xref: /freebsd/sys/arm64/arm64/pmap.c (revision c697fb7f)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2003 Peter Wemm
9  * All rights reserved.
10  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11  * All rights reserved.
12  * Copyright (c) 2014 Andrew Turner
13  * All rights reserved.
14  * Copyright (c) 2014-2016 The FreeBSD Foundation
15  * All rights reserved.
16  *
17  * This code is derived from software contributed to Berkeley by
18  * the Systems Programming Group of the University of Utah Computer
19  * Science Department and William Jolitz of UUNET Technologies Inc.
20  *
21  * This software was developed by Andrew Turner under sponsorship from
22  * the FreeBSD Foundation.
23  *
24  * Redistribution and use in source and binary forms, with or without
25  * modification, are permitted provided that the following conditions
26  * are met:
27  * 1. Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  * 2. Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in the
31  *    documentation and/or other materials provided with the distribution.
32  * 3. All advertising materials mentioning features or use of this software
33  *    must display the following acknowledgement:
34  *	This product includes software developed by the University of
35  *	California, Berkeley and its contributors.
36  * 4. Neither the name of the University nor the names of its contributors
37  *    may be used to endorse or promote products derived from this software
38  *    without specific prior written permission.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
53  */
54 /*-
55  * Copyright (c) 2003 Networks Associates Technology, Inc.
56  * All rights reserved.
57  *
58  * This software was developed for the FreeBSD Project by Jake Burkholder,
59  * Safeport Network Services, and Network Associates Laboratories, the
60  * Security Research Division of Network Associates, Inc. under
61  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
62  * CHATS research program.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 /*
90  *	Manages physical address maps.
91  *
92  *	Since the information managed by this module is
93  *	also stored by the logical address mapping module,
94  *	this module may throw away valid virtual-to-physical
95  *	mappings at almost any time.  However, invalidations
96  *	of virtual-to-physical mappings must be done as
97  *	requested.
98  *
99  *	In order to cope with hardware architectures which
100  *	make virtual-to-physical map invalidates expensive,
101  *	this module may delay invalidate or reduced protection
102  *	operations until such time as they are actually
103  *	necessary.  This module is given full information as
104  *	to which processors are currently using which maps,
105  *	and to when physical maps must be made correct.
106  */
107 
108 #include "opt_vm.h"
109 
110 #include <sys/param.h>
111 #include <sys/bitstring.h>
112 #include <sys/bus.h>
113 #include <sys/systm.h>
114 #include <sys/kernel.h>
115 #include <sys/ktr.h>
116 #include <sys/limits.h>
117 #include <sys/lock.h>
118 #include <sys/malloc.h>
119 #include <sys/mman.h>
120 #include <sys/msgbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/proc.h>
123 #include <sys/rwlock.h>
124 #include <sys/sbuf.h>
125 #include <sys/sx.h>
126 #include <sys/vmem.h>
127 #include <sys/vmmeter.h>
128 #include <sys/sched.h>
129 #include <sys/sysctl.h>
130 #include <sys/_unrhdr.h>
131 #include <sys/smp.h>
132 
133 #include <vm/vm.h>
134 #include <vm/vm_param.h>
135 #include <vm/vm_kern.h>
136 #include <vm/vm_page.h>
137 #include <vm/vm_map.h>
138 #include <vm/vm_object.h>
139 #include <vm/vm_extern.h>
140 #include <vm/vm_pageout.h>
141 #include <vm/vm_pager.h>
142 #include <vm/vm_phys.h>
143 #include <vm/vm_radix.h>
144 #include <vm/vm_reserv.h>
145 #include <vm/uma.h>
146 
147 #include <machine/machdep.h>
148 #include <machine/md_var.h>
149 #include <machine/pcb.h>
150 
151 #include <arm/include/physmem.h>
152 
153 #define	PMAP_ASSERT_STAGE1(pmap)	MPASS((pmap)->pm_stage == PM_STAGE1)
154 
155 #define	NL0PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
156 #define	NL1PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
157 #define	NL2PG		(PAGE_SIZE/(sizeof (pd_entry_t)))
158 #define	NL3PG		(PAGE_SIZE/(sizeof (pt_entry_t)))
159 
160 #define	NUL0E		L0_ENTRIES
161 #define	NUL1E		(NUL0E * NL1PG)
162 #define	NUL2E		(NUL1E * NL2PG)
163 
164 #if !defined(DIAGNOSTIC)
165 #ifdef __GNUC_GNU_INLINE__
166 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
167 #else
168 #define PMAP_INLINE	extern inline
169 #endif
170 #else
171 #define PMAP_INLINE
172 #endif
173 
174 #ifdef PV_STATS
175 #define PV_STAT(x)	do { x ; } while (0)
176 #else
177 #define PV_STAT(x)	do { } while (0)
178 #endif
179 
180 #define	pmap_l2_pindex(v)	((v) >> L2_SHIFT)
181 #define	pa_to_pvh(pa)		(&pv_table[pmap_l2_pindex(pa)])
182 
183 #define	NPV_LIST_LOCKS	MAXCPU
184 
185 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
186 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
187 
188 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
189 	struct rwlock **_lockp = (lockp);		\
190 	struct rwlock *_new_lock;			\
191 							\
192 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
193 	if (_new_lock != *_lockp) {			\
194 		if (*_lockp != NULL)			\
195 			rw_wunlock(*_lockp);		\
196 		*_lockp = _new_lock;			\
197 		rw_wlock(*_lockp);			\
198 	}						\
199 } while (0)
200 
201 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
202 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
203 
204 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
205 	struct rwlock **_lockp = (lockp);		\
206 							\
207 	if (*_lockp != NULL) {				\
208 		rw_wunlock(*_lockp);			\
209 		*_lockp = NULL;				\
210 	}						\
211 } while (0)
212 
213 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
214 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
215 
216 /*
217  * The presence of this flag indicates that the mapping is writeable.
218  * If the ATTR_S1_AP_RO bit is also set, then the mapping is clean, otherwise
219  * it is dirty.  This flag may only be set on managed mappings.
220  *
221  * The DBM bit is reserved on ARMv8.0 but it seems we can safely treat it
222  * as a software managed bit.
223  */
224 #define	ATTR_SW_DBM	ATTR_DBM
225 
226 struct pmap kernel_pmap_store;
227 
228 /* Used for mapping ACPI memory before VM is initialized */
229 #define	PMAP_PREINIT_MAPPING_COUNT	32
230 #define	PMAP_PREINIT_MAPPING_SIZE	(PMAP_PREINIT_MAPPING_COUNT * L2_SIZE)
231 static vm_offset_t preinit_map_va;	/* Start VA of pre-init mapping space */
232 static int vm_initialized = 0;		/* No need to use pre-init maps when set */
233 
234 /*
235  * Reserve a few L2 blocks starting from 'preinit_map_va' pointer.
236  * Always map entire L2 block for simplicity.
237  * VA of L2 block = preinit_map_va + i * L2_SIZE
238  */
239 static struct pmap_preinit_mapping {
240 	vm_paddr_t	pa;
241 	vm_offset_t	va;
242 	vm_size_t	size;
243 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
244 
245 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
246 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
247 vm_offset_t kernel_vm_end = 0;
248 
249 /*
250  * Data for the pv entry allocation mechanism.
251  */
252 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
253 static struct mtx pv_chunks_mutex;
254 static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
255 static struct md_page *pv_table;
256 static struct md_page pv_dummy;
257 
258 vm_paddr_t dmap_phys_base;	/* The start of the dmap region */
259 vm_paddr_t dmap_phys_max;	/* The limit of the dmap region */
260 vm_offset_t dmap_max_addr;	/* The virtual address limit of the dmap */
261 
262 /* This code assumes all L1 DMAP entries will be used */
263 CTASSERT((DMAP_MIN_ADDRESS  & ~L0_OFFSET) == DMAP_MIN_ADDRESS);
264 CTASSERT((DMAP_MAX_ADDRESS  & ~L0_OFFSET) == DMAP_MAX_ADDRESS);
265 
266 #define	DMAP_TABLES	((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT)
267 extern pt_entry_t pagetable_dmap[];
268 
269 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
270 static vm_paddr_t physmap[PHYSMAP_SIZE];
271 static u_int physmap_idx;
272 
273 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
274     "VM/pmap parameters");
275 
276 /*
277  * This ASID allocator uses a bit vector ("asid_set") to remember which ASIDs
278  * that it has currently allocated to a pmap, a cursor ("asid_next") to
279  * optimize its search for a free ASID in the bit vector, and an epoch number
280  * ("asid_epoch") to indicate when it has reclaimed all previously allocated
281  * ASIDs that are not currently active on a processor.
282  *
283  * The current epoch number is always in the range [0, INT_MAX).  Negative
284  * numbers and INT_MAX are reserved for special cases that are described
285  * below.
286  */
287 struct asid_set {
288 	int asid_bits;
289 	bitstr_t *asid_set;
290 	int asid_set_size;
291 	int asid_next;
292 	int asid_epoch;
293 	struct mtx asid_set_mutex;
294 };
295 
296 static struct asid_set asids;
297 
298 static SYSCTL_NODE(_vm_pmap, OID_AUTO, asid, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
299     "ASID allocator");
300 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, bits, CTLFLAG_RD, &asids.asid_bits, 0,
301     "The number of bits in an ASID");
302 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, next, CTLFLAG_RD, &asids.asid_next, 0,
303     "The last allocated ASID plus one");
304 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, epoch, CTLFLAG_RD, &asids.asid_epoch, 0,
305     "The current epoch number");
306 
307 /*
308  * A pmap's cookie encodes an ASID and epoch number.  Cookies for reserved
309  * ASIDs have a negative epoch number, specifically, INT_MIN.  Cookies for
310  * dynamically allocated ASIDs have a non-negative epoch number.
311  *
312  * An invalid ASID is represented by -1.
313  *
314  * There are two special-case cookie values: (1) COOKIE_FROM(-1, INT_MIN),
315  * which indicates that an ASID should never be allocated to the pmap, and
316  * (2) COOKIE_FROM(-1, INT_MAX), which indicates that an ASID should be
317  * allocated when the pmap is next activated.
318  */
319 #define	COOKIE_FROM(asid, epoch)	((long)((u_int)(asid) |	\
320 					    ((u_long)(epoch) << 32)))
321 #define	COOKIE_TO_ASID(cookie)		((int)(cookie))
322 #define	COOKIE_TO_EPOCH(cookie)		((int)((u_long)(cookie) >> 32))
323 
324 static int superpages_enabled = 1;
325 SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled,
326     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &superpages_enabled, 0,
327     "Are large page mappings enabled?");
328 
329 /*
330  * Internal flags for pmap_enter()'s helper functions.
331  */
332 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
333 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
334 
335 static void	free_pv_chunk(struct pv_chunk *pc);
336 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
337 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
338 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
339 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
340 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
341 		    vm_offset_t va);
342 
343 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
344 static bool pmap_activate_int(pmap_t pmap);
345 static void pmap_alloc_asid(pmap_t pmap);
346 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
347 static pt_entry_t *pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va);
348 static pt_entry_t *pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2,
349     vm_offset_t va, struct rwlock **lockp);
350 static pt_entry_t *pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va);
351 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
352     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
353 static int pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2,
354     u_int flags, vm_page_t m, struct rwlock **lockp);
355 static int pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
356     pd_entry_t l1e, struct spglist *free, struct rwlock **lockp);
357 static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
358     pd_entry_t l2e, struct spglist *free, struct rwlock **lockp);
359 static void pmap_reset_asid_set(pmap_t pmap);
360 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
361     vm_page_t m, struct rwlock **lockp);
362 
363 static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
364 		struct rwlock **lockp);
365 
366 static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m,
367     struct spglist *free);
368 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
369 static __inline vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
370 
371 /*
372  * These load the old table data and store the new value.
373  * They need to be atomic as the System MMU may write to the table at
374  * the same time as the CPU.
375  */
376 #define	pmap_clear(table)		atomic_store_64(table, 0)
377 #define	pmap_clear_bits(table, bits)	atomic_clear_64(table, bits)
378 #define	pmap_load(table)		(*table)
379 #define	pmap_load_clear(table)		atomic_swap_64(table, 0)
380 #define	pmap_load_store(table, entry)	atomic_swap_64(table, entry)
381 #define	pmap_set_bits(table, bits)	atomic_set_64(table, bits)
382 #define	pmap_store(table, entry)	atomic_store_64(table, entry)
383 
384 /********************/
385 /* Inline functions */
386 /********************/
387 
388 static __inline void
389 pagecopy(void *s, void *d)
390 {
391 
392 	memcpy(d, s, PAGE_SIZE);
393 }
394 
395 static __inline pd_entry_t *
396 pmap_l0(pmap_t pmap, vm_offset_t va)
397 {
398 
399 	return (&pmap->pm_l0[pmap_l0_index(va)]);
400 }
401 
402 static __inline pd_entry_t *
403 pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
404 {
405 	pd_entry_t *l1;
406 
407 	l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
408 	return (&l1[pmap_l1_index(va)]);
409 }
410 
411 static __inline pd_entry_t *
412 pmap_l1(pmap_t pmap, vm_offset_t va)
413 {
414 	pd_entry_t *l0;
415 
416 	l0 = pmap_l0(pmap, va);
417 	if ((pmap_load(l0) & ATTR_DESCR_MASK) != L0_TABLE)
418 		return (NULL);
419 
420 	return (pmap_l0_to_l1(l0, va));
421 }
422 
423 static __inline pd_entry_t *
424 pmap_l1_to_l2(pd_entry_t *l1, vm_offset_t va)
425 {
426 	pd_entry_t *l2;
427 
428 	l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
429 	return (&l2[pmap_l2_index(va)]);
430 }
431 
432 static __inline pd_entry_t *
433 pmap_l2(pmap_t pmap, vm_offset_t va)
434 {
435 	pd_entry_t *l1;
436 
437 	l1 = pmap_l1(pmap, va);
438 	if ((pmap_load(l1) & ATTR_DESCR_MASK) != L1_TABLE)
439 		return (NULL);
440 
441 	return (pmap_l1_to_l2(l1, va));
442 }
443 
444 static __inline pt_entry_t *
445 pmap_l2_to_l3(pd_entry_t *l2, vm_offset_t va)
446 {
447 	pt_entry_t *l3;
448 
449 	l3 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l2) & ~ATTR_MASK);
450 	return (&l3[pmap_l3_index(va)]);
451 }
452 
453 /*
454  * Returns the lowest valid pde for a given virtual address.
455  * The next level may or may not point to a valid page or block.
456  */
457 static __inline pd_entry_t *
458 pmap_pde(pmap_t pmap, vm_offset_t va, int *level)
459 {
460 	pd_entry_t *l0, *l1, *l2, desc;
461 
462 	l0 = pmap_l0(pmap, va);
463 	desc = pmap_load(l0) & ATTR_DESCR_MASK;
464 	if (desc != L0_TABLE) {
465 		*level = -1;
466 		return (NULL);
467 	}
468 
469 	l1 = pmap_l0_to_l1(l0, va);
470 	desc = pmap_load(l1) & ATTR_DESCR_MASK;
471 	if (desc != L1_TABLE) {
472 		*level = 0;
473 		return (l0);
474 	}
475 
476 	l2 = pmap_l1_to_l2(l1, va);
477 	desc = pmap_load(l2) & ATTR_DESCR_MASK;
478 	if (desc != L2_TABLE) {
479 		*level = 1;
480 		return (l1);
481 	}
482 
483 	*level = 2;
484 	return (l2);
485 }
486 
487 /*
488  * Returns the lowest valid pte block or table entry for a given virtual
489  * address. If there are no valid entries return NULL and set the level to
490  * the first invalid level.
491  */
492 static __inline pt_entry_t *
493 pmap_pte(pmap_t pmap, vm_offset_t va, int *level)
494 {
495 	pd_entry_t *l1, *l2, desc;
496 	pt_entry_t *l3;
497 
498 	l1 = pmap_l1(pmap, va);
499 	if (l1 == NULL) {
500 		*level = 0;
501 		return (NULL);
502 	}
503 	desc = pmap_load(l1) & ATTR_DESCR_MASK;
504 	if (desc == L1_BLOCK) {
505 		*level = 1;
506 		return (l1);
507 	}
508 
509 	if (desc != L1_TABLE) {
510 		*level = 1;
511 		return (NULL);
512 	}
513 
514 	l2 = pmap_l1_to_l2(l1, va);
515 	desc = pmap_load(l2) & ATTR_DESCR_MASK;
516 	if (desc == L2_BLOCK) {
517 		*level = 2;
518 		return (l2);
519 	}
520 
521 	if (desc != L2_TABLE) {
522 		*level = 2;
523 		return (NULL);
524 	}
525 
526 	*level = 3;
527 	l3 = pmap_l2_to_l3(l2, va);
528 	if ((pmap_load(l3) & ATTR_DESCR_MASK) != L3_PAGE)
529 		return (NULL);
530 
531 	return (l3);
532 }
533 
534 bool
535 pmap_ps_enabled(pmap_t pmap __unused)
536 {
537 
538 	return (superpages_enabled != 0);
539 }
540 
541 bool
542 pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l0, pd_entry_t **l1,
543     pd_entry_t **l2, pt_entry_t **l3)
544 {
545 	pd_entry_t *l0p, *l1p, *l2p;
546 
547 	if (pmap->pm_l0 == NULL)
548 		return (false);
549 
550 	l0p = pmap_l0(pmap, va);
551 	*l0 = l0p;
552 
553 	if ((pmap_load(l0p) & ATTR_DESCR_MASK) != L0_TABLE)
554 		return (false);
555 
556 	l1p = pmap_l0_to_l1(l0p, va);
557 	*l1 = l1p;
558 
559 	if ((pmap_load(l1p) & ATTR_DESCR_MASK) == L1_BLOCK) {
560 		*l2 = NULL;
561 		*l3 = NULL;
562 		return (true);
563 	}
564 
565 	if ((pmap_load(l1p) & ATTR_DESCR_MASK) != L1_TABLE)
566 		return (false);
567 
568 	l2p = pmap_l1_to_l2(l1p, va);
569 	*l2 = l2p;
570 
571 	if ((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK) {
572 		*l3 = NULL;
573 		return (true);
574 	}
575 
576 	if ((pmap_load(l2p) & ATTR_DESCR_MASK) != L2_TABLE)
577 		return (false);
578 
579 	*l3 = pmap_l2_to_l3(l2p, va);
580 
581 	return (true);
582 }
583 
584 static __inline int
585 pmap_l3_valid(pt_entry_t l3)
586 {
587 
588 	return ((l3 & ATTR_DESCR_MASK) == L3_PAGE);
589 }
590 
591 
592 CTASSERT(L1_BLOCK == L2_BLOCK);
593 
594 /*
595  * Checks if the PTE is dirty.
596  */
597 static inline int
598 pmap_pte_dirty(pmap_t pmap, pt_entry_t pte)
599 {
600 
601 	PMAP_ASSERT_STAGE1(pmap);
602 	KASSERT((pte & ATTR_SW_MANAGED) != 0, ("pte %#lx is unmanaged", pte));
603 	KASSERT((pte & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) != 0,
604 	    ("pte %#lx is writeable and missing ATTR_SW_DBM", pte));
605 
606 	return ((pte & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
607 	    (ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_SW_DBM));
608 }
609 
610 static __inline void
611 pmap_resident_count_inc(pmap_t pmap, int count)
612 {
613 
614 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
615 	pmap->pm_stats.resident_count += count;
616 }
617 
618 static __inline void
619 pmap_resident_count_dec(pmap_t pmap, int count)
620 {
621 
622 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
623 	KASSERT(pmap->pm_stats.resident_count >= count,
624 	    ("pmap %p resident count underflow %ld %d", pmap,
625 	    pmap->pm_stats.resident_count, count));
626 	pmap->pm_stats.resident_count -= count;
627 }
628 
629 static pt_entry_t *
630 pmap_early_page_idx(vm_offset_t l1pt, vm_offset_t va, u_int *l1_slot,
631     u_int *l2_slot)
632 {
633 	pt_entry_t *l2;
634 	pd_entry_t *l1;
635 
636 	l1 = (pd_entry_t *)l1pt;
637 	*l1_slot = (va >> L1_SHIFT) & Ln_ADDR_MASK;
638 
639 	/* Check locore has used a table L1 map */
640 	KASSERT((l1[*l1_slot] & ATTR_DESCR_MASK) == L1_TABLE,
641 	   ("Invalid bootstrap L1 table"));
642 	/* Find the address of the L2 table */
643 	l2 = (pt_entry_t *)init_pt_va;
644 	*l2_slot = pmap_l2_index(va);
645 
646 	return (l2);
647 }
648 
649 static vm_paddr_t
650 pmap_early_vtophys(vm_offset_t l1pt, vm_offset_t va)
651 {
652 	u_int l1_slot, l2_slot;
653 	pt_entry_t *l2;
654 
655 	l2 = pmap_early_page_idx(l1pt, va, &l1_slot, &l2_slot);
656 
657 	return ((l2[l2_slot] & ~ATTR_MASK) + (va & L2_OFFSET));
658 }
659 
660 static vm_offset_t
661 pmap_bootstrap_dmap(vm_offset_t kern_l1, vm_paddr_t min_pa,
662     vm_offset_t freemempos)
663 {
664 	pt_entry_t *l2;
665 	vm_offset_t va;
666 	vm_paddr_t l2_pa, pa;
667 	u_int l1_slot, l2_slot, prev_l1_slot;
668 	int i;
669 
670 	dmap_phys_base = min_pa & ~L1_OFFSET;
671 	dmap_phys_max = 0;
672 	dmap_max_addr = 0;
673 	l2 = NULL;
674 	prev_l1_slot = -1;
675 
676 #define	DMAP_TABLES	((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT)
677 	memset(pagetable_dmap, 0, PAGE_SIZE * DMAP_TABLES);
678 
679 	for (i = 0; i < (physmap_idx * 2); i += 2) {
680 		pa = physmap[i] & ~L2_OFFSET;
681 		va = pa - dmap_phys_base + DMAP_MIN_ADDRESS;
682 
683 		/* Create L2 mappings at the start of the region */
684 		if ((pa & L1_OFFSET) != 0) {
685 			l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
686 			if (l1_slot != prev_l1_slot) {
687 				prev_l1_slot = l1_slot;
688 				l2 = (pt_entry_t *)freemempos;
689 				l2_pa = pmap_early_vtophys(kern_l1,
690 				    (vm_offset_t)l2);
691 				freemempos += PAGE_SIZE;
692 
693 				pmap_store(&pagetable_dmap[l1_slot],
694 				    (l2_pa & ~Ln_TABLE_MASK) | L1_TABLE);
695 
696 				memset(l2, 0, PAGE_SIZE);
697 			}
698 			KASSERT(l2 != NULL,
699 			    ("pmap_bootstrap_dmap: NULL l2 map"));
700 			for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1];
701 			    pa += L2_SIZE, va += L2_SIZE) {
702 				/*
703 				 * We are on a boundary, stop to
704 				 * create a level 1 block
705 				 */
706 				if ((pa & L1_OFFSET) == 0)
707 					break;
708 
709 				l2_slot = pmap_l2_index(va);
710 				KASSERT(l2_slot != 0, ("..."));
711 				pmap_store(&l2[l2_slot],
712 				    (pa & ~L2_OFFSET) | ATTR_DEFAULT |
713 				    ATTR_S1_XN |
714 				    ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) |
715 				    L2_BLOCK);
716 			}
717 			KASSERT(va == (pa - dmap_phys_base + DMAP_MIN_ADDRESS),
718 			    ("..."));
719 		}
720 
721 		for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1] &&
722 		    (physmap[i + 1] - pa) >= L1_SIZE;
723 		    pa += L1_SIZE, va += L1_SIZE) {
724 			l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
725 			pmap_store(&pagetable_dmap[l1_slot],
726 			    (pa & ~L1_OFFSET) | ATTR_DEFAULT | ATTR_S1_XN |
727 			    ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | L1_BLOCK);
728 		}
729 
730 		/* Create L2 mappings at the end of the region */
731 		if (pa < physmap[i + 1]) {
732 			l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT);
733 			if (l1_slot != prev_l1_slot) {
734 				prev_l1_slot = l1_slot;
735 				l2 = (pt_entry_t *)freemempos;
736 				l2_pa = pmap_early_vtophys(kern_l1,
737 				    (vm_offset_t)l2);
738 				freemempos += PAGE_SIZE;
739 
740 				pmap_store(&pagetable_dmap[l1_slot],
741 				    (l2_pa & ~Ln_TABLE_MASK) | L1_TABLE);
742 
743 				memset(l2, 0, PAGE_SIZE);
744 			}
745 			KASSERT(l2 != NULL,
746 			    ("pmap_bootstrap_dmap: NULL l2 map"));
747 			for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1];
748 			    pa += L2_SIZE, va += L2_SIZE) {
749 				l2_slot = pmap_l2_index(va);
750 				pmap_store(&l2[l2_slot],
751 				    (pa & ~L2_OFFSET) | ATTR_DEFAULT |
752 				    ATTR_S1_XN |
753 				    ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) |
754 				    L2_BLOCK);
755 			}
756 		}
757 
758 		if (pa > dmap_phys_max) {
759 			dmap_phys_max = pa;
760 			dmap_max_addr = va;
761 		}
762 	}
763 
764 	cpu_tlb_flushID();
765 
766 	return (freemempos);
767 }
768 
769 static vm_offset_t
770 pmap_bootstrap_l2(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l2_start)
771 {
772 	vm_offset_t l2pt;
773 	vm_paddr_t pa;
774 	pd_entry_t *l1;
775 	u_int l1_slot;
776 
777 	KASSERT((va & L1_OFFSET) == 0, ("Invalid virtual address"));
778 
779 	l1 = (pd_entry_t *)l1pt;
780 	l1_slot = pmap_l1_index(va);
781 	l2pt = l2_start;
782 
783 	for (; va < VM_MAX_KERNEL_ADDRESS; l1_slot++, va += L1_SIZE) {
784 		KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index"));
785 
786 		pa = pmap_early_vtophys(l1pt, l2pt);
787 		pmap_store(&l1[l1_slot],
788 		    (pa & ~Ln_TABLE_MASK) | L1_TABLE);
789 		l2pt += PAGE_SIZE;
790 	}
791 
792 	/* Clean the L2 page table */
793 	memset((void *)l2_start, 0, l2pt - l2_start);
794 
795 	return l2pt;
796 }
797 
798 static vm_offset_t
799 pmap_bootstrap_l3(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l3_start)
800 {
801 	vm_offset_t l3pt;
802 	vm_paddr_t pa;
803 	pd_entry_t *l2;
804 	u_int l2_slot;
805 
806 	KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address"));
807 
808 	l2 = pmap_l2(kernel_pmap, va);
809 	l2 = (pd_entry_t *)rounddown2((uintptr_t)l2, PAGE_SIZE);
810 	l2_slot = pmap_l2_index(va);
811 	l3pt = l3_start;
812 
813 	for (; va < VM_MAX_KERNEL_ADDRESS; l2_slot++, va += L2_SIZE) {
814 		KASSERT(l2_slot < Ln_ENTRIES, ("Invalid L2 index"));
815 
816 		pa = pmap_early_vtophys(l1pt, l3pt);
817 		pmap_store(&l2[l2_slot],
818 		    (pa & ~Ln_TABLE_MASK) | ATTR_S1_UXN | L2_TABLE);
819 		l3pt += PAGE_SIZE;
820 	}
821 
822 	/* Clean the L2 page table */
823 	memset((void *)l3_start, 0, l3pt - l3_start);
824 
825 	return l3pt;
826 }
827 
828 /*
829  *	Bootstrap the system enough to run with virtual memory.
