xref: /freebsd/sys/arm64/arm64/pmap.c (revision 16038816)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2003 Peter Wemm
9  * All rights reserved.
10  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11  * All rights reserved.
12  * Copyright (c) 2014 Andrew Turner
13  * All rights reserved.
14  * Copyright (c) 2014-2016 The FreeBSD Foundation
15  * All rights reserved.
16  *
17  * This code is derived from software contributed to Berkeley by
18  * the Systems Programming Group of the University of Utah Computer
19  * Science Department and William Jolitz of UUNET Technologies Inc.
20  *
21  * This software was developed by Andrew Turner under sponsorship from
22  * the FreeBSD Foundation.
23  *
24  * Redistribution and use in source and binary forms, with or without
25  * modification, are permitted provided that the following conditions
26  * are met:
27  * 1. Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  * 2. Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in the
31  *    documentation and/or other materials provided with the distribution.
32  * 3. All advertising materials mentioning features or use of this software
33  *    must display the following acknowledgement:
34  *	This product includes software developed by the University of
35  *	California, Berkeley and its contributors.
36  * 4. Neither the name of the University nor the names of its contributors
37  *    may be used to endorse or promote products derived from this software
38  *    without specific prior written permission.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
53  */
54 /*-
55  * Copyright (c) 2003 Networks Associates Technology, Inc.
56  * All rights reserved.
57  *
58  * This software was developed for the FreeBSD Project by Jake Burkholder,
59  * Safeport Network Services, and Network Associates Laboratories, the
60  * Security Research Division of Network Associates, Inc. under
61  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
62  * CHATS research program.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 /*
90  *	Manages physical address maps.
91  *
92  *	Since the information managed by this module is
93  *	also stored by the logical address mapping module,
94  *	this module may throw away valid virtual-to-physical
95  *	mappings at almost any time.  However, invalidations
96  *	of virtual-to-physical mappings must be done as
97  *	requested.
98  *
99  *	In order to cope with hardware architectures which
100  *	make virtual-to-physical map invalidates expensive,
101  *	this module may delay invalidate or reduced protection
102  *	operations until such time as they are actually
103  *	necessary.  This module is given full information as
104  *	to which processors are currently using which maps,
105  *	and to when physical maps must be made correct.
106  */
107 
108 #include "opt_vm.h"
109 
110 #include <sys/param.h>
111 #include <sys/bitstring.h>
112 #include <sys/bus.h>
113 #include <sys/systm.h>
114 #include <sys/kernel.h>
115 #include <sys/ktr.h>
116 #include <sys/limits.h>
117 #include <sys/lock.h>
118 #include <sys/malloc.h>
119 #include <sys/mman.h>
120 #include <sys/msgbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/physmem.h>
123 #include <sys/proc.h>
124 #include <sys/rwlock.h>
125 #include <sys/sbuf.h>
126 #include <sys/sx.h>
127 #include <sys/vmem.h>
128 #include <sys/vmmeter.h>
129 #include <sys/sched.h>
130 #include <sys/sysctl.h>
131 #include <sys/_unrhdr.h>
132 #include <sys/smp.h>
133 
134 #include <vm/vm.h>
135 #include <vm/vm_param.h>
136 #include <vm/vm_kern.h>
137 #include <vm/vm_page.h>
138 #include <vm/vm_map.h>
139 #include <vm/vm_object.h>
140 #include <vm/vm_extern.h>
141 #include <vm/vm_pageout.h>
142 #include <vm/vm_pager.h>
143 #include <vm/vm_phys.h>
144 #include <vm/vm_radix.h>
145 #include <vm/vm_reserv.h>
146 #include <vm/vm_dumpset.h>
147 #include <vm/uma.h>
148 
149 #include <machine/machdep.h>
150 #include <machine/md_var.h>
151 #include <machine/pcb.h>
152 
153 #define	PMAP_ASSERT_STAGE1(pmap)	MPASS((pmap)->pm_stage == PM_STAGE1)
154 #define	PMAP_ASSERT_STAGE2(pmap)	MPASS((pmap)->pm_stage == PM_STAGE2)
155 
156 #define	NL0PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
157 #define	NL1PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
158 #define	NL2PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
159 #define	NL3PG		(PAGE_SIZE/(sizeof (pt_entry_t)))
160 
161 #define	NUL0E		L0_ENTRIES
162 #define	NUL1E		(NUL0E * NL1PG)
163 #define	NUL2E		(NUL1E * NL2PG)
164 
165 #if !defined(DIAGNOSTIC)
166 #ifdef __GNUC_GNU_INLINE__
167 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
168 #else
169 #define PMAP_INLINE	extern inline
170 #endif
171 #else
172 #define PMAP_INLINE
173 #endif
174 
175 #ifdef PV_STATS
176 #define PV_STAT(x)	do { x ; } while (0)
177 #else
178 #define PV_STAT(x)	do { } while (0)
179 #endif
180 
181 #define	pmap_l0_pindex(v)	(NUL2E + NUL1E + ((v) >> L0_SHIFT))
182 #define	pmap_l1_pindex(v)	(NUL2E + ((v) >> L1_SHIFT))
183 #define	pmap_l2_pindex(v)	((v) >> L2_SHIFT)
184 
185 static struct md_page *
186 pa_to_pvh(vm_paddr_t pa)
187 {
188 	struct vm_phys_seg *seg;
189 	int segind;
190 
191 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
192 		seg = &vm_phys_segs[segind];
193 		if (pa >= seg->start && pa < seg->end)
194 			return ((struct md_page *)seg->md_first +
195 			    pmap_l2_pindex(pa) - pmap_l2_pindex(seg->start));
196 	}
197 	panic("pa 0x%jx not within vm_phys_segs", (uintmax_t)pa);
198 }
199 
200 static struct md_page *
201 page_to_pvh(vm_page_t m)
202 {
203 	struct vm_phys_seg *seg;
204 
205 	seg = &vm_phys_segs[m->segind];
206 	return ((struct md_page *)seg->md_first +
207 	    pmap_l2_pindex(VM_PAGE_TO_PHYS(m)) - pmap_l2_pindex(seg->start));
208 }
209 
210 #define	NPV_LIST_LOCKS	MAXCPU
211 
212 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
213 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
214 
215 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
216 	struct rwlock **_lockp = (lockp);		\
217 	struct rwlock *_new_lock;			\
218 							\
219 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
220 	if (_new_lock != *_lockp) {			\
221 		if (*_lockp != NULL)			\
222 			rw_wunlock(*_lockp);		\
223 		*_lockp = _new_lock;			\
224 		rw_wlock(*_lockp);			\
225 	}						\
226 } while (0)
227 
228 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
229 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
230 
231 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
232 	struct rwlock **_lockp = (lockp);		\
233 							\
234 	if (*_lockp != NULL) {				\
235 		rw_wunlock(*_lockp);			\
236 		*_lockp = NULL;				\
237 	}						\
238 } while (0)
239 
240 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
241 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
242 
243 /*
244  * The presence of this flag indicates that the mapping is writeable.
245  * If the ATTR_S1_AP_RO bit is also set, then the mapping is clean, otherwise
246  * it is dirty.  This flag may only be set on managed mappings.
247  *
248  * The DBM bit is reserved on ARMv8.0 but it seems we can safely treat it
249  * as a software managed bit.
250  */
251 #define	ATTR_SW_DBM	ATTR_DBM
252 
253 struct pmap kernel_pmap_store;
254 
255 /* Used for mapping ACPI memory before VM is initialized */
256 #define	PMAP_PREINIT_MAPPING_COUNT	32
257 #define	PMAP_PREINIT_MAPPING_SIZE	(PMAP_PREINIT_MAPPING_COUNT * L2_SIZE)
258 static vm_offset_t preinit_map_va;	/* Start VA of pre-init mapping space */
259 static int vm_initialized = 0;		/* No need to use pre-init maps when set */
260 
261 /*
262  * Reserve a few L2 blocks starting from 'preinit_map_va' pointer.
263  * Always map entire L2 block for simplicity.
264  * VA of L2 block = preinit_map_va + i * L2_SIZE
265  */
266 static struct pmap_preinit_mapping {
267 	vm_paddr_t	pa;
268 	vm_offset_t	va;
269 	vm_size_t	size;
270 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
271 
272 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
273 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
274 vm_offset_t kernel_vm_end = 0;
275 
276 /*
277  * Data for the pv entry allocation mechanism.
278  */
279 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
280 static struct mtx pv_chunks_mutex;
281 static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
282 static struct md_page *pv_table;
283 static struct md_page pv_dummy;
284 
285 vm_paddr_t dmap_phys_base;	/* The start of the dmap region */
286 vm_paddr_t dmap_phys_max;	/* The limit of the dmap region */
287 vm_offset_t dmap_max_addr;	/* The virtual address limit of the dmap */
288 
289 /* This code assumes all L1 DMAP entries will be used */
290 CTASSERT((DMAP_MIN_ADDRESS  & ~L0_OFFSET) == DMAP_MIN_ADDRESS);
291 CTASSERT((DMAP_MAX_ADDRESS  & ~L0_OFFSET) == DMAP_MAX_ADDRESS);
292 
293 #define	DMAP_TABLES	((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT)
294 extern pt_entry_t pagetable_dmap[];
295 
296 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
297 static vm_paddr_t physmap[PHYSMAP_SIZE];
298 static u_int physmap_idx;
299 
300 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
301     "VM/pmap parameters");
302 
303 /*
304  * This ASID allocator uses a bit vector ("asid_set") to remember which ASIDs
305  * that it has currently allocated to a pmap, a cursor ("asid_next") to
306  * optimize its search for a free ASID in the bit vector, and an epoch number
307  * ("asid_epoch") to indicate when it has reclaimed all previously allocated
308  * ASIDs that are not currently active on a processor.
309  *
310  * The current epoch number is always in the range [0, INT_MAX).  Negative
311  * numbers and INT_MAX are reserved for special cases that are described
312  * below.
313  */
314 struct asid_set {
315 	int asid_bits;
316 	bitstr_t *asid_set;
317 	int asid_set_size;
318 	int asid_next;
319 	int asid_epoch;
320 	struct mtx asid_set_mutex;
321 };
322 
323 static struct asid_set asids;
324 static struct asid_set vmids;
325 
326 static SYSCTL_NODE(_vm_pmap, OID_AUTO, asid, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
327     "ASID allocator");
328 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, bits, CTLFLAG_RD, &asids.asid_bits, 0,
329     "The number of bits in an ASID");
330 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, next, CTLFLAG_RD, &asids.asid_next, 0,
331     "The last allocated ASID plus one");
332 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, epoch, CTLFLAG_RD, &asids.asid_epoch, 0,
333     "The current epoch number");
334 
335 static SYSCTL_NODE(_vm_pmap, OID_AUTO, vmid, CTLFLAG_RD, 0, "VMID allocator");
336 SYSCTL_INT(_vm_pmap_vmid, OID_AUTO, bits, CTLFLAG_RD, &vmids.asid_bits, 0,
337     "The number of bits in an VMID");
338 SYSCTL_INT(_vm_pmap_vmid, OID_AUTO, next, CTLFLAG_RD, &vmids.asid_next, 0,
339     "The last allocated VMID plus one");
340 SYSCTL_INT(_vm_pmap_vmid, OID_AUTO, epoch, CTLFLAG_RD, &vmids.asid_epoch, 0,
341     "The current epoch number");
342 
343 void (*pmap_clean_stage2_tlbi)(void);
344 void (*pmap_invalidate_vpipt_icache)(void);
345 
346 /*
347  * A pmap's cookie encodes an ASID and epoch number.  Cookies for reserved
348  * ASIDs have a negative epoch number, specifically, INT_MIN.  Cookies for
349  * dynamically allocated ASIDs have a non-negative epoch number.
350  *
351  * An invalid ASID is represented by -1.
352  *
353  * There are two special-case cookie values: (1) COOKIE_FROM(-1, INT_MIN),
354  * which indicates that an ASID should never be allocated to the pmap, and
355  * (2) COOKIE_FROM(-1, INT_MAX), which indicates that an ASID should be
356  * allocated when the pmap is next activated.
357  */
358 #define	COOKIE_FROM(asid, epoch)	((long)((u_int)(asid) |	\
359 					    ((u_long)(epoch) << 32)))
360 #define	COOKIE_TO_ASID(cookie)		((int)(cookie))
361 #define	COOKIE_TO_EPOCH(cookie)		((int)((u_long)(cookie) >> 32))
362 
363 static int superpages_enabled = 1;
364 SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled,
365     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &superpages_enabled, 0,
366     "Are large page mappings enabled?");
367 
368 /*
369  * Internal flags for pmap_enter()'s helper functions.
370  */
371 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
372 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
373 
374 static void	free_pv_chunk(struct pv_chunk *pc);
375 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
376 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
377 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
378 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
379 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
380 		    vm_offset_t va);
381 
382 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
383 static bool pmap_activate_int(pmap_t pmap);
384 static void pmap_alloc_asid(pmap_t pmap);
385 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
386 static pt_entry_t *pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va);
387 static pt_entry_t *pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2,
388     vm_offset_t va, struct rwlock **lockp);
389 static pt_entry_t *pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va);
390 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
391     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
392 static int pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2,
393     u_int flags, vm_page_t m, struct rwlock **lockp);
394 static int pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
395     pd_entry_t l1e, struct spglist *free, struct rwlock **lockp);
396 static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
397     pd_entry_t l2e, struct spglist *free, struct rwlock **lockp);
398 static void pmap_reset_asid_set(pmap_t pmap);
399 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
400     vm_page_t m, struct rwlock **lockp);
401 
402 static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
403 		struct rwlock **lockp);
404 
405 static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m,
406     struct spglist *free);
407 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
408 static __inline vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
409 
410 /*
411  * These load the old table data and store the new value.
412  * They need to be atomic as the System MMU may write to the table at
413  * the same time as the CPU.
414  */
415 #define	pmap_clear(table)		atomic_store_64(table, 0)
416 #define	pmap_clear_bits(table, bits)	atomic_clear_64(table, bits)
417 #define	pmap_load(table)		(*table)
418 #define	pmap_load_clear(table)		atomic_swap_64(table, 0)
419 #define	pmap_load_store(table, entry)	atomic_swap_64(table, entry)
420 #define	pmap_set_bits(table, bits)	atomic_set_64(table, bits)
421 #define	pmap_store(table, entry)	atomic_store_64(table, entry)
422 
423 /********************/
424 /* Inline functions */
425 /********************/
426 
427 static __inline void
428 pagecopy(void *s, void *d)
429 {
430 
431 	memcpy(d, s, PAGE_SIZE);
432 }
433 
434 static __inline pd_entry_t *
435 pmap_l0(pmap_t pmap, vm_offset_t va)
436 {
437 
438 	return (&pmap->pm_l0[pmap_l0_index(va)]);
439 }
440 
441 static __inline pd_entry_t *
442 pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
443 {
444 	pd_entry_t *l1;
445 
446 	l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
447 	return (&l1[pmap_l1_index(va)]);
448 }
449 
450 static __inline pd_entry_t *
451 pmap_l1(pmap_t pmap, vm_offset_t va)
452 {
453 	pd_entry_t *l0;
454 
455 	l0 = pmap_l0(pmap, va);
456 	if ((pmap_load(l0) & ATTR_DESCR_MASK) != L0_TABLE)
457 		return (NULL);
458 
459 	return (pmap_l0_to_l1(l0, va));
460 }
461 
462 static __inline pd_entry_t *
463 pmap_l1_to_l2(pd_entry_t *l1p, vm_offset_t va)
464 {
465 	pd_entry_t l1, *l2p;
466 
467 	l1 = pmap_load(l1p);
468 
469 	/*
470 	 * The valid bit may be clear if pmap_update_entry() is concurrently
471 	 * modifying the entry, so for KVA only the entry type may be checked.
472 	 */
473 	KASSERT(va >= VM_MAX_USER_ADDRESS || (l1 & ATTR_DESCR_VALID) != 0,
474 	    ("%s: L1 entry %#lx for %#lx is invalid", __func__, l1, va));
475 	KASSERT((l1 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE,
476 	    ("%s: L1 entry %#lx for %#lx is a leaf", __func__, l1, va));
477 	l2p = (pd_entry_t *)PHYS_TO_DMAP(l1 & ~ATTR_MASK);
478 	return (&l2p[pmap_l2_index(va)]);
479 }
480 
481 static __inline pd_entry_t *
482 pmap_l2(pmap_t pmap, vm_offset_t va)
483 {
484 	pd_entry_t *l1;
485 
486 	l1 = pmap_l1(pmap, va);
487 	if ((pmap_load(l1) & ATTR_DESCR_MASK) != L1_TABLE)
488 		return (NULL);
489 
490 	return (pmap_l1_to_l2(l1, va));
491 }
492 
493 static __inline pt_entry_t *
494 pmap_l2_to_l3(pd_entry_t *l2p, vm_offset_t va)
495 {
496 	pd_entry_t l2;
497 	pt_entry_t *l3p;
498 
499 	l2 = pmap_load(l2p);
500 
501 	/*
502 	 * The valid bit may be clear if pmap_update_entry() is concurrently
503 	 * modifying the entry, so for KVA only the entry type may be checked.
504 	 */
505 	KASSERT(va >= VM_MAX_USER_ADDRESS || (l2 & ATTR_DESCR_VALID) != 0,
506 	    ("%s: L2 entry %#lx for %#lx is invalid", __func__, l2, va));
507 	KASSERT((l2 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE,
508 	    ("%s: L2 entry %#lx for %#lx is a leaf", __func__, l2, va));
509 	l3p = (pt_entry_t *)PHYS_TO_DMAP(l2 & ~ATTR_MASK);
510 	return (&l3p[pmap_l3_index(va)]);
511 }
512 
513 /*
514  * Returns the lowest valid pde for a given virtual address.
515  * The next level may or may not point to a valid page or block.
516  */
517 static __inline pd_entry_t *
518 pmap_pde(pmap_t pmap, vm_offset_t va, int *level)
519 {
520 	pd_entry_t *l0, *l1, *l2, desc;
521 
522 	l0 = pmap_l0(pmap, va);
523 	desc = pmap_load(l0) & ATTR_DESCR_MASK;
524 	if (desc != L0_TABLE) {
525 		*level = -1;
526 		return (NULL);
527 	}
528 
529 	l1 = pmap_l0_to_l1(l0, va);
530 	desc = pmap_load(l1) & ATTR_DESCR_MASK;
531 	if (desc != L1_TABLE) {
532 		*level = 0;
533 		return (l0);
534 	}
535 
536 	l2 = pmap_l1_to_l2(l1, va);
537 	desc = pmap_load(l2) & ATTR_DESCR_MASK;
538 	if (desc != L2_TABLE) {
539 		*level = 1;
540 		return (l1);
541 	}
542 
543 	*level = 2;
544 	return (l2);
545 }
546 
547 /*
548  * Returns the lowest valid pte block or table entry for a given virtual
549  * address. If there are no valid entries return NULL and set the level to
550  * the first invalid level.
551  */
552 static __inline pt_entry_t *
553 pmap_pte(pmap_t pmap, vm_offset_t va, int *level)
554 {
555 	pd_entry_t *l1, *l2, desc;
556 	pt_entry_t *l3;
557 
558 	l1 = pmap_l1(pmap, va);
559 	if (l1 == NULL) {
560 		*level = 0;
561 		return (NULL);
562 	}
563 	desc = pmap_load(l1) & ATTR_DESCR_MASK;
564 	if (desc == L1_BLOCK) {
565 		*level = 1;
566 		return (l1);
567 	}
568 
569 	if (desc != L1_TABLE) {
570 		*level = 1;
571 		return (NULL);
572 	}
573 
574 	l2 = pmap_l1_to_l2(l1, va);
575 	desc = pmap_load(l2) & ATTR_DESCR_MASK;
576 	if (desc == L2_BLOCK) {
577 		*level = 2;
578 		return (l2);
579 	}
580 
581 	if (desc != L2_TABLE) {
582 		*level = 2;
583 		return (NULL);
584 	}
585 
586 	*level = 3;
587 	l3 = pmap_l2_to_l3(l2, va);
588 	if ((pmap_load(l3) & ATTR_DESCR_MASK) != L3_PAGE)
589 		return (NULL);
590 
591 	return (l3);
592 }
593 
594 bool
595 pmap_ps_enabled(pmap_t pmap __unused)
596 {
597 
598 	return (superpages_enabled != 0);
599 }
600 
601 bool
602 pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l0, pd_entry_t **l1,
603     pd_entry_t **l2, pt_entry_t **l3)
604 {
605 	pd_entry_t *l0p, *l1p, *l2p;
606 
607 	if (pmap->pm_l0 == NULL)
608 		return (false);
609 
610 	l0p = pmap_l0(pmap, va);
611 	*l0 = l0p;
612 
613 	if ((pmap_load(l0p) & ATTR_DESCR_MASK) != L0_TABLE)
614 		return (false);
615 
616 	l1p = pmap_l0_to_l1(l0p, va);
617 	*l1 = l1p;
618 
619 	if ((pmap_load(l1p) & ATTR_DESCR_MASK) == L1_BLOCK) {
620 		*l2 = NULL;
621 		*l3 = NULL;
622 		return (true);
623 	}
624 
625 	if ((pmap_load(l1p) & ATTR_DESCR_MASK) != L1_TABLE)
626 		return (false);
627 
628 	l2p = pmap_l1_to_l2(l1p, va);
629 	*l2 = l2p;
630 
631 	if ((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK) {
632 		*l3 = NULL;
633 		return (true);
634 	}
635 
636 	if ((pmap_load(l2p) & ATTR_DESCR_MASK) != L2_TABLE)
637 		return (false);
638 
639 	*l3 = pmap_l2_to_l3(l2p, va);
640 
641 	return (true);
642 }
643 
644 static __inline int
645 pmap_l3_valid(pt_entry_t l3)
646 {
647 
648 	return ((l3 & ATTR_DESCR_MASK) == L3_PAGE);
649 }
650 
651 CTASSERT(L1_BLOCK == L2_BLOCK);
652 
653 static pt_entry_t
654 pmap_pte_memattr(pmap_t pmap, vm_memattr_t memattr)
655 {
656 	pt_entry_t val;
657 
658 	if (pmap->pm_stage == PM_STAGE1) {
659 		val = ATTR_S1_IDX(memattr);
660 		if (memattr == VM_MEMATTR_DEVICE)
661 			val |= ATTR_S1_XN;
662 		return (val);
663 	}
664 
665 	val = 0;
666 
667 	switch (memattr) {
668 	case VM_MEMATTR_DEVICE:
669 		return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_DEVICE_nGnRnE) |
670 		    ATTR_S2_XN(ATTR_S2_XN_ALL));
671 	case VM_MEMATTR_UNCACHEABLE:
672 		return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_NC));
673 	case VM_MEMATTR_WRITE_BACK:
674 		return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_WB));
675 	case VM_MEMATTR_WRITE_THROUGH:
676 		return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_WT));
677 	default:
678 		panic("%s: invalid memory attribute %x", __func__, memattr);
679 	}
680 }
681 
682 static pt_entry_t
683 pmap_pte_prot(pmap_t pmap, vm_prot_t prot)
684 {
685 	pt_entry_t val;
686 
687 	val = 0;
688 	if (pmap->pm_stage == PM_STAGE1) {
689 		if ((prot & VM_PROT_EXECUTE) == 0)
690 			val |= ATTR_S1_XN;
691 		if ((prot & VM_PROT_WRITE) == 0)
692 			val |= ATTR_S1_AP(ATTR_S1_AP_RO);
693 	} else {
694 		if ((prot & VM_PROT_WRITE) != 0)
695 			val |= ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
696 		if ((prot & VM_PROT_READ) != 0)
697 			val |= ATTR_S2_S2AP(ATTR_S2_S2AP_READ);
698 		if ((prot & VM_PROT_EXECUTE) == 0)
699 			val |= ATTR_S2_XN(ATTR_S2_XN_ALL);
700 	}
701 
702 	return (val);
703 }
704 
705 /*
706  * Checks if the PTE is dirty.
707  */
708 static inline int
709 pmap_pte_dirty(pmap_t pmap, pt_entry_t pte)
710 {
711 
712 	KASSERT((pte & ATTR_SW_MANAGED) != 0, ("pte %#lx is unmanaged", pte));
713 
714 	if (pmap->pm_stage == PM_STAGE1) {
715 		KASSERT((pte & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) != 0,
716 		    ("pte %#lx is writeable and missing ATTR_SW_DBM", pte));
717 
718 		return ((pte & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
719 		    (ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_SW_DBM));
720 	}
721 
722 	return ((pte & ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE)) ==
723 	    ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE));
724 }
725 
726 static __inline void
727 pmap_resident_count_inc(pmap_t pmap, int count)
728 {
729 
730 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
731 	pmap->pm_stats.resident_count += count;
732 }
733 
734 static __inline void
735 pmap_resident_count_dec(pmap_t pmap, int count)
736 {
737 
738 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
739 	KASSERT(pmap->pm_stats.resident_count >= count,
740 	    ("pmap %p resident count underflow %ld %d", pmap,
741 	    pmap->pm_stats.resident_count, count));
742 	pmap->pm_stats.resident_count -= count;
743 }
744 
745 static vm_paddr_t
746 pmap_early_vtophys(vm_offset_t l1pt, vm_offset_t va)
747 {
748 	vm_paddr_t pa_page;
749 
750 	pa_page = arm64_address_translate_s1e1r(va) & PAR_PA_MASK;
751 	return (pa_page | (va & PAR_LOW_MASK));
752 }
753 
754 static vm_offset_t
755 pmap_bootstrap_dmap(vm_offset_t kern_l1, vm_paddr_t min_pa,
756     vm_offset_t freemempos)
757 {
758 	pt_entry_t *l2;
759 	vm_offset_t va;
760 	vm_paddr_t l2_pa, pa;
761 	u_int l1_slot, l2_slot, prev_l1_slot;
762 	int i;
763 
764 	dmap_phys_base = min_pa & ~L1_OFFSET;
765 	dmap_phys_max = 0;
766 	dmap_max_addr = 0;
767 	l2 = NULL;
768 	prev_l1_slot = -1;
769 
770 #define	DMAP_TABLES	((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT)
771 	memset(pagetable_dmap, 0, PAGE_SIZE * DMAP_TABLES);
772 
773 	for (i = 0; i < (physmap_idx * 2); i += 2) {
774 		pa = physmap[i] & ~L2_OFFSET;
775 		va = pa - dmap_phys_base + DMAP_MIN_ADDRESS;
776 
777 		/* Create L2 mappings at the start of the region */
778 		if ((pa & L1_OFFSET) != 0) {
779 			l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
780 			if (l1_slot != prev_l1_slot) {
781 				prev_l1_slot = l1_slot;
782 				l2 = (pt_entry_t *)freemempos;
783 				l2_pa = pmap_early_vtophys(kern_l1,
784 				    (vm_offset_t)l2);
785 				freemempos += PAGE_SIZE;
786 
787 				pmap_store(&pagetable_dmap[l1_slot],
788 				    (l2_pa & ~Ln_TABLE_MASK) | L1_TABLE);
789 
790 				memset(l2, 0, PAGE_SIZE);
791 			}
792 			KASSERT(l2 != NULL,
793 			    ("pmap_bootstrap_dmap: NULL l2 map"));
794 			for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1];
795 			    pa += L2_SIZE, va += L2_SIZE) {
796 				/*
797 				 * We are on a boundary, stop to
798 				 * create a level 1 block
799 				 */
800 				if ((pa & L1_OFFSET) == 0)
801 					break;
802 
803 				l2_slot = pmap_l2_index(va);
804 				KASSERT(l2_slot != 0, ("..."));
805 				pmap_store(&l2[l2_slot],
806 				    (pa & ~L2_OFFSET) | ATTR_DEFAULT |
807 				    ATTR_S1_XN |
808 				    ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) |
809 				    L2_BLOCK);
810 			}
811 			KASSERT(va == (pa - dmap_phys_base + DMAP_MIN_ADDRESS),
812 			    ("..."));
813 		}
814 
815 		for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1] &&
816 		    (physmap[i + 1] - pa) >= L1_SIZE;
817 		    pa += L1_SIZE, va += L1_SIZE) {
818 			l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
819 			pmap_store(&pagetable_dmap[l1_slot],
820 			    (pa & ~L1_OFFSET) | ATTR_DEFAULT | ATTR_S1_XN |
821 			    ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | L1_BLOCK);
822 		}
823 
824 		/* Create L2 mappings at the end of the region */
825 		if (pa < physmap[i + 1]) {
826 			l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
827 			if (l1_slot != prev_l1_slot) {
828 				prev_l1_slot = l1_slot;
829 				l2 = (pt_entry_t *)freemempos;
830 				l2_pa = pmap_early_vtophys(kern_l1,
831 				    (vm_offset_t)l2);
832 				freemempos += PAGE_SIZE;
833 
834 				pmap_store(&pagetable_dmap[l1_slot],
835 				    (l2_pa & ~Ln_TABLE_MASK) | L1_TABLE);
836 
837 				memset(l2, 0, PAGE_SIZE);
838 			}
839 			KASSERT(l2 != NULL,
840 			    ("pmap_bootstrap_dmap: NULL l2 map"));
841 			for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1];
842 			    pa += L2_SIZE, va += L2_SIZE) {
843 				l2_slot = pmap_l2_index(va);
844 				pmap_store(&l2[l2_slot],
845 				    (pa & ~L2_OFFSET) | ATTR_DEFAULT |
846 				    ATTR_S1_XN |
847 				    ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) |
848 				    L2_BLOCK);
849 			}
850 		}
851 
852 		if (pa > dmap_phys_max) {
853 			dmap_phys_max = pa;
854 			dmap_max_addr = va;
855 		}
856 	}
857 
858 	cpu_tlb_flushID();
859 
860 	return (freemempos);
861 }
862 
863 static vm_offset_t
864 pmap_bootstrap_l2(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l2_start)
865 {
866 	vm_offset_t l2pt;
867 	vm_paddr_t pa;
868 	pd_entry_t *l1;
869 	u_int l1_slot;
870 
871 	KASSERT((va & L1_OFFSET) == 0, ("Invalid virtual address"));
872 
873 	l1 = (pd_entry_t *)l1pt;
874 	l1_slot = pmap_l1_index(va);
875 	l2pt = l2_start;
876 
877 	for (; va < VM_MAX_KERNEL_ADDRESS; l1_slot++, va += L1_SIZE) {
878 		KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index"));
879 
880 		pa = pmap_early_vtophys(l1pt, l2pt);
881 		pmap_store(&l1[l1_slot],
882 		    (pa & ~Ln_TABLE_MASK) | L1_TABLE);
883 		l2pt += PAGE_SIZE;
884 	}
885 
886 	/* Clean the L2 page table */
887 	memset((void *)l2_start, 0, l2pt - l2_start);
888 
889 	return l2pt;
890 }
891 
892 static vm_offset_t
893 pmap_bootstrap_l3(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l3_start)
894 {
895 	vm_offset_t l3pt;
896 	vm_paddr_t pa;
897 	pd_entry_t *l2;
898 	u_int l2_slot;
899 
900 	KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address"));
901 
902 	l2 = pmap_l2(kernel_pmap, va);
903 	l2 = (pd_entry_t *)rounddown2((uintptr_t)l2, PAGE_SIZE);
904 	l2_slot = pmap_l2_index(va);
905 	l3pt = l3_start;
906 
907 	for (; va < VM_MAX_KERNEL_ADDRESS; l2_slot++, va += L2_SIZE) {
908 		KASSERT(l2_slot < Ln_ENTRIES, ("Invalid L2 index"));
909 
910 		pa = pmap_early_vtophys(l1pt, l3pt);
911 		pmap_store(&l2[l2_slot],
912 		    (pa & ~Ln_TABLE_MASK) | ATTR_S1_UXN | L2_TABLE);
913 		l3pt += PAGE_SIZE;
914 	}
915 
916 	/* Clean the L2 page table */
917 	memset((void *)l3_start, 0, l3pt - l3_start);
918 
919 	return l3pt;
920 }
921 
922 /*
923  *	Bootstrap the system enough to run with virtual memory.
