | ATTR_DEFAULT | ATTR_XN |
685 				    ATTR_IDX(CACHED_MEMORY) | L2_BLOCK);
686 			}
687 		}
688 
689 		if (pa > dmap_phys_max) {
690 			dmap_phys_max = pa;
691 			dmap_max_addr = va;
692 		}
693 	}
694 
695 	cpu_tlb_flushID();
696 
697 	return (freemempos);
698 }
699 
700 static vm_offset_t
701 pmap_bootstrap_l2(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l2_start)
702 {
703 	vm_offset_t l2pt;
704 	vm_paddr_t pa;
705 	pd_entry_t *l1;
706 	u_int l1_slot;
707 
708 	KASSERT((va & L1_OFFSET) == 0, ("Invalid virtual address"));
709 
710 	l1 = (pd_entry_t *)l1pt;
711 	l1_slot = pmap_l1_index(va);
712 	l2pt = l2_start;
713 
714 	for (; va < VM_MAX_KERNEL_ADDRESS; l1_slot++, va += L1_SIZE) {
715 		KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index"));
716 
717 		pa = pmap_early_vtophys(l1pt, l2pt);
718 		pmap_load_store(&l1[l1_slot],
719 		    (pa & ~Ln_TABLE_MASK) | L1_TABLE);
720 		l2pt += PAGE_SIZE;
721 	}
722 
723 	/* Clean the L2 page table */
724 	memset((void *)l2_start, 0, l2pt - l2_start);
725 
726 	return l2pt;
727 }
728 
729 static vm_offset_t
730 pmap_bootstrap_l3(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l3_start)
731 {
732 	vm_offset_t l3pt;
733 	vm_paddr_t pa;
734 	pd_entry_t *l2;
735 	u_int l2_slot;
736 
737 	KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address"));
738 
739 	l2 = pmap_l2(kernel_pmap, va);
740 	l2 = (pd_entry_t *)rounddown2((uintptr_t)l2, PAGE_SIZE);
741 	l2_slot = pmap_l2_index(va);
742 	l3pt = l3_start;
743 
744 	for (; va < VM_MAX_KERNEL_ADDRESS; l2_slot++, va += L2_SIZE) {
745 		KASSERT(l2_slot < Ln_ENTRIES, ("Invalid L2 index"));
746 
747 		pa = pmap_early_vtophys(l1pt, l3pt);
748 		pmap_load_store(&l2[l2_slot],
749 		    (pa & ~Ln_TABLE_MASK) | L2_TABLE);
750 		l3pt += PAGE_SIZE;
751 	}
752 
753 	/* Clean the L2 page table */
754 	memset((void *)l3_start, 0, l3pt - l3_start);
755 
756 	return l3pt;
757 }
758 
759 /*
760  *	Bootstrap the system enough to run with virtual memory.
761  */
762 void
763 pmap_bootstrap(vm_offset_t l0pt, vm_offset_t l1pt, vm_paddr_t kernstart,
764     vm_size_t kernlen)
765 {
766 	u_int l1_slot, l2_slot;
767 	uint64_t kern_delta;
768 	pt_entry_t *l2;
769 	vm_offset_t va, freemempos;
770 	vm_offset_t dpcpu, msgbufpv;
771 	vm_paddr_t start_pa, pa, min_pa;
772 	int i;
773 
774 	kern_delta = KERNBASE - kernstart;
775 
776 	printf("pmap_bootstrap %lx %lx %lx\n", l1pt, kernstart, kernlen);
777 	printf("%lx\n", l1pt);
778 	printf("%lx\n", (KERNBASE >> L1_SHIFT) & Ln_ADDR_MASK);
779 
780 	/* Set this early so we can use the pagetable walking functions */
781 	kernel_pmap_store.pm_l0 = (pd_entry_t *)l0pt;
782 	PMAP_LOCK_INIT(kernel_pmap);
783 
784 	/* Assume the address we were loaded to is a valid physical address */
785 	min_pa = KERNBASE - kern_delta;
786 
787 	physmap_idx = arm_physmem_avail(physmap, nitems(physmap));
788 	physmap_idx /= 2;
789 
790 	/*
791 	 * Find the minimum physical address. physmap is sorted,
792 	 * but may contain empty ranges.
793 	 */
794 	for (i = 0; i < (physmap_idx * 2); i += 2) {
795 		if (physmap[i] == physmap[i + 1])
796 			continue;
797 		if (physmap[i] <= min_pa)
798 			min_pa = physmap[i];
799 	}
800 
801 	freemempos = KERNBASE + kernlen;
802 	freemempos = roundup2(freemempos, PAGE_SIZE);
803 
804 	/* Create a direct map region early so we can use it for pa -> va */
805 	freemempos = pmap_bootstrap_dmap(l1pt, min_pa, freemempos);
806 
807 	va = KERNBASE;
808 	start_pa = pa = KERNBASE - kern_delta;
809 
810 	/*
811 	 * Read the page table to find out what is already mapped.
812 	 * This assumes we have mapped a block of memory from KERNBASE
813 	 * using a single L1 entry.
814 	 */
815 	l2 = pmap_early_page_idx(l1pt, KERNBASE, &l1_slot, &l2_slot);
816 
817 	/* Sanity check the index, KERNBASE should be the first VA */
818 	KASSERT(l2_slot == 0, ("The L2 index is non-zero"));
819 
820 	/* Find how many pages we have mapped */
821 	for (; l2_slot < Ln_ENTRIES; l2_slot++) {
822 		if ((l2[l2_slot] & ATTR_DESCR_MASK) == 0)
823 			break;
824 
825 		/* Check locore used L2 blocks */
826 		KASSERT((l2[l2_slot] & ATTR_DESCR_MASK) == L2_BLOCK,
827 		    ("Invalid bootstrap L2 table"));
828 		KASSERT((l2[l2_slot] & ~ATTR_MASK) == pa,
829 		    ("Incorrect PA in L2 table"));
830 
831 		va += L2_SIZE;
832 		pa += L2_SIZE;
833 	}
834 
835 	va = roundup2(va, L1_SIZE);
836 
837 	/* Create the l2 tables up to VM_MAX_KERNEL_ADDRESS */
838 	freemempos = pmap_bootstrap_l2(l1pt, va, freemempos);
839 	/* And the l3 tables for the early devmap */
840 	freemempos = pmap_bootstrap_l3(l1pt,
841 	    VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE), freemempos);
842 
843 	cpu_tlb_flushID();
844 
845 #define alloc_pages(var, np)						\
846 	(var) = freemempos;						\
847 	freemempos += (np * PAGE_SIZE);					\
848 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
849 
850 	/* Allocate dynamic per-cpu area. */
851 	alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
852 	dpcpu_init((void *)dpcpu, 0);
853 
854 	/* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
855 	alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
856 	msgbufp = (void *)msgbufpv;
857 
858 	/* Reserve some VA space for early BIOS/ACPI mapping */
859 	preinit_map_va = roundup2(freemempos, L2_SIZE);
860 
861 	virtual_avail = preinit_map_va + PMAP_PREINIT_MAPPING_SIZE;
862 	virtual_avail = roundup2(virtual_avail, L1_SIZE);
863 	virtual_end = VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE);
864 	kernel_vm_end = virtual_avail;
865 
866 	pa = pmap_early_vtophys(l1pt, freemempos);
867 
868 	arm_physmem_exclude_region(start_pa, pa - start_pa, EXFLAG_NOALLOC);
869 
870 	cpu_tlb_flushID();
871 }
872 
873 /*
874  *	Initialize a vm_page's machine-dependent fields.
875  */
876 void
877 pmap_page_init(vm_page_t m)
878 {
879 
880 	TAILQ_INIT(&m->md.pv_list);
881 	m->md.pv_memattr = VM_MEMATTR_WRITE_BACK;
882 }
883 
884 /*
885  *	Initialize the pmap module.
886  *	Called by vm_init, to initialize any structures that the pmap
887  *	system needs to map virtual memory.
888  */
889 void
890 pmap_init(void)
891 {
892 	vm_size_t s;
893 	int i, pv_npg;
894 
895 	/*
896 	 * Are large page mappings enabled?
897 	 */
898 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
899 	if (superpages_enabled) {
900 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
901 		    ("pmap_init: can't assign to pagesizes[1]"));
902 		pagesizes[1] = L2_SIZE;
903 	}
904 
905 	/*
906 	 * Initialize the pv chunk list mutex.
907 	 */
908 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
909 
910 	/*
911 	 * Initialize the pool of pv list locks.
912 	 */
913 	for (i = 0; i < NPV_LIST_LOCKS; i++)
914 		rw_init(&pv_list_locks[i], "pmap pv list");
915 
916 	/*
917 	 * Calculate the size of the pv head table for superpages.
918 	 */
919 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L2_SIZE);
920 
921 	/*
922 	 * Allocate memory for the pv head table for superpages.
923 	 */
924 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
925 	s = round_page(s);
926 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
927 	for (i = 0; i < pv_npg; i++)
928 		TAILQ_INIT(&pv_table[i].pv_list);
929 	TAILQ_INIT(&pv_dummy.pv_list);
930 
931 	vm_initialized = 1;
932 }
933 
934 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD, 0,
935     "2MB page mapping counters");
936 
937 static u_long pmap_l2_demotions;
938 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD,
939     &pmap_l2_demotions, 0, "2MB page demotions");
940 
941 static u_long pmap_l2_mappings;
942 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, mappings, CTLFLAG_RD,
943     &pmap_l2_mappings, 0, "2MB page mappings");
944 
945 static u_long pmap_l2_p_failures;
946 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD,
947     &pmap_l2_p_failures, 0, "2MB page promotion failures");
948 
949 static u_long pmap_l2_promotions;
950 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD,
951     &pmap_l2_promotions, 0, "2MB page promotions");
952 
953 /*
954  * Invalidate a single TLB entry.
955  */
956 static __inline void
957 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
958 {
959 
960 	sched_pin();
961 	__asm __volatile(
962 	    "dsb  ishst		\n"
963 	    "tlbi vaae1is, %0	\n"
964 	    "dsb  ish		\n"
965 	    "isb		\n"
966 	    : : "r"(va >> PAGE_SHIFT));
967 	sched_unpin();
968 }
969 
970 static __inline void
971 pmap_invalidate_range_nopin(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
972 {
973 	vm_offset_t addr;
974 
975 	dsb(ishst);
976 	for (addr = sva; addr < eva; addr += PAGE_SIZE) {
977 		__asm __volatile(
978 		    "tlbi vaae1is, %0" : : "r"(addr >> PAGE_SHIFT));
979 	}
980 	__asm __volatile(
981 	    "dsb  ish	\n"
982 	    "isb	\n");
983 }
984 
985 static __inline void
986 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
987 {
988 
989 	sched_pin();
990 	pmap_invalidate_range_nopin(pmap, sva, eva);
991 	sched_unpin();
992 }
993 
994 static __inline void
995 pmap_invalidate_all(pmap_t pmap)
996 {
997 
998 	sched_pin();
999 	__asm __volatile(
1000 	    "dsb  ishst		\n"
1001 	    "tlbi vmalle1is	\n"
1002 	    "dsb  ish		\n"
1003 	    "isb		\n");
1004 	sched_unpin();
1005 }
1006 
1007 /*
1008  *	Routine:	pmap_extract
1009  *	Function:
1010  *		Extract the physical page address associated
1011  *		with the given map/virtual_address pair.
1012  */
1013 vm_paddr_t
1014 pmap_extract(pmap_t pmap, vm_offset_t va)
1015 {
1016 	pt_entry_t *pte, tpte;
1017 	vm_paddr_t pa;
1018 	int lvl;
1019 
1020 	pa = 0;
1021 	PMAP_LOCK(pmap);
1022 	/*
1023 	 * Find the block or page map for this virtual address. pmap_pte
1024 	 * will return either a valid block/page entry, or NULL.
1025 	 */
1026 	pte = pmap_pte(pmap, va, &lvl);
1027 	if (pte != NULL) {
1028 		tpte = pmap_load(pte);
1029 		pa = tpte & ~ATTR_MASK;
1030 		switch(lvl) {
1031 		case 1:
1032 			KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
1033 			    ("pmap_extract: Invalid L1 pte found: %lx",
1034 			    tpte & ATTR_DESCR_MASK));
1035 			pa |= (va & L1_OFFSET);
1036 			break;
1037 		case 2:
1038 			KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
1039 			    ("pmap_extract: Invalid L2 pte found: %lx",
1040 			    tpte & ATTR_DESCR_MASK));
1041 			pa |= (va & L2_OFFSET);
1042 			break;
1043 		case 3:
1044 			KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
1045 			    ("pmap_extract: Invalid L3 pte found: %lx",
1046 			    tpte & ATTR_DESCR_MASK));
1047 			pa |= (va & L3_OFFSET);
1048 			break;
1049 		}
1050 	}
1051 	PMAP_UNLOCK(pmap);
1052 	return (pa);
1053 }
1054 
1055 /*
1056  *	Routine:	pmap_extract_and_hold
1057  *	Function:
1058  *		Atomically extract and hold the physical page
1059  *		with the given pmap and virtual address pair
1060  *		if that mapping permits the given protection.
1061  */
1062 vm_page_t
1063 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1064 {
1065 	pt_entry_t *pte, tpte;
1066 	vm_offset_t off;
1067 	vm_paddr_t pa;
1068 	vm_page_t m;
1069 	int lvl;
1070 
1071 	pa = 0;
1072 	m = NULL;
1073 	PMAP_LOCK(pmap);
1074 retry:
1075 	pte = pmap_pte(pmap, va, &lvl);
1076 	if (pte != NULL) {
1077 		tpte = pmap_load(pte);
1078 
1079 		KASSERT(lvl > 0 && lvl <= 3,
1080 		    ("pmap_extract_and_hold: Invalid level %d", lvl));
1081 		CTASSERT(L1_BLOCK == L2_BLOCK);
1082 		KASSERT((lvl == 3 && (tpte & ATTR_DESCR_MASK) == L3_PAGE) ||
1083 		    (lvl < 3 && (tpte & ATTR_DESCR_MASK) == L1_BLOCK),
1084 		    ("pmap_extract_and_hold: Invalid pte at L%d: %lx", lvl,
1085 		     tpte & ATTR_DESCR_MASK));
1086 		if (((tpte & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) ||
1087 		    ((prot & VM_PROT_WRITE) == 0)) {
1088 			switch(lvl) {
1089 			case 1:
1090 				off = va & L1_OFFSET;
1091 				break;
1092 			case 2:
1093 				off = va & L2_OFFSET;
1094 				break;
1095 			case 3:
1096 			default:
1097 				off = 0;
1098 			}
1099 			if (vm_page_pa_tryrelock(pmap,
1100 			    (tpte & ~ATTR_MASK) | off, &pa))
1101 				goto retry;
1102 			m = PHYS_TO_VM_PAGE((tpte & ~ATTR_MASK) | off);
1103 			vm_page_hold(m);
1104 		}
1105 	}
1106 	PA_UNLOCK_COND(pa);
1107 	PMAP_UNLOCK(pmap);
1108 	return (m);
1109 }
1110 
1111 vm_paddr_t
1112 pmap_kextract(vm_offset_t va)
1113 {
1114 	pt_entry_t *pte, tpte;
1115 	vm_paddr_t pa;
1116 	int lvl;
1117 
1118 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1119 		pa = DMAP_TO_PHYS(va);
1120 	} else {
1121 		pa = 0;
1122 		pte = pmap_pte(kernel_pmap, va, &lvl);
1123 		if (pte != NULL) {
1124 			tpte = pmap_load(pte);
1125 			pa = tpte & ~ATTR_MASK;
1126 			switch(lvl) {
1127 			case 1:
1128 				KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
1129 				    ("pmap_kextract: Invalid L1 pte found: %lx",
1130 				    tpte & ATTR_DESCR_MASK));
1131 				pa |= (va & L1_OFFSET);
1132 				break;
1133 			case 2:
1134 				KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
1135 				    ("pmap_kextract: Invalid L2 pte found: %lx",
1136 				    tpte & ATTR_DESCR_MASK));
1137 				pa |= (va & L2_OFFSET);
1138 				break;
1139 			case 3:
1140 				KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
1141 				    ("pmap_kextract: Invalid L3 pte found: %lx",
1142 				    tpte & ATTR_DESCR_MASK));
1143 				pa |= (va & L3_OFFSET);
1144 				break;
1145 			}
1146 		}
1147 	}
1148 	return (pa);
1149 }
1150 
1151 /***************************************************
1152  * Low level mapping routines.....
1153  ***************************************************/
1154 
1155 void
1156 pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode)
1157 {
1158 	pd_entry_t *pde;
1159 	pt_entry_t *pte, attr;
1160 	vm_offset_t va;
1161 	int lvl;
1162 
1163 	KASSERT((pa & L3_OFFSET) == 0,
1164 	   ("pmap_kenter: Invalid physical address"));
1165 	KASSERT((sva & L3_OFFSET) == 0,
1166 	   ("pmap_kenter: Invalid virtual address"));
1167 	KASSERT((size & PAGE_MASK) == 0,
1168 	    ("pmap_kenter: Mapping is not page-sized"));
1169 
1170 	attr = ATTR_DEFAULT | ATTR_IDX(mode) | L3_PAGE;
1171 	if (mode == DEVICE_MEMORY)
1172 		attr |= ATTR_XN;
1173 
1174 	va = sva;
1175 	while (size != 0) {
1176 		pde = pmap_pde(kernel_pmap, va, &lvl);
1177 		KASSERT(pde != NULL,
1178 		    ("pmap_kenter: Invalid page entry, va: 0x%lx", va));
1179 		KASSERT(lvl == 2, ("pmap_kenter: Invalid level %d", lvl));
1180 
1181 		pte = pmap_l2_to_l3(pde, va);
1182 		pmap_load_store(pte, (pa & ~L3_OFFSET) | attr);
1183 
1184 		va += PAGE_SIZE;
1185 		pa += PAGE_SIZE;
1186 		size -= PAGE_SIZE;
1187 	}
1188 	pmap_invalidate_range(kernel_pmap, sva, va);
1189 }
1190 
1191 void
1192 pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
1193 {
1194 
1195 	pmap_kenter(sva, size, pa, DEVICE_MEMORY);
1196 }
1197 
1198 /*
1199  * Remove a page from the kernel pagetables.
1200  */
1201 PMAP_INLINE void
1202 pmap_kremove(vm_offset_t va)
1203 {
1204 	pt_entry_t *pte;
1205 	int lvl;
1206 
1207 	pte = pmap_pte(kernel_pmap, va, &lvl);
1208 	KASSERT(pte != NULL, ("pmap_kremove: Invalid address"));
1209 	KASSERT(lvl == 3, ("pmap_kremove: Invalid pte level %d", lvl));
1210 
1211 	pmap_load_clear(pte);
1212 	pmap_invalidate_page(kernel_pmap, va);
1213 }
1214 
1215 void
1216 pmap_kremove_device(vm_offset_t sva, vm_size_t size)
1217 {
1218 	pt_entry_t *pte;
1219 	vm_offset_t va;
1220 	int lvl;
1221 
1222 	KASSERT((sva & L3_OFFSET) == 0,
1223 	   ("pmap_kremove_device: Invalid virtual address"));
1224 	KASSERT((size & PAGE_MASK) == 0,
1225 	    ("pmap_kremove_device: Mapping is not page-sized"));
1226 
1227 	va = sva;
1228 	while (size != 0) {
1229 		pte = pmap_pte(kernel_pmap, va, &lvl);
1230 		KASSERT(pte != NULL, ("Invalid page table, va: 0x%lx", va));
1231 		KASSERT(lvl == 3,
1232 		    ("Invalid device pagetable level: %d != 3", lvl));
1233 		pmap_load_clear(pte);
1234 
1235 		va += PAGE_SIZE;
1236 		size -= PAGE_SIZE;
1237 	}
1238 	pmap_invalidate_range(kernel_pmap, sva, va);
1239 }
1240 
1241 /*
1242  *	Used to map a range of physical addresses into kernel
1243  *	virtual address space.
1244  *
1245  *	The value passed in '*virt' is a suggested virtual address for
1246  *	the mapping. Architectures which can support a direct-mapped
1247  *	physical to virtual region can return the appropriate address
1248  *	within that region, leaving '*virt' unchanged. Other
1249  *	architectures should map the pages starting at '*virt' and
1250  *	update '*virt' with the first usable address after the mapped
1251  *	region.
1252  */
1253 vm_offset_t
1254 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1255 {
1256 	return PHYS_TO_DMAP(start);
1257 }
1258 
1259 
1260 /*
1261  * Add a list of wired pages to the kva
1262  * this routine is only used for temporary
1263  * kernel mappings that do not need to have
1264  * page modification or references recorded.
1265  * Note that old mappings are simply written
1266  * over.  The page *must* be wired.