830  */
831 void
832 pmap_bootstrap(vm_offset_t l0pt, vm_offset_t l1pt, vm_paddr_t kernstart,
833     vm_size_t kernlen)
834 {
835 	u_int l1_slot, l2_slot;
836 	pt_entry_t *l2;
837 	vm_offset_t va, freemempos;
838 	vm_offset_t dpcpu, msgbufpv;
839 	vm_paddr_t start_pa, pa, min_pa;
840 	uint64_t kern_delta;
841 	int i;
842 
843 	/* Verify that the ASID is set through TTBR0. */
844 	KASSERT((READ_SPECIALREG(tcr_el1) & TCR_A1) == 0,
845 	    ("pmap_bootstrap: TCR_EL1.A1 != 0"));
846 
847 	kern_delta = KERNBASE - kernstart;
848 
849 	printf("pmap_bootstrap %lx %lx %lx\n", l1pt, kernstart, kernlen);
850 	printf("%lx\n", l1pt);
851 	printf("%lx\n", (KERNBASE >> L1_SHIFT) & Ln_ADDR_MASK);
852 
853 	/* Set this early so we can use the pagetable walking functions */
854 	kernel_pmap_store.pm_l0 = (pd_entry_t *)l0pt;
855 	PMAP_LOCK_INIT(kernel_pmap);
856 	kernel_pmap->pm_l0_paddr = l0pt - kern_delta;
857 	kernel_pmap->pm_cookie = COOKIE_FROM(-1, INT_MIN);
858 	kernel_pmap->pm_stage = PM_STAGE1;
859 	kernel_pmap->pm_asid_set = &asids;
860 
861 	/* Assume the address we were loaded to is a valid physical address */
862 	min_pa = KERNBASE - kern_delta;
863 
864 	physmap_idx = arm_physmem_avail(physmap, nitems(physmap));
865 	physmap_idx /= 2;
866 
867 	/*
868 	 * Find the minimum physical address. physmap is sorted,
869 	 * but may contain empty ranges.
870 	 */
871 	for (i = 0; i < (physmap_idx * 2); i += 2) {
872 		if (physmap[i] == physmap[i + 1])
873 			continue;
874 		if (physmap[i] <= min_pa)
875 			min_pa = physmap[i];
876 	}
877 
878 	freemempos = KERNBASE + kernlen;
879 	freemempos = roundup2(freemempos, PAGE_SIZE);
880 
881 	/* Create a direct map region early so we can use it for pa -> va */
882 	freemempos = pmap_bootstrap_dmap(l1pt, min_pa, freemempos);
883 
884 	va = KERNBASE;
885 	start_pa = pa = KERNBASE - kern_delta;
886 
887 	/*
888 	 * Read the page table to find out what is already mapped.
889 	 * This assumes we have mapped a block of memory from KERNBASE
890 	 * using a single L1 entry.
891 	 */
892 	l2 = pmap_early_page_idx(l1pt, KERNBASE, &l1_slot, &l2_slot);
893 
894 	/* Sanity check the index, KERNBASE should be the first VA */
895 	KASSERT(l2_slot == 0, ("The L2 index is non-zero"));
896 
897 	/* Find how many pages we have mapped */
898 	for (; l2_slot < Ln_ENTRIES; l2_slot++) {
899 		if ((l2[l2_slot] & ATTR_DESCR_MASK) == 0)
900 			break;
901 
902 		/* Check locore used L2 blocks */
903 		KASSERT((l2[l2_slot] & ATTR_DESCR_MASK) == L2_BLOCK,
904 		    ("Invalid bootstrap L2 table"));
905 		KASSERT((l2[l2_slot] & ~ATTR_MASK) == pa,
906 		    ("Incorrect PA in L2 table"));
907 
908 		va += L2_SIZE;
909 		pa += L2_SIZE;
910 	}
911 
912 	va = roundup2(va, L1_SIZE);
913 
914 	/* Create the l2 tables up to VM_MAX_KERNEL_ADDRESS */
915 	freemempos = pmap_bootstrap_l2(l1pt, va, freemempos);
916 	/* And the l3 tables for the early devmap */
917 	freemempos = pmap_bootstrap_l3(l1pt,
918 	    VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE), freemempos);
919 
920 	cpu_tlb_flushID();
921 
922 #define alloc_pages(var, np)						\
923 	(var) = freemempos;						\
924 	freemempos += (np * PAGE_SIZE);					\
925 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
926 
927 	/* Allocate dynamic per-cpu area. */
928 	alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
929 	dpcpu_init((void *)dpcpu, 0);
930 
931 	/* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
932 	alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
933 	msgbufp = (void *)msgbufpv;
934 
935 	/* Reserve some VA space for early BIOS/ACPI mapping */
936 	preinit_map_va = roundup2(freemempos, L2_SIZE);
937 
938 	virtual_avail = preinit_map_va + PMAP_PREINIT_MAPPING_SIZE;
939 	virtual_avail = roundup2(virtual_avail, L1_SIZE);
940 	virtual_end = VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE);
941 	kernel_vm_end = virtual_avail;
942 
943 	pa = pmap_early_vtophys(l1pt, freemempos);
944 
945 	arm_physmem_exclude_region(start_pa, pa - start_pa, EXFLAG_NOALLOC);
946 
947 	cpu_tlb_flushID();
948 }
949 
950 /*
951  *	Initialize a vm_page's machine-dependent fields.
952  */
953 void
954 pmap_page_init(vm_page_t m)
955 {
956 
957 	TAILQ_INIT(&m->md.pv_list);
958 	m->md.pv_memattr = VM_MEMATTR_WRITE_BACK;
959 }
960 
961 static void
962 pmap_init_asids(struct asid_set *set, int bits)
963 {
964 	int i;
965 
966 	set->asid_bits = bits;
967 
968 	/*
969 	 * We may be too early in the overall initialization process to use
970 	 * bit_alloc().
971 	 */
972 	set->asid_set_size = 1 << set->asid_bits;
973 	set->asid_set = (bitstr_t *)kmem_malloc(bitstr_size(set->asid_set_size),
974 	    M_WAITOK | M_ZERO);
975 	for (i = 0; i < ASID_FIRST_AVAILABLE; i++)
976 		bit_set(set->asid_set, i);
977 	set->asid_next = ASID_FIRST_AVAILABLE;
978 	mtx_init(&set->asid_set_mutex, "asid set", NULL, MTX_SPIN);
979 }
980 
981 /*
982  *	Initialize the pmap module.
983  *	Called by vm_init, to initialize any structures that the pmap
984  *	system needs to map virtual memory.
985  */
986 void
987 pmap_init(void)
988 {
989 	vm_size_t s;
990 	int i, pv_npg;
991 
992 	/*
993 	 * Are large page mappings enabled?
994 	 */
995 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
996 	if (superpages_enabled) {
997 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
998 		    ("pmap_init: can't assign to pagesizes[1]"));
999 		pagesizes[1] = L2_SIZE;
1000 	}
1001 
1002 	/*
1003 	 * Initialize the ASID allocator.
1004 	 */
1005 	pmap_init_asids(&asids,
1006 	    (READ_SPECIALREG(tcr_el1) & TCR_ASID_16) != 0 ? 16 : 8);
1007 
1008 	/*
1009 	 * Initialize the pv chunk list mutex.
1010 	 */
1011 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
1012 
1013 	/*
1014 	 * Initialize the pool of pv list locks.
1015 	 */
1016 	for (i = 0; i < NPV_LIST_LOCKS; i++)
1017 		rw_init(&pv_list_locks[i], "pmap pv list");
1018 
1019 	/*
1020 	 * Calculate the size of the pv head table for superpages.
1021 	 */
1022 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L2_SIZE);
1023 
1024 	/*
1025 	 * Allocate memory for the pv head table for superpages.
1026 	 */
1027 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1028 	s = round_page(s);
1029 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
1030 	for (i = 0; i < pv_npg; i++)
1031 		TAILQ_INIT(&pv_table[i].pv_list);
1032 	TAILQ_INIT(&pv_dummy.pv_list);
1033 
1034 	vm_initialized = 1;
1035 }
1036 
1037 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1038     "2MB page mapping counters");
1039 
1040 static u_long pmap_l2_demotions;
1041 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD,
1042     &pmap_l2_demotions, 0, "2MB page demotions");
1043 
1044 static u_long pmap_l2_mappings;
1045 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, mappings, CTLFLAG_RD,
1046     &pmap_l2_mappings, 0, "2MB page mappings");
1047 
1048 static u_long pmap_l2_p_failures;
1049 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD,
1050     &pmap_l2_p_failures, 0, "2MB page promotion failures");
1051 
1052 static u_long pmap_l2_promotions;
1053 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD,
1054     &pmap_l2_promotions, 0, "2MB page promotions");
1055 
1056 /*
1057  * Invalidate a single TLB entry.
1058  */
1059 static __inline void
1060 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1061 {
1062 	uint64_t r;
1063 
1064 	PMAP_ASSERT_STAGE1(pmap);
1065 
1066 	dsb(ishst);
1067 	if (pmap == kernel_pmap) {
1068 		r = atop(va);
1069 		__asm __volatile("tlbi vaae1is, %0" : : "r" (r));
1070 	} else {
1071 		r = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie)) | atop(va);
1072 		__asm __volatile("tlbi vae1is, %0" : : "r" (r));
1073 	}
1074 	dsb(ish);
1075 	isb();
1076 }
1077 
1078 static __inline void
1079 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1080 {
1081 	uint64_t end, r, start;
1082 
1083 	PMAP_ASSERT_STAGE1(pmap);
1084 
1085 	dsb(ishst);
1086 	if (pmap == kernel_pmap) {
1087 		start = atop(sva);
1088 		end = atop(eva);
1089 		for (r = start; r < end; r++)
1090 			__asm __volatile("tlbi vaae1is, %0" : : "r" (r));
1091 	} else {
1092 		start = end = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
1093 		start |= atop(sva);
1094 		end |= atop(eva);
1095 		for (r = start; r < end; r++)
1096 			__asm __volatile("tlbi vae1is, %0" : : "r" (r));
1097 	}
1098 	dsb(ish);
1099 	isb();
1100 }
1101 
1102 static __inline void
1103 pmap_invalidate_all(pmap_t pmap)
1104 {
1105 	uint64_t r;
1106 
1107 	PMAP_ASSERT_STAGE1(pmap);
1108 
1109 	dsb(ishst);
1110 	if (pmap == kernel_pmap) {
1111 		__asm __volatile("tlbi vmalle1is");
1112 	} else {
1113 		r = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
1114 		__asm __volatile("tlbi aside1is, %0" : : "r" (r));
1115 	}
1116 	dsb(ish);
1117 	isb();
1118 }
1119 
1120 /*
1121  *	Routine:	pmap_extract
1122  *	Function:
1123  *		Extract the physical page address associated
1124  *		with the given map/virtual_address pair.
1125  */
1126 vm_paddr_t
1127 pmap_extract(pmap_t pmap, vm_offset_t va)
1128 {
1129 	pt_entry_t *pte, tpte;
1130 	vm_paddr_t pa;
1131 	int lvl;
1132 
1133 	pa = 0;
1134 	PMAP_LOCK(pmap);
1135 	/*
1136 	 * Find the block or page map for this virtual address. pmap_pte
1137 	 * will return either a valid block/page entry, or NULL.
1138 	 */
1139 	pte = pmap_pte(pmap, va, &lvl);
1140 	if (pte != NULL) {
1141 		tpte = pmap_load(pte);
1142 		pa = tpte & ~ATTR_MASK;
1143 		switch(lvl) {
1144 		case 1:
1145 			KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
1146 			    ("pmap_extract: Invalid L1 pte found: %lx",
1147 			    tpte & ATTR_DESCR_MASK));
1148 			pa |= (va & L1_OFFSET);
1149 			break;
1150 		case 2:
1151 			KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
1152 			    ("pmap_extract: Invalid L2 pte found: %lx",
1153 			    tpte & ATTR_DESCR_MASK));
1154 			pa |= (va & L2_OFFSET);
1155 			break;
1156 		case 3:
1157 			KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
1158 			    ("pmap_extract: Invalid L3 pte found: %lx",
1159 			    tpte & ATTR_DESCR_MASK));
1160 			pa |= (va & L3_OFFSET);
1161 			break;
1162 		}
1163 	}
1164 	PMAP_UNLOCK(pmap);
1165 	return (pa);
1166 }
1167 
1168 /*
1169  *	Routine:	pmap_extract_and_hold
1170  *	Function:
1171  *		Atomically extract and hold the physical page
1172  *		with the given pmap and virtual address pair
1173  *		if that mapping permits the given protection.
1174  */
1175 vm_page_t
1176 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1177 {
1178 	pt_entry_t *pte, tpte;
1179 	vm_offset_t off;
1180 	vm_page_t m;
1181 	int lvl;
1182 
1183 	PMAP_ASSERT_STAGE1(pmap);
1184 
1185 	m = NULL;
1186 	PMAP_LOCK(pmap);
1187 	pte = pmap_pte(pmap, va, &lvl);
1188 	if (pte != NULL) {
1189 		tpte = pmap_load(pte);
1190 
1191 		KASSERT(lvl > 0 && lvl <= 3,
1192 		    ("pmap_extract_and_hold: Invalid level %d", lvl));
1193 		CTASSERT(L1_BLOCK == L2_BLOCK);
1194 		KASSERT((lvl == 3 && (tpte & ATTR_DESCR_MASK) == L3_PAGE) ||
1195 		    (lvl < 3 && (tpte & ATTR_DESCR_MASK) == L1_BLOCK),
1196 		    ("pmap_extract_and_hold: Invalid pte at L%d: %lx", lvl,
1197 		     tpte & ATTR_DESCR_MASK));
1198 		if (((tpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW)) ||
1199 		    ((prot & VM_PROT_WRITE) == 0)) {
1200 			switch(lvl) {
1201 			case 1:
1202 				off = va & L1_OFFSET;
1203 				break;
1204 			case 2:
1205 				off = va & L2_OFFSET;
1206 				break;
1207 			case 3:
1208 			default:
1209 				off = 0;
1210 			}
1211 			m = PHYS_TO_VM_PAGE((tpte & ~ATTR_MASK) | off);
1212 			if (!vm_page_wire_mapped(m))
1213 				m = NULL;
1214 		}
1215 	}
1216 	PMAP_UNLOCK(pmap);
1217 	return (m);
1218 }
1219 
1220 vm_paddr_t
1221 pmap_kextract(vm_offset_t va)
1222 {
1223 	pt_entry_t *pte, tpte;
1224 
1225 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
1226 		return (DMAP_TO_PHYS(va));
1227 	pte = pmap_l1(kernel_pmap, va);
1228 	if (pte == NULL)
1229 		return (0);
1230 
1231 	/*
1232 	 * A concurrent pmap_update_entry() will clear the entry's valid bit
1233 	 * but leave the rest of the entry unchanged.  Therefore, we treat a
1234 	 * non-zero entry as being valid, and we ignore the valid bit when
1235 	 * determining whether the entry maps a block, page, or table.
1236 	 */
1237 	tpte = pmap_load(pte);
1238 	if (tpte == 0)
1239 		return (0);
1240 	if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK)
1241 		return ((tpte & ~ATTR_MASK) | (va & L1_OFFSET));
1242 	pte = pmap_l1_to_l2(&tpte, va);
1243 	tpte = pmap_load(pte);
1244 	if (tpte == 0)
1245 		return (0);
1246 	if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK)
1247 		return ((tpte & ~ATTR_MASK) | (va & L2_OFFSET));
1248 	pte = pmap_l2_to_l3(&tpte, va);
1249 	tpte = pmap_load(pte);
1250 	if (tpte == 0)
1251 		return (0);
1252 	return ((tpte & ~ATTR_MASK) | (va & L3_OFFSET));
1253 }
1254 
1255 /***************************************************
1256  * Low level mapping routines.....
1257  ***************************************************/
1258 
1259 void
1260 pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode)
1261 {
1262 	pd_entry_t *pde;
1263 	pt_entry_t *pte, attr;
1264 	vm_offset_t va;
1265 	int lvl;
1266 
1267 	KASSERT((pa & L3_OFFSET) == 0,
1268 	   ("pmap_kenter: Invalid physical address"));
1269 	KASSERT((sva & L3_OFFSET) == 0,
1270 	   ("pmap_kenter: Invalid virtual address"));
1271 	KASSERT((size & PAGE_MASK) == 0,
1272 	    ("pmap_kenter: Mapping is not page-sized"));
1273 
1274 	attr = ATTR_DEFAULT | ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_S1_XN |
1275 	    ATTR_S1_IDX(mode) | L3_PAGE;
1276 	va = sva;
1277 	while (size != 0) {
1278 		pde = pmap_pde(kernel_pmap, va, &lvl);
1279 		KASSERT(pde != NULL,
1280 		    ("pmap_kenter: Invalid page entry, va: 0x%lx", va));
1281 		KASSERT(lvl == 2, ("pmap_kenter: Invalid level %d", lvl));
1282 
1283 		pte = pmap_l2_to_l3(pde, va);
1284 		pmap_load_store(pte, (pa & ~L3_OFFSET) | attr);
1285 
1286 		va += PAGE_SIZE;
1287 		pa += PAGE_SIZE;
1288 		size -= PAGE_SIZE;
1289 	}
1290 	pmap_invalidate_range(kernel_pmap, sva, va);
1291 }
1292 
1293 void
1294 pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
1295 {
1296 
1297 	pmap_kenter(sva, size, pa, VM_MEMATTR_DEVICE);
1298 }
1299 
1300 /*
1301  * Remove a page from the kernel pagetables.
1302  */
1303 PMAP_INLINE void
1304 pmap_kremove(vm_offset_t va)
1305 {
1306 	pt_entry_t *pte;
1307 	int lvl;
1308 
1309 	pte = pmap_pte(kernel_pmap, va, &lvl);
1310 	KASSERT(pte != NULL, ("pmap_kremove: Invalid address"));
1311 	KASSERT(lvl == 3, ("pmap_kremove: Invalid pte level %d", lvl));
1312 
1313 	pmap_clear(pte);
1314 	pmap_invalidate_page(kernel_pmap, va);
1315 }
1316 
1317 void
1318 pmap_kremove_device(vm_offset_t sva, vm_size_t size)
1319 {
1320 	pt_entry_t *pte;
1321 	vm_offset_t va;
1322 	int lvl;
1323 
1324 	KASSERT((sva & L3_OFFSET) == 0,
1325 	   ("pmap_kremove_device: Invalid virtual address"));
1326 	KASSERT((size & PAGE_MASK) == 0,
1327 	    ("pmap_kremove_device: Mapping is not page-sized"));
1328 
1329 	va = sva;
1330 	while (size != 0) {
1331 		pte = pmap_pte(kernel_pmap, va, &lvl);
1332 		KASSERT(pte != NULL, ("Invalid page table, va: 0x%lx", va));
1333 		KASSERT(lvl == 3,
1334 		    ("Invalid device pagetable level: %d != 3", lvl));
1335 		pmap_clear(pte);
1336 
1337 		va += PAGE_SIZE;
1338 		size -= PAGE_SIZE;
1339 	}
1340 	pmap_invalidate_range(kernel_pmap, sva, va);
1341 }
1342 
1343 /*
1344  *	Used to map a range of physical addresses into kernel
1345  *	virtual address space.
1346  *
1347  *	The value passed in '*virt' is a suggested virtual address for
1348  *	the mapping. Architectures which can support a direct-mapped
1349  *	physical to virtual region can return the appropriate address
1350  *	within that region, leaving '*virt' unchanged. Other
1351  *	architectures should map the pages starting at '*virt' and
1352  *	update '*virt' with the first usable address after the mapped
1353  *	region.
1354  */
1355 vm_offset_t
1356 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1357 {
1358 	return PHYS_TO_DMAP(start);
1359 }
1360 
1361 
1362 /*
1363  * Add a list of wired pages to the kva
1364  * this routine is only used for temporary
1365  * kernel mappings that do not need to have
1366  * page modification or references recorded.
1367  * Note that old mappings are simply written
1368  * over.  The page *must* be wired.
1369  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1370  */
1371 void
1372 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1373 {
1374 	pd_entry_t *pde;
1375 	pt_entry_t *pte, pa;
1376 	vm_offset_t va;
1377 	vm_page_t m;
1378 	int i, lvl;
1379 
1380 	va = sva;
1381 	for (i = 0; i < count; i++) {
1382 		pde = pmap_pde(kernel_pmap, va, &lvl);
1383 		KASSERT(pde != NULL,
1384 		    ("pmap_qenter: Invalid page entry, va: 0x%lx", va));
1385 		KASSERT(lvl == 2,
1386 		    ("pmap_qenter: Invalid level %d", lvl));
1387 
1388 		m = ma[i];
1389 		pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT |
1390 		    ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_S1_XN |
1391 		    ATTR_S1_IDX(m->md.pv_memattr) | L3_PAGE;
1392 		pte = pmap_l2_to_l3(pde, va);
1393 		pmap_load_store(pte, pa);
1394 
1395 		va += L3_SIZE;
1396 	}
1397 	pmap_invalidate_range(kernel_pmap, sva, va);
1398 }
1399 
1400 /*
1401  * This routine tears out page mappings from the
1402  * kernel -- it is meant only for temporary mappings.
1403  */
1404 void
1405 pmap_qremove(vm_offset_t sva, int count)
1406 {
1407 	pt_entry_t *pte;
1408 	vm_offset_t va;
1409 	int lvl;
1410 
1411 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva));
1412 
1413 	va = sva;
1414 	while (count-- > 0) {
1415 		pte = pmap_pte(kernel_pmap, va, &lvl);
1416 		KASSERT(lvl == 3,
1417 		    ("Invalid device pagetable level: %d != 3", lvl));
1418 		if (pte != NULL) {
1419 			pmap_clear(pte);
1420 		}
1421 
1422 		va += PAGE_SIZE;
1423 	}
1424 	pmap_invalidate_range(kernel_pmap, sva, va);
1425 }
1426 
1427 /***************************************************
1428  * Page table page management routines.....
1429  ***************************************************/
1430 /*
1431  * Schedule the specified unused page table page to be freed.  Specifically,
1432  * add the page to the specified list of pages that will be released to the
1433  * physical memory manager after the TLB has been updated.
1434  */
1435 static __inline void
1436 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1437     boolean_t set_PG_ZERO)
1438 {
1439 
1440 	if (set_PG_ZERO)
1441 		m->flags |= PG_ZERO;
1442 	else
1443 		m->flags &= ~PG_ZERO;
1444 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1445 }
1446 
1447 /*
1448  * Decrements a page table page's reference count, which is used to record the
1449  * number of valid page table entries within the page.  If the reference count
1450  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1451  * page table page was unmapped and FALSE otherwise.
1452  */
1453 static inline boolean_t
1454 pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1455 {
1456 
1457 	--m->ref_count;
1458 	if (m->ref_count == 0) {
1459 		_pmap_unwire_l3(pmap, va, m, free);
1460 		return (TRUE);
1461 	} else
1462 		return (FALSE);
1463 }
1464 
1465 static void
1466 _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1467 {
1468 
1469 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1470 	/*
1471 	 * unmap the page table page
1472 	 */
1473 	if (m->pindex >= (NUL2E + NUL1E)) {
1474 		/* l1 page */
1475 		pd_entry_t *l0;
1476 
1477 		l0 = pmap_l0(pmap, va);
1478 		pmap_clear(l0);
1479 	} else if (m->pindex >= NUL2E) {
1480 		/* l2 page */
1481 		pd_entry_t *l1;
1482 
1483 		l1 = pmap_l1(pmap, va);
1484 		pmap_clear(l1);
1485 	} else {
1486 		/* l3 page */
1487 		pd_entry_t *l2;
1488 
1489 		l2 = pmap_l2(pmap, va);
1490 		pmap_clear(l2);
1491 	}
1492 	pmap_resident_count_dec(pmap, 1);
1493 	if (m->pindex < NUL2E) {
1494 		/* We just released an l3, unhold the matching l2 */
1495 		pd_entry_t *l1, tl1;
1496 		vm_page_t l2pg;
1497 
1498 		l1 = pmap_l1(pmap, va);
1499 		tl1 = pmap_load(l1);
1500 		l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1501 		pmap_unwire_l3(pmap, va, l2pg, free);
1502 	} else if (m->pindex < (NUL2E + NUL1E)) {
1503 		/* We just released an l2, unhold the matching l1 */
1504 		pd_entry_t *l0, tl0;
1505 		vm_page_t l1pg;
1506 
1507 		l0 = pmap_l0(pmap, va);
1508 		tl0 = pmap_load(l0);
1509 		l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1510 		pmap_unwire_l3(pmap, va, l1pg, free);
1511 	}
1512 	pmap_invalidate_page(pmap, va);
1513 
1514 	/*
1515 	 * Put page on a list so that it is released after
1516 	 * *ALL* TLB shootdown is done
1517 	 */
1518 	pmap_add_delayed_free_list(m, free, TRUE);
1519 }
1520 
1521 /*
1522  * After removing a page table entry, this routine is used to
1523  * conditionally free the page, and manage the reference count.