924  */
925 void
926 pmap_bootstrap(vm_offset_t l0pt, vm_offset_t l1pt, vm_paddr_t kernstart,
927     vm_size_t kernlen)
928 {
929 	vm_offset_t freemempos;
930 	vm_offset_t dpcpu, msgbufpv;
931 	vm_paddr_t start_pa, pa, min_pa;
932 	uint64_t kern_delta;
933 	int i;
934 
935 	/* Verify that the ASID is set through TTBR0. */
936 	KASSERT((READ_SPECIALREG(tcr_el1) & TCR_A1) == 0,
937 	    ("pmap_bootstrap: TCR_EL1.A1 != 0"));
938 
939 	kern_delta = KERNBASE - kernstart;
940 
941 	printf("pmap_bootstrap %lx %lx %lx\n", l1pt, kernstart, kernlen);
942 	printf("%lx\n", l1pt);
943 	printf("%lx\n", (KERNBASE >> L1_SHIFT) & Ln_ADDR_MASK);
944 
945 	/* Set this early so we can use the pagetable walking functions */
946 	kernel_pmap_store.pm_l0 = (pd_entry_t *)l0pt;
947 	PMAP_LOCK_INIT(kernel_pmap);
948 	kernel_pmap->pm_l0_paddr = l0pt - kern_delta;
949 	kernel_pmap->pm_cookie = COOKIE_FROM(-1, INT_MIN);
950 	kernel_pmap->pm_stage = PM_STAGE1;
951 	kernel_pmap->pm_levels = 4;
952 	kernel_pmap->pm_ttbr = kernel_pmap->pm_l0_paddr;
953 	kernel_pmap->pm_asid_set = &asids;
954 
955 	/* Assume the address we were loaded to is a valid physical address */
956 	min_pa = KERNBASE - kern_delta;
957 
958 	physmap_idx = physmem_avail(physmap, nitems(physmap));
959 	physmap_idx /= 2;
960 
961 	/*
962 	 * Find the minimum physical address. physmap is sorted,
963 	 * but may contain empty ranges.
964 	 */
965 	for (i = 0; i < physmap_idx * 2; i += 2) {
966 		if (physmap[i] == physmap[i + 1])
967 			continue;
968 		if (physmap[i] <= min_pa)
969 			min_pa = physmap[i];
970 	}
971 
972 	freemempos = KERNBASE + kernlen;
973 	freemempos = roundup2(freemempos, PAGE_SIZE);
974 
975 	/* Create a direct map region early so we can use it for pa -> va */
976 	freemempos = pmap_bootstrap_dmap(l1pt, min_pa, freemempos);
977 
978 	start_pa = pa = KERNBASE - kern_delta;
979 
980 	/*
981 	 * Create the l2 tables up to VM_MAX_KERNEL_ADDRESS.  We assume that the
982 	 * loader allocated the first and only l2 page table page used to map
983 	 * the kernel, preloaded files and module metadata.
984 	 */
985 	freemempos = pmap_bootstrap_l2(l1pt, KERNBASE + L1_SIZE, freemempos);
986 	/* And the l3 tables for the early devmap */
987 	freemempos = pmap_bootstrap_l3(l1pt,
988 	    VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE), freemempos);
989 
990 	cpu_tlb_flushID();
991 
992 #define alloc_pages(var, np)						\
993 	(var) = freemempos;						\
994 	freemempos += (np * PAGE_SIZE);					\
995 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
996 
997 	/* Allocate dynamic per-cpu area. */
998 	alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
999 	dpcpu_init((void *)dpcpu, 0);
1000 
1001 	/* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
1002 	alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
1003 	msgbufp = (void *)msgbufpv;
1004 
1005 	/* Reserve some VA space for early BIOS/ACPI mapping */
1006 	preinit_map_va = roundup2(freemempos, L2_SIZE);
1007 
1008 	virtual_avail = preinit_map_va + PMAP_PREINIT_MAPPING_SIZE;
1009 	virtual_avail = roundup2(virtual_avail, L1_SIZE);
1010 	virtual_end = VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE);
1011 	kernel_vm_end = virtual_avail;
1012 
1013 	pa = pmap_early_vtophys(l1pt, freemempos);
1014 
1015 	physmem_exclude_region(start_pa, pa - start_pa, EXFLAG_NOALLOC);
1016 
1017 	cpu_tlb_flushID();
1018 }
1019 
1020 /*
1021  *	Initialize a vm_page's machine-dependent fields.
1022  */
1023 void
1024 pmap_page_init(vm_page_t m)
1025 {
1026 
1027 	TAILQ_INIT(&m->md.pv_list);
1028 	m->md.pv_memattr = VM_MEMATTR_WRITE_BACK;
1029 }
1030 
1031 static void
1032 pmap_init_asids(struct asid_set *set, int bits)
1033 {
1034 	int i;
1035 
1036 	set->asid_bits = bits;
1037 
1038 	/*
1039 	 * We may be too early in the overall initialization process to use
1040 	 * bit_alloc().
1041 	 */
1042 	set->asid_set_size = 1 << set->asid_bits;
1043 	set->asid_set = (bitstr_t *)kmem_malloc(bitstr_size(set->asid_set_size),
1044 	    M_WAITOK | M_ZERO);
1045 	for (i = 0; i < ASID_FIRST_AVAILABLE; i++)
1046 		bit_set(set->asid_set, i);
1047 	set->asid_next = ASID_FIRST_AVAILABLE;
1048 	mtx_init(&set->asid_set_mutex, "asid set", NULL, MTX_SPIN);
1049 }
1050 
1051 /*
1052  *	Initialize the pmap module.
1053  *	Called by vm_init, to initialize any structures that the pmap
1054  *	system needs to map virtual memory.
1055  */
1056 void
1057 pmap_init(void)
1058 {
1059 	struct vm_phys_seg *seg, *next_seg;
1060 	struct md_page *pvh;
1061 	vm_size_t s;
1062 	uint64_t mmfr1;
1063 	int i, pv_npg, vmid_bits;
1064 
1065 	/*
1066 	 * Are large page mappings enabled?
1067 	 */
1068 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
1069 	if (superpages_enabled) {
1070 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1071 		    ("pmap_init: can't assign to pagesizes[1]"));
1072 		pagesizes[1] = L2_SIZE;
1073 		KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
1074 		    ("pmap_init: can't assign to pagesizes[2]"));
1075 		pagesizes[2] = L1_SIZE;
1076 	}
1077 
1078 	/*
1079 	 * Initialize the ASID allocator.
1080 	 */
1081 	pmap_init_asids(&asids,
1082 	    (READ_SPECIALREG(tcr_el1) & TCR_ASID_16) != 0 ? 16 : 8);
1083 
1084 	if (has_hyp()) {
1085 		mmfr1 = READ_SPECIALREG(id_aa64mmfr1_el1);
1086 		vmid_bits = 8;
1087 
1088 		if (ID_AA64MMFR1_VMIDBits_VAL(mmfr1) ==
1089 		    ID_AA64MMFR1_VMIDBits_16)
1090 			vmid_bits = 16;
1091 		pmap_init_asids(&vmids, vmid_bits);
1092 	}
1093 
1094 	/*
1095 	 * Initialize the pv chunk list mutex.
1096 	 */
1097 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
1098 
1099 	/*
1100 	 * Initialize the pool of pv list locks.
1101 	 */
1102 	for (i = 0; i < NPV_LIST_LOCKS; i++)
1103 		rw_init(&pv_list_locks[i], "pmap pv list");
1104 
1105 	/*
1106 	 * Calculate the size of the pv head table for superpages.
1107 	 */
1108 	pv_npg = 0;
1109 	for (i = 0; i < vm_phys_nsegs; i++) {
1110 		seg = &vm_phys_segs[i];
1111 		pv_npg += pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) -
1112 		    pmap_l2_pindex(seg->start);
1113 	}
1114 
1115 	/*
1116 	 * Allocate memory for the pv head table for superpages.
1117 	 */
1118 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1119 	s = round_page(s);
1120 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
1121 	for (i = 0; i < pv_npg; i++)
1122 		TAILQ_INIT(&pv_table[i].pv_list);
1123 	TAILQ_INIT(&pv_dummy.pv_list);
1124 
1125 	/*
1126 	 * Set pointers from vm_phys_segs to pv_table.
1127 	 */
1128 	for (i = 0, pvh = pv_table; i < vm_phys_nsegs; i++) {
1129 		seg = &vm_phys_segs[i];
1130 		seg->md_first = pvh;
1131 		pvh += pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) -
1132 		    pmap_l2_pindex(seg->start);
1133 
1134 		/*
1135 		 * If there is a following segment, and the final
1136 		 * superpage of this segment and the initial superpage
1137 		 * of the next segment are the same then adjust the
1138 		 * pv_table entry for that next segment down by one so
1139 		 * that the pv_table entries will be shared.
1140 		 */
1141 		if (i + 1 < vm_phys_nsegs) {
1142 			next_seg = &vm_phys_segs[i + 1];
1143 			if (pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) - 1 ==
1144 			    pmap_l2_pindex(next_seg->start)) {
1145 				pvh--;
1146 			}
1147 		}
1148 	}
1149 
1150 	vm_initialized = 1;
1151 }
1152 
1153 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1154     "2MB page mapping counters");
1155 
1156 static u_long pmap_l2_demotions;
1157 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD,
1158     &pmap_l2_demotions, 0, "2MB page demotions");
1159 
1160 static u_long pmap_l2_mappings;
1161 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, mappings, CTLFLAG_RD,
1162     &pmap_l2_mappings, 0, "2MB page mappings");
1163 
1164 static u_long pmap_l2_p_failures;
1165 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD,
1166     &pmap_l2_p_failures, 0, "2MB page promotion failures");
1167 
1168 static u_long pmap_l2_promotions;
1169 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD,
1170     &pmap_l2_promotions, 0, "2MB page promotions");
1171 
1172 /*
1173  * Invalidate a single TLB entry.
1174  */
1175 static __inline void
1176 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1177 {
1178 	uint64_t r;
1179 
1180 	PMAP_ASSERT_STAGE1(pmap);
1181 
1182 	dsb(ishst);
1183 	if (pmap == kernel_pmap) {
1184 		r = atop(va);
1185 		__asm __volatile("tlbi vaae1is, %0" : : "r" (r));
1186 	} else {
1187 		r = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie)) | atop(va);
1188 		__asm __volatile("tlbi vae1is, %0" : : "r" (r));
1189 	}
1190 	dsb(ish);
1191 	isb();
1192 }
1193 
1194 static __inline void
1195 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1196 {
1197 	uint64_t end, r, start;
1198 
1199 	PMAP_ASSERT_STAGE1(pmap);
1200 
1201 	dsb(ishst);
1202 	if (pmap == kernel_pmap) {
1203 		start = atop(sva);
1204 		end = atop(eva);
1205 		for (r = start; r < end; r++)
1206 			__asm __volatile("tlbi vaae1is, %0" : : "r" (r));
1207 	} else {
1208 		start = end = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
1209 		start |= atop(sva);
1210 		end |= atop(eva);
1211 		for (r = start; r < end; r++)
1212 			__asm __volatile("tlbi vae1is, %0" : : "r" (r));
1213 	}
1214 	dsb(ish);
1215 	isb();
1216 }
1217 
1218 static __inline void
1219 pmap_invalidate_all(pmap_t pmap)
1220 {
1221 	uint64_t r;
1222 
1223 	PMAP_ASSERT_STAGE1(pmap);
1224 
1225 	dsb(ishst);
1226 	if (pmap == kernel_pmap) {
1227 		__asm __volatile("tlbi vmalle1is");
1228 	} else {
1229 		r = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
1230 		__asm __volatile("tlbi aside1is, %0" : : "r" (r));
1231 	}
1232 	dsb(ish);
1233 	isb();
1234 }
1235 
1236 /*
1237  *	Routine:	pmap_extract
1238  *	Function:
1239  *		Extract the physical page address associated
1240  *		with the given map/virtual_address pair.
1241  */
1242 vm_paddr_t
1243 pmap_extract(pmap_t pmap, vm_offset_t va)
1244 {
1245 	pt_entry_t *pte, tpte;
1246 	vm_paddr_t pa;
1247 	int lvl;
1248 
1249 	pa = 0;
1250 	PMAP_LOCK(pmap);
1251 	/*
1252 	 * Find the block or page map for this virtual address. pmap_pte
1253 	 * will return either a valid block/page entry, or NULL.
1254 	 */
1255 	pte = pmap_pte(pmap, va, &lvl);
1256 	if (pte != NULL) {
1257 		tpte = pmap_load(pte);
1258 		pa = tpte & ~ATTR_MASK;
1259 		switch(lvl) {
1260 		case 1:
1261 			KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
1262 			    ("pmap_extract: Invalid L1 pte found: %lx",
1263 			    tpte & ATTR_DESCR_MASK));
1264 			pa |= (va & L1_OFFSET);
1265 			break;
1266 		case 2:
1267 			KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
1268 			    ("pmap_extract: Invalid L2 pte found: %lx",
1269 			    tpte & ATTR_DESCR_MASK));
1270 			pa |= (va & L2_OFFSET);
1271 			break;
1272 		case 3:
1273 			KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
1274 			    ("pmap_extract: Invalid L3 pte found: %lx",
1275 			    tpte & ATTR_DESCR_MASK));
1276 			pa |= (va & L3_OFFSET);
1277 			break;
1278 		}
1279 	}
1280 	PMAP_UNLOCK(pmap);
1281 	return (pa);
1282 }
1283 
1284 /*
1285  *	Routine:	pmap_extract_and_hold
1286  *	Function:
1287  *		Atomically extract and hold the physical page
1288  *		with the given pmap and virtual address pair
1289  *		if that mapping permits the given protection.
1290  */
1291 vm_page_t
1292 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1293 {
1294 	pt_entry_t *pte, tpte;
1295 	vm_offset_t off;
1296 	vm_page_t m;
1297 	int lvl;
1298 	bool use;
1299 
1300 	m = NULL;
1301 	PMAP_LOCK(pmap);
1302 	pte = pmap_pte(pmap, va, &lvl);
1303 	if (pte != NULL) {
1304 		tpte = pmap_load(pte);
1305 
1306 		KASSERT(lvl > 0 && lvl <= 3,
1307 		    ("pmap_extract_and_hold: Invalid level %d", lvl));
1308 		CTASSERT(L1_BLOCK == L2_BLOCK);
1309 		KASSERT((lvl == 3 && (tpte & ATTR_DESCR_MASK) == L3_PAGE) ||
1310 		    (lvl < 3 && (tpte & ATTR_DESCR_MASK) == L1_BLOCK),
1311 		    ("pmap_extract_and_hold: Invalid pte at L%d: %lx", lvl,
1312 		     tpte & ATTR_DESCR_MASK));
1313 
1314 		use = false;
1315 		if ((prot & VM_PROT_WRITE) == 0)
1316 			use = true;
1317 		else if (pmap->pm_stage == PM_STAGE1 &&
1318 		    (tpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW))
1319 			use = true;
1320 		else if (pmap->pm_stage == PM_STAGE2 &&
1321 		    ((tpte & ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE)) ==
1322 		     ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE)))
1323 			use = true;
1324 
1325 		if (use) {
1326 			switch (lvl) {
1327 			case 1:
1328 				off = va & L1_OFFSET;
1329 				break;
1330 			case 2:
1331 				off = va & L2_OFFSET;
1332 				break;
1333 			case 3:
1334 			default:
1335 				off = 0;
1336 			}
1337 			m = PHYS_TO_VM_PAGE((tpte & ~ATTR_MASK) | off);
1338 			if (m != NULL && !vm_page_wire_mapped(m))
1339 				m = NULL;
1340 		}
1341 	}
1342 	PMAP_UNLOCK(pmap);
1343 	return (m);
1344 }
1345 
1346 /*
1347  * Walks the page tables to translate a kernel virtual address to a
1348  * physical address. Returns true if the kva is valid and stores the
1349  * physical address in pa if it is not NULL.
1350  */
1351 bool
1352 pmap_klookup(vm_offset_t va, vm_paddr_t *pa)
1353 {
1354 	pt_entry_t *pte, tpte;
1355 	register_t intr;
1356 	uint64_t par;
1357 
1358 	/*
1359 	 * Disable interrupts so we don't get interrupted between asking
1360 	 * for address translation, and getting the result back.
1361 	 */
1362 	intr = intr_disable();
1363 	par = arm64_address_translate_s1e1r(va);
1364 	intr_restore(intr);
1365 
1366 	if (PAR_SUCCESS(par)) {
1367 		if (pa != NULL)
1368 			*pa = (par & PAR_PA_MASK) | (va & PAR_LOW_MASK);
1369 		return (true);
1370 	}
1371 
1372 	/*
1373 	 * Fall back to walking the page table. The address translation
1374 	 * instruction may fail when the page is in a break-before-make
1375 	 * sequence. As we only clear the valid bit in said sequence we
1376 	 * can walk the page table to find the physical address.
1377 	 */
1378 
1379 	pte = pmap_l1(kernel_pmap, va);
1380 	if (pte == NULL)
1381 		return (false);
1382 
1383 	/*
1384 	 * A concurrent pmap_update_entry() will clear the entry's valid bit
1385 	 * but leave the rest of the entry unchanged.  Therefore, we treat a
1386 	 * non-zero entry as being valid, and we ignore the valid bit when
1387 	 * determining whether the entry maps a block, page, or table.
1388 	 */
1389 	tpte = pmap_load(pte);
1390 	if (tpte == 0)
1391 		return (false);
1392 	if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
1393 		if (pa != NULL)
1394 			*pa = (tpte & ~ATTR_MASK) | (va & L1_OFFSET);
1395 		return (true);
1396 	}
1397 	pte = pmap_l1_to_l2(&tpte, va);
1398 	tpte = pmap_load(pte);
1399 	if (tpte == 0)
1400 		return (false);
1401 	if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
1402 		if (pa != NULL)
1403 			*pa = (tpte & ~ATTR_MASK) | (va & L2_OFFSET);
1404 		return (true);
1405 	}
1406 	pte = pmap_l2_to_l3(&tpte, va);
1407 	tpte = pmap_load(pte);
1408 	if (tpte == 0)
1409 		return (false);
1410 	if (pa != NULL)
1411 		*pa = (tpte & ~ATTR_MASK) | (va & L3_OFFSET);
1412 	return (true);
1413 }
1414 
1415 vm_paddr_t
1416 pmap_kextract(vm_offset_t va)
1417 {
1418 	vm_paddr_t pa;
1419 
1420 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
1421 		return (DMAP_TO_PHYS(va));
1422 
1423 	if (pmap_klookup(va, &pa) == false)
1424 		return (0);
1425 	return (pa);
1426 }
1427 
1428 /***************************************************
1429  * Low level mapping routines.....
1430  ***************************************************/
1431 
1432 void
1433 pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode)
1434 {
1435 	pd_entry_t *pde;
1436 	pt_entry_t *pte, attr;
1437 	vm_offset_t va;
1438 	int lvl;
1439 
1440 	KASSERT((pa & L3_OFFSET) == 0,
1441 	   ("pmap_kenter: Invalid physical address"));
1442 	KASSERT((sva & L3_OFFSET) == 0,
1443 	   ("pmap_kenter: Invalid virtual address"));
1444 	KASSERT((size & PAGE_MASK) == 0,
1445 	    ("pmap_kenter: Mapping is not page-sized"));
1446 
1447 	attr = ATTR_DEFAULT | ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_S1_XN |
1448 	    ATTR_S1_IDX(mode) | L3_PAGE;
1449 	va = sva;
1450 	while (size != 0) {
1451 		pde = pmap_pde(kernel_pmap, va, &lvl);
1452 		KASSERT(pde != NULL,
1453 		    ("pmap_kenter: Invalid page entry, va: 0x%lx", va));
1454 		KASSERT(lvl == 2, ("pmap_kenter: Invalid level %d", lvl));
1455 
1456 		pte = pmap_l2_to_l3(pde, va);
1457 		pmap_load_store(pte, (pa & ~L3_OFFSET) | attr);
1458 
1459 		va += PAGE_SIZE;
1460 		pa += PAGE_SIZE;
1461 		size -= PAGE_SIZE;
1462 	}
1463 	pmap_invalidate_range(kernel_pmap, sva, va);
1464 }
1465 
1466 void
1467 pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
1468 {
1469 
1470 	pmap_kenter(sva, size, pa, VM_MEMATTR_DEVICE);
1471 }
1472 
1473 /*
1474  * Remove a page from the kernel pagetables.
1475  */
1476 PMAP_INLINE void
1477 pmap_kremove(vm_offset_t va)
1478 {
1479 	pt_entry_t *pte;
1480 	int lvl;
1481 
1482 	pte = pmap_pte(kernel_pmap, va, &lvl);
1483 	KASSERT(pte != NULL, ("pmap_kremove: Invalid address"));
1484 	KASSERT(lvl == 3, ("pmap_kremove: Invalid pte level %d", lvl));
1485 
1486 	pmap_clear(pte);
1487 	pmap_invalidate_page(kernel_pmap, va);
1488 }
1489 
1490 void
1491 pmap_kremove_device(vm_offset_t sva, vm_size_t size)
1492 {
1493 	pt_entry_t *pte;
1494 	vm_offset_t va;
1495 	int lvl;
1496 
1497 	KASSERT((sva & L3_OFFSET) == 0,
1498 	   ("pmap_kremove_device: Invalid virtual address"));
1499 	KASSERT((size & PAGE_MASK) == 0,
1500 	    ("pmap_kremove_device: Mapping is not page-sized"));
1501 
1502 	va = sva;
1503 	while (size != 0) {
1504 		pte = pmap_pte(kernel_pmap, va, &lvl);
1505 		KASSERT(pte != NULL, ("Invalid page table, va: 0x%lx", va));
1506 		KASSERT(lvl == 3,
1507 		    ("Invalid device pagetable level: %d != 3", lvl));
1508 		pmap_clear(pte);
1509 
1510 		va += PAGE_SIZE;
1511 		size -= PAGE_SIZE;
1512 	}
1513 	pmap_invalidate_range(kernel_pmap, sva, va);
1514 }
1515 
1516 /*
1517  *	Used to map a range of physical addresses into kernel
1518  *	virtual address space.
1519  *
1520  *	The value passed in '*virt' is a suggested virtual address for
1521  *	the mapping. Architectures which can support a direct-mapped
1522  *	physical to virtual region can return the appropriate address
1523  *	within that region, leaving '*virt' unchanged. Other
1524  *	architectures should map the pages starting at '*virt' and
1525  *	update '*virt' with the first usable address after the mapped
1526  *	region.
1527  */
1528 vm_offset_t
1529 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1530 {
1531 	return PHYS_TO_DMAP(start);
1532 }
1533 
1534 /*
1535  * Add a list of wired pages to the kva
1536  * this routine is only used for temporary
1537  * kernel mappings that do not need to have
1538  * page modification or references recorded.
1539  * Note that old mappings are simply written
1540  * over.  The page *must* be wired.
1541  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1542  */
1543 void
1544 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1545 {
1546 	pd_entry_t *pde;
1547 	pt_entry_t *pte, pa;
1548 	vm_offset_t va;
1549 	vm_page_t m;
1550 	int i, lvl;
1551 
1552 	va = sva;
1553 	for (i = 0; i < count; i++) {
1554 		pde = pmap_pde(kernel_pmap, va, &lvl);
1555 		KASSERT(pde != NULL,
1556 		    ("pmap_qenter: Invalid page entry, va: 0x%lx", va));
1557 		KASSERT(lvl == 2,
1558 		    ("pmap_qenter: Invalid level %d", lvl));
1559 
1560 		m = ma[i];
1561 		pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT |
1562 		    ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_S1_XN |
1563 		    ATTR_S1_IDX(m->md.pv_memattr) | L3_PAGE;
1564 		pte = pmap_l2_to_l3(pde, va);
1565 		pmap_load_store(pte, pa);
1566 
1567 		va += L3_SIZE;
1568 	}
1569 	pmap_invalidate_range(kernel_pmap, sva, va);
1570 }
1571 
1572 /*
1573  * This routine tears out page mappings from the
1574  * kernel -- it is meant only for temporary mappings.
1575  */
1576 void
1577 pmap_qremove(vm_offset_t sva, int count)
1578 {
1579 	pt_entry_t *pte;
1580 	vm_offset_t va;
1581 	int lvl;
1582 
1583 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva));
1584 
1585 	va = sva;
1586 	while (count-- > 0) {
1587 		pte = pmap_pte(kernel_pmap, va, &lvl);
1588 		KASSERT(lvl == 3,
1589 		    ("Invalid device pagetable level: %d != 3", lvl));
1590 		if (pte != NULL) {
1591 			pmap_clear(pte);
1592 		}
1593 
1594 		va += PAGE_SIZE;
1595 	}
1596 	pmap_invalidate_range(kernel_pmap, sva, va);
1597 }
1598 
1599 /***************************************************
1600  * Page table page management routines.....
1601  ***************************************************/
1602 /*
1603  * Schedule the specified unused page table page to be freed.  Specifically,
1604  * add the page to the specified list of pages that will be released to the
1605  * physical memory manager after the TLB has been updated.
1606  */
1607 static __inline void
1608 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1609     boolean_t set_PG_ZERO)
1610 {
1611 
1612 	if (set_PG_ZERO)
1613 		m->flags |= PG_ZERO;
1614 	else
1615 		m->flags &= ~PG_ZERO;
1616 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1617 }
1618 
1619 /*
1620  * Decrements a page table page's reference count, which is used to record the
1621  * number of valid page table entries within the page.  If the reference count
1622  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1623  * page table page was unmapped and FALSE otherwise.
1624  */
1625 static inline boolean_t
1626 pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1627 {
1628 
1629 	--m->ref_count;
1630 	if (m->ref_count == 0) {
1631 		_pmap_unwire_l3(pmap, va, m, free);
1632 		return (TRUE);
1633 	} else
1634 		return (FALSE);
1635 }
1636 
1637 static void
1638 _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1639 {
1640 
1641 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1642 	/*
1643 	 * unmap the page table page
1644 	 */
1645 	if (m->pindex >= (NUL2E + NUL1E)) {
1646 		/* l1 page */
1647 		pd_entry_t *l0;
1648 
1649 		l0 = pmap_l0(pmap, va);
1650 		pmap_clear(l0);
1651 	} else if (m->pindex >= NUL2E) {
1652 		/* l2 page */
1653 		pd_entry_t *l1;
1654 
1655 		l1 = pmap_l1(pmap, va);
1656 		pmap_clear(l1);
1657 	} else {
1658 		/* l3 page */
1659 		pd_entry_t *l2;
1660 
1661 		l2 = pmap_l2(pmap, va);
1662 		pmap_clear(l2);
1663 	}
1664 	pmap_resident_count_dec(pmap, 1);
1665 	if (m->pindex < NUL2E) {
1666 		/* We just released an l3, unhold the matching l2 */
1667 		pd_entry_t *l1, tl1;
1668 		vm_page_t l2pg;
1669 
1670 		l1 = pmap_l1(pmap, va);
1671 		tl1 = pmap_load(l1);
1672 		l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1673 		pmap_unwire_l3(pmap, va, l2pg, free);
1674 	} else if (m->pindex < (NUL2E + NUL1E)) {
1675 		/* We just released an l2, unhold the matching l1 */
1676 		pd_entry_t *l0, tl0;
1677 		vm_page_t l1pg;
1678 
1679 		l0 = pmap_l0(pmap, va);
1680 		tl0 = pmap_load(l0);
1681 		l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1682 		pmap_unwire_l3(pmap, va, l1pg, free);
1683 	}
1684 	pmap_invalidate_page(pmap, va);
1685 
1686 	/*
1687 	 * Put page on a list so that it is released after
1688 	 * *ALL* TLB shootdown is done
1689 	 */
1690 	pmap_add_delayed_free_list(m, free, TRUE);
1691 }
1692 
1693 /*
1694  * After removing a page table entry, this routine is used to
1695  * conditionally free the page, and manage the reference count.
1696  */
1697 static int
1698 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
1699     struct spglist *free)
1700 {
1701 	vm_page_t mpte;
1702 
1703 	if (va >= VM_MAXUSER_ADDRESS)
1704 		return (0);
1705 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
1706 	mpte = PHYS_TO_VM_PAGE(ptepde & ~ATTR_MASK);
1707 	return (pmap_unwire_l3(pmap, va, mpte, free));
1708 }
1709 
1710 /*
1711  * Release a page table page reference after a failed attempt to create a
1712  * mapping.
1713  */
1714 static void
1715 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1716 {
1717 	struct spglist free;
1718 
1719 	SLIST_INIT(&free);
1720 	if (pmap_unwire_l3(pmap, va, mpte, &free)) {
1721 		/*
1722 		 * Although "va" was never mapped, the TLB could nonetheless
1723 		 * have intermediate entries that refer to the freed page
1724 		 * table pages.  Invalidate those entries.
1725 		 *
1726 		 * XXX redundant invalidation (See _pmap_unwire_l3().)
1727 		 */
1728 		pmap_invalidate_page(pmap, va);
1729 		vm_page_free_pages_toq(&free, true);
1730 	}
1731 }
1732 
1733 void
1734 pmap_pinit0(pmap_t pmap)
1735 {
1736 
1737 	PMAP_LOCK_INIT(pmap);
1738 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1739 	pmap->pm_l0_paddr = READ_SPECIALREG(ttbr0_el1);
1740 	pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr);
1741 	pmap->pm_root.rt_root = 0;
1742 	pmap->pm_cookie = COOKIE_FROM(ASID_RESERVED_FOR_PID_0, INT_MIN);
1743 	pmap->pm_stage = PM_STAGE1;
1744 	pmap->pm_levels = 4;
1745 	pmap->pm_ttbr = pmap->pm_l0_paddr;
1746 	pmap->pm_asid_set = &asids;
1747 
1748 	PCPU_SET(curpmap, pmap);
1749 }
1750 
1751 int
1752 pmap_pinit_stage(pmap_t pmap, enum pmap_stage stage, int levels)
1753 {
1754 	vm_page_t m;
1755 
1756 	/*
1757 	 * allocate the l0 page
1758 	 */
1759 	while ((m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
1760 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
1761 		vm_wait(NULL);
1762 
1763 	pmap->pm_l0_paddr = VM_PAGE_TO_PHYS(m);
1764 	pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr);
1765 
1766 	if ((m->flags & PG_ZERO) == 0)
1767 		pagezero(pmap->pm_l0);
1768 
1769 	pmap->pm_root.rt_root = 0;
1770 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1771 	pmap->pm_cookie = COOKIE_FROM(-1, INT_MAX);
1772 
1773 	MPASS(levels == 3 || levels == 4);
1774 	pmap->pm_levels = levels;
1775 	pmap->pm_stage = stage;
1776 	switch (stage) {
1777 	case PM_STAGE1:
1778 		pmap->pm_asid_set = &asids;
1779 		break;
1780 	case PM_STAGE2:
1781 		pmap->pm_asid_set = &vmids;
1782 		break;
1783 	default:
1784 		panic("%s: Invalid pmap type %d", __func__, stage);
1785 		break;
1786 	}
1787 
1788 	/* XXX Temporarily disable deferred ASID allocation. */
1789 	pmap_alloc_asid(pmap);
1790 
1791 	/*
1792 	 * Allocate the level 1 entry to use as the root. This will increase
1793 	 * the refcount on the level 1 page so it won't be removed until
1794 	 * pmap_release() is called.
1795 	 */
1796 	if (pmap->pm_levels == 3) {
1797 		PMAP_LOCK(pmap);
1798 		m = _pmap_alloc_l3(pmap, NUL2E + NUL1E, NULL);
1799 		PMAP_UNLOCK(pmap);
1800 	}
1801 	pmap->pm_ttbr = VM_PAGE_TO_PHYS(m);
1802 
1803 	return (1);
1804 }
1805 
1806 int
1807 pmap_pinit(pmap_t pmap)
1808 {
1809 
1810 	return (pmap_pinit_stage(pmap, PM_STAGE1, 4));
1811 }
1812 
1813 /*
1814  * This routine is called if the desired page table page does not exist.
1815  *
1816  * If page table page allocation fails, this routine may sleep before
1817  * returning NULL.  It sleeps only if a lock pointer was given.
1818  *
1819  * Note: If a page allocation fails at page table level two or three,
1820  * one or two pages may be held during the wait, only to be released
1821  * afterwards.  This conservative approach is easily argued to avoid
1822  * race conditions.
1823  */
1824 static vm_page_t
1825 _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
1826 {
1827 	vm_page_t m, l1pg, l2pg;
1828 
1829 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1830 
1831 	/*
1832 	 * Allocate a page table page.
1833 	 */
1834 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1835 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1836 		if (lockp != NULL) {
1837 			RELEASE_PV_LIST_LOCK(lockp);
1838 			PMAP_UNLOCK(pmap);
1839 			vm_wait(NULL);
1840 			PMAP_LOCK(pmap);
1841 		}
1842 
1843 		/*
1844 		 * Indicate the need to retry.  While waiting, the page table
1845 		 * page may have been allocated.