1267  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1268  */
1269 void
1270 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1271 {
1272 	pd_entry_t *pde;
1273 	pt_entry_t *pte, pa;
1274 	vm_offset_t va;
1275 	vm_page_t m;
1276 	int i, lvl;
1277 
1278 	va = sva;
1279 	for (i = 0; i < count; i++) {
1280 		pde = pmap_pde(kernel_pmap, va, &lvl);
1281 		KASSERT(pde != NULL,
1282 		    ("pmap_qenter: Invalid page entry, va: 0x%lx", va));
1283 		KASSERT(lvl == 2,
1284 		    ("pmap_qenter: Invalid level %d", lvl));
1285 
1286 		m = ma[i];
1287 		pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT | ATTR_AP(ATTR_AP_RW) |
1288 		    ATTR_IDX(m->md.pv_memattr) | L3_PAGE;
1289 		if (m->md.pv_memattr == DEVICE_MEMORY)
1290 			pa |= ATTR_XN;
1291 		pte = pmap_l2_to_l3(pde, va);
1292 		pmap_load_store(pte, pa);
1293 
1294 		va += L3_SIZE;
1295 	}
1296 	pmap_invalidate_range(kernel_pmap, sva, va);
1297 }
1298 
1299 /*
1300  * This routine tears out page mappings from the
1301  * kernel -- it is meant only for temporary mappings.
1302  */
1303 void
1304 pmap_qremove(vm_offset_t sva, int count)
1305 {
1306 	pt_entry_t *pte;
1307 	vm_offset_t va;
1308 	int lvl;
1309 
1310 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva));
1311 
1312 	va = sva;
1313 	while (count-- > 0) {
1314 		pte = pmap_pte(kernel_pmap, va, &lvl);
1315 		KASSERT(lvl == 3,
1316 		    ("Invalid device pagetable level: %d != 3", lvl));
1317 		if (pte != NULL) {
1318 			pmap_load_clear(pte);
1319 		}
1320 
1321 		va += PAGE_SIZE;
1322 	}
1323 	pmap_invalidate_range(kernel_pmap, sva, va);
1324 }
1325 
1326 /***************************************************
1327  * Page table page management routines.....
1328  ***************************************************/
1329 /*
1330  * Schedule the specified unused page table page to be freed.  Specifically,
1331  * add the page to the specified list of pages that will be released to the
1332  * physical memory manager after the TLB has been updated.
1333  */
1334 static __inline void
1335 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1336     boolean_t set_PG_ZERO)
1337 {
1338 
1339 	if (set_PG_ZERO)
1340 		m->flags |= PG_ZERO;
1341 	else
1342 		m->flags &= ~PG_ZERO;
1343 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1344 }
1345 
1346 /*
1347  * Decrements a page table page's wire count, which is used to record the
1348  * number of valid page table entries within the page.  If the wire count
1349  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1350  * page table page was unmapped and FALSE otherwise.
1351  */
1352 static inline boolean_t
1353 pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1354 {
1355 
1356 	--m->wire_count;
1357 	if (m->wire_count == 0) {
1358 		_pmap_unwire_l3(pmap, va, m, free);
1359 		return (TRUE);
1360 	} else
1361 		return (FALSE);
1362 }
1363 
1364 static void
1365 _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1366 {
1367 
1368 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1369 	/*
1370 	 * unmap the page table page
1371 	 */
1372 	if (m->pindex >= (NUL2E + NUL1E)) {
1373 		/* l1 page */
1374 		pd_entry_t *l0;
1375 
1376 		l0 = pmap_l0(pmap, va);
1377 		pmap_load_clear(l0);
1378 	} else if (m->pindex >= NUL2E) {
1379 		/* l2 page */
1380 		pd_entry_t *l1;
1381 
1382 		l1 = pmap_l1(pmap, va);
1383 		pmap_load_clear(l1);
1384 	} else {
1385 		/* l3 page */
1386 		pd_entry_t *l2;
1387 
1388 		l2 = pmap_l2(pmap, va);
1389 		pmap_load_clear(l2);
1390 	}
1391 	pmap_resident_count_dec(pmap, 1);
1392 	if (m->pindex < NUL2E) {
1393 		/* We just released an l3, unhold the matching l2 */
1394 		pd_entry_t *l1, tl1;
1395 		vm_page_t l2pg;
1396 
1397 		l1 = pmap_l1(pmap, va);
1398 		tl1 = pmap_load(l1);
1399 		l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1400 		pmap_unwire_l3(pmap, va, l2pg, free);
1401 	} else if (m->pindex < (NUL2E + NUL1E)) {
1402 		/* We just released an l2, unhold the matching l1 */
1403 		pd_entry_t *l0, tl0;
1404 		vm_page_t l1pg;
1405 
1406 		l0 = pmap_l0(pmap, va);
1407 		tl0 = pmap_load(l0);
1408 		l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1409 		pmap_unwire_l3(pmap, va, l1pg, free);
1410 	}
1411 	pmap_invalidate_page(pmap, va);
1412 
1413 	vm_wire_sub(1);
1414 
1415 	/*
1416 	 * Put page on a list so that it is released after
1417 	 * *ALL* TLB shootdown is done
1418 	 */
1419 	pmap_add_delayed_free_list(m, free, TRUE);
1420 }
1421 
1422 /*
1423  * After removing a page table entry, this routine is used to
1424  * conditionally free the page, and manage the hold/wire counts.
1425  */
1426 static int
1427 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
1428     struct spglist *free)
1429 {
1430 	vm_page_t mpte;
1431 
1432 	if (va >= VM_MAXUSER_ADDRESS)
1433 		return (0);
1434 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
1435 	mpte = PHYS_TO_VM_PAGE(ptepde & ~ATTR_MASK);
1436 	return (pmap_unwire_l3(pmap, va, mpte, free));
1437 }
1438 
1439 void
1440 pmap_pinit0(pmap_t pmap)
1441 {
1442 
1443 	PMAP_LOCK_INIT(pmap);
1444 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1445 	pmap->pm_l0 = kernel_pmap->pm_l0;
1446 	pmap->pm_root.rt_root = 0;
1447 }
1448 
1449 int
1450 pmap_pinit(pmap_t pmap)
1451 {
1452 	vm_paddr_t l0phys;
1453 	vm_page_t l0pt;
1454 
1455 	/*
1456 	 * allocate the l0 page
1457 	 */
1458 	while ((l0pt = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
1459 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
1460 		vm_wait(NULL);
1461 
1462 	l0phys = VM_PAGE_TO_PHYS(l0pt);
1463 	pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(l0phys);
1464 
1465 	if ((l0pt->flags & PG_ZERO) == 0)
1466 		pagezero(pmap->pm_l0);
1467 
1468 	pmap->pm_root.rt_root = 0;
1469 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1470 
1471 	return (1);
1472 }
1473 
1474 /*
1475  * This routine is called if the desired page table page does not exist.
1476  *
1477  * If page table page allocation fails, this routine may sleep before
1478  * returning NULL.  It sleeps only if a lock pointer was given.
1479  *
1480  * Note: If a page allocation fails at page table level two or three,
1481  * one or two pages may be held during the wait, only to be released
1482  * afterwards.  This conservative approach is easily argued to avoid
1483  * race conditions.
1484  */
1485 static vm_page_t
1486 _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
1487 {
1488 	vm_page_t m, l1pg, l2pg;
1489 
1490 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1491 
1492 	/*
1493 	 * Allocate a page table page.
1494 	 */
1495 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1496 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1497 		if (lockp != NULL) {
1498 			RELEASE_PV_LIST_LOCK(lockp);
1499 			PMAP_UNLOCK(pmap);
1500 			vm_wait(NULL);
1501 			PMAP_LOCK(pmap);
1502 		}
1503 
1504 		/*
1505 		 * Indicate the need to retry.  While waiting, the page table
1506 		 * page may have been allocated.
1507 		 */
1508 		return (NULL);
1509 	}
1510 	if ((m->flags & PG_ZERO) == 0)
1511 		pmap_zero_page(m);
1512 
1513 	/*
1514 	 * Map the pagetable page into the process address space, if
1515 	 * it isn't already there.
1516 	 */
1517 
1518 	if (ptepindex >= (NUL2E + NUL1E)) {
1519 		pd_entry_t *l0;
1520 		vm_pindex_t l0index;
1521 
1522 		l0index = ptepindex - (NUL2E + NUL1E);
1523 		l0 = &pmap->pm_l0[l0index];
1524 		pmap_load_store(l0, VM_PAGE_TO_PHYS(m) | L0_TABLE);
1525 	} else if (ptepindex >= NUL2E) {
1526 		vm_pindex_t l0index, l1index;
1527 		pd_entry_t *l0, *l1;
1528 		pd_entry_t tl0;
1529 
1530 		l1index = ptepindex - NUL2E;
1531 		l0index = l1index >> L0_ENTRIES_SHIFT;
1532 
1533 		l0 = &pmap->pm_l0[l0index];
1534 		tl0 = pmap_load(l0);
1535 		if (tl0 == 0) {
1536 			/* recurse for allocating page dir */
1537 			if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index,
1538 			    lockp) == NULL) {
1539 				vm_page_unwire_noq(m);
1540 				vm_page_free_zero(m);
1541 				return (NULL);
1542 			}
1543 		} else {
1544 			l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1545 			l1pg->wire_count++;
1546 		}
1547 
1548 		l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
1549 		l1 = &l1[ptepindex & Ln_ADDR_MASK];
1550 		pmap_load_store(l1, VM_PAGE_TO_PHYS(m) | L1_TABLE);
1551 	} else {
1552 		vm_pindex_t l0index, l1index;
1553 		pd_entry_t *l0, *l1, *l2;
1554 		pd_entry_t tl0, tl1;
1555 
1556 		l1index = ptepindex >> Ln_ENTRIES_SHIFT;
1557 		l0index = l1index >> L0_ENTRIES_SHIFT;
1558 
1559 		l0 = &pmap->pm_l0[l0index];
1560 		tl0 = pmap_load(l0);
1561 		if (tl0 == 0) {
1562 			/* recurse for allocating page dir */
1563 			if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1564 			    lockp) == NULL) {
1565 				vm_page_unwire_noq(m);
1566 				vm_page_free_zero(m);
1567 				return (NULL);
1568 			}
1569 			tl0 = pmap_load(l0);
1570 			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1571 			l1 = &l1[l1index & Ln_ADDR_MASK];
1572 		} else {
1573 			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1574 			l1 = &l1[l1index & Ln_ADDR_MASK];
1575 			tl1 = pmap_load(l1);
1576 			if (tl1 == 0) {
1577 				/* recurse for allocating page dir */
1578 				if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1579 				    lockp) == NULL) {
1580 					vm_page_unwire_noq(m);
1581 					vm_page_free_zero(m);
1582 					return (NULL);
1583 				}
1584 			} else {
1585 				l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1586 				l2pg->wire_count++;
1587 			}
1588 		}
1589 
1590 		l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
1591 		l2 = &l2[ptepindex & Ln_ADDR_MASK];
1592 		pmap_load_store(l2, VM_PAGE_TO_PHYS(m) | L2_TABLE);
1593 	}
1594 
1595 	pmap_resident_count_inc(pmap, 1);
1596 
1597 	return (m);
1598 }
1599 
1600 static vm_page_t
1601 pmap_alloc_l2(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1602 {
1603 	pd_entry_t *l1;
1604 	vm_page_t l2pg;
1605 	vm_pindex_t l2pindex;
1606 
1607 retry:
1608 	l1 = pmap_l1(pmap, va);
1609 	if (l1 != NULL && (pmap_load(l1) & ATTR_DESCR_MASK) == L1_TABLE) {
1610 		/* Add a reference to the L2 page. */
1611 		l2pg = PHYS_TO_VM_PAGE(pmap_load(l1) & ~ATTR_MASK);
1612 		l2pg->wire_count++;
1613 	} else {
1614 		/* Allocate a L2 page. */
1615 		l2pindex = pmap_l2_pindex(va) >> Ln_ENTRIES_SHIFT;
1616 		l2pg = _pmap_alloc_l3(pmap, NUL2E + l2pindex, lockp);
1617 		if (l2pg == NULL && lockp != NULL)
1618 			goto retry;
1619 	}
1620 	return (l2pg);
1621 }
1622 
1623 static vm_page_t
1624 pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1625 {
1626 	vm_pindex_t ptepindex;
1627 	pd_entry_t *pde, tpde;
1628 #ifdef INVARIANTS
1629 	pt_entry_t *pte;
1630 #endif
1631 	vm_page_t m;
1632 	int lvl;
1633 
1634 	/*
1635 	 * Calculate pagetable page index
1636 	 */
1637 	ptepindex = pmap_l2_pindex(va);
1638 retry:
1639 	/*
1640 	 * Get the page directory entry
1641 	 */
1642 	pde = pmap_pde(pmap, va, &lvl);
1643 
1644 	/*
1645 	 * If the page table page is mapped, we just increment the hold count,
1646 	 * and activate it. If we get a level 2 pde it will point to a level 3
1647 	 * table.
1648 	 */
1649 	switch (lvl) {
1650 	case -1:
1651 		break;
1652 	case 0:
1653 #ifdef INVARIANTS
1654 		pte = pmap_l0_to_l1(pde, va);
1655 		KASSERT(pmap_load(pte) == 0,
1656 		    ("pmap_alloc_l3: TODO: l0 superpages"));
1657 #endif
1658 		break;
1659 	case 1:
1660 #ifdef INVARIANTS
1661 		pte = pmap_l1_to_l2(pde, va);
1662 		KASSERT(pmap_load(pte) == 0,
1663 		    ("pmap_alloc_l3: TODO: l1 superpages"));
1664 #endif
1665 		break;
1666 	case 2:
1667 		tpde = pmap_load(pde);
1668 		if (tpde != 0) {
1669 			m = PHYS_TO_VM_PAGE(tpde & ~ATTR_MASK);
1670 			m->wire_count++;
1671 			return (m);
1672 		}
1673 		break;
1674 	default:
1675 		panic("pmap_alloc_l3: Invalid level %d", lvl);
1676 	}
1677 
1678 	/*
1679 	 * Here if the pte page isn't mapped, or if it has been deallocated.
1680 	 */
1681 	m = _pmap_alloc_l3(pmap, ptepindex, lockp);
1682 	if (m == NULL && lockp != NULL)
1683 		goto retry;
1684 
1685 	return (m);
1686 }
1687 
1688 /***************************************************
1689  * Pmap allocation/deallocation routines.
1690  ***************************************************/
1691 
1692 /*
1693  * Release any resources held by the given physical map.
1694  * Called when a pmap initialized by pmap_pinit is being released.
1695  * Should only be called if the map contains no valid mappings.
1696  */
1697 void
1698 pmap_release(pmap_t pmap)
1699 {
1700 	vm_page_t m;
1701 
1702 	KASSERT(pmap->pm_stats.resident_count == 0,
1703 	    ("pmap_release: pmap resident count %ld != 0",
1704 	    pmap->pm_stats.resident_count));
1705 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
1706 	    ("pmap_release: pmap has reserved page table page(s)"));
1707 
1708 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_l0));
1709 
1710 	vm_page_unwire_noq(m);
1711 	vm_page_free_zero(m);
1712 }
1713 
1714 static int
1715 kvm_size(SYSCTL_HANDLER_ARGS)
1716 {
1717 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
1718 
1719 	return sysctl_handle_long(oidp, &ksize, 0, req);
1720 }
1721 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1722     0, 0, kvm_size, "LU", "Size of KVM");
1723 
1724 static int
1725 kvm_free(SYSCTL_HANDLER_ARGS)
1726 {
1727 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1728 
1729 	return sysctl_handle_long(oidp, &kfree, 0, req);
1730 }
1731 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1732     0, 0, kvm_free, "LU", "Amount of KVM free");
1733 
1734 /*
1735  * grow the number of kernel page table entries, if needed
1736  */
1737 void
1738 pmap_growkernel(vm_offset_t addr)
1739 {
1740 	vm_paddr_t paddr;
1741 	vm_page_t nkpg;
1742 	pd_entry_t *l0, *l1, *l2;
1743 
1744 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1745 
1746 	addr = roundup2(addr, L2_SIZE);
1747 	if (addr - 1 >= vm_map_max(kernel_map))
1748 		addr = vm_map_max(kernel_map);
1749 	while (kernel_vm_end < addr) {
1750 		l0 = pmap_l0(kernel_pmap, kernel_vm_end);
1751 		KASSERT(pmap_load(l0) != 0,
1752 		    ("pmap_growkernel: No level 0 kernel entry"));
1753 
1754 		l1 = pmap_l0_to_l1(l0, kernel_vm_end);
1755 		if (pmap_load(l1) == 0) {
1756 			/* We need a new PDP entry */
1757 			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L1_SHIFT,
1758 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1759 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1760 			if (nkpg == NULL)
1761 				panic("pmap_growkernel: no memory to grow kernel");
1762 			if ((nkpg->flags & PG_ZERO) == 0)
1763 				pmap_zero_page(nkpg);
1764 			paddr = VM_PAGE_TO_PHYS(nkpg);
1765 			pmap_load_store(l1, paddr | L1_TABLE);
1766 			continue; /* try again */
1767 		}
1768 		l2 = pmap_l1_to_l2(l1, kernel_vm_end);
1769 		if ((pmap_load(l2) & ATTR_AF) != 0) {
1770 			kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1771 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
1772 				kernel_vm_end = vm_map_max(kernel_map);
1773 				break;
1774 			}
1775 			continue;
1776 		}
1777 
1778 		nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_SHIFT,
1779 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1780 		    VM_ALLOC_ZERO);
1781 		if (nkpg == NULL)
1782 			panic("pmap_growkernel: no memory to grow kernel");
1783 		if ((nkpg->flags & PG_ZERO) == 0)
1784 			pmap_zero_page(nkpg);
1785 		paddr = VM_PAGE_TO_PHYS(nkpg);
1786 		pmap_load_store(l2, paddr | L2_TABLE);
1787 		pmap_invalidate_page(kernel_pmap, kernel_vm_end);
1788 
1789 		kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1790 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
1791 			kernel_vm_end = vm_map_max(kernel_map);
1792 			break;
1793 		}
1794 	}
1795 }
1796 
1797 
1798 /***************************************************
1799  * page management routines.
1800  ***************************************************/
1801 
1802 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1803 CTASSERT(_NPCM == 3);
1804 CTASSERT(_NPCPV == 168);
1805 
1806 static __inline struct pv_chunk *
1807 pv_to_chunk(pv_entry_t pv)
1808 {
1809 
1810 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1811 }
1812 
1813 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1814 
1815 #define	PC_FREE0	0xfffffffffffffffful
1816 #define	PC_FREE1	0xfffffffffffffffful
1817 #define	PC_FREE2	0x000000fffffffffful
1818 
1819 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
1820 
1821 #if 0
1822 #ifdef PV_STATS
1823 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1824 
1825 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1826 	"Current number of pv entry chunks");
1827 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1828 	"Current number of pv entry chunks allocated");
1829 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1830 	"Current number of pv entry chunks frees");
1831 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1832 	"Number of times tried to get a chunk page but failed.");
1833 
1834 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
1835 static int pv_entry_spare;
1836 
1837 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1838 	"Current number of pv entry frees");
1839 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1840 	"Current number of pv entry allocs");
1841 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1842 	"Current number of pv entries");
1843 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1844 	"Current number of spare pv entries");
1845 #endif
1846 #endif /* 0 */
1847 
1848 /*
1849  * We are in a serious low memory condition.  Resort to
1850  * drastic measures to free some pages so we can allocate
1851  * another pv entry chunk.
1852  *
1853  * Returns NULL if PV entries were reclaimed from the specified pmap.
1854  *
1855  * We do not, however, unmap 2mpages because subsequent accesses will
1856  * allocate per-page pv entries until repromotion occurs, thereby
1857  * exacerbating the shortage of free pv entries.
1858  */
1859 static vm_page_t
1860 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1861 {
1862 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1863 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1864 	struct md_page *pvh;
1865 	pd_entry_t *pde;
1866 	pmap_t next_pmap, pmap;
1867 	pt_entry_t *pte, tpte;
1868 	pv_entry_t pv;
1869 	vm_offset_t va;
1870 	vm_page_t m, m_pc;
1871 	struct spglist free;
1872 	uint64_t inuse;
1873 	int bit, field, freed, lvl;
1874 	static int active_reclaims = 0;
1875 
1876 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1877 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1878 
1879 	pmap = NULL;
1880 	m_pc = NULL;
1881 	SLIST_INIT(&free);
1882 	bzero(&pc_marker_b, sizeof(pc_marker_b));
1883 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1884 	pc_marker = (struct pv_chunk *)&pc_marker_b;
1885 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1886 
1887 	mtx_lock(&pv_chunks_mutex);
1888 	active_reclaims++;
1889 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1890 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1891 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1892 	    SLIST_EMPTY(&free)) {
1893 		next_pmap = pc->pc_pmap;
1894 		if (next_pmap == NULL) {
1895 			/*
1896 			 * The next chunk is a marker.  However, it is
1897 			 * not our marker, so active_reclaims must be
1898 			 * > 1.  Consequently, the next_chunk code
1899 			 * will not rotate the pv_chunks list.