1524  */
1525 static int
1526 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
1527     struct spglist *free)
1528 {
1529 	vm_page_t mpte;
1530 
1531 	if (va >= VM_MAXUSER_ADDRESS)
1532 		return (0);
1533 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
1534 	mpte = PHYS_TO_VM_PAGE(ptepde & ~ATTR_MASK);
1535 	return (pmap_unwire_l3(pmap, va, mpte, free));
1536 }
1537 
1538 /*
1539  * Release a page table page reference after a failed attempt to create a
1540  * mapping.
1541  */
1542 static void
1543 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1544 {
1545 	struct spglist free;
1546 
1547 	SLIST_INIT(&free);
1548 	if (pmap_unwire_l3(pmap, va, mpte, &free)) {
1549 		/*
1550 		 * Although "va" was never mapped, the TLB could nonetheless
1551 		 * have intermediate entries that refer to the freed page
1552 		 * table pages.  Invalidate those entries.
1553 		 *
1554 		 * XXX redundant invalidation (See _pmap_unwire_l3().)
1555 		 */
1556 		pmap_invalidate_page(pmap, va);
1557 		vm_page_free_pages_toq(&free, true);
1558 	}
1559 }
1560 
1561 void
1562 pmap_pinit0(pmap_t pmap)
1563 {
1564 
1565 	PMAP_LOCK_INIT(pmap);
1566 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1567 	pmap->pm_l0_paddr = READ_SPECIALREG(ttbr0_el1);
1568 	pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr);
1569 	pmap->pm_root.rt_root = 0;
1570 	pmap->pm_cookie = COOKIE_FROM(ASID_RESERVED_FOR_PID_0, INT_MIN);
1571 	pmap->pm_stage = PM_STAGE1;
1572 	pmap->pm_asid_set = &asids;
1573 
1574 	PCPU_SET(curpmap, pmap);
1575 }
1576 
1577 int
1578 pmap_pinit(pmap_t pmap)
1579 {
1580 	vm_page_t l0pt;
1581 
1582 	/*
1583 	 * allocate the l0 page
1584 	 */
1585 	while ((l0pt = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
1586 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
1587 		vm_wait(NULL);
1588 
1589 	pmap->pm_l0_paddr = VM_PAGE_TO_PHYS(l0pt);
1590 	pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr);
1591 
1592 	if ((l0pt->flags & PG_ZERO) == 0)
1593 		pagezero(pmap->pm_l0);
1594 
1595 	pmap->pm_root.rt_root = 0;
1596 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1597 	pmap->pm_cookie = COOKIE_FROM(-1, INT_MAX);
1598 	pmap->pm_stage = PM_STAGE1;
1599 	pmap->pm_asid_set = &asids;
1600 	/* XXX Temporarily disable deferred ASID allocation. */
1601 	pmap_alloc_asid(pmap);
1602 
1603 	return (1);
1604 }
1605 
1606 /*
1607  * This routine is called if the desired page table page does not exist.
1608  *
1609  * If page table page allocation fails, this routine may sleep before
1610  * returning NULL.  It sleeps only if a lock pointer was given.
1611  *
1612  * Note: If a page allocation fails at page table level two or three,
1613  * one or two pages may be held during the wait, only to be released
1614  * afterwards.  This conservative approach is easily argued to avoid
1615  * race conditions.
1616  */
1617 static vm_page_t
1618 _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
1619 {
1620 	vm_page_t m, l1pg, l2pg;
1621 
1622 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1623 
1624 	/*
1625 	 * Allocate a page table page.
1626 	 */
1627 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1628 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1629 		if (lockp != NULL) {
1630 			RELEASE_PV_LIST_LOCK(lockp);
1631 			PMAP_UNLOCK(pmap);
1632 			vm_wait(NULL);
1633 			PMAP_LOCK(pmap);
1634 		}
1635 
1636 		/*
1637 		 * Indicate the need to retry.  While waiting, the page table
1638 		 * page may have been allocated.
1639 		 */
1640 		return (NULL);
1641 	}
1642 	if ((m->flags & PG_ZERO) == 0)
1643 		pmap_zero_page(m);
1644 
1645 	/*
1646 	 * Because of AArch64's weak memory consistency model, we must have a
1647 	 * barrier here to ensure that the stores for zeroing "m", whether by
1648 	 * pmap_zero_page() or an earlier function, are visible before adding
1649 	 * "m" to the page table.  Otherwise, a page table walk by another
1650 	 * processor's MMU could see the mapping to "m" and a stale, non-zero
1651 	 * PTE within "m".
1652 	 */
1653 	dmb(ishst);
1654 
1655 	/*
1656 	 * Map the pagetable page into the process address space, if
1657 	 * it isn't already there.
1658 	 */
1659 
1660 	if (ptepindex >= (NUL2E + NUL1E)) {
1661 		pd_entry_t *l0;
1662 		vm_pindex_t l0index;
1663 
1664 		l0index = ptepindex - (NUL2E + NUL1E);
1665 		l0 = &pmap->pm_l0[l0index];
1666 		pmap_store(l0, VM_PAGE_TO_PHYS(m) | L0_TABLE);
1667 	} else if (ptepindex >= NUL2E) {
1668 		vm_pindex_t l0index, l1index;
1669 		pd_entry_t *l0, *l1;
1670 		pd_entry_t tl0;
1671 
1672 		l1index = ptepindex - NUL2E;
1673 		l0index = l1index >> L0_ENTRIES_SHIFT;
1674 
1675 		l0 = &pmap->pm_l0[l0index];
1676 		tl0 = pmap_load(l0);
1677 		if (tl0 == 0) {
1678 			/* recurse for allocating page dir */
1679 			if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index,
1680 			    lockp) == NULL) {
1681 				vm_page_unwire_noq(m);
1682 				vm_page_free_zero(m);
1683 				return (NULL);
1684 			}
1685 		} else {
1686 			l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK);
1687 			l1pg->ref_count++;
1688 		}
1689 
1690 		l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK);
1691 		l1 = &l1[ptepindex & Ln_ADDR_MASK];
1692 		pmap_store(l1, VM_PAGE_TO_PHYS(m) | L1_TABLE);
1693 	} else {
1694 		vm_pindex_t l0index, l1index;
1695 		pd_entry_t *l0, *l1, *l2;
1696 		pd_entry_t tl0, tl1;
1697 
1698 		l1index = ptepindex >> Ln_ENTRIES_SHIFT;
1699 		l0index = l1index >> L0_ENTRIES_SHIFT;
1700 
1701 		l0 = &pmap->pm_l0[l0index];
1702 		tl0 = pmap_load(l0);
1703 		if (tl0 == 0) {
1704 			/* recurse for allocating page dir */
1705 			if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1706 			    lockp) == NULL) {
1707 				vm_page_unwire_noq(m);
1708 				vm_page_free_zero(m);
1709 				return (NULL);
1710 			}
1711 			tl0 = pmap_load(l0);
1712 			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1713 			l1 = &l1[l1index & Ln_ADDR_MASK];
1714 		} else {
1715 			l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK);
1716 			l1 = &l1[l1index & Ln_ADDR_MASK];
1717 			tl1 = pmap_load(l1);
1718 			if (tl1 == 0) {
1719 				/* recurse for allocating page dir */
1720 				if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1721 				    lockp) == NULL) {
1722 					vm_page_unwire_noq(m);
1723 					vm_page_free_zero(m);
1724 					return (NULL);
1725 				}
1726 			} else {
1727 				l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK);
1728 				l2pg->ref_count++;
1729 			}
1730 		}
1731 
1732 		l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK);
1733 		l2 = &l2[ptepindex & Ln_ADDR_MASK];
1734 		pmap_store(l2, VM_PAGE_TO_PHYS(m) | L2_TABLE);
1735 	}
1736 
1737 	pmap_resident_count_inc(pmap, 1);
1738 
1739 	return (m);
1740 }
1741 
1742 static pd_entry_t *
1743 pmap_alloc_l2(pmap_t pmap, vm_offset_t va, vm_page_t *l2pgp,
1744     struct rwlock **lockp)
1745 {
1746 	pd_entry_t *l1, *l2;
1747 	vm_page_t l2pg;
1748 	vm_pindex_t l2pindex;
1749 
1750 retry:
1751 	l1 = pmap_l1(pmap, va);
1752 	if (l1 != NULL && (pmap_load(l1) & ATTR_DESCR_MASK) == L1_TABLE) {
1753 		l2 = pmap_l1_to_l2(l1, va);
1754 		if (va < VM_MAXUSER_ADDRESS) {
1755 			/* Add a reference to the L2 page. */
1756 			l2pg = PHYS_TO_VM_PAGE(pmap_load(l1) & ~ATTR_MASK);
1757 			l2pg->ref_count++;
1758 		} else
1759 			l2pg = NULL;
1760 	} else if (va < VM_MAXUSER_ADDRESS) {
1761 		/* Allocate a L2 page. */
1762 		l2pindex = pmap_l2_pindex(va) >> Ln_ENTRIES_SHIFT;
1763 		l2pg = _pmap_alloc_l3(pmap, NUL2E + l2pindex, lockp);
1764 		if (l2pg == NULL) {
1765 			if (lockp != NULL)
1766 				goto retry;
1767 			else
1768 				return (NULL);
1769 		}
1770 		l2 = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(l2pg));
1771 		l2 = &l2[pmap_l2_index(va)];
1772 	} else
1773 		panic("pmap_alloc_l2: missing page table page for va %#lx",
1774 		    va);
1775 	*l2pgp = l2pg;
1776 	return (l2);
1777 }
1778 
1779 static vm_page_t
1780 pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1781 {
1782 	vm_pindex_t ptepindex;
1783 	pd_entry_t *pde, tpde;
1784 #ifdef INVARIANTS
1785 	pt_entry_t *pte;
1786 #endif
1787 	vm_page_t m;
1788 	int lvl;
1789 
1790 	/*
1791 	 * Calculate pagetable page index
1792 	 */
1793 	ptepindex = pmap_l2_pindex(va);
1794 retry:
1795 	/*
1796 	 * Get the page directory entry
1797 	 */
1798 	pde = pmap_pde(pmap, va, &lvl);
1799 
1800 	/*
1801 	 * If the page table page is mapped, we just increment the hold count,
1802 	 * and activate it. If we get a level 2 pde it will point to a level 3
1803 	 * table.
1804 	 */
1805 	switch (lvl) {
1806 	case -1:
1807 		break;
1808 	case 0:
1809 #ifdef INVARIANTS
1810 		pte = pmap_l0_to_l1(pde, va);
1811 		KASSERT(pmap_load(pte) == 0,
1812 		    ("pmap_alloc_l3: TODO: l0 superpages"));
1813 #endif
1814 		break;
1815 	case 1:
1816 #ifdef INVARIANTS
1817 		pte = pmap_l1_to_l2(pde, va);
1818 		KASSERT(pmap_load(pte) == 0,
1819 		    ("pmap_alloc_l3: TODO: l1 superpages"));
1820 #endif
1821 		break;
1822 	case 2:
1823 		tpde = pmap_load(pde);
1824 		if (tpde != 0) {
1825 			m = PHYS_TO_VM_PAGE(tpde & ~ATTR_MASK);
1826 			m->ref_count++;
1827 			return (m);
1828 		}
1829 		break;
1830 	default:
1831 		panic("pmap_alloc_l3: Invalid level %d", lvl);
1832 	}
1833 
1834 	/*
1835 	 * Here if the pte page isn't mapped, or if it has been deallocated.
1836 	 */
1837 	m = _pmap_alloc_l3(pmap, ptepindex, lockp);
1838 	if (m == NULL && lockp != NULL)
1839 		goto retry;
1840 
1841 	return (m);
1842 }
1843 
1844 /***************************************************
1845  * Pmap allocation/deallocation routines.
1846  ***************************************************/
1847 
1848 /*
1849  * Release any resources held by the given physical map.
1850  * Called when a pmap initialized by pmap_pinit is being released.
1851  * Should only be called if the map contains no valid mappings.
1852  */
1853 void
1854 pmap_release(pmap_t pmap)
1855 {
1856 	struct asid_set *set;
1857 	vm_page_t m;
1858 	int asid;
1859 
1860 	KASSERT(pmap->pm_stats.resident_count == 0,
1861 	    ("pmap_release: pmap resident count %ld != 0",
1862 	    pmap->pm_stats.resident_count));
1863 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
1864 	    ("pmap_release: pmap has reserved page table page(s)"));
1865 	PMAP_ASSERT_STAGE1(pmap);
1866 
1867 	set = pmap->pm_asid_set;
1868 	KASSERT(set != NULL, ("%s: NULL asid set", __func__));
1869 
1870 	mtx_lock_spin(&set->asid_set_mutex);
1871 	if (COOKIE_TO_EPOCH(pmap->pm_cookie) == set->asid_epoch) {
1872 		asid = COOKIE_TO_ASID(pmap->pm_cookie);
1873 		KASSERT(asid >= ASID_FIRST_AVAILABLE &&
1874 		    asid < set->asid_set_size,
1875 		    ("pmap_release: pmap cookie has out-of-range asid"));
1876 		bit_clear(set->asid_set, asid);
1877 	}
1878 	mtx_unlock_spin(&set->asid_set_mutex);
1879 
1880 	m = PHYS_TO_VM_PAGE(pmap->pm_l0_paddr);
1881 	vm_page_unwire_noq(m);
1882 	vm_page_free_zero(m);
1883 }
1884 
1885 static int
1886 kvm_size(SYSCTL_HANDLER_ARGS)
1887 {
1888 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
1889 
1890 	return sysctl_handle_long(oidp, &ksize, 0, req);
1891 }
1892 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
1893     0, 0, kvm_size, "LU",
1894     "Size of KVM");
1895 
1896 static int
1897 kvm_free(SYSCTL_HANDLER_ARGS)
1898 {
1899 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1900 
1901 	return sysctl_handle_long(oidp, &kfree, 0, req);
1902 }
1903 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
1904     0, 0, kvm_free, "LU",
1905     "Amount of KVM free");
1906 
1907 /*
1908  * grow the number of kernel page table entries, if needed
1909  */
1910 void
1911 pmap_growkernel(vm_offset_t addr)
1912 {
1913 	vm_paddr_t paddr;
1914 	vm_page_t nkpg;
1915 	pd_entry_t *l0, *l1, *l2;
1916 
1917 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1918 
1919 	addr = roundup2(addr, L2_SIZE);
1920 	if (addr - 1 >= vm_map_max(kernel_map))
1921 		addr = vm_map_max(kernel_map);
1922 	while (kernel_vm_end < addr) {
1923 		l0 = pmap_l0(kernel_pmap, kernel_vm_end);
1924 		KASSERT(pmap_load(l0) != 0,
1925 		    ("pmap_growkernel: No level 0 kernel entry"));
1926 
1927 		l1 = pmap_l0_to_l1(l0, kernel_vm_end);
1928 		if (pmap_load(l1) == 0) {
1929 			/* We need a new PDP entry */
1930 			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L1_SHIFT,
1931 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1932 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1933 			if (nkpg == NULL)
1934 				panic("pmap_growkernel: no memory to grow kernel");
1935 			if ((nkpg->flags & PG_ZERO) == 0)
1936 				pmap_zero_page(nkpg);
1937 			/* See the dmb() in _pmap_alloc_l3(). */
1938 			dmb(ishst);
1939 			paddr = VM_PAGE_TO_PHYS(nkpg);
1940 			pmap_store(l1, paddr | L1_TABLE);
1941 			continue; /* try again */
1942 		}
1943 		l2 = pmap_l1_to_l2(l1, kernel_vm_end);
1944 		if (pmap_load(l2) != 0) {
1945 			kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1946 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
1947 				kernel_vm_end = vm_map_max(kernel_map);
1948 				break;
1949 			}
1950 			continue;
1951 		}
1952 
1953 		nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_SHIFT,
1954 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1955 		    VM_ALLOC_ZERO);
1956 		if (nkpg == NULL)
1957 			panic("pmap_growkernel: no memory to grow kernel");
1958 		if ((nkpg->flags & PG_ZERO) == 0)
1959 			pmap_zero_page(nkpg);
1960 		/* See the dmb() in _pmap_alloc_l3(). */
1961 		dmb(ishst);
1962 		paddr = VM_PAGE_TO_PHYS(nkpg);
1963 		pmap_store(l2, paddr | L2_TABLE);
1964 
1965 		kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1966 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
1967 			kernel_vm_end = vm_map_max(kernel_map);
1968 			break;
1969 		}
1970 	}
1971 }
1972 
1973 
1974 /***************************************************
1975  * page management routines.
1976  ***************************************************/
1977 
1978 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1979 CTASSERT(_NPCM == 3);
1980 CTASSERT(_NPCPV == 168);
1981 
1982 static __inline struct pv_chunk *
1983 pv_to_chunk(pv_entry_t pv)
1984 {
1985 
1986 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1987 }
1988 
1989 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1990 
1991 #define	PC_FREE0	0xfffffffffffffffful
1992 #define	PC_FREE1	0xfffffffffffffffful
1993 #define	PC_FREE2	0x000000fffffffffful
1994 
1995 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
1996 
1997 #if 0
1998 #ifdef PV_STATS
1999 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2000 
2001 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2002 	"Current number of pv entry chunks");
2003 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2004 	"Current number of pv entry chunks allocated");
2005 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2006 	"Current number of pv entry chunks frees");
2007 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2008 	"Number of times tried to get a chunk page but failed.");
2009 
2010 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
2011 static int pv_entry_spare;
2012 
2013 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2014 	"Current number of pv entry frees");
2015 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2016 	"Current number of pv entry allocs");
2017 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2018 	"Current number of pv entries");
2019 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2020 	"Current number of spare pv entries");
2021 #endif
2022 #endif /* 0 */
2023 
2024 /*
2025  * We are in a serious low memory condition.  Resort to
2026  * drastic measures to free some pages so we can allocate
2027  * another pv entry chunk.
2028  *
2029  * Returns NULL if PV entries were reclaimed from the specified pmap.
2030  *
2031  * We do not, however, unmap 2mpages because subsequent accesses will
2032  * allocate per-page pv entries until repromotion occurs, thereby
2033  * exacerbating the shortage of free pv entries.
2034  */
2035 static vm_page_t
2036 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
2037 {
2038 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
2039 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
2040 	struct md_page *pvh;
2041 	pd_entry_t *pde;
2042 	pmap_t next_pmap, pmap;
2043 	pt_entry_t *pte, tpte;
2044 	pv_entry_t pv;
2045 	vm_offset_t va;
2046 	vm_page_t m, m_pc;
2047 	struct spglist free;
2048 	uint64_t inuse;
2049 	int bit, field, freed, lvl;
2050 	static int active_reclaims = 0;
2051 
2052 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2053 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
2054 
2055 	pmap = NULL;
2056 	m_pc = NULL;
2057 	SLIST_INIT(&free);
2058 	bzero(&pc_marker_b, sizeof(pc_marker_b));
2059 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
2060 	pc_marker = (struct pv_chunk *)&pc_marker_b;
2061 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
2062 
2063 	mtx_lock(&pv_chunks_mutex);
2064 	active_reclaims++;
2065 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
2066 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
2067 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
2068 	    SLIST_EMPTY(&free)) {
2069 		next_pmap = pc->pc_pmap;
2070 		if (next_pmap == NULL) {
2071 			/*
2072 			 * The next chunk is a marker.  However, it is
2073 			 * not our marker, so active_reclaims must be
2074 			 * > 1.  Consequently, the next_chunk code
2075 			 * will not rotate the pv_chunks list.
2076 			 */
2077 			goto next_chunk;
2078 		}
2079 		mtx_unlock(&pv_chunks_mutex);
2080 
2081 		/*
2082 		 * A pv_chunk can only be removed from the pc_lru list
2083 		 * when both pv_chunks_mutex is owned and the
2084 		 * corresponding pmap is locked.
2085 		 */
2086 		if (pmap != next_pmap) {
2087 			if (pmap != NULL && pmap != locked_pmap)
2088 				PMAP_UNLOCK(pmap);
2089 			pmap = next_pmap;
2090 			/* Avoid deadlock and lock recursion. */
2091 			if (pmap > locked_pmap) {
2092 				RELEASE_PV_LIST_LOCK(lockp);
2093 				PMAP_LOCK(pmap);
2094 				mtx_lock(&pv_chunks_mutex);
2095 				continue;
2096 			} else if (pmap != locked_pmap) {
2097 				if (PMAP_TRYLOCK(pmap)) {
2098 					mtx_lock(&pv_chunks_mutex);
2099 					continue;
2100 				} else {
2101 					pmap = NULL; /* pmap is not locked */
2102 					mtx_lock(&pv_chunks_mutex);
2103 					pc = TAILQ_NEXT(pc_marker, pc_lru);
2104 					if (pc == NULL ||
2105 					    pc->pc_pmap != next_pmap)
2106 						continue;
2107 					goto next_chunk;
2108 				}
2109 			}
2110 		}
2111 
2112 		/*
2113 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2114 		 */
2115 		freed = 0;
2116 		for (field = 0; field < _NPCM; field++) {
2117 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2118 			    inuse != 0; inuse &= ~(1UL << bit)) {
2119 				bit = ffsl(inuse) - 1;
2120 				pv = &pc->pc_pventry[field * 64 + bit];
2121 				va = pv->pv_va;
2122 				pde = pmap_pde(pmap, va, &lvl);
2123 				if (lvl != 2)
2124 					continue;
2125 				pte = pmap_l2_to_l3(pde, va);
2126 				tpte = pmap_load(pte);
2127 				if ((tpte & ATTR_SW_WIRED) != 0)
2128 					continue;
2129 				tpte = pmap_load_clear(pte);
2130 				m = PHYS_TO_VM_PAGE(tpte & ~ATTR_MASK);
2131 				if (pmap_pte_dirty(pmap, tpte))
2132 					vm_page_dirty(m);
2133 				if ((tpte & ATTR_AF) != 0) {
2134 					pmap_invalidate_page(pmap, va);
2135 					vm_page_aflag_set(m, PGA_REFERENCED);
2136 				}
2137 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2138 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2139 				m->md.pv_gen++;
2140 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2141 				    (m->flags & PG_FICTITIOUS) == 0) {
2142 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2143 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2144 						vm_page_aflag_clear(m,
2145 						    PGA_WRITEABLE);
2146 					}
2147 				}
2148 				pc->pc_map[field] |= 1UL << bit;
2149 				pmap_unuse_pt(pmap, va, pmap_load(pde), &free);
2150 				freed++;
2151 			}
2152 		}
2153 		if (freed == 0) {
2154 			mtx_lock(&pv_chunks_mutex);
2155 			goto next_chunk;
2156 		}
2157 		/* Every freed mapping is for a 4 KB page. */
2158 		pmap_resident_count_dec(pmap, freed);
2159 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
2160 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
2161 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
2162 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2163 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
2164 		    pc->pc_map[2] == PC_FREE2) {
2165 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2166 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2167 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2168 			/* Entire chunk is free; return it. */
2169 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2170 			dump_drop_page(m_pc->phys_addr);
2171 			mtx_lock(&pv_chunks_mutex);
2172 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2173 			break;
2174 		}
2175 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2176 		mtx_lock(&pv_chunks_mutex);
2177 		/* One freed pv entry in locked_pmap is sufficient. */
2178 		if (pmap == locked_pmap)
2179 			break;
2180 
2181 next_chunk:
2182 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
2183 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
2184 		if (active_reclaims == 1 && pmap != NULL) {
2185 			/*
2186 			 * Rotate the pv chunks list so that we do not
2187 			 * scan the same pv chunks that could not be
2188 			 * freed (because they contained a wired
2189 			 * and/or superpage mapping) on every
2190 			 * invocation of reclaim_pv_chunk().
2191 			 */
2192 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
2193 				MPASS(pc->pc_pmap != NULL);
2194 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2195 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2196 			}
2197 		}
2198 	}
2199 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
2200 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
2201 	active_reclaims--;
2202 	mtx_unlock(&pv_chunks_mutex);
2203 	if (pmap != NULL && pmap != locked_pmap)
2204 		PMAP_UNLOCK(pmap);
2205 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
2206 		m_pc = SLIST_FIRST(&free);
2207 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2208 		/* Recycle a freed page table page. */
2209 		m_pc->ref_count = 1;
2210 	}
2211 	vm_page_free_pages_toq(&free, true);
2212 	return (m_pc);
2213 }
2214 
2215 /*
2216  * free the pv_entry back to the free list
2217  */
2218 static void
2219 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2220 {
2221 	struct pv_chunk *pc;
2222 	int idx, field, bit;
2223 
2224 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2225 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
2226 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
2227 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
2228 	pc = pv_to_chunk(pv);
2229 	idx = pv - &pc->pc_pventry[0];
2230 	field = idx / 64;
2231 	bit = idx % 64;
2232 	pc->pc_map[field] |= 1ul << bit;
2233 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
2234 	    pc->pc_map[2] != PC_FREE2) {
2235 		/* 98% of the time, pc is already at the head of the list. */
2236 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
2237 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2238 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2239 		}
2240 		return;
2241 	}
2242 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2243 	free_pv_chunk(pc);
2244 }
2245 
2246 static void
2247 free_pv_chunk(struct pv_chunk *pc)
2248 {
2249 	vm_page_t m;
2250 
2251 	mtx_lock(&pv_chunks_mutex);
2252  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2253 	mtx_unlock(&pv_chunks_mutex);
2254 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
2255 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
2256 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
2257 	/* entire chunk is free, return it */
2258 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
2259 	dump_drop_page(m->phys_addr);
2260 	vm_page_unwire_noq(m);
2261 	vm_page_free(m);
2262 }
2263 
2264 /*
2265  * Returns a new PV entry, allocating a new PV chunk from the system when
2266  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
2267  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
2268  * returned.