1846 		 */
1847 		return (NULL);
1848 	}
1849 	if ((m->flags & PG_ZERO) == 0)
1850 		pmap_zero_page(m);
1851 
1852 	/*
1853 	 * Because of AArch64's weak memory consistency model, we must have a
1854 	 * barrier here to ensure that the stores for zeroing "m", whether by
1855 	 * pmap_zero_page() or an earlier function, are visible before adding
1856 	 * "m" to the page table.  Otherwise, a page table walk by another
1857 	 * processor's MMU could see the mapping to "m" and a stale, non-zero
1858 	 * PTE within "m".
1859 	 */
1860 	dmb(ishst);
1861 
1862 	/*
1863 	 * Map the pagetable page into the process address space, if
1864 	 * it isn't already there.
1865 	 */
1866 
1867 	if (ptepindex >= (NUL2E + NUL1E)) {
1868 		pd_entry_t *l0;
1869 		vm_pindex_t l0index;
1870 
1871 		l0index = ptepindex - (NUL2E + NUL1E);
1872 		l0 = &pmap->pm_l0[l0index];
1873 		pmap_store(l0, VM_PAGE_TO_PHYS(m) | L0_TABLE);
1874 	} else if (ptepindex >= NUL2E) {
1875 		vm_pindex_t l0index, l1index;
1876 		pd_entry_t *l0, *l1;
1877 		pd_entry_t tl0;
1878 
1879 		l1index = ptepindex - NUL2E;
1880 		l0index = l1index >> L0_ENTRIES_SHIFT;
1881 
1882 		l0 = &pmap->pm_l0[l0index];
1883 		tl0 = pmap_load(l0);
1884 		if (tl0 == 0) {
1885 			/* recurse for allocating page dir */
1886 			if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index,
1887 			    lockp) == NULL) {
1888 				vm_page_unwire_noq(m);
1889 				vm_page_free_zero(m);
1890 				return (NULL);
1891 			}
1892 		} else {
1893 			l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1894 			l1pg->ref_count++;
1895 		}
1896 
1897 		l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
1898 		l1 = &l1[ptepindex & Ln_ADDR_MASK];
1899 		pmap_store(l1, VM_PAGE_TO_PHYS(m) | L1_TABLE);
1900 	} else {
1901 		vm_pindex_t l0index, l1index;
1902 		pd_entry_t *l0, *l1, *l2;
1903 		pd_entry_t tl0, tl1;
1904 
1905 		l1index = ptepindex >> Ln_ENTRIES_SHIFT;
1906 		l0index = l1index >> L0_ENTRIES_SHIFT;
1907 
1908 		l0 = &pmap->pm_l0[l0index];
1909 		tl0 = pmap_load(l0);
1910 		if (tl0 == 0) {
1911 			/* recurse for allocating page dir */
1912 			if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1913 			    lockp) == NULL) {
1914 				vm_page_unwire_noq(m);
1915 				vm_page_free_zero(m);
1916 				return (NULL);
1917 			}
1918 			tl0 = pmap_load(l0);
1919 			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1920 			l1 = &l1[l1index & Ln_ADDR_MASK];
1921 		} else {
1922 			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1923 			l1 = &l1[l1index & Ln_ADDR_MASK];
1924 			tl1 = pmap_load(l1);
1925 			if (tl1 == 0) {
1926 				/* recurse for allocating page dir */
1927 				if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1928 				    lockp) == NULL) {
1929 					vm_page_unwire_noq(m);
1930 					vm_page_free_zero(m);
1931 					return (NULL);
1932 				}
1933 			} else {
1934 				l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1935 				l2pg->ref_count++;
1936 			}
1937 		}
1938 
1939 		l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
1940 		l2 = &l2[ptepindex & Ln_ADDR_MASK];
1941 		pmap_store(l2, VM_PAGE_TO_PHYS(m) | L2_TABLE);
1942 	}
1943 
1944 	pmap_resident_count_inc(pmap, 1);
1945 
1946 	return (m);
1947 }
1948 
1949 static pd_entry_t *
1950 pmap_alloc_l2(pmap_t pmap, vm_offset_t va, vm_page_t *l2pgp,
1951     struct rwlock **lockp)
1952 {
1953 	pd_entry_t *l1, *l2;
1954 	vm_page_t l2pg;
1955 	vm_pindex_t l2pindex;
1956 
1957 retry:
1958 	l1 = pmap_l1(pmap, va);
1959 	if (l1 != NULL && (pmap_load(l1) & ATTR_DESCR_MASK) == L1_TABLE) {
1960 		l2 = pmap_l1_to_l2(l1, va);
1961 		if (va < VM_MAXUSER_ADDRESS) {
1962 			/* Add a reference to the L2 page. */
1963 			l2pg = PHYS_TO_VM_PAGE(pmap_load(l1) & ~ATTR_MASK);
1964 			l2pg->ref_count++;
1965 		} else
1966 			l2pg = NULL;
1967 	} else if (va < VM_MAXUSER_ADDRESS) {
1968 		/* Allocate a L2 page. */
1969 		l2pindex = pmap_l2_pindex(va) >> Ln_ENTRIES_SHIFT;
1970 		l2pg = _pmap_alloc_l3(pmap, NUL2E + l2pindex, lockp);
1971 		if (l2pg == NULL) {
1972 			if (lockp != NULL)
1973 				goto retry;
1974 			else
1975 				return (NULL);
1976 		}
1977 		l2 = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(l2pg));
1978 		l2 = &l2[pmap_l2_index(va)];
1979 	} else
1980 		panic("pmap_alloc_l2: missing page table page for va %#lx",
1981 		    va);
1982 	*l2pgp = l2pg;
1983 	return (l2);
1984 }
1985 
1986 static vm_page_t
1987 pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1988 {
1989 	vm_pindex_t ptepindex;
1990 	pd_entry_t *pde, tpde;
1991 #ifdef INVARIANTS
1992 	pt_entry_t *pte;
1993 #endif
1994 	vm_page_t m;
1995 	int lvl;
1996 
1997 	/*
1998 	 * Calculate pagetable page index
1999 	 */
2000 	ptepindex = pmap_l2_pindex(va);
2001 retry:
2002 	/*
2003 	 * Get the page directory entry
2004 	 */
2005 	pde = pmap_pde(pmap, va, &lvl);
2006 
2007 	/*
2008 	 * If the page table page is mapped, we just increment the hold count,
2009 	 * and activate it. If we get a level 2 pde it will point to a level 3
2010 	 * table.
2011 	 */
2012 	switch (lvl) {
2013 	case -1:
2014 		break;
2015 	case 0:
2016 #ifdef INVARIANTS
2017 		pte = pmap_l0_to_l1(pde, va);
2018 		KASSERT(pmap_load(pte) == 0,
2019 		    ("pmap_alloc_l3: TODO: l0 superpages"));
2020 #endif
2021 		break;
2022 	case 1:
2023 #ifdef INVARIANTS
2024 		pte = pmap_l1_to_l2(pde, va);
2025 		KASSERT(pmap_load(pte) == 0,
2026 		    ("pmap_alloc_l3: TODO: l1 superpages"));
2027 #endif
2028 		break;
2029 	case 2:
2030 		tpde = pmap_load(pde);
2031 		if (tpde != 0) {
2032 			m = PHYS_TO_VM_PAGE(tpde & ~ATTR_MASK);
2033 			m->ref_count++;
2034 			return (m);
2035 		}
2036 		break;
2037 	default:
2038 		panic("pmap_alloc_l3: Invalid level %d", lvl);
2039 	}
2040 
2041 	/*
2042 	 * Here if the pte page isn't mapped, or if it has been deallocated.
2043 	 */
2044 	m = _pmap_alloc_l3(pmap, ptepindex, lockp);
2045 	if (m == NULL && lockp != NULL)
2046 		goto retry;
2047 
2048 	return (m);
2049 }
2050 
2051 /***************************************************
2052  * Pmap allocation/deallocation routines.
2053  ***************************************************/
2054 
2055 /*
2056  * Release any resources held by the given physical map.
2057  * Called when a pmap initialized by pmap_pinit is being released.
2058  * Should only be called if the map contains no valid mappings.
2059  */
2060 void
2061 pmap_release(pmap_t pmap)
2062 {
2063 	boolean_t rv;
2064 	struct spglist free;
2065 	struct asid_set *set;
2066 	vm_page_t m;
2067 	int asid;
2068 
2069 	if (pmap->pm_levels != 4) {
2070 		PMAP_ASSERT_STAGE2(pmap);
2071 		KASSERT(pmap->pm_stats.resident_count == 1,
2072 		    ("pmap_release: pmap resident count %ld != 0",
2073 		    pmap->pm_stats.resident_count));
2074 		KASSERT((pmap->pm_l0[0] & ATTR_DESCR_VALID) == ATTR_DESCR_VALID,
2075 		    ("pmap_release: Invalid l0 entry: %lx", pmap->pm_l0[0]));
2076 
2077 		SLIST_INIT(&free);
2078 		m = PHYS_TO_VM_PAGE(pmap->pm_ttbr);
2079 		PMAP_LOCK(pmap);
2080 		rv = pmap_unwire_l3(pmap, 0, m, &free);
2081 		PMAP_UNLOCK(pmap);
2082 		MPASS(rv == TRUE);
2083 		vm_page_free_pages_toq(&free, true);
2084 	}
2085 
2086 	KASSERT(pmap->pm_stats.resident_count == 0,
2087 	    ("pmap_release: pmap resident count %ld != 0",
2088 	    pmap->pm_stats.resident_count));
2089 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2090 	    ("pmap_release: pmap has reserved page table page(s)"));
2091 
2092 	set = pmap->pm_asid_set;
2093 	KASSERT(set != NULL, ("%s: NULL asid set", __func__));
2094 
2095 	/*
2096 	 * Allow the ASID to be reused. In stage 2 VMIDs we don't invalidate
2097 	 * the entries when removing them so rely on a later tlb invalidation.
2098 	 * this will happen when updating the VMID generation. Because of this
2099 	 * we don't reuse VMIDs within a generation.
2100 	 */
2101 	if (pmap->pm_stage == PM_STAGE1) {
2102 		mtx_lock_spin(&set->asid_set_mutex);
2103 		if (COOKIE_TO_EPOCH(pmap->pm_cookie) == set->asid_epoch) {
2104 			asid = COOKIE_TO_ASID(pmap->pm_cookie);
2105 			KASSERT(asid >= ASID_FIRST_AVAILABLE &&
2106 			    asid < set->asid_set_size,
2107 			    ("pmap_release: pmap cookie has out-of-range asid"));
2108 			bit_clear(set->asid_set, asid);
2109 		}
2110 		mtx_unlock_spin(&set->asid_set_mutex);
2111 	}
2112 
2113 	m = PHYS_TO_VM_PAGE(pmap->pm_l0_paddr);
2114 	vm_page_unwire_noq(m);
2115 	vm_page_free_zero(m);
2116 }
2117 
2118 static int
2119 kvm_size(SYSCTL_HANDLER_ARGS)
2120 {
2121 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
2122 
2123 	return sysctl_handle_long(oidp, &ksize, 0, req);
2124 }
2125 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
2126     0, 0, kvm_size, "LU",
2127     "Size of KVM");
2128 
2129 static int
2130 kvm_free(SYSCTL_HANDLER_ARGS)
2131 {
2132 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2133 
2134 	return sysctl_handle_long(oidp, &kfree, 0, req);
2135 }
2136 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
2137     0, 0, kvm_free, "LU",
2138     "Amount of KVM free");
2139 
2140 /*
2141  * grow the number of kernel page table entries, if needed
2142  */
2143 void
2144 pmap_growkernel(vm_offset_t addr)
2145 {
2146 	vm_paddr_t paddr;
2147 	vm_page_t nkpg;
2148 	pd_entry_t *l0, *l1, *l2;
2149 
2150 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2151 
2152 	addr = roundup2(addr, L2_SIZE);
2153 	if (addr - 1 >= vm_map_max(kernel_map))
2154 		addr = vm_map_max(kernel_map);
2155 	while (kernel_vm_end < addr) {
2156 		l0 = pmap_l0(kernel_pmap, kernel_vm_end);
2157 		KASSERT(pmap_load(l0) != 0,
2158 		    ("pmap_growkernel: No level 0 kernel entry"));
2159 
2160 		l1 = pmap_l0_to_l1(l0, kernel_vm_end);
2161 		if (pmap_load(l1) == 0) {
2162 			/* We need a new PDP entry */
2163 			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L1_SHIFT,
2164 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2165 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2166 			if (nkpg == NULL)
2167 				panic("pmap_growkernel: no memory to grow kernel");
2168 			if ((nkpg->flags & PG_ZERO) == 0)
2169 				pmap_zero_page(nkpg);
2170 			/* See the dmb() in _pmap_alloc_l3(). */
2171 			dmb(ishst);
2172 			paddr = VM_PAGE_TO_PHYS(nkpg);
2173 			pmap_store(l1, paddr | L1_TABLE);
2174 			continue; /* try again */
2175 		}
2176 		l2 = pmap_l1_to_l2(l1, kernel_vm_end);
2177 		if (pmap_load(l2) != 0) {
2178 			kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
2179 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2180 				kernel_vm_end = vm_map_max(kernel_map);
2181 				break;
2182 			}
2183 			continue;
2184 		}
2185 
2186 		nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_SHIFT,
2187 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2188 		    VM_ALLOC_ZERO);
2189 		if (nkpg == NULL)
2190 			panic("pmap_growkernel: no memory to grow kernel");
2191 		if ((nkpg->flags & PG_ZERO) == 0)
2192 			pmap_zero_page(nkpg);
2193 		/* See the dmb() in _pmap_alloc_l3(). */
2194 		dmb(ishst);
2195 		paddr = VM_PAGE_TO_PHYS(nkpg);
2196 		pmap_store(l2, paddr | L2_TABLE);
2197 
2198 		kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
2199 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2200 			kernel_vm_end = vm_map_max(kernel_map);
2201 			break;
2202 		}
2203 	}
2204 }
2205 
2206 /***************************************************
2207  * page management routines.
2208  ***************************************************/
2209 
2210 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2211 CTASSERT(_NPCM == 3);
2212 CTASSERT(_NPCPV == 168);
2213 
2214 static __inline struct pv_chunk *
2215 pv_to_chunk(pv_entry_t pv)
2216 {
2217 
2218 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2219 }
2220 
2221 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2222 
2223 #define	PC_FREE0	0xfffffffffffffffful
2224 #define	PC_FREE1	0xfffffffffffffffful
2225 #define	PC_FREE2	0x000000fffffffffful
2226 
2227 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
2228 
2229 #if 0
2230 #ifdef PV_STATS
2231 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2232 
2233 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2234 	"Current number of pv entry chunks");
2235 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2236 	"Current number of pv entry chunks allocated");
2237 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2238 	"Current number of pv entry chunks frees");
2239 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2240 	"Number of times tried to get a chunk page but failed.");
2241 
2242 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
2243 static int pv_entry_spare;
2244 
2245 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2246 	"Current number of pv entry frees");
2247 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2248 	"Current number of pv entry allocs");
2249 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2250 	"Current number of pv entries");
2251 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2252 	"Current number of spare pv entries");
2253 #endif
2254 #endif /* 0 */
2255 
2256 /*
2257  * We are in a serious low memory condition.  Resort to
2258  * drastic measures to free some pages so we can allocate
2259  * another pv entry chunk.
2260  *
2261  * Returns NULL if PV entries were reclaimed from the specified pmap.
2262  *
2263  * We do not, however, unmap 2mpages because subsequent accesses will
2264  * allocate per-page pv entries until repromotion occurs, thereby
2265  * exacerbating the shortage of free pv entries.
2266  */
2267 static vm_page_t
2268 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
2269 {
2270 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
2271 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
2272 	struct md_page *pvh;
2273 	pd_entry_t *pde;
2274 	pmap_t next_pmap, pmap;
2275 	pt_entry_t *pte, tpte;
2276 	pv_entry_t pv;
2277 	vm_offset_t va;
2278 	vm_page_t m, m_pc;
2279 	struct spglist free;
2280 	uint64_t inuse;
2281 	int bit, field, freed, lvl;
2282 	static int active_reclaims = 0;
2283 
2284 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2285 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
2286 
2287 	pmap = NULL;
2288 	m_pc = NULL;
2289 	SLIST_INIT(&free);
2290 	bzero(&pc_marker_b, sizeof(pc_marker_b));
2291 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
2292 	pc_marker = (struct pv_chunk *)&pc_marker_b;
2293 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
2294 
2295 	mtx_lock(&pv_chunks_mutex);
2296 	active_reclaims++;
2297 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
2298 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
2299 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
2300 	    SLIST_EMPTY(&free)) {
2301 		next_pmap = pc->pc_pmap;
2302 		if (next_pmap == NULL) {
2303 			/*
2304 			 * The next chunk is a marker.  However, it is
2305 			 * not our marker, so active_reclaims must be
2306 			 * > 1.  Consequently, the next_chunk code
2307 			 * will not rotate the pv_chunks list.
2308 			 */
2309 			goto next_chunk;
2310 		}
2311 		mtx_unlock(&pv_chunks_mutex);
2312 
2313 		/*
2314 		 * A pv_chunk can only be removed from the pc_lru list
2315 		 * when both pv_chunks_mutex is owned and the
2316 		 * corresponding pmap is locked.
2317 		 */
2318 		if (pmap != next_pmap) {
2319 			if (pmap != NULL && pmap != locked_pmap)
2320 				PMAP_UNLOCK(pmap);
2321 			pmap = next_pmap;
2322 			/* Avoid deadlock and lock recursion. */
2323 			if (pmap > locked_pmap) {
2324 				RELEASE_PV_LIST_LOCK(lockp);
2325 				PMAP_LOCK(pmap);
2326 				mtx_lock(&pv_chunks_mutex);
2327 				continue;
2328 			} else if (pmap != locked_pmap) {
2329 				if (PMAP_TRYLOCK(pmap)) {
2330 					mtx_lock(&pv_chunks_mutex);
2331 					continue;
2332 				} else {
2333 					pmap = NULL; /* pmap is not locked */
2334 					mtx_lock(&pv_chunks_mutex);
2335 					pc = TAILQ_NEXT(pc_marker, pc_lru);
2336 					if (pc == NULL ||
2337 					    pc->pc_pmap != next_pmap)
2338 						continue;
2339 					goto next_chunk;
2340 				}
2341 			}
2342 		}
2343 
2344 		/*
2345 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2346 		 */
2347 		freed = 0;
2348 		for (field = 0; field < _NPCM; field++) {
2349 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2350 			    inuse != 0; inuse &= ~(1UL << bit)) {
2351 				bit = ffsl(inuse) - 1;
2352 				pv = &pc->pc_pventry[field * 64 + bit];
2353 				va = pv->pv_va;
2354 				pde = pmap_pde(pmap, va, &lvl);
2355 				if (lvl != 2)
2356 					continue;
2357 				pte = pmap_l2_to_l3(pde, va);
2358 				tpte = pmap_load(pte);
2359 				if ((tpte & ATTR_SW_WIRED) != 0)
2360 					continue;
2361 				tpte = pmap_load_clear(pte);
2362 				m = PHYS_TO_VM_PAGE(tpte & ~ATTR_MASK);
2363 				if (pmap_pte_dirty(pmap, tpte))
2364 					vm_page_dirty(m);
2365 				if ((tpte & ATTR_AF) != 0) {
2366 					pmap_invalidate_page(pmap, va);
2367 					vm_page_aflag_set(m, PGA_REFERENCED);
2368 				}
2369 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2370 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2371 				m->md.pv_gen++;
2372 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2373 				    (m->flags & PG_FICTITIOUS) == 0) {
2374 					pvh = page_to_pvh(m);
2375 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2376 						vm_page_aflag_clear(m,
2377 						    PGA_WRITEABLE);
2378 					}
2379 				}
2380 				pc->pc_map[field] |= 1UL << bit;
2381 				pmap_unuse_pt(pmap, va, pmap_load(pde), &free);
2382 				freed++;
2383 			}
2384 		}
2385 		if (freed == 0) {
2386 			mtx_lock(&pv_chunks_mutex);
2387 			goto next_chunk;
2388 		}
2389 		/* Every freed mapping is for a 4 KB page. */
2390 		pmap_resident_count_dec(pmap, freed);
2391 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
2392 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
2393 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
2394 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2395 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
2396 		    pc->pc_map[2] == PC_FREE2) {
2397 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2398 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2399 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2400 			/* Entire chunk is free; return it. */
2401 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2402 			dump_drop_page(m_pc->phys_addr);
2403 			mtx_lock(&pv_chunks_mutex);
2404 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2405 			break;
2406 		}
2407 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2408 		mtx_lock(&pv_chunks_mutex);
2409 		/* One freed pv entry in locked_pmap is sufficient. */
2410 		if (pmap == locked_pmap)
2411 			break;
2412 
2413 next_chunk:
2414 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
2415 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
2416 		if (active_reclaims == 1 && pmap != NULL) {
2417 			/*
2418 			 * Rotate the pv chunks list so that we do not
2419 			 * scan the same pv chunks that could not be
2420 			 * freed (because they contained a wired
2421 			 * and/or superpage mapping) on every
2422 			 * invocation of reclaim_pv_chunk().
2423 			 */
2424 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
2425 				MPASS(pc->pc_pmap != NULL);
2426 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2427 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2428 			}
2429 		}
2430 	}
2431 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
2432 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
2433 	active_reclaims--;
2434 	mtx_unlock(&pv_chunks_mutex);
2435 	if (pmap != NULL && pmap != locked_pmap)
2436 		PMAP_UNLOCK(pmap);
2437 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
2438 		m_pc = SLIST_FIRST(&free);
2439 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2440 		/* Recycle a freed page table page. */
2441 		m_pc->ref_count = 1;
2442 	}
2443 	vm_page_free_pages_toq(&free, true);
2444 	return (m_pc);
2445 }
2446 
2447 /*
2448  * free the pv_entry back to the free list
2449  */
2450 static void
2451 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2452 {
2453 	struct pv_chunk *pc;
2454 	int idx, field, bit;
2455 
2456 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2457 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
2458 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
2459 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
2460 	pc = pv_to_chunk(pv);
2461 	idx = pv - &pc->pc_pventry[0];
2462 	field = idx / 64;
2463 	bit = idx % 64;
2464 	pc->pc_map[field] |= 1ul << bit;
2465 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
2466 	    pc->pc_map[2] != PC_FREE2) {
2467 		/* 98% of the time, pc is already at the head of the list. */
2468 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
2469 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2470 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2471 		}
2472 		return;
2473 	}
2474 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2475 	free_pv_chunk(pc);
2476 }
2477 
2478 static void
2479 free_pv_chunk(struct pv_chunk *pc)
2480 {
2481 	vm_page_t m;
2482 
2483 	mtx_lock(&pv_chunks_mutex);
2484  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2485 	mtx_unlock(&pv_chunks_mutex);
2486 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2487 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2488 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2489 	/* entire chunk is free, return it */
2490 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2491 	dump_drop_page(m->phys_addr);
2492 	vm_page_unwire_noq(m);
2493 	vm_page_free(m);
2494 }
2495 
2496 /*
2497  * Returns a new PV entry, allocating a new PV chunk from the system when
2498  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
2499  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
2500  * returned.
2501  *
2502  * The given PV list lock may be released.
2503  */
2504 static pv_entry_t
2505 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
2506 {
2507 	int bit, field;
2508 	pv_entry_t pv;
2509 	struct pv_chunk *pc;
2510 	vm_page_t m;
2511 
2512 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2513 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
2514 retry:
2515 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2516 	if (pc != NULL) {
2517 		for (field = 0; field < _NPCM; field++) {
2518 			if (pc->pc_map[field]) {
2519 				bit = ffsl(pc->pc_map[field]) - 1;
2520 				break;
2521 			}
2522 		}
2523 		if (field < _NPCM) {
2524 			pv = &pc->pc_pventry[field * 64 + bit];
2525 			pc->pc_map[field] &= ~(1ul << bit);
2526 			/* If this was the last item, move it to tail */
2527 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
2528 			    pc->pc_map[2] == 0) {
2529 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2530 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
2531 				    pc_list);
2532 			}
2533 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
2534 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
2535 			return (pv);
2536 		}
2537 	}
2538 	/* No free items, allocate another chunk */
2539 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2540 	    VM_ALLOC_WIRED);
2541 	if (m == NULL) {
2542 		if (lockp == NULL) {
2543 			PV_STAT(pc_chunk_tryfail++);
2544 			return (NULL);
2545 		}
2546 		m = reclaim_pv_chunk(pmap, lockp);
2547 		if (m == NULL)
2548 			goto retry;
2549 	}
2550 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2551 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2552 	dump_add_page(m->phys_addr);
2553 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2554 	pc->pc_pmap = pmap;
2555 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
2556 	pc->pc_map[1] = PC_FREE1;
2557 	pc->pc_map[2] = PC_FREE2;
2558 	mtx_lock(&pv_chunks_mutex);
2559 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2560 	mtx_unlock(&pv_chunks_mutex);
2561 	pv = &pc->pc_pventry[0];
2562 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2563 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
2564 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
2565 	return (pv);
2566 }
2567 
2568 /*
2569  * Ensure that the number of spare PV entries in the specified pmap meets or
2570  * exceeds the given count, "needed".
2571  *
2572  * The given PV list lock may be released.
2573  */
2574 static void
2575 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
2576 {
2577 	struct pch new_tail;
2578 	struct pv_chunk *pc;
2579 	vm_page_t m;
2580 	int avail, free;
2581 	bool reclaimed;
2582 
2583 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2584 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
2585 
2586 	/*
2587 	 * Newly allocated PV chunks must be stored in a private list until
2588 	 * the required number of PV chunks have been allocated.  Otherwise,
2589 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
2590 	 * contrast, these chunks must be added to the pmap upon allocation.
2591 	 */
2592 	TAILQ_INIT(&new_tail);
2593 retry:
2594 	avail = 0;
2595 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
2596 		bit_count((bitstr_t *)pc->pc_map, 0,
2597 		    sizeof(pc->pc_map) * NBBY, &free);
2598 		if (free == 0)
2599 			break;
2600 		avail += free;
2601 		if (avail >= needed)
2602 			break;
2603 	}
2604 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
2605 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2606 		    VM_ALLOC_WIRED);
2607 		if (m == NULL) {
2608 			m = reclaim_pv_chunk(pmap, lockp);
2609 			if (m == NULL)
2610 				goto retry;
2611 			reclaimed = true;
2612 		}
2613 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2614 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2615 		dump_add_page(m->phys_addr);
2616 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2617 		pc->pc_pmap = pmap;
2618 		pc->pc_map[0] = PC_FREE0;
2619 		pc->pc_map[1] = PC_FREE1;
2620 		pc->pc_map[2] = PC_FREE2;
2621 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2622 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2623 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
2624 
2625 		/*
2626 		 * The reclaim might have freed a chunk from the current pmap.
2627 		 * If that chunk contained available entries, we need to
2628 		 * re-count the number of available entries.
2629 		 */
2630 		if (reclaimed)
2631 			goto retry;
2632 	}
2633 	if (!TAILQ_EMPTY(&new_tail)) {
2634 		mtx_lock(&pv_chunks_mutex);
2635 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
2636 		mtx_unlock(&pv_chunks_mutex);
2637 	}
2638 }
2639 
2640 /*
2641  * First find and then remove the pv entry for the specified pmap and virtual
2642  * address from the specified pv list.  Returns the pv entry if found and NULL
2643  * otherwise.  This operation can be performed on pv lists for either 4KB or
2644  * 2MB page mappings.
2645  */
2646 static __inline pv_entry_t
2647 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2648 {
2649 	pv_entry_t pv;
2650 
2651 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2652 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2653 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2654 			pvh->pv_gen++;
2655 			break;
2656 		}
2657 	}
2658 	return (pv);
2659 }
2660 
2661 /*
2662  * After demotion from a 2MB page mapping to 512 4KB page mappings,
2663  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
2664  * entries for each of the 4KB page mappings.
2665  */
2666 static void
2667 pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2668     struct rwlock **lockp)
2669 {
2670 	struct md_page *pvh;
2671 	struct pv_chunk *pc;
2672 	pv_entry_t pv;
2673 	vm_offset_t va_last;
2674 	vm_page_t m;
2675 	int bit, field;
2676 
2677 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2678 	KASSERT((va & L2_OFFSET) == 0,
2679 	    ("pmap_pv_demote_l2: va is not 2mpage aligned"));
2680 	KASSERT((pa & L2_OFFSET) == 0,
2681 	    ("pmap_pv_demote_l2: pa is not 2mpage aligned"));
2682 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2683 
2684 	/*
2685 	 * Transfer the 2mpage's pv entry for this mapping to the first
2686 	 * page's pv list.  Once this transfer begins, the pv list lock
2687 	 * must not be released until the last pv entry is reinstantiated.
2688 	 */
2689 	pvh = pa_to_pvh(pa);
2690 	pv = pmap_pvh_remove(pvh, pmap, va);
2691 	KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found"));
2692 	m = PHYS_TO_VM_PAGE(pa);
2693 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2694 	m->md.pv_gen++;
2695 	/* Instantiate the remaining Ln_ENTRIES - 1 pv entries. */
2696 	PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1));
2697 	va_last = va + L2_SIZE - PAGE_SIZE;
2698 	for (;;) {
2699 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2700 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
2701 		    pc->pc_map[2] != 0, ("pmap_pv_demote_l2: missing spare"));
2702 		for (field = 0; field < _NPCM; field++) {
2703 			while (pc->pc_map[field]) {
2704 				bit = ffsl(pc->pc_map[field]) - 1;
2705 				pc->pc_map[field] &= ~(1ul << bit);
2706 				pv = &pc->pc_pventry[field * 64 + bit];
2707 				va += PAGE_SIZE;
2708 				pv->pv_va = va;
2709 				m++;
2710 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2711 			    ("pmap_pv_demote_l2: page %p is not managed", m));
2712 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2713 				m->md.pv_gen++;
2714 				if (va == va_last)
2715 					goto out;
2716 			}
2717 		}
2718 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2719 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2720 	}
2721 out:
2722 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
2723 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2724 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2725 	}
2726 	PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1));
2727 	PV_STAT(atomic_subtract_int(&pv_entry_spare, Ln_ENTRIES - 1));
2728 }
2729 
2730 /*
2731  * First find and then destroy the pv entry for the specified pmap and virtual
2732  * address.  This operation can be performed on pv lists for either 4KB or 2MB
2733  * page mappings.
2734  */
2735 static void
2736 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2737 {
2738 	pv_entry_t pv;
2739 
2740 	pv = pmap_pvh_remove(pvh, pmap, va);
2741 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2742 	free_pv_entry(pmap, pv);
2743 }
2744 
2745 /*
2746  * Conditionally create the PV entry for a 4KB page mapping if the required
2747  * memory can be allocated without resorting to reclamation.
2748  */
2749 static boolean_t
2750 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
2751     struct rwlock **lockp)
2752 {
2753 	pv_entry_t pv;
2754 
2755 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2756 	/* Pass NULL instead of the lock pointer to disable reclamation. */
2757 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
2758 		pv->pv_va = va;
2759 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2760 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2761 		m->md.pv_gen++;
2762 		return (TRUE);
2763 	} else
2764 		return (FALSE);
2765 }
2766 
2767 /*
2768  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
2769  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
2770  * false if the PV entry cannot be allocated without resorting to reclamation.
2771  */
2772 static bool
2773 pmap_pv_insert_l2(pmap_t pmap, vm_offset_t va, pd_entry_t l2e, u_int flags,
2774     struct rwlock **lockp)
2775 {
2776 	struct md_page *pvh;
2777 	pv_entry_t pv;
2778 	vm_paddr_t pa;
2779 
2780 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2781 	/* Pass NULL instead of the lock pointer to disable reclamation. */
2782 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
2783 	    NULL : lockp)) == NULL)
2784 		return (false);
2785 	pv->pv_va = va;
2786 	pa = l2e & ~ATTR_MASK;
2787 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2788 	pvh = pa_to_pvh(pa);
2789 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2790 	pvh->pv_gen++;
2791 	return (true);
2792 }
2793 
2794 static void
2795 pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
2796 {
2797 	pt_entry_t newl2, oldl2;
2798 	vm_page_t ml3;
2799 	vm_paddr_t ml3pa;
2800 
2801 	KASSERT(!VIRT_IN_DMAP(va), ("removing direct mapping of %#lx", va));
2802 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
2803 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2804 
2805 	ml3 = pmap_remove_pt_page(pmap, va);
2806 	if (ml3 == NULL)
2807 		panic("pmap_remove_kernel_l2: Missing pt page");
2808 
2809 	ml3pa = VM_PAGE_TO_PHYS(ml3);
2810 	newl2 = ml3pa | L2_TABLE;
2811 
2812 	/*
2813 	 * If this page table page was unmapped by a promotion, then it
2814 	 * contains valid mappings.  Zero it to invalidate those mappings.