1900 			 */
1901 			goto next_chunk;
1902 		}
1903 		mtx_unlock(&pv_chunks_mutex);
1904 
1905 		/*
1906 		 * A pv_chunk can only be removed from the pc_lru list
1907 		 * when both pv_chunks_mutex is owned and the
1908 		 * corresponding pmap is locked.
1909 		 */
1910 		if (pmap != next_pmap) {
1911 			if (pmap != NULL && pmap != locked_pmap)
1912 				PMAP_UNLOCK(pmap);
1913 			pmap = next_pmap;
1914 			/* Avoid deadlock and lock recursion. */
1915 			if (pmap > locked_pmap) {
1916 				RELEASE_PV_LIST_LOCK(lockp);
1917 				PMAP_LOCK(pmap);
1918 				mtx_lock(&pv_chunks_mutex);
1919 				continue;
1920 			} else if (pmap != locked_pmap) {
1921 				if (PMAP_TRYLOCK(pmap)) {
1922 					mtx_lock(&pv_chunks_mutex);
1923 					continue;
1924 				} else {
1925 					pmap = NULL; /* pmap is not locked */
1926 					mtx_lock(&pv_chunks_mutex);
1927 					pc = TAILQ_NEXT(pc_marker, pc_lru);
1928 					if (pc == NULL ||
1929 					    pc->pc_pmap != next_pmap)
1930 						continue;
1931 					goto next_chunk;
1932 				}
1933 			}
1934 		}
1935 
1936 		/*
1937 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1938 		 */
1939 		freed = 0;
1940 		for (field = 0; field < _NPCM; field++) {
1941 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1942 			    inuse != 0; inuse &= ~(1UL << bit)) {
1943 				bit = ffsl(inuse) - 1;
1944 				pv = &pc->pc_pventry[field * 64 + bit];
1945 				va = pv->pv_va;
1946 				pde = pmap_pde(pmap, va, &lvl);
1947 				if (lvl != 2)
1948 					continue;
1949 				pte = pmap_l2_to_l3(pde, va);
1950 				tpte = pmap_load(pte);
1951 				if ((tpte & ATTR_SW_WIRED) != 0)
1952 					continue;
1953 				tpte = pmap_load_clear(pte);
1954 				pmap_invalidate_page(pmap, va);
1955 				m = PHYS_TO_VM_PAGE(tpte & ~ATTR_MASK);
1956 				if (pmap_page_dirty(tpte))
1957 					vm_page_dirty(m);
1958 				if ((tpte & ATTR_AF) != 0)
1959 					vm_page_aflag_set(m, PGA_REFERENCED);
1960 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1961 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
1962 				m->md.pv_gen++;
1963 				if (TAILQ_EMPTY(&m->md.pv_list) &&
1964 				    (m->flags & PG_FICTITIOUS) == 0) {
1965 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1966 					if (TAILQ_EMPTY(&pvh->pv_list)) {
1967 						vm_page_aflag_clear(m,
1968 						    PGA_WRITEABLE);
1969 					}
1970 				}
1971 				pc->pc_map[field] |= 1UL << bit;
1972 				pmap_unuse_pt(pmap, va, pmap_load(pde), &free);
1973 				freed++;
1974 			}
1975 		}
1976 		if (freed == 0) {
1977 			mtx_lock(&pv_chunks_mutex);
1978 			goto next_chunk;
1979 		}
1980 		/* Every freed mapping is for a 4 KB page. */
1981 		pmap_resident_count_dec(pmap, freed);
1982 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1983 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1984 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1985 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1986 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
1987 		    pc->pc_map[2] == PC_FREE2) {
1988 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1989 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1990 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1991 			/* Entire chunk is free; return it. */
1992 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1993 			dump_drop_page(m_pc->phys_addr);
1994 			mtx_lock(&pv_chunks_mutex);
1995 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1996 			break;
1997 		}
1998 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1999 		mtx_lock(&pv_chunks_mutex);
2000 		/* One freed pv entry in locked_pmap is sufficient. */
2001 		if (pmap == locked_pmap)
2002 			break;
2003 
2004 next_chunk:
2005 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
2006 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
2007 		if (active_reclaims == 1 && pmap != NULL) {
2008 			/*
2009 			 * Rotate the pv chunks list so that we do not
2010 			 * scan the same pv chunks that could not be
2011 			 * freed (because they contained a wired
2012 			 * and/or superpage mapping) on every
2013 			 * invocation of reclaim_pv_chunk().
2014 			 */
2015 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
2016 				MPASS(pc->pc_pmap != NULL);
2017 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2018 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2019 			}
2020 		}
2021 	}
2022 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
2023 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
2024 	active_reclaims--;
2025 	mtx_unlock(&pv_chunks_mutex);
2026 	if (pmap != NULL && pmap != locked_pmap)
2027 		PMAP_UNLOCK(pmap);
2028 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
2029 		m_pc = SLIST_FIRST(&free);
2030 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2031 		/* Recycle a freed page table page. */
2032 		m_pc->wire_count = 1;
2033 		vm_wire_add(1);
2034 	}
2035 	vm_page_free_pages_toq(&free, false);
2036 	return (m_pc);
2037 }
2038 
2039 /*
2040  * free the pv_entry back to the free list
2041  */
2042 static void
2043 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2044 {
2045 	struct pv_chunk *pc;
2046 	int idx, field, bit;
2047 
2048 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2049 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
2050 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
2051 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
2052 	pc = pv_to_chunk(pv);
2053 	idx = pv - &pc->pc_pventry[0];
2054 	field = idx / 64;
2055 	bit = idx % 64;
2056 	pc->pc_map[field] |= 1ul << bit;
2057 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
2058 	    pc->pc_map[2] != PC_FREE2) {
2059 		/* 98% of the time, pc is already at the head of the list. */
2060 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
2061 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2062 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2063 		}
2064 		return;
2065 	}
2066 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2067 	free_pv_chunk(pc);
2068 }
2069 
2070 static void
2071 free_pv_chunk(struct pv_chunk *pc)
2072 {
2073 	vm_page_t m;
2074 
2075 	mtx_lock(&pv_chunks_mutex);
2076  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2077 	mtx_unlock(&pv_chunks_mutex);
2078 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2079 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2080 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2081 	/* entire chunk is free, return it */
2082 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2083 	dump_drop_page(m->phys_addr);
2084 	vm_page_unwire_noq(m);
2085 	vm_page_free(m);
2086 }
2087 
2088 /*
2089  * Returns a new PV entry, allocating a new PV chunk from the system when
2090  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
2091  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
2092  * returned.
2093  *
2094  * The given PV list lock may be released.
2095  */
2096 static pv_entry_t
2097 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
2098 {
2099 	int bit, field;
2100 	pv_entry_t pv;
2101 	struct pv_chunk *pc;
2102 	vm_page_t m;
2103 
2104 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2105 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
2106 retry:
2107 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2108 	if (pc != NULL) {
2109 		for (field = 0; field < _NPCM; field++) {
2110 			if (pc->pc_map[field]) {
2111 				bit = ffsl(pc->pc_map[field]) - 1;
2112 				break;
2113 			}
2114 		}
2115 		if (field < _NPCM) {
2116 			pv = &pc->pc_pventry[field * 64 + bit];
2117 			pc->pc_map[field] &= ~(1ul << bit);
2118 			/* If this was the last item, move it to tail */
2119 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
2120 			    pc->pc_map[2] == 0) {
2121 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2122 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
2123 				    pc_list);
2124 			}
2125 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
2126 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
2127 			return (pv);
2128 		}
2129 	}
2130 	/* No free items, allocate another chunk */
2131 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2132 	    VM_ALLOC_WIRED);
2133 	if (m == NULL) {
2134 		if (lockp == NULL) {
2135 			PV_STAT(pc_chunk_tryfail++);
2136 			return (NULL);
2137 		}
2138 		m = reclaim_pv_chunk(pmap, lockp);
2139 		if (m == NULL)
2140 			goto retry;
2141 	}
2142 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2143 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2144 	dump_add_page(m->phys_addr);
2145 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2146 	pc->pc_pmap = pmap;
2147 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
2148 	pc->pc_map[1] = PC_FREE1;
2149 	pc->pc_map[2] = PC_FREE2;
2150 	mtx_lock(&pv_chunks_mutex);
2151 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2152 	mtx_unlock(&pv_chunks_mutex);
2153 	pv = &pc->pc_pventry[0];
2154 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2155 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
2156 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
2157 	return (pv);
2158 }
2159 
2160 /*
2161  * Ensure that the number of spare PV entries in the specified pmap meets or
2162  * exceeds the given count, "needed".
2163  *
2164  * The given PV list lock may be released.
2165  */
2166 static void
2167 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
2168 {
2169 	struct pch new_tail;
2170 	struct pv_chunk *pc;
2171 	vm_page_t m;
2172 	int avail, free;
2173 	bool reclaimed;
2174 
2175 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2176 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
2177 
2178 	/*
2179 	 * Newly allocated PV chunks must be stored in a private list until
2180 	 * the required number of PV chunks have been allocated.  Otherwise,
2181 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
2182 	 * contrast, these chunks must be added to the pmap upon allocation.
2183 	 */
2184 	TAILQ_INIT(&new_tail);
2185 retry:
2186 	avail = 0;
2187 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
2188 		bit_count((bitstr_t *)pc->pc_map, 0,
2189 		    sizeof(pc->pc_map) * NBBY, &free);
2190 		if (free == 0)
2191 			break;
2192 		avail += free;
2193 		if (avail >= needed)
2194 			break;
2195 	}
2196 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
2197 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2198 		    VM_ALLOC_WIRED);
2199 		if (m == NULL) {
2200 			m = reclaim_pv_chunk(pmap, lockp);
2201 			if (m == NULL)
2202 				goto retry;
2203 			reclaimed = true;
2204 		}
2205 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2206 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2207 		dump_add_page(m->phys_addr);
2208 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2209 		pc->pc_pmap = pmap;
2210 		pc->pc_map[0] = PC_FREE0;
2211 		pc->pc_map[1] = PC_FREE1;
2212 		pc->pc_map[2] = PC_FREE2;
2213 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2214 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2215 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
2216 
2217 		/*
2218 		 * The reclaim might have freed a chunk from the current pmap.
2219 		 * If that chunk contained available entries, we need to
2220 		 * re-count the number of available entries.
2221 		 */
2222 		if (reclaimed)
2223 			goto retry;
2224 	}
2225 	if (!TAILQ_EMPTY(&new_tail)) {
2226 		mtx_lock(&pv_chunks_mutex);
2227 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
2228 		mtx_unlock(&pv_chunks_mutex);
2229 	}
2230 }
2231 
2232 /*
2233  * First find and then remove the pv entry for the specified pmap and virtual
2234  * address from the specified pv list.  Returns the pv entry if found and NULL
2235  * otherwise.  This operation can be performed on pv lists for either 4KB or
2236  * 2MB page mappings.
2237  */
2238 static __inline pv_entry_t
2239 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2240 {
2241 	pv_entry_t pv;
2242 
2243 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2244 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2245 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2246 			pvh->pv_gen++;
2247 			break;
2248 		}
2249 	}
2250 	return (pv);
2251 }
2252 
2253 /*
2254  * After demotion from a 2MB page mapping to 512 4KB page mappings,
2255  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
2256  * entries for each of the 4KB page mappings.
2257  */
2258 static void
2259 pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2260     struct rwlock **lockp)
2261 {
2262 	struct md_page *pvh;
2263 	struct pv_chunk *pc;
2264 	pv_entry_t pv;
2265 	vm_offset_t va_last;
2266 	vm_page_t m;
2267 	int bit, field;
2268 
2269 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2270 	KASSERT((pa & L2_OFFSET) == 0,
2271 	    ("pmap_pv_demote_l2: pa is not 2mpage aligned"));
2272 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2273 
2274 	/*
2275 	 * Transfer the 2mpage's pv entry for this mapping to the first
2276 	 * page's pv list.  Once this transfer begins, the pv list lock
2277 	 * must not be released until the last pv entry is reinstantiated.
2278 	 */
2279 	pvh = pa_to_pvh(pa);
2280 	va = va & ~L2_OFFSET;
2281 	pv = pmap_pvh_remove(pvh, pmap, va);
2282 	KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found"));
2283 	m = PHYS_TO_VM_PAGE(pa);
2284 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2285 	m->md.pv_gen++;
2286 	/* Instantiate the remaining Ln_ENTRIES - 1 pv entries. */
2287 	PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1));
2288 	va_last = va + L2_SIZE - PAGE_SIZE;
2289 	for (;;) {
2290 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2291 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
2292 		    pc->pc_map[2] != 0, ("pmap_pv_demote_l2: missing spare"));
2293 		for (field = 0; field < _NPCM; field++) {
2294 			while (pc->pc_map[field]) {
2295 				bit = ffsl(pc->pc_map[field]) - 1;
2296 				pc->pc_map[field] &= ~(1ul << bit);
2297 				pv = &pc->pc_pventry[field * 64 + bit];
2298 				va += PAGE_SIZE;
2299 				pv->pv_va = va;
2300 				m++;
2301 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2302 			    ("pmap_pv_demote_l2: page %p is not managed", m));
2303 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2304 				m->md.pv_gen++;
2305 				if (va == va_last)
2306 					goto out;
2307 			}
2308 		}
2309 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2310 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2311 	}
2312 out:
2313 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
2314 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2315 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2316 	}
2317 	PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1));
2318 	PV_STAT(atomic_subtract_int(&pv_entry_spare, Ln_ENTRIES - 1));
2319 }
2320 
2321 /*
2322  * First find and then destroy the pv entry for the specified pmap and virtual
2323  * address.  This operation can be performed on pv lists for either 4KB or 2MB
2324  * page mappings.
2325  */
2326 static void
2327 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2328 {
2329 	pv_entry_t pv;
2330 
2331 	pv = pmap_pvh_remove(pvh, pmap, va);
2332 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2333 	free_pv_entry(pmap, pv);
2334 }
2335 
2336 /*
2337  * Conditionally create the PV entry for a 4KB page mapping if the required
2338  * memory can be allocated without resorting to reclamation.
2339  */
2340 static boolean_t
2341 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
2342     struct rwlock **lockp)
2343 {
2344 	pv_entry_t pv;
2345 
2346 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2347 	/* Pass NULL instead of the lock pointer to disable reclamation. */
2348 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
2349 		pv->pv_va = va;
2350 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2351 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2352 		m->md.pv_gen++;
2353 		return (TRUE);
2354 	} else
2355 		return (FALSE);
2356 }
2357 
2358 /*
2359  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
2360  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
2361  * false if the PV entry cannot be allocated without resorting to reclamation.
2362  */
2363 static bool
2364 pmap_pv_insert_l2(pmap_t pmap, vm_offset_t va, pd_entry_t l2e, u_int flags,
2365     struct rwlock **lockp)
2366 {
2367 	struct md_page *pvh;
2368 	pv_entry_t pv;
2369 	vm_paddr_t pa;
2370 
2371 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2372 	/* Pass NULL instead of the lock pointer to disable reclamation. */
2373 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
2374 	    NULL : lockp)) == NULL)
2375 		return (false);
2376 	pv->pv_va = va;
2377 	pa = l2e & ~ATTR_MASK;
2378 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2379 	pvh = pa_to_pvh(pa);
2380 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2381 	pvh->pv_gen++;
2382 	return (true);
2383 }
2384 
2385 static void
2386 pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
2387 {
2388 	pt_entry_t newl2, oldl2;
2389 	vm_page_t ml3;
2390 	vm_paddr_t ml3pa;
2391 
2392 	KASSERT(!VIRT_IN_DMAP(va), ("removing direct mapping of %#lx", va));
2393 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
2394 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2395 
2396 	ml3 = pmap_remove_pt_page(pmap, va);
2397 	if (ml3 == NULL)
2398 		panic("pmap_remove_kernel_l2: Missing pt page");
2399 
2400 	ml3pa = VM_PAGE_TO_PHYS(ml3);
2401 	newl2 = ml3pa | L2_TABLE;
2402 
2403 	/*
2404 	 * Initialize the page table page.
2405 	 */
2406 	pagezero((void *)PHYS_TO_DMAP(ml3pa));
2407 
2408 	/*
2409 	 * Demote the mapping.  The caller must have already invalidated the
2410 	 * mapping (i.e., the "break" in break-before-make).
2411 	 */
2412 	oldl2 = pmap_load_store(l2, newl2);
2413 	KASSERT(oldl2 == 0, ("%s: found existing mapping at %p: %#lx",
2414 	    __func__, l2, oldl2));
2415 }
2416 
2417 /*
2418  * pmap_remove_l2: Do the things to unmap a level 2 superpage.
2419  */
2420 static int
2421 pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
2422     pd_entry_t l1e, struct spglist *free, struct rwlock **lockp)
2423 {
2424 	struct md_page *pvh;
2425 	pt_entry_t old_l2;
2426 	vm_offset_t eva, va;
2427 	vm_page_t m, ml3;
2428 
2429 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2430 	KASSERT((sva & L2_OFFSET) == 0, ("pmap_remove_l2: sva is not aligned"));
2431 	old_l2 = pmap_load_clear(l2);
2432 	KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
2433 	    ("pmap_remove_l2: L2e %lx is not a block mapping", old_l2));
2434 	pmap_invalidate_range(pmap, sva, sva + L2_SIZE);
2435 	if (old_l2 & ATTR_SW_WIRED)
2436 		pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE;
2437 	pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE);
2438 	if (old_l2 & ATTR_SW_MANAGED) {
2439 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, old_l2 & ~ATTR_MASK);
2440 		pvh = pa_to_pvh(old_l2 & ~ATTR_MASK);
2441 		pmap_pvh_free(pvh, pmap, sva);
2442 		eva = sva + L2_SIZE;
2443 		for (va = sva, m = PHYS_TO_VM_PAGE(old_l2 & ~ATTR_MASK);
2444 		    va < eva; va += PAGE_SIZE, m++) {
2445 			if (pmap_page_dirty(old_l2))
2446 				vm_page_dirty(m);
2447 			if (old_l2 & ATTR_AF)
2448 				vm_page_aflag_set(m, PGA_REFERENCED);
2449 			if (TAILQ_EMPTY(&m->md.pv_list) &&
2450 			    TAILQ_EMPTY(&pvh->pv_list))
2451 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2452 		}
2453 	}
2454 	if (pmap == kernel_pmap) {
2455 		pmap_remove_kernel_l2(pmap, l2, sva);
2456 	} else {
2457 		ml3 = pmap_remove_pt_page(pmap, sva);
2458 		if (ml3 != NULL) {
2459 			pmap_resident_count_dec(pmap, 1);
2460 			KASSERT(ml3->wire_count == NL3PG,
2461 			    ("pmap_remove_l2: l3 page wire count error"));
2462 			ml3->wire_count = 1;
2463 			vm_page_unwire_noq(ml3);
2464 			pmap_add_delayed_free_list(ml3, free, FALSE);
2465 		}
2466 	}
2467 	return (pmap_unuse_pt(pmap, sva, l1e, free));
2468 }
2469 
2470 /*
2471  * pmap_remove_l3: do the things to unmap a page in a process
2472  */
2473 static int
2474 pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
2475     pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
2476 {
2477 	struct md_page *pvh;
2478 	pt_entry_t old_l3;
2479 	vm_page_t m;
2480 
2481 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2482 	old_l3 = pmap_load_clear(l3);
2483 	pmap_invalidate_page(pmap, va);
2484 	if (old_l3 & ATTR_SW_WIRED)
2485 		pmap->pm_stats.wired_count -= 1;
2486 	pmap_resident_count_dec(pmap, 1);
2487 	if (old_l3 & ATTR_SW_MANAGED) {
2488 		m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK);
2489 		if (pmap_page_dirty(old_l3))
2490 			vm_page_dirty(m);
2491 		if (old_l3 & ATTR_AF)
2492 			vm_page_aflag_set(m, PGA_REFERENCED);
2493 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2494 		pmap_pvh_free(&m->md, pmap, va);
2495 		if (TAILQ_EMPTY(&m->md.pv_list) &&
2496 		    (m->flags & PG_FICTITIOUS) == 0) {
2497 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2498 			if (TAILQ_EMPTY(&pvh->pv_list))
2499 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2500 		}
2501 	}
2502 	return (pmap_unuse_pt(pmap, va, l2e, free));
2503 }
2504 
2505 /*
2506  *	Remove the given range of addresses from the specified map.
2507  *
2508  *	It is assumed that the start and end are properly
2509  *	rounded to the page size.
2510  */
2511 void
2512 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2513 {
2514 	struct rwlock *lock;
2515 	vm_offset_t va, va_next;
2516 	pd_entry_t *l0, *l1, *l2;
2517 	pt_entry_t l3_paddr, *l3;
2518 	struct spglist free;
2519 
2520 	/*
2521 	 * Perform an unsynchronized read.  This is, however, safe.