2269  *
2270  * The given PV list lock may be released.
2271  */
2272 static pv_entry_t
2273 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
2274 {
2275 	int bit, field;
2276 	pv_entry_t pv;
2277 	struct pv_chunk *pc;
2278 	vm_page_t m;
2279 
2280 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2281 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
2282 retry:
2283 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2284 	if (pc != NULL) {
2285 		for (field = 0; field < _NPCM; field++) {
2286 			if (pc->pc_map[field]) {
2287 				bit = ffsl(pc->pc_map[field]) - 1;
2288 				break;
2289 			}
2290 		}
2291 		if (field < _NPCM) {
2292 			pv = &pc->pc_pventry[field * 64 + bit];
2293 			pc->pc_map[field] &= ~(1ul << bit);
2294 			/* If this was the last item, move it to tail */
2295 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
2296 			    pc->pc_map[2] == 0) {
2297 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2298 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
2299 				    pc_list);
2300 			}
2301 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
2302 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
2303 			return (pv);
2304 		}
2305 	}
2306 	/* No free items, allocate another chunk */
2307 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2308 	    VM_ALLOC_WIRED);
2309 	if (m == NULL) {
2310 		if (lockp == NULL) {
2311 			PV_STAT(pc_chunk_tryfail++);
2312 			return (NULL);
2313 		}
2314 		m = reclaim_pv_chunk(pmap, lockp);
2315 		if (m == NULL)
2316 			goto retry;
2317 	}
2318 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2319 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2320 	dump_add_page(m->phys_addr);
2321 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2322 	pc->pc_pmap = pmap;
2323 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
2324 	pc->pc_map[1] = PC_FREE1;
2325 	pc->pc_map[2] = PC_FREE2;
2326 	mtx_lock(&pv_chunks_mutex);
2327 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2328 	mtx_unlock(&pv_chunks_mutex);
2329 	pv = &pc->pc_pventry[0];
2330 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2331 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
2332 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
2333 	return (pv);
2334 }
2335 
2336 /*
2337  * Ensure that the number of spare PV entries in the specified pmap meets or
2338  * exceeds the given count, "needed".
2339  *
2340  * The given PV list lock may be released.
2341  */
2342 static void
2343 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
2344 {
2345 	struct pch new_tail;
2346 	struct pv_chunk *pc;
2347 	vm_page_t m;
2348 	int avail, free;
2349 	bool reclaimed;
2350 
2351 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2352 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
2353 
2354 	/*
2355 	 * Newly allocated PV chunks must be stored in a private list until
2356 	 * the required number of PV chunks have been allocated.  Otherwise,
2357 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
2358 	 * contrast, these chunks must be added to the pmap upon allocation.
2359 	 */
2360 	TAILQ_INIT(&new_tail);
2361 retry:
2362 	avail = 0;
2363 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
2364 		bit_count((bitstr_t *)pc->pc_map, 0,
2365 		    sizeof(pc->pc_map) * NBBY, &free);
2366 		if (free == 0)
2367 			break;
2368 		avail += free;
2369 		if (avail >= needed)
2370 			break;
2371 	}
2372 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
2373 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
2374 		    VM_ALLOC_WIRED);
2375 		if (m == NULL) {
2376 			m = reclaim_pv_chunk(pmap, lockp);
2377 			if (m == NULL)
2378 				goto retry;
2379 			reclaimed = true;
2380 		}
2381 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
2382 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
2383 		dump_add_page(m->phys_addr);
2384 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
2385 		pc->pc_pmap = pmap;
2386 		pc->pc_map[0] = PC_FREE0;
2387 		pc->pc_map[1] = PC_FREE1;
2388 		pc->pc_map[2] = PC_FREE2;
2389 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2390 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
2391 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
2392 
2393 		/*
2394 		 * The reclaim might have freed a chunk from the current pmap.
2395 		 * If that chunk contained available entries, we need to
2396 		 * re-count the number of available entries.
2397 		 */
2398 		if (reclaimed)
2399 			goto retry;
2400 	}
2401 	if (!TAILQ_EMPTY(&new_tail)) {
2402 		mtx_lock(&pv_chunks_mutex);
2403 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
2404 		mtx_unlock(&pv_chunks_mutex);
2405 	}
2406 }
2407 
2408 /*
2409  * First find and then remove the pv entry for the specified pmap and virtual
2410  * address from the specified pv list.  Returns the pv entry if found and NULL
2411  * otherwise.  This operation can be performed on pv lists for either 4KB or
2412  * 2MB page mappings.
2413  */
2414 static __inline pv_entry_t
2415 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2416 {
2417 	pv_entry_t pv;
2418 
2419 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2420 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2421 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2422 			pvh->pv_gen++;
2423 			break;
2424 		}
2425 	}
2426 	return (pv);
2427 }
2428 
2429 /*
2430  * After demotion from a 2MB page mapping to 512 4KB page mappings,
2431  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
2432  * entries for each of the 4KB page mappings.
2433  */
2434 static void
2435 pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2436     struct rwlock **lockp)
2437 {
2438 	struct md_page *pvh;
2439 	struct pv_chunk *pc;
2440 	pv_entry_t pv;
2441 	vm_offset_t va_last;
2442 	vm_page_t m;
2443 	int bit, field;
2444 
2445 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2446 	KASSERT((va & L2_OFFSET) == 0,
2447 	    ("pmap_pv_demote_l2: va is not 2mpage aligned"));
2448 	KASSERT((pa & L2_OFFSET) == 0,
2449 	    ("pmap_pv_demote_l2: pa is not 2mpage aligned"));
2450 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2451 
2452 	/*
2453 	 * Transfer the 2mpage's pv entry for this mapping to the first
2454 	 * page's pv list.  Once this transfer begins, the pv list lock
2455 	 * must not be released until the last pv entry is reinstantiated.
2456 	 */
2457 	pvh = pa_to_pvh(pa);
2458 	pv = pmap_pvh_remove(pvh, pmap, va);
2459 	KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found"));
2460 	m = PHYS_TO_VM_PAGE(pa);
2461 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2462 	m->md.pv_gen++;
2463 	/* Instantiate the remaining Ln_ENTRIES - 1 pv entries. */
2464 	PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1));
2465 	va_last = va + L2_SIZE - PAGE_SIZE;
2466 	for (;;) {
2467 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2468 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
2469 		    pc->pc_map[2] != 0, ("pmap_pv_demote_l2: missing spare"));
2470 		for (field = 0; field < _NPCM; field++) {
2471 			while (pc->pc_map[field]) {
2472 				bit = ffsl(pc->pc_map[field]) - 1;
2473 				pc->pc_map[field] &= ~(1ul << bit);
2474 				pv = &pc->pc_pventry[field * 64 + bit];
2475 				va += PAGE_SIZE;
2476 				pv->pv_va = va;
2477 				m++;
2478 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2479 			    ("pmap_pv_demote_l2: page %p is not managed", m));
2480 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2481 				m->md.pv_gen++;
2482 				if (va == va_last)
2483 					goto out;
2484 			}
2485 		}
2486 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2487 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2488 	}
2489 out:
2490 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
2491 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2492 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2493 	}
2494 	PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1));
2495 	PV_STAT(atomic_subtract_int(&pv_entry_spare, Ln_ENTRIES - 1));
2496 }
2497 
2498 /*
2499  * First find and then destroy the pv entry for the specified pmap and virtual
2500  * address.  This operation can be performed on pv lists for either 4KB or 2MB
2501  * page mappings.
2502  */
2503 static void
2504 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2505 {
2506 	pv_entry_t pv;
2507 
2508 	pv = pmap_pvh_remove(pvh, pmap, va);
2509 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2510 	free_pv_entry(pmap, pv);
2511 }
2512 
2513 /*
2514  * Conditionally create the PV entry for a 4KB page mapping if the required
2515  * memory can be allocated without resorting to reclamation.
2516  */
2517 static boolean_t
2518 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
2519     struct rwlock **lockp)
2520 {
2521 	pv_entry_t pv;
2522 
2523 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2524 	/* Pass NULL instead of the lock pointer to disable reclamation. */
2525 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
2526 		pv->pv_va = va;
2527 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2528 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2529 		m->md.pv_gen++;
2530 		return (TRUE);
2531 	} else
2532 		return (FALSE);
2533 }
2534 
2535 /*
2536  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
2537  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
2538  * false if the PV entry cannot be allocated without resorting to reclamation.
2539  */
2540 static bool
2541 pmap_pv_insert_l2(pmap_t pmap, vm_offset_t va, pd_entry_t l2e, u_int flags,
2542     struct rwlock **lockp)
2543 {
2544 	struct md_page *pvh;
2545 	pv_entry_t pv;
2546 	vm_paddr_t pa;
2547 
2548 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2549 	/* Pass NULL instead of the lock pointer to disable reclamation. */
2550 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
2551 	    NULL : lockp)) == NULL)
2552 		return (false);
2553 	pv->pv_va = va;
2554 	pa = l2e & ~ATTR_MASK;
2555 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2556 	pvh = pa_to_pvh(pa);
2557 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2558 	pvh->pv_gen++;
2559 	return (true);
2560 }
2561 
2562 static void
2563 pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
2564 {
2565 	pt_entry_t newl2, oldl2;
2566 	vm_page_t ml3;
2567 	vm_paddr_t ml3pa;
2568 
2569 	KASSERT(!VIRT_IN_DMAP(va), ("removing direct mapping of %#lx", va));
2570 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
2571 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2572 
2573 	ml3 = pmap_remove_pt_page(pmap, va);
2574 	if (ml3 == NULL)
2575 		panic("pmap_remove_kernel_l2: Missing pt page");
2576 
2577 	ml3pa = VM_PAGE_TO_PHYS(ml3);
2578 	newl2 = ml3pa | L2_TABLE;
2579 
2580 	/*
2581 	 * If this page table page was unmapped by a promotion, then it
2582 	 * contains valid mappings.  Zero it to invalidate those mappings.
2583 	 */
2584 	if (ml3->valid != 0)
2585 		pagezero((void *)PHYS_TO_DMAP(ml3pa));
2586 
2587 	/*
2588 	 * Demote the mapping.  The caller must have already invalidated the
2589 	 * mapping (i.e., the "break" in break-before-make).
2590 	 */
2591 	oldl2 = pmap_load_store(l2, newl2);
2592 	KASSERT(oldl2 == 0, ("%s: found existing mapping at %p: %#lx",
2593 	    __func__, l2, oldl2));
2594 }
2595 
2596 /*
2597  * pmap_remove_l2: Do the things to unmap a level 2 superpage.
2598  */
2599 static int
2600 pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
2601     pd_entry_t l1e, struct spglist *free, struct rwlock **lockp)
2602 {
2603 	struct md_page *pvh;
2604 	pt_entry_t old_l2;
2605 	vm_offset_t eva, va;
2606 	vm_page_t m, ml3;
2607 
2608 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2609 	KASSERT((sva & L2_OFFSET) == 0, ("pmap_remove_l2: sva is not aligned"));
2610 	old_l2 = pmap_load_clear(l2);
2611 	KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
2612 	    ("pmap_remove_l2: L2e %lx is not a block mapping", old_l2));
2613 
2614 	/*
2615 	 * Since a promotion must break the 4KB page mappings before making
2616 	 * the 2MB page mapping, a pmap_invalidate_page() suffices.
2617 	 */
2618 	pmap_invalidate_page(pmap, sva);
2619 
2620 	if (old_l2 & ATTR_SW_WIRED)
2621 		pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE;
2622 	pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE);
2623 	if (old_l2 & ATTR_SW_MANAGED) {
2624 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, old_l2 & ~ATTR_MASK);
2625 		pvh = pa_to_pvh(old_l2 & ~ATTR_MASK);
2626 		pmap_pvh_free(pvh, pmap, sva);
2627 		eva = sva + L2_SIZE;
2628 		for (va = sva, m = PHYS_TO_VM_PAGE(old_l2 & ~ATTR_MASK);
2629 		    va < eva; va += PAGE_SIZE, m++) {
2630 			if (pmap_pte_dirty(pmap, old_l2))
2631 				vm_page_dirty(m);
2632 			if (old_l2 & ATTR_AF)
2633 				vm_page_aflag_set(m, PGA_REFERENCED);
2634 			if (TAILQ_EMPTY(&m->md.pv_list) &&
2635 			    TAILQ_EMPTY(&pvh->pv_list))
2636 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2637 		}
2638 	}
2639 	if (pmap == kernel_pmap) {
2640 		pmap_remove_kernel_l2(pmap, l2, sva);
2641 	} else {
2642 		ml3 = pmap_remove_pt_page(pmap, sva);
2643 		if (ml3 != NULL) {
2644 			KASSERT(ml3->valid == VM_PAGE_BITS_ALL,
2645 			    ("pmap_remove_l2: l3 page not promoted"));
2646 			pmap_resident_count_dec(pmap, 1);
2647 			KASSERT(ml3->ref_count == NL3PG,
2648 			    ("pmap_remove_l2: l3 page ref count error"));
2649 			ml3->ref_count = 0;
2650 			pmap_add_delayed_free_list(ml3, free, FALSE);
2651 		}
2652 	}
2653 	return (pmap_unuse_pt(pmap, sva, l1e, free));
2654 }
2655 
2656 /*
2657  * pmap_remove_l3: do the things to unmap a page in a process
2658  */
2659 static int
2660 pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
2661     pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
2662 {
2663 	struct md_page *pvh;
2664 	pt_entry_t old_l3;
2665 	vm_page_t m;
2666 
2667 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2668 	old_l3 = pmap_load_clear(l3);
2669 	pmap_invalidate_page(pmap, va);
2670 	if (old_l3 & ATTR_SW_WIRED)
2671 		pmap->pm_stats.wired_count -= 1;
2672 	pmap_resident_count_dec(pmap, 1);
2673 	if (old_l3 & ATTR_SW_MANAGED) {
2674 		m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK);
2675 		if (pmap_pte_dirty(pmap, old_l3))
2676 			vm_page_dirty(m);
2677 		if (old_l3 & ATTR_AF)
2678 			vm_page_aflag_set(m, PGA_REFERENCED);
2679 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2680 		pmap_pvh_free(&m->md, pmap, va);
2681 		if (TAILQ_EMPTY(&m->md.pv_list) &&
2682 		    (m->flags & PG_FICTITIOUS) == 0) {
2683 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2684 			if (TAILQ_EMPTY(&pvh->pv_list))
2685 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2686 		}
2687 	}
2688 	return (pmap_unuse_pt(pmap, va, l2e, free));
2689 }
2690 
2691 /*
2692  * Remove the specified range of addresses from the L3 page table that is
2693  * identified by the given L2 entry.
2694  */
2695 static void
2696 pmap_remove_l3_range(pmap_t pmap, pd_entry_t l2e, vm_offset_t sva,
2697     vm_offset_t eva, struct spglist *free, struct rwlock **lockp)
2698 {
2699 	struct md_page *pvh;
2700 	struct rwlock *new_lock;
2701 	pt_entry_t *l3, old_l3;
2702 	vm_offset_t va;
2703 	vm_page_t l3pg, m;
2704 
2705 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2706 	KASSERT(rounddown2(sva, L2_SIZE) + L2_SIZE == roundup2(eva, L2_SIZE),
2707 	    ("pmap_remove_l3_range: range crosses an L3 page table boundary"));
2708 	l3pg = sva < VM_MAXUSER_ADDRESS ? PHYS_TO_VM_PAGE(l2e & ~ATTR_MASK) :
2709 	    NULL;
2710 	va = eva;
2711 	for (l3 = pmap_l2_to_l3(&l2e, sva); sva != eva; l3++, sva += L3_SIZE) {
2712 		if (!pmap_l3_valid(pmap_load(l3))) {
2713 			if (va != eva) {
2714 				pmap_invalidate_range(pmap, va, sva);
2715 				va = eva;
2716 			}
2717 			continue;
2718 		}
2719 		old_l3 = pmap_load_clear(l3);
2720 		if ((old_l3 & ATTR_SW_WIRED) != 0)
2721 			pmap->pm_stats.wired_count--;
2722 		pmap_resident_count_dec(pmap, 1);
2723 		if ((old_l3 & ATTR_SW_MANAGED) != 0) {
2724 			m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK);
2725 			if (pmap_pte_dirty(pmap, old_l3))
2726 				vm_page_dirty(m);
2727 			if ((old_l3 & ATTR_AF) != 0)
2728 				vm_page_aflag_set(m, PGA_REFERENCED);
2729 			new_lock = PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m));
2730 			if (new_lock != *lockp) {
2731 				if (*lockp != NULL) {
2732 					/*
2733 					 * Pending TLB invalidations must be
2734 					 * performed before the PV list lock is
2735 					 * released.  Otherwise, a concurrent
2736 					 * pmap_remove_all() on a physical page
2737 					 * could return while a stale TLB entry
2738 					 * still provides access to that page.
2739 					 */
2740 					if (va != eva) {
2741 						pmap_invalidate_range(pmap, va,
2742 						    sva);
2743 						va = eva;
2744 					}
2745 					rw_wunlock(*lockp);
2746 				}
2747 				*lockp = new_lock;
2748 				rw_wlock(*lockp);
2749 			}
2750 			pmap_pvh_free(&m->md, pmap, sva);
2751 			if (TAILQ_EMPTY(&m->md.pv_list) &&
2752 			    (m->flags & PG_FICTITIOUS) == 0) {
2753 				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2754 				if (TAILQ_EMPTY(&pvh->pv_list))
2755 					vm_page_aflag_clear(m, PGA_WRITEABLE);
2756 			}
2757 		}
2758 		if (va == eva)
2759 			va = sva;
2760 		if (l3pg != NULL && pmap_unwire_l3(pmap, sva, l3pg, free)) {
2761 			sva += L3_SIZE;
2762 			break;
2763 		}
2764 	}
2765 	if (va != eva)
2766 		pmap_invalidate_range(pmap, va, sva);
2767 }
2768 
2769 /*
2770  *	Remove the given range of addresses from the specified map.
2771  *
2772  *	It is assumed that the start and end are properly
2773  *	rounded to the page size.
2774  */
2775 void
2776 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2777 {
2778 	struct rwlock *lock;
2779 	vm_offset_t va_next;
2780 	pd_entry_t *l0, *l1, *l2;
2781 	pt_entry_t l3_paddr;
2782 	struct spglist free;
2783 
2784 	/*
2785 	 * Perform an unsynchronized read.  This is, however, safe.
2786 	 */
2787 	if (pmap->pm_stats.resident_count == 0)
2788 		return;
2789 
2790 	SLIST_INIT(&free);
2791 
2792 	PMAP_LOCK(pmap);
2793 
2794 	lock = NULL;
2795 	for (; sva < eva; sva = va_next) {
2796 
2797 		if (pmap->pm_stats.resident_count == 0)
2798 			break;
2799 
2800 		l0 = pmap_l0(pmap, sva);
2801 		if (pmap_load(l0) == 0) {
2802 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2803 			if (va_next < sva)
2804 				va_next = eva;
2805 			continue;
2806 		}
2807 
2808 		l1 = pmap_l0_to_l1(l0, sva);
2809 		if (pmap_load(l1) == 0) {
2810 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2811 			if (va_next < sva)
2812 				va_next = eva;
2813 			continue;
2814 		}
2815 
2816 		/*
2817 		 * Calculate index for next page table.
2818 		 */
2819 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2820 		if (va_next < sva)
2821 			va_next = eva;
2822 
2823 		l2 = pmap_l1_to_l2(l1, sva);
2824 		if (l2 == NULL)
2825 			continue;
2826 
2827 		l3_paddr = pmap_load(l2);
2828 
2829 		if ((l3_paddr & ATTR_DESCR_MASK) == L2_BLOCK) {
2830 			if (sva + L2_SIZE == va_next && eva >= va_next) {
2831 				pmap_remove_l2(pmap, l2, sva, pmap_load(l1),
2832 				    &free, &lock);
2833 				continue;
2834 			} else if (pmap_demote_l2_locked(pmap, l2, sva,
2835 			    &lock) == NULL)
2836 				continue;
2837 			l3_paddr = pmap_load(l2);
2838 		}
2839 
2840 		/*
2841 		 * Weed out invalid mappings.
2842 		 */
2843 		if ((l3_paddr & ATTR_DESCR_MASK) != L2_TABLE)
2844 			continue;
2845 
2846 		/*
2847 		 * Limit our scan to either the end of the va represented
2848 		 * by the current page table page, or to the end of the
2849 		 * range being removed.
2850 		 */
2851 		if (va_next > eva)
2852 			va_next = eva;
2853 
2854 		pmap_remove_l3_range(pmap, l3_paddr, sva, va_next, &free,
2855 		    &lock);
2856 	}
2857 	if (lock != NULL)
2858 		rw_wunlock(lock);
2859 	PMAP_UNLOCK(pmap);
2860 	vm_page_free_pages_toq(&free, true);
2861 }
2862 
2863 /*
2864  *	Routine:	pmap_remove_all
2865  *	Function:
2866  *		Removes this physical page from
2867  *		all physical maps in which it resides.
2868  *		Reflects back modify bits to the pager.
2869  *
2870  *	Notes:
2871  *		Original versions of this routine were very
2872  *		inefficient because they iteratively called
2873  *		pmap_remove (slow...)
2874  */
2875 
2876 void
2877 pmap_remove_all(vm_page_t m)
2878 {
2879 	struct md_page *pvh;
2880 	pv_entry_t pv;
2881 	pmap_t pmap;
2882 	struct rwlock *lock;
2883 	pd_entry_t *pde, tpde;
2884 	pt_entry_t *pte, tpte;
2885 	vm_offset_t va;
2886 	struct spglist free;
2887 	int lvl, pvh_gen, md_gen;
2888 
2889 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2890 	    ("pmap_remove_all: page %p is not managed", m));
2891 	SLIST_INIT(&free);
2892 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2893 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2894 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2895 retry:
2896 	rw_wlock(lock);
2897 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2898 		pmap = PV_PMAP(pv);
2899 		if (!PMAP_TRYLOCK(pmap)) {
2900 			pvh_gen = pvh->pv_gen;
2901 			rw_wunlock(lock);
2902 			PMAP_LOCK(pmap);
2903 			rw_wlock(lock);
2904 			if (pvh_gen != pvh->pv_gen) {
2905 				rw_wunlock(lock);
2906 				PMAP_UNLOCK(pmap);
2907 				goto retry;
2908 			}
2909 		}
2910 		va = pv->pv_va;
2911 		pte = pmap_pte(pmap, va, &lvl);
2912 		KASSERT(pte != NULL,
2913 		    ("pmap_remove_all: no page table entry found"));
2914 		KASSERT(lvl == 2,
2915 		    ("pmap_remove_all: invalid pte level %d", lvl));
2916 
2917 		pmap_demote_l2_locked(pmap, pte, va, &lock);
2918 		PMAP_UNLOCK(pmap);
2919 	}
2920 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2921 		pmap = PV_PMAP(pv);
2922 		PMAP_ASSERT_STAGE1(pmap);
2923 		if (!PMAP_TRYLOCK(pmap)) {
2924 			pvh_gen = pvh->pv_gen;
2925 			md_gen = m->md.pv_gen;
2926 			rw_wunlock(lock);
2927 			PMAP_LOCK(pmap);
2928 			rw_wlock(lock);
2929 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2930 				rw_wunlock(lock);
2931 				PMAP_UNLOCK(pmap);
2932 				goto retry;
2933 			}
2934 		}
2935 		pmap_resident_count_dec(pmap, 1);
2936 
2937 		pde = pmap_pde(pmap, pv->pv_va, &lvl);
2938 		KASSERT(pde != NULL,
2939 		    ("pmap_remove_all: no page directory entry found"));
2940 		KASSERT(lvl == 2,
2941 		    ("pmap_remove_all: invalid pde level %d", lvl));
2942 		tpde = pmap_load(pde);
2943 
2944 		pte = pmap_l2_to_l3(pde, pv->pv_va);
2945 		tpte = pmap_load_clear(pte);
2946 		if (tpte & ATTR_SW_WIRED)
2947 			pmap->pm_stats.wired_count--;
2948 		if ((tpte & ATTR_AF) != 0) {
2949 			pmap_invalidate_page(pmap, pv->pv_va);
2950 			vm_page_aflag_set(m, PGA_REFERENCED);
2951 		}
2952 
2953 		/*
2954 		 * Update the vm_page_t clean and reference bits.
2955 		 */
2956 		if (pmap_pte_dirty(pmap, tpte))
2957 			vm_page_dirty(m);
2958 		pmap_unuse_pt(pmap, pv->pv_va, tpde, &free);
2959 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2960 		m->md.pv_gen++;
2961 		free_pv_entry(pmap, pv);
2962 		PMAP_UNLOCK(pmap);
2963 	}
2964 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2965 	rw_wunlock(lock);
2966 	vm_page_free_pages_toq(&free, true);
2967 }
2968 
2969 /*
2970  * pmap_protect_l2: do the things to protect a 2MB page in a pmap
2971  */
2972 static void
2973 pmap_protect_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva, pt_entry_t mask,
2974     pt_entry_t nbits)
2975 {
2976 	pd_entry_t old_l2;
2977 	vm_page_t m, mt;
2978 
2979 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2980 	PMAP_ASSERT_STAGE1(pmap);
2981 	KASSERT((sva & L2_OFFSET) == 0,
2982 	    ("pmap_protect_l2: sva is not 2mpage aligned"));
2983 	old_l2 = pmap_load(l2);
2984 	KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
2985 	    ("pmap_protect_l2: L2e %lx is not a block mapping", old_l2));
2986 
2987 	/*
2988 	 * Return if the L2 entry already has the desired access restrictions
2989 	 * in place.