2815 	 */
2816 	if (ml3->valid != 0)
2817 		pagezero((void *)PHYS_TO_DMAP(ml3pa));
2818 
2819 	/*
2820 	 * Demote the mapping.  The caller must have already invalidated the
2821 	 * mapping (i.e., the "break" in break-before-make).
2822 	 */
2823 	oldl2 = pmap_load_store(l2, newl2);
2824 	KASSERT(oldl2 == 0, ("%s: found existing mapping at %p: %#lx",
2825 	    __func__, l2, oldl2));
2826 }
2827 
2828 /*
2829  * pmap_remove_l2: Do the things to unmap a level 2 superpage.
2830  */
2831 static int
2832 pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
2833     pd_entry_t l1e, struct spglist *free, struct rwlock **lockp)
2834 {
2835 	struct md_page *pvh;
2836 	pt_entry_t old_l2;
2837 	vm_offset_t eva, va;
2838 	vm_page_t m, ml3;
2839 
2840 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2841 	KASSERT((sva & L2_OFFSET) == 0, ("pmap_remove_l2: sva is not aligned"));
2842 	old_l2 = pmap_load_clear(l2);
2843 	KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
2844 	    ("pmap_remove_l2: L2e %lx is not a block mapping", old_l2));
2845 
2846 	/*
2847 	 * Since a promotion must break the 4KB page mappings before making
2848 	 * the 2MB page mapping, a pmap_invalidate_page() suffices.
2849 	 */
2850 	pmap_invalidate_page(pmap, sva);
2851 
2852 	if (old_l2 & ATTR_SW_WIRED)
2853 		pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE;
2854 	pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE);
2855 	if (old_l2 & ATTR_SW_MANAGED) {
2856 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, old_l2 & ~ATTR_MASK);
2857 		pvh = pa_to_pvh(old_l2 & ~ATTR_MASK);
2858 		pmap_pvh_free(pvh, pmap, sva);
2859 		eva = sva + L2_SIZE;
2860 		for (va = sva, m = PHYS_TO_VM_PAGE(old_l2 & ~ATTR_MASK);
2861 		    va < eva; va += PAGE_SIZE, m++) {
2862 			if (pmap_pte_dirty(pmap, old_l2))
2863 				vm_page_dirty(m);
2864 			if (old_l2 & ATTR_AF)
2865 				vm_page_aflag_set(m, PGA_REFERENCED);
2866 			if (TAILQ_EMPTY(&m->md.pv_list) &&
2867 			    TAILQ_EMPTY(&pvh->pv_list))
2868 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2869 		}
2870 	}
2871 	if (pmap == kernel_pmap) {
2872 		pmap_remove_kernel_l2(pmap, l2, sva);
2873 	} else {
2874 		ml3 = pmap_remove_pt_page(pmap, sva);
2875 		if (ml3 != NULL) {
2876 			KASSERT(ml3->valid == VM_PAGE_BITS_ALL,
2877 			    ("pmap_remove_l2: l3 page not promoted"));
2878 			pmap_resident_count_dec(pmap, 1);
2879 			KASSERT(ml3->ref_count == NL3PG,
2880 			    ("pmap_remove_l2: l3 page ref count error"));
2881 			ml3->ref_count = 0;
2882 			pmap_add_delayed_free_list(ml3, free, FALSE);
2883 		}
2884 	}
2885 	return (pmap_unuse_pt(pmap, sva, l1e, free));
2886 }
2887 
2888 /*
2889  * pmap_remove_l3: do the things to unmap a page in a process
2890  */
2891 static int
2892 pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
2893     pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
2894 {
2895 	struct md_page *pvh;
2896 	pt_entry_t old_l3;
2897 	vm_page_t m;
2898 
2899 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2900 	old_l3 = pmap_load_clear(l3);
2901 	pmap_invalidate_page(pmap, va);
2902 	if (old_l3 & ATTR_SW_WIRED)
2903 		pmap->pm_stats.wired_count -= 1;
2904 	pmap_resident_count_dec(pmap, 1);
2905 	if (old_l3 & ATTR_SW_MANAGED) {
2906 		m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK);
2907 		if (pmap_pte_dirty(pmap, old_l3))
2908 			vm_page_dirty(m);
2909 		if (old_l3 & ATTR_AF)
2910 			vm_page_aflag_set(m, PGA_REFERENCED);
2911 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2912 		pmap_pvh_free(&m->md, pmap, va);
2913 		if (TAILQ_EMPTY(&m->md.pv_list) &&
2914 		    (m->flags & PG_FICTITIOUS) == 0) {
2915 			pvh = page_to_pvh(m);
2916 			if (TAILQ_EMPTY(&pvh->pv_list))
2917 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2918 		}
2919 	}
2920 	return (pmap_unuse_pt(pmap, va, l2e, free));
2921 }
2922 
2923 /*
2924  * Remove the specified range of addresses from the L3 page table that is
2925  * identified by the given L2 entry.
2926  */
2927 static void
2928 pmap_remove_l3_range(pmap_t pmap, pd_entry_t l2e, vm_offset_t sva,
2929     vm_offset_t eva, struct spglist *free, struct rwlock **lockp)
2930 {
2931 	struct md_page *pvh;
2932 	struct rwlock *new_lock;
2933 	pt_entry_t *l3, old_l3;
2934 	vm_offset_t va;
2935 	vm_page_t l3pg, m;
2936 
2937 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2938 	KASSERT(rounddown2(sva, L2_SIZE) + L2_SIZE == roundup2(eva, L2_SIZE),
2939 	    ("pmap_remove_l3_range: range crosses an L3 page table boundary"));
2940 	l3pg = sva < VM_MAXUSER_ADDRESS ? PHYS_TO_VM_PAGE(l2e & ~ATTR_MASK) :
2941 	    NULL;
2942 	va = eva;
2943 	for (l3 = pmap_l2_to_l3(&l2e, sva); sva != eva; l3++, sva += L3_SIZE) {
2944 		if (!pmap_l3_valid(pmap_load(l3))) {
2945 			if (va != eva) {
2946 				pmap_invalidate_range(pmap, va, sva);
2947 				va = eva;
2948 			}
2949 			continue;
2950 		}
2951 		old_l3 = pmap_load_clear(l3);
2952 		if ((old_l3 & ATTR_SW_WIRED) != 0)
2953 			pmap->pm_stats.wired_count--;
2954 		pmap_resident_count_dec(pmap, 1);
2955 		if ((old_l3 & ATTR_SW_MANAGED) != 0) {
2956 			m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK);
2957 			if (pmap_pte_dirty(pmap, old_l3))
2958 				vm_page_dirty(m);
2959 			if ((old_l3 & ATTR_AF) != 0)
2960 				vm_page_aflag_set(m, PGA_REFERENCED);
2961 			new_lock = PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m));
2962 			if (new_lock != *lockp) {
2963 				if (*lockp != NULL) {
2964 					/*
2965 					 * Pending TLB invalidations must be
2966 					 * performed before the PV list lock is
2967 					 * released.  Otherwise, a concurrent
2968 					 * pmap_remove_all() on a physical page
2969 					 * could return while a stale TLB entry
2970 					 * still provides access to that page.
2971 					 */
2972 					if (va != eva) {
2973 						pmap_invalidate_range(pmap, va,
2974 						    sva);
2975 						va = eva;
2976 					}
2977 					rw_wunlock(*lockp);
2978 				}
2979 				*lockp = new_lock;
2980 				rw_wlock(*lockp);
2981 			}
2982 			pmap_pvh_free(&m->md, pmap, sva);
2983 			if (TAILQ_EMPTY(&m->md.pv_list) &&
2984 			    (m->flags & PG_FICTITIOUS) == 0) {
2985 				pvh = page_to_pvh(m);
2986 				if (TAILQ_EMPTY(&pvh->pv_list))
2987 					vm_page_aflag_clear(m, PGA_WRITEABLE);
2988 			}
2989 		}
2990 		if (va == eva)
2991 			va = sva;
2992 		if (l3pg != NULL && pmap_unwire_l3(pmap, sva, l3pg, free)) {
2993 			sva += L3_SIZE;
2994 			break;
2995 		}
2996 	}
2997 	if (va != eva)
2998 		pmap_invalidate_range(pmap, va, sva);
2999 }
3000 
3001 /*
3002  *	Remove the given range of addresses from the specified map.
3003  *
3004  *	It is assumed that the start and end are properly
3005  *	rounded to the page size.
3006  */
3007 void
3008 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3009 {
3010 	struct rwlock *lock;
3011 	vm_offset_t va_next;
3012 	pd_entry_t *l0, *l1, *l2;
3013 	pt_entry_t l3_paddr;
3014 	struct spglist free;
3015 
3016 	/*
3017 	 * Perform an unsynchronized read.  This is, however, safe.
3018 	 */
3019 	if (pmap->pm_stats.resident_count == 0)
3020 		return;
3021 
3022 	SLIST_INIT(&free);
3023 
3024 	PMAP_LOCK(pmap);
3025 
3026 	lock = NULL;
3027 	for (; sva < eva; sva = va_next) {
3028 		if (pmap->pm_stats.resident_count == 0)
3029 			break;
3030 
3031 		l0 = pmap_l0(pmap, sva);
3032 		if (pmap_load(l0) == 0) {
3033 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
3034 			if (va_next < sva)
3035 				va_next = eva;
3036 			continue;
3037 		}
3038 
3039 		va_next = (sva + L1_SIZE) & ~L1_OFFSET;
3040 		if (va_next < sva)
3041 			va_next = eva;
3042 		l1 = pmap_l0_to_l1(l0, sva);
3043 		if (pmap_load(l1) == 0)
3044 			continue;
3045 		if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
3046 			KASSERT(va_next <= eva,
3047 			    ("partial update of non-transparent 1G page "
3048 			    "l1 %#lx sva %#lx eva %#lx va_next %#lx",
3049 			    pmap_load(l1), sva, eva, va_next));
3050 			MPASS(pmap != kernel_pmap);
3051 			MPASS((pmap_load(l1) & ATTR_SW_MANAGED) == 0);
3052 			pmap_clear(l1);
3053 			pmap_invalidate_page(pmap, sva);
3054 			pmap_resident_count_dec(pmap, L1_SIZE / PAGE_SIZE);
3055 			pmap_unuse_pt(pmap, sva, pmap_load(l0), &free);
3056 			continue;
3057 		}
3058 
3059 		/*
3060 		 * Calculate index for next page table.
3061 		 */
3062 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
3063 		if (va_next < sva)
3064 			va_next = eva;
3065 
3066 		l2 = pmap_l1_to_l2(l1, sva);
3067 		if (l2 == NULL)
3068 			continue;
3069 
3070 		l3_paddr = pmap_load(l2);
3071 
3072 		if ((l3_paddr & ATTR_DESCR_MASK) == L2_BLOCK) {
3073 			if (sva + L2_SIZE == va_next && eva >= va_next) {
3074 				pmap_remove_l2(pmap, l2, sva, pmap_load(l1),
3075 				    &free, &lock);
3076 				continue;
3077 			} else if (pmap_demote_l2_locked(pmap, l2, sva,
3078 			    &lock) == NULL)
3079 				continue;
3080 			l3_paddr = pmap_load(l2);
3081 		}
3082 
3083 		/*
3084 		 * Weed out invalid mappings.
3085 		 */
3086 		if ((l3_paddr & ATTR_DESCR_MASK) != L2_TABLE)
3087 			continue;
3088 
3089 		/*
3090 		 * Limit our scan to either the end of the va represented
3091 		 * by the current page table page, or to the end of the
3092 		 * range being removed.
3093 		 */
3094 		if (va_next > eva)
3095 			va_next = eva;
3096 
3097 		pmap_remove_l3_range(pmap, l3_paddr, sva, va_next, &free,
3098 		    &lock);
3099 	}
3100 	if (lock != NULL)
3101 		rw_wunlock(lock);
3102 	PMAP_UNLOCK(pmap);
3103 	vm_page_free_pages_toq(&free, true);
3104 }
3105 
3106 /*
3107  *	Routine:	pmap_remove_all
3108  *	Function:
3109  *		Removes this physical page from
3110  *		all physical maps in which it resides.
3111  *		Reflects back modify bits to the pager.
3112  *
3113  *	Notes:
3114  *		Original versions of this routine were very
3115  *		inefficient because they iteratively called
3116  *		pmap_remove (slow...)
3117  */
3118 
3119 void
3120 pmap_remove_all(vm_page_t m)
3121 {
3122 	struct md_page *pvh;
3123 	pv_entry_t pv;
3124 	pmap_t pmap;
3125 	struct rwlock *lock;
3126 	pd_entry_t *pde, tpde;
3127 	pt_entry_t *pte, tpte;
3128 	vm_offset_t va;
3129 	struct spglist free;
3130 	int lvl, pvh_gen, md_gen;
3131 
3132 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3133 	    ("pmap_remove_all: page %p is not managed", m));
3134 	SLIST_INIT(&free);
3135 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3136 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
3137 retry:
3138 	rw_wlock(lock);
3139 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3140 		pmap = PV_PMAP(pv);
3141 		if (!PMAP_TRYLOCK(pmap)) {
3142 			pvh_gen = pvh->pv_gen;
3143 			rw_wunlock(lock);
3144 			PMAP_LOCK(pmap);
3145 			rw_wlock(lock);
3146 			if (pvh_gen != pvh->pv_gen) {
3147 				rw_wunlock(lock);
3148 				PMAP_UNLOCK(pmap);
3149 				goto retry;
3150 			}
3151 		}
3152 		va = pv->pv_va;
3153 		pte = pmap_pte(pmap, va, &lvl);
3154 		KASSERT(pte != NULL,
3155 		    ("pmap_remove_all: no page table entry found"));
3156 		KASSERT(lvl == 2,
3157 		    ("pmap_remove_all: invalid pte level %d", lvl));
3158 
3159 		pmap_demote_l2_locked(pmap, pte, va, &lock);
3160 		PMAP_UNLOCK(pmap);
3161 	}
3162 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3163 		pmap = PV_PMAP(pv);
3164 		PMAP_ASSERT_STAGE1(pmap);
3165 		if (!PMAP_TRYLOCK(pmap)) {
3166 			pvh_gen = pvh->pv_gen;
3167 			md_gen = m->md.pv_gen;
3168 			rw_wunlock(lock);
3169 			PMAP_LOCK(pmap);
3170 			rw_wlock(lock);
3171 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3172 				rw_wunlock(lock);
3173 				PMAP_UNLOCK(pmap);
3174 				goto retry;
3175 			}
3176 		}
3177 		pmap_resident_count_dec(pmap, 1);
3178 
3179 		pde = pmap_pde(pmap, pv->pv_va, &lvl);
3180 		KASSERT(pde != NULL,
3181 		    ("pmap_remove_all: no page directory entry found"));
3182 		KASSERT(lvl == 2,
3183 		    ("pmap_remove_all: invalid pde level %d", lvl));
3184 		tpde = pmap_load(pde);
3185 
3186 		pte = pmap_l2_to_l3(pde, pv->pv_va);
3187 		tpte = pmap_load_clear(pte);
3188 		if (tpte & ATTR_SW_WIRED)
3189 			pmap->pm_stats.wired_count--;
3190 		if ((tpte & ATTR_AF) != 0) {
3191 			pmap_invalidate_page(pmap, pv->pv_va);
3192 			vm_page_aflag_set(m, PGA_REFERENCED);
3193 		}
3194 
3195 		/*
3196 		 * Update the vm_page_t clean and reference bits.
3197 		 */
3198 		if (pmap_pte_dirty(pmap, tpte))
3199 			vm_page_dirty(m);
3200 		pmap_unuse_pt(pmap, pv->pv_va, tpde, &free);
3201 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3202 		m->md.pv_gen++;
3203 		free_pv_entry(pmap, pv);
3204 		PMAP_UNLOCK(pmap);
3205 	}
3206 	vm_page_aflag_clear(m, PGA_WRITEABLE);
3207 	rw_wunlock(lock);
3208 	vm_page_free_pages_toq(&free, true);
3209 }
3210 
3211 /*
3212  * pmap_protect_l2: do the things to protect a 2MB page in a pmap
3213  */
3214 static void
3215 pmap_protect_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva, pt_entry_t mask,
3216     pt_entry_t nbits)
3217 {
3218 	pd_entry_t old_l2;
3219 	vm_page_t m, mt;
3220 
3221 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3222 	PMAP_ASSERT_STAGE1(pmap);
3223 	KASSERT((sva & L2_OFFSET) == 0,
3224 	    ("pmap_protect_l2: sva is not 2mpage aligned"));
3225 	old_l2 = pmap_load(l2);
3226 	KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
3227 	    ("pmap_protect_l2: L2e %lx is not a block mapping", old_l2));
3228 
3229 	/*
3230 	 * Return if the L2 entry already has the desired access restrictions
3231 	 * in place.
3232 	 */
3233 retry:
3234 	if ((old_l2 & mask) == nbits)
3235 		return;
3236 
3237 	/*
3238 	 * When a dirty read/write superpage mapping is write protected,
3239 	 * update the dirty field of each of the superpage's constituent 4KB
3240 	 * pages.
3241 	 */
3242 	if ((old_l2 & ATTR_SW_MANAGED) != 0 &&
3243 	    (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 &&
3244 	    pmap_pte_dirty(pmap, old_l2)) {
3245 		m = PHYS_TO_VM_PAGE(old_l2 & ~ATTR_MASK);
3246 		for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
3247 			vm_page_dirty(mt);
3248 	}
3249 
3250 	if (!atomic_fcmpset_64(l2, &old_l2, (old_l2 & ~mask) | nbits))
3251 		goto retry;
3252 
3253 	/*
3254 	 * Since a promotion must break the 4KB page mappings before making
3255 	 * the 2MB page mapping, a pmap_invalidate_page() suffices.
3256 	 */
3257 	pmap_invalidate_page(pmap, sva);
3258 }
3259 
3260 /*
3261  *	Set the physical protection on the
3262  *	specified range of this map as requested.
3263  */
3264 void
3265 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3266 {
3267 	vm_offset_t va, va_next;
3268 	pd_entry_t *l0, *l1, *l2;
3269 	pt_entry_t *l3p, l3, mask, nbits;
3270 
3271 	PMAP_ASSERT_STAGE1(pmap);
3272 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3273 	if (prot == VM_PROT_NONE) {
3274 		pmap_remove(pmap, sva, eva);
3275 		return;
3276 	}
3277 
3278 	mask = nbits = 0;
3279 	if ((prot & VM_PROT_WRITE) == 0) {
3280 		mask |= ATTR_S1_AP_RW_BIT | ATTR_SW_DBM;
3281 		nbits |= ATTR_S1_AP(ATTR_S1_AP_RO);
3282 	}
3283 	if ((prot & VM_PROT_EXECUTE) == 0) {
3284 		mask |= ATTR_S1_XN;
3285 		nbits |= ATTR_S1_XN;
3286 	}
3287 	if (mask == 0)
3288 		return;
3289 
3290 	PMAP_LOCK(pmap);
3291 	for (; sva < eva; sva = va_next) {
3292 		l0 = pmap_l0(pmap, sva);
3293 		if (pmap_load(l0) == 0) {
3294 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
3295 			if (va_next < sva)
3296 				va_next = eva;
3297 			continue;
3298 		}
3299 
3300 		va_next = (sva + L1_SIZE) & ~L1_OFFSET;
3301 		if (va_next < sva)
3302 			va_next = eva;
3303 		l1 = pmap_l0_to_l1(l0, sva);
3304 		if (pmap_load(l1) == 0)
3305 			continue;
3306 		if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
3307 			KASSERT(va_next <= eva,
3308 			    ("partial update of non-transparent 1G page "
3309 			    "l1 %#lx sva %#lx eva %#lx va_next %#lx",
3310 			    pmap_load(l1), sva, eva, va_next));
3311 			MPASS((pmap_load(l1) & ATTR_SW_MANAGED) == 0);
3312 			if ((pmap_load(l1) & mask) != nbits) {
3313 				pmap_store(l1, (pmap_load(l1) & ~mask) | nbits);
3314 				pmap_invalidate_page(pmap, sva);
3315 			}
3316 			continue;
3317 		}
3318 
3319 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
3320 		if (va_next < sva)
3321 			va_next = eva;
3322 
3323 		l2 = pmap_l1_to_l2(l1, sva);
3324 		if (pmap_load(l2) == 0)
3325 			continue;
3326 
3327 		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
3328 			if (sva + L2_SIZE == va_next && eva >= va_next) {
3329 				pmap_protect_l2(pmap, l2, sva, mask, nbits);
3330 				continue;
3331 			} else if (pmap_demote_l2(pmap, l2, sva) == NULL)
3332 				continue;
3333 		}
3334 		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
3335 		    ("pmap_protect: Invalid L2 entry after demotion"));
3336 
3337 		if (va_next > eva)
3338 			va_next = eva;
3339 
3340 		va = va_next;
3341 		for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++,
3342 		    sva += L3_SIZE) {
3343 			l3 = pmap_load(l3p);
3344 retry:
3345 			/*
3346 			 * Go to the next L3 entry if the current one is
3347 			 * invalid or already has the desired access
3348 			 * restrictions in place.  (The latter case occurs
3349 			 * frequently.  For example, in a "buildworld"
3350 			 * workload, almost 1 out of 4 L3 entries already
3351 			 * have the desired restrictions.)
3352 			 */
3353 			if (!pmap_l3_valid(l3) || (l3 & mask) == nbits) {
3354 				if (va != va_next) {
3355 					pmap_invalidate_range(pmap, va, sva);
3356 					va = va_next;
3357 				}
3358 				continue;
3359 			}
3360 
3361 			/*
3362 			 * When a dirty read/write mapping is write protected,
3363 			 * update the page's dirty field.
3364 			 */
3365 			if ((l3 & ATTR_SW_MANAGED) != 0 &&
3366 			    (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 &&
3367 			    pmap_pte_dirty(pmap, l3))
3368 				vm_page_dirty(PHYS_TO_VM_PAGE(l3 & ~ATTR_MASK));
3369 
3370 			if (!atomic_fcmpset_64(l3p, &l3, (l3 & ~mask) | nbits))
3371 				goto retry;
3372 			if (va == va_next)
3373 				va = sva;
3374 		}
3375 		if (va != va_next)
3376 			pmap_invalidate_range(pmap, va, sva);
3377 	}
3378 	PMAP_UNLOCK(pmap);
3379 }
3380 
3381 /*
3382  * Inserts the specified page table page into the specified pmap's collection
3383  * of idle page table pages.  Each of a pmap's page table pages is responsible
3384  * for mapping a distinct range of virtual addresses.  The pmap's collection is
3385  * ordered by this virtual address range.
3386  *
3387  * If "promoted" is false, then the page table page "mpte" must be zero filled.
3388  */
3389 static __inline int
3390 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
3391 {
3392 
3393 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3394 	mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
3395 	return (vm_radix_insert(&pmap->pm_root, mpte));
3396 }
3397 
3398 /*
3399  * Removes the page table page mapping the specified virtual address from the
3400  * specified pmap's collection of idle page table pages, and returns it.
3401  * Otherwise, returns NULL if there is no page table page corresponding to the
3402  * specified virtual address.
3403  */
3404 static __inline vm_page_t
3405 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
3406 {
3407 
3408 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3409 	return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va)));
3410 }
3411 
3412 /*
3413  * Performs a break-before-make update of a pmap entry. This is needed when
3414  * either promoting or demoting pages to ensure the TLB doesn't get into an
3415  * inconsistent state.
3416  */
3417 static void
3418 pmap_update_entry(pmap_t pmap, pd_entry_t *pte, pd_entry_t newpte,
3419     vm_offset_t va, vm_size_t size)
3420 {
3421 	register_t intr;
3422 
3423 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3424 
3425 	/*
3426 	 * Ensure we don't get switched out with the page table in an
3427 	 * inconsistent state. We also need to ensure no interrupts fire
3428 	 * as they may make use of an address we are about to invalidate.
3429 	 */
3430 	intr = intr_disable();
3431 
3432 	/*
3433 	 * Clear the old mapping's valid bit, but leave the rest of the entry
3434 	 * unchanged, so that a lockless, concurrent pmap_kextract() can still
3435 	 * lookup the physical address.
3436 	 */
3437 	pmap_clear_bits(pte, ATTR_DESCR_VALID);
3438 	pmap_invalidate_range(pmap, va, va + size);
3439 
3440 	/* Create the new mapping */
3441 	pmap_store(pte, newpte);
3442 	dsb(ishst);
3443 
3444 	intr_restore(intr);
3445 }
3446 
3447 #if VM_NRESERVLEVEL > 0
3448 /*
3449  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
3450  * replace the many pv entries for the 4KB page mappings by a single pv entry
3451  * for the 2MB page mapping.
3452  */
3453 static void
3454 pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3455     struct rwlock **lockp)
3456 {
3457 	struct md_page *pvh;
3458 	pv_entry_t pv;
3459 	vm_offset_t va_last;
3460 	vm_page_t m;
3461 
3462 	KASSERT((pa & L2_OFFSET) == 0,
3463 	    ("pmap_pv_promote_l2: pa is not 2mpage aligned"));
3464 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3465 
3466 	/*
3467 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
3468 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
3469 	 * a transfer avoids the possibility that get_pv_entry() calls
3470 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
3471 	 * mappings that is being promoted.
3472 	 */
3473 	m = PHYS_TO_VM_PAGE(pa);
3474 	va = va & ~L2_OFFSET;
3475 	pv = pmap_pvh_remove(&m->md, pmap, va);
3476 	KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv not found"));
3477 	pvh = pa_to_pvh(pa);
3478 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3479 	pvh->pv_gen++;
3480 	/* Free the remaining NPTEPG - 1 pv entries. */
3481 	va_last = va + L2_SIZE - PAGE_SIZE;
3482 	do {
3483 		m++;
3484 		va += PAGE_SIZE;
3485 		pmap_pvh_free(&m->md, pmap, va);
3486 	} while (va < va_last);
3487 }
3488 
3489 /*
3490  * Tries to promote the 512, contiguous 4KB page mappings that are within a
3491  * single level 2 table entry to a single 2MB page mapping.  For promotion
3492  * to occur, two conditions must be met: (1) the 4KB page mappings must map
3493  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
3494  * identical characteristics.
3495  */
3496 static void
3497 pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va,
3498     struct rwlock **lockp)
3499 {
3500 	pt_entry_t *firstl3, *l3, newl2, oldl3, pa;
3501 	vm_page_t mpte;
3502 	vm_offset_t sva;
3503 
3504 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3505 	PMAP_ASSERT_STAGE1(pmap);
3506 
3507 	sva = va & ~L2_OFFSET;
3508 	firstl3 = pmap_l2_to_l3(l2, sva);
3509 	newl2 = pmap_load(firstl3);
3510 
3511 setl2:
3512 	if (((newl2 & (~ATTR_MASK | ATTR_AF)) & L2_OFFSET) != ATTR_AF) {
3513 		atomic_add_long(&pmap_l2_p_failures, 1);
3514 		CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
3515 		    " in pmap %p", va, pmap);
3516 		return;
3517 	}
3518 
3519 	if ((newl2 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
3520 	    (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
3521 		/*
3522 		 * When the mapping is clean, i.e., ATTR_S1_AP_RO is set,
3523 		 * ATTR_SW_DBM can be cleared without a TLB invalidation.
3524 		 */
3525 		if (!atomic_fcmpset_64(firstl3, &newl2, newl2 & ~ATTR_SW_DBM))
3526 			goto setl2;
3527 		newl2 &= ~ATTR_SW_DBM;
3528 	}
3529 
3530 	pa = newl2 + L2_SIZE - PAGE_SIZE;
3531 	for (l3 = firstl3 + NL3PG - 1; l3 > firstl3; l3--) {
3532 		oldl3 = pmap_load(l3);
3533 setl3:
3534 		if ((oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
3535 		    (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
3536 			/*
3537 			 * When the mapping is clean, i.e., ATTR_S1_AP_RO is
3538 			 * set, ATTR_SW_DBM can be cleared without a TLB
3539 			 * invalidation.
3540 			 */
3541 			if (!atomic_fcmpset_64(l3, &oldl3, oldl3 &
3542 			    ~ATTR_SW_DBM))
3543 				goto setl3;
3544 			oldl3 &= ~ATTR_SW_DBM;
3545 		}
3546 		if (oldl3 != pa) {
3547 			atomic_add_long(&pmap_l2_p_failures, 1);
3548 			CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
3549 			    " in pmap %p", va, pmap);
3550 			return;
3551 		}
3552 		pa -= PAGE_SIZE;
3553 	}
3554 
3555 	/*
3556 	 * Save the page table page in its current state until the L2
3557 	 * mapping the superpage is demoted by pmap_demote_l2() or
3558 	 * destroyed by pmap_remove_l3().
3559 	 */
3560 	mpte = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
3561 	KASSERT(mpte >= vm_page_array &&
3562 	    mpte < &vm_page_array[vm_page_array_size],
3563 	    ("pmap_promote_l2: page table page is out of range"));
3564 	KASSERT(mpte->pindex == pmap_l2_pindex(va),
3565 	    ("pmap_promote_l2: page table page's pindex is wrong"));
3566 	if (pmap_insert_pt_page(pmap, mpte, true)) {
3567 		atomic_add_long(&pmap_l2_p_failures, 1);
3568 		CTR2(KTR_PMAP,
3569 		    "pmap_promote_l2: failure for va %#lx in pmap %p", va,
3570 		    pmap);
3571 		return;
3572 	}
3573 
3574 	if ((newl2 & ATTR_SW_MANAGED) != 0)
3575 		pmap_pv_promote_l2(pmap, va, newl2 & ~ATTR_MASK, lockp);
3576 
3577 	newl2 &= ~ATTR_DESCR_MASK;
3578 	newl2 |= L2_BLOCK;
3579 
3580 	pmap_update_entry(pmap, l2, newl2, sva, L2_SIZE);
3581 
3582 	atomic_add_long(&pmap_l2_promotions, 1);
3583 	CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va,
3584 		    pmap);
3585 }
3586 #endif /* VM_NRESERVLEVEL > 0 */
3587 
3588 static int
3589 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
3590     int psind)
3591 {
3592 	pd_entry_t *l0p, *l1p, *l2p, origpte;
3593 	vm_page_t mp;
3594 
3595 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3596 	KASSERT(psind > 0 && psind < MAXPAGESIZES,
3597 	    ("psind %d unexpected", psind));
3598 	KASSERT(((newpte & ~ATTR_MASK) & (pagesizes[psind] - 1)) == 0,
3599 	    ("unaligned phys address %#lx newpte %#lx psind %d",
3600 	    (newpte & ~ATTR_MASK), newpte, psind));
3601 
3602 restart:
3603 	if (psind == 2) {
3604 		l0p = pmap_l0(pmap, va);
3605 		if ((pmap_load(l0p) & ATTR_DESCR_VALID) == 0) {
3606 			mp = _pmap_alloc_l3(pmap, pmap_l0_pindex(va), NULL);
3607 			if (mp == NULL) {
3608 				if ((flags & PMAP_ENTER_NOSLEEP) != 0)
3609 					return (KERN_RESOURCE_SHORTAGE);
3610 				PMAP_UNLOCK(pmap);
3611 				vm_wait(NULL);
3612 				PMAP_LOCK(pmap);
3613 				goto restart;
3614 			}
3615 			l1p = pmap_l0_to_l1(l0p, va);
3616 			KASSERT(l1p != NULL, ("va %#lx lost l1 entry", va));
3617 			origpte = pmap_load(l1p);
3618 		} else {
3619 			l1p = pmap_l0_to_l1(l0p, va);
3620 			KASSERT(l1p != NULL, ("va %#lx lost l1 entry", va));
3621 			origpte = pmap_load(l1p);
3622 			if ((origpte & ATTR_DESCR_VALID) == 0) {
3623 				mp = PHYS_TO_VM_PAGE(pmap_load(l0p) &
3624 				    ~ATTR_MASK);
3625 				mp->ref_count++;
3626 			}
3627 		}
3628 		KASSERT((origpte & ATTR_DESCR_VALID) == 0 ||
3629 		    ((origpte & ATTR_DESCR_MASK) == L1_BLOCK &&
3630 		     (origpte & ~ATTR_MASK) == (newpte & ~ATTR_MASK)),
3631 		    ("va %#lx changing 1G phys page l1 %#lx newpte %#lx",
3632 		    va, origpte, newpte));
3633 		pmap_store(l1p, newpte);
3634 	} else /* (psind == 1) */ {
3635 		l2p = pmap_l2(pmap, va);
3636 		if (l2p == NULL) {
3637 			mp = _pmap_alloc_l3(pmap, pmap_l1_pindex(va), NULL);
3638 			if (mp == NULL) {
3639 				if ((flags & PMAP_ENTER_NOSLEEP) != 0)
3640 					return (KERN_RESOURCE_SHORTAGE);
3641 				PMAP_UNLOCK(pmap);
3642 				vm_wait(NULL);
3643 				PMAP_LOCK(pmap);
3644 				goto restart;
3645 			}
3646 			l2p = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
3647 			l2p = &l2p[pmap_l2_index(va)];
3648 			origpte = pmap_load(l2p);
3649 		} else {
3650 			l1p = pmap_l1(pmap, va);
3651 			origpte = pmap_load(l2p);
3652 			if ((origpte & ATTR_DESCR_VALID) == 0) {
3653 				mp = PHYS_TO_VM_PAGE(pmap_load(l1p) &
3654 				    ~ATTR_MASK);
3655 				mp->ref_count++;
3656 			}
3657 		}
3658 		KASSERT((origpte & ATTR_DESCR_VALID) == 0 ||
3659 		    ((origpte & ATTR_DESCR_MASK) == L2_BLOCK &&
3660 		     (origpte & ~ATTR_MASK) == (newpte & ~ATTR_MASK)),
3661 		    ("va %#lx changing 2M phys page l2 %#lx newpte %#lx",
3662 		    va, origpte, newpte));
3663 		pmap_store(l2p, newpte);
3664 	}
3665 	dsb(ishst);
3666 
3667 	if ((origpte & ATTR_DESCR_VALID) == 0)
3668 		pmap_resident_count_inc(pmap, pagesizes[psind] / PAGE_SIZE);
3669 	if ((newpte & ATTR_SW_WIRED) != 0 && (origpte & ATTR_SW_WIRED) == 0)
3670 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
3671 	else if ((newpte & ATTR_SW_WIRED) == 0 &&
3672 	    (origpte & ATTR_SW_WIRED) != 0)
3673 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
3674 
3675 	return (KERN_SUCCESS);
3676 }
3677 
3678 /*
3679  *	Insert the given physical page (p) at
3680  *	the specified virtual address (v) in the
3681  *	target physical map with the protection requested.