2522 	 */
2523 	if (pmap->pm_stats.resident_count == 0)
2524 		return;
2525 
2526 	SLIST_INIT(&free);
2527 
2528 	PMAP_LOCK(pmap);
2529 
2530 	lock = NULL;
2531 	for (; sva < eva; sva = va_next) {
2532 
2533 		if (pmap->pm_stats.resident_count == 0)
2534 			break;
2535 
2536 		l0 = pmap_l0(pmap, sva);
2537 		if (pmap_load(l0) == 0) {
2538 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2539 			if (va_next < sva)
2540 				va_next = eva;
2541 			continue;
2542 		}
2543 
2544 		l1 = pmap_l0_to_l1(l0, sva);
2545 		if (pmap_load(l1) == 0) {
2546 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2547 			if (va_next < sva)
2548 				va_next = eva;
2549 			continue;
2550 		}
2551 
2552 		/*
2553 		 * Calculate index for next page table.
2554 		 */
2555 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2556 		if (va_next < sva)
2557 			va_next = eva;
2558 
2559 		l2 = pmap_l1_to_l2(l1, sva);
2560 		if (l2 == NULL)
2561 			continue;
2562 
2563 		l3_paddr = pmap_load(l2);
2564 
2565 		if ((l3_paddr & ATTR_DESCR_MASK) == L2_BLOCK) {
2566 			if (sva + L2_SIZE == va_next && eva >= va_next) {
2567 				pmap_remove_l2(pmap, l2, sva, pmap_load(l1),
2568 				    &free, &lock);
2569 				continue;
2570 			} else if (pmap_demote_l2_locked(pmap, l2,
2571 			    sva &~L2_OFFSET, &lock) == NULL)
2572 				continue;
2573 			l3_paddr = pmap_load(l2);
2574 		}
2575 
2576 		/*
2577 		 * Weed out invalid mappings.
2578 		 */
2579 		if ((l3_paddr & ATTR_DESCR_MASK) != L2_TABLE)
2580 			continue;
2581 
2582 		/*
2583 		 * Limit our scan to either the end of the va represented
2584 		 * by the current page table page, or to the end of the
2585 		 * range being removed.
2586 		 */
2587 		if (va_next > eva)
2588 			va_next = eva;
2589 
2590 		va = va_next;
2591 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
2592 		    sva += L3_SIZE) {
2593 			if (l3 == NULL)
2594 				panic("l3 == NULL");
2595 			if (pmap_load(l3) == 0) {
2596 				if (va != va_next) {
2597 					pmap_invalidate_range(pmap, va, sva);
2598 					va = va_next;
2599 				}
2600 				continue;
2601 			}
2602 			if (va == va_next)
2603 				va = sva;
2604 			if (pmap_remove_l3(pmap, l3, sva, l3_paddr, &free,
2605 			    &lock)) {
2606 				sva += L3_SIZE;
2607 				break;
2608 			}
2609 		}
2610 		if (va != va_next)
2611 			pmap_invalidate_range(pmap, va, sva);
2612 	}
2613 	if (lock != NULL)
2614 		rw_wunlock(lock);
2615 	PMAP_UNLOCK(pmap);
2616 	vm_page_free_pages_toq(&free, false);
2617 }
2618 
2619 /*
2620  *	Routine:	pmap_remove_all
2621  *	Function:
2622  *		Removes this physical page from
2623  *		all physical maps in which it resides.
2624  *		Reflects back modify bits to the pager.
2625  *
2626  *	Notes:
2627  *		Original versions of this routine were very
2628  *		inefficient because they iteratively called
2629  *		pmap_remove (slow...)
2630  */
2631 
2632 void
2633 pmap_remove_all(vm_page_t m)
2634 {
2635 	struct md_page *pvh;
2636 	pv_entry_t pv;
2637 	pmap_t pmap;
2638 	struct rwlock *lock;
2639 	pd_entry_t *pde, tpde;
2640 	pt_entry_t *pte, tpte;
2641 	vm_offset_t va;
2642 	struct spglist free;
2643 	int lvl, pvh_gen, md_gen;
2644 
2645 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2646 	    ("pmap_remove_all: page %p is not managed", m));
2647 	SLIST_INIT(&free);
2648 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2649 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2650 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2651 retry:
2652 	rw_wlock(lock);
2653 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2654 		pmap = PV_PMAP(pv);
2655 		if (!PMAP_TRYLOCK(pmap)) {
2656 			pvh_gen = pvh->pv_gen;
2657 			rw_wunlock(lock);
2658 			PMAP_LOCK(pmap);
2659 			rw_wlock(lock);
2660 			if (pvh_gen != pvh->pv_gen) {
2661 				rw_wunlock(lock);
2662 				PMAP_UNLOCK(pmap);
2663 				goto retry;
2664 			}
2665 		}
2666 		va = pv->pv_va;
2667 		pte = pmap_pte(pmap, va, &lvl);
2668 		KASSERT(pte != NULL,
2669 		    ("pmap_remove_all: no page table entry found"));
2670 		KASSERT(lvl == 2,
2671 		    ("pmap_remove_all: invalid pte level %d", lvl));
2672 
2673 		pmap_demote_l2_locked(pmap, pte, va, &lock);
2674 		PMAP_UNLOCK(pmap);
2675 	}
2676 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2677 		pmap = PV_PMAP(pv);
2678 		if (!PMAP_TRYLOCK(pmap)) {
2679 			pvh_gen = pvh->pv_gen;
2680 			md_gen = m->md.pv_gen;
2681 			rw_wunlock(lock);
2682 			PMAP_LOCK(pmap);
2683 			rw_wlock(lock);
2684 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2685 				rw_wunlock(lock);
2686 				PMAP_UNLOCK(pmap);
2687 				goto retry;
2688 			}
2689 		}
2690 		pmap_resident_count_dec(pmap, 1);
2691 
2692 		pde = pmap_pde(pmap, pv->pv_va, &lvl);
2693 		KASSERT(pde != NULL,
2694 		    ("pmap_remove_all: no page directory entry found"));
2695 		KASSERT(lvl == 2,
2696 		    ("pmap_remove_all: invalid pde level %d", lvl));
2697 		tpde = pmap_load(pde);
2698 
2699 		pte = pmap_l2_to_l3(pde, pv->pv_va);
2700 		tpte = pmap_load(pte);
2701 		pmap_load_clear(pte);
2702 		pmap_invalidate_page(pmap, pv->pv_va);
2703 		if (tpte & ATTR_SW_WIRED)
2704 			pmap->pm_stats.wired_count--;
2705 		if ((tpte & ATTR_AF) != 0)
2706 			vm_page_aflag_set(m, PGA_REFERENCED);
2707 
2708 		/*
2709 		 * Update the vm_page_t clean and reference bits.
2710 		 */
2711 		if (pmap_page_dirty(tpte))
2712 			vm_page_dirty(m);
2713 		pmap_unuse_pt(pmap, pv->pv_va, tpde, &free);
2714 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2715 		m->md.pv_gen++;
2716 		free_pv_entry(pmap, pv);
2717 		PMAP_UNLOCK(pmap);
2718 	}
2719 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2720 	rw_wunlock(lock);
2721 	vm_page_free_pages_toq(&free, false);
2722 }
2723 
2724 /*
2725  *	Set the physical protection on the
2726  *	specified range of this map as requested.
2727  */
2728 void
2729 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2730 {
2731 	vm_offset_t va, va_next;
2732 	pd_entry_t *l0, *l1, *l2;
2733 	pt_entry_t *l3p, l3, nbits;
2734 
2735 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
2736 	if (prot == VM_PROT_NONE) {
2737 		pmap_remove(pmap, sva, eva);
2738 		return;
2739 	}
2740 
2741 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
2742 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
2743 		return;
2744 
2745 	PMAP_LOCK(pmap);
2746 	for (; sva < eva; sva = va_next) {
2747 
2748 		l0 = pmap_l0(pmap, sva);
2749 		if (pmap_load(l0) == 0) {
2750 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2751 			if (va_next < sva)
2752 				va_next = eva;
2753 			continue;
2754 		}
2755 
2756 		l1 = pmap_l0_to_l1(l0, sva);
2757 		if (pmap_load(l1) == 0) {
2758 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2759 			if (va_next < sva)
2760 				va_next = eva;
2761 			continue;
2762 		}
2763 
2764 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2765 		if (va_next < sva)
2766 			va_next = eva;
2767 
2768 		l2 = pmap_l1_to_l2(l1, sva);
2769 		if (pmap_load(l2) == 0)
2770 			continue;
2771 
2772 		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
2773 			l3p = pmap_demote_l2(pmap, l2, sva);
2774 			if (l3p == NULL)
2775 				continue;
2776 		}
2777 		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
2778 		    ("pmap_protect: Invalid L2 entry after demotion"));
2779 
2780 		if (va_next > eva)
2781 			va_next = eva;
2782 
2783 		va = va_next;
2784 		for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++,
2785 		    sva += L3_SIZE) {
2786 			l3 = pmap_load(l3p);
2787 			if (!pmap_l3_valid(l3))
2788 				continue;
2789 
2790 			nbits = 0;
2791 			if ((prot & VM_PROT_WRITE) == 0) {
2792 				if ((l3 & ATTR_SW_MANAGED) &&
2793 				    pmap_page_dirty(l3)) {
2794 					vm_page_dirty(PHYS_TO_VM_PAGE(l3 &
2795 					    ~ATTR_MASK));
2796 				}
2797 				nbits |= ATTR_AP(ATTR_AP_RO);
2798 			}
2799 			if ((prot & VM_PROT_EXECUTE) == 0)
2800 				nbits |= ATTR_XN;
2801 
2802 			pmap_set(l3p, nbits);
2803 			/* XXX: Use pmap_invalidate_range */
2804 			pmap_invalidate_page(pmap, sva);
2805 		}
2806 	}
2807 	PMAP_UNLOCK(pmap);
2808 }
2809 
2810 /*
2811  * Inserts the specified page table page into the specified pmap's collection
2812  * of idle page table pages.  Each of a pmap's page table pages is responsible
2813  * for mapping a distinct range of virtual addresses.  The pmap's collection is
2814  * ordered by this virtual address range.
2815  */
2816 static __inline int
2817 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
2818 {
2819 
2820 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2821 	return (vm_radix_insert(&pmap->pm_root, mpte));
2822 }
2823 
2824 /*
2825  * Removes the page table page mapping the specified virtual address from the
2826  * specified pmap's collection of idle page table pages, and returns it.
2827  * Otherwise, returns NULL if there is no page table page corresponding to the
2828  * specified virtual address.
2829  */
2830 static __inline vm_page_t
2831 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
2832 {
2833 
2834 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2835 	return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va)));
2836 }
2837 
2838 /*
2839  * Performs a break-before-make update of a pmap entry. This is needed when
2840  * either promoting or demoting pages to ensure the TLB doesn't get into an
2841  * inconsistent state.
2842  */
2843 static void
2844 pmap_update_entry(pmap_t pmap, pd_entry_t *pte, pd_entry_t newpte,
2845     vm_offset_t va, vm_size_t size)
2846 {
2847 	register_t intr;
2848 
2849 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2850 
2851 	/*
2852 	 * Ensure we don't get switched out with the page table in an
2853 	 * inconsistent state. We also need to ensure no interrupts fire
2854 	 * as they may make use of an address we are about to invalidate.
2855 	 */
2856 	intr = intr_disable();
2857 	critical_enter();
2858 
2859 	/* Clear the old mapping */
2860 	pmap_load_clear(pte);
2861 	pmap_invalidate_range_nopin(pmap, va, va + size);
2862 
2863 	/* Create the new mapping */
2864 	pmap_load_store(pte, newpte);
2865 	dsb(ishst);
2866 
2867 	critical_exit();
2868 	intr_restore(intr);
2869 }
2870 
2871 #if VM_NRESERVLEVEL > 0
2872 /*
2873  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
2874  * replace the many pv entries for the 4KB page mappings by a single pv entry
2875  * for the 2MB page mapping.
2876  */
2877 static void
2878 pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2879     struct rwlock **lockp)
2880 {
2881 	struct md_page *pvh;
2882 	pv_entry_t pv;
2883 	vm_offset_t va_last;
2884 	vm_page_t m;
2885 
2886 	KASSERT((pa & L2_OFFSET) == 0,
2887 	    ("pmap_pv_promote_l2: pa is not 2mpage aligned"));
2888 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2889 
2890 	/*
2891 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
2892 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
2893 	 * a transfer avoids the possibility that get_pv_entry() calls
2894 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
2895 	 * mappings that is being promoted.
2896 	 */
2897 	m = PHYS_TO_VM_PAGE(pa);
2898 	va = va & ~L2_OFFSET;
2899 	pv = pmap_pvh_remove(&m->md, pmap, va);
2900 	KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv not found"));
2901 	pvh = pa_to_pvh(pa);
2902 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2903 	pvh->pv_gen++;
2904 	/* Free the remaining NPTEPG - 1 pv entries. */
2905 	va_last = va + L2_SIZE - PAGE_SIZE;
2906 	do {
2907 		m++;
2908 		va += PAGE_SIZE;
2909 		pmap_pvh_free(&m->md, pmap, va);
2910 	} while (va < va_last);
2911 }
2912 
2913 /*
2914  * Tries to promote the 512, contiguous 4KB page mappings that are within a
2915  * single level 2 table entry to a single 2MB page mapping.  For promotion
2916  * to occur, two conditions must be met: (1) the 4KB page mappings must map
2917  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2918  * identical characteristics.
2919  */
2920 static void
2921 pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va,
2922     struct rwlock **lockp)
2923 {
2924 	pt_entry_t *firstl3, *l3, newl2, oldl3, pa;
2925 	vm_page_t mpte;
2926 	vm_offset_t sva;
2927 
2928 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2929 
2930 	sva = va & ~L2_OFFSET;
2931 	firstl3 = pmap_l2_to_l3(l2, sva);
2932 	newl2 = pmap_load(firstl3);
2933 
2934 	/* Check the alingment is valid */
2935 	if (((newl2 & ~ATTR_MASK) & L2_OFFSET) != 0) {
2936 		atomic_add_long(&pmap_l2_p_failures, 1);
2937 		CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
2938 		    " in pmap %p", va, pmap);
2939 		return;
2940 	}
2941 
2942 	pa = newl2 + L2_SIZE - PAGE_SIZE;
2943 	for (l3 = firstl3 + NL3PG - 1; l3 > firstl3; l3--) {
2944 		oldl3 = pmap_load(l3);
2945 		if (oldl3 != pa) {
2946 			atomic_add_long(&pmap_l2_p_failures, 1);
2947 			CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
2948 			    " in pmap %p", va, pmap);
2949 			return;
2950 		}
2951 		pa -= PAGE_SIZE;
2952 	}
2953 
2954 	/*
2955 	 * Save the page table page in its current state until the L2
2956 	 * mapping the superpage is demoted by pmap_demote_l2() or
2957 	 * destroyed by pmap_remove_l3().
2958 	 */
2959 	mpte = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
2960 	KASSERT(mpte >= vm_page_array &&
2961 	    mpte < &vm_page_array[vm_page_array_size],
2962 	    ("pmap_promote_l2: page table page is out of range"));
2963 	KASSERT(mpte->pindex == pmap_l2_pindex(va),
2964 	    ("pmap_promote_l2: page table page's pindex is wrong"));
2965 	if (pmap_insert_pt_page(pmap, mpte)) {
2966 		atomic_add_long(&pmap_l2_p_failures, 1);
2967 		CTR2(KTR_PMAP,
2968 		    "pmap_promote_l2: failure for va %#lx in pmap %p", va,
2969 		    pmap);
2970 		return;
2971 	}
2972 
2973 	if ((newl2 & ATTR_SW_MANAGED) != 0)
2974 		pmap_pv_promote_l2(pmap, va, newl2 & ~ATTR_MASK, lockp);
2975 
2976 	newl2 &= ~ATTR_DESCR_MASK;
2977 	newl2 |= L2_BLOCK;
2978 
2979 	pmap_update_entry(pmap, l2, newl2, sva, L2_SIZE);
2980 
2981 	atomic_add_long(&pmap_l2_promotions, 1);
2982 	CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va,
2983 		    pmap);
2984 }
2985 #endif /* VM_NRESERVLEVEL > 0 */
2986 
2987 /*
2988  *	Insert the given physical page (p) at
2989  *	the specified virtual address (v) in the
2990  *	target physical map with the protection requested.
2991  *
2992  *	If specified, the page will be wired down, meaning
2993  *	that the related pte can not be reclaimed.
2994  *
2995  *	NB:  This is the only routine which MAY NOT lazy-evaluate
2996  *	or lose information.  That is, this routine must actually
2997  *	insert this page into the given map NOW.
2998  */
2999 int
3000 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3001     u_int flags, int8_t psind)
3002 {
3003 	struct rwlock *lock;
3004 	pd_entry_t *pde;
3005 	pt_entry_t new_l3, orig_l3;
3006 	pt_entry_t *l2, *l3;
3007 	pv_entry_t pv;
3008 	vm_paddr_t opa, pa, l1_pa, l2_pa, l3_pa;
3009 	vm_page_t mpte, om, l1_m, l2_m, l3_m;
3010 	boolean_t nosleep;
3011 	int lvl, rv;
3012 
3013 	va = trunc_page(va);
3014 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3015 		VM_OBJECT_ASSERT_LOCKED(m->object);
3016 	pa = VM_PAGE_TO_PHYS(m);
3017 	new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT | ATTR_IDX(m->md.pv_memattr) |
3018 	    L3_PAGE);
3019 	if ((prot & VM_PROT_WRITE) == 0)
3020 		new_l3 |= ATTR_AP(ATTR_AP_RO);
3021 	if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == DEVICE_MEMORY)
3022 		new_l3 |= ATTR_XN;
3023 	if ((flags & PMAP_ENTER_WIRED) != 0)
3024 		new_l3 |= ATTR_SW_WIRED;
3025 	if (va < VM_MAXUSER_ADDRESS)
3026 		new_l3 |= ATTR_AP(ATTR_AP_USER) | ATTR_PXN;
3027 	if ((m->oflags & VPO_UNMANAGED) == 0)
3028 		new_l3 |= ATTR_SW_MANAGED;
3029 
3030 	CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
3031 
3032 	lock = NULL;
3033 	mpte = NULL;
3034 	PMAP_LOCK(pmap);
3035 	if (psind == 1) {
3036 		/* Assert the required virtual and physical alignment. */
3037 		KASSERT((va & L2_OFFSET) == 0, ("pmap_enter: va unaligned"));
3038 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3039 		rv = pmap_enter_l2(pmap, va, (new_l3 & ~L3_PAGE) | L2_BLOCK,
3040 		    flags, m, &lock);
3041 		goto out;
3042 	}
3043 
3044 	pde = pmap_pde(pmap, va, &lvl);
3045 	if (pde != NULL && lvl == 1) {
3046 		l2 = pmap_l1_to_l2(pde, va);
3047 		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK &&
3048 		    (l3 = pmap_demote_l2_locked(pmap, l2, va & ~L2_OFFSET,
3049 		    &lock)) != NULL) {
3050 			l3 = &l3[pmap_l3_index(va)];
3051 			if (va < VM_MAXUSER_ADDRESS) {
3052 				mpte = PHYS_TO_VM_PAGE(
3053 				    pmap_load(l2) & ~ATTR_MASK);
3054 				mpte->wire_count++;
3055 			}
3056 			goto havel3;
3057 		}
3058 	}
3059 
3060 	if (va < VM_MAXUSER_ADDRESS) {
3061 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
3062 		mpte = pmap_alloc_l3(pmap, va, nosleep ? NULL : &lock);
3063 		if (mpte == NULL && nosleep) {
3064 			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
3065 			if (lock != NULL)
3066 				rw_wunlock(lock);
3067 			PMAP_UNLOCK(pmap);
3068 			return (KERN_RESOURCE_SHORTAGE);
3069 		}
3070 		pde = pmap_pde(pmap, va, &lvl);
3071 		KASSERT(pde != NULL,
3072 		    ("pmap_enter: Invalid page entry, va: 0x%lx", va));
3073 		KASSERT(lvl == 2,
3074 		    ("pmap_enter: Invalid level %d", lvl));
3075 	} else {
3076 		/*
3077 		 * If we get a level 2 pde it must point to a level 3 entry
3078 		 * otherwise we will need to create the intermediate tables
3079 		 */
3080 		if (lvl < 2) {
3081 			switch (lvl) {
3082 			default:
3083 			case -1:
3084 				/* Get the l0 pde to update */
3085 				pde = pmap_l0(pmap, va);
3086 				KASSERT(pde != NULL, ("..."));
3087 
3088 				l1_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
3089 				    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3090 				    VM_ALLOC_ZERO);
3091 				if (l1_m == NULL)
3092 					panic("pmap_enter: l1 pte_m == NULL");
3093 				if ((l1_m->flags & PG_ZERO) == 0)
3094 					pmap_zero_page(l1_m);
3095 
3096 				l1_pa = VM_PAGE_TO_PHYS(l1_m);
3097 				pmap_load_store(pde, l1_pa | L0_TABLE);
3098 				/* FALLTHROUGH */
3099 			case 0:
3100 				/* Get the l1 pde to update */
3101 				pde = pmap_l1_to_l2(pde, va);
3102 				KASSERT(pde != NULL, ("..."));
3103 
3104 				l2_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
3105 				    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3106 				    VM_ALLOC_ZERO);
3107 				if (l2_m == NULL)
3108 					panic("pmap_enter: l2 pte_m == NULL");
3109 				if ((l2_m->flags & PG_ZERO) == 0)
3110 					pmap_zero_page(l2_m);
3111 
3112 				l2_pa = VM_PAGE_TO_PHYS(l2_m);
3113 				pmap_load_store(pde, l2_pa | L1_TABLE);
3114 				/* FALLTHROUGH */
3115 			case 1:
3116 				/* Get the l2 pde to update */
3117 				pde = pmap_l1_to_l2(pde, va);
3118 				KASSERT(pde != NULL, ("..."));
3119 
3120 				l3_m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
3121 				    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3122 				    VM_ALLOC_ZERO);
3123 				if (l3_m == NULL)
3124 					panic("pmap_enter: l3 pte_m == NULL");
3125 				if ((l3_m->flags & PG_ZERO) == 0)
3126 					pmap_zero_page(l3_m);
3127 
3128 				l3_pa = VM_PAGE_TO_PHYS(l3_m);
3129 				pmap_load_store(pde, l3_pa | L2_TABLE);
3130 				break;
3131 			}
3132 		}
3133 	}
3134 	l3 = pmap_l2_to_l3(pde, va);
3135 
3136 havel3:
3137 	orig_l3 = pmap_load(l3);
3138 	opa = orig_l3 & ~ATTR_MASK;
3139 	pv = NULL;
3140 
3141 	/*
3142 	 * Is the specified virtual address already mapped?