2990 	 */
2991 retry:
2992 	if ((old_l2 & mask) == nbits)
2993 		return;
2994 
2995 	/*
2996 	 * When a dirty read/write superpage mapping is write protected,
2997 	 * update the dirty field of each of the superpage's constituent 4KB
2998 	 * pages.
2999 	 */
3000 	if ((old_l2 & ATTR_SW_MANAGED) != 0 &&
3001 	    (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 &&
3002 	    pmap_pte_dirty(pmap, old_l2)) {
3003 		m = PHYS_TO_VM_PAGE(old_l2 & ~ATTR_MASK);
3004 		for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
3005 			vm_page_dirty(mt);
3006 	}
3007 
3008 	if (!atomic_fcmpset_64(l2, &old_l2, (old_l2 & ~mask) | nbits))
3009 		goto retry;
3010 
3011 	/*
3012 	 * Since a promotion must break the 4KB page mappings before making
3013 	 * the 2MB page mapping, a pmap_invalidate_page() suffices.
3014 	 */
3015 	pmap_invalidate_page(pmap, sva);
3016 }
3017 
3018 /*
3019  *	Set the physical protection on the
3020  *	specified range of this map as requested.
3021  */
3022 void
3023 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3024 {
3025 	vm_offset_t va, va_next;
3026 	pd_entry_t *l0, *l1, *l2;
3027 	pt_entry_t *l3p, l3, mask, nbits;
3028 
3029 	PMAP_ASSERT_STAGE1(pmap);
3030 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3031 	if (prot == VM_PROT_NONE) {
3032 		pmap_remove(pmap, sva, eva);
3033 		return;
3034 	}
3035 
3036 	mask = nbits = 0;
3037 	if ((prot & VM_PROT_WRITE) == 0) {
3038 		mask |= ATTR_S1_AP_RW_BIT | ATTR_SW_DBM;
3039 		nbits |= ATTR_S1_AP(ATTR_S1_AP_RO);
3040 	}
3041 	if ((prot & VM_PROT_EXECUTE) == 0) {
3042 		mask |= ATTR_S1_XN;
3043 		nbits |= ATTR_S1_XN;
3044 	}
3045 	if (mask == 0)
3046 		return;
3047 
3048 	PMAP_LOCK(pmap);
3049 	for (; sva < eva; sva = va_next) {
3050 
3051 		l0 = pmap_l0(pmap, sva);
3052 		if (pmap_load(l0) == 0) {
3053 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
3054 			if (va_next < sva)
3055 				va_next = eva;
3056 			continue;
3057 		}
3058 
3059 		l1 = pmap_l0_to_l1(l0, sva);
3060 		if (pmap_load(l1) == 0) {
3061 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
3062 			if (va_next < sva)
3063 				va_next = eva;
3064 			continue;
3065 		}
3066 
3067 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
3068 		if (va_next < sva)
3069 			va_next = eva;
3070 
3071 		l2 = pmap_l1_to_l2(l1, sva);
3072 		if (pmap_load(l2) == 0)
3073 			continue;
3074 
3075 		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
3076 			if (sva + L2_SIZE == va_next && eva >= va_next) {
3077 				pmap_protect_l2(pmap, l2, sva, mask, nbits);
3078 				continue;
3079 			} else if (pmap_demote_l2(pmap, l2, sva) == NULL)
3080 				continue;
3081 		}
3082 		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
3083 		    ("pmap_protect: Invalid L2 entry after demotion"));
3084 
3085 		if (va_next > eva)
3086 			va_next = eva;
3087 
3088 		va = va_next;
3089 		for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++,
3090 		    sva += L3_SIZE) {
3091 			l3 = pmap_load(l3p);
3092 retry:
3093 			/*
3094 			 * Go to the next L3 entry if the current one is
3095 			 * invalid or already has the desired access
3096 			 * restrictions in place.  (The latter case occurs
3097 			 * frequently.  For example, in a "buildworld"
3098 			 * workload, almost 1 out of 4 L3 entries already
3099 			 * have the desired restrictions.)
3100 			 */
3101 			if (!pmap_l3_valid(l3) || (l3 & mask) == nbits) {
3102 				if (va != va_next) {
3103 					pmap_invalidate_range(pmap, va, sva);
3104 					va = va_next;
3105 				}
3106 				continue;
3107 			}
3108 
3109 			/*
3110 			 * When a dirty read/write mapping is write protected,
3111 			 * update the page's dirty field.
3112 			 */
3113 			if ((l3 & ATTR_SW_MANAGED) != 0 &&
3114 			    (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 &&
3115 			    pmap_pte_dirty(pmap, l3))
3116 				vm_page_dirty(PHYS_TO_VM_PAGE(l3 & ~ATTR_MASK));
3117 
3118 			if (!atomic_fcmpset_64(l3p, &l3, (l3 & ~mask) | nbits))
3119 				goto retry;
3120 			if (va == va_next)
3121 				va = sva;
3122 		}
3123 		if (va != va_next)
3124 			pmap_invalidate_range(pmap, va, sva);
3125 	}
3126 	PMAP_UNLOCK(pmap);
3127 }
3128 
3129 /*
3130  * Inserts the specified page table page into the specified pmap's collection
3131  * of idle page table pages.  Each of a pmap's page table pages is responsible
3132  * for mapping a distinct range of virtual addresses.  The pmap's collection is
3133  * ordered by this virtual address range.
3134  *
3135  * If "promoted" is false, then the page table page "mpte" must be zero filled.
3136  */
3137 static __inline int
3138 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
3139 {
3140 
3141 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3142 	mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
3143 	return (vm_radix_insert(&pmap->pm_root, mpte));
3144 }
3145 
3146 /*
3147  * Removes the page table page mapping the specified virtual address from the
3148  * specified pmap's collection of idle page table pages, and returns it.
3149  * Otherwise, returns NULL if there is no page table page corresponding to the
3150  * specified virtual address.
3151  */
3152 static __inline vm_page_t
3153 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
3154 {
3155 
3156 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3157 	return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va)));
3158 }
3159 
3160 /*
3161  * Performs a break-before-make update of a pmap entry. This is needed when
3162  * either promoting or demoting pages to ensure the TLB doesn't get into an
3163  * inconsistent state.
3164  */
3165 static void
3166 pmap_update_entry(pmap_t pmap, pd_entry_t *pte, pd_entry_t newpte,
3167     vm_offset_t va, vm_size_t size)
3168 {
3169 	register_t intr;
3170 
3171 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3172 
3173 	/*
3174 	 * Ensure we don't get switched out with the page table in an
3175 	 * inconsistent state. We also need to ensure no interrupts fire
3176 	 * as they may make use of an address we are about to invalidate.
3177 	 */
3178 	intr = intr_disable();
3179 
3180 	/*
3181 	 * Clear the old mapping's valid bit, but leave the rest of the entry
3182 	 * unchanged, so that a lockless, concurrent pmap_kextract() can still
3183 	 * lookup the physical address.
3184 	 */
3185 	pmap_clear_bits(pte, ATTR_DESCR_VALID);
3186 	pmap_invalidate_range(pmap, va, va + size);
3187 
3188 	/* Create the new mapping */
3189 	pmap_store(pte, newpte);
3190 	dsb(ishst);
3191 
3192 	intr_restore(intr);
3193 }
3194 
3195 #if VM_NRESERVLEVEL > 0
3196 /*
3197  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
3198  * replace the many pv entries for the 4KB page mappings by a single pv entry
3199  * for the 2MB page mapping.
3200  */
3201 static void
3202 pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3203     struct rwlock **lockp)
3204 {
3205 	struct md_page *pvh;
3206 	pv_entry_t pv;
3207 	vm_offset_t va_last;
3208 	vm_page_t m;
3209 
3210 	KASSERT((pa & L2_OFFSET) == 0,
3211 	    ("pmap_pv_promote_l2: pa is not 2mpage aligned"));
3212 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3213 
3214 	/*
3215 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
3216 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
3217 	 * a transfer avoids the possibility that get_pv_entry() calls
3218 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
3219 	 * mappings that is being promoted.
3220 	 */
3221 	m = PHYS_TO_VM_PAGE(pa);
3222 	va = va & ~L2_OFFSET;
3223 	pv = pmap_pvh_remove(&m->md, pmap, va);
3224 	KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv not found"));
3225 	pvh = pa_to_pvh(pa);
3226 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3227 	pvh->pv_gen++;
3228 	/* Free the remaining NPTEPG - 1 pv entries. */
3229 	va_last = va + L2_SIZE - PAGE_SIZE;
3230 	do {
3231 		m++;
3232 		va += PAGE_SIZE;
3233 		pmap_pvh_free(&m->md, pmap, va);
3234 	} while (va < va_last);
3235 }
3236 
3237 /*
3238  * Tries to promote the 512, contiguous 4KB page mappings that are within a
3239  * single level 2 table entry to a single 2MB page mapping.  For promotion
3240  * to occur, two conditions must be met: (1) the 4KB page mappings must map
3241  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
3242  * identical characteristics.
3243  */
3244 static void
3245 pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va,
3246     struct rwlock **lockp)
3247 {
3248 	pt_entry_t *firstl3, *l3, newl2, oldl3, pa;
3249 	vm_page_t mpte;
3250 	vm_offset_t sva;
3251 
3252 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3253 	PMAP_ASSERT_STAGE1(pmap);
3254 
3255 	sva = va & ~L2_OFFSET;
3256 	firstl3 = pmap_l2_to_l3(l2, sva);
3257 	newl2 = pmap_load(firstl3);
3258 
3259 setl2:
3260 	if (((newl2 & (~ATTR_MASK | ATTR_AF)) & L2_OFFSET) != ATTR_AF) {
3261 		atomic_add_long(&pmap_l2_p_failures, 1);
3262 		CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
3263 		    " in pmap %p", va, pmap);
3264 		return;
3265 	}
3266 
3267 	if ((newl2 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
3268 	    (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
3269 		if (!atomic_fcmpset_64(l2, &newl2, newl2 & ~ATTR_SW_DBM))
3270 			goto setl2;
3271 		newl2 &= ~ATTR_SW_DBM;
3272 	}
3273 
3274 	pa = newl2 + L2_SIZE - PAGE_SIZE;
3275 	for (l3 = firstl3 + NL3PG - 1; l3 > firstl3; l3--) {
3276 		oldl3 = pmap_load(l3);
3277 setl3:
3278 		if ((oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
3279 		    (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
3280 			if (!atomic_fcmpset_64(l3, &oldl3, oldl3 &
3281 			    ~ATTR_SW_DBM))
3282 				goto setl3;
3283 			oldl3 &= ~ATTR_SW_DBM;
3284 		}
3285 		if (oldl3 != pa) {
3286 			atomic_add_long(&pmap_l2_p_failures, 1);
3287 			CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
3288 			    " in pmap %p", va, pmap);
3289 			return;
3290 		}
3291 		pa -= PAGE_SIZE;
3292 	}
3293 
3294 	/*
3295 	 * Save the page table page in its current state until the L2
3296 	 * mapping the superpage is demoted by pmap_demote_l2() or
3297 	 * destroyed by pmap_remove_l3().
3298 	 */
3299 	mpte = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
3300 	KASSERT(mpte >= vm_page_array &&
3301 	    mpte < &vm_page_array[vm_page_array_size],
3302 	    ("pmap_promote_l2: page table page is out of range"));
3303 	KASSERT(mpte->pindex == pmap_l2_pindex(va),
3304 	    ("pmap_promote_l2: page table page's pindex is wrong"));
3305 	if (pmap_insert_pt_page(pmap, mpte, true)) {
3306 		atomic_add_long(&pmap_l2_p_failures, 1);
3307 		CTR2(KTR_PMAP,
3308 		    "pmap_promote_l2: failure for va %#lx in pmap %p", va,
3309 		    pmap);
3310 		return;
3311 	}
3312 
3313 	if ((newl2 & ATTR_SW_MANAGED) != 0)
3314 		pmap_pv_promote_l2(pmap, va, newl2 & ~ATTR_MASK, lockp);
3315 
3316 	newl2 &= ~ATTR_DESCR_MASK;
3317 	newl2 |= L2_BLOCK;
3318 
3319 	pmap_update_entry(pmap, l2, newl2, sva, L2_SIZE);
3320 
3321 	atomic_add_long(&pmap_l2_promotions, 1);
3322 	CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va,
3323 		    pmap);
3324 }
3325 #endif /* VM_NRESERVLEVEL > 0 */
3326 
3327 /*
3328  *	Insert the given physical page (p) at
3329  *	the specified virtual address (v) in the
3330  *	target physical map with the protection requested.
3331  *
3332  *	If specified, the page will be wired down, meaning
3333  *	that the related pte can not be reclaimed.
3334  *
3335  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3336  *	or lose information.  That is, this routine must actually
3337  *	insert this page into the given map NOW.
3338  */
3339 int
3340 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3341     u_int flags, int8_t psind)
3342 {
3343 	struct rwlock *lock;
3344 	pd_entry_t *pde;
3345 	pt_entry_t new_l3, orig_l3;
3346 	pt_entry_t *l2, *l3;
3347 	pv_entry_t pv;
3348 	vm_paddr_t opa, pa;
3349 	vm_page_t mpte, om;
3350 	boolean_t nosleep;
3351 	int lvl, rv;
3352 
3353 	PMAP_ASSERT_STAGE1(pmap);
3354 
3355 	va = trunc_page(va);
3356 	if ((m->oflags & VPO_UNMANAGED) == 0)
3357 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3358 	pa = VM_PAGE_TO_PHYS(m);
3359 	new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT | ATTR_S1_IDX(m->md.pv_memattr) |
3360 	    L3_PAGE);
3361 	if ((prot & VM_PROT_WRITE) == 0)
3362 		new_l3 |= ATTR_S1_AP(ATTR_S1_AP_RO);
3363 	if ((prot & VM_PROT_EXECUTE) == 0 ||
3364 	    m->md.pv_memattr == VM_MEMATTR_DEVICE)
3365 		new_l3 |= ATTR_S1_XN;
3366 	if ((flags & PMAP_ENTER_WIRED) != 0)
3367 		new_l3 |= ATTR_SW_WIRED;
3368 	if (va < VM_MAXUSER_ADDRESS)
3369 		new_l3 |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
3370 	else
3371 		new_l3 |= ATTR_S1_UXN;
3372 	if (pmap != kernel_pmap)
3373 		new_l3 |= ATTR_S1_nG;
3374 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3375 		new_l3 |= ATTR_SW_MANAGED;
3376 		if ((prot & VM_PROT_WRITE) != 0) {
3377 			new_l3 |= ATTR_SW_DBM;
3378 			if ((flags & VM_PROT_WRITE) == 0)
3379 				new_l3 |= ATTR_S1_AP(ATTR_S1_AP_RO);
3380 		}
3381 	}
3382 
3383 	CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
3384 
3385 	lock = NULL;
3386 	PMAP_LOCK(pmap);
3387 	if (psind == 1) {
3388 		/* Assert the required virtual and physical alignment. */
3389 		KASSERT((va & L2_OFFSET) == 0, ("pmap_enter: va unaligned"));
3390 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
3391 		rv = pmap_enter_l2(pmap, va, (new_l3 & ~L3_PAGE) | L2_BLOCK,
3392 		    flags, m, &lock);
3393 		goto out;
3394 	}
3395 	mpte = NULL;
3396 
3397 	/*
3398 	 * In the case that a page table page is not
3399 	 * resident, we are creating it here.
3400 	 */
3401 retry:
3402 	pde = pmap_pde(pmap, va, &lvl);
3403 	if (pde != NULL && lvl == 2) {
3404 		l3 = pmap_l2_to_l3(pde, va);
3405 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
3406 			mpte = PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK);
3407 			mpte->ref_count++;
3408 		}
3409 		goto havel3;
3410 	} else if (pde != NULL && lvl == 1) {
3411 		l2 = pmap_l1_to_l2(pde, va);
3412 		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK &&
3413 		    (l3 = pmap_demote_l2_locked(pmap, l2, va, &lock)) != NULL) {
3414 			l3 = &l3[pmap_l3_index(va)];
3415 			if (va < VM_MAXUSER_ADDRESS) {
3416 				mpte = PHYS_TO_VM_PAGE(
3417 				    pmap_load(l2) & ~ATTR_MASK);
3418 				mpte->ref_count++;
3419 			}
3420 			goto havel3;
3421 		}
3422 		/* We need to allocate an L3 table. */
3423 	}
3424 	if (va < VM_MAXUSER_ADDRESS) {
3425 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
3426 
3427 		/*
3428 		 * We use _pmap_alloc_l3() instead of pmap_alloc_l3() in order
3429 		 * to handle the possibility that a superpage mapping for "va"
3430 		 * was created while we slept.
3431 		 */
3432 		mpte = _pmap_alloc_l3(pmap, pmap_l2_pindex(va),
3433 		    nosleep ? NULL : &lock);
3434 		if (mpte == NULL && nosleep) {
3435 			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
3436 			rv = KERN_RESOURCE_SHORTAGE;
3437 			goto out;
3438 		}
3439 		goto retry;
3440 	} else
3441 		panic("pmap_enter: missing L3 table for kernel va %#lx", va);
3442 
3443 havel3:
3444 	orig_l3 = pmap_load(l3);
3445 	opa = orig_l3 & ~ATTR_MASK;
3446 	pv = NULL;
3447 
3448 	/*
3449 	 * Is the specified virtual address already mapped?
3450 	 */
3451 	if (pmap_l3_valid(orig_l3)) {
3452 		/*
3453 		 * Wiring change, just update stats. We don't worry about
3454 		 * wiring PT pages as they remain resident as long as there
3455 		 * are valid mappings in them. Hence, if a user page is wired,
3456 		 * the PT page will be also.
3457 		 */
3458 		if ((flags & PMAP_ENTER_WIRED) != 0 &&
3459 		    (orig_l3 & ATTR_SW_WIRED) == 0)
3460 			pmap->pm_stats.wired_count++;
3461 		else if ((flags & PMAP_ENTER_WIRED) == 0 &&
3462 		    (orig_l3 & ATTR_SW_WIRED) != 0)
3463 			pmap->pm_stats.wired_count--;
3464 
3465 		/*
3466 		 * Remove the extra PT page reference.
3467 		 */
3468 		if (mpte != NULL) {
3469 			mpte->ref_count--;
3470 			KASSERT(mpte->ref_count > 0,
3471 			    ("pmap_enter: missing reference to page table page,"
3472 			     " va: 0x%lx", va));
3473 		}
3474 
3475 		/*
3476 		 * Has the physical page changed?
3477 		 */
3478 		if (opa == pa) {
3479 			/*
3480 			 * No, might be a protection or wiring change.
3481 			 */
3482 			if ((orig_l3 & ATTR_SW_MANAGED) != 0 &&
3483 			    (new_l3 & ATTR_SW_DBM) != 0)
3484 				vm_page_aflag_set(m, PGA_WRITEABLE);
3485 			goto validate;
3486 		}
3487 
3488 		/*
3489 		 * The physical page has changed.  Temporarily invalidate
3490 		 * the mapping.
3491 		 */
3492 		orig_l3 = pmap_load_clear(l3);
3493 		KASSERT((orig_l3 & ~ATTR_MASK) == opa,
3494 		    ("pmap_enter: unexpected pa update for %#lx", va));
3495 		if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
3496 			om = PHYS_TO_VM_PAGE(opa);
3497 
3498 			/*
3499 			 * The pmap lock is sufficient to synchronize with
3500 			 * concurrent calls to pmap_page_test_mappings() and
3501 			 * pmap_ts_referenced().
3502 			 */
3503 			if (pmap_pte_dirty(pmap, orig_l3))
3504 				vm_page_dirty(om);
3505 			if ((orig_l3 & ATTR_AF) != 0) {
3506 				pmap_invalidate_page(pmap, va);
3507 				vm_page_aflag_set(om, PGA_REFERENCED);
3508 			}
3509 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3510 			pv = pmap_pvh_remove(&om->md, pmap, va);
3511 			if ((m->oflags & VPO_UNMANAGED) != 0)
3512 				free_pv_entry(pmap, pv);
3513 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3514 			    TAILQ_EMPTY(&om->md.pv_list) &&
3515 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3516 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3517 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3518 		} else {
3519 			KASSERT((orig_l3 & ATTR_AF) != 0,
3520 			    ("pmap_enter: unmanaged mapping lacks ATTR_AF"));
3521 			pmap_invalidate_page(pmap, va);
3522 		}
3523 		orig_l3 = 0;
3524 	} else {
3525 		/*
3526 		 * Increment the counters.
3527 		 */
3528 		if ((new_l3 & ATTR_SW_WIRED) != 0)
3529 			pmap->pm_stats.wired_count++;
3530 		pmap_resident_count_inc(pmap, 1);
3531 	}
3532 	/*
3533 	 * Enter on the PV list if part of our managed memory.
3534 	 */
3535 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3536 		if (pv == NULL) {
3537 			pv = get_pv_entry(pmap, &lock);
3538 			pv->pv_va = va;
3539 		}
3540 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3541 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3542 		m->md.pv_gen++;
3543 		if ((new_l3 & ATTR_SW_DBM) != 0)
3544 			vm_page_aflag_set(m, PGA_WRITEABLE);
3545 	}
3546 
3547 validate:
3548 	/*
3549 	 * Sync icache if exec permission and attribute VM_MEMATTR_WRITE_BACK
3550 	 * is set. Do it now, before the mapping is stored and made
3551 	 * valid for hardware table walk. If done later, then other can
3552 	 * access this page before caches are properly synced.
3553 	 * Don't do it for kernel memory which is mapped with exec
3554 	 * permission even if the memory isn't going to hold executable
3555 	 * code. The only time when icache sync is needed is after
3556 	 * kernel module is loaded and the relocation info is processed.
3557 	 * And it's done in elf_cpu_load_file().
3558 	*/
3559 	if ((prot & VM_PROT_EXECUTE) &&  pmap != kernel_pmap &&
3560 	    m->md.pv_memattr == VM_MEMATTR_WRITE_BACK &&
3561 	    (opa != pa || (orig_l3 & ATTR_S1_XN)))
3562 		cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE);
3563 
3564 	/*
3565 	 * Update the L3 entry
3566 	 */
3567 	if (pmap_l3_valid(orig_l3)) {
3568 		KASSERT(opa == pa, ("pmap_enter: invalid update"));
3569 		if ((orig_l3 & ~ATTR_AF) != (new_l3 & ~ATTR_AF)) {
3570 			/* same PA, different attributes */
3571 			orig_l3 = pmap_load_store(l3, new_l3);
3572 			pmap_invalidate_page(pmap, va);
3573 			if ((orig_l3 & ATTR_SW_MANAGED) != 0 &&
3574 			    pmap_pte_dirty(pmap, orig_l3))
3575 				vm_page_dirty(m);
3576 		} else {
3577 			/*
3578 			 * orig_l3 == new_l3
3579 			 * This can happens if multiple threads simultaneously
3580 			 * access not yet mapped page. This bad for performance
3581 			 * since this can cause full demotion-NOP-promotion
3582 			 * cycle.
3583 			 * Another possible reasons are:
3584 			 * - VM and pmap memory layout are diverged
3585 			 * - tlb flush is missing somewhere and CPU doesn't see
3586 			 *   actual mapping.
3587 			 */
3588 			CTR4(KTR_PMAP, "%s: already mapped page - "
3589 			    "pmap %p va 0x%#lx pte 0x%lx",
3590 			    __func__, pmap, va, new_l3);
3591 		}
3592 	} else {
3593 		/* New mapping */
3594 		pmap_store(l3, new_l3);
3595 		dsb(ishst);
3596 	}
3597 
3598 #if VM_NRESERVLEVEL > 0
3599 	if ((mpte == NULL || mpte->ref_count == NL3PG) &&
3600 	    pmap_ps_enabled(pmap) &&
3601 	    (m->flags & PG_FICTITIOUS) == 0 &&
3602 	    vm_reserv_level_iffullpop(m) == 0) {
3603 		pmap_promote_l2(pmap, pde, va, &lock);
3604 	}
3605 #endif
3606 
3607 	rv = KERN_SUCCESS;
3608 out:
3609 	if (lock != NULL)
3610 		rw_wunlock(lock);
3611 	PMAP_UNLOCK(pmap);
3612 	return (rv);
3613 }
3614 
3615 /*
3616  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
3617  * if successful.  Returns false if (1) a page table page cannot be allocated
3618  * without sleeping, (2) a mapping already exists at the specified virtual
3619  * address, or (3) a PV entry cannot be allocated without reclaiming another
3620  * PV entry.
3621  */
3622 static bool
3623 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3624     struct rwlock **lockp)
3625 {
3626 	pd_entry_t new_l2;
3627 
3628 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3629 	PMAP_ASSERT_STAGE1(pmap);
3630 
3631 	new_l2 = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT |
3632 	    ATTR_S1_IDX(m->md.pv_memattr) | ATTR_S1_AP(ATTR_S1_AP_RO) |
3633 	    L2_BLOCK);
3634 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3635 		new_l2 |= ATTR_SW_MANAGED;
3636 		new_l2 &= ~ATTR_AF;
3637 	}
3638 	if ((prot & VM_PROT_EXECUTE) == 0 ||
3639 	    m->md.pv_memattr == VM_MEMATTR_DEVICE)
3640 		new_l2 |= ATTR_S1_XN;
3641 	if (va < VM_MAXUSER_ADDRESS)
3642 		new_l2 |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
3643 	else
3644 		new_l2 |= ATTR_S1_UXN;
3645 	if (pmap != kernel_pmap)
3646 		new_l2 |= ATTR_S1_nG;
3647 	return (pmap_enter_l2(pmap, va, new_l2, PMAP_ENTER_NOSLEEP |
3648 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3649 	    KERN_SUCCESS);
3650 }
3651 
3652 /*
3653  * Returns true if every page table entry in the specified page table is
3654  * zero.