3682  *
3683  *	If specified, the page will be wired down, meaning
3684  *	that the related pte can not be reclaimed.
3685  *
3686  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3687  *	or lose information.  That is, this routine must actually
3688  *	insert this page into the given map NOW.
3689  */
3690 int
3691 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3692     u_int flags, int8_t psind)
3693 {
3694 	struct rwlock *lock;
3695 	pd_entry_t *pde;
3696 	pt_entry_t new_l3, orig_l3;
3697 	pt_entry_t *l2, *l3;
3698 	pv_entry_t pv;
3699 	vm_paddr_t opa, pa;
3700 	vm_page_t mpte, om;
3701 	boolean_t nosleep;
3702 	int lvl, rv;
3703 
3704 	va = trunc_page(va);
3705 	if ((m->oflags & VPO_UNMANAGED) == 0)
3706 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3707 	pa = VM_PAGE_TO_PHYS(m);
3708 	new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT | L3_PAGE);
3709 	new_l3 |= pmap_pte_memattr(pmap, m->md.pv_memattr);
3710 	new_l3 |= pmap_pte_prot(pmap, prot);
3711 
3712 	if ((flags & PMAP_ENTER_WIRED) != 0)
3713 		new_l3 |= ATTR_SW_WIRED;
3714 	if (pmap->pm_stage == PM_STAGE1) {
3715 		if (va < VM_MAXUSER_ADDRESS)
3716 			new_l3 |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
3717 		else
3718 			new_l3 |= ATTR_S1_UXN;
3719 		if (pmap != kernel_pmap)
3720 			new_l3 |= ATTR_S1_nG;
3721 	} else {
3722 		/*
3723 		 * Clear the access flag on executable mappings, this will be
3724 		 * set later when the page is accessed. The fault handler is
3725 		 * required to invalidate the I-cache.
3726 		 *
3727 		 * TODO: Switch to the valid flag to allow hardware management
3728 		 * of the access flag. Much of the pmap code assumes the
3729 		 * valid flag is set and fails to destroy the old page tables
3730 		 * correctly if it is clear.
3731 		 */
3732 		if (prot & VM_PROT_EXECUTE)
3733 			new_l3 &= ~ATTR_AF;
3734 	}
3735 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3736 		new_l3 |= ATTR_SW_MANAGED;
3737 		if ((prot & VM_PROT_WRITE) != 0) {
3738 			new_l3 |= ATTR_SW_DBM;
3739 			if ((flags & VM_PROT_WRITE) == 0) {
3740 				if (pmap->pm_stage == PM_STAGE1)
3741 					new_l3 |= ATTR_S1_AP(ATTR_S1_AP_RO);
3742 				else
3743 					new_l3 &=
3744 					    ~ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
3745 			}
3746 		}
3747 	}
3748 
3749 	CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
3750 
3751 	lock = NULL;
3752 	PMAP_LOCK(pmap);
3753 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
3754 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
3755 		    ("managed largepage va %#lx flags %#x", va, flags));
3756 		new_l3 &= ~L3_PAGE;
3757 		if (psind == 2)
3758 			new_l3 |= L1_BLOCK;
3759 		else /* (psind == 1) */
3760 			new_l3 |= L2_BLOCK;
3761 		rv = pmap_enter_largepage(pmap, va, new_l3, flags, psind);
3762 		goto out;
3763 	}
3764 	if (psind == 1) {
3765 		/* Assert the required virtual and physical alignment. */
3766 		KASSERT((va & L2_OFFSET) == 0, ("pmap_enter: va unaligned"));
3767 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3768 		rv = pmap_enter_l2(pmap, va, (new_l3 & ~L3_PAGE) | L2_BLOCK,
3769 		    flags, m, &lock);
3770 		goto out;
3771 	}
3772 	mpte = NULL;
3773 
3774 	/*
3775 	 * In the case that a page table page is not
3776 	 * resident, we are creating it here.
3777 	 */
3778 retry:
3779 	pde = pmap_pde(pmap, va, &lvl);
3780 	if (pde != NULL && lvl == 2) {
3781 		l3 = pmap_l2_to_l3(pde, va);
3782 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
3783 			mpte = PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK);
3784 			mpte->ref_count++;
3785 		}
3786 		goto havel3;
3787 	} else if (pde != NULL && lvl == 1) {
3788 		l2 = pmap_l1_to_l2(pde, va);
3789 		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK &&
3790 		    (l3 = pmap_demote_l2_locked(pmap, l2, va, &lock)) != NULL) {
3791 			l3 = &l3[pmap_l3_index(va)];
3792 			if (va < VM_MAXUSER_ADDRESS) {
3793 				mpte = PHYS_TO_VM_PAGE(
3794 				    pmap_load(l2) & ~ATTR_MASK);
3795 				mpte->ref_count++;
3796 			}
3797 			goto havel3;
3798 		}
3799 		/* We need to allocate an L3 table. */
3800 	}
3801 	if (va < VM_MAXUSER_ADDRESS) {
3802 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
3803 
3804 		/*
3805 		 * We use _pmap_alloc_l3() instead of pmap_alloc_l3() in order
3806 		 * to handle the possibility that a superpage mapping for "va"
3807 		 * was created while we slept.
3808 		 */
3809 		mpte = _pmap_alloc_l3(pmap, pmap_l2_pindex(va),
3810 		    nosleep ? NULL : &lock);
3811 		if (mpte == NULL && nosleep) {
3812 			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
3813 			rv = KERN_RESOURCE_SHORTAGE;
3814 			goto out;
3815 		}
3816 		goto retry;
3817 	} else
3818 		panic("pmap_enter: missing L3 table for kernel va %#lx", va);
3819 
3820 havel3:
3821 	orig_l3 = pmap_load(l3);
3822 	opa = orig_l3 & ~ATTR_MASK;
3823 	pv = NULL;
3824 
3825 	/*
3826 	 * Is the specified virtual address already mapped?
3827 	 */
3828 	if (pmap_l3_valid(orig_l3)) {
3829 		/*
3830 		 * Only allow adding new entries on stage 2 tables for now.
3831 		 * This simplifies cache invalidation as we may need to call
3832 		 * into EL2 to perform such actions.
3833 		 */
3834 		PMAP_ASSERT_STAGE1(pmap);
3835 		/*
3836 		 * Wiring change, just update stats. We don't worry about
3837 		 * wiring PT pages as they remain resident as long as there
3838 		 * are valid mappings in them. Hence, if a user page is wired,
3839 		 * the PT page will be also.
3840 		 */
3841 		if ((flags & PMAP_ENTER_WIRED) != 0 &&
3842 		    (orig_l3 & ATTR_SW_WIRED) == 0)
3843 			pmap->pm_stats.wired_count++;
3844 		else if ((flags & PMAP_ENTER_WIRED) == 0 &&
3845 		    (orig_l3 & ATTR_SW_WIRED) != 0)
3846 			pmap->pm_stats.wired_count--;
3847 
3848 		/*
3849 		 * Remove the extra PT page reference.
3850 		 */
3851 		if (mpte != NULL) {
3852 			mpte->ref_count--;
3853 			KASSERT(mpte->ref_count > 0,
3854 			    ("pmap_enter: missing reference to page table page,"
3855 			     " va: 0x%lx", va));
3856 		}
3857 
3858 		/*
3859 		 * Has the physical page changed?
3860 		 */
3861 		if (opa == pa) {
3862 			/*
3863 			 * No, might be a protection or wiring change.
3864 			 */
3865 			if ((orig_l3 & ATTR_SW_MANAGED) != 0 &&
3866 			    (new_l3 & ATTR_SW_DBM) != 0)
3867 				vm_page_aflag_set(m, PGA_WRITEABLE);
3868 			goto validate;
3869 		}
3870 
3871 		/*
3872 		 * The physical page has changed.  Temporarily invalidate
3873 		 * the mapping.
3874 		 */
3875 		orig_l3 = pmap_load_clear(l3);
3876 		KASSERT((orig_l3 & ~ATTR_MASK) == opa,
3877 		    ("pmap_enter: unexpected pa update for %#lx", va));
3878 		if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
3879 			om = PHYS_TO_VM_PAGE(opa);
3880 
3881 			/*
3882 			 * The pmap lock is sufficient to synchronize with
3883 			 * concurrent calls to pmap_page_test_mappings() and
3884 			 * pmap_ts_referenced().
3885 			 */
3886 			if (pmap_pte_dirty(pmap, orig_l3))
3887 				vm_page_dirty(om);
3888 			if ((orig_l3 & ATTR_AF) != 0) {
3889 				pmap_invalidate_page(pmap, va);
3890 				vm_page_aflag_set(om, PGA_REFERENCED);
3891 			}
3892 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3893 			pv = pmap_pvh_remove(&om->md, pmap, va);
3894 			if ((m->oflags & VPO_UNMANAGED) != 0)
3895 				free_pv_entry(pmap, pv);
3896 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3897 			    TAILQ_EMPTY(&om->md.pv_list) &&
3898 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3899 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3900 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3901 		} else {
3902 			KASSERT((orig_l3 & ATTR_AF) != 0,
3903 			    ("pmap_enter: unmanaged mapping lacks ATTR_AF"));
3904 			pmap_invalidate_page(pmap, va);
3905 		}
3906 		orig_l3 = 0;
3907 	} else {
3908 		/*
3909 		 * Increment the counters.
3910 		 */
3911 		if ((new_l3 & ATTR_SW_WIRED) != 0)
3912 			pmap->pm_stats.wired_count++;
3913 		pmap_resident_count_inc(pmap, 1);
3914 	}
3915 	/*
3916 	 * Enter on the PV list if part of our managed memory.
3917 	 */
3918 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3919 		if (pv == NULL) {
3920 			pv = get_pv_entry(pmap, &lock);
3921 			pv->pv_va = va;
3922 		}
3923 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3924 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3925 		m->md.pv_gen++;
3926 		if ((new_l3 & ATTR_SW_DBM) != 0)
3927 			vm_page_aflag_set(m, PGA_WRITEABLE);
3928 	}
3929 
3930 validate:
3931 	if (pmap->pm_stage == PM_STAGE1) {
3932 		/*
3933 		 * Sync icache if exec permission and attribute
3934 		 * VM_MEMATTR_WRITE_BACK is set. Do it now, before the mapping
3935 		 * is stored and made valid for hardware table walk. If done
3936 		 * later, then other can access this page before caches are
3937 		 * properly synced. Don't do it for kernel memory which is
3938 		 * mapped with exec permission even if the memory isn't going
3939 		 * to hold executable code. The only time when icache sync is
3940 		 * needed is after kernel module is loaded and the relocation
3941 		 * info is processed. And it's done in elf_cpu_load_file().
3942 		*/
3943 		if ((prot & VM_PROT_EXECUTE) &&  pmap != kernel_pmap &&
3944 		    m->md.pv_memattr == VM_MEMATTR_WRITE_BACK &&
3945 		    (opa != pa || (orig_l3 & ATTR_S1_XN))) {
3946 			PMAP_ASSERT_STAGE1(pmap);
3947 			cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE);
3948 		}
3949 	} else {
3950 		cpu_dcache_wb_range(PHYS_TO_DMAP(pa), PAGE_SIZE);
3951 	}
3952 
3953 	/*
3954 	 * Update the L3 entry
3955 	 */
3956 	if (pmap_l3_valid(orig_l3)) {
3957 		PMAP_ASSERT_STAGE1(pmap);
3958 		KASSERT(opa == pa, ("pmap_enter: invalid update"));
3959 		if ((orig_l3 & ~ATTR_AF) != (new_l3 & ~ATTR_AF)) {
3960 			/* same PA, different attributes */
3961 			orig_l3 = pmap_load_store(l3, new_l3);
3962 			pmap_invalidate_page(pmap, va);
3963 			if ((orig_l3 & ATTR_SW_MANAGED) != 0 &&
3964 			    pmap_pte_dirty(pmap, orig_l3))
3965 				vm_page_dirty(m);
3966 		} else {
3967 			/*
3968 			 * orig_l3 == new_l3
3969 			 * This can happens if multiple threads simultaneously
3970 			 * access not yet mapped page. This bad for performance
3971 			 * since this can cause full demotion-NOP-promotion
3972 			 * cycle.
3973 			 * Another possible reasons are:
3974 			 * - VM and pmap memory layout are diverged
3975 			 * - tlb flush is missing somewhere and CPU doesn't see
3976 			 *   actual mapping.
3977 			 */
3978 			CTR4(KTR_PMAP, "%s: already mapped page - "
3979 			    "pmap %p va 0x%#lx pte 0x%lx",
3980 			    __func__, pmap, va, new_l3);
3981 		}
3982 	} else {
3983 		/* New mapping */
3984 		pmap_store(l3, new_l3);
3985 		dsb(ishst);
3986 	}
3987 
3988 #if VM_NRESERVLEVEL > 0
3989 	/*
3990 	 * Try to promote from level 3 pages to a level 2 superpage. This
3991 	 * currently only works on stage 1 pmaps as pmap_promote_l2 looks at
3992 	 * stage 1 specific fields and performs a break-before-make sequence
3993 	 * that is incorrect a stage 2 pmap.
3994 	 */
3995 	if ((mpte == NULL || mpte->ref_count == NL3PG) &&
3996 	    pmap_ps_enabled(pmap) && pmap->pm_stage == PM_STAGE1 &&
3997 	    (m->flags & PG_FICTITIOUS) == 0 &&
3998 	    vm_reserv_level_iffullpop(m) == 0) {
3999 		pmap_promote_l2(pmap, pde, va, &lock);
4000 	}
4001 #endif
4002 
4003 	rv = KERN_SUCCESS;
4004 out:
4005 	if (lock != NULL)
4006 		rw_wunlock(lock);
4007 	PMAP_UNLOCK(pmap);
4008 	return (rv);
4009 }
4010 
4011 /*
4012  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
4013  * if successful.  Returns false if (1) a page table page cannot be allocated
4014  * without sleeping, (2) a mapping already exists at the specified virtual
4015  * address, or (3) a PV entry cannot be allocated without reclaiming another
4016  * PV entry.
4017  */
4018 static bool
4019 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4020     struct rwlock **lockp)
4021 {
4022 	pd_entry_t new_l2;
4023 
4024 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4025 	PMAP_ASSERT_STAGE1(pmap);
4026 
4027 	new_l2 = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT |
4028 	    ATTR_S1_IDX(m->md.pv_memattr) | ATTR_S1_AP(ATTR_S1_AP_RO) |
4029 	    L2_BLOCK);
4030 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4031 		new_l2 |= ATTR_SW_MANAGED;
4032 		new_l2 &= ~ATTR_AF;
4033 	}
4034 	if ((prot & VM_PROT_EXECUTE) == 0 ||
4035 	    m->md.pv_memattr == VM_MEMATTR_DEVICE)
4036 		new_l2 |= ATTR_S1_XN;
4037 	if (va < VM_MAXUSER_ADDRESS)
4038 		new_l2 |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
4039 	else
4040 		new_l2 |= ATTR_S1_UXN;
4041 	if (pmap != kernel_pmap)
4042 		new_l2 |= ATTR_S1_nG;
4043 	return (pmap_enter_l2(pmap, va, new_l2, PMAP_ENTER_NOSLEEP |
4044 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
4045 	    KERN_SUCCESS);
4046 }
4047 
4048 /*
4049  * Returns true if every page table entry in the specified page table is
4050  * zero.
4051  */
4052 static bool
4053 pmap_every_pte_zero(vm_paddr_t pa)
4054 {
4055 	pt_entry_t *pt_end, *pte;
4056 
4057 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
4058 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
4059 	for (pt_end = pte + Ln_ENTRIES; pte < pt_end; pte++) {
4060 		if (*pte != 0)
4061 			return (false);
4062 	}
4063 	return (true);
4064 }
4065 
4066 /*
4067  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
4068  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
4069  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
4070  * a mapping already exists at the specified virtual address.  Returns
4071  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
4072  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
4073  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
4074  *
4075  * The parameter "m" is only used when creating a managed, writeable mapping.
4076  */
4077 static int
4078 pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2, u_int flags,
4079     vm_page_t m, struct rwlock **lockp)
4080 {
4081 	struct spglist free;
4082 	pd_entry_t *l2, old_l2;
4083 	vm_page_t l2pg, mt;
4084 
4085 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4086 
4087 	if ((l2 = pmap_alloc_l2(pmap, va, &l2pg, (flags &
4088 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
4089 		CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx in pmap %p",
4090 		    va, pmap);
4091 		return (KERN_RESOURCE_SHORTAGE);
4092 	}
4093 
4094 	/*
4095 	 * If there are existing mappings, either abort or remove them.
4096 	 */
4097 	if ((old_l2 = pmap_load(l2)) != 0) {
4098 		KASSERT(l2pg == NULL || l2pg->ref_count > 1,
4099 		    ("pmap_enter_l2: l2pg's ref count is too low"));
4100 		if ((flags & PMAP_ENTER_NOREPLACE) != 0 && (va <
4101 		    VM_MAXUSER_ADDRESS || (old_l2 & ATTR_DESCR_MASK) ==
4102 		    L2_BLOCK || !pmap_every_pte_zero(old_l2 & ~ATTR_MASK))) {
4103 			if (l2pg != NULL)
4104 				l2pg->ref_count--;
4105 			CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx"
4106 			    " in pmap %p", va, pmap);
4107 			return (KERN_FAILURE);
4108 		}
4109 		SLIST_INIT(&free);
4110 		if ((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK)
4111 			(void)pmap_remove_l2(pmap, l2, va,
4112 			    pmap_load(pmap_l1(pmap, va)), &free, lockp);
4113 		else
4114 			pmap_remove_l3_range(pmap, old_l2, va, va + L2_SIZE,
4115 			    &free, lockp);
4116 		if (va < VM_MAXUSER_ADDRESS) {
4117 			vm_page_free_pages_toq(&free, true);
4118 			KASSERT(pmap_load(l2) == 0,
4119 			    ("pmap_enter_l2: non-zero L2 entry %p", l2));
4120 		} else {
4121 			KASSERT(SLIST_EMPTY(&free),
4122 			    ("pmap_enter_l2: freed kernel page table page"));
4123 
4124 			/*
4125 			 * Both pmap_remove_l2() and pmap_remove_l3_range()
4126 			 * will leave the kernel page table page zero filled.
4127 			 * Nonetheless, the TLB could have an intermediate
4128 			 * entry for the kernel page table page.
4129 			 */
4130 			mt = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
4131 			if (pmap_insert_pt_page(pmap, mt, false))
4132 				panic("pmap_enter_l2: trie insert failed");
4133 			pmap_clear(l2);
4134 			pmap_invalidate_page(pmap, va);
4135 		}
4136 	}
4137 
4138 	if ((new_l2 & ATTR_SW_MANAGED) != 0) {
4139 		/*
4140 		 * Abort this mapping if its PV entry could not be created.
4141 		 */
4142 		if (!pmap_pv_insert_l2(pmap, va, new_l2, flags, lockp)) {
4143 			if (l2pg != NULL)
4144 				pmap_abort_ptp(pmap, va, l2pg);
4145 			CTR2(KTR_PMAP,
4146 			    "pmap_enter_l2: failure for va %#lx in pmap %p",
4147 			    va, pmap);
4148 			return (KERN_RESOURCE_SHORTAGE);
4149 		}
4150 		if ((new_l2 & ATTR_SW_DBM) != 0)
4151 			for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
4152 				vm_page_aflag_set(mt, PGA_WRITEABLE);
4153 	}
4154 
4155 	/*
4156 	 * Increment counters.
4157 	 */
4158 	if ((new_l2 & ATTR_SW_WIRED) != 0)
4159 		pmap->pm_stats.wired_count += L2_SIZE / PAGE_SIZE;
4160 	pmap->pm_stats.resident_count += L2_SIZE / PAGE_SIZE;
4161 
4162 	/*
4163 	 * Map the superpage.
4164 	 */
4165 	pmap_store(l2, new_l2);
4166 	dsb(ishst);
4167 
4168 	atomic_add_long(&pmap_l2_mappings, 1);
4169 	CTR2(KTR_PMAP, "pmap_enter_l2: success for va %#lx in pmap %p",
4170 	    va, pmap);
4171 
4172 	return (KERN_SUCCESS);
4173 }
4174 
4175 /*
4176  * Maps a sequence of resident pages belonging to the same object.
4177  * The sequence begins with the given page m_start.  This page is
4178  * mapped at the given virtual address start.  Each subsequent page is
4179  * mapped at a virtual address that is offset from start by the same
4180  * amount as the page is offset from m_start within the object.  The
4181  * last page in the sequence is the page with the largest offset from
4182  * m_start that can be mapped at a virtual address less than the given
4183  * virtual address end.  Not every virtual page between start and end
4184  * is mapped; only those for which a resident page exists with the
4185  * corresponding offset from m_start are mapped.
4186  */
4187 void
4188 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4189     vm_page_t m_start, vm_prot_t prot)
4190 {
4191 	struct rwlock *lock;
4192 	vm_offset_t va;
4193 	vm_page_t m, mpte;
4194 	vm_pindex_t diff, psize;
4195 
4196 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4197 
4198 	psize = atop(end - start);
4199 	mpte = NULL;
4200 	m = m_start;
4201 	lock = NULL;
4202 	PMAP_LOCK(pmap);
4203 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4204 		va = start + ptoa(diff);
4205 		if ((va & L2_OFFSET) == 0 && va + L2_SIZE <= end &&
4206 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
4207 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
4208 			m = &m[L2_SIZE / PAGE_SIZE - 1];
4209 		else
4210 			mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte,
4211 			    &lock);
4212 		m = TAILQ_NEXT(m, listq);
4213 	}
4214 	if (lock != NULL)
4215 		rw_wunlock(lock);
4216 	PMAP_UNLOCK(pmap);
4217 }
4218 
4219 /*
4220  * this code makes some *MAJOR* assumptions:
4221  * 1. Current pmap & pmap exists.
4222  * 2. Not wired.
4223  * 3. Read access.
4224  * 4. No page table pages.
4225  * but is *MUCH* faster than pmap_enter...
4226  */
4227 
4228 void
4229 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4230 {
4231 	struct rwlock *lock;
4232 
4233 	lock = NULL;
4234 	PMAP_LOCK(pmap);
4235 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
4236 	if (lock != NULL)
4237 		rw_wunlock(lock);
4238 	PMAP_UNLOCK(pmap);
4239 }
4240 
4241 static vm_page_t
4242 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4243     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
4244 {
4245 	pd_entry_t *pde;
4246 	pt_entry_t *l2, *l3, l3_val;
4247 	vm_paddr_t pa;
4248 	int lvl;
4249 
4250 	KASSERT(!VA_IS_CLEANMAP(va) ||
4251 	    (m->oflags & VPO_UNMANAGED) != 0,
4252 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
4253 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4254 	PMAP_ASSERT_STAGE1(pmap);
4255 
4256 	CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
4257 	/*
4258 	 * In the case that a page table page is not
4259 	 * resident, we are creating it here.
4260 	 */
4261 	if (va < VM_MAXUSER_ADDRESS) {
4262 		vm_pindex_t l2pindex;
4263 
4264 		/*
4265 		 * Calculate pagetable page index
4266 		 */
4267 		l2pindex = pmap_l2_pindex(va);
4268 		if (mpte && (mpte->pindex == l2pindex)) {
4269 			mpte->ref_count++;
4270 		} else {
4271 			/*
4272 			 * Get the l2 entry
4273 			 */
4274 			pde = pmap_pde(pmap, va, &lvl);
4275 
4276 			/*
4277 			 * If the page table page is mapped, we just increment
4278 			 * the hold count, and activate it.  Otherwise, we
4279 			 * attempt to allocate a page table page.  If this
4280 			 * attempt fails, we don't retry.  Instead, we give up.
4281 			 */
4282 			if (lvl == 1) {
4283 				l2 = pmap_l1_to_l2(pde, va);
4284 				if ((pmap_load(l2) & ATTR_DESCR_MASK) ==
4285 				    L2_BLOCK)
4286 					return (NULL);
4287 			}
4288 			if (lvl == 2 && pmap_load(pde) != 0) {
4289 				mpte =
4290 				    PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK);
4291 				mpte->ref_count++;
4292 			} else {
4293 				/*
4294 				 * Pass NULL instead of the PV list lock
4295 				 * pointer, because we don't intend to sleep.
4296 				 */
4297 				mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
4298 				if (mpte == NULL)
4299 					return (mpte);
4300 			}
4301 		}
4302 		l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
4303 		l3 = &l3[pmap_l3_index(va)];
4304 	} else {
4305 		mpte = NULL;
4306 		pde = pmap_pde(kernel_pmap, va, &lvl);
4307 		KASSERT(pde != NULL,
4308 		    ("pmap_enter_quick_locked: Invalid page entry, va: 0x%lx",
4309 		     va));
4310 		KASSERT(lvl == 2,
4311 		    ("pmap_enter_quick_locked: Invalid level %d", lvl));
4312 		l3 = pmap_l2_to_l3(pde, va);
4313 	}
4314 
4315 	/*
4316 	 * Abort if a mapping already exists.
4317 	 */
4318 	if (pmap_load(l3) != 0) {
4319 		if (mpte != NULL)
4320 			mpte->ref_count--;
4321 		return (NULL);
4322 	}
4323 
4324 	/*
4325 	 * Enter on the PV list if part of our managed memory.
4326 	 */
4327 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4328 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
4329 		if (mpte != NULL)
4330 			pmap_abort_ptp(pmap, va, mpte);
4331 		return (NULL);
4332 	}
4333 
4334 	/*
4335 	 * Increment counters
4336 	 */
4337 	pmap_resident_count_inc(pmap, 1);
4338 
4339 	pa = VM_PAGE_TO_PHYS(m);
4340 	l3_val = pa | ATTR_DEFAULT | ATTR_S1_IDX(m->md.pv_memattr) |
4341 	    ATTR_S1_AP(ATTR_S1_AP_RO) | L3_PAGE;
4342 	if ((prot & VM_PROT_EXECUTE) == 0 ||
4343 	    m->md.pv_memattr == VM_MEMATTR_DEVICE)
4344 		l3_val |= ATTR_S1_XN;
4345 	if (va < VM_MAXUSER_ADDRESS)
4346 		l3_val |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
4347 	else
4348 		l3_val |= ATTR_S1_UXN;
4349 	if (pmap != kernel_pmap)
4350 		l3_val |= ATTR_S1_nG;
4351 
4352 	/*
4353 	 * Now validate mapping with RO protection
4354 	 */
4355 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4356 		l3_val |= ATTR_SW_MANAGED;
4357 		l3_val &= ~ATTR_AF;
4358 	}
4359 
4360 	/* Sync icache before the mapping is stored to PTE */
4361 	if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
4362 	    m->md.pv_memattr == VM_MEMATTR_WRITE_BACK)
4363 		cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE);
4364 
4365 	pmap_store(l3, l3_val);
4366 	dsb(ishst);
4367 
4368 	return (mpte);
4369 }
4370 
4371 /*
4372  * This code maps large physical mmap regions into the
4373  * processor address space.  Note that some shortcuts
4374  * are taken, but the code works.
4375  */
4376 void
4377 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4378     vm_pindex_t pindex, vm_size_t size)
4379 {
4380 
4381 	VM_OBJECT_ASSERT_WLOCKED(object);
4382 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4383 	    ("pmap_object_init_pt: non-device object"));
4384 }
4385 
4386 /*
4387  *	Clear the wired attribute from the mappings for the specified range of
4388  *	addresses in the given pmap.  Every valid mapping within that range
4389  *	must have the wired attribute set.  In contrast, invalid mappings
4390  *	cannot have the wired attribute set, so they are ignored.
4391  *
4392  *	The wired attribute of the page table entry is not a hardware feature,
4393  *	so there is no need to invalidate any TLB entries.
4394  */
4395 void
4396 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4397 {
4398 	vm_offset_t va_next;
4399 	pd_entry_t *l0, *l1, *l2;
4400 	pt_entry_t *l3;
4401 
4402 	PMAP_LOCK(pmap);
4403 	for (; sva < eva; sva = va_next) {
4404 		l0 = pmap_l0(pmap, sva);
4405 		if (pmap_load(l0) == 0) {
4406 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
4407 			if (va_next < sva)
4408 				va_next = eva;
4409 			continue;
4410 		}
4411 
4412 		l1 = pmap_l0_to_l1(l0, sva);
4413 		va_next = (sva + L1_SIZE) & ~L1_OFFSET;
4414 		if (va_next < sva)
4415 			va_next = eva;
4416 		if (pmap_load(l1) == 0)
4417 			continue;
4418 
4419 		if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
4420 			KASSERT(va_next <= eva,
4421 			    ("partial update of non-transparent 1G page "
4422 			    "l1 %#lx sva %#lx eva %#lx va_next %#lx",
4423 			    pmap_load(l1), sva, eva, va_next));
4424 			MPASS(pmap != kernel_pmap);
4425 			MPASS((pmap_load(l1) & (ATTR_SW_MANAGED |
4426 			    ATTR_SW_WIRED)) == ATTR_SW_WIRED);
4427 			pmap_clear_bits(l1, ATTR_SW_WIRED);
4428 			pmap->pm_stats.wired_count -= L1_SIZE / PAGE_SIZE;
4429 			continue;
4430 		}
4431 
4432 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
4433 		if (va_next < sva)
4434 			va_next = eva;
4435 
4436 		l2 = pmap_l1_to_l2(l1, sva);
4437 		if (pmap_load(l2) == 0)
4438 			continue;
4439 
4440 		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
4441 			if ((pmap_load(l2) & ATTR_SW_WIRED) == 0)
4442 				panic("pmap_unwire: l2 %#jx is missing "
4443 				    "ATTR_SW_WIRED", (uintmax_t)pmap_load(l2));
4444 
4445 			/*
4446 			 * Are we unwiring the entire large page?  If not,
4447 			 * demote the mapping and fall through.