3143 	 */
3144 	if (pmap_l3_valid(orig_l3)) {
3145 		/*
3146 		 * Wiring change, just update stats. We don't worry about
3147 		 * wiring PT pages as they remain resident as long as there
3148 		 * are valid mappings in them. Hence, if a user page is wired,
3149 		 * the PT page will be also.
3150 		 */
3151 		if ((flags & PMAP_ENTER_WIRED) != 0 &&
3152 		    (orig_l3 & ATTR_SW_WIRED) == 0)
3153 			pmap->pm_stats.wired_count++;
3154 		else if ((flags & PMAP_ENTER_WIRED) == 0 &&
3155 		    (orig_l3 & ATTR_SW_WIRED) != 0)
3156 			pmap->pm_stats.wired_count--;
3157 
3158 		/*
3159 		 * Remove the extra PT page reference.
3160 		 */
3161 		if (mpte != NULL) {
3162 			mpte->wire_count--;
3163 			KASSERT(mpte->wire_count > 0,
3164 			    ("pmap_enter: missing reference to page table page,"
3165 			     " va: 0x%lx", va));
3166 		}
3167 
3168 		/*
3169 		 * Has the physical page changed?
3170 		 */
3171 		if (opa == pa) {
3172 			/*
3173 			 * No, might be a protection or wiring change.
3174 			 */
3175 			if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
3176 				if ((new_l3 & ATTR_AP(ATTR_AP_RW)) ==
3177 				    ATTR_AP(ATTR_AP_RW)) {
3178 					vm_page_aflag_set(m, PGA_WRITEABLE);
3179 				}
3180 			}
3181 			goto validate;
3182 		}
3183 
3184 		/*
3185 		 * The physical page has changed.
3186 		 */
3187 		(void)pmap_load_clear(l3);
3188 		KASSERT((orig_l3 & ~ATTR_MASK) == opa,
3189 		    ("pmap_enter: unexpected pa update for %#lx", va));
3190 		if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
3191 			om = PHYS_TO_VM_PAGE(opa);
3192 
3193 			/*
3194 			 * The pmap lock is sufficient to synchronize with
3195 			 * concurrent calls to pmap_page_test_mappings() and
3196 			 * pmap_ts_referenced().
3197 			 */
3198 			if (pmap_page_dirty(orig_l3))
3199 				vm_page_dirty(om);
3200 			if ((orig_l3 & ATTR_AF) != 0)
3201 				vm_page_aflag_set(om, PGA_REFERENCED);
3202 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3203 			pv = pmap_pvh_remove(&om->md, pmap, va);
3204 			if ((m->oflags & VPO_UNMANAGED) != 0)
3205 				free_pv_entry(pmap, pv);
3206 			if ((om->aflags & PGA_WRITEABLE) != 0 &&
3207 			    TAILQ_EMPTY(&om->md.pv_list) &&
3208 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3209 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3210 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3211 		}
3212 		pmap_invalidate_page(pmap, va);
3213 		orig_l3 = 0;
3214 	} else {
3215 		/*
3216 		 * Increment the counters.
3217 		 */
3218 		if ((new_l3 & ATTR_SW_WIRED) != 0)
3219 			pmap->pm_stats.wired_count++;
3220 		pmap_resident_count_inc(pmap, 1);
3221 	}
3222 	/*
3223 	 * Enter on the PV list if part of our managed memory.
3224 	 */
3225 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3226 		if (pv == NULL) {
3227 			pv = get_pv_entry(pmap, &lock);
3228 			pv->pv_va = va;
3229 		}
3230 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3231 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3232 		m->md.pv_gen++;
3233 		if ((new_l3 & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW))
3234 			vm_page_aflag_set(m, PGA_WRITEABLE);
3235 	}
3236 
3237 validate:
3238 	/*
3239 	 * Sync icache if exec permission and attribute VM_MEMATTR_WRITE_BACK
3240 	 * is set. Do it now, before the mapping is stored and made
3241 	 * valid for hardware table walk. If done later, then other can
3242 	 * access this page before caches are properly synced.
3243 	 * Don't do it for kernel memory which is mapped with exec
3244 	 * permission even if the memory isn't going to hold executable
3245 	 * code. The only time when icache sync is needed is after
3246 	 * kernel module is loaded and the relocation info is processed.
3247 	 * And it's done in elf_cpu_load_file().
3248 	*/
3249 	if ((prot & VM_PROT_EXECUTE) &&  pmap != kernel_pmap &&
3250 	    m->md.pv_memattr == VM_MEMATTR_WRITE_BACK &&
3251 	    (opa != pa || (orig_l3 & ATTR_XN)))
3252 		cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE);
3253 
3254 	/*
3255 	 * Update the L3 entry
3256 	 */
3257 	if (pmap_l3_valid(orig_l3)) {
3258 		KASSERT(opa == pa, ("pmap_enter: invalid update"));
3259 		if ((orig_l3 & ~ATTR_AF) != (new_l3 & ~ATTR_AF)) {
3260 			/* same PA, different attributes */
3261 			pmap_load_store(l3, new_l3);
3262 			pmap_invalidate_page(pmap, va);
3263 			if (pmap_page_dirty(orig_l3) &&
3264 			    (orig_l3 & ATTR_SW_MANAGED) != 0)
3265 				vm_page_dirty(m);
3266 		} else {
3267 			/*
3268 			 * orig_l3 == new_l3
3269 			 * This can happens if multiple threads simultaneously
3270 			 * access not yet mapped page. This bad for performance
3271 			 * since this can cause full demotion-NOP-promotion
3272 			 * cycle.
3273 			 * Another possible reasons are:
3274 			 * - VM and pmap memory layout are diverged
3275 			 * - tlb flush is missing somewhere and CPU doesn't see
3276 			 *   actual mapping.
3277 			 */
3278 			CTR4(KTR_PMAP, "%s: already mapped page - "
3279 			    "pmap %p va 0x%#lx pte 0x%lx",
3280 			    __func__, pmap, va, new_l3);
3281 		}
3282 	} else {
3283 		/* New mappig */
3284 		pmap_load_store(l3, new_l3);
3285 		dsb(ishst);
3286 	}
3287 
3288 #if VM_NRESERVLEVEL > 0
3289 	if (pmap != pmap_kernel() &&
3290 	    (mpte == NULL || mpte->wire_count == NL3PG) &&
3291 	    pmap_ps_enabled(pmap) &&
3292 	    (m->flags & PG_FICTITIOUS) == 0 &&
3293 	    vm_reserv_level_iffullpop(m) == 0) {
3294 		pmap_promote_l2(pmap, pde, va, &lock);
3295 	}
3296 #endif
3297 
3298 	rv = KERN_SUCCESS;
3299 out:
3300 	if (lock != NULL)
3301 		rw_wunlock(lock);
3302 	PMAP_UNLOCK(pmap);
3303 	return (rv);
3304 }
3305 
3306 /*
3307  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
3308  * if successful.  Returns false if (1) a page table page cannot be allocated
3309  * without sleeping, (2) a mapping already exists at the specified virtual
3310  * address, or (3) a PV entry cannot be allocated without reclaiming another
3311  * PV entry.
3312  */
3313 static bool
3314 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3315     struct rwlock **lockp)
3316 {
3317 	pd_entry_t new_l2;
3318 
3319 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3320 
3321 	new_l2 = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT |
3322 	    ATTR_IDX(m->md.pv_memattr) | ATTR_AP(ATTR_AP_RO) | L2_BLOCK);
3323 	if ((m->oflags & VPO_UNMANAGED) == 0)
3324 		new_l2 |= ATTR_SW_MANAGED;
3325 	if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == DEVICE_MEMORY)
3326 		new_l2 |= ATTR_XN;
3327 	if (va < VM_MAXUSER_ADDRESS)
3328 		new_l2 |= ATTR_AP(ATTR_AP_USER) | ATTR_PXN;
3329 	return (pmap_enter_l2(pmap, va, new_l2, PMAP_ENTER_NOSLEEP |
3330 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3331 	    KERN_SUCCESS);
3332 }
3333 
3334 /*
3335  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3336  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3337  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3338  * a mapping already exists at the specified virtual address.  Returns
3339  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3340  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
3341  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3342  *
3343  * The parameter "m" is only used when creating a managed, writeable mapping.
3344  */
3345 static int
3346 pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2, u_int flags,
3347     vm_page_t m, struct rwlock **lockp)
3348 {
3349 	struct spglist free;
3350 	pd_entry_t *l2, *l3, old_l2;
3351 	vm_offset_t sva;
3352 	vm_page_t l2pg, mt;
3353 
3354 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3355 
3356 	if ((l2pg = pmap_alloc_l2(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3357 	    NULL : lockp)) == NULL) {
3358 		CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx in pmap %p",
3359 		    va, pmap);
3360 		return (KERN_RESOURCE_SHORTAGE);
3361 	}
3362 
3363 	l2 = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(l2pg));
3364 	l2 = &l2[pmap_l2_index(va)];
3365 	if ((old_l2 = pmap_load(l2)) != 0) {
3366 		KASSERT(l2pg->wire_count > 1,
3367 		    ("pmap_enter_l2: l2pg's wire count is too low"));
3368 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3369 			l2pg->wire_count--;
3370 			CTR2(KTR_PMAP,
3371 			    "pmap_enter_l2: failure for va %#lx in pmap %p",
3372 			    va, pmap);
3373 			return (KERN_FAILURE);
3374 		}
3375 		SLIST_INIT(&free);
3376 		if ((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK)
3377 			(void)pmap_remove_l2(pmap, l2, va,
3378 			    pmap_load(pmap_l1(pmap, va)), &free, lockp);
3379 		else
3380 			for (sva = va; sva < va + L2_SIZE; sva += PAGE_SIZE) {
3381 				l3 = pmap_l2_to_l3(l2, sva);
3382 				if (pmap_l3_valid(pmap_load(l3)) &&
3383 				    pmap_remove_l3(pmap, l3, sva, old_l2, &free,
3384 				    lockp) != 0)
3385 					break;
3386 			}
3387 		vm_page_free_pages_toq(&free, true);
3388 		if (va >= VM_MAXUSER_ADDRESS) {
3389 			mt = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
3390 			if (pmap_insert_pt_page(pmap, mt)) {
3391 				/*
3392 				 * XXX Currently, this can't happen bacuse
3393 				 * we do not perform pmap_enter(psind == 1)
3394 				 * on the kernel pmap.
3395 				 */
3396 				panic("pmap_enter_l2: trie insert failed");
3397 			}
3398 		} else
3399 			KASSERT(pmap_load(l2) == 0,
3400 			    ("pmap_enter_l2: non-zero L2 entry %p", l2));
3401 	}
3402 
3403 	if ((new_l2 & ATTR_SW_MANAGED) != 0) {
3404 		/*
3405 		 * Abort this mapping if its PV entry could not be created.
3406 		 */
3407 		if (!pmap_pv_insert_l2(pmap, va, new_l2, flags, lockp)) {
3408 			SLIST_INIT(&free);
3409 			if (pmap_unwire_l3(pmap, va, l2pg, &free)) {
3410 				/*
3411 				 * Although "va" is not mapped, paging-structure
3412 				 * caches could nonetheless have entries that
3413 				 * refer to the freed page table pages.
3414 				 * Invalidate those entries.
3415 				 */
3416 				pmap_invalidate_page(pmap, va);
3417 				vm_page_free_pages_toq(&free, true);
3418 			}
3419 			CTR2(KTR_PMAP,
3420 			    "pmap_enter_l2: failure for va %#lx in pmap %p",
3421 			    va, pmap);
3422 			return (KERN_RESOURCE_SHORTAGE);
3423 		}
3424 		if ((new_l2 & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW))
3425 			for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
3426 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3427 	}
3428 
3429 	/*
3430 	 * Increment counters.
3431 	 */
3432 	if ((new_l2 & ATTR_SW_WIRED) != 0)
3433 		pmap->pm_stats.wired_count += L2_SIZE / PAGE_SIZE;
3434 	pmap->pm_stats.resident_count += L2_SIZE / PAGE_SIZE;
3435 
3436 	/*
3437 	 * Map the superpage.
3438 	 */
3439 	(void)pmap_load_store(l2, new_l2);
3440 	dsb(ishst);
3441 
3442 	atomic_add_long(&pmap_l2_mappings, 1);
3443 	CTR2(KTR_PMAP, "pmap_enter_l2: success for va %#lx in pmap %p",
3444 	    va, pmap);
3445 
3446 	return (KERN_SUCCESS);
3447 }
3448 
3449 /*
3450  * Maps a sequence of resident pages belonging to the same object.
3451  * The sequence begins with the given page m_start.  This page is
3452  * mapped at the given virtual address start.  Each subsequent page is
3453  * mapped at a virtual address that is offset from start by the same
3454  * amount as the page is offset from m_start within the object.  The
3455  * last page in the sequence is the page with the largest offset from
3456  * m_start that can be mapped at a virtual address less than the given
3457  * virtual address end.  Not every virtual page between start and end
3458  * is mapped; only those for which a resident page exists with the
3459  * corresponding offset from m_start are mapped.
3460  */
3461 void
3462 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3463     vm_page_t m_start, vm_prot_t prot)
3464 {
3465 	struct rwlock *lock;
3466 	vm_offset_t va;
3467 	vm_page_t m, mpte;
3468 	vm_pindex_t diff, psize;
3469 
3470 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3471 
3472 	psize = atop(end - start);
3473 	mpte = NULL;
3474 	m = m_start;
3475 	lock = NULL;
3476 	PMAP_LOCK(pmap);
3477 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3478 		va = start + ptoa(diff);
3479 		if ((va & L2_OFFSET) == 0 && va + L2_SIZE <= end &&
3480 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
3481 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
3482 			m = &m[L2_SIZE / PAGE_SIZE - 1];
3483 		else
3484 			mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte,
3485 			    &lock);
3486 		m = TAILQ_NEXT(m, listq);
3487 	}
3488 	if (lock != NULL)
3489 		rw_wunlock(lock);
3490 	PMAP_UNLOCK(pmap);
3491 }
3492 
3493 /*
3494  * this code makes some *MAJOR* assumptions:
3495  * 1. Current pmap & pmap exists.
3496  * 2. Not wired.
3497  * 3. Read access.
3498  * 4. No page table pages.
3499  * but is *MUCH* faster than pmap_enter...
3500  */
3501 
3502 void
3503 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3504 {
3505 	struct rwlock *lock;
3506 
3507 	lock = NULL;
3508 	PMAP_LOCK(pmap);
3509 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
3510 	if (lock != NULL)
3511 		rw_wunlock(lock);
3512 	PMAP_UNLOCK(pmap);
3513 }
3514 
3515 static vm_page_t
3516 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3517     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
3518 {
3519 	struct spglist free;
3520 	pd_entry_t *pde;
3521 	pt_entry_t *l2, *l3, l3_val;
3522 	vm_paddr_t pa;
3523 	int lvl;
3524 
3525 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3526 	    (m->oflags & VPO_UNMANAGED) != 0,
3527 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3528 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3529 
3530 	CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
3531 	/*
3532 	 * In the case that a page table page is not
3533 	 * resident, we are creating it here.
3534 	 */
3535 	if (va < VM_MAXUSER_ADDRESS) {
3536 		vm_pindex_t l2pindex;
3537 
3538 		/*
3539 		 * Calculate pagetable page index
3540 		 */
3541 		l2pindex = pmap_l2_pindex(va);
3542 		if (mpte && (mpte->pindex == l2pindex)) {
3543 			mpte->wire_count++;
3544 		} else {
3545 			/*
3546 			 * Get the l2 entry
3547 			 */
3548 			pde = pmap_pde(pmap, va, &lvl);
3549 
3550 			/*
3551 			 * If the page table page is mapped, we just increment
3552 			 * the hold count, and activate it.  Otherwise, we
3553 			 * attempt to allocate a page table page.  If this
3554 			 * attempt fails, we don't retry.  Instead, we give up.
3555 			 */
3556 			if (lvl == 1) {
3557 				l2 = pmap_l1_to_l2(pde, va);
3558 				if ((pmap_load(l2) & ATTR_DESCR_MASK) ==
3559 				    L2_BLOCK)
3560 					return (NULL);
3561 			}
3562 			if (lvl == 2 && pmap_load(pde) != 0) {
3563 				mpte =
3564 				    PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK);
3565 				mpte->wire_count++;
3566 			} else {
3567 				/*
3568 				 * Pass NULL instead of the PV list lock
3569 				 * pointer, because we don't intend to sleep.
3570 				 */
3571 				mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
3572 				if (mpte == NULL)
3573 					return (mpte);
3574 			}
3575 		}
3576 		l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3577 		l3 = &l3[pmap_l3_index(va)];
3578 	} else {
3579 		mpte = NULL;
3580 		pde = pmap_pde(kernel_pmap, va, &lvl);
3581 		KASSERT(pde != NULL,
3582 		    ("pmap_enter_quick_locked: Invalid page entry, va: 0x%lx",
3583 		     va));
3584 		KASSERT(lvl == 2,
3585 		    ("pmap_enter_quick_locked: Invalid level %d", lvl));
3586 		l3 = pmap_l2_to_l3(pde, va);
3587 	}
3588 
3589 	if (pmap_load(l3) != 0) {
3590 		if (mpte != NULL) {
3591 			mpte->wire_count--;
3592 			mpte = NULL;
3593 		}
3594 		return (mpte);
3595 	}
3596 
3597 	/*
3598 	 * Enter on the PV list if part of our managed memory.
3599 	 */
3600 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3601 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3602 		if (mpte != NULL) {
3603 			SLIST_INIT(&free);
3604 			if (pmap_unwire_l3(pmap, va, mpte, &free)) {
3605 				pmap_invalidate_page(pmap, va);
3606 				vm_page_free_pages_toq(&free, false);
3607 			}
3608 			mpte = NULL;
3609 		}
3610 		return (mpte);
3611 	}
3612 
3613 	/*
3614 	 * Increment counters
3615 	 */
3616 	pmap_resident_count_inc(pmap, 1);
3617 
3618 	pa = VM_PAGE_TO_PHYS(m);
3619 	l3_val = pa | ATTR_DEFAULT | ATTR_IDX(m->md.pv_memattr) |
3620 	    ATTR_AP(ATTR_AP_RO) | L3_PAGE;
3621 	if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == DEVICE_MEMORY)
3622 		l3_val |= ATTR_XN;
3623 	else if (va < VM_MAXUSER_ADDRESS)
3624 		l3_val |= ATTR_PXN;
3625 
3626 	/*
3627 	 * Now validate mapping with RO protection
3628 	 */
3629 	if ((m->oflags & VPO_UNMANAGED) == 0)
3630 		l3_val |= ATTR_SW_MANAGED;
3631 
3632 	/* Sync icache before the mapping is stored to PTE */
3633 	if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
3634 	    m->md.pv_memattr == VM_MEMATTR_WRITE_BACK)
3635 		cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE);
3636 
3637 	pmap_load_store(l3, l3_val);
3638 	pmap_invalidate_page(pmap, va);
3639 	return (mpte);
3640 }
3641 
3642 /*
3643  * This code maps large physical mmap regions into the
3644  * processor address space.  Note that some shortcuts
3645  * are taken, but the code works.
3646  */
3647 void
3648 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3649     vm_pindex_t pindex, vm_size_t size)
3650 {
3651 
3652 	VM_OBJECT_ASSERT_WLOCKED(object);
3653 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3654 	    ("pmap_object_init_pt: non-device object"));
3655 }
3656 
3657 /*
3658  *	Clear the wired attribute from the mappings for the specified range of
3659  *	addresses in the given pmap.  Every valid mapping within that range
3660  *	must have the wired attribute set.  In contrast, invalid mappings
3661  *	cannot have the wired attribute set, so they are ignored.