3655  */
3656 static bool
3657 pmap_every_pte_zero(vm_paddr_t pa)
3658 {
3659 	pt_entry_t *pt_end, *pte;
3660 
3661 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
3662 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
3663 	for (pt_end = pte + Ln_ENTRIES; pte < pt_end; pte++) {
3664 		if (*pte != 0)
3665 			return (false);
3666 	}
3667 	return (true);
3668 }
3669 
3670 /*
3671  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3672  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3673  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3674  * a mapping already exists at the specified virtual address.  Returns
3675  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3676  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
3677  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3678  *
3679  * The parameter "m" is only used when creating a managed, writeable mapping.
3680  */
3681 static int
3682 pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2, u_int flags,
3683     vm_page_t m, struct rwlock **lockp)
3684 {
3685 	struct spglist free;
3686 	pd_entry_t *l2, old_l2;
3687 	vm_page_t l2pg, mt;
3688 
3689 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3690 
3691 	if ((l2 = pmap_alloc_l2(pmap, va, &l2pg, (flags &
3692 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
3693 		CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx in pmap %p",
3694 		    va, pmap);
3695 		return (KERN_RESOURCE_SHORTAGE);
3696 	}
3697 
3698 	/*
3699 	 * If there are existing mappings, either abort or remove them.
3700 	 */
3701 	if ((old_l2 = pmap_load(l2)) != 0) {
3702 		KASSERT(l2pg == NULL || l2pg->ref_count > 1,
3703 		    ("pmap_enter_l2: l2pg's ref count is too low"));
3704 		if ((flags & PMAP_ENTER_NOREPLACE) != 0 && (va <
3705 		    VM_MAXUSER_ADDRESS || (old_l2 & ATTR_DESCR_MASK) ==
3706 		    L2_BLOCK || !pmap_every_pte_zero(old_l2 & ~ATTR_MASK))) {
3707 			if (l2pg != NULL)
3708 				l2pg->ref_count--;
3709 			CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx"
3710 			    " in pmap %p", va, pmap);
3711 			return (KERN_FAILURE);
3712 		}
3713 		SLIST_INIT(&free);
3714 		if ((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK)
3715 			(void)pmap_remove_l2(pmap, l2, va,
3716 			    pmap_load(pmap_l1(pmap, va)), &free, lockp);
3717 		else
3718 			pmap_remove_l3_range(pmap, old_l2, va, va + L2_SIZE,
3719 			    &free, lockp);
3720 		if (va < VM_MAXUSER_ADDRESS) {
3721 			vm_page_free_pages_toq(&free, true);
3722 			KASSERT(pmap_load(l2) == 0,
3723 			    ("pmap_enter_l2: non-zero L2 entry %p", l2));
3724 		} else {
3725 			KASSERT(SLIST_EMPTY(&free),
3726 			    ("pmap_enter_l2: freed kernel page table page"));
3727 
3728 			/*
3729 			 * Both pmap_remove_l2() and pmap_remove_l3_range()
3730 			 * will leave the kernel page table page zero filled.
3731 			 * Nonetheless, the TLB could have an intermediate
3732 			 * entry for the kernel page table page.
3733 			 */
3734 			mt = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK);
3735 			if (pmap_insert_pt_page(pmap, mt, false))
3736 				panic("pmap_enter_l2: trie insert failed");
3737 			pmap_clear(l2);
3738 			pmap_invalidate_page(pmap, va);
3739 		}
3740 	}
3741 
3742 	if ((new_l2 & ATTR_SW_MANAGED) != 0) {
3743 		/*
3744 		 * Abort this mapping if its PV entry could not be created.
3745 		 */
3746 		if (!pmap_pv_insert_l2(pmap, va, new_l2, flags, lockp)) {
3747 			if (l2pg != NULL)
3748 				pmap_abort_ptp(pmap, va, l2pg);
3749 			CTR2(KTR_PMAP,
3750 			    "pmap_enter_l2: failure for va %#lx in pmap %p",
3751 			    va, pmap);
3752 			return (KERN_RESOURCE_SHORTAGE);
3753 		}
3754 		if ((new_l2 & ATTR_SW_DBM) != 0)
3755 			for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
3756 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3757 	}
3758 
3759 	/*
3760 	 * Increment counters.
3761 	 */
3762 	if ((new_l2 & ATTR_SW_WIRED) != 0)
3763 		pmap->pm_stats.wired_count += L2_SIZE / PAGE_SIZE;
3764 	pmap->pm_stats.resident_count += L2_SIZE / PAGE_SIZE;
3765 
3766 	/*
3767 	 * Map the superpage.
3768 	 */
3769 	pmap_store(l2, new_l2);
3770 	dsb(ishst);
3771 
3772 	atomic_add_long(&pmap_l2_mappings, 1);
3773 	CTR2(KTR_PMAP, "pmap_enter_l2: success for va %#lx in pmap %p",
3774 	    va, pmap);
3775 
3776 	return (KERN_SUCCESS);
3777 }
3778 
3779 /*
3780  * Maps a sequence of resident pages belonging to the same object.
3781  * The sequence begins with the given page m_start.  This page is
3782  * mapped at the given virtual address start.  Each subsequent page is
3783  * mapped at a virtual address that is offset from start by the same
3784  * amount as the page is offset from m_start within the object.  The
3785  * last page in the sequence is the page with the largest offset from
3786  * m_start that can be mapped at a virtual address less than the given
3787  * virtual address end.  Not every virtual page between start and end
3788  * is mapped; only those for which a resident page exists with the
3789  * corresponding offset from m_start are mapped.
3790  */
3791 void
3792 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3793     vm_page_t m_start, vm_prot_t prot)
3794 {
3795 	struct rwlock *lock;
3796 	vm_offset_t va;
3797 	vm_page_t m, mpte;
3798 	vm_pindex_t diff, psize;
3799 
3800 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3801 
3802 	psize = atop(end - start);
3803 	mpte = NULL;
3804 	m = m_start;
3805 	lock = NULL;
3806 	PMAP_LOCK(pmap);
3807 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3808 		va = start + ptoa(diff);
3809 		if ((va & L2_OFFSET) == 0 && va + L2_SIZE <= end &&
3810 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
3811 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
3812 			m = &m[L2_SIZE / PAGE_SIZE - 1];
3813 		else
3814 			mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte,
3815 			    &lock);
3816 		m = TAILQ_NEXT(m, listq);
3817 	}
3818 	if (lock != NULL)
3819 		rw_wunlock(lock);
3820 	PMAP_UNLOCK(pmap);
3821 }
3822 
3823 /*
3824  * this code makes some *MAJOR* assumptions:
3825  * 1. Current pmap & pmap exists.
3826  * 2. Not wired.
3827  * 3. Read access.
3828  * 4. No page table pages.
3829  * but is *MUCH* faster than pmap_enter...
3830  */
3831 
3832 void
3833 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3834 {
3835 	struct rwlock *lock;
3836 
3837 	lock = NULL;
3838 	PMAP_LOCK(pmap);
3839 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
3840 	if (lock != NULL)
3841 		rw_wunlock(lock);
3842 	PMAP_UNLOCK(pmap);
3843 }
3844 
3845 static vm_page_t
3846 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3847     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
3848 {
3849 	pd_entry_t *pde;
3850 	pt_entry_t *l2, *l3, l3_val;
3851 	vm_paddr_t pa;
3852 	int lvl;
3853 
3854 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3855 	    (m->oflags & VPO_UNMANAGED) != 0,
3856 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3857 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3858 	PMAP_ASSERT_STAGE1(pmap);
3859 
3860 	CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
3861 	/*
3862 	 * In the case that a page table page is not
3863 	 * resident, we are creating it here.
3864 	 */
3865 	if (va < VM_MAXUSER_ADDRESS) {
3866 		vm_pindex_t l2pindex;
3867 
3868 		/*
3869 		 * Calculate pagetable page index
3870 		 */
3871 		l2pindex = pmap_l2_pindex(va);
3872 		if (mpte && (mpte->pindex == l2pindex)) {
3873 			mpte->ref_count++;
3874 		} else {
3875 			/*
3876 			 * Get the l2 entry
3877 			 */
3878 			pde = pmap_pde(pmap, va, &lvl);
3879 
3880 			/*
3881 			 * If the page table page is mapped, we just increment
3882 			 * the hold count, and activate it.  Otherwise, we
3883 			 * attempt to allocate a page table page.  If this
3884 			 * attempt fails, we don't retry.  Instead, we give up.
3885 			 */
3886 			if (lvl == 1) {
3887 				l2 = pmap_l1_to_l2(pde, va);
3888 				if ((pmap_load(l2) & ATTR_DESCR_MASK) ==
3889 				    L2_BLOCK)
3890 					return (NULL);
3891 			}
3892 			if (lvl == 2 && pmap_load(pde) != 0) {
3893 				mpte =
3894 				    PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK);
3895 				mpte->ref_count++;
3896 			} else {
3897 				/*
3898 				 * Pass NULL instead of the PV list lock
3899 				 * pointer, because we don't intend to sleep.
3900 				 */
3901 				mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
3902 				if (mpte == NULL)
3903 					return (mpte);
3904 			}
3905 		}
3906 		l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3907 		l3 = &l3[pmap_l3_index(va)];
3908 	} else {
3909 		mpte = NULL;
3910 		pde = pmap_pde(kernel_pmap, va, &lvl);
3911 		KASSERT(pde != NULL,
3912 		    ("pmap_enter_quick_locked: Invalid page entry, va: 0x%lx",
3913 		     va));
3914 		KASSERT(lvl == 2,
3915 		    ("pmap_enter_quick_locked: Invalid level %d", lvl));
3916 		l3 = pmap_l2_to_l3(pde, va);
3917 	}
3918 
3919 	/*
3920 	 * Abort if a mapping already exists.
3921 	 */
3922 	if (pmap_load(l3) != 0) {
3923 		if (mpte != NULL)
3924 			mpte->ref_count--;
3925 		return (NULL);
3926 	}
3927 
3928 	/*
3929 	 * Enter on the PV list if part of our managed memory.
3930 	 */
3931 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3932 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3933 		if (mpte != NULL)
3934 			pmap_abort_ptp(pmap, va, mpte);
3935 		return (NULL);
3936 	}
3937 
3938 	/*
3939 	 * Increment counters
3940 	 */
3941 	pmap_resident_count_inc(pmap, 1);
3942 
3943 	pa = VM_PAGE_TO_PHYS(m);
3944 	l3_val = pa | ATTR_DEFAULT | ATTR_S1_IDX(m->md.pv_memattr) |
3945 	    ATTR_S1_AP(ATTR_S1_AP_RO) | L3_PAGE;
3946 	if ((prot & VM_PROT_EXECUTE) == 0 ||
3947 	    m->md.pv_memattr == VM_MEMATTR_DEVICE)
3948 		l3_val |= ATTR_S1_XN;
3949 	if (va < VM_MAXUSER_ADDRESS)
3950 		l3_val |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
3951 	else
3952 		l3_val |= ATTR_S1_UXN;
3953 	if (pmap != kernel_pmap)
3954 		l3_val |= ATTR_S1_nG;
3955 
3956 	/*
3957 	 * Now validate mapping with RO protection
3958 	 */
3959 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3960 		l3_val |= ATTR_SW_MANAGED;
3961 		l3_val &= ~ATTR_AF;
3962 	}
3963 
3964 	/* Sync icache before the mapping is stored to PTE */
3965 	if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
3966 	    m->md.pv_memattr == VM_MEMATTR_WRITE_BACK)
3967 		cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE);
3968 
3969 	pmap_store(l3, l3_val);
3970 	dsb(ishst);
3971 
3972 	return (mpte);
3973 }
3974 
3975 /*
3976  * This code maps large physical mmap regions into the
3977  * processor address space.  Note that some shortcuts
3978  * are taken, but the code works.
3979  */
3980 void
3981 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3982     vm_pindex_t pindex, vm_size_t size)
3983 {
3984 
3985 	VM_OBJECT_ASSERT_WLOCKED(object);
3986 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3987 	    ("pmap_object_init_pt: non-device object"));
3988 }
3989 
3990 /*
3991  *	Clear the wired attribute from the mappings for the specified range of
3992  *	addresses in the given pmap.  Every valid mapping within that range
3993  *	must have the wired attribute set.  In contrast, invalid mappings
3994  *	cannot have the wired attribute set, so they are ignored.
3995  *
3996  *	The wired attribute of the page table entry is not a hardware feature,
3997  *	so there is no need to invalidate any TLB entries.
3998  */
3999 void
4000 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4001 {
4002 	vm_offset_t va_next;
4003 	pd_entry_t *l0, *l1, *l2;
4004 	pt_entry_t *l3;
4005 
4006 	PMAP_LOCK(pmap);
4007 	for (; sva < eva; sva = va_next) {
4008 		l0 = pmap_l0(pmap, sva);
4009 		if (pmap_load(l0) == 0) {
4010 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
4011 			if (va_next < sva)
4012 				va_next = eva;
4013 			continue;
4014 		}
4015 
4016 		l1 = pmap_l0_to_l1(l0, sva);
4017 		if (pmap_load(l1) == 0) {
4018 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
4019 			if (va_next < sva)
4020 				va_next = eva;
4021 			continue;
4022 		}
4023 
4024 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
4025 		if (va_next < sva)
4026 			va_next = eva;
4027 
4028 		l2 = pmap_l1_to_l2(l1, sva);
4029 		if (pmap_load(l2) == 0)
4030 			continue;
4031 
4032 		if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
4033 			if ((pmap_load(l2) & ATTR_SW_WIRED) == 0)
4034 				panic("pmap_unwire: l2 %#jx is missing "
4035 				    "ATTR_SW_WIRED", (uintmax_t)pmap_load(l2));
4036 
4037 			/*
4038 			 * Are we unwiring the entire large page?  If not,
4039 			 * demote the mapping and fall through.
4040 			 */
4041 			if (sva + L2_SIZE == va_next && eva >= va_next) {
4042 				pmap_clear_bits(l2, ATTR_SW_WIRED);
4043 				pmap->pm_stats.wired_count -= L2_SIZE /
4044 				    PAGE_SIZE;
4045 				continue;
4046 			} else if (pmap_demote_l2(pmap, l2, sva) == NULL)
4047 				panic("pmap_unwire: demotion failed");
4048 		}
4049 		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
4050 		    ("pmap_unwire: Invalid l2 entry after demotion"));
4051 
4052 		if (va_next > eva)
4053 			va_next = eva;
4054 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
4055 		    sva += L3_SIZE) {
4056 			if (pmap_load(l3) == 0)
4057 				continue;
4058 			if ((pmap_load(l3) & ATTR_SW_WIRED) == 0)
4059 				panic("pmap_unwire: l3 %#jx is missing "
4060 				    "ATTR_SW_WIRED", (uintmax_t)pmap_load(l3));
4061 
4062 			/*
4063 			 * ATTR_SW_WIRED must be cleared atomically.  Although
4064 			 * the pmap lock synchronizes access to ATTR_SW_WIRED,
4065 			 * the System MMU may write to the entry concurrently.
4066 			 */
4067 			pmap_clear_bits(l3, ATTR_SW_WIRED);
4068 			pmap->pm_stats.wired_count--;
4069 		}
4070 	}
4071 	PMAP_UNLOCK(pmap);
4072 }
4073 
4074 /*
4075  *	Copy the range specified by src_addr/len
4076  *	from the source map to the range dst_addr/len
4077  *	in the destination map.
4078  *
4079  *	This routine is only advisory and need not do anything.
4080  *
4081  *	Because the executable mappings created by this routine are copied,
4082  *	it should not have to flush the instruction cache.
4083  */
4084 void
4085 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4086     vm_offset_t src_addr)
4087 {
4088 	struct rwlock *lock;
4089 	pd_entry_t *l0, *l1, *l2, srcptepaddr;
4090 	pt_entry_t *dst_pte, mask, nbits, ptetemp, *src_pte;
4091 	vm_offset_t addr, end_addr, va_next;
4092 	vm_page_t dst_l2pg, dstmpte, srcmpte;
4093 
4094 	PMAP_ASSERT_STAGE1(dst_pmap);
4095 	PMAP_ASSERT_STAGE1(src_pmap);
4096 
4097 	if (dst_addr != src_addr)
4098 		return;
4099 	end_addr = src_addr + len;
4100 	lock = NULL;
4101 	if (dst_pmap < src_pmap) {
4102 		PMAP_LOCK(dst_pmap);
4103 		PMAP_LOCK(src_pmap);
4104 	} else {
4105 		PMAP_LOCK(src_pmap);
4106 		PMAP_LOCK(dst_pmap);
4107 	}
4108 	for (addr = src_addr; addr < end_addr; addr = va_next) {
4109 		l0 = pmap_l0(src_pmap, addr);
4110 		if (pmap_load(l0) == 0) {
4111 			va_next = (addr + L0_SIZE) & ~L0_OFFSET;
4112 			if (va_next < addr)
4113 				va_next = end_addr;
4114 			continue;
4115 		}
4116 		l1 = pmap_l0_to_l1(l0, addr);
4117 		if (pmap_load(l1) == 0) {
4118 			va_next = (addr + L1_SIZE) & ~L1_OFFSET;
4119 			if (va_next < addr)
4120 				va_next = end_addr;
4121 			continue;
4122 		}
4123 		va_next = (addr + L2_SIZE) & ~L2_OFFSET;
4124 		if (va_next < addr)
4125 			va_next = end_addr;
4126 		l2 = pmap_l1_to_l2(l1, addr);
4127 		srcptepaddr = pmap_load(l2);
4128 		if (srcptepaddr == 0)
4129 			continue;
4130 		if ((srcptepaddr & ATTR_DESCR_MASK) == L2_BLOCK) {
4131 			if ((addr & L2_OFFSET) != 0 ||
4132 			    addr + L2_SIZE > end_addr)
4133 				continue;
4134 			l2 = pmap_alloc_l2(dst_pmap, addr, &dst_l2pg, NULL);
4135 			if (l2 == NULL)
4136 				break;
4137 			if (pmap_load(l2) == 0 &&
4138 			    ((srcptepaddr & ATTR_SW_MANAGED) == 0 ||
4139 			    pmap_pv_insert_l2(dst_pmap, addr, srcptepaddr,
4140 			    PMAP_ENTER_NORECLAIM, &lock))) {
4141 				mask = ATTR_AF | ATTR_SW_WIRED;
4142 				nbits = 0;
4143 				if ((srcptepaddr & ATTR_SW_DBM) != 0)
4144 					nbits |= ATTR_S1_AP_RW_BIT;
4145 				pmap_store(l2, (srcptepaddr & ~mask) | nbits);
4146 				pmap_resident_count_inc(dst_pmap, L2_SIZE /
4147 				    PAGE_SIZE);
4148 				atomic_add_long(&pmap_l2_mappings, 1);
4149 			} else
4150 				pmap_abort_ptp(dst_pmap, addr, dst_l2pg);
4151 			continue;
4152 		}
4153 		KASSERT((srcptepaddr & ATTR_DESCR_MASK) == L2_TABLE,
4154 		    ("pmap_copy: invalid L2 entry"));
4155 		srcptepaddr &= ~ATTR_MASK;
4156 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
4157 		KASSERT(srcmpte->ref_count > 0,
4158 		    ("pmap_copy: source page table page is unused"));
4159 		if (va_next > end_addr)
4160 			va_next = end_addr;
4161 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
4162 		src_pte = &src_pte[pmap_l3_index(addr)];
4163 		dstmpte = NULL;
4164 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
4165 			ptetemp = pmap_load(src_pte);
4166 
4167 			/*
4168 			 * We only virtual copy managed pages.
4169 			 */
4170 			if ((ptetemp & ATTR_SW_MANAGED) == 0)
4171 				continue;
4172 
4173 			if (dstmpte != NULL) {
4174 				KASSERT(dstmpte->pindex == pmap_l2_pindex(addr),
4175 				    ("dstmpte pindex/addr mismatch"));
4176 				dstmpte->ref_count++;
4177 			} else if ((dstmpte = pmap_alloc_l3(dst_pmap, addr,
4178 			    NULL)) == NULL)
4179 				goto out;
4180 			dst_pte = (pt_entry_t *)
4181 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
4182 			dst_pte = &dst_pte[pmap_l3_index(addr)];
4183 			if (pmap_load(dst_pte) == 0 &&
4184 			    pmap_try_insert_pv_entry(dst_pmap, addr,
4185 			    PHYS_TO_VM_PAGE(ptetemp & ~ATTR_MASK), &lock)) {
4186 				/*
4187 				 * Clear the wired, modified, and accessed
4188 				 * (referenced) bits during the copy.
4189 				 */
4190 				mask = ATTR_AF | ATTR_SW_WIRED;
4191 				nbits = 0;
4192 				if ((ptetemp & ATTR_SW_DBM) != 0)
4193 					nbits |= ATTR_S1_AP_RW_BIT;
4194 				pmap_store(dst_pte, (ptetemp & ~mask) | nbits);
4195 				pmap_resident_count_inc(dst_pmap, 1);
4196 			} else {
4197 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
4198 				goto out;
4199 			}
4200 			/* Have we copied all of the valid mappings? */
4201 			if (dstmpte->ref_count >= srcmpte->ref_count)
4202 				break;
4203 		}
4204 	}
4205 out:
4206 	/*
4207 	 * XXX This barrier may not be needed because the destination pmap is
4208 	 * not active.
4209 	 */
4210 	dsb(ishst);
4211 
4212 	if (lock != NULL)
4213 		rw_wunlock(lock);
4214 	PMAP_UNLOCK(src_pmap);
4215 	PMAP_UNLOCK(dst_pmap);
4216 }
4217 
4218 /*
4219  *	pmap_zero_page zeros the specified hardware page by mapping
4220  *	the page into KVM and using bzero to clear its contents.
4221  */
4222 void
4223 pmap_zero_page(vm_page_t m)
4224 {
4225 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4226 
4227 	pagezero((void *)va);
4228 }
4229 
4230 /*
4231  *	pmap_zero_page_area zeros the specified hardware page by mapping
4232  *	the page into KVM and using bzero to clear its contents.
4233  *
4234  *	off and size may not cover an area beyond a single hardware page.
4235  */
4236 void
4237 pmap_zero_page_area(vm_page_t m, int off, int size)
4238 {
4239 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4240 
4241 	if (off == 0 && size == PAGE_SIZE)
4242 		pagezero((void *)va);
4243 	else
4244 		bzero((char *)va + off, size);
4245 }
4246 
4247 /*
4248  *	pmap_copy_page copies the specified (machine independent)
4249  *	page by mapping the page into virtual memory and using
4250  *	bcopy to copy the page, one machine dependent page at a
4251  *	time.
4252  */
4253 void
4254 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
4255 {
4256 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
4257 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
4258 
4259 	pagecopy((void *)src, (void *)dst);
4260 }
4261 
4262 int unmapped_buf_allowed = 1;
4263 
4264 void
4265 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4266     vm_offset_t b_offset, int xfersize)
4267 {
4268 	void *a_cp, *b_cp;
4269 	vm_page_t m_a, m_b;
4270 	vm_paddr_t p_a, p_b;
4271 	vm_offset_t a_pg_offset, b_pg_offset;
4272 	int cnt;
4273 
4274 	while (xfersize > 0) {
4275 		a_pg_offset = a_offset & PAGE_MASK;
4276 		m_a = ma[a_offset >> PAGE_SHIFT];
4277 		p_a = m_a->phys_addr;
4278 		b_pg_offset = b_offset & PAGE_MASK;
4279 		m_b = mb[b_offset >> PAGE_SHIFT];
4280 		p_b = m_b->phys_addr;
4281 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4282 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4283 		if (__predict_false(!PHYS_IN_DMAP(p_a))) {
4284 			panic("!DMAP a %lx", p_a);
4285 		} else {
4286 			a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
4287 		}
4288 		if (__predict_false(!PHYS_IN_DMAP(p_b))) {
4289 			panic("!DMAP b %lx", p_b);
4290 		} else {
4291 			b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
4292 		}
4293 		bcopy(a_cp, b_cp, cnt);
4294 		a_offset += cnt;
4295 		b_offset += cnt;
4296 		xfersize -= cnt;
4297 	}
4298 }
4299 
4300 vm_offset_t
4301 pmap_quick_enter_page(vm_page_t m)
4302 {
4303 
4304 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
4305 }
4306 
4307 void
4308 pmap_quick_remove_page(vm_offset_t addr)
4309 {
4310 }
4311 
4312 /*
4313  * Returns true if the pmap's pv is one of the first
4314  * 16 pvs linked to from this page.  This count may
4315  * be changed upwards or downwards in the future; it
4316  * is only necessary that true be returned for a small
4317  * subset of pmaps for proper page aging.
4318  */
4319 boolean_t
4320 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4321 {
4322 	struct md_page *pvh;
4323 	struct rwlock *lock;
4324 	pv_entry_t pv;
4325 	int loops = 0;
4326 	boolean_t rv;
4327 
4328 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4329 	    ("pmap_page_exists_quick: page %p is not managed", m));
4330 	rv = FALSE;
4331 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4332 	rw_rlock(lock);
4333 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4334 		if (PV_PMAP(pv) == pmap) {
4335 			rv = TRUE;
4336 			break;
4337 		}
4338 		loops++;
4339 		if (loops >= 16)
4340 			break;
4341 	}
4342 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4343 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4344 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4345 			if (PV_PMAP(pv) == pmap) {
4346 				rv = TRUE;
4347 				break;
4348 			}
4349 			loops++;
4350 			if (loops >= 16)
4351 				break;
4352 		}
4353 	}
4354 	rw_runlock(lock);
4355 	return (rv);
4356 }
4357 
4358 /*
4359  *	pmap_page_wired_mappings:
4360  *
4361  *	Return the number of managed mappings to the given physical page
4362  *	that are wired.