4448 			 */
4449 			if (sva + L2_SIZE == va_next && eva >= va_next) {
4450 				pmap_clear_bits(l2, ATTR_SW_WIRED);
4451 				pmap->pm_stats.wired_count -= L2_SIZE /
4452 				    PAGE_SIZE;
4453 				continue;
4454 			} else if (pmap_demote_l2(pmap, l2, sva) == NULL)
4455 				panic("pmap_unwire: demotion failed");
4456 		}
4457 		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
4458 		    ("pmap_unwire: Invalid l2 entry after demotion"));
4459 
4460 		if (va_next > eva)
4461 			va_next = eva;
4462 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
4463 		    sva += L3_SIZE) {
4464 			if (pmap_load(l3) == 0)
4465 				continue;
4466 			if ((pmap_load(l3) & ATTR_SW_WIRED) == 0)
4467 				panic("pmap_unwire: l3 %#jx is missing "
4468 				    "ATTR_SW_WIRED", (uintmax_t)pmap_load(l3));
4469 
4470 			/*
4471 			 * ATTR_SW_WIRED must be cleared atomically.  Although
4472 			 * the pmap lock synchronizes access to ATTR_SW_WIRED,
4473 			 * the System MMU may write to the entry concurrently.
4474 			 */
4475 			pmap_clear_bits(l3, ATTR_SW_WIRED);
4476 			pmap->pm_stats.wired_count--;
4477 		}
4478 	}
4479 	PMAP_UNLOCK(pmap);
4480 }
4481 
4482 /*
4483  *	Copy the range specified by src_addr/len
4484  *	from the source map to the range dst_addr/len
4485  *	in the destination map.
4486  *
4487  *	This routine is only advisory and need not do anything.
4488  *
4489  *	Because the executable mappings created by this routine are copied,
4490  *	it should not have to flush the instruction cache.
4491  */
4492 void
4493 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4494     vm_offset_t src_addr)
4495 {
4496 	struct rwlock *lock;
4497 	pd_entry_t *l0, *l1, *l2, srcptepaddr;
4498 	pt_entry_t *dst_pte, mask, nbits, ptetemp, *src_pte;
4499 	vm_offset_t addr, end_addr, va_next;
4500 	vm_page_t dst_m, dstmpte, srcmpte;
4501 
4502 	PMAP_ASSERT_STAGE1(dst_pmap);
4503 	PMAP_ASSERT_STAGE1(src_pmap);
4504 
4505 	if (dst_addr != src_addr)
4506 		return;
4507 	end_addr = src_addr + len;
4508 	lock = NULL;
4509 	if (dst_pmap < src_pmap) {
4510 		PMAP_LOCK(dst_pmap);
4511 		PMAP_LOCK(src_pmap);
4512 	} else {
4513 		PMAP_LOCK(src_pmap);
4514 		PMAP_LOCK(dst_pmap);
4515 	}
4516 	for (addr = src_addr; addr < end_addr; addr = va_next) {
4517 		l0 = pmap_l0(src_pmap, addr);
4518 		if (pmap_load(l0) == 0) {
4519 			va_next = (addr + L0_SIZE) & ~L0_OFFSET;
4520 			if (va_next < addr)
4521 				va_next = end_addr;
4522 			continue;
4523 		}
4524 
4525 		va_next = (addr + L1_SIZE) & ~L1_OFFSET;
4526 		if (va_next < addr)
4527 			va_next = end_addr;
4528 		l1 = pmap_l0_to_l1(l0, addr);
4529 		if (pmap_load(l1) == 0)
4530 			continue;
4531 		if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
4532 			KASSERT(va_next <= end_addr,
4533 			    ("partial update of non-transparent 1G page "
4534 			    "l1 %#lx addr %#lx end_addr %#lx va_next %#lx",
4535 			    pmap_load(l1), addr, end_addr, va_next));
4536 			srcptepaddr = pmap_load(l1);
4537 			l1 = pmap_l1(dst_pmap, addr);
4538 			if (l1 == NULL) {
4539 				if (_pmap_alloc_l3(dst_pmap,
4540 				    pmap_l0_pindex(addr), NULL) == NULL)
4541 					break;
4542 				l1 = pmap_l1(dst_pmap, addr);
4543 			} else {
4544 				l0 = pmap_l0(dst_pmap, addr);
4545 				dst_m = PHYS_TO_VM_PAGE(pmap_load(l0) &
4546 				    ~ATTR_MASK);
4547 				dst_m->ref_count++;
4548 			}
4549 			KASSERT(pmap_load(l1) == 0,
4550 			    ("1G mapping present in dst pmap "
4551 			    "l1 %#lx addr %#lx end_addr %#lx va_next %#lx",
4552 			    pmap_load(l1), addr, end_addr, va_next));
4553 			pmap_store(l1, srcptepaddr & ~ATTR_SW_WIRED);
4554 			pmap_resident_count_inc(dst_pmap, L1_SIZE / PAGE_SIZE);
4555 			continue;
4556 		}
4557 
4558 		va_next = (addr + L2_SIZE) & ~L2_OFFSET;
4559 		if (va_next < addr)
4560 			va_next = end_addr;
4561 		l2 = pmap_l1_to_l2(l1, addr);
4562 		srcptepaddr = pmap_load(l2);
4563 		if (srcptepaddr == 0)
4564 			continue;
4565 		if ((srcptepaddr & ATTR_DESCR_MASK) == L2_BLOCK) {
4566 			if ((addr & L2_OFFSET) != 0 ||
4567 			    addr + L2_SIZE > end_addr)
4568 				continue;
4569 			l2 = pmap_alloc_l2(dst_pmap, addr, &dst_m, NULL);
4570 			if (l2 == NULL)
4571 				break;
4572 			if (pmap_load(l2) == 0 &&
4573 			    ((srcptepaddr & ATTR_SW_MANAGED) == 0 ||
4574 			    pmap_pv_insert_l2(dst_pmap, addr, srcptepaddr,
4575 			    PMAP_ENTER_NORECLAIM, &lock))) {
4576 				mask = ATTR_SW_WIRED;
4577 				pmap_store(l2, srcptepaddr & ~mask);
4578 				pmap_resident_count_inc(dst_pmap, L2_SIZE /
4579 				    PAGE_SIZE);
4580 				atomic_add_long(&pmap_l2_mappings, 1);
4581 			} else
4582 				pmap_abort_ptp(dst_pmap, addr, dst_m);
4583 			continue;
4584 		}
4585 		KASSERT((srcptepaddr & ATTR_DESCR_MASK) == L2_TABLE,
4586 		    ("pmap_copy: invalid L2 entry"));
4587 		srcptepaddr &= ~ATTR_MASK;
4588 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
4589 		KASSERT(srcmpte->ref_count > 0,
4590 		    ("pmap_copy: source page table page is unused"));
4591 		if (va_next > end_addr)
4592 			va_next = end_addr;
4593 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
4594 		src_pte = &src_pte[pmap_l3_index(addr)];
4595 		dstmpte = NULL;
4596 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
4597 			ptetemp = pmap_load(src_pte);
4598 
4599 			/*
4600 			 * We only virtual copy managed pages.
4601 			 */
4602 			if ((ptetemp & ATTR_SW_MANAGED) == 0)
4603 				continue;
4604 
4605 			if (dstmpte != NULL) {
4606 				KASSERT(dstmpte->pindex == pmap_l2_pindex(addr),
4607 				    ("dstmpte pindex/addr mismatch"));
4608 				dstmpte->ref_count++;
4609 			} else if ((dstmpte = pmap_alloc_l3(dst_pmap, addr,
4610 			    NULL)) == NULL)
4611 				goto out;
4612 			dst_pte = (pt_entry_t *)
4613 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
4614 			dst_pte = &dst_pte[pmap_l3_index(addr)];
4615 			if (pmap_load(dst_pte) == 0 &&
4616 			    pmap_try_insert_pv_entry(dst_pmap, addr,
4617 			    PHYS_TO_VM_PAGE(ptetemp & ~ATTR_MASK), &lock)) {
4618 				/*
4619 				 * Clear the wired, modified, and accessed
4620 				 * (referenced) bits during the copy.
4621 				 */
4622 				mask = ATTR_AF | ATTR_SW_WIRED;
4623 				nbits = 0;
4624 				if ((ptetemp & ATTR_SW_DBM) != 0)
4625 					nbits |= ATTR_S1_AP_RW_BIT;
4626 				pmap_store(dst_pte, (ptetemp & ~mask) | nbits);
4627 				pmap_resident_count_inc(dst_pmap, 1);
4628 			} else {
4629 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
4630 				goto out;
4631 			}
4632 			/* Have we copied all of the valid mappings? */
4633 			if (dstmpte->ref_count >= srcmpte->ref_count)
4634 				break;
4635 		}
4636 	}
4637 out:
4638 	/*
4639 	 * XXX This barrier may not be needed because the destination pmap is
4640 	 * not active.
4641 	 */
4642 	dsb(ishst);
4643 
4644 	if (lock != NULL)
4645 		rw_wunlock(lock);
4646 	PMAP_UNLOCK(src_pmap);
4647 	PMAP_UNLOCK(dst_pmap);
4648 }
4649 
4650 /*
4651  *	pmap_zero_page zeros the specified hardware page by mapping
4652  *	the page into KVM and using bzero to clear its contents.
4653  */
4654 void
4655 pmap_zero_page(vm_page_t m)
4656 {
4657 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4658 
4659 	pagezero((void *)va);
4660 }
4661 
4662 /*
4663  *	pmap_zero_page_area zeros the specified hardware page by mapping
4664  *	the page into KVM and using bzero to clear its contents.
4665  *
4666  *	off and size may not cover an area beyond a single hardware page.
4667  */
4668 void
4669 pmap_zero_page_area(vm_page_t m, int off, int size)
4670 {
4671 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4672 
4673 	if (off == 0 && size == PAGE_SIZE)
4674 		pagezero((void *)va);
4675 	else
4676 		bzero((char *)va + off, size);
4677 }
4678 
4679 /*
4680  *	pmap_copy_page copies the specified (machine independent)
4681  *	page by mapping the page into virtual memory and using
4682  *	bcopy to copy the page, one machine dependent page at a
4683  *	time.
4684  */
4685 void
4686 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
4687 {
4688 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
4689 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
4690 
4691 	pagecopy((void *)src, (void *)dst);
4692 }
4693 
4694 int unmapped_buf_allowed = 1;
4695 
4696 void
4697 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4698     vm_offset_t b_offset, int xfersize)
4699 {
4700 	void *a_cp, *b_cp;
4701 	vm_page_t m_a, m_b;
4702 	vm_paddr_t p_a, p_b;
4703 	vm_offset_t a_pg_offset, b_pg_offset;
4704 	int cnt;
4705 
4706 	while (xfersize > 0) {
4707 		a_pg_offset = a_offset & PAGE_MASK;
4708 		m_a = ma[a_offset >> PAGE_SHIFT];
4709 		p_a = m_a->phys_addr;
4710 		b_pg_offset = b_offset & PAGE_MASK;
4711 		m_b = mb[b_offset >> PAGE_SHIFT];
4712 		p_b = m_b->phys_addr;
4713 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4714 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4715 		if (__predict_false(!PHYS_IN_DMAP(p_a))) {
4716 			panic("!DMAP a %lx", p_a);
4717 		} else {
4718 			a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
4719 		}
4720 		if (__predict_false(!PHYS_IN_DMAP(p_b))) {
4721 			panic("!DMAP b %lx", p_b);
4722 		} else {
4723 			b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
4724 		}
4725 		bcopy(a_cp, b_cp, cnt);
4726 		a_offset += cnt;
4727 		b_offset += cnt;
4728 		xfersize -= cnt;
4729 	}
4730 }
4731 
4732 vm_offset_t
4733 pmap_quick_enter_page(vm_page_t m)
4734 {
4735 
4736 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
4737 }
4738 
4739 void
4740 pmap_quick_remove_page(vm_offset_t addr)
4741 {
4742 }
4743 
4744 /*
4745  * Returns true if the pmap's pv is one of the first
4746  * 16 pvs linked to from this page.  This count may
4747  * be changed upwards or downwards in the future; it
4748  * is only necessary that true be returned for a small
4749  * subset of pmaps for proper page aging.
4750  */
4751 boolean_t
4752 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4753 {
4754 	struct md_page *pvh;
4755 	struct rwlock *lock;
4756 	pv_entry_t pv;
4757 	int loops = 0;
4758 	boolean_t rv;
4759 
4760 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4761 	    ("pmap_page_exists_quick: page %p is not managed", m));
4762 	rv = FALSE;
4763 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4764 	rw_rlock(lock);
4765 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4766 		if (PV_PMAP(pv) == pmap) {
4767 			rv = TRUE;
4768 			break;
4769 		}
4770 		loops++;
4771 		if (loops >= 16)
4772 			break;
4773 	}
4774 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4775 		pvh = page_to_pvh(m);
4776 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4777 			if (PV_PMAP(pv) == pmap) {
4778 				rv = TRUE;
4779 				break;
4780 			}
4781 			loops++;
4782 			if (loops >= 16)
4783 				break;
4784 		}
4785 	}
4786 	rw_runlock(lock);
4787 	return (rv);
4788 }
4789 
4790 /*
4791  *	pmap_page_wired_mappings:
4792  *
4793  *	Return the number of managed mappings to the given physical page
4794  *	that are wired.
4795  */
4796 int
4797 pmap_page_wired_mappings(vm_page_t m)
4798 {
4799 	struct rwlock *lock;
4800 	struct md_page *pvh;
4801 	pmap_t pmap;
4802 	pt_entry_t *pte;
4803 	pv_entry_t pv;
4804 	int count, lvl, md_gen, pvh_gen;
4805 
4806 	if ((m->oflags & VPO_UNMANAGED) != 0)
4807 		return (0);
4808 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4809 	rw_rlock(lock);
4810 restart:
4811 	count = 0;
4812 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4813 		pmap = PV_PMAP(pv);
4814 		if (!PMAP_TRYLOCK(pmap)) {
4815 			md_gen = m->md.pv_gen;
4816 			rw_runlock(lock);
4817 			PMAP_LOCK(pmap);
4818 			rw_rlock(lock);
4819 			if (md_gen != m->md.pv_gen) {
4820 				PMAP_UNLOCK(pmap);
4821 				goto restart;
4822 			}
4823 		}
4824 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
4825 		if (pte != NULL && (pmap_load(pte) & ATTR_SW_WIRED) != 0)
4826 			count++;
4827 		PMAP_UNLOCK(pmap);
4828 	}
4829 	if ((m->flags & PG_FICTITIOUS) == 0) {
4830 		pvh = page_to_pvh(m);
4831 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4832 			pmap = PV_PMAP(pv);
4833 			if (!PMAP_TRYLOCK(pmap)) {
4834 				md_gen = m->md.pv_gen;
4835 				pvh_gen = pvh->pv_gen;
4836 				rw_runlock(lock);
4837 				PMAP_LOCK(pmap);
4838 				rw_rlock(lock);
4839 				if (md_gen != m->md.pv_gen ||
4840 				    pvh_gen != pvh->pv_gen) {
4841 					PMAP_UNLOCK(pmap);
4842 					goto restart;
4843 				}
4844 			}
4845 			pte = pmap_pte(pmap, pv->pv_va, &lvl);
4846 			if (pte != NULL &&
4847 			    (pmap_load(pte) & ATTR_SW_WIRED) != 0)
4848 				count++;
4849 			PMAP_UNLOCK(pmap);
4850 		}
4851 	}
4852 	rw_runlock(lock);
4853 	return (count);
4854 }
4855 
4856 /*
4857  * Returns true if the given page is mapped individually or as part of
4858  * a 2mpage.  Otherwise, returns false.
4859  */
4860 bool
4861 pmap_page_is_mapped(vm_page_t m)
4862 {
4863 	struct rwlock *lock;
4864 	bool rv;
4865 
4866 	if ((m->oflags & VPO_UNMANAGED) != 0)
4867 		return (false);
4868 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4869 	rw_rlock(lock);
4870 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4871 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4872 	    !TAILQ_EMPTY(&page_to_pvh(m)->pv_list));
4873 	rw_runlock(lock);
4874 	return (rv);
4875 }
4876 
4877 /*
4878  * Destroy all managed, non-wired mappings in the given user-space
4879  * pmap.  This pmap cannot be active on any processor besides the
4880  * caller.
4881  *
4882  * This function cannot be applied to the kernel pmap.  Moreover, it
4883  * is not intended for general use.  It is only to be used during
4884  * process termination.  Consequently, it can be implemented in ways
4885  * that make it faster than pmap_remove().  First, it can more quickly
4886  * destroy mappings by iterating over the pmap's collection of PV
4887  * entries, rather than searching the page table.  Second, it doesn't
4888  * have to test and clear the page table entries atomically, because
4889  * no processor is currently accessing the user address space.  In
4890  * particular, a page table entry's dirty bit won't change state once
4891  * this function starts.
4892  */
4893 void
4894 pmap_remove_pages(pmap_t pmap)
4895 {
4896 	pd_entry_t *pde;
4897 	pt_entry_t *pte, tpte;
4898 	struct spglist free;
4899 	vm_page_t m, ml3, mt;
4900 	pv_entry_t pv;
4901 	struct md_page *pvh;
4902 	struct pv_chunk *pc, *npc;
4903 	struct rwlock *lock;
4904 	int64_t bit;
4905 	uint64_t inuse, bitmask;
4906 	int allfree, field, freed, idx, lvl;
4907 	vm_paddr_t pa;
4908 
4909 	lock = NULL;
4910 
4911 	SLIST_INIT(&free);
4912 	PMAP_LOCK(pmap);
4913 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4914 		allfree = 1;
4915 		freed = 0;
4916 		for (field = 0; field < _NPCM; field++) {
4917 			inuse = ~pc->pc_map[field] & pc_freemask[field];
4918 			while (inuse != 0) {
4919 				bit = ffsl(inuse) - 1;
4920 				bitmask = 1UL << bit;
4921 				idx = field * 64 + bit;
4922 				pv = &pc->pc_pventry[idx];
4923 				inuse &= ~bitmask;
4924 
4925 				pde = pmap_pde(pmap, pv->pv_va, &lvl);
4926 				KASSERT(pde != NULL,
4927 				    ("Attempting to remove an unmapped page"));
4928 
4929 				switch(lvl) {
4930 				case 1:
4931 					pte = pmap_l1_to_l2(pde, pv->pv_va);
4932 					tpte = pmap_load(pte);
4933 					KASSERT((tpte & ATTR_DESCR_MASK) ==
4934 					    L2_BLOCK,
4935 					    ("Attempting to remove an invalid "
4936 					    "block: %lx", tpte));
4937 					break;
4938 				case 2:
4939 					pte = pmap_l2_to_l3(pde, pv->pv_va);
4940 					tpte = pmap_load(pte);
4941 					KASSERT((tpte & ATTR_DESCR_MASK) ==
4942 					    L3_PAGE,
4943 					    ("Attempting to remove an invalid "
4944 					     "page: %lx", tpte));
4945 					break;
4946 				default:
4947 					panic(
4948 					    "Invalid page directory level: %d",
4949 					    lvl);
4950 				}
4951 
4952 /*
4953  * We cannot remove wired pages from a process' mapping at this time
4954  */
4955 				if (tpte & ATTR_SW_WIRED) {
4956 					allfree = 0;
4957 					continue;
4958 				}
4959 
4960 				pa = tpte & ~ATTR_MASK;
4961 
4962 				m = PHYS_TO_VM_PAGE(pa);
4963 				KASSERT(m->phys_addr == pa,
4964 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4965 				    m, (uintmax_t)m->phys_addr,
4966 				    (uintmax_t)tpte));
4967 
4968 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4969 				    m < &vm_page_array[vm_page_array_size],
4970 				    ("pmap_remove_pages: bad pte %#jx",
4971 				    (uintmax_t)tpte));
4972 
4973 				/*
4974 				 * Because this pmap is not active on other
4975 				 * processors, the dirty bit cannot have
4976 				 * changed state since we last loaded pte.
4977 				 */
4978 				pmap_clear(pte);
4979 
4980 				/*
4981 				 * Update the vm_page_t clean/reference bits.
4982 				 */
4983 				if (pmap_pte_dirty(pmap, tpte)) {
4984 					switch (lvl) {
4985 					case 1:
4986 						for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
4987 							vm_page_dirty(mt);
4988 						break;
4989 					case 2:
4990 						vm_page_dirty(m);
4991 						break;
4992 					}
4993 				}
4994 
4995 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
4996 
4997 				/* Mark free */
4998 				pc->pc_map[field] |= bitmask;
4999 				switch (lvl) {
5000 				case 1:
5001 					pmap_resident_count_dec(pmap,
5002 					    L2_SIZE / PAGE_SIZE);
5003 					pvh = pa_to_pvh(tpte & ~ATTR_MASK);
5004 					TAILQ_REMOVE(&pvh->pv_list, pv,pv_next);
5005 					pvh->pv_gen++;
5006 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5007 						for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
5008 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5009 							    TAILQ_EMPTY(&mt->md.pv_list))
5010 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5011 					}
5012 					ml3 = pmap_remove_pt_page(pmap,
5013 					    pv->pv_va);
5014 					if (ml3 != NULL) {
5015 						KASSERT(ml3->valid == VM_PAGE_BITS_ALL,
5016 						    ("pmap_remove_pages: l3 page not promoted"));
5017 						pmap_resident_count_dec(pmap,1);
5018 						KASSERT(ml3->ref_count == NL3PG,
5019 						    ("pmap_remove_pages: l3 page ref count error"));
5020 						ml3->ref_count = 0;
5021 						pmap_add_delayed_free_list(ml3,
5022 						    &free, FALSE);
5023 					}
5024 					break;
5025 				case 2:
5026 					pmap_resident_count_dec(pmap, 1);
5027 					TAILQ_REMOVE(&m->md.pv_list, pv,
5028 					    pv_next);
5029 					m->md.pv_gen++;
5030 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5031 					    TAILQ_EMPTY(&m->md.pv_list) &&
5032 					    (m->flags & PG_FICTITIOUS) == 0) {
5033 						pvh = page_to_pvh(m);
5034 						if (TAILQ_EMPTY(&pvh->pv_list))
5035 							vm_page_aflag_clear(m,
5036 							    PGA_WRITEABLE);
5037 					}
5038 					break;
5039 				}
5040 				pmap_unuse_pt(pmap, pv->pv_va, pmap_load(pde),
5041 				    &free);
5042 				freed++;
5043 			}
5044 		}
5045 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5046 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5047 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5048 		if (allfree) {
5049 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5050 			free_pv_chunk(pc);
5051 		}
5052 	}
5053 	if (lock != NULL)
5054 		rw_wunlock(lock);
5055 	pmap_invalidate_all(pmap);
5056 	PMAP_UNLOCK(pmap);
5057 	vm_page_free_pages_toq(&free, true);
5058 }
5059 
5060 /*
5061  * This is used to check if a page has been accessed or modified.
5062  */
5063 static boolean_t
5064 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
5065 {
5066 	struct rwlock *lock;
5067 	pv_entry_t pv;
5068 	struct md_page *pvh;
5069 	pt_entry_t *pte, mask, value;
5070 	pmap_t pmap;
5071 	int lvl, md_gen, pvh_gen;
5072 	boolean_t rv;
5073 
5074 	rv = FALSE;
5075 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5076 	rw_rlock(lock);
5077 restart:
5078 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5079 		pmap = PV_PMAP(pv);
5080 		PMAP_ASSERT_STAGE1(pmap);
5081 		if (!PMAP_TRYLOCK(pmap)) {
5082 			md_gen = m->md.pv_gen;
5083 			rw_runlock(lock);
5084 			PMAP_LOCK(pmap);
5085 			rw_rlock(lock);
5086 			if (md_gen != m->md.pv_gen) {
5087 				PMAP_UNLOCK(pmap);
5088 				goto restart;
5089 			}
5090 		}
5091 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
5092 		KASSERT(lvl == 3,
5093 		    ("pmap_page_test_mappings: Invalid level %d", lvl));
5094 		mask = 0;
5095 		value = 0;
5096 		if (modified) {
5097 			mask |= ATTR_S1_AP_RW_BIT;
5098 			value |= ATTR_S1_AP(ATTR_S1_AP_RW);
5099 		}
5100 		if (accessed) {
5101 			mask |= ATTR_AF | ATTR_DESCR_MASK;
5102 			value |= ATTR_AF | L3_PAGE;
5103 		}
5104 		rv = (pmap_load(pte) & mask) == value;
5105 		PMAP_UNLOCK(pmap);
5106 		if (rv)
5107 			goto out;
5108 	}
5109 	if ((m->flags & PG_FICTITIOUS) == 0) {
5110 		pvh = page_to_pvh(m);
5111 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5112 			pmap = PV_PMAP(pv);
5113 			PMAP_ASSERT_STAGE1(pmap);
5114 			if (!PMAP_TRYLOCK(pmap)) {
5115 				md_gen = m->md.pv_gen;
5116 				pvh_gen = pvh->pv_gen;
5117 				rw_runlock(lock);
5118 				PMAP_LOCK(pmap);
5119 				rw_rlock(lock);
5120 				if (md_gen != m->md.pv_gen ||
5121 				    pvh_gen != pvh->pv_gen) {
5122 					PMAP_UNLOCK(pmap);
5123 					goto restart;
5124 				}
5125 			}
5126 			pte = pmap_pte(pmap, pv->pv_va, &lvl);
5127 			KASSERT(lvl == 2,
5128 			    ("pmap_page_test_mappings: Invalid level %d", lvl));
5129 			mask = 0;
5130 			value = 0;
5131 			if (modified) {
5132 				mask |= ATTR_S1_AP_RW_BIT;
5133 				value |= ATTR_S1_AP(ATTR_S1_AP_RW);
5134 			}
5135 			if (accessed) {
5136 				mask |= ATTR_AF | ATTR_DESCR_MASK;
5137 				value |= ATTR_AF | L2_BLOCK;
5138 			}
5139 			rv = (pmap_load(pte) & mask) == value;
5140 			PMAP_UNLOCK(pmap);
5141 			if (rv)
5142 				goto out;
5143 		}
5144 	}
5145 out:
5146 	rw_runlock(lock);
5147 	return (rv);
5148 }
5149 
5150 /*
5151  *	pmap_is_modified:
5152  *
5153  *	Return whether or not the specified physical page was modified
5154  *	in any physical maps.
5155  */
5156 boolean_t
5157 pmap_is_modified(vm_page_t m)
5158 {
5159 
5160 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5161 	    ("pmap_is_modified: page %p is not managed", m));
5162 
5163 	/*
5164 	 * If the page is not busied then this check is racy.
5165 	 */
5166 	if (!pmap_page_is_write_mapped(m))
5167 		return (FALSE);
5168 	return (pmap_page_test_mappings(m, FALSE, TRUE));
5169 }
5170 
5171 /*
5172  *	pmap_is_prefaultable:
5173  *
5174  *	Return whether or not the specified virtual address is eligible
5175  *	for prefault.
5176  */
5177 boolean_t
5178 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5179 {
5180 	pt_entry_t *pte;
5181 	boolean_t rv;
5182 	int lvl;
5183 
5184 	rv = FALSE;
5185 	PMAP_LOCK(pmap);
5186 	pte = pmap_pte(pmap, addr, &lvl);
5187 	if (pte != NULL && pmap_load(pte) != 0) {
5188 		rv = TRUE;
5189 	}
5190 	PMAP_UNLOCK(pmap);
5191 	return (rv);
5192 }
5193 
5194 /*
5195  *	pmap_is_referenced:
5196  *
5197  *	Return whether or not the specified physical page was referenced
5198  *	in any physical maps.
5199  */
5200 boolean_t
5201 pmap_is_referenced(vm_page_t m)
5202 {
5203 
5204 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5205 	    ("pmap_is_referenced: page %p is not managed", m));
5206 	return (pmap_page_test_mappings(m, TRUE, FALSE));
5207 }
5208 
5209 /*
5210  * Clear the write and modified bits in each of the given page's mappings.
5211  */
5212 void
5213 pmap_remove_write(vm_page_t m)
5214 {
5215 	struct md_page *pvh;
5216 	pmap_t pmap;
5217 	struct rwlock *lock;
5218 	pv_entry_t next_pv, pv;
5219 	pt_entry_t oldpte, *pte;
5220 	vm_offset_t va;
5221 	int lvl, md_gen, pvh_gen;
5222 
5223 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5224 	    ("pmap_remove_write: page %p is not managed", m));
5225 	vm_page_assert_busied(m);
5226 
5227 	if (!pmap_page_is_write_mapped(m))
5228 		return;
5229 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5230 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
5231 retry_pv_loop:
5232 	rw_wlock(lock);
5233 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5234 		pmap = PV_PMAP(pv);
5235 		PMAP_ASSERT_STAGE1(pmap);
5236 		if (!PMAP_TRYLOCK(pmap)) {
5237 			pvh_gen = pvh->pv_gen;
5238 			rw_wunlock(lock);
5239 			PMAP_LOCK(pmap);
5240 			rw_wlock(lock);
5241 			if (pvh_gen != pvh->pv_gen) {
5242 				PMAP_UNLOCK(pmap);
5243 				rw_wunlock(lock);
5244 				goto retry_pv_loop;
5245 			}
5246 		}
5247 		va = pv->pv_va;
5248 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
5249 		if ((pmap_load(pte) & ATTR_SW_DBM) != 0)
5250 			(void)pmap_demote_l2_locked(pmap, pte, va, &lock);
5251 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5252 		    ("inconsistent pv lock %p %p for page %p",
5253 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5254 		PMAP_UNLOCK(pmap);
5255 	}
5256 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5257 		pmap = PV_PMAP(pv);
5258 		PMAP_ASSERT_STAGE1(pmap);
5259 		if (!PMAP_TRYLOCK(pmap)) {
5260 			pvh_gen = pvh->pv_gen;
5261 			md_gen = m->md.pv_gen;
5262 			rw_wunlock(lock);
5263 			PMAP_LOCK(pmap);
5264 			rw_wlock(lock);
5265 			if (pvh_gen != pvh->pv_gen ||
5266 			    md_gen != m->md.pv_gen) {
5267 				PMAP_UNLOCK(pmap);
5268 				rw_wunlock(lock);
5269 				goto retry_pv_loop;
5270 			}
5271 		}
5272 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
5273 		oldpte = pmap_load(pte);
5274 retry:
5275 		if ((oldpte & ATTR_SW_DBM) != 0) {
5276 			if (!atomic_fcmpset_long(pte, &oldpte,
5277 			    (oldpte | ATTR_S1_AP_RW_BIT) & ~ATTR_SW_DBM))
5278 				goto retry;
5279 			if ((oldpte & ATTR_S1_AP_RW_BIT) ==
5280 			    ATTR_S1_AP(ATTR_S1_AP_RW))
5281 				vm_page_dirty(m);
5282 			pmap_invalidate_page(pmap, pv->pv_va);
5283 		}
5284 		PMAP_UNLOCK(pmap);
5285 	}
5286 	rw_wunlock(lock);
5287 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5288 }
5289 
5290 /*
5291  *	pmap_ts_referenced:
5292  *
5293  *	Return a count of reference bits for a page, clearing those bits.
5294  *	It is not necessary for every reference bit to be cleared, but it
5295  *	is necessary that 0 only be returned when there are truly no
5296  *	reference bits set.
5297  *
5298  *	As an optimization, update the page's dirty field if a modified bit is
5299  *	found while counting reference bits.  This opportunistic update can be
5300  *	performed at low cost and can eliminate the need for some future calls
5301  *	to pmap_is_modified().  However, since this function stops after
5302  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5303  *	dirty pages.  Those dirty pages will only be detected by a future call
5304  *	to pmap_is_modified().
5305  */
5306 int
5307 pmap_ts_referenced(vm_page_t m)
5308 {
5309 	struct md_page *pvh;
5310 	pv_entry_t pv, pvf;
5311 	pmap_t pmap;
5312 	struct rwlock *lock;
5313 	pd_entry_t *pde, tpde;
5314 	pt_entry_t *pte, tpte;
5315 	vm_offset_t va;
5316 	vm_paddr_t pa;
5317 	int cleared, lvl, md_gen, not_cleared, pvh_gen;
5318 	struct spglist free;
5319 
5320 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5321 	    ("pmap_ts_referenced: page %p is not managed", m));
5322 	SLIST_INIT(&free);
5323 	cleared = 0;
5324 	pa = VM_PAGE_TO_PHYS(m);
5325 	lock = PHYS_TO_PV_LIST_LOCK(pa);
5326 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
5327 	rw_wlock(lock);
5328 retry:
5329 	not_cleared = 0;
5330 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5331 		goto small_mappings;
5332 	pv = pvf;
5333 	do {
5334 		if (pvf == NULL)
5335 			pvf = pv;
5336 		pmap = PV_PMAP(pv);
5337 		if (!PMAP_TRYLOCK(pmap)) {
5338 			pvh_gen = pvh->pv_gen;
5339 			rw_wunlock(lock);
5340 			PMAP_LOCK(pmap);
5341 			rw_wlock(lock);
5342 			if (pvh_gen != pvh->pv_gen) {
5343 				PMAP_UNLOCK(pmap);
5344 				goto retry;
5345 			}
5346 		}
5347 		va = pv->pv_va;
5348 		pde = pmap_pde(pmap, pv->pv_va, &lvl);
5349 		KASSERT(pde != NULL, ("pmap_ts_referenced: no l1 table found"));
5350 		KASSERT(lvl == 1,
5351 		    ("pmap_ts_referenced: invalid pde level %d", lvl));
5352 		tpde = pmap_load(pde);
5353 		KASSERT((tpde & ATTR_DESCR_MASK) == L1_TABLE,
5354 		    ("pmap_ts_referenced: found an invalid l1 table"));
5355 		pte = pmap_l1_to_l2(pde, pv->pv_va);
5356 		tpte = pmap_load(pte);
5357 		if (pmap_pte_dirty(pmap, tpte)) {
5358 			/*
5359 			 * Although "tpte" is mapping a 2MB page, because
5360 			 * this function is called at a 4KB page granularity,
5361 			 * we only update the 4KB page under test.