3662  *
3663  *	The wired attribute of the page table entry is not a hardware feature,
3664  *	so there is no need to invalidate any TLB entries.
3665  */
3666 void
3667 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3668 {
3669 	vm_offset_t va_next;
3670 	pd_entry_t *l0, *l1, *l2;
3671 	pt_entry_t *l3;
3672 
3673 	PMAP_LOCK(pmap);
3674 	for (; sva < eva; sva = va_next) {
3675 		l0 = pmap_l0(pmap, sva);
3676 		if (pmap_load(l0) == 0) {
3677 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
3678 			if (va_next < sva)
3679 				va_next = eva;
3680 			continue;
3681 		}
3682 
3683 		l1 = pmap_l0_to_l1(l0, sva);
3684 		if (pmap_load(l1) == 0) {
3685 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
3686 			if (va_next < sva)
3687 				va_next = eva;
3688 			continue;
3689 		}
3690 
3691 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
3692 		if (va_next < sva)
3693 			va_next = eva;
3694 
3695 		l2 = pmap_l1_to_l2(l1, sva);
3696 		if (pmap_load(l2) == 0)
3697 			continue;
3698 
3699 		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
3700 			l3 = pmap_demote_l2(pmap, l2, sva);
3701 			if (l3 == NULL)
3702 				continue;
3703 		}
3704 		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
3705 		    ("pmap_unwire: Invalid l2 entry after demotion"));
3706 
3707 		if (va_next > eva)
3708 			va_next = eva;
3709 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
3710 		    sva += L3_SIZE) {
3711 			if (pmap_load(l3) == 0)
3712 				continue;
3713 			if ((pmap_load(l3) & ATTR_SW_WIRED) == 0)
3714 				panic("pmap_unwire: l3 %#jx is missing "
3715 				    "ATTR_SW_WIRED", (uintmax_t)pmap_load(l3));
3716 
3717 			/*
3718 			 * PG_W must be cleared atomically.  Although the pmap
3719 			 * lock synchronizes access to PG_W, another processor
3720 			 * could be setting PG_M and/or PG_A concurrently.
3721 			 */
3722 			atomic_clear_long(l3, ATTR_SW_WIRED);
3723 			pmap->pm_stats.wired_count--;
3724 		}
3725 	}
3726 	PMAP_UNLOCK(pmap);
3727 }
3728 
3729 /*
3730  *	Copy the range specified by src_addr/len
3731  *	from the source map to the range dst_addr/len
3732  *	in the destination map.
3733  *
3734  *	This routine is only advisory and need not do anything.
3735  */
3736 
3737 void
3738 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3739     vm_offset_t src_addr)
3740 {
3741 }
3742 
3743 /*
3744  *	pmap_zero_page zeros the specified hardware page by mapping
3745  *	the page into KVM and using bzero to clear its contents.
3746  */
3747 void
3748 pmap_zero_page(vm_page_t m)
3749 {
3750 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3751 
3752 	pagezero((void *)va);
3753 }
3754 
3755 /*
3756  *	pmap_zero_page_area zeros the specified hardware page by mapping
3757  *	the page into KVM and using bzero to clear its contents.
3758  *
3759  *	off and size may not cover an area beyond a single hardware page.
3760  */
3761 void
3762 pmap_zero_page_area(vm_page_t m, int off, int size)
3763 {
3764 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3765 
3766 	if (off == 0 && size == PAGE_SIZE)
3767 		pagezero((void *)va);
3768 	else
3769 		bzero((char *)va + off, size);
3770 }
3771 
3772 /*
3773  *	pmap_copy_page copies the specified (machine independent)
3774  *	page by mapping the page into virtual memory and using
3775  *	bcopy to copy the page, one machine dependent page at a
3776  *	time.
3777  */
3778 void
3779 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
3780 {
3781 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
3782 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
3783 
3784 	pagecopy((void *)src, (void *)dst);
3785 }
3786 
3787 int unmapped_buf_allowed = 1;
3788 
3789 void
3790 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
3791     vm_offset_t b_offset, int xfersize)
3792 {
3793 	void *a_cp, *b_cp;
3794 	vm_page_t m_a, m_b;
3795 	vm_paddr_t p_a, p_b;
3796 	vm_offset_t a_pg_offset, b_pg_offset;
3797 	int cnt;
3798 
3799 	while (xfersize > 0) {
3800 		a_pg_offset = a_offset & PAGE_MASK;
3801 		m_a = ma[a_offset >> PAGE_SHIFT];
3802 		p_a = m_a->phys_addr;
3803 		b_pg_offset = b_offset & PAGE_MASK;
3804 		m_b = mb[b_offset >> PAGE_SHIFT];
3805 		p_b = m_b->phys_addr;
3806 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
3807 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
3808 		if (__predict_false(!PHYS_IN_DMAP(p_a))) {
3809 			panic("!DMAP a %lx", p_a);
3810 		} else {
3811 			a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
3812 		}
3813 		if (__predict_false(!PHYS_IN_DMAP(p_b))) {
3814 			panic("!DMAP b %lx", p_b);
3815 		} else {
3816 			b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
3817 		}
3818 		bcopy(a_cp, b_cp, cnt);
3819 		a_offset += cnt;
3820 		b_offset += cnt;
3821 		xfersize -= cnt;
3822 	}
3823 }
3824 
3825 vm_offset_t
3826 pmap_quick_enter_page(vm_page_t m)
3827 {
3828 
3829 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
3830 }
3831 
3832 void
3833 pmap_quick_remove_page(vm_offset_t addr)
3834 {
3835 }
3836 
3837 /*
3838  * Returns true if the pmap's pv is one of the first
3839  * 16 pvs linked to from this page.  This count may
3840  * be changed upwards or downwards in the future; it
3841  * is only necessary that true be returned for a small
3842  * subset of pmaps for proper page aging.
3843  */
3844 boolean_t
3845 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3846 {
3847 	struct md_page *pvh;
3848 	struct rwlock *lock;
3849 	pv_entry_t pv;
3850 	int loops = 0;
3851 	boolean_t rv;
3852 
3853 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3854 	    ("pmap_page_exists_quick: page %p is not managed", m));
3855 	rv = FALSE;
3856 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3857 	rw_rlock(lock);
3858 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3859 		if (PV_PMAP(pv) == pmap) {
3860 			rv = TRUE;
3861 			break;
3862 		}
3863 		loops++;
3864 		if (loops >= 16)
3865 			break;
3866 	}
3867 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
3868 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3869 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3870 			if (PV_PMAP(pv) == pmap) {
3871 				rv = TRUE;
3872 				break;
3873 			}
3874 			loops++;
3875 			if (loops >= 16)
3876 				break;
3877 		}
3878 	}
3879 	rw_runlock(lock);
3880 	return (rv);
3881 }
3882 
3883 /*
3884  *	pmap_page_wired_mappings:
3885  *
3886  *	Return the number of managed mappings to the given physical page
3887  *	that are wired.
3888  */
3889 int
3890 pmap_page_wired_mappings(vm_page_t m)
3891 {
3892 	struct rwlock *lock;
3893 	struct md_page *pvh;
3894 	pmap_t pmap;
3895 	pt_entry_t *pte;
3896 	pv_entry_t pv;
3897 	int count, lvl, md_gen, pvh_gen;
3898 
3899 	if ((m->oflags & VPO_UNMANAGED) != 0)
3900 		return (0);
3901 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3902 	rw_rlock(lock);
3903 restart:
3904 	count = 0;
3905 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3906 		pmap = PV_PMAP(pv);
3907 		if (!PMAP_TRYLOCK(pmap)) {
3908 			md_gen = m->md.pv_gen;
3909 			rw_runlock(lock);
3910 			PMAP_LOCK(pmap);
3911 			rw_rlock(lock);
3912 			if (md_gen != m->md.pv_gen) {
3913 				PMAP_UNLOCK(pmap);
3914 				goto restart;
3915 			}
3916 		}
3917 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
3918 		if (pte != NULL && (pmap_load(pte) & ATTR_SW_WIRED) != 0)
3919 			count++;
3920 		PMAP_UNLOCK(pmap);
3921 	}
3922 	if ((m->flags & PG_FICTITIOUS) == 0) {
3923 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3924 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3925 			pmap = PV_PMAP(pv);
3926 			if (!PMAP_TRYLOCK(pmap)) {
3927 				md_gen = m->md.pv_gen;
3928 				pvh_gen = pvh->pv_gen;
3929 				rw_runlock(lock);
3930 				PMAP_LOCK(pmap);
3931 				rw_rlock(lock);
3932 				if (md_gen != m->md.pv_gen ||
3933 				    pvh_gen != pvh->pv_gen) {
3934 					PMAP_UNLOCK(pmap);
3935 					goto restart;
3936 				}
3937 			}
3938 			pte = pmap_pte(pmap, pv->pv_va, &lvl);
3939 			if (pte != NULL &&
3940 			    (pmap_load(pte) & ATTR_SW_WIRED) != 0)
3941 				count++;
3942 			PMAP_UNLOCK(pmap);
3943 		}
3944 	}
3945 	rw_runlock(lock);
3946 	return (count);
3947 }
3948 
3949 /*
3950  * Destroy all managed, non-wired mappings in the given user-space
3951  * pmap.  This pmap cannot be active on any processor besides the
3952  * caller.
3953  *
3954  * This function cannot be applied to the kernel pmap.  Moreover, it
3955  * is not intended for general use.  It is only to be used during
3956  * process termination.  Consequently, it can be implemented in ways
3957  * that make it faster than pmap_remove().  First, it can more quickly
3958  * destroy mappings by iterating over the pmap's collection of PV
3959  * entries, rather than searching the page table.  Second, it doesn't
3960  * have to test and clear the page table entries atomically, because
3961  * no processor is currently accessing the user address space.  In
3962  * particular, a page table entry's dirty bit won't change state once
3963  * this function starts.
3964  */
3965 void
3966 pmap_remove_pages(pmap_t pmap)
3967 {
3968 	pd_entry_t *pde;
3969 	pt_entry_t *pte, tpte;
3970 	struct spglist free;
3971 	vm_page_t m, ml3, mt;
3972 	pv_entry_t pv;
3973 	struct md_page *pvh;
3974 	struct pv_chunk *pc, *npc;
3975 	struct rwlock *lock;
3976 	int64_t bit;
3977 	uint64_t inuse, bitmask;
3978 	int allfree, field, freed, idx, lvl;
3979 	vm_paddr_t pa;
3980 
3981 	lock = NULL;
3982 
3983 	SLIST_INIT(&free);
3984 	PMAP_LOCK(pmap);
3985 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3986 		allfree = 1;
3987 		freed = 0;
3988 		for (field = 0; field < _NPCM; field++) {
3989 			inuse = ~pc->pc_map[field] & pc_freemask[field];
3990 			while (inuse != 0) {
3991 				bit = ffsl(inuse) - 1;
3992 				bitmask = 1UL << bit;
3993 				idx = field * 64 + bit;
3994 				pv = &pc->pc_pventry[idx];
3995 				inuse &= ~bitmask;
3996 
3997 				pde = pmap_pde(pmap, pv->pv_va, &lvl);
3998 				KASSERT(pde != NULL,
3999 				    ("Attempting to remove an unmapped page"));
4000 
4001 				switch(lvl) {
4002 				case 1:
4003 					pte = pmap_l1_to_l2(pde, pv->pv_va);
4004 					tpte = pmap_load(pte);
4005 					KASSERT((tpte & ATTR_DESCR_MASK) ==
4006 					    L2_BLOCK,
4007 					    ("Attempting to remove an invalid "
4008 					    "block: %lx", tpte));
4009 					tpte = pmap_load(pte);
4010 					break;
4011 				case 2:
4012 					pte = pmap_l2_to_l3(pde, pv->pv_va);
4013 					tpte = pmap_load(pte);
4014 					KASSERT((tpte & ATTR_DESCR_MASK) ==
4015 					    L3_PAGE,
4016 					    ("Attempting to remove an invalid "
4017 					     "page: %lx", tpte));
4018 					break;
4019 				default:
4020 					panic(
4021 					    "Invalid page directory level: %d",
4022 					    lvl);
4023 				}
4024 
4025 /*
4026  * We cannot remove wired pages from a process' mapping at this time
4027  */
4028 				if (tpte & ATTR_SW_WIRED) {
4029 					allfree = 0;
4030 					continue;
4031 				}
4032 
4033 				pa = tpte & ~ATTR_MASK;
4034 
4035 				m = PHYS_TO_VM_PAGE(pa);
4036 				KASSERT(m->phys_addr == pa,
4037 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4038 				    m, (uintmax_t)m->phys_addr,
4039 				    (uintmax_t)tpte));
4040 
4041 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4042 				    m < &vm_page_array[vm_page_array_size],
4043 				    ("pmap_remove_pages: bad pte %#jx",
4044 				    (uintmax_t)tpte));
4045 
4046 				pmap_load_clear(pte);
4047 
4048 				/*
4049 				 * Update the vm_page_t clean/reference bits.
4050 				 */
4051 				if ((tpte & ATTR_AP_RW_BIT) ==
4052 				    ATTR_AP(ATTR_AP_RW)) {
4053 					switch (lvl) {
4054 					case 1:
4055 						for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
4056 							vm_page_dirty(m);
4057 						break;
4058 					case 2:
4059 						vm_page_dirty(m);
4060 						break;
4061 					}
4062 				}
4063 
4064 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
4065 
4066 				/* Mark free */
4067 				pc->pc_map[field] |= bitmask;
4068 				switch (lvl) {
4069 				case 1:
4070 					pmap_resident_count_dec(pmap,
4071 					    L2_SIZE / PAGE_SIZE);
4072 					pvh = pa_to_pvh(tpte & ~ATTR_MASK);
4073 					TAILQ_REMOVE(&pvh->pv_list, pv,pv_next);
4074 					pvh->pv_gen++;
4075 					if (TAILQ_EMPTY(&pvh->pv_list)) {
4076 						for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
4077 							if ((mt->aflags & PGA_WRITEABLE) != 0 &&
4078 							    TAILQ_EMPTY(&mt->md.pv_list))
4079 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4080 					}
4081 					ml3 = pmap_remove_pt_page(pmap,
4082 					    pv->pv_va);
4083 					if (ml3 != NULL) {
4084 						pmap_resident_count_dec(pmap,1);
4085 						KASSERT(ml3->wire_count == NL3PG,
4086 						    ("pmap_remove_pages: l3 page wire count error"));
4087 						ml3->wire_count = 1;
4088 						vm_page_unwire_noq(ml3);
4089 						pmap_add_delayed_free_list(ml3,
4090 						    &free, FALSE);
4091 					}
4092 					break;
4093 				case 2:
4094 					pmap_resident_count_dec(pmap, 1);
4095 					TAILQ_REMOVE(&m->md.pv_list, pv,
4096 					    pv_next);
4097 					m->md.pv_gen++;
4098 					if ((m->aflags & PGA_WRITEABLE) != 0 &&
4099 					    TAILQ_EMPTY(&m->md.pv_list) &&
4100 					    (m->flags & PG_FICTITIOUS) == 0) {
4101 						pvh = pa_to_pvh(
4102 						    VM_PAGE_TO_PHYS(m));
4103 						if (TAILQ_EMPTY(&pvh->pv_list))
4104 							vm_page_aflag_clear(m,
4105 							    PGA_WRITEABLE);
4106 					}
4107 					break;
4108 				}
4109 				pmap_unuse_pt(pmap, pv->pv_va, pmap_load(pde),
4110 				    &free);
4111 				freed++;
4112 			}
4113 		}
4114 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
4115 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
4116 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
4117 		if (allfree) {
4118 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4119 			free_pv_chunk(pc);
4120 		}
4121 	}
4122 	pmap_invalidate_all(pmap);
4123 	if (lock != NULL)
4124 		rw_wunlock(lock);
4125 	PMAP_UNLOCK(pmap);
4126 	vm_page_free_pages_toq(&free, false);
4127 }
4128 
4129 /*
4130  * This is used to check if a page has been accessed or modified. As we
4131  * don't have a bit to see if it has been modified we have to assume it
4132  * has been if the page is read/write.
4133  */
4134 static boolean_t
4135 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
4136 {
4137 	struct rwlock *lock;
4138 	pv_entry_t pv;
4139 	struct md_page *pvh;
4140 	pt_entry_t *pte, mask, value;
4141 	pmap_t pmap;
4142 	int lvl, md_gen, pvh_gen;
4143 	boolean_t rv;
4144 
4145 	rv = FALSE;
4146 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4147 	rw_rlock(lock);
4148 restart:
4149 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4150 		pmap = PV_PMAP(pv);
4151 		if (!PMAP_TRYLOCK(pmap)) {
4152 			md_gen = m->md.pv_gen;
4153 			rw_runlock(lock);
4154 			PMAP_LOCK(pmap);
4155 			rw_rlock(lock);
4156 			if (md_gen != m->md.pv_gen) {
4157 				PMAP_UNLOCK(pmap);
4158 				goto restart;
4159 			}
4160 		}
4161 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
4162 		KASSERT(lvl == 3,
4163 		    ("pmap_page_test_mappings: Invalid level %d", lvl));
4164 		mask = 0;
4165 		value = 0;
4166 		if (modified) {
4167 			mask |= ATTR_AP_RW_BIT;
4168 			value |= ATTR_AP(ATTR_AP_RW);
4169 		}
4170 		if (accessed) {
4171 			mask |= ATTR_AF | ATTR_DESCR_MASK;
4172 			value |= ATTR_AF | L3_PAGE;
4173 		}
4174 		rv = (pmap_load(pte) & mask) == value;
4175 		PMAP_UNLOCK(pmap);
4176 		if (rv)
4177 			goto out;
4178 	}
4179 	if ((m->flags & PG_FICTITIOUS) == 0) {
4180 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4181 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4182 			pmap = PV_PMAP(pv);
4183 			if (!PMAP_TRYLOCK(pmap)) {
4184 				md_gen = m->md.pv_gen;
4185 				pvh_gen = pvh->pv_gen;
4186 				rw_runlock(lock);
4187 				PMAP_LOCK(pmap);
4188 				rw_rlock(lock);
4189 				if (md_gen != m->md.pv_gen ||
4190 				    pvh_gen != pvh->pv_gen) {
4191 					PMAP_UNLOCK(pmap);
4192 					goto restart;
4193 				}
4194 			}
4195 			pte = pmap_pte(pmap, pv->pv_va, &lvl);
4196 			KASSERT(lvl == 2,
4197 			    ("pmap_page_test_mappings: Invalid level %d", lvl));
4198 			mask = 0;
4199 			value = 0;
4200 			if (modified) {
4201 				mask |= ATTR_AP_RW_BIT;
4202 				value |= ATTR_AP(ATTR_AP_RW);
4203 			}
4204 			if (accessed) {
4205 				mask |= ATTR_AF | ATTR_DESCR_MASK;
4206 				value |= ATTR_AF | L2_BLOCK;
4207 			}
4208 			rv = (pmap_load(pte) & mask) == value;
4209 			PMAP_UNLOCK(pmap);
4210 			if (rv)
4211 				goto out;
4212 		}
4213 	}
4214 out:
4215 	rw_runlock(lock);
4216 	return (rv);
4217 }
4218 
4219 /*
4220  *	pmap_is_modified:
4221  *
4222  *	Return whether or not the specified physical page was modified
4223  *	in any physical maps.
4224  */
4225 boolean_t
4226 pmap_is_modified(vm_page_t m)
4227 {
4228 
4229 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4230 	    ("pmap_is_modified: page %p is not managed", m));
4231 
4232 	/*
4233 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4234 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4235 	 * is clear, no PTEs can have PG_M set.
4236 	 */
4237 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4238 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4239 		return (FALSE);
4240 	return (pmap_page_test_mappings(m, FALSE, TRUE));
4241 }
4242 
4243 /*
4244  *	pmap_is_prefaultable:
4245  *
4246  *	Return whether or not the specified virtual address is eligible
4247  *	for prefault.
4248  */
4249 boolean_t
4250 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4251 {
4252 	pt_entry_t *pte;
4253 	boolean_t rv;
4254 	int lvl;
4255 
4256 	rv = FALSE;
4257 	PMAP_LOCK(pmap);
4258 	pte = pmap_pte(pmap, addr, &lvl);
4259 	if (pte != NULL && pmap_load(pte) != 0) {
4260 		rv = TRUE;
4261 	}
4262 	PMAP_UNLOCK(pmap);
4263 	return (rv);
4264 }
4265 
4266 /*
4267  *	pmap_is_referenced:
4268  *
4269  *	Return whether or not the specified physical page was referenced
4270  *	in any physical maps.
4271  */
4272 boolean_t
4273 pmap_is_referenced(vm_page_t m)
4274 {
4275 
4276 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4277 	    ("pmap_is_referenced: page %p is not managed", m));
4278 	return (pmap_page_test_mappings(m, TRUE, FALSE));
4279 }
4280 
4281 /*
4282  * Clear the write and modified bits in each of the given page's mappings.