4363  */
4364 int
4365 pmap_page_wired_mappings(vm_page_t m)
4366 {
4367 	struct rwlock *lock;
4368 	struct md_page *pvh;
4369 	pmap_t pmap;
4370 	pt_entry_t *pte;
4371 	pv_entry_t pv;
4372 	int count, lvl, md_gen, pvh_gen;
4373 
4374 	if ((m->oflags & VPO_UNMANAGED) != 0)
4375 		return (0);
4376 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4377 	rw_rlock(lock);
4378 restart:
4379 	count = 0;
4380 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4381 		pmap = PV_PMAP(pv);
4382 		if (!PMAP_TRYLOCK(pmap)) {
4383 			md_gen = m->md.pv_gen;
4384 			rw_runlock(lock);
4385 			PMAP_LOCK(pmap);
4386 			rw_rlock(lock);
4387 			if (md_gen != m->md.pv_gen) {
4388 				PMAP_UNLOCK(pmap);
4389 				goto restart;
4390 			}
4391 		}
4392 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
4393 		if (pte != NULL && (pmap_load(pte) & ATTR_SW_WIRED) != 0)
4394 			count++;
4395 		PMAP_UNLOCK(pmap);
4396 	}
4397 	if ((m->flags & PG_FICTITIOUS) == 0) {
4398 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4399 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4400 			pmap = PV_PMAP(pv);
4401 			if (!PMAP_TRYLOCK(pmap)) {
4402 				md_gen = m->md.pv_gen;
4403 				pvh_gen = pvh->pv_gen;
4404 				rw_runlock(lock);
4405 				PMAP_LOCK(pmap);
4406 				rw_rlock(lock);
4407 				if (md_gen != m->md.pv_gen ||
4408 				    pvh_gen != pvh->pv_gen) {
4409 					PMAP_UNLOCK(pmap);
4410 					goto restart;
4411 				}
4412 			}
4413 			pte = pmap_pte(pmap, pv->pv_va, &lvl);
4414 			if (pte != NULL &&
4415 			    (pmap_load(pte) & ATTR_SW_WIRED) != 0)
4416 				count++;
4417 			PMAP_UNLOCK(pmap);
4418 		}
4419 	}
4420 	rw_runlock(lock);
4421 	return (count);
4422 }
4423 
4424 /*
4425  * Returns true if the given page is mapped individually or as part of
4426  * a 2mpage.  Otherwise, returns false.
4427  */
4428 bool
4429 pmap_page_is_mapped(vm_page_t m)
4430 {
4431 	struct rwlock *lock;
4432 	bool rv;
4433 
4434 	if ((m->oflags & VPO_UNMANAGED) != 0)
4435 		return (false);
4436 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4437 	rw_rlock(lock);
4438 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4439 	    ((m->flags & PG_FICTITIOUS) == 0 &&
4440 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4441 	rw_runlock(lock);
4442 	return (rv);
4443 }
4444 
4445 /*
4446  * Destroy all managed, non-wired mappings in the given user-space
4447  * pmap.  This pmap cannot be active on any processor besides the
4448  * caller.
4449  *
4450  * This function cannot be applied to the kernel pmap.  Moreover, it
4451  * is not intended for general use.  It is only to be used during
4452  * process termination.  Consequently, it can be implemented in ways
4453  * that make it faster than pmap_remove().  First, it can more quickly
4454  * destroy mappings by iterating over the pmap's collection of PV
4455  * entries, rather than searching the page table.  Second, it doesn't
4456  * have to test and clear the page table entries atomically, because
4457  * no processor is currently accessing the user address space.  In
4458  * particular, a page table entry's dirty bit won't change state once
4459  * this function starts.
4460  */
4461 void
4462 pmap_remove_pages(pmap_t pmap)
4463 {
4464 	pd_entry_t *pde;
4465 	pt_entry_t *pte, tpte;
4466 	struct spglist free;
4467 	vm_page_t m, ml3, mt;
4468 	pv_entry_t pv;
4469 	struct md_page *pvh;
4470 	struct pv_chunk *pc, *npc;
4471 	struct rwlock *lock;
4472 	int64_t bit;
4473 	uint64_t inuse, bitmask;
4474 	int allfree, field, freed, idx, lvl;
4475 	vm_paddr_t pa;
4476 
4477 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
4478 
4479 	lock = NULL;
4480 
4481 	SLIST_INIT(&free);
4482 	PMAP_LOCK(pmap);
4483 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4484 		allfree = 1;
4485 		freed = 0;
4486 		for (field = 0; field < _NPCM; field++) {
4487 			inuse = ~pc->pc_map[field] & pc_freemask[field];
4488 			while (inuse != 0) {
4489 				bit = ffsl(inuse) - 1;
4490 				bitmask = 1UL << bit;
4491 				idx = field * 64 + bit;
4492 				pv = &pc->pc_pventry[idx];
4493 				inuse &= ~bitmask;
4494 
4495 				pde = pmap_pde(pmap, pv->pv_va, &lvl);
4496 				KASSERT(pde != NULL,
4497 				    ("Attempting to remove an unmapped page"));
4498 
4499 				switch(lvl) {
4500 				case 1:
4501 					pte = pmap_l1_to_l2(pde, pv->pv_va);
4502 					tpte = pmap_load(pte);
4503 					KASSERT((tpte & ATTR_DESCR_MASK) ==
4504 					    L2_BLOCK,
4505 					    ("Attempting to remove an invalid "
4506 					    "block: %lx", tpte));
4507 					break;
4508 				case 2:
4509 					pte = pmap_l2_to_l3(pde, pv->pv_va);
4510 					tpte = pmap_load(pte);
4511 					KASSERT((tpte & ATTR_DESCR_MASK) ==
4512 					    L3_PAGE,
4513 					    ("Attempting to remove an invalid "
4514 					     "page: %lx", tpte));
4515 					break;
4516 				default:
4517 					panic(
4518 					    "Invalid page directory level: %d",
4519 					    lvl);
4520 				}
4521 
4522 /*
4523  * We cannot remove wired pages from a process' mapping at this time
4524  */
4525 				if (tpte & ATTR_SW_WIRED) {
4526 					allfree = 0;
4527 					continue;
4528 				}
4529 
4530 				pa = tpte & ~ATTR_MASK;
4531 
4532 				m = PHYS_TO_VM_PAGE(pa);
4533 				KASSERT(m->phys_addr == pa,
4534 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4535 				    m, (uintmax_t)m->phys_addr,
4536 				    (uintmax_t)tpte));
4537 
4538 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4539 				    m < &vm_page_array[vm_page_array_size],
4540 				    ("pmap_remove_pages: bad pte %#jx",
4541 				    (uintmax_t)tpte));
4542 
4543 				/*
4544 				 * Because this pmap is not active on other
4545 				 * processors, the dirty bit cannot have
4546 				 * changed state since we last loaded pte.
4547 				 */
4548 				pmap_clear(pte);
4549 
4550 				/*
4551 				 * Update the vm_page_t clean/reference bits.
4552 				 */
4553 				if (pmap_pte_dirty(pmap, tpte)) {
4554 					switch (lvl) {
4555 					case 1:
4556 						for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
4557 							vm_page_dirty(mt);
4558 						break;
4559 					case 2:
4560 						vm_page_dirty(m);
4561 						break;
4562 					}
4563 				}
4564 
4565 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
4566 
4567 				/* Mark free */
4568 				pc->pc_map[field] |= bitmask;
4569 				switch (lvl) {
4570 				case 1:
4571 					pmap_resident_count_dec(pmap,
4572 					    L2_SIZE / PAGE_SIZE);
4573 					pvh = pa_to_pvh(tpte & ~ATTR_MASK);
4574 					TAILQ_REMOVE(&pvh->pv_list, pv,pv_next);
4575 					pvh->pv_gen++;
4576 					if (TAILQ_EMPTY(&pvh->pv_list)) {
4577 						for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
4578 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
4579 							    TAILQ_EMPTY(&mt->md.pv_list))
4580 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4581 					}
4582 					ml3 = pmap_remove_pt_page(pmap,
4583 					    pv->pv_va);
4584 					if (ml3 != NULL) {
4585 						KASSERT(ml3->valid == VM_PAGE_BITS_ALL,
4586 						    ("pmap_remove_pages: l3 page not promoted"));
4587 						pmap_resident_count_dec(pmap,1);
4588 						KASSERT(ml3->ref_count == NL3PG,
4589 						    ("pmap_remove_pages: l3 page ref count error"));
4590 						ml3->ref_count = 0;
4591 						pmap_add_delayed_free_list(ml3,
4592 						    &free, FALSE);
4593 					}
4594 					break;
4595 				case 2:
4596 					pmap_resident_count_dec(pmap, 1);
4597 					TAILQ_REMOVE(&m->md.pv_list, pv,
4598 					    pv_next);
4599 					m->md.pv_gen++;
4600 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
4601 					    TAILQ_EMPTY(&m->md.pv_list) &&
4602 					    (m->flags & PG_FICTITIOUS) == 0) {
4603 						pvh = pa_to_pvh(
4604 						    VM_PAGE_TO_PHYS(m));
4605 						if (TAILQ_EMPTY(&pvh->pv_list))
4606 							vm_page_aflag_clear(m,
4607 							    PGA_WRITEABLE);
4608 					}
4609 					break;
4610 				}
4611 				pmap_unuse_pt(pmap, pv->pv_va, pmap_load(pde),
4612 				    &free);
4613 				freed++;
4614 			}
4615 		}
4616 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
4617 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
4618 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
4619 		if (allfree) {
4620 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4621 			free_pv_chunk(pc);
4622 		}
4623 	}
4624 	if (lock != NULL)
4625 		rw_wunlock(lock);
4626 	pmap_invalidate_all(pmap);
4627 	PMAP_UNLOCK(pmap);
4628 	vm_page_free_pages_toq(&free, true);
4629 }
4630 
4631 /*
4632  * This is used to check if a page has been accessed or modified.
4633  */
4634 static boolean_t
4635 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
4636 {
4637 	struct rwlock *lock;
4638 	pv_entry_t pv;
4639 	struct md_page *pvh;
4640 	pt_entry_t *pte, mask, value;
4641 	pmap_t pmap;
4642 	int lvl, md_gen, pvh_gen;
4643 	boolean_t rv;
4644 
4645 	rv = FALSE;
4646 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4647 	rw_rlock(lock);
4648 restart:
4649 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4650 		pmap = PV_PMAP(pv);
4651 		PMAP_ASSERT_STAGE1(pmap);
4652 		if (!PMAP_TRYLOCK(pmap)) {
4653 			md_gen = m->md.pv_gen;
4654 			rw_runlock(lock);
4655 			PMAP_LOCK(pmap);
4656 			rw_rlock(lock);
4657 			if (md_gen != m->md.pv_gen) {
4658 				PMAP_UNLOCK(pmap);
4659 				goto restart;
4660 			}
4661 		}
4662 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
4663 		KASSERT(lvl == 3,
4664 		    ("pmap_page_test_mappings: Invalid level %d", lvl));
4665 		mask = 0;
4666 		value = 0;
4667 		if (modified) {
4668 			mask |= ATTR_S1_AP_RW_BIT;
4669 			value |= ATTR_S1_AP(ATTR_S1_AP_RW);
4670 		}
4671 		if (accessed) {
4672 			mask |= ATTR_AF | ATTR_DESCR_MASK;
4673 			value |= ATTR_AF | L3_PAGE;
4674 		}
4675 		rv = (pmap_load(pte) & mask) == value;
4676 		PMAP_UNLOCK(pmap);
4677 		if (rv)
4678 			goto out;
4679 	}
4680 	if ((m->flags & PG_FICTITIOUS) == 0) {
4681 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4682 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4683 			pmap = PV_PMAP(pv);
4684 			PMAP_ASSERT_STAGE1(pmap);
4685 			if (!PMAP_TRYLOCK(pmap)) {
4686 				md_gen = m->md.pv_gen;
4687 				pvh_gen = pvh->pv_gen;
4688 				rw_runlock(lock);
4689 				PMAP_LOCK(pmap);
4690 				rw_rlock(lock);
4691 				if (md_gen != m->md.pv_gen ||
4692 				    pvh_gen != pvh->pv_gen) {
4693 					PMAP_UNLOCK(pmap);
4694 					goto restart;
4695 				}
4696 			}
4697 			pte = pmap_pte(pmap, pv->pv_va, &lvl);
4698 			KASSERT(lvl == 2,
4699 			    ("pmap_page_test_mappings: Invalid level %d", lvl));
4700 			mask = 0;
4701 			value = 0;
4702 			if (modified) {
4703 				mask |= ATTR_S1_AP_RW_BIT;
4704 				value |= ATTR_S1_AP(ATTR_S1_AP_RW);
4705 			}
4706 			if (accessed) {
4707 				mask |= ATTR_AF | ATTR_DESCR_MASK;
4708 				value |= ATTR_AF | L2_BLOCK;
4709 			}
4710 			rv = (pmap_load(pte) & mask) == value;
4711 			PMAP_UNLOCK(pmap);
4712 			if (rv)
4713 				goto out;
4714 		}
4715 	}
4716 out:
4717 	rw_runlock(lock);
4718 	return (rv);
4719 }
4720 
4721 /*
4722  *	pmap_is_modified:
4723  *
4724  *	Return whether or not the specified physical page was modified
4725  *	in any physical maps.
4726  */
4727 boolean_t
4728 pmap_is_modified(vm_page_t m)
4729 {
4730 
4731 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4732 	    ("pmap_is_modified: page %p is not managed", m));
4733 
4734 	/*
4735 	 * If the page is not busied then this check is racy.
4736 	 */
4737 	if (!pmap_page_is_write_mapped(m))
4738 		return (FALSE);
4739 	return (pmap_page_test_mappings(m, FALSE, TRUE));
4740 }
4741 
4742 /*
4743  *	pmap_is_prefaultable:
4744  *
4745  *	Return whether or not the specified virtual address is eligible
4746  *	for prefault.
4747  */
4748 boolean_t
4749 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4750 {
4751 	pt_entry_t *pte;
4752 	boolean_t rv;
4753 	int lvl;
4754 
4755 	rv = FALSE;
4756 	PMAP_LOCK(pmap);
4757 	pte = pmap_pte(pmap, addr, &lvl);
4758 	if (pte != NULL && pmap_load(pte) != 0) {
4759 		rv = TRUE;
4760 	}
4761 	PMAP_UNLOCK(pmap);
4762 	return (rv);
4763 }
4764 
4765 /*
4766  *	pmap_is_referenced:
4767  *
4768  *	Return whether or not the specified physical page was referenced
4769  *	in any physical maps.
4770  */
4771 boolean_t
4772 pmap_is_referenced(vm_page_t m)
4773 {
4774 
4775 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4776 	    ("pmap_is_referenced: page %p is not managed", m));
4777 	return (pmap_page_test_mappings(m, TRUE, FALSE));
4778 }
4779 
4780 /*
4781  * Clear the write and modified bits in each of the given page's mappings.
4782  */
4783 void
4784 pmap_remove_write(vm_page_t m)
4785 {
4786 	struct md_page *pvh;
4787 	pmap_t pmap;
4788 	struct rwlock *lock;
4789 	pv_entry_t next_pv, pv;
4790 	pt_entry_t oldpte, *pte;
4791 	vm_offset_t va;
4792 	int lvl, md_gen, pvh_gen;
4793 
4794 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4795 	    ("pmap_remove_write: page %p is not managed", m));
4796 	vm_page_assert_busied(m);
4797 
4798 	if (!pmap_page_is_write_mapped(m))
4799 		return;
4800 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4801 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
4802 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
4803 retry_pv_loop:
4804 	rw_wlock(lock);
4805 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4806 		pmap = PV_PMAP(pv);
4807 		PMAP_ASSERT_STAGE1(pmap);
4808 		if (!PMAP_TRYLOCK(pmap)) {
4809 			pvh_gen = pvh->pv_gen;
4810 			rw_wunlock(lock);
4811 			PMAP_LOCK(pmap);
4812 			rw_wlock(lock);
4813 			if (pvh_gen != pvh->pv_gen) {
4814 				PMAP_UNLOCK(pmap);
4815 				rw_wunlock(lock);
4816 				goto retry_pv_loop;
4817 			}
4818 		}
4819 		va = pv->pv_va;
4820 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
4821 		if ((pmap_load(pte) & ATTR_SW_DBM) != 0)
4822 			(void)pmap_demote_l2_locked(pmap, pte, va, &lock);
4823 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
4824 		    ("inconsistent pv lock %p %p for page %p",
4825 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
4826 		PMAP_UNLOCK(pmap);
4827 	}
4828 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4829 		pmap = PV_PMAP(pv);
4830 		PMAP_ASSERT_STAGE1(pmap);
4831 		if (!PMAP_TRYLOCK(pmap)) {
4832 			pvh_gen = pvh->pv_gen;
4833 			md_gen = m->md.pv_gen;
4834 			rw_wunlock(lock);
4835 			PMAP_LOCK(pmap);
4836 			rw_wlock(lock);
4837 			if (pvh_gen != pvh->pv_gen ||
4838 			    md_gen != m->md.pv_gen) {
4839 				PMAP_UNLOCK(pmap);
4840 				rw_wunlock(lock);
4841 				goto retry_pv_loop;
4842 			}
4843 		}
4844 		pte = pmap_pte(pmap, pv->pv_va, &lvl);
4845 		oldpte = pmap_load(pte);
4846 retry:
4847 		if ((oldpte & ATTR_SW_DBM) != 0) {
4848 			if (!atomic_fcmpset_long(pte, &oldpte,
4849 			    (oldpte | ATTR_S1_AP_RW_BIT) & ~ATTR_SW_DBM))
4850 				goto retry;
4851 			if ((oldpte & ATTR_S1_AP_RW_BIT) ==
4852 			    ATTR_S1_AP(ATTR_S1_AP_RW))
4853 				vm_page_dirty(m);
4854 			pmap_invalidate_page(pmap, pv->pv_va);
4855 		}
4856 		PMAP_UNLOCK(pmap);
4857 	}
4858 	rw_wunlock(lock);
4859 	vm_page_aflag_clear(m, PGA_WRITEABLE);
4860 }
4861 
4862 /*
4863  *	pmap_ts_referenced:
4864  *
4865  *	Return a count of reference bits for a page, clearing those bits.
4866  *	It is not necessary for every reference bit to be cleared, but it
4867  *	is necessary that 0 only be returned when there are truly no
4868  *	reference bits set.
4869  *
4870  *	As an optimization, update the page's dirty field if a modified bit is
4871  *	found while counting reference bits.  This opportunistic update can be
4872  *	performed at low cost and can eliminate the need for some future calls
4873  *	to pmap_is_modified().  However, since this function stops after
4874  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
4875  *	dirty pages.  Those dirty pages will only be detected by a future call
4876  *	to pmap_is_modified().
4877  */
4878 int
4879 pmap_ts_referenced(vm_page_t m)
4880 {
4881 	struct md_page *pvh;
4882 	pv_entry_t pv, pvf;
4883 	pmap_t pmap;
4884 	struct rwlock *lock;
4885 	pd_entry_t *pde, tpde;
4886 	pt_entry_t *pte, tpte;
4887 	vm_offset_t va;
4888 	vm_paddr_t pa;
4889 	int cleared, lvl, md_gen, not_cleared, pvh_gen;
4890 	struct spglist free;
4891 
4892 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4893 	    ("pmap_ts_referenced: page %p is not managed", m));
4894 	SLIST_INIT(&free);
4895 	cleared = 0;
4896 	pa = VM_PAGE_TO_PHYS(m);
4897 	lock = PHYS_TO_PV_LIST_LOCK(pa);
4898 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
4899 	rw_wlock(lock);
4900 retry:
4901 	not_cleared = 0;
4902 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4903 		goto small_mappings;
4904 	pv = pvf;
4905 	do {
4906 		if (pvf == NULL)
4907 			pvf = pv;
4908 		pmap = PV_PMAP(pv);
4909 		if (!PMAP_TRYLOCK(pmap)) {
4910 			pvh_gen = pvh->pv_gen;
4911 			rw_wunlock(lock);
4912 			PMAP_LOCK(pmap);
4913 			rw_wlock(lock);
4914 			if (pvh_gen != pvh->pv_gen) {
4915 				PMAP_UNLOCK(pmap);
4916 				goto retry;
4917 			}
4918 		}
4919 		va = pv->pv_va;
4920 		pde = pmap_pde(pmap, pv->pv_va, &lvl);
4921 		KASSERT(pde != NULL, ("pmap_ts_referenced: no l1 table found"));
4922 		KASSERT(lvl == 1,
4923 		    ("pmap_ts_referenced: invalid pde level %d", lvl));
4924 		tpde = pmap_load(pde);
4925 		KASSERT((tpde & ATTR_DESCR_MASK) == L1_TABLE,
4926 		    ("pmap_ts_referenced: found an invalid l1 table"));
4927 		pte = pmap_l1_to_l2(pde, pv->pv_va);
4928 		tpte = pmap_load(pte);
4929 		if (pmap_pte_dirty(pmap, tpte)) {
4930 			/*
4931 			 * Although "tpte" is mapping a 2MB page, because
4932 			 * this function is called at a 4KB page granularity,
4933 			 * we only update the 4KB page under test.
4934 			 */
4935 			vm_page_dirty(m);
4936 		}
4937 
4938 		if ((tpte & ATTR_AF) != 0) {
4939 			/*
4940 			 * Since this reference bit is shared by 512 4KB pages,
4941 			 * it should not be cleared every time it is tested.
4942 			 * Apply a simple "hash" function on the physical page
4943 			 * number, the virtual superpage number, and the pmap
4944 			 * address to select one 4KB page out of the 512 on
4945 			 * which testing the reference bit will result in
4946 			 * clearing that reference bit.  This function is
4947 			 * designed to avoid the selection of the same 4KB page
4948 			 * for every 2MB page mapping.
4949 			 *
4950 			 * On demotion, a mapping that hasn't been referenced
4951 			 * is simply destroyed.  To avoid the possibility of a
4952 			 * subsequent page fault on a demoted wired mapping,
4953 			 * always leave its reference bit set.  Moreover,
4954 			 * since the superpage is wired, the current state of
4955 			 * its reference bit won't affect page replacement.
4956 			 */
4957 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L2_SHIFT) ^
4958 			    (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 &&
4959 			    (tpte & ATTR_SW_WIRED) == 0) {
4960 				pmap_clear_bits(pte, ATTR_AF);
4961 				pmap_invalidate_page(pmap, pv->pv_va);
4962 				cleared++;
4963 			} else
4964 				not_cleared++;
4965 		}
4966 		PMAP_UNLOCK(pmap);
4967 		/* Rotate the PV list if it has more than one entry. */
4968 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4969 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4970 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4971 			pvh->pv_gen++;
4972 		}
4973 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
4974 			goto out;
4975 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4976 small_mappings:
4977 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4978 		goto out;
4979 	pv = pvf;
4980 	do {
4981 		if (pvf == NULL)
4982 			pvf = pv;
4983 		pmap = PV_PMAP(pv);
4984 		if (!PMAP_TRYLOCK(pmap)) {
4985 			pvh_gen = pvh->pv_gen;
4986 			md_gen = m->md.pv_gen;
4987 			rw_wunlock(lock);
4988 			PMAP_LOCK(pmap);
4989 			rw_wlock(lock);
4990 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4991 				PMAP_UNLOCK(pmap);
4992 				goto retry;
4993 			}
4994 		}
4995 		pde = pmap_pde(pmap, pv->pv_va, &lvl);
4996 		KASSERT(pde != NULL, ("pmap_ts_referenced: no l2 table found"));
4997 		KASSERT(lvl == 2,
4998 		    ("pmap_ts_referenced: invalid pde level %d", lvl));
4999 		tpde = pmap_load(pde);
5000 		KASSERT((tpde & ATTR_DESCR_MASK) == L2_TABLE,
5001 		    ("pmap_ts_referenced: found an invalid l2 table"));
5002 		pte = pmap_l2_to_l3(pde, pv->pv_va);
5003 		tpte = pmap_load(pte);
5004 		if (pmap_pte_dirty(pmap, tpte))
5005 			vm_page_dirty(m);
5006 		if ((tpte & ATTR_AF) != 0) {
5007 			if ((tpte & ATTR_SW_WIRED) == 0) {
5008 				pmap_clear_bits(pte, ATTR_AF);
5009 				pmap_invalidate_page(pmap, pv->pv_va);
5010 				cleared++;
5011 			} else
5012 				not_cleared++;
5013 		}
5014 		PMAP_UNLOCK(pmap);
5015 		/* Rotate the PV list if it has more than one entry. */
5016 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
5017 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5018 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5019 			m->md.pv_gen++;
5020 		}
5021 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
5022 	    not_cleared < PMAP_TS_REFERENCED_MAX);
5023 out:
5024 	rw_wunlock(lock);
5025 	vm_page_free_pages_toq(&free, true);
5026 	return (cleared + not_cleared);
5027 }
5028 
5029 /*
5030  *	Apply the given advice to the specified range of addresses within the
5031  *	given pmap.  Depending on the advice, clear the referenced and/or
5032  *	modified flags in each mapping and set the mapped page's dirty field.