5362 			 */
5363 			vm_page_dirty(m);
5364 		}
5365 
5366 		if ((tpte & ATTR_AF) != 0) {
5367 			/*
5368 			 * Since this reference bit is shared by 512 4KB pages,
5369 			 * it should not be cleared every time it is tested.
5370 			 * Apply a simple "hash" function on the physical page
5371 			 * number, the virtual superpage number, and the pmap
5372 			 * address to select one 4KB page out of the 512 on
5373 			 * which testing the reference bit will result in
5374 			 * clearing that reference bit.  This function is
5375 			 * designed to avoid the selection of the same 4KB page
5376 			 * for every 2MB page mapping.
5377 			 *
5378 			 * On demotion, a mapping that hasn't been referenced
5379 			 * is simply destroyed.  To avoid the possibility of a
5380 			 * subsequent page fault on a demoted wired mapping,
5381 			 * always leave its reference bit set.  Moreover,
5382 			 * since the superpage is wired, the current state of
5383 			 * its reference bit won't affect page replacement.
5384 			 */
5385 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L2_SHIFT) ^
5386 			    (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 &&
5387 			    (tpte & ATTR_SW_WIRED) == 0) {
5388 				pmap_clear_bits(pte, ATTR_AF);
5389 				pmap_invalidate_page(pmap, pv->pv_va);
5390 				cleared++;
5391 			} else
5392 				not_cleared++;
5393 		}
5394 		PMAP_UNLOCK(pmap);
5395 		/* Rotate the PV list if it has more than one entry. */
5396 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
5397 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5398 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5399 			pvh->pv_gen++;
5400 		}
5401 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
5402 			goto out;
5403 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5404 small_mappings:
5405 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5406 		goto out;
5407 	pv = pvf;
5408 	do {
5409 		if (pvf == NULL)
5410 			pvf = pv;
5411 		pmap = PV_PMAP(pv);
5412 		if (!PMAP_TRYLOCK(pmap)) {
5413 			pvh_gen = pvh->pv_gen;
5414 			md_gen = m->md.pv_gen;
5415 			rw_wunlock(lock);
5416 			PMAP_LOCK(pmap);
5417 			rw_wlock(lock);
5418 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5419 				PMAP_UNLOCK(pmap);
5420 				goto retry;
5421 			}
5422 		}
5423 		pde = pmap_pde(pmap, pv->pv_va, &lvl);
5424 		KASSERT(pde != NULL, ("pmap_ts_referenced: no l2 table found"));
5425 		KASSERT(lvl == 2,
5426 		    ("pmap_ts_referenced: invalid pde level %d", lvl));
5427 		tpde = pmap_load(pde);
5428 		KASSERT((tpde & ATTR_DESCR_MASK) == L2_TABLE,
5429 		    ("pmap_ts_referenced: found an invalid l2 table"));
5430 		pte = pmap_l2_to_l3(pde, pv->pv_va);
5431 		tpte = pmap_load(pte);
5432 		if (pmap_pte_dirty(pmap, tpte))
5433 			vm_page_dirty(m);
5434 		if ((tpte & ATTR_AF) != 0) {
5435 			if ((tpte & ATTR_SW_WIRED) == 0) {
5436 				pmap_clear_bits(pte, ATTR_AF);
5437 				pmap_invalidate_page(pmap, pv->pv_va);
5438 				cleared++;
5439 			} else
5440 				not_cleared++;
5441 		}
5442 		PMAP_UNLOCK(pmap);
5443 		/* Rotate the PV list if it has more than one entry. */
5444 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
5445 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5446 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5447 			m->md.pv_gen++;
5448 		}
5449 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
5450 	    not_cleared < PMAP_TS_REFERENCED_MAX);
5451 out:
5452 	rw_wunlock(lock);
5453 	vm_page_free_pages_toq(&free, true);
5454 	return (cleared + not_cleared);
5455 }
5456 
5457 /*
5458  *	Apply the given advice to the specified range of addresses within the
5459  *	given pmap.  Depending on the advice, clear the referenced and/or
5460  *	modified flags in each mapping and set the mapped page's dirty field.
5461  */
5462 void
5463 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5464 {
5465 	struct rwlock *lock;
5466 	vm_offset_t va, va_next;
5467 	vm_page_t m;
5468 	pd_entry_t *l0, *l1, *l2, oldl2;
5469 	pt_entry_t *l3, oldl3;
5470 
5471 	PMAP_ASSERT_STAGE1(pmap);
5472 
5473 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5474 		return;
5475 
5476 	PMAP_LOCK(pmap);
5477 	for (; sva < eva; sva = va_next) {
5478 		l0 = pmap_l0(pmap, sva);
5479 		if (pmap_load(l0) == 0) {
5480 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
5481 			if (va_next < sva)
5482 				va_next = eva;
5483 			continue;
5484 		}
5485 
5486 		va_next = (sva + L1_SIZE) & ~L1_OFFSET;
5487 		if (va_next < sva)
5488 			va_next = eva;
5489 		l1 = pmap_l0_to_l1(l0, sva);
5490 		if (pmap_load(l1) == 0)
5491 			continue;
5492 		if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
5493 			KASSERT(va_next <= eva,
5494 			    ("partial update of non-transparent 1G page "
5495 			    "l1 %#lx sva %#lx eva %#lx va_next %#lx",
5496 			    pmap_load(l1), sva, eva, va_next));
5497 			continue;
5498 		}
5499 
5500 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
5501 		if (va_next < sva)
5502 			va_next = eva;
5503 		l2 = pmap_l1_to_l2(l1, sva);
5504 		oldl2 = pmap_load(l2);
5505 		if (oldl2 == 0)
5506 			continue;
5507 		if ((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK) {
5508 			if ((oldl2 & ATTR_SW_MANAGED) == 0)
5509 				continue;
5510 			lock = NULL;
5511 			if (!pmap_demote_l2_locked(pmap, l2, sva, &lock)) {
5512 				if (lock != NULL)
5513 					rw_wunlock(lock);
5514 
5515 				/*
5516 				 * The 2MB page mapping was destroyed.
5517 				 */
5518 				continue;
5519 			}
5520 
5521 			/*
5522 			 * Unless the page mappings are wired, remove the
5523 			 * mapping to a single page so that a subsequent
5524 			 * access may repromote.  Choosing the last page
5525 			 * within the address range [sva, min(va_next, eva))
5526 			 * generally results in more repromotions.  Since the
5527 			 * underlying page table page is fully populated, this
5528 			 * removal never frees a page table page.
5529 			 */
5530 			if ((oldl2 & ATTR_SW_WIRED) == 0) {
5531 				va = eva;
5532 				if (va > va_next)
5533 					va = va_next;
5534 				va -= PAGE_SIZE;
5535 				KASSERT(va >= sva,
5536 				    ("pmap_advise: no address gap"));
5537 				l3 = pmap_l2_to_l3(l2, va);
5538 				KASSERT(pmap_load(l3) != 0,
5539 				    ("pmap_advise: invalid PTE"));
5540 				pmap_remove_l3(pmap, l3, va, pmap_load(l2),
5541 				    NULL, &lock);
5542 			}
5543 			if (lock != NULL)
5544 				rw_wunlock(lock);
5545 		}
5546 		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
5547 		    ("pmap_advise: invalid L2 entry after demotion"));
5548 		if (va_next > eva)
5549 			va_next = eva;
5550 		va = va_next;
5551 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
5552 		    sva += L3_SIZE) {
5553 			oldl3 = pmap_load(l3);
5554 			if ((oldl3 & (ATTR_SW_MANAGED | ATTR_DESCR_MASK)) !=
5555 			    (ATTR_SW_MANAGED | L3_PAGE))
5556 				goto maybe_invlrng;
5557 			else if (pmap_pte_dirty(pmap, oldl3)) {
5558 				if (advice == MADV_DONTNEED) {
5559 					/*
5560 					 * Future calls to pmap_is_modified()
5561 					 * can be avoided by making the page
5562 					 * dirty now.
5563 					 */
5564 					m = PHYS_TO_VM_PAGE(oldl3 & ~ATTR_MASK);
5565 					vm_page_dirty(m);
5566 				}
5567 				while (!atomic_fcmpset_long(l3, &oldl3,
5568 				    (oldl3 & ~ATTR_AF) |
5569 				    ATTR_S1_AP(ATTR_S1_AP_RO)))
5570 					cpu_spinwait();
5571 			} else if ((oldl3 & ATTR_AF) != 0)
5572 				pmap_clear_bits(l3, ATTR_AF);
5573 			else
5574 				goto maybe_invlrng;
5575 			if (va == va_next)
5576 				va = sva;
5577 			continue;
5578 maybe_invlrng:
5579 			if (va != va_next) {
5580 				pmap_invalidate_range(pmap, va, sva);
5581 				va = va_next;
5582 			}
5583 		}
5584 		if (va != va_next)
5585 			pmap_invalidate_range(pmap, va, sva);
5586 	}
5587 	PMAP_UNLOCK(pmap);
5588 }
5589 
5590 /*
5591  *	Clear the modify bits on the specified physical page.
5592  */
5593 void
5594 pmap_clear_modify(vm_page_t m)
5595 {
5596 	struct md_page *pvh;
5597 	struct rwlock *lock;
5598 	pmap_t pmap;
5599 	pv_entry_t next_pv, pv;
5600 	pd_entry_t *l2, oldl2;
5601 	pt_entry_t *l3, oldl3;
5602 	vm_offset_t va;
5603 	int md_gen, pvh_gen;
5604 
5605 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5606 	    ("pmap_clear_modify: page %p is not managed", m));
5607 	vm_page_assert_busied(m);
5608 
5609 	if (!pmap_page_is_write_mapped(m))
5610 		return;
5611 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
5612 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5613 	rw_wlock(lock);
5614 restart:
5615 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5616 		pmap = PV_PMAP(pv);
5617 		PMAP_ASSERT_STAGE1(pmap);
5618 		if (!PMAP_TRYLOCK(pmap)) {
5619 			pvh_gen = pvh->pv_gen;
5620 			rw_wunlock(lock);
5621 			PMAP_LOCK(pmap);
5622 			rw_wlock(lock);
5623 			if (pvh_gen != pvh->pv_gen) {
5624 				PMAP_UNLOCK(pmap);
5625 				goto restart;
5626 			}
5627 		}
5628 		va = pv->pv_va;
5629 		l2 = pmap_l2(pmap, va);
5630 		oldl2 = pmap_load(l2);
5631 		/* If oldl2 has ATTR_SW_DBM set, then it is also dirty. */
5632 		if ((oldl2 & ATTR_SW_DBM) != 0 &&
5633 		    pmap_demote_l2_locked(pmap, l2, va, &lock) &&
5634 		    (oldl2 & ATTR_SW_WIRED) == 0) {
5635 			/*
5636 			 * Write protect the mapping to a single page so that
5637 			 * a subsequent write access may repromote.
5638 			 */
5639 			va += VM_PAGE_TO_PHYS(m) - (oldl2 & ~ATTR_MASK);
5640 			l3 = pmap_l2_to_l3(l2, va);
5641 			oldl3 = pmap_load(l3);
5642 			while (!atomic_fcmpset_long(l3, &oldl3,
5643 			    (oldl3 & ~ATTR_SW_DBM) | ATTR_S1_AP(ATTR_S1_AP_RO)))
5644 				cpu_spinwait();
5645 			vm_page_dirty(m);
5646 			pmap_invalidate_page(pmap, va);
5647 		}
5648 		PMAP_UNLOCK(pmap);
5649 	}
5650 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5651 		pmap = PV_PMAP(pv);
5652 		PMAP_ASSERT_STAGE1(pmap);
5653 		if (!PMAP_TRYLOCK(pmap)) {
5654 			md_gen = m->md.pv_gen;
5655 			pvh_gen = pvh->pv_gen;
5656 			rw_wunlock(lock);
5657 			PMAP_LOCK(pmap);
5658 			rw_wlock(lock);
5659 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5660 				PMAP_UNLOCK(pmap);
5661 				goto restart;
5662 			}
5663 		}
5664 		l2 = pmap_l2(pmap, pv->pv_va);
5665 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
5666 		oldl3 = pmap_load(l3);
5667 		if (pmap_l3_valid(oldl3) &&
5668 		    (oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) == ATTR_SW_DBM){
5669 			pmap_set_bits(l3, ATTR_S1_AP(ATTR_S1_AP_RO));
5670 			pmap_invalidate_page(pmap, pv->pv_va);
5671 		}
5672 		PMAP_UNLOCK(pmap);
5673 	}
5674 	rw_wunlock(lock);
5675 }
5676 
5677 void *
5678 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5679 {
5680 	struct pmap_preinit_mapping *ppim;
5681 	vm_offset_t va, offset;
5682 	pd_entry_t *pde;
5683 	pt_entry_t *l2;
5684 	int i, lvl, l2_blocks, free_l2_count, start_idx;
5685 
5686 	if (!vm_initialized) {
5687 		/*
5688 		 * No L3 ptables so map entire L2 blocks where start VA is:
5689 		 * 	preinit_map_va + start_idx * L2_SIZE
5690 		 * There may be duplicate mappings (multiple VA -> same PA) but
5691 		 * ARM64 dcache is always PIPT so that's acceptable.
5692 		 */
5693 		 if (size == 0)
5694 			 return (NULL);
5695 
5696 		 /* Calculate how many L2 blocks are needed for the mapping */
5697 		l2_blocks = (roundup2(pa + size, L2_SIZE) -
5698 		    rounddown2(pa, L2_SIZE)) >> L2_SHIFT;
5699 
5700 		offset = pa & L2_OFFSET;
5701 
5702 		if (preinit_map_va == 0)
5703 			return (NULL);
5704 
5705 		/* Map 2MiB L2 blocks from reserved VA space */
5706 
5707 		free_l2_count = 0;
5708 		start_idx = -1;
5709 		/* Find enough free contiguous VA space */
5710 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5711 			ppim = pmap_preinit_mapping + i;
5712 			if (free_l2_count > 0 && ppim->pa != 0) {
5713 				/* Not enough space here */
5714 				free_l2_count = 0;
5715 				start_idx = -1;
5716 				continue;
5717 			}
5718 
5719 			if (ppim->pa == 0) {
5720 				/* Free L2 block */
5721 				if (start_idx == -1)
5722 					start_idx = i;
5723 				free_l2_count++;
5724 				if (free_l2_count == l2_blocks)
5725 					break;
5726 			}
5727 		}
5728 		if (free_l2_count != l2_blocks)
5729 			panic("%s: too many preinit mappings", __func__);
5730 
5731 		va = preinit_map_va + (start_idx * L2_SIZE);
5732 		for (i = start_idx; i < start_idx + l2_blocks; i++) {
5733 			/* Mark entries as allocated */
5734 			ppim = pmap_preinit_mapping + i;
5735 			ppim->pa = pa;
5736 			ppim->va = va + offset;
5737 			ppim->size = size;
5738 		}
5739 
5740 		/* Map L2 blocks */
5741 		pa = rounddown2(pa, L2_SIZE);
5742 		for (i = 0; i < l2_blocks; i++) {
5743 			pde = pmap_pde(kernel_pmap, va, &lvl);
5744 			KASSERT(pde != NULL,
5745 			    ("pmap_mapbios: Invalid page entry, va: 0x%lx",
5746 			    va));
5747 			KASSERT(lvl == 1,
5748 			    ("pmap_mapbios: Invalid level %d", lvl));
5749 
5750 			/* Insert L2_BLOCK */
5751 			l2 = pmap_l1_to_l2(pde, va);
5752 			pmap_load_store(l2,
5753 			    pa | ATTR_DEFAULT | ATTR_S1_XN |
5754 			    ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | L2_BLOCK);
5755 
5756 			va += L2_SIZE;
5757 			pa += L2_SIZE;
5758 		}
5759 		pmap_invalidate_all(kernel_pmap);
5760 
5761 		va = preinit_map_va + (start_idx * L2_SIZE);
5762 
5763 	} else {
5764 		/* kva_alloc may be used to map the pages */
5765 		offset = pa & PAGE_MASK;
5766 		size = round_page(offset + size);
5767 
5768 		va = kva_alloc(size);
5769 		if (va == 0)
5770 			panic("%s: Couldn't allocate KVA", __func__);
5771 
5772 		pde = pmap_pde(kernel_pmap, va, &lvl);
5773 		KASSERT(lvl == 2, ("pmap_mapbios: Invalid level %d", lvl));
5774 
5775 		/* L3 table is linked */
5776 		va = trunc_page(va);
5777 		pa = trunc_page(pa);
5778 		pmap_kenter(va, size, pa, memory_mapping_mode(pa));
5779 	}
5780 
5781 	return ((void *)(va + offset));
5782 }
5783 
5784 void
5785 pmap_unmapbios(vm_offset_t va, vm_size_t size)
5786 {
5787 	struct pmap_preinit_mapping *ppim;
5788 	vm_offset_t offset, tmpsize, va_trunc;
5789 	pd_entry_t *pde;
5790 	pt_entry_t *l2;
5791 	int i, lvl, l2_blocks, block;
5792 	bool preinit_map;
5793 
5794 	l2_blocks =
5795 	   (roundup2(va + size, L2_SIZE) - rounddown2(va, L2_SIZE)) >> L2_SHIFT;
5796 	KASSERT(l2_blocks > 0, ("pmap_unmapbios: invalid size %lx", size));
5797 
5798 	/* Remove preinit mapping */
5799 	preinit_map = false;
5800 	block = 0;
5801 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5802 		ppim = pmap_preinit_mapping + i;
5803 		if (ppim->va == va) {
5804 			KASSERT(ppim->size == size,
5805 			    ("pmap_unmapbios: size mismatch"));
5806 			ppim->va = 0;
5807 			ppim->pa = 0;
5808 			ppim->size = 0;
5809 			preinit_map = true;
5810 			offset = block * L2_SIZE;
5811 			va_trunc = rounddown2(va, L2_SIZE) + offset;
5812 
5813 			/* Remove L2_BLOCK */
5814 			pde = pmap_pde(kernel_pmap, va_trunc, &lvl);
5815 			KASSERT(pde != NULL,
5816 			    ("pmap_unmapbios: Invalid page entry, va: 0x%lx",
5817 			    va_trunc));
5818 			l2 = pmap_l1_to_l2(pde, va_trunc);
5819 			pmap_clear(l2);
5820 
5821 			if (block == (l2_blocks - 1))
5822 				break;
5823 			block++;
5824 		}
5825 	}
5826 	if (preinit_map) {
5827 		pmap_invalidate_all(kernel_pmap);
5828 		return;
5829 	}
5830 
5831 	/* Unmap the pages reserved with kva_alloc. */
5832 	if (vm_initialized) {
5833 		offset = va & PAGE_MASK;
5834 		size = round_page(offset + size);
5835 		va = trunc_page(va);
5836 
5837 		pde = pmap_pde(kernel_pmap, va, &lvl);
5838 		KASSERT(pde != NULL,
5839 		    ("pmap_unmapbios: Invalid page entry, va: 0x%lx", va));
5840 		KASSERT(lvl == 2, ("pmap_unmapbios: Invalid level %d", lvl));
5841 
5842 		/* Unmap and invalidate the pages */
5843                 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
5844 			pmap_kremove(va + tmpsize);
5845 
5846 		kva_free(va, size);
5847 	}
5848 }
5849 
5850 /*
5851  * Sets the memory attribute for the specified page.
5852  */
5853 void
5854 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5855 {
5856 
5857 	m->md.pv_memattr = ma;
5858 
5859 	/*
5860 	 * If "m" is a normal page, update its direct mapping.  This update
5861 	 * can be relied upon to perform any cache operations that are
5862 	 * required for data coherence.
5863 	 */
5864 	if ((m->flags & PG_FICTITIOUS) == 0 &&
5865 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
5866 	    m->md.pv_memattr) != 0)
5867 		panic("memory attribute change on the direct map failed");
5868 }
5869 
5870 /*
5871  * Changes the specified virtual address range's memory type to that given by
5872  * the parameter "mode".  The specified virtual address range must be
5873  * completely contained within either the direct map or the kernel map.  If
5874  * the virtual address range is contained within the kernel map, then the
5875  * memory type for each of the corresponding ranges of the direct map is also
5876  * changed.  (The corresponding ranges of the direct map are those ranges that
5877  * map the same physical pages as the specified virtual address range.)  These
5878  * changes to the direct map are necessary because Intel describes the
5879  * behavior of their processors as "undefined" if two or more mappings to the
5880  * same physical page have different memory types.
5881  *
5882  * Returns zero if the change completed successfully, and either EINVAL or
5883  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5884  * of the virtual address range was not mapped, and ENOMEM is returned if
5885  * there was insufficient memory available to complete the change.  In the
5886  * latter case, the memory type may have been changed on some part of the
5887  * virtual address range or the direct map.
5888  */
5889 int
5890 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
5891 {
5892 	int error;
5893 
5894 	PMAP_LOCK(kernel_pmap);
5895 	error = pmap_change_attr_locked(va, size, mode);
5896 	PMAP_UNLOCK(kernel_pmap);
5897 	return (error);
5898 }
5899 
5900 static int
5901 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
5902 {
5903 	vm_offset_t base, offset, tmpva;
5904 	pt_entry_t l3, *pte, *newpte;
5905 	int lvl;
5906 
5907 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
5908 	base = trunc_page(va);
5909 	offset = va & PAGE_MASK;
5910 	size = round_page(offset + size);
5911 
5912 	if (!VIRT_IN_DMAP(base) &&
5913 	    !(base >= VM_MIN_KERNEL_ADDRESS && base < VM_MAX_KERNEL_ADDRESS))
5914 		return (EINVAL);
5915 
5916 	for (tmpva = base; tmpva < base + size; ) {
5917 		pte = pmap_pte(kernel_pmap, tmpva, &lvl);
5918 		if (pte == NULL)
5919 			return (EINVAL);
5920 
5921 		if ((pmap_load(pte) & ATTR_S1_IDX_MASK) == ATTR_S1_IDX(mode)) {
5922 			/*
5923 			 * We already have the correct attribute,
5924 			 * ignore this entry.
5925 			 */
5926 			switch (lvl) {
5927 			default:
5928 				panic("Invalid DMAP table level: %d\n", lvl);
5929 			case 1:
5930 				tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE;
5931 				break;
5932 			case 2:
5933 				tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE;
5934 				break;
5935 			case 3:
5936 				tmpva += PAGE_SIZE;
5937 				break;
5938 			}
5939 		} else {
5940 			/*
5941 			 * Split the entry to an level 3 table, then
5942 			 * set the new attribute.
5943 			 */
5944 			switch (lvl) {
5945 			default:
5946 				panic("Invalid DMAP table level: %d\n", lvl);
5947 			case 1:
5948 				newpte = pmap_demote_l1(kernel_pmap, pte,
5949 				    tmpva & ~L1_OFFSET);
5950 				if (newpte == NULL)
5951 					return (EINVAL);
5952 				pte = pmap_l1_to_l2(pte, tmpva);
5953 			case 2:
5954 				newpte = pmap_demote_l2(kernel_pmap, pte,
5955 				    tmpva);
5956 				if (newpte == NULL)
5957 					return (EINVAL);
5958 				pte = pmap_l2_to_l3(pte, tmpva);
5959 			case 3:
5960 				/* Update the entry */
5961 				l3 = pmap_load(pte);
5962 				l3 &= ~ATTR_S1_IDX_MASK;
5963 				l3 |= ATTR_S1_IDX(mode);
5964 				if (mode == VM_MEMATTR_DEVICE)
5965 					l3 |= ATTR_S1_XN;
5966 
5967 				pmap_update_entry(kernel_pmap, pte, l3, tmpva,
5968 				    PAGE_SIZE);
5969 
5970 				/*
5971 				 * If moving to a non-cacheable entry flush
5972 				 * the cache.
5973 				 */
5974 				if (mode == VM_MEMATTR_UNCACHEABLE)
5975 					cpu_dcache_wbinv_range(tmpva, L3_SIZE);
5976 
5977 				break;
5978 			}
5979 			tmpva += PAGE_SIZE;
5980 		}
5981 	}
5982 
5983 	return (0);
5984 }
5985 
5986 /*
5987  * Create an L2 table to map all addresses within an L1 mapping.
5988  */
5989 static pt_entry_t *
5990 pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va)
5991 {
5992 	pt_entry_t *l2, newl2, oldl1;
5993 	vm_offset_t tmpl1;
5994 	vm_paddr_t l2phys, phys;
5995 	vm_page_t ml2;
5996 	int i;
5997 
5998 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5999 	oldl1 = pmap_load(l1);
6000 	KASSERT((oldl1 & ATTR_DESCR_MASK) == L1_BLOCK,
6001 	    ("pmap_demote_l1: Demoting a non-block entry"));
6002 	KASSERT((va & L1_OFFSET) == 0,
6003 	    ("pmap_demote_l1: Invalid virtual address %#lx", va));
6004 	KASSERT((oldl1 & ATTR_SW_MANAGED) == 0,
6005 	    ("pmap_demote_l1: Level 1 table shouldn't be managed"));
6006 
6007 	tmpl1 = 0;
6008 	if (va <= (vm_offset_t)l1 && va + L1_SIZE > (vm_offset_t)l1) {
6009 		tmpl1 = kva_alloc(PAGE_SIZE);
6010 		if (tmpl1 == 0)
6011 			return (NULL);
6012 	}
6013 
6014 	if ((ml2 = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
6015 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
6016 		CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx"
6017 		    " in pmap %p", va, pmap);
6018 		return (NULL);
6019 	}
6020 
6021 	l2phys = VM_PAGE_TO_PHYS(ml2);
6022 	l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys);
6023 
6024 	/* Address the range points at */
6025 	phys = oldl1 & ~ATTR_MASK;
6026 	/* The attributed from the old l1 table to be copied */
6027 	newl2 = oldl1 & ATTR_MASK;
6028 
6029 	/* Create the new entries */
6030 	for (i = 0; i < Ln_ENTRIES; i++) {
6031 		l2[i] = newl2 | phys;
6032 		phys += L2_SIZE;
6033 	}
6034 	KASSERT(l2[0] == ((oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK),
6035 	    ("Invalid l2 page (%lx != %lx)", l2[0],
6036 	    (oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK));
6037 
6038 	if (tmpl1 != 0) {
6039 		pmap_kenter(tmpl1, PAGE_SIZE,
6040 		    DMAP_TO_PHYS((vm_offset_t)l1) & ~L3_OFFSET,
6041 		    VM_MEMATTR_WRITE_BACK);
6042 		l1 = (pt_entry_t *)(tmpl1 + ((vm_offset_t)l1 & PAGE_MASK));
6043 	}
6044 
6045 	pmap_update_entry(pmap, l1, l2phys | L1_TABLE, va, PAGE_SIZE);
6046 
6047 	if (tmpl1 != 0) {
6048 		pmap_kremove(tmpl1);
6049 		kva_free(tmpl1, PAGE_SIZE);
6050 	}
6051 
6052 	return (l2);
6053 }
6054 
6055 static void
6056 pmap_fill_l3(pt_entry_t *firstl3, pt_entry_t newl3)
6057 {
6058 	pt_entry_t *l3;
6059 
6060 	for (l3 = firstl3; l3 - firstl3 < Ln_ENTRIES; l3++) {
6061 		*l3 = newl3;
6062 		newl3 += L3_SIZE;
6063 	}
6064 }
6065 
6066 static void
6067 pmap_demote_l2_abort(pmap_t pmap, vm_offset_t va, pt_entry_t *l2,
6068     struct rwlock **lockp)
6069 {
6070 	struct spglist free;
6071 
6072 	SLIST_INIT(&free);
6073 	(void)pmap_remove_l2(pmap, l2, va, pmap_load(pmap_l1(pmap, va)), &free,
6074 	    lockp);
6075 	vm_page_free_pages_toq(&free, true);
6076 }
6077 
6078 /*
6079  * Create an L3 table to map all addresses within an L2 mapping.
6080  */
6081 static pt_entry_t *
6082 pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va,
6083     struct rwlock **lockp)
6084 {
6085 	pt_entry_t *l3, newl3, oldl2;
6086 	vm_offset_t tmpl2;
6087 	vm_paddr_t l3phys;
6088 	vm_page_t ml3;
6089 
6090 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6091 	PMAP_ASSERT_STAGE1(pmap);
6092 	l3 = NULL;
6093 	oldl2 = pmap_load(l2);
6094 	KASSERT((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK,
6095 	    ("pmap_demote_l2: Demoting a non-block entry"));
6096 	va &= ~L2_OFFSET;
6097 
6098 	tmpl2 = 0;
6099 	if (va <= (vm_offset_t)l2 && va + L2_SIZE > (vm_offset_t)l2) {
6100 		tmpl2 = kva_alloc(PAGE_SIZE);
6101 		if (tmpl2 == 0)
6102 			return (NULL);
6103 	}
6104 
6105 	/*
6106 	 * Invalidate the 2MB page mapping and return "failure" if the
6107 	 * mapping was never accessed.
6108 	 */
6109 	if ((oldl2 & ATTR_AF) == 0) {
6110 		KASSERT((oldl2 & ATTR_SW_WIRED) == 0,
6111 		    ("pmap_demote_l2: a wired mapping is missing ATTR_AF"));
6112 		pmap_demote_l2_abort(pmap, va, l2, lockp);
6113 		CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx in pmap %p",
6114 		    va, pmap);
6115 		goto fail;
6116 	}
6117 
6118 	if ((ml3 = pmap_remove_pt_page(pmap, va)) == NULL) {
6119 		KASSERT((oldl2 & ATTR_SW_WIRED) == 0,
6120 		    ("pmap_demote_l2: page table page for a wired mapping"
6121 		    " is missing"));
6122 
6123 		/*
6124 		 * If the page table page is missing and the mapping
6125 		 * is for a kernel address, the mapping must belong to
6126 		 * the direct map.  Page table pages are preallocated
6127 		 * for every other part of the kernel address space,
6128 		 * so the direct map region is the only part of the
6129 		 * kernel address space that must be handled here.
6130 		 */
6131 		KASSERT(va < VM_MAXUSER_ADDRESS || VIRT_IN_DMAP(va),
6132 		    ("pmap_demote_l2: No saved mpte for va %#lx", va));
6133 
6134 		/*
6135 		 * If the 2MB page mapping belongs to the direct map
6136 		 * region of the kernel's address space, then the page
6137 		 * allocation request specifies the highest possible
6138 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
6139 		 * priority is normal.
6140 		 */
6141 		ml3 = vm_page_alloc(NULL, pmap_l2_pindex(va),
6142 		    (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
6143 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
6144 
6145 		/*
6146 		 * If the allocation of the new page table page fails,
6147 		 * invalidate the 2MB page mapping and return "failure".
6148 		 */
6149 		if (ml3 == NULL) {
6150 			pmap_demote_l2_abort(pmap, va, l2, lockp);
6151 			CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx"
6152 			    " in pmap %p", va, pmap);
6153 			goto fail;
6154 		}
6155 
6156 		if (va < VM_MAXUSER_ADDRESS) {
6157 			ml3->ref_count = NL3PG;
6158 			pmap_resident_count_inc(pmap, 1);
6159 		}
6160 	}
6161 	l3phys = VM_PAGE_TO_PHYS(ml3);
6162 	l3 = (pt_entry_t *)PHYS_TO_DMAP(l3phys);
6163 	newl3 = (oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE;
6164 	KASSERT((oldl2 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) !=
6165 	    (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM),
6166 	    ("pmap_demote_l2: L2 entry is writeable but not dirty"));
6167 
6168 	/*
6169 	 * If the page table page is not leftover from an earlier promotion,
6170 	 * or the mapping attributes have changed, (re)initialize the L3 table.