4283  */
4284 void
4285 pmap_remove_write(vm_page_t m)
4286 {
4287 	struct md_page *pvh;
4288 	pmap_t pmap;
4289 	struct rwlock *lock;
4290 	pv_entry_t next_pv, pv;
4291 	pt_entry_t oldpte, *pte;
4292 	vm_offset_t va;
4293 	int lvl, md_gen, pvh_gen;
4294 
4295 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4296 	    ("pmap_remove_write: page %p is not managed", m));
4297 
4298 	/*
4299 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4300 	 * set by another thread while the object is locked.  Thus,
4301 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4302 	 */
4303 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4304 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4305 		return;
4306 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4307 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
4308 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
4309 retry_pv_loop:
4310 	rw_wlock(lock);
4311 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4312 		pmap = PV_PMAP(pv);
4313 		if (!PMAP_TRYLOCK(pmap)) {
4314 			pvh_gen = pvh->pv_gen;
4315 			rw_wunlock(lock);
4316 			PMAP_LOCK(pmap);
4317 			rw_wlock(lock);
4318 			if (pvh_gen != pvh->pv_gen) {
4319 				PMAP_UNLOCK(pmap);
4320 				rw_wunlock(lock);
4321 				goto retry_pv_loop;
4322 			}
4323 		}
4324 		va = pv->pv_va;
4325 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
4326 		if ((pmap_load(pte) & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW))
4327 			pmap_demote_l2_locked(pmap, pte, va & ~L2_OFFSET,
4328 			    &lock);
4329 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
4330 		    ("inconsistent pv lock %p %p for page %p",
4331 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
4332 		PMAP_UNLOCK(pmap);
4333 	}
4334 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4335 		pmap = PV_PMAP(pv);
4336 		if (!PMAP_TRYLOCK(pmap)) {
4337 			pvh_gen = pvh->pv_gen;
4338 			md_gen = m->md.pv_gen;
4339 			rw_wunlock(lock);
4340 			PMAP_LOCK(pmap);
4341 			rw_wlock(lock);
4342 			if (pvh_gen != pvh->pv_gen ||
4343 			    md_gen != m->md.pv_gen) {
4344 				PMAP_UNLOCK(pmap);
4345 				rw_wunlock(lock);
4346 				goto retry_pv_loop;
4347 			}
4348 		}
4349 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
4350 retry:
4351 		oldpte = pmap_load(pte);
4352 		if ((oldpte & ATTR_AP_RW_BIT) == ATTR_AP(ATTR_AP_RW)) {
4353 			if (!atomic_cmpset_long(pte, oldpte,
4354 			    oldpte | ATTR_AP(ATTR_AP_RO)))
4355 				goto retry;
4356 			if ((oldpte & ATTR_AF) != 0)
4357 				vm_page_dirty(m);
4358 			pmap_invalidate_page(pmap, pv->pv_va);
4359 		}
4360 		PMAP_UNLOCK(pmap);
4361 	}
4362 	rw_wunlock(lock);
4363 	vm_page_aflag_clear(m, PGA_WRITEABLE);
4364 }
4365 
4366 static __inline boolean_t
4367 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
4368 {
4369 
4370 	return (FALSE);
4371 }
4372 
4373 /*
4374  *	pmap_ts_referenced:
4375  *
4376  *	Return a count of reference bits for a page, clearing those bits.
4377  *	It is not necessary for every reference bit to be cleared, but it
4378  *	is necessary that 0 only be returned when there are truly no
4379  *	reference bits set.
4380  *
4381  *	As an optimization, update the page's dirty field if a modified bit is
4382  *	found while counting reference bits.  This opportunistic update can be
4383  *	performed at low cost and can eliminate the need for some future calls
4384  *	to pmap_is_modified().  However, since this function stops after
4385  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
4386  *	dirty pages.  Those dirty pages will only be detected by a future call
4387  *	to pmap_is_modified().
4388  */
4389 int
4390 pmap_ts_referenced(vm_page_t m)
4391 {
4392 	struct md_page *pvh;
4393 	pv_entry_t pv, pvf;
4394 	pmap_t pmap;
4395 	struct rwlock *lock;
4396 	pd_entry_t *pde, tpde;
4397 	pt_entry_t *pte, tpte;
4398 	pt_entry_t *l3;
4399 	vm_offset_t va;
4400 	vm_paddr_t pa;
4401 	int cleared, md_gen, not_cleared, lvl, pvh_gen;
4402 	struct spglist free;
4403 	bool demoted;
4404 
4405 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4406 	    ("pmap_ts_referenced: page %p is not managed", m));
4407 	SLIST_INIT(&free);
4408 	cleared = 0;
4409 	pa = VM_PAGE_TO_PHYS(m);
4410 	lock = PHYS_TO_PV_LIST_LOCK(pa);
4411 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
4412 	rw_wlock(lock);
4413 retry:
4414 	not_cleared = 0;
4415 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4416 		goto small_mappings;
4417 	pv = pvf;
4418 	do {
4419 		if (pvf == NULL)
4420 			pvf = pv;
4421 		pmap = PV_PMAP(pv);
4422 		if (!PMAP_TRYLOCK(pmap)) {
4423 			pvh_gen = pvh->pv_gen;
4424 			rw_wunlock(lock);
4425 			PMAP_LOCK(pmap);
4426 			rw_wlock(lock);
4427 			if (pvh_gen != pvh->pv_gen) {
4428 				PMAP_UNLOCK(pmap);
4429 				goto retry;
4430 			}
4431 		}
4432 		va = pv->pv_va;
4433 		pde = pmap_pde(pmap, pv->pv_va, &lvl);
4434 		KASSERT(pde != NULL, ("pmap_ts_referenced: no l1 table found"));
4435 		KASSERT(lvl == 1,
4436 		    ("pmap_ts_referenced: invalid pde level %d", lvl));
4437 		tpde = pmap_load(pde);
4438 		KASSERT((tpde & ATTR_DESCR_MASK) == L1_TABLE,
4439 		    ("pmap_ts_referenced: found an invalid l1 table"));
4440 		pte = pmap_l1_to_l2(pde, pv->pv_va);
4441 		tpte = pmap_load(pte);
4442 		if (pmap_page_dirty(tpte)) {
4443 			/*
4444 			 * Although "tpte" is mapping a 2MB page, because
4445 			 * this function is called at a 4KB page granularity,
4446 			 * we only update the 4KB page under test.
4447 			 */
4448 			vm_page_dirty(m);
4449 		}
4450 		if ((tpte & ATTR_AF) != 0) {
4451 			/*
4452 			 * Since this reference bit is shared by 512 4KB
4453 			 * pages, it should not be cleared every time it is
4454 			 * tested.  Apply a simple "hash" function on the
4455 			 * physical page number, the virtual superpage number,
4456 			 * and the pmap address to select one 4KB page out of
4457 			 * the 512 on which testing the reference bit will
4458 			 * result in clearing that reference bit.  This
4459 			 * function is designed to avoid the selection of the
4460 			 * same 4KB page for every 2MB page mapping.
4461 			 *
4462 			 * On demotion, a mapping that hasn't been referenced
4463 			 * is simply destroyed.  To avoid the possibility of a
4464 			 * subsequent page fault on a demoted wired mapping,
4465 			 * always leave its reference bit set.  Moreover,
4466 			 * since the superpage is wired, the current state of
4467 			 * its reference bit won't affect page replacement.
4468 			 */
4469 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L2_SHIFT) ^
4470 			    (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 &&
4471 			    (tpte & ATTR_SW_WIRED) == 0) {
4472 				if (safe_to_clear_referenced(pmap, tpte)) {
4473 					/*
4474 					 * TODO: We don't handle the access
4475 					 * flag at all. We need to be able
4476 					 * to set it in  the exception handler.
4477 					 */
4478 					panic("ARM64TODO: "
4479 					    "safe_to_clear_referenced\n");
4480 				} else if (pmap_demote_l2_locked(pmap, pte,
4481 				    pv->pv_va, &lock) != NULL) {
4482 					demoted = true;
4483 					va += VM_PAGE_TO_PHYS(m) -
4484 					    (tpte & ~ATTR_MASK);
4485 					l3 = pmap_l2_to_l3(pte, va);
4486 					pmap_remove_l3(pmap, l3, va,
4487 					    pmap_load(pte), NULL, &lock);
4488 				} else
4489 					demoted = true;
4490 
4491 				if (demoted) {
4492 					/*
4493 					 * The superpage mapping was removed
4494 					 * entirely and therefore 'pv' is no
4495 					 * longer valid.
4496 					 */
4497 					if (pvf == pv)
4498 						pvf = NULL;
4499 					pv = NULL;
4500 				}
4501 				cleared++;
4502 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
4503 				    ("inconsistent pv lock %p %p for page %p",
4504 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
4505 			} else
4506 				not_cleared++;
4507 		}
4508 		PMAP_UNLOCK(pmap);
4509 		/* Rotate the PV list if it has more than one entry. */
4510 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4511 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4512 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4513 			pvh->pv_gen++;
4514 		}
4515 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
4516 			goto out;
4517 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4518 small_mappings:
4519 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4520 		goto out;
4521 	pv = pvf;
4522 	do {
4523 		if (pvf == NULL)
4524 			pvf = pv;
4525 		pmap = PV_PMAP(pv);
4526 		if (!PMAP_TRYLOCK(pmap)) {
4527 			pvh_gen = pvh->pv_gen;
4528 			md_gen = m->md.pv_gen;
4529 			rw_wunlock(lock);
4530 			PMAP_LOCK(pmap);
4531 			rw_wlock(lock);
4532 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4533 				PMAP_UNLOCK(pmap);
4534 				goto retry;
4535 			}
4536 		}
4537 		pde = pmap_pde(pmap, pv->pv_va, &lvl);
4538 		KASSERT(pde != NULL, ("pmap_ts_referenced: no l2 table found"));
4539 		KASSERT(lvl == 2,
4540 		    ("pmap_ts_referenced: invalid pde level %d", lvl));
4541 		tpde = pmap_load(pde);
4542 		KASSERT((tpde & ATTR_DESCR_MASK) == L2_TABLE,
4543 		    ("pmap_ts_referenced: found an invalid l2 table"));
4544 		pte = pmap_l2_to_l3(pde, pv->pv_va);
4545 		tpte = pmap_load(pte);
4546 		if (pmap_page_dirty(tpte))
4547 			vm_page_dirty(m);
4548 		if ((tpte & ATTR_AF) != 0) {
4549 			if (safe_to_clear_referenced(pmap, tpte)) {
4550 				/*
4551 				 * TODO: We don't handle the access flag
4552 				 * at all. We need to be able to set it in
4553 				 * the exception handler.
4554 				 */
4555 				panic("ARM64TODO: safe_to_clear_referenced\n");
4556 			} else if ((tpte & ATTR_SW_WIRED) == 0) {
4557 				/*
4558 				 * Wired pages cannot be paged out so
4559 				 * doing accessed bit emulation for
4560 				 * them is wasted effort. We do the
4561 				 * hard work for unwired pages only.
4562 				 */
4563 				pmap_remove_l3(pmap, pte, pv->pv_va, tpde,
4564 				    &free, &lock);
4565 				pmap_invalidate_page(pmap, pv->pv_va);
4566 				cleared++;
4567 				if (pvf == pv)
4568 					pvf = NULL;
4569 				pv = NULL;
4570 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
4571 				    ("inconsistent pv lock %p %p for page %p",
4572 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
4573 			} else
4574 				not_cleared++;
4575 		}
4576 		PMAP_UNLOCK(pmap);
4577 		/* Rotate the PV list if it has more than one entry. */
4578 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4579 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4580 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4581 			m->md.pv_gen++;
4582 		}
4583 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
4584 	    not_cleared < PMAP_TS_REFERENCED_MAX);
4585 out:
4586 	rw_wunlock(lock);
4587 	vm_page_free_pages_toq(&free, false);
4588 	return (cleared + not_cleared);
4589 }
4590 
4591 /*
4592  *	Apply the given advice to the specified range of addresses within the
4593  *	given pmap.  Depending on the advice, clear the referenced and/or
4594  *	modified flags in each mapping and set the mapped page's dirty field.
4595  */
4596 void
4597 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4598 {
4599 }
4600 
4601 /*
4602  *	Clear the modify bits on the specified physical page.
4603  */
4604 void
4605 pmap_clear_modify(vm_page_t m)
4606 {
4607 
4608 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4609 	    ("pmap_clear_modify: page %p is not managed", m));
4610 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4611 	KASSERT(!vm_page_xbusied(m),
4612 	    ("pmap_clear_modify: page %p is exclusive busied", m));
4613 
4614 	/*
4615 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
4616 	 * If the object containing the page is locked and the page is not
4617 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4618 	 */
4619 	if ((m->aflags & PGA_WRITEABLE) == 0)
4620 		return;
4621 
4622 	/* ARM64TODO: We lack support for tracking if a page is modified */
4623 }
4624 
4625 void *
4626 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4627 {
4628 	struct pmap_preinit_mapping *ppim;
4629 	vm_offset_t va, offset;
4630 	pd_entry_t *pde;
4631 	pt_entry_t *l2;
4632 	int i, lvl, l2_blocks, free_l2_count, start_idx;
4633 
4634 	if (!vm_initialized) {
4635 		/*
4636 		 * No L3 ptables so map entire L2 blocks where start VA is:
4637 		 * 	preinit_map_va + start_idx * L2_SIZE
4638 		 * There may be duplicate mappings (multiple VA -> same PA) but
4639 		 * ARM64 dcache is always PIPT so that's acceptable.
4640 		 */
4641 		 if (size == 0)
4642 			 return (NULL);
4643 
4644 		 /* Calculate how many L2 blocks are needed for the mapping */
4645 		l2_blocks = (roundup2(pa + size, L2_SIZE) -
4646 		    rounddown2(pa, L2_SIZE)) >> L2_SHIFT;
4647 
4648 		offset = pa & L2_OFFSET;
4649 
4650 		if (preinit_map_va == 0)
4651 			return (NULL);
4652 
4653 		/* Map 2MiB L2 blocks from reserved VA space */
4654 
4655 		free_l2_count = 0;
4656 		start_idx = -1;
4657 		/* Find enough free contiguous VA space */
4658 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
4659 			ppim = pmap_preinit_mapping + i;
4660 			if (free_l2_count > 0 && ppim->pa != 0) {
4661 				/* Not enough space here */
4662 				free_l2_count = 0;
4663 				start_idx = -1;
4664 				continue;
4665 			}
4666 
4667 			if (ppim->pa == 0) {
4668 				/* Free L2 block */
4669 				if (start_idx == -1)
4670 					start_idx = i;
4671 				free_l2_count++;
4672 				if (free_l2_count == l2_blocks)
4673 					break;
4674 			}
4675 		}
4676 		if (free_l2_count != l2_blocks)
4677 			panic("%s: too many preinit mappings", __func__);
4678 
4679 		va = preinit_map_va + (start_idx * L2_SIZE);
4680 		for (i = start_idx; i < start_idx + l2_blocks; i++) {
4681 			/* Mark entries as allocated */
4682 			ppim = pmap_preinit_mapping + i;
4683 			ppim->pa = pa;
4684 			ppim->va = va + offset;
4685 			ppim->size = size;
4686 		}
4687 
4688 		/* Map L2 blocks */
4689 		pa = rounddown2(pa, L2_SIZE);
4690 		for (i = 0; i < l2_blocks; i++) {
4691 			pde = pmap_pde(kernel_pmap, va, &lvl);
4692 			KASSERT(pde != NULL,
4693 			    ("pmap_mapbios: Invalid page entry, va: 0x%lx",
4694 			    va));
4695 			KASSERT(lvl == 1,
4696 			    ("pmap_mapbios: Invalid level %d", lvl));
4697 
4698 			/* Insert L2_BLOCK */
4699 			l2 = pmap_l1_to_l2(pde, va);
4700 			pmap_load_store(l2,
4701 			    pa | ATTR_DEFAULT | ATTR_XN |
4702 			    ATTR_IDX(CACHED_MEMORY) | L2_BLOCK);
4703 
4704 			va += L2_SIZE;
4705 			pa += L2_SIZE;
4706 		}
4707 		pmap_invalidate_all(kernel_pmap);
4708 
4709 		va = preinit_map_va + (start_idx * L2_SIZE);
4710 
4711 	} else {
4712 		/* kva_alloc may be used to map the pages */
4713 		offset = pa & PAGE_MASK;
4714 		size = round_page(offset + size);
4715 
4716 		va = kva_alloc(size);
4717 		if (va == 0)
4718 			panic("%s: Couldn't allocate KVA", __func__);
4719 
4720 		pde = pmap_pde(kernel_pmap, va, &lvl);
4721 		KASSERT(lvl == 2, ("pmap_mapbios: Invalid level %d", lvl));
4722 
4723 		/* L3 table is linked */
4724 		va = trunc_page(va);
4725 		pa = trunc_page(pa);
4726 		pmap_kenter(va, size, pa, CACHED_MEMORY);
4727 	}
4728 
4729 	return ((void *)(va + offset));
4730 }
4731 
4732 void
4733 pmap_unmapbios(vm_offset_t va, vm_size_t size)
4734 {
4735 	struct pmap_preinit_mapping *ppim;
4736 	vm_offset_t offset, tmpsize, va_trunc;
4737 	pd_entry_t *pde;
4738 	pt_entry_t *l2;
4739 	int i, lvl, l2_blocks, block;
4740 	bool preinit_map;
4741 
4742 	l2_blocks =
4743 	   (roundup2(va + size, L2_SIZE) - rounddown2(va, L2_SIZE)) >> L2_SHIFT;
4744 	KASSERT(l2_blocks > 0, ("pmap_unmapbios: invalid size %lx", size));
4745 
4746 	/* Remove preinit mapping */
4747 	preinit_map = false;
4748 	block = 0;
4749 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
4750 		ppim = pmap_preinit_mapping + i;
4751 		if (ppim->va == va) {
4752 			KASSERT(ppim->size == size,
4753 			    ("pmap_unmapbios: size mismatch"));
4754 			ppim->va = 0;
4755 			ppim->pa = 0;
4756 			ppim->size = 0;
4757 			preinit_map = true;
4758 			offset = block * L2_SIZE;
4759 			va_trunc = rounddown2(va, L2_SIZE) + offset;
4760 
4761 			/* Remove L2_BLOCK */
4762 			pde = pmap_pde(kernel_pmap, va_trunc, &lvl);
4763 			KASSERT(pde != NULL,
4764 			    ("pmap_unmapbios: Invalid page entry, va: 0x%lx",
4765 			    va_trunc));
4766 			l2 = pmap_l1_to_l2(pde, va_trunc);
4767 			pmap_load_clear(l2);
4768 
4769 			if (block == (l2_blocks - 1))
4770 				break;
4771 			block++;
4772 		}
4773 	}
4774 	if (preinit_map) {
4775 		pmap_invalidate_all(kernel_pmap);
4776 		return;
4777 	}
4778 
4779 	/* Unmap the pages reserved with kva_alloc. */
4780 	if (vm_initialized) {
4781 		offset = va & PAGE_MASK;
4782 		size = round_page(offset + size);
4783 		va = trunc_page(va);
4784 
4785 		pde = pmap_pde(kernel_pmap, va, &lvl);
4786 		KASSERT(pde != NULL,
4787 		    ("pmap_unmapbios: Invalid page entry, va: 0x%lx", va));
4788 		KASSERT(lvl == 2, ("pmap_unmapbios: Invalid level %d", lvl));
4789 
4790 		/* Unmap and invalidate the pages */
4791                 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4792 			pmap_kremove(va + tmpsize);
4793 
4794 		kva_free(va, size);
4795 	}
4796 }
4797 
4798 /*
4799  * Sets the memory attribute for the specified page.
4800  */
4801 void
4802 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4803 {
4804 
4805 	m->md.pv_memattr = ma;
4806 
4807 	/*
4808 	 * If "m" is a normal page, update its direct mapping.  This update
4809 	 * can be relied upon to perform any cache operations that are
4810 	 * required for data coherence.
4811 	 */
4812 	if ((m->flags & PG_FICTITIOUS) == 0 &&
4813 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
4814 	    m->md.pv_memattr) != 0)
4815 		panic("memory attribute change on the direct map failed");
4816 }
4817 
4818 /*
4819  * Changes the specified virtual address range's memory type to that given by
4820  * the parameter "mode".  The specified virtual address range must be
4821  * completely contained within either the direct map or the kernel map.  If
4822  * the virtual address range is contained within the kernel map, then the
4823  * memory type for each of the corresponding ranges of the direct map is also
4824  * changed.  (The corresponding ranges of the direct map are those ranges that
4825  * map the same physical pages as the specified virtual address range.)  These
4826  * changes to the direct map are necessary because Intel describes the
4827  * behavior of their processors as "undefined" if two or more mappings to the
4828  * same physical page have different memory types.
4829  *
4830  * Returns zero if the change completed successfully, and either EINVAL or
4831  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4832  * of the virtual address range was not mapped, and ENOMEM is returned if
4833  * there was insufficient memory available to complete the change.  In the
4834  * latter case, the memory type may have been changed on some part of the
4835  * virtual address range or the direct map.
4836  */
4837 static int
4838 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4839 {
4840 	int error;
4841 
4842 	PMAP_LOCK(kernel_pmap);
4843 	error = pmap_change_attr_locked(va, size, mode);
4844 	PMAP_UNLOCK(kernel_pmap);
4845 	return (error);
4846 }
4847 
4848 static int
4849 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
4850 {
4851 	vm_offset_t base, offset, tmpva;
4852 	pt_entry_t l3, *pte, *newpte;
4853 	int lvl;
4854 
4855 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
4856 	base = trunc_page(va);
4857 	offset = va & PAGE_MASK;
4858 	size = round_page(offset + size);
4859 
4860 	if (!VIRT_IN_DMAP(base))
4861 		return (EINVAL);
4862 
4863 	for (tmpva = base; tmpva < base + size; ) {
4864 		pte = pmap_pte(kernel_pmap, tmpva, &lvl);
4865 		if (pte == NULL)
4866 			return (EINVAL);
4867 
4868 		if ((pmap_load(pte) & ATTR_IDX_MASK) == ATTR_IDX(mode)) {
4869 			/*
4870 			 * We already have the correct attribute,
4871 			 * ignore this entry.
4872 			 */
4873 			switch (lvl) {
4874 			default:
4875 				panic("Invalid DMAP table level: %d\n", lvl);
4876 			case 1:
4877 				tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE;
4878 				break;
4879 			case 2:
4880 				tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE;
4881 				break;
4882 			case 3:
4883 				tmpva += PAGE_SIZE;
4884 				break;
4885 			}
4886 		} else {
4887 			/*
4888 			 * Split the entry to an level 3 table, then
4889 			 * set the new attribute.
4890 			 */
4891 			switch (lvl) {
4892 			default:
4893 				panic("Invalid DMAP table level: %d\n", lvl);
4894 			case 1:
4895 				newpte = pmap_demote_l1(kernel_pmap, pte,
4896 				    tmpva & ~L1_OFFSET);
4897 				if (newpte == NULL)
4898 					return (EINVAL);
4899 				pte = pmap_l1_to_l2(pte, tmpva);
4900 			case 2:
4901 				newpte = pmap_demote_l2(kernel_pmap, pte,
4902 				    tmpva & ~L2_OFFSET);
4903 				if (newpte == NULL)
4904 					return (EINVAL);
4905 				pte = pmap_l2_to_l3(pte, tmpva);
4906 			case 3:
4907 				/* Update the entry */
4908 				l3 = pmap_load(pte);
4909 				l3 &= ~ATTR_IDX_MASK;
4910 				l3 |= ATTR_IDX(mode);
4911 				if (mode == DEVICE_MEMORY)
4912 					l3 |= ATTR_XN;
4913 
4914 				pmap_update_entry(kernel_pmap, pte, l3, tmpva,
4915 				    PAGE_SIZE);
4916 
4917 				/*
4918 				 * If moving to a non-cacheable entry flush
4919 				 * the cache.
4920 				 */
4921 				if (mode == VM_MEMATTR_UNCACHEABLE)
4922 					cpu_dcache_wbinv_range(tmpva, L3_SIZE);
4923 
4924 				break;
4925 			}
4926 			tmpva += PAGE_SIZE;
4927 		}
4928 	}
4929 
4930 	return (0);
4931 }
4932 
4933 /*
4934  * Create an L2 table to map all addresses within an L1 mapping.
4935  */
4936 static pt_entry_t *
4937 pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va)
4938 {
4939 	pt_entry_t *l2, newl2, oldl1;
4940 	vm_offset_t tmpl1;
4941 	vm_paddr_t l2phys, phys;
4942 	vm_page_t ml2;
4943 	int i;
4944 
4945 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4946 	oldl1 = pmap_load(l1);
4947 	KASSERT((oldl1 & ATTR_DESCR_MASK) == L1_BLOCK,
4948 	    ("pmap_demote_l1: Demoting a non-block entry"));
4949 	KASSERT((va & L1_OFFSET) == 0,
4950 	    ("pmap_demote_l1: Invalid virtual address %#lx", va));
4951 	KASSERT((oldl1 & ATTR_SW_MANAGED) == 0,
4952 	    ("pmap_demote_l1: Level 1 table shouldn't be managed"));
4953 
4954 	tmpl1 = 0;
4955 	if (va <= (vm_offset_t)l1 && va + L1_SIZE > (vm_offset_t)l1) {
4956 		tmpl1 = kva_alloc(PAGE_SIZE);
4957 		if (tmpl1 == 0)
4958 			return (NULL);
4959 	}
4960 
4961 	if ((ml2 = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
4962 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
4963 		CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx"
4964 		    " in pmap %p", va, pmap);
4965 		return (NULL);
4966 	}
4967 
4968 	l2phys = VM_PAGE_TO_PHYS(ml2);
4969 	l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys);
4970 
4971 	/* Address the range points at */
4972 	phys = oldl1 & ~ATTR_MASK;
4973 	/* The attributed from the old l1 table to be copied */
4974 	newl2 = oldl1 & ATTR_MASK;
4975 
4976 	/* Create the new entries */
4977 	for (i = 0; i < Ln_ENTRIES; i++) {
4978 		l2[i] = newl2 | phys;
4979 		phys += L2_SIZE;
4980 	}
4981 	KASSERT(l2[0] == ((oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK),
4982 	    ("Invalid l2 page (%lx != %lx)", l2[0],
4983 	    (oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK));
4984 
4985 	if (tmpl1 != 0) {
4986 		pmap_kenter(tmpl1, PAGE_SIZE,
4987 		    DMAP_TO_PHYS((vm_offset_t)l1) & ~L3_OFFSET, CACHED_MEMORY);
4988 		l1 = (pt_entry_t *)(tmpl1 + ((vm_offset_t)l1 & PAGE_MASK));
4989 	}
4990 
4991 	pmap_update_entry(pmap, l1, l2phys | L1_TABLE, va, PAGE_SIZE);
4992 
4993 	if (tmpl1 != 0) {
4994 		pmap_kremove(tmpl1);
4995 		kva_free(tmpl1, PAGE_SIZE);
4996 	}
4997 
4998 	return (l2);
4999 }
5000 
5001 /*
5002  * Create an L3 table to map all addresses within an L2 mapping.
5003  */
5004 static pt_entry_t *
5005 pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va,
5006     struct rwlock **lockp)
5007 {
5008 	pt_entry_t *l3, newl3, oldl2;
5009 	vm_offset_t tmpl2;
5010 	vm_paddr_t l3phys, phys;
5011 	vm_page_t ml3;
5012 	int i;
5013 
5014 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5015 	l3 = NULL;
5016 	oldl2 = pmap_load(l2);
5017 	KASSERT((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK,
5018 	    ("pmap_demote_l2: Demoting a non-block entry"));
5019 	KASSERT((va & L2_OFFSET) == 0,
5020 	    ("pmap_demote_l2: Invalid virtual address %#lx", va));
5021 
5022 	tmpl2 = 0;
5023 	if (va <= (vm_offset_t)l2 && va + L2_SIZE > (vm_offset_t)l2) {
5024 		tmpl2 = kva_alloc(PAGE_SIZE);
5025 		if (tmpl2 == 0)
5026 			return (NULL);
5027 	}
5028 
5029 	if ((ml3 = pmap_remove_pt_page(pmap, va)) == NULL) {
5030 		ml3 = vm_page_alloc(NULL, pmap_l2_pindex(va),
5031 		    (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
5032 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
5033 		if (ml3 == NULL) {
5034 			CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx"
5035 			    " in pmap %p", va, pmap);
5036 			goto fail;
5037 		}
5038 		if (va < VM_MAXUSER_ADDRESS)
5039 			pmap_resident_count_inc(pmap, 1);
5040 	}
5041 
5042 	l3phys = VM_PAGE_TO_PHYS(ml3);
5043 	l3 = (pt_entry_t *)PHYS_TO_DMAP(l3phys);
5044 
5045 	/* Address the range points at */
5046 	phys = oldl2 & ~ATTR_MASK;
5047 	/* The attributed from the old l2 table to be copied */
5048 	newl3 = (oldl2 & (ATTR_MASK & ~ATTR_DESCR_MASK)) | L3_PAGE;
5049 
5050 	/*
5051 	 * If the page table page is new, initialize it.
5052 	 */
5053 	if (ml3->wire_count == 1) {
5054 		ml3->wire_count = NL3PG;
5055 		for (i = 0; i < Ln_ENTRIES; i++) {
5056 			l3[i] = newl3 | phys;
5057 			phys += L3_SIZE;
5058 		}
5059 	}
5060 	KASSERT(l3[0] == ((oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE),
5061 	    ("Invalid l3 page (%lx != %lx)", l3[0],
5062 	    (oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE));
5063 
5064 	/*
5065 	 * Map the temporary page so we don't lose access to the l2 table.
5066 	 */
5067 	if (tmpl2 != 0) {
5068 		pmap_kenter(tmpl2, PAGE_SIZE,
5069 		    DMAP_TO_PHYS((vm_offset_t)l2) & ~L3_OFFSET, CACHED_MEMORY);
5070 		l2 = (pt_entry_t *)(tmpl2 + ((vm_offset_t)l2 & PAGE_MASK));
5071 	}
5072 
5073 	/*
5074 	 * The spare PV entries must be reserved prior to demoting the
5075 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
5076 	 * of the L2 and the PV lists will be inconsistent, which can result
5077 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
5078 	 * wrong PV list and pmap_pv_demote_l2() failing to find the expected
5079 	 * PV entry for the 2MB page mapping that is being demoted.
5080 	 */
5081 	if ((oldl2 & ATTR_SW_MANAGED) != 0)
5082 		reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp);
5083 
5084 	pmap_update_entry(pmap, l2, l3phys | L2_TABLE, va, PAGE_SIZE);
5085 
5086 	/*
5087 	 * Demote the PV entry.
5088 	 */
5089 	if ((oldl2 & ATTR_SW_MANAGED) != 0)
5090 		pmap_pv_demote_l2(pmap, va, oldl2 & ~ATTR_MASK, lockp);
5091 
5092 	atomic_add_long(&pmap_l2_demotions, 1);
5093 	CTR3(KTR_PMAP, "pmap_demote_l2: success for va %#lx"
5094 	    " in pmap %p %lx", va, pmap, l3[0]);
5095 
5096 fail:
5097 	if (tmpl2 != 0) {
5098 		pmap_kremove(tmpl2);
5099 		kva_free(tmpl2, PAGE_SIZE);
5100 	}
5101 
5102 	return (l3);
5103 
5104 }
5105 
5106 static pt_entry_t *
5107 pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
5108 {
5109 	struct rwlock *lock;
5110 	pt_entry_t *l3;
5111 
5112 	lock = NULL;
5113 	l3 = pmap_demote_l2_locked(pmap, l2, va, &lock);
5114 	if (lock != NULL)
5115 		rw_wunlock(lock);
5116 	return (l3);
5117 }
5118 
5119 /*
5120  * perform the pmap work for mincore
5121  */
5122 int
5123 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5124 {
5125 	pt_entry_t *pte, tpte;
5126 	vm_paddr_t mask, pa;
5127 	int lvl, val;
5128 	bool managed;
5129 
5130 	PMAP_LOCK(pmap);
5131 retry:
5132 	val = 0;
5133 	pte = pmap_pte(pmap, addr, &lvl);
5134 	if (pte != NULL) {
5135 		tpte = pmap_load(pte);
5136 
5137 		switch (lvl) {
5138 		case 3:
5139 			mask = L3_OFFSET;
5140 			break;
5141 		case 2:
5142 			mask = L2_OFFSET;
5143 			break;
5144 		case 1:
5145 			mask = L1_OFFSET;
5146 			break;
5147 		default:
5148 			panic("pmap_mincore: invalid level %d", lvl);
5149 		}
5150 
5151 		val = MINCORE_INCORE;
5152 		if (lvl != 3)
5153 			val |= MINCORE_SUPER;
5154 		if (pmap_page_dirty(tpte))
5155 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5156 		if ((tpte & ATTR_AF) == ATTR_AF)
5157 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5158 
5159 		managed = (tpte & ATTR_SW_MANAGED) == ATTR_SW_MANAGED;
5160 		pa = (tpte & ~ATTR_MASK) | (addr & mask);
5161 	} else
5162 		managed = false;
5163 
5164 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5165 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
5166 		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5167 		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5168 			goto retry;
5169 	} else
5170 		PA_UNLOCK_COND(*locked_pa);
5171 	PMAP_UNLOCK(pmap);
5172 
5173 	return (val);
5174 }
5175 
5176 void
5177 pmap_activate(struct thread *td)
5178 {
5179 	pmap_t	pmap;
5180 
5181 	critical_enter();
5182 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5183 	td->td_proc->p_md.md_l0addr = vtophys(pmap->pm_l0);
5184 	__asm __volatile("msr ttbr0_el1, %0" : :
5185 	    "r"(td->td_proc->p_md.md_l0addr));
5186 	pmap_invalidate_all(pmap);
5187 	critical_exit();
5188 }
5189 
5190 struct pcb *
5191 pmap_switch(struct thread *old, struct thread *new)
5192 {
5193 	pcpu_bp_harden bp_harden;
5194 	struct pcb *pcb;
5195 
5196 	/* Store the new curthread */
5197 	PCPU_SET(curthread, new);
5198 
5199 	/* And the new pcb */
5200 	pcb = new->td_pcb;
5201 	PCPU_SET(curpcb, pcb);
5202 
5203 	/*
5204 	 * TODO: We may need to flush the cache here if switching
5205 	 * to a user process.
5206 	 */
5207 
5208 	if (old == NULL ||
5209 	    old->td_proc->p_md.md_l0addr != new->td_proc->p_md.md_l0addr) {
5210 		__asm __volatile(
5211 		    /* Switch to the new pmap */
5212 		    "msr	ttbr0_el1, %0	\n"
5213 		    "isb			\n"
5214 
5215 		    /* Invalidate the TLB */
5216 		    "dsb	ishst		\n"
5217 		    "tlbi	vmalle1is	\n"
5218 		    "dsb	ish		\n"
5219 		    "isb			\n"
5220 		    : : "r"(new->td_proc->p_md.md_l0addr));
5221 
5222 		/*
5223 		 * Stop userspace from training the branch predictor against
5224 		 * other processes. This will call into a CPU specific
5225 		 * function that clears the branch predictor state.
5226 		 */
5227 		bp_harden = PCPU_GET(bp_harden);
5228 		if (bp_harden != NULL)
5229 			bp_harden();
5230 	}
5231 
5232 	return (pcb);
5233 }
5234 
5235 void
5236 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
5237 {
5238 
5239 	if (va >= VM_MIN_KERNEL_ADDRESS) {
5240 		cpu_icache_sync_range(va, sz);
5241 	} else {
5242 		u_int len, offset;
5243 		vm_paddr_t pa;
5244 
5245 		/* Find the length of data in this page to flush */
5246 		offset = va & PAGE_MASK;
5247 		len = imin(PAGE_SIZE - offset, sz);
5248 
5249 		while (sz != 0) {
5250 			/* Extract the physical address & find it in the DMAP */
5251 			pa = pmap_extract(pmap, va);
5252 			if (pa != 0)
5253 				cpu_icache_sync_range(PHYS_TO_DMAP(pa), len);
5254 
5255 			/* Move to the next page */
5256 			sz -= len;
5257 			va += len;
5258 			/* Set the length for the next iteration */
5259 			len = imin(PAGE_SIZE, sz);
5260 		}
5261 	}
5262 }
5263 
5264 int
5265 pmap_fault(pmap_t pmap, uint64_t esr, uint64_t far)
5266 {
5267 #ifdef SMP
5268 	register_t intr;
5269 	uint64_t par;
5270 
5271 	switch (ESR_ELx_EXCEPTION(esr)) {
5272 	case EXCP_INSN_ABORT_L:
5273 	case EXCP_INSN_ABORT:
5274 	case EXCP_DATA_ABORT_L:
5275 	case EXCP_DATA_ABORT:
5276 		break;
5277 	default:
5278 		return (KERN_FAILURE);
5279 	}
5280 
5281 	/* Data and insn aborts use same encoding for FCS field. */
5282 	switch (esr & ISS_DATA_DFSC_MASK) {
5283 	case ISS_DATA_DFSC_TF_L0:
5284 	case ISS_DATA_DFSC_TF_L1:
5285 	case ISS_DATA_DFSC_TF_L2:
5286 	case ISS_DATA_DFSC_TF_L3:
5287 		PMAP_LOCK(pmap);
5288 		/* Ask the MMU to check the address */
5289 		intr = intr_disable();
5290 		if (pmap == kernel_pmap)
5291 			par = arm64_address_translate_s1e1r(far);
5292 		else
5293 			par = arm64_address_translate_s1e0r(far);
5294 		intr_restore(intr);
5295 		PMAP_UNLOCK(pmap);
5296 
5297 		/*
5298 		 * If the translation was successful the address was invalid
5299 		 * due to a break-before-make sequence. We can unlock and
5300 		 * return success to the trap handler.
5301 		 */
5302 		if (PAR_SUCCESS(par))
5303 			return (KERN_SUCCESS);
5304 		break;
5305 	default:
5306 		break;
5307 	}
5308 #endif
5309 
5310 	return (KERN_FAILURE);
5311 }
5312 
5313 /*
5314  *	Increase the starting virtual address of the given mapping if a
5315  *	different alignment might result in more superpage mappings.
5316  */
5317 void
5318 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5319     vm_offset_t *addr, vm_size_t size)
5320 {
5321 	vm_offset_t superpage_offset;
5322 
5323 	if (size < L2_SIZE)
5324 		return;
5325 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5326 		offset += ptoa(object->pg_color);
5327 	superpage_offset = offset & L2_OFFSET;
5328 	if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) < L2_SIZE ||
5329 	    (*addr & L2_OFFSET) == superpage_offset)
5330 		return;
5331 	if ((*addr & L2_OFFSET) < superpage_offset)
5332 		*addr = (*addr & ~L2_OFFSET) + superpage_offset;
5333 	else
5334 		*addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) + superpage_offset;
5335 }
5336 
5337 /**
5338  * Get the kernel virtual address of a set of physical pages. If there are
5339  * physical addresses not covered by the DMAP perform a transient mapping
5340  * that will be removed when calling pmap_unmap_io_transient.
5341  *
5342  * \param page        The pages the caller wishes to obtain the virtual
5343  *                    address on the kernel memory map.
5344  * \param vaddr       On return contains the kernel virtual memory address
5345  *                    of the pages passed in the page parameter.
5346  * \param count       Number of pages passed in.
5347  * \param can_fault   TRUE if the thread using the mapped pages can take
5348  *                    page faults, FALSE otherwise.
5349  *
5350  * \returns TRUE if the caller must call pmap_unmap_io_transient when
5351  *          finished or FALSE otherwise.
5352  *
5353  */
5354 boolean_t
5355 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
5356     boolean_t can_fault)
5357 {
5358 	vm_paddr_t paddr;
5359 	boolean_t needs_mapping;
5360 	int error, i;
5361 
5362 	/*
5363 	 * Allocate any KVA space that we need, this is done in a separate
5364 	 * loop to prevent calling vmem_alloc while pinned.
5365 	 */
5366 	needs_mapping = FALSE;
5367 	for (i = 0; i < count; i++) {
5368 		paddr = VM_PAGE_TO_PHYS(page[i]);
5369 		if (__predict_false(!PHYS_IN_DMAP(paddr))) {
5370 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
5371 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
5372 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
5373 			needs_mapping = TRUE;
5374 		} else {
5375 			vaddr[i] = PHYS_TO_DMAP(paddr);
5376 		}
5377 	}
5378 
5379 	/* Exit early if everything is covered by the DMAP */
5380 	if (!needs_mapping)
5381 		return (FALSE);
5382 
5383 	if (!can_fault)
5384 		sched_pin();
5385 	for (i = 0; i < count; i++) {
5386 		paddr = VM_PAGE_TO_PHYS(page[i]);
5387 		if (!PHYS_IN_DMAP(paddr)) {
5388 			panic(
5389 			   "pmap_map_io_transient: TODO: Map out of DMAP data");
5390 		}
5391 	}
5392 
5393 	return (needs_mapping);
5394 }
5395 
5396 void
5397 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
5398     boolean_t can_fault)
5399 {
5400 	vm_paddr_t paddr;
5401 	int i;
5402 
5403 	if (!can_fault)
5404 		sched_unpin();
5405 	for (i = 0; i < count; i++) {
5406 		paddr = VM_PAGE_TO_PHYS(page[i]);
5407 		if (!PHYS_IN_DMAP(paddr)) {
5408 			panic("ARM64TODO: pmap_unmap_io_transient: Unmap data");
5409 		}
5410 	}
5411 }
5412 
5413 boolean_t
5414 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
5415 {
5416 
5417 	return (mode >= VM_MEMATTR_DEVICE && mode <= VM_MEMATTR_WRITE_THROUGH);
5418 }
5419