6171 	 *
6172 	 * When pmap_update_entry() clears the old L2 mapping, it (indirectly)
6173 	 * performs a dsb().  That dsb() ensures that the stores for filling
6174 	 * "l3" are visible before "l3" is added to the page table.
6175 	 */
6176 	if (ml3->valid == 0 || (l3[0] & ATTR_MASK) != (newl3 & ATTR_MASK))
6177 		pmap_fill_l3(l3, newl3);
6178 
6179 	/*
6180 	 * Map the temporary page so we don't lose access to the l2 table.
6181 	 */
6182 	if (tmpl2 != 0) {
6183 		pmap_kenter(tmpl2, PAGE_SIZE,
6184 		    DMAP_TO_PHYS((vm_offset_t)l2) & ~L3_OFFSET,
6185 		    VM_MEMATTR_WRITE_BACK);
6186 		l2 = (pt_entry_t *)(tmpl2 + ((vm_offset_t)l2 & PAGE_MASK));
6187 	}
6188 
6189 	/*
6190 	 * The spare PV entries must be reserved prior to demoting the
6191 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6192 	 * of the L2 and the PV lists will be inconsistent, which can result
6193 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6194 	 * wrong PV list and pmap_pv_demote_l2() failing to find the expected
6195 	 * PV entry for the 2MB page mapping that is being demoted.
6196 	 */
6197 	if ((oldl2 & ATTR_SW_MANAGED) != 0)
6198 		reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp);
6199 
6200 	/*
6201 	 * Pass PAGE_SIZE so that a single TLB invalidation is performed on
6202 	 * the 2MB page mapping.
6203 	 */
6204 	pmap_update_entry(pmap, l2, l3phys | L2_TABLE, va, PAGE_SIZE);
6205 
6206 	/*
6207 	 * Demote the PV entry.
6208 	 */
6209 	if ((oldl2 & ATTR_SW_MANAGED) != 0)
6210 		pmap_pv_demote_l2(pmap, va, oldl2 & ~ATTR_MASK, lockp);
6211 
6212 	atomic_add_long(&pmap_l2_demotions, 1);
6213 	CTR3(KTR_PMAP, "pmap_demote_l2: success for va %#lx"
6214 	    " in pmap %p %lx", va, pmap, l3[0]);
6215 
6216 fail:
6217 	if (tmpl2 != 0) {
6218 		pmap_kremove(tmpl2);
6219 		kva_free(tmpl2, PAGE_SIZE);
6220 	}
6221 
6222 	return (l3);
6223 
6224 }
6225 
6226 static pt_entry_t *
6227 pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
6228 {
6229 	struct rwlock *lock;
6230 	pt_entry_t *l3;
6231 
6232 	lock = NULL;
6233 	l3 = pmap_demote_l2_locked(pmap, l2, va, &lock);
6234 	if (lock != NULL)
6235 		rw_wunlock(lock);
6236 	return (l3);
6237 }
6238 
6239 /*
6240  * Perform the pmap work for mincore(2).  If the page is not both referenced and
6241  * modified by this pmap, returns its physical address so that the caller can
6242  * find other mappings.
6243  */
6244 int
6245 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
6246 {
6247 	pt_entry_t *pte, tpte;
6248 	vm_paddr_t mask, pa;
6249 	int lvl, val;
6250 	bool managed;
6251 
6252 	PMAP_ASSERT_STAGE1(pmap);
6253 	PMAP_LOCK(pmap);
6254 	pte = pmap_pte(pmap, addr, &lvl);
6255 	if (pte != NULL) {
6256 		tpte = pmap_load(pte);
6257 
6258 		switch (lvl) {
6259 		case 3:
6260 			mask = L3_OFFSET;
6261 			break;
6262 		case 2:
6263 			mask = L2_OFFSET;
6264 			break;
6265 		case 1:
6266 			mask = L1_OFFSET;
6267 			break;
6268 		default:
6269 			panic("pmap_mincore: invalid level %d", lvl);
6270 		}
6271 
6272 		managed = (tpte & ATTR_SW_MANAGED) != 0;
6273 		val = MINCORE_INCORE;
6274 		if (lvl != 3)
6275 			val |= MINCORE_PSIND(3 - lvl);
6276 		if ((managed && pmap_pte_dirty(pmap, tpte)) || (!managed &&
6277 		    (tpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW)))
6278 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6279 		if ((tpte & ATTR_AF) == ATTR_AF)
6280 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6281 
6282 		pa = (tpte & ~ATTR_MASK) | (addr & mask);
6283 	} else {
6284 		managed = false;
6285 		val = 0;
6286 	}
6287 
6288 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6289 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6290 		*pap = pa;
6291 	}
6292 	PMAP_UNLOCK(pmap);
6293 	return (val);
6294 }
6295 
6296 /*
6297  * Garbage collect every ASID that is neither active on a processor nor
6298  * reserved.
6299  */
6300 static void
6301 pmap_reset_asid_set(pmap_t pmap)
6302 {
6303 	pmap_t curpmap;
6304 	int asid, cpuid, epoch;
6305 	struct asid_set *set;
6306 	enum pmap_stage stage;
6307 
6308 	set = pmap->pm_asid_set;
6309 	stage = pmap->pm_stage;
6310 
6311 	set = pmap->pm_asid_set;
6312 	KASSERT(set != NULL, ("%s: NULL asid set", __func__));
6313 	mtx_assert(&set->asid_set_mutex, MA_OWNED);
6314 
6315 	/*
6316 	 * Ensure that the store to asid_epoch is globally visible before the
6317 	 * loads from pc_curpmap are performed.
6318 	 */
6319 	epoch = set->asid_epoch + 1;
6320 	if (epoch == INT_MAX)
6321 		epoch = 0;
6322 	set->asid_epoch = epoch;
6323 	dsb(ishst);
6324 	if (stage == PM_STAGE1) {
6325 		__asm __volatile("tlbi vmalle1is");
6326 	} else {
6327 		KASSERT(pmap_clean_stage2_tlbi != NULL,
6328 		    ("%s: Unset stage 2 tlb invalidation callback\n",
6329 		    __func__));
6330 		pmap_clean_stage2_tlbi();
6331 	}
6332 	dsb(ish);
6333 	bit_nclear(set->asid_set, ASID_FIRST_AVAILABLE,
6334 	    set->asid_set_size - 1);
6335 	CPU_FOREACH(cpuid) {
6336 		if (cpuid == curcpu)
6337 			continue;
6338 		if (stage == PM_STAGE1) {
6339 			curpmap = pcpu_find(cpuid)->pc_curpmap;
6340 			PMAP_ASSERT_STAGE1(pmap);
6341 		} else {
6342 			curpmap = pcpu_find(cpuid)->pc_curvmpmap;
6343 			if (curpmap == NULL)
6344 				continue;
6345 			PMAP_ASSERT_STAGE2(pmap);
6346 		}
6347 		KASSERT(curpmap->pm_asid_set == set, ("Incorrect set"));
6348 		asid = COOKIE_TO_ASID(curpmap->pm_cookie);
6349 		if (asid == -1)
6350 			continue;
6351 		bit_set(set->asid_set, asid);
6352 		curpmap->pm_cookie = COOKIE_FROM(asid, epoch);
6353 	}
6354 }
6355 
6356 /*
6357  * Allocate a new ASID for the specified pmap.
6358  */
6359 static void
6360 pmap_alloc_asid(pmap_t pmap)
6361 {
6362 	struct asid_set *set;
6363 	int new_asid;
6364 
6365 	set = pmap->pm_asid_set;
6366 	KASSERT(set != NULL, ("%s: NULL asid set", __func__));
6367 
6368 	mtx_lock_spin(&set->asid_set_mutex);
6369 
6370 	/*
6371 	 * While this processor was waiting to acquire the asid set mutex,
6372 	 * pmap_reset_asid_set() running on another processor might have
6373 	 * updated this pmap's cookie to the current epoch.  In which case, we
6374 	 * don't need to allocate a new ASID.
6375 	 */
6376 	if (COOKIE_TO_EPOCH(pmap->pm_cookie) == set->asid_epoch)
6377 		goto out;
6378 
6379 	bit_ffc_at(set->asid_set, set->asid_next, set->asid_set_size,
6380 	    &new_asid);
6381 	if (new_asid == -1) {
6382 		bit_ffc_at(set->asid_set, ASID_FIRST_AVAILABLE,
6383 		    set->asid_next, &new_asid);
6384 		if (new_asid == -1) {
6385 			pmap_reset_asid_set(pmap);
6386 			bit_ffc_at(set->asid_set, ASID_FIRST_AVAILABLE,
6387 			    set->asid_set_size, &new_asid);
6388 			KASSERT(new_asid != -1, ("ASID allocation failure"));
6389 		}
6390 	}
6391 	bit_set(set->asid_set, new_asid);
6392 	set->asid_next = new_asid + 1;
6393 	pmap->pm_cookie = COOKIE_FROM(new_asid, set->asid_epoch);
6394 out:
6395 	mtx_unlock_spin(&set->asid_set_mutex);
6396 }
6397 
6398 /*
6399  * Compute the value that should be stored in ttbr0 to activate the specified
6400  * pmap.  This value may change from time to time.
6401  */
6402 uint64_t
6403 pmap_to_ttbr0(pmap_t pmap)
6404 {
6405 
6406 	return (ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie)) |
6407 	    pmap->pm_ttbr);
6408 }
6409 
6410 static bool
6411 pmap_activate_int(pmap_t pmap)
6412 {
6413 	struct asid_set *set;
6414 	int epoch;
6415 
6416 	KASSERT(PCPU_GET(curpmap) != NULL, ("no active pmap"));
6417 	KASSERT(pmap != kernel_pmap, ("kernel pmap activation"));
6418 
6419 	if ((pmap->pm_stage == PM_STAGE1 && pmap == PCPU_GET(curpmap)) ||
6420 	    (pmap->pm_stage == PM_STAGE2 && pmap == PCPU_GET(curvmpmap))) {
6421 		/*
6422 		 * Handle the possibility that the old thread was preempted
6423 		 * after an "ic" or "tlbi" instruction but before it performed
6424 		 * a "dsb" instruction.  If the old thread migrates to a new
6425 		 * processor, its completion of a "dsb" instruction on that
6426 		 * new processor does not guarantee that the "ic" or "tlbi"
6427 		 * instructions performed on the old processor have completed.
6428 		 */
6429 		dsb(ish);
6430 		return (false);
6431 	}
6432 
6433 	set = pmap->pm_asid_set;
6434 	KASSERT(set != NULL, ("%s: NULL asid set", __func__));
6435 
6436 	/*
6437 	 * Ensure that the store to curpmap is globally visible before the
6438 	 * load from asid_epoch is performed.
6439 	 */
6440 	if (pmap->pm_stage == PM_STAGE1)
6441 		PCPU_SET(curpmap, pmap);
6442 	else
6443 		PCPU_SET(curvmpmap, pmap);
6444 	dsb(ish);
6445 	epoch = COOKIE_TO_EPOCH(pmap->pm_cookie);
6446 	if (epoch >= 0 && epoch != set->asid_epoch)
6447 		pmap_alloc_asid(pmap);
6448 
6449 	if (pmap->pm_stage == PM_STAGE1) {
6450 		set_ttbr0(pmap_to_ttbr0(pmap));
6451 		if (PCPU_GET(bcast_tlbi_workaround) != 0)
6452 			invalidate_local_icache();
6453 	}
6454 	return (true);
6455 }
6456 
6457 void
6458 pmap_activate_vm(pmap_t pmap)
6459 {
6460 
6461 	PMAP_ASSERT_STAGE2(pmap);
6462 
6463 	(void)pmap_activate_int(pmap);
6464 }
6465 
6466 void
6467 pmap_activate(struct thread *td)
6468 {
6469 	pmap_t	pmap;
6470 
6471 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6472 	PMAP_ASSERT_STAGE1(pmap);
6473 	critical_enter();
6474 	(void)pmap_activate_int(pmap);
6475 	critical_exit();
6476 }
6477 
6478 /*
6479  * To eliminate the unused parameter "old", we would have to add an instruction
6480  * to cpu_switch().
6481  */
6482 struct pcb *
6483 pmap_switch(struct thread *old __unused, struct thread *new)
6484 {
6485 	pcpu_bp_harden bp_harden;
6486 	struct pcb *pcb;
6487 
6488 	/* Store the new curthread */
6489 	PCPU_SET(curthread, new);
6490 
6491 	/* And the new pcb */
6492 	pcb = new->td_pcb;
6493 	PCPU_SET(curpcb, pcb);
6494 
6495 	/*
6496 	 * TODO: We may need to flush the cache here if switching
6497 	 * to a user process.
6498 	 */
6499 
6500 	if (pmap_activate_int(vmspace_pmap(new->td_proc->p_vmspace))) {
6501 		/*
6502 		 * Stop userspace from training the branch predictor against
6503 		 * other processes. This will call into a CPU specific
6504 		 * function that clears the branch predictor state.
6505 		 */
6506 		bp_harden = PCPU_GET(bp_harden);
6507 		if (bp_harden != NULL)
6508 			bp_harden();
6509 	}
6510 
6511 	return (pcb);
6512 }
6513 
6514 void
6515 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
6516 {
6517 
6518 	PMAP_ASSERT_STAGE1(pmap);
6519 	if (va >= VM_MIN_KERNEL_ADDRESS) {
6520 		cpu_icache_sync_range(va, sz);
6521 	} else {
6522 		u_int len, offset;
6523 		vm_paddr_t pa;
6524 
6525 		/* Find the length of data in this page to flush */
6526 		offset = va & PAGE_MASK;
6527 		len = imin(PAGE_SIZE - offset, sz);
6528 
6529 		while (sz != 0) {
6530 			/* Extract the physical address & find it in the DMAP */
6531 			pa = pmap_extract(pmap, va);
6532 			if (pa != 0)
6533 				cpu_icache_sync_range(PHYS_TO_DMAP(pa), len);
6534 
6535 			/* Move to the next page */
6536 			sz -= len;
6537 			va += len;
6538 			/* Set the length for the next iteration */
6539 			len = imin(PAGE_SIZE, sz);
6540 		}
6541 	}
6542 }
6543 
6544 static int
6545 pmap_stage2_fault(pmap_t pmap, uint64_t esr, uint64_t far)
6546 {
6547 	pd_entry_t *pdep;
6548 	pt_entry_t *ptep, pte;
6549 	int rv, lvl, dfsc;
6550 
6551 	PMAP_ASSERT_STAGE2(pmap);
6552 	rv = KERN_FAILURE;
6553 
6554 	/* Data and insn aborts use same encoding for FSC field. */
6555 	dfsc = esr & ISS_DATA_DFSC_MASK;
6556 	switch (dfsc) {
6557 	case ISS_DATA_DFSC_TF_L0:
6558 	case ISS_DATA_DFSC_TF_L1:
6559 	case ISS_DATA_DFSC_TF_L2:
6560 	case ISS_DATA_DFSC_TF_L3:
6561 		PMAP_LOCK(pmap);
6562 		pdep = pmap_pde(pmap, far, &lvl);
6563 		if (pdep == NULL || lvl != (dfsc - ISS_DATA_DFSC_TF_L1)) {
6564 			PMAP_LOCK(pmap);
6565 			break;
6566 		}
6567 
6568 		switch (lvl) {
6569 		case 0:
6570 			ptep = pmap_l0_to_l1(pdep, far);
6571 			break;
6572 		case 1:
6573 			ptep = pmap_l1_to_l2(pdep, far);
6574 			break;
6575 		case 2:
6576 			ptep = pmap_l2_to_l3(pdep, far);
6577 			break;
6578 		default:
6579 			panic("%s: Invalid pde level %d", __func__,lvl);
6580 		}
6581 		goto fault_exec;
6582 
6583 	case ISS_DATA_DFSC_AFF_L1:
6584 	case ISS_DATA_DFSC_AFF_L2:
6585 	case ISS_DATA_DFSC_AFF_L3:
6586 		PMAP_LOCK(pmap);
6587 		ptep = pmap_pte(pmap, far, &lvl);
6588 fault_exec:
6589 		if (ptep != NULL && (pte = pmap_load(ptep)) != 0) {
6590 			if (icache_vmid) {
6591 				pmap_invalidate_vpipt_icache();
6592 			} else {
6593 				/*
6594 				 * If accessing an executable page invalidate
6595 				 * the I-cache so it will be valid when we
6596 				 * continue execution in the guest. The D-cache
6597 				 * is assumed to already be clean to the Point
6598 				 * of Coherency.
6599 				 */
6600 				if ((pte & ATTR_S2_XN_MASK) !=
6601 				    ATTR_S2_XN(ATTR_S2_XN_NONE)) {
6602 					invalidate_icache();
6603 				}
6604 			}
6605 			pmap_set_bits(ptep, ATTR_AF | ATTR_DESCR_VALID);
6606 			rv = KERN_SUCCESS;
6607 		}
6608 		PMAP_UNLOCK(pmap);
6609 		break;
6610 	}
6611 
6612 	return (rv);
6613 }
6614 
6615 int
6616 pmap_fault(pmap_t pmap, uint64_t esr, uint64_t far)
6617 {
6618 	pt_entry_t pte, *ptep;
6619 	register_t intr;
6620 	uint64_t ec, par;
6621 	int lvl, rv;
6622 
6623 	rv = KERN_FAILURE;
6624 
6625 	ec = ESR_ELx_EXCEPTION(esr);
6626 	switch (ec) {
6627 	case EXCP_INSN_ABORT_L:
6628 	case EXCP_INSN_ABORT:
6629 	case EXCP_DATA_ABORT_L:
6630 	case EXCP_DATA_ABORT:
6631 		break;
6632 	default:
6633 		return (rv);
6634 	}
6635 
6636 	if (pmap->pm_stage == PM_STAGE2)
6637 		return (pmap_stage2_fault(pmap, esr, far));
6638 
6639 	/* Data and insn aborts use same encoding for FSC field. */
6640 	switch (esr & ISS_DATA_DFSC_MASK) {
6641 	case ISS_DATA_DFSC_AFF_L1:
6642 	case ISS_DATA_DFSC_AFF_L2:
6643 	case ISS_DATA_DFSC_AFF_L3:
6644 		PMAP_LOCK(pmap);
6645 		ptep = pmap_pte(pmap, far, &lvl);
6646 		if (ptep != NULL) {
6647 			pmap_set_bits(ptep, ATTR_AF);
6648 			rv = KERN_SUCCESS;
6649 			/*
6650 			 * XXXMJ as an optimization we could mark the entry
6651 			 * dirty if this is a write fault.
6652 			 */
6653 		}
6654 		PMAP_UNLOCK(pmap);
6655 		break;
6656 	case ISS_DATA_DFSC_PF_L1:
6657 	case ISS_DATA_DFSC_PF_L2:
6658 	case ISS_DATA_DFSC_PF_L3:
6659 		if ((ec != EXCP_DATA_ABORT_L && ec != EXCP_DATA_ABORT) ||
6660 		    (esr & ISS_DATA_WnR) == 0)
6661 			return (rv);
6662 		PMAP_LOCK(pmap);
6663 		ptep = pmap_pte(pmap, far, &lvl);
6664 		if (ptep != NULL &&
6665 		    ((pte = pmap_load(ptep)) & ATTR_SW_DBM) != 0) {
6666 			if ((pte & ATTR_S1_AP_RW_BIT) ==
6667 			    ATTR_S1_AP(ATTR_S1_AP_RO)) {
6668 				pmap_clear_bits(ptep, ATTR_S1_AP_RW_BIT);
6669 				pmap_invalidate_page(pmap, far);
6670 			}
6671 			rv = KERN_SUCCESS;
6672 		}
6673 		PMAP_UNLOCK(pmap);
6674 		break;
6675 	case ISS_DATA_DFSC_TF_L0:
6676 	case ISS_DATA_DFSC_TF_L1:
6677 	case ISS_DATA_DFSC_TF_L2:
6678 	case ISS_DATA_DFSC_TF_L3:
6679 		/*
6680 		 * Retry the translation.  A break-before-make sequence can
6681 		 * produce a transient fault.
6682 		 */
6683 		if (pmap == kernel_pmap) {
6684 			/*
6685 			 * The translation fault may have occurred within a
6686 			 * critical section.  Therefore, we must check the
6687 			 * address without acquiring the kernel pmap's lock.
6688 			 */
6689 			if (pmap_klookup(far, NULL))
6690 				rv = KERN_SUCCESS;
6691 		} else {
6692 			PMAP_LOCK(pmap);
6693 			/* Ask the MMU to check the address. */
6694 			intr = intr_disable();
6695 			par = arm64_address_translate_s1e0r(far);
6696 			intr_restore(intr);
6697 			PMAP_UNLOCK(pmap);
6698 
6699 			/*
6700 			 * If the translation was successful, then we can
6701 			 * return success to the trap handler.
6702 			 */
6703 			if (PAR_SUCCESS(par))
6704 				rv = KERN_SUCCESS;
6705 		}
6706 		break;
6707 	}
6708 
6709 	return (rv);
6710 }
6711 
6712 /*
6713  *	Increase the starting virtual address of the given mapping if a
6714  *	different alignment might result in more superpage mappings.
6715  */
6716 void
6717 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6718     vm_offset_t *addr, vm_size_t size)
6719 {
6720 	vm_offset_t superpage_offset;
6721 
6722 	if (size < L2_SIZE)
6723 		return;
6724 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6725 		offset += ptoa(object->pg_color);
6726 	superpage_offset = offset & L2_OFFSET;
6727 	if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) < L2_SIZE ||
6728 	    (*addr & L2_OFFSET) == superpage_offset)
6729 		return;
6730 	if ((*addr & L2_OFFSET) < superpage_offset)
6731 		*addr = (*addr & ~L2_OFFSET) + superpage_offset;
6732 	else
6733 		*addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) + superpage_offset;
6734 }
6735 
6736 /**
6737  * Get the kernel virtual address of a set of physical pages. If there are
6738  * physical addresses not covered by the DMAP perform a transient mapping
6739  * that will be removed when calling pmap_unmap_io_transient.
6740  *
6741  * \param page        The pages the caller wishes to obtain the virtual
6742  *                    address on the kernel memory map.
6743  * \param vaddr       On return contains the kernel virtual memory address
6744  *                    of the pages passed in the page parameter.
6745  * \param count       Number of pages passed in.
6746  * \param can_fault   TRUE if the thread using the mapped pages can take
6747  *                    page faults, FALSE otherwise.
6748  *
6749  * \returns TRUE if the caller must call pmap_unmap_io_transient when
6750  *          finished or FALSE otherwise.
6751  *
6752  */
6753 boolean_t
6754 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
6755     boolean_t can_fault)
6756 {
6757 	vm_paddr_t paddr;
6758 	boolean_t needs_mapping;
6759 	int error, i;
6760 
6761 	/*
6762 	 * Allocate any KVA space that we need, this is done in a separate
6763 	 * loop to prevent calling vmem_alloc while pinned.
6764 	 */
6765 	needs_mapping = FALSE;
6766 	for (i = 0; i < count; i++) {
6767 		paddr = VM_PAGE_TO_PHYS(page[i]);
6768 		if (__predict_false(!PHYS_IN_DMAP(paddr))) {
6769 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
6770 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
6771 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
6772 			needs_mapping = TRUE;
6773 		} else {
6774 			vaddr[i] = PHYS_TO_DMAP(paddr);
6775 		}
6776 	}
6777 
6778 	/* Exit early if everything is covered by the DMAP */
6779 	if (!needs_mapping)
6780 		return (FALSE);
6781 
6782 	if (!can_fault)
6783 		sched_pin();
6784 	for (i = 0; i < count; i++) {
6785 		paddr = VM_PAGE_TO_PHYS(page[i]);
6786 		if (!PHYS_IN_DMAP(paddr)) {
6787 			panic(
6788 			   "pmap_map_io_transient: TODO: Map out of DMAP data");
6789 		}
6790 	}
6791 
6792 	return (needs_mapping);
6793 }
6794 
6795 void
6796 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
6797     boolean_t can_fault)
6798 {
6799 	vm_paddr_t paddr;
6800 	int i;
6801 
6802 	if (!can_fault)
6803 		sched_unpin();
6804 	for (i = 0; i < count; i++) {
6805 		paddr = VM_PAGE_TO_PHYS(page[i]);
6806 		if (!PHYS_IN_DMAP(paddr)) {
6807 			panic("ARM64TODO: pmap_unmap_io_transient: Unmap data");
6808 		}
6809 	}
6810 }
6811 
6812 boolean_t
6813 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
6814 {
6815 
6816 	return (mode >= VM_MEMATTR_DEVICE && mode <= VM_MEMATTR_WRITE_THROUGH);
6817 }
6818 
6819 /*
6820  * Track a range of the kernel's virtual address space that is contiguous
6821  * in various mapping attributes.
6822  */
6823 struct pmap_kernel_map_range {
6824 	vm_offset_t sva;
6825 	pt_entry_t attrs;
6826 	int l3pages;
6827 	int l3contig;
6828 	int l2blocks;
6829 	int l1blocks;
6830 };
6831 
6832 static void
6833 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
6834     vm_offset_t eva)
6835 {
6836 	const char *mode;
6837 	int index;
6838 
6839 	if (eva <= range->sva)
6840 		return;
6841 
6842 	index = range->attrs & ATTR_S1_IDX_MASK;
6843 	switch (index) {
6844 	case ATTR_S1_IDX(VM_MEMATTR_DEVICE):
6845 		mode = "DEV";
6846 		break;
6847 	case ATTR_S1_IDX(VM_MEMATTR_UNCACHEABLE):
6848 		mode = "UC";
6849 		break;
6850 	case ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK):
6851 		mode = "WB";
6852 		break;
6853 	case ATTR_S1_IDX(VM_MEMATTR_WRITE_THROUGH):
6854 		mode = "WT";
6855 		break;
6856 	default:
6857 		printf(
6858 		    "%s: unknown memory type %x for range 0x%016lx-0x%016lx\n",
6859 		    __func__, index, range->sva, eva);
6860 		mode = "??";
6861 		break;
6862 	}
6863 
6864 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c %3s %d %d %d %d\n",
6865 	    range->sva, eva,
6866 	    (range->attrs & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP_RW ? 'w' : '-',
6867 	    (range->attrs & ATTR_S1_PXN) != 0 ? '-' : 'x',
6868 	    (range->attrs & ATTR_S1_AP_USER) != 0 ? 'u' : 's',
6869 	    mode, range->l1blocks, range->l2blocks, range->l3contig,
6870 	    range->l3pages);
6871 
6872 	/* Reset to sentinel value. */
6873 	range->sva = 0xfffffffffffffffful;
6874 }
6875 
6876 /*
6877  * Determine whether the attributes specified by a page table entry match those
6878  * being tracked by the current range.
6879  */
6880 static bool
6881 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
6882 {
6883 
6884 	return (range->attrs == attrs);
6885 }
6886 
6887 static void
6888 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
6889     pt_entry_t attrs)
6890 {
6891 
6892 	memset(range, 0, sizeof(*range));
6893 	range->sva = va;
6894 	range->attrs = attrs;
6895 }
6896 
6897 /*
6898  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
6899  * those of the current run, dump the address range and its attributes, and
6900  * begin a new run.
6901  */
6902 static void
6903 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
6904     vm_offset_t va, pd_entry_t l0e, pd_entry_t l1e, pd_entry_t l2e,
6905     pt_entry_t l3e)
6906 {
6907 	pt_entry_t attrs;
6908 
6909 	attrs = l0e & (ATTR_S1_AP_MASK | ATTR_S1_XN);
6910 	attrs |= l1e & (ATTR_S1_AP_MASK | ATTR_S1_XN);
6911 	if ((l1e & ATTR_DESCR_MASK) == L1_BLOCK)
6912 		attrs |= l1e & ATTR_S1_IDX_MASK;
6913 	attrs |= l2e & (ATTR_S1_AP_MASK | ATTR_S1_XN);
6914 	if ((l2e & ATTR_DESCR_MASK) == L2_BLOCK)
6915 		attrs |= l2e & ATTR_S1_IDX_MASK;
6916 	attrs |= l3e & (ATTR_S1_AP_MASK | ATTR_S1_XN | ATTR_S1_IDX_MASK);
6917 
6918 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
6919 		sysctl_kmaps_dump(sb, range, va);
6920 		sysctl_kmaps_reinit(range, va, attrs);
6921 	}
6922 }
6923 
6924 static int
6925 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
6926 {
6927 	struct pmap_kernel_map_range range;
6928 	struct sbuf sbuf, *sb;
6929 	pd_entry_t l0e, *l1, l1e, *l2, l2e;
6930 	pt_entry_t *l3, l3e;
6931 	vm_offset_t sva;
6932 	vm_paddr_t pa;
6933 	int error, i, j, k, l;
6934 
6935 	error = sysctl_wire_old_buffer(req, 0);
6936 	if (error != 0)
6937 		return (error);
6938 	sb = &sbuf;
6939 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
6940 
6941 	/* Sentinel value. */
6942 	range.sva = 0xfffffffffffffffful;
6943 
6944 	/*
6945 	 * Iterate over the kernel page tables without holding the kernel pmap
6946 	 * lock.  Kernel page table pages are never freed, so at worst we will
6947 	 * observe inconsistencies in the output.
6948 	 */
6949 	for (sva = 0xffff000000000000ul, i = pmap_l0_index(sva); i < Ln_ENTRIES;
6950 	    i++) {
6951 		if (i == pmap_l0_index(DMAP_MIN_ADDRESS))
6952 			sbuf_printf(sb, "\nDirect map:\n");
6953 		else if (i == pmap_l0_index(VM_MIN_KERNEL_ADDRESS))
6954 			sbuf_printf(sb, "\nKernel map:\n");
6955 
6956 		l0e = kernel_pmap->pm_l0[i];
6957 		if ((l0e & ATTR_DESCR_VALID) == 0) {
6958 			sysctl_kmaps_dump(sb, &range, sva);
6959 			sva += L0_SIZE;
6960 			continue;
6961 		}
6962 		pa = l0e & ~ATTR_MASK;
6963 		l1 = (pd_entry_t *)PHYS_TO_DMAP(pa);
6964 
6965 		for (j = pmap_l1_index(sva); j < Ln_ENTRIES; j++) {
6966 			l1e = l1[j];
6967 			if ((l1e & ATTR_DESCR_VALID) == 0) {
6968 				sysctl_kmaps_dump(sb, &range, sva);
6969 				sva += L1_SIZE;
6970 				continue;
6971 			}
6972 			if ((l1e & ATTR_DESCR_MASK) == L1_BLOCK) {
6973 				sysctl_kmaps_check(sb, &range, sva, l0e, l1e,
6974 				    0, 0);
6975 				range.l1blocks++;
6976 				sva += L1_SIZE;
6977 				continue;
6978 			}
6979 			pa = l1e & ~ATTR_MASK;
6980 			l2 = (pd_entry_t *)PHYS_TO_DMAP(pa);
6981 
6982 			for (k = pmap_l2_index(sva); k < Ln_ENTRIES; k++) {
6983 				l2e = l2[k];
6984 				if ((l2e & ATTR_DESCR_VALID) == 0) {
6985 					sysctl_kmaps_dump(sb, &range, sva);
6986 					sva += L2_SIZE;
6987 					continue;
6988 				}
6989 				if ((l2e & ATTR_DESCR_MASK) == L2_BLOCK) {
6990 					sysctl_kmaps_check(sb, &range, sva,
6991 					    l0e, l1e, l2e, 0);
6992 					range.l2blocks++;
6993 					sva += L2_SIZE;
6994 					continue;
6995 				}
6996 				pa = l2e & ~ATTR_MASK;
6997 				l3 = (pt_entry_t *)PHYS_TO_DMAP(pa);
6998 
6999 				for (l = pmap_l3_index(sva); l < Ln_ENTRIES;
7000 				    l++, sva += L3_SIZE) {
7001 					l3e = l3[l];
7002 					if ((l3e & ATTR_DESCR_VALID) == 0) {
7003 						sysctl_kmaps_dump(sb, &range,
7004 						    sva);
7005 						continue;
7006 					}
7007 					sysctl_kmaps_check(sb, &range, sva,
7008 					    l0e, l1e, l2e, l3e);
7009 					if ((l3e & ATTR_CONTIGUOUS) != 0)
7010 						range.l3contig += l % 16 == 0 ?
7011 						    1 : 0;
7012 					else
7013 						range.l3pages++;
7014 				}
7015 			}
7016 		}
7017 	}
7018 
7019 	error = sbuf_finish(sb);
7020 	sbuf_delete(sb);
7021 	return (error);
7022 }
7023 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
7024     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
7025     NULL, 0, sysctl_kmaps, "A",
7026     "Dump kernel address layout");
7027