5033  */
5034 void
5035 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5036 {
5037 	struct rwlock *lock;
5038 	vm_offset_t va, va_next;
5039 	vm_page_t m;
5040 	pd_entry_t *l0, *l1, *l2, oldl2;
5041 	pt_entry_t *l3, oldl3;
5042 
5043 	PMAP_ASSERT_STAGE1(pmap);
5044 
5045 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5046 		return;
5047 
5048 	PMAP_LOCK(pmap);
5049 	for (; sva < eva; sva = va_next) {
5050 		l0 = pmap_l0(pmap, sva);
5051 		if (pmap_load(l0) == 0) {
5052 			va_next = (sva + L0_SIZE) & ~L0_OFFSET;
5053 			if (va_next < sva)
5054 				va_next = eva;
5055 			continue;
5056 		}
5057 		l1 = pmap_l0_to_l1(l0, sva);
5058 		if (pmap_load(l1) == 0) {
5059 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
5060 			if (va_next < sva)
5061 				va_next = eva;
5062 			continue;
5063 		}
5064 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
5065 		if (va_next < sva)
5066 			va_next = eva;
5067 		l2 = pmap_l1_to_l2(l1, sva);
5068 		oldl2 = pmap_load(l2);
5069 		if (oldl2 == 0)
5070 			continue;
5071 		if ((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK) {
5072 			if ((oldl2 & ATTR_SW_MANAGED) == 0)
5073 				continue;
5074 			lock = NULL;
5075 			if (!pmap_demote_l2_locked(pmap, l2, sva, &lock)) {
5076 				if (lock != NULL)
5077 					rw_wunlock(lock);
5078 
5079 				/*
5080 				 * The 2MB page mapping was destroyed.
5081 				 */
5082 				continue;
5083 			}
5084 
5085 			/*
5086 			 * Unless the page mappings are wired, remove the
5087 			 * mapping to a single page so that a subsequent
5088 			 * access may repromote.  Choosing the last page
5089 			 * within the address range [sva, min(va_next, eva))
5090 			 * generally results in more repromotions.  Since the
5091 			 * underlying page table page is fully populated, this
5092 			 * removal never frees a page table page.
5093 			 */
5094 			if ((oldl2 & ATTR_SW_WIRED) == 0) {
5095 				va = eva;
5096 				if (va > va_next)
5097 					va = va_next;
5098 				va -= PAGE_SIZE;
5099 				KASSERT(va >= sva,
5100 				    ("pmap_advise: no address gap"));
5101 				l3 = pmap_l2_to_l3(l2, va);
5102 				KASSERT(pmap_load(l3) != 0,
5103 				    ("pmap_advise: invalid PTE"));
5104 				pmap_remove_l3(pmap, l3, va, pmap_load(l2),
5105 				    NULL, &lock);
5106 			}
5107 			if (lock != NULL)
5108 				rw_wunlock(lock);
5109 		}
5110 		KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
5111 		    ("pmap_advise: invalid L2 entry after demotion"));
5112 		if (va_next > eva)
5113 			va_next = eva;
5114 		va = va_next;
5115 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
5116 		    sva += L3_SIZE) {
5117 			oldl3 = pmap_load(l3);
5118 			if ((oldl3 & (ATTR_SW_MANAGED | ATTR_DESCR_MASK)) !=
5119 			    (ATTR_SW_MANAGED | L3_PAGE))
5120 				goto maybe_invlrng;
5121 			else if (pmap_pte_dirty(pmap, oldl3)) {
5122 				if (advice == MADV_DONTNEED) {
5123 					/*
5124 					 * Future calls to pmap_is_modified()
5125 					 * can be avoided by making the page
5126 					 * dirty now.
5127 					 */
5128 					m = PHYS_TO_VM_PAGE(oldl3 & ~ATTR_MASK);
5129 					vm_page_dirty(m);
5130 				}
5131 				while (!atomic_fcmpset_long(l3, &oldl3,
5132 				    (oldl3 & ~ATTR_AF) |
5133 				    ATTR_S1_AP(ATTR_S1_AP_RO)))
5134 					cpu_spinwait();
5135 			} else if ((oldl3 & ATTR_AF) != 0)
5136 				pmap_clear_bits(l3, ATTR_AF);
5137 			else
5138 				goto maybe_invlrng;
5139 			if (va == va_next)
5140 				va = sva;
5141 			continue;
5142 maybe_invlrng:
5143 			if (va != va_next) {
5144 				pmap_invalidate_range(pmap, va, sva);
5145 				va = va_next;
5146 			}
5147 		}
5148 		if (va != va_next)
5149 			pmap_invalidate_range(pmap, va, sva);
5150 	}
5151 	PMAP_UNLOCK(pmap);
5152 }
5153 
5154 /*
5155  *	Clear the modify bits on the specified physical page.
5156  */
5157 void
5158 pmap_clear_modify(vm_page_t m)
5159 {
5160 	struct md_page *pvh;
5161 	struct rwlock *lock;
5162 	pmap_t pmap;
5163 	pv_entry_t next_pv, pv;
5164 	pd_entry_t *l2, oldl2;
5165 	pt_entry_t *l3, oldl3;
5166 	vm_offset_t va;
5167 	int md_gen, pvh_gen;
5168 
5169 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5170 	    ("pmap_clear_modify: page %p is not managed", m));
5171 	vm_page_assert_busied(m);
5172 
5173 	if (!pmap_page_is_write_mapped(m))
5174 		return;
5175 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5176 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5177 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5178 	rw_wlock(lock);
5179 restart:
5180 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5181 		pmap = PV_PMAP(pv);
5182 		PMAP_ASSERT_STAGE1(pmap);
5183 		if (!PMAP_TRYLOCK(pmap)) {
5184 			pvh_gen = pvh->pv_gen;
5185 			rw_wunlock(lock);
5186 			PMAP_LOCK(pmap);
5187 			rw_wlock(lock);
5188 			if (pvh_gen != pvh->pv_gen) {
5189 				PMAP_UNLOCK(pmap);
5190 				goto restart;
5191 			}
5192 		}
5193 		va = pv->pv_va;
5194 		l2 = pmap_l2(pmap, va);
5195 		oldl2 = pmap_load(l2);
5196 		/* If oldl2 has ATTR_SW_DBM set, then it is also dirty. */
5197 		if ((oldl2 & ATTR_SW_DBM) != 0 &&
5198 		    pmap_demote_l2_locked(pmap, l2, va, &lock) &&
5199 		    (oldl2 & ATTR_SW_WIRED) == 0) {
5200 			/*
5201 			 * Write protect the mapping to a single page so that
5202 			 * a subsequent write access may repromote.
5203 			 */
5204 			va += VM_PAGE_TO_PHYS(m) - (oldl2 & ~ATTR_MASK);
5205 			l3 = pmap_l2_to_l3(l2, va);
5206 			oldl3 = pmap_load(l3);
5207 			while (!atomic_fcmpset_long(l3, &oldl3,
5208 			    (oldl3 & ~ATTR_SW_DBM) | ATTR_S1_AP(ATTR_S1_AP_RO)))
5209 				cpu_spinwait();
5210 			vm_page_dirty(m);
5211 			pmap_invalidate_page(pmap, va);
5212 		}
5213 		PMAP_UNLOCK(pmap);
5214 	}
5215 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5216 		pmap = PV_PMAP(pv);
5217 		PMAP_ASSERT_STAGE1(pmap);
5218 		if (!PMAP_TRYLOCK(pmap)) {
5219 			md_gen = m->md.pv_gen;
5220 			pvh_gen = pvh->pv_gen;
5221 			rw_wunlock(lock);
5222 			PMAP_LOCK(pmap);
5223 			rw_wlock(lock);
5224 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5225 				PMAP_UNLOCK(pmap);
5226 				goto restart;
5227 			}
5228 		}
5229 		l2 = pmap_l2(pmap, pv->pv_va);
5230 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
5231 		oldl3 = pmap_load(l3);
5232 		if (pmap_l3_valid(oldl3) &&
5233 		    (oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) == ATTR_SW_DBM){
5234 			pmap_set_bits(l3, ATTR_S1_AP(ATTR_S1_AP_RO));
5235 			pmap_invalidate_page(pmap, pv->pv_va);
5236 		}
5237 		PMAP_UNLOCK(pmap);
5238 	}
5239 	rw_wunlock(lock);
5240 }
5241 
5242 void *
5243 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5244 {
5245 	struct pmap_preinit_mapping *ppim;
5246 	vm_offset_t va, offset;
5247 	pd_entry_t *pde;
5248 	pt_entry_t *l2;
5249 	int i, lvl, l2_blocks, free_l2_count, start_idx;
5250 
5251 	if (!vm_initialized) {
5252 		/*
5253 		 * No L3 ptables so map entire L2 blocks where start VA is:
5254 		 * 	preinit_map_va + start_idx * L2_SIZE
5255 		 * There may be duplicate mappings (multiple VA -> same PA) but
5256 		 * ARM64 dcache is always PIPT so that's acceptable.
5257 		 */
5258 		 if (size == 0)
5259 			 return (NULL);
5260 
5261 		 /* Calculate how many L2 blocks are needed for the mapping */
5262 		l2_blocks = (roundup2(pa + size, L2_SIZE) -
5263 		    rounddown2(pa, L2_SIZE)) >> L2_SHIFT;
5264 
5265 		offset = pa & L2_OFFSET;
5266 
5267 		if (preinit_map_va == 0)
5268 			return (NULL);
5269 
5270 		/* Map 2MiB L2 blocks from reserved VA space */
5271 
5272 		free_l2_count = 0;
5273 		start_idx = -1;
5274 		/* Find enough free contiguous VA space */
5275 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5276 			ppim = pmap_preinit_mapping + i;
5277 			if (free_l2_count > 0 && ppim->pa != 0) {
5278 				/* Not enough space here */
5279 				free_l2_count = 0;
5280 				start_idx = -1;
5281 				continue;
5282 			}
5283 
5284 			if (ppim->pa == 0) {
5285 				/* Free L2 block */
5286 				if (start_idx == -1)
5287 					start_idx = i;
5288 				free_l2_count++;
5289 				if (free_l2_count == l2_blocks)
5290 					break;
5291 			}
5292 		}
5293 		if (free_l2_count != l2_blocks)
5294 			panic("%s: too many preinit mappings", __func__);
5295 
5296 		va = preinit_map_va + (start_idx * L2_SIZE);
5297 		for (i = start_idx; i < start_idx + l2_blocks; i++) {
5298 			/* Mark entries as allocated */
5299 			ppim = pmap_preinit_mapping + i;
5300 			ppim->pa = pa;
5301 			ppim->va = va + offset;
5302 			ppim->size = size;
5303 		}
5304 
5305 		/* Map L2 blocks */
5306 		pa = rounddown2(pa, L2_SIZE);
5307 		for (i = 0; i < l2_blocks; i++) {
5308 			pde = pmap_pde(kernel_pmap, va, &lvl);
5309 			KASSERT(pde != NULL,
5310 			    ("pmap_mapbios: Invalid page entry, va: 0x%lx",
5311 			    va));
5312 			KASSERT(lvl == 1,
5313 			    ("pmap_mapbios: Invalid level %d", lvl));
5314 
5315 			/* Insert L2_BLOCK */
5316 			l2 = pmap_l1_to_l2(pde, va);
5317 			pmap_load_store(l2,
5318 			    pa | ATTR_DEFAULT | ATTR_S1_XN |
5319 			    ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | L2_BLOCK);
5320 
5321 			va += L2_SIZE;
5322 			pa += L2_SIZE;
5323 		}
5324 		pmap_invalidate_all(kernel_pmap);
5325 
5326 		va = preinit_map_va + (start_idx * L2_SIZE);
5327 
5328 	} else {
5329 		/* kva_alloc may be used to map the pages */
5330 		offset = pa & PAGE_MASK;
5331 		size = round_page(offset + size);
5332 
5333 		va = kva_alloc(size);
5334 		if (va == 0)
5335 			panic("%s: Couldn't allocate KVA", __func__);
5336 
5337 		pde = pmap_pde(kernel_pmap, va, &lvl);
5338 		KASSERT(lvl == 2, ("pmap_mapbios: Invalid level %d", lvl));
5339 
5340 		/* L3 table is linked */
5341 		va = trunc_page(va);
5342 		pa = trunc_page(pa);
5343 		pmap_kenter(va, size, pa, VM_MEMATTR_WRITE_BACK);
5344 	}
5345 
5346 	return ((void *)(va + offset));
5347 }
5348 
5349 void
5350 pmap_unmapbios(vm_offset_t va, vm_size_t size)
5351 {
5352 	struct pmap_preinit_mapping *ppim;
5353 	vm_offset_t offset, tmpsize, va_trunc;
5354 	pd_entry_t *pde;
5355 	pt_entry_t *l2;
5356 	int i, lvl, l2_blocks, block;
5357 	bool preinit_map;
5358 
5359 	l2_blocks =
5360 	   (roundup2(va + size, L2_SIZE) - rounddown2(va, L2_SIZE)) >> L2_SHIFT;
5361 	KASSERT(l2_blocks > 0, ("pmap_unmapbios: invalid size %lx", size));
5362 
5363 	/* Remove preinit mapping */
5364 	preinit_map = false;
5365 	block = 0;
5366 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5367 		ppim = pmap_preinit_mapping + i;
5368 		if (ppim->va == va) {
5369 			KASSERT(ppim->size == size,
5370 			    ("pmap_unmapbios: size mismatch"));
5371 			ppim->va = 0;
5372 			ppim->pa = 0;
5373 			ppim->size = 0;
5374 			preinit_map = true;
5375 			offset = block * L2_SIZE;
5376 			va_trunc = rounddown2(va, L2_SIZE) + offset;
5377 
5378 			/* Remove L2_BLOCK */
5379 			pde = pmap_pde(kernel_pmap, va_trunc, &lvl);
5380 			KASSERT(pde != NULL,
5381 			    ("pmap_unmapbios: Invalid page entry, va: 0x%lx",
5382 			    va_trunc));
5383 			l2 = pmap_l1_to_l2(pde, va_trunc);
5384 			pmap_clear(l2);
5385 
5386 			if (block == (l2_blocks - 1))
5387 				break;
5388 			block++;
5389 		}
5390 	}
5391 	if (preinit_map) {
5392 		pmap_invalidate_all(kernel_pmap);
5393 		return;
5394 	}
5395 
5396 	/* Unmap the pages reserved with kva_alloc. */
5397 	if (vm_initialized) {
5398 		offset = va & PAGE_MASK;
5399 		size = round_page(offset + size);
5400 		va = trunc_page(va);
5401 
5402 		pde = pmap_pde(kernel_pmap, va, &lvl);
5403 		KASSERT(pde != NULL,
5404 		    ("pmap_unmapbios: Invalid page entry, va: 0x%lx", va));
5405 		KASSERT(lvl == 2, ("pmap_unmapbios: Invalid level %d", lvl));
5406 
5407 		/* Unmap and invalidate the pages */
5408                 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
5409 			pmap_kremove(va + tmpsize);
5410 
5411 		kva_free(va, size);
5412 	}
5413 }
5414 
5415 /*
5416  * Sets the memory attribute for the specified page.
5417  */
5418 void
5419 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5420 {
5421 
5422 	m->md.pv_memattr = ma;
5423 
5424 	/*
5425 	 * If "m" is a normal page, update its direct mapping.  This update
5426 	 * can be relied upon to perform any cache operations that are
5427 	 * required for data coherence.
5428 	 */
5429 	if ((m->flags & PG_FICTITIOUS) == 0 &&
5430 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
5431 	    m->md.pv_memattr) != 0)
5432 		panic("memory attribute change on the direct map failed");
5433 }
5434 
5435 /*
5436  * Changes the specified virtual address range's memory type to that given by
5437  * the parameter "mode".  The specified virtual address range must be
5438  * completely contained within either the direct map or the kernel map.  If
5439  * the virtual address range is contained within the kernel map, then the
5440  * memory type for each of the corresponding ranges of the direct map is also
5441  * changed.  (The corresponding ranges of the direct map are those ranges that
5442  * map the same physical pages as the specified virtual address range.)  These
5443  * changes to the direct map are necessary because Intel describes the
5444  * behavior of their processors as "undefined" if two or more mappings to the
5445  * same physical page have different memory types.
5446  *
5447  * Returns zero if the change completed successfully, and either EINVAL or
5448  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5449  * of the virtual address range was not mapped, and ENOMEM is returned if
5450  * there was insufficient memory available to complete the change.  In the
5451  * latter case, the memory type may have been changed on some part of the
5452  * virtual address range or the direct map.
5453  */
5454 int
5455 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
5456 {
5457 	int error;
5458 
5459 	PMAP_LOCK(kernel_pmap);
5460 	error = pmap_change_attr_locked(va, size, mode);
5461 	PMAP_UNLOCK(kernel_pmap);
5462 	return (error);
5463 }
5464 
5465 static int
5466 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
5467 {
5468 	vm_offset_t base, offset, tmpva;
5469 	pt_entry_t l3, *pte, *newpte;
5470 	int lvl;
5471 
5472 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
5473 	base = trunc_page(va);
5474 	offset = va & PAGE_MASK;
5475 	size = round_page(offset + size);
5476 
5477 	if (!VIRT_IN_DMAP(base) &&
5478 	    !(base >= VM_MIN_KERNEL_ADDRESS && base < VM_MAX_KERNEL_ADDRESS))
5479 		return (EINVAL);
5480 
5481 	for (tmpva = base; tmpva < base + size; ) {
5482 		pte = pmap_pte(kernel_pmap, tmpva, &lvl);
5483 		if (pte == NULL)
5484 			return (EINVAL);
5485 
5486 		if ((pmap_load(pte) & ATTR_S1_IDX_MASK) == ATTR_S1_IDX(mode)) {
5487 			/*
5488 			 * We already have the correct attribute,
5489 			 * ignore this entry.
5490 			 */
5491 			switch (lvl) {
5492 			default:
5493 				panic("Invalid DMAP table level: %d\n", lvl);
5494 			case 1:
5495 				tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE;
5496 				break;
5497 			case 2:
5498 				tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE;
5499 				break;
5500 			case 3:
5501 				tmpva += PAGE_SIZE;
5502 				break;
5503 			}
5504 		} else {
5505 			/*
5506 			 * Split the entry to an level 3 table, then
5507 			 * set the new attribute.
5508 			 */
5509 			switch (lvl) {
5510 			default:
5511 				panic("Invalid DMAP table level: %d\n", lvl);
5512 			case 1:
5513 				newpte = pmap_demote_l1(kernel_pmap, pte,
5514 				    tmpva & ~L1_OFFSET);
5515 				if (newpte == NULL)
5516 					return (EINVAL);
5517 				pte = pmap_l1_to_l2(pte, tmpva);
5518 			case 2:
5519 				newpte = pmap_demote_l2(kernel_pmap, pte,
5520 				    tmpva);
5521 				if (newpte == NULL)
5522 					return (EINVAL);
5523 				pte = pmap_l2_to_l3(pte, tmpva);
5524 			case 3:
5525 				/* Update the entry */
5526 				l3 = pmap_load(pte);
5527 				l3 &= ~ATTR_S1_IDX_MASK;
5528 				l3 |= ATTR_S1_IDX(mode);
5529 				if (mode == VM_MEMATTR_DEVICE)
5530 					l3 |= ATTR_S1_XN;
5531 
5532 				pmap_update_entry(kernel_pmap, pte, l3, tmpva,
5533 				    PAGE_SIZE);
5534 
5535 				/*
5536 				 * If moving to a non-cacheable entry flush
5537 				 * the cache.
5538 				 */
5539 				if (mode == VM_MEMATTR_UNCACHEABLE)
5540 					cpu_dcache_wbinv_range(tmpva, L3_SIZE);
5541 
5542 				break;
5543 			}
5544 			tmpva += PAGE_SIZE;
5545 		}
5546 	}
5547 
5548 	return (0);
5549 }
5550 
5551 /*
5552  * Create an L2 table to map all addresses within an L1 mapping.
5553  */
5554 static pt_entry_t *
5555 pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va)
5556 {
5557 	pt_entry_t *l2, newl2, oldl1;
5558 	vm_offset_t tmpl1;
5559 	vm_paddr_t l2phys, phys;
5560 	vm_page_t ml2;
5561 	int i;
5562 
5563 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5564 	oldl1 = pmap_load(l1);
5565 	KASSERT((oldl1 & ATTR_DESCR_MASK) == L1_BLOCK,
5566 	    ("pmap_demote_l1: Demoting a non-block entry"));
5567 	KASSERT((va & L1_OFFSET) == 0,
5568 	    ("pmap_demote_l1: Invalid virtual address %#lx", va));
5569 	KASSERT((oldl1 & ATTR_SW_MANAGED) == 0,
5570 	    ("pmap_demote_l1: Level 1 table shouldn't be managed"));
5571 
5572 	tmpl1 = 0;
5573 	if (va <= (vm_offset_t)l1 && va + L1_SIZE > (vm_offset_t)l1) {
5574 		tmpl1 = kva_alloc(PAGE_SIZE);
5575 		if (tmpl1 == 0)
5576 			return (NULL);
5577 	}
5578 
5579 	if ((ml2 = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
5580 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
5581 		CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx"
5582 		    " in pmap %p", va, pmap);
5583 		return (NULL);
5584 	}
5585 
5586 	l2phys = VM_PAGE_TO_PHYS(ml2);
5587 	l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys);
5588 
5589 	/* Address the range points at */
5590 	phys = oldl1 & ~ATTR_MASK;
5591 	/* The attributed from the old l1 table to be copied */
5592 	newl2 = oldl1 & ATTR_MASK;
5593 
5594 	/* Create the new entries */
5595 	for (i = 0; i < Ln_ENTRIES; i++) {
5596 		l2[i] = newl2 | phys;
5597 		phys += L2_SIZE;
5598 	}
5599 	KASSERT(l2[0] == ((oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK),
5600 	    ("Invalid l2 page (%lx != %lx)", l2[0],
5601 	    (oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK));
5602 
5603 	if (tmpl1 != 0) {
5604 		pmap_kenter(tmpl1, PAGE_SIZE,
5605 		    DMAP_TO_PHYS((vm_offset_t)l1) & ~L3_OFFSET,
5606 		    VM_MEMATTR_WRITE_BACK);
5607 		l1 = (pt_entry_t *)(tmpl1 + ((vm_offset_t)l1 & PAGE_MASK));
5608 	}
5609 
5610 	pmap_update_entry(pmap, l1, l2phys | L1_TABLE, va, PAGE_SIZE);
5611 
5612 	if (tmpl1 != 0) {
5613 		pmap_kremove(tmpl1);
5614 		kva_free(tmpl1, PAGE_SIZE);
5615 	}
5616 
5617 	return (l2);
5618 }
5619 
5620 static void
5621 pmap_fill_l3(pt_entry_t *firstl3, pt_entry_t newl3)
5622 {
5623 	pt_entry_t *l3;
5624 
5625 	for (l3 = firstl3; l3 - firstl3 < Ln_ENTRIES; l3++) {
5626 		*l3 = newl3;
5627 		newl3 += L3_SIZE;
5628 	}
5629 }
5630 
5631 static void
5632 pmap_demote_l2_abort(pmap_t pmap, vm_offset_t va, pt_entry_t *l2,
5633     struct rwlock **lockp)
5634 {
5635 	struct spglist free;
5636 
5637 	SLIST_INIT(&free);
5638 	(void)pmap_remove_l2(pmap, l2, va, pmap_load(pmap_l1(pmap, va)), &free,
5639 	    lockp);
5640 	vm_page_free_pages_toq(&free, true);
5641 }
5642 
5643 /*
5644  * Create an L3 table to map all addresses within an L2 mapping.
5645  */
5646 static pt_entry_t *
5647 pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va,
5648     struct rwlock **lockp)
5649 {
5650 	pt_entry_t *l3, newl3, oldl2;
5651 	vm_offset_t tmpl2;
5652 	vm_paddr_t l3phys;
5653 	vm_page_t ml3;
5654 
5655 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5656 	PMAP_ASSERT_STAGE1(pmap);
5657 	l3 = NULL;
5658 	oldl2 = pmap_load(l2);
5659 	KASSERT((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK,
5660 	    ("pmap_demote_l2: Demoting a non-block entry"));
5661 	va &= ~L2_OFFSET;
5662 
5663 	tmpl2 = 0;
5664 	if (va <= (vm_offset_t)l2 && va + L2_SIZE > (vm_offset_t)l2) {
5665 		tmpl2 = kva_alloc(PAGE_SIZE);
5666 		if (tmpl2 == 0)
5667 			return (NULL);
5668 	}
5669 
5670 	/*
5671 	 * Invalidate the 2MB page mapping and return "failure" if the
5672 	 * mapping was never accessed.
5673 	 */
5674 	if ((oldl2 & ATTR_AF) == 0) {
5675 		KASSERT((oldl2 & ATTR_SW_WIRED) == 0,
5676 		    ("pmap_demote_l2: a wired mapping is missing ATTR_AF"));
5677 		pmap_demote_l2_abort(pmap, va, l2, lockp);
5678 		CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx in pmap %p",
5679 		    va, pmap);
5680 		goto fail;
5681 	}
5682 
5683 	if ((ml3 = pmap_remove_pt_page(pmap, va)) == NULL) {
5684 		KASSERT((oldl2 & ATTR_SW_WIRED) == 0,
5685 		    ("pmap_demote_l2: page table page for a wired mapping"
5686 		    " is missing"));
5687 
5688 		/*
5689 		 * If the page table page is missing and the mapping
5690 		 * is for a kernel address, the mapping must belong to
5691 		 * the direct map.  Page table pages are preallocated
5692 		 * for every other part of the kernel address space,
5693 		 * so the direct map region is the only part of the
5694 		 * kernel address space that must be handled here.
5695 		 */
5696 		KASSERT(va < VM_MAXUSER_ADDRESS || VIRT_IN_DMAP(va),
5697 		    ("pmap_demote_l2: No saved mpte for va %#lx", va));
5698 
5699 		/*
5700 		 * If the 2MB page mapping belongs to the direct map
5701 		 * region of the kernel's address space, then the page
5702 		 * allocation request specifies the highest possible
5703 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
5704 		 * priority is normal.
5705 		 */
5706 		ml3 = vm_page_alloc(NULL, pmap_l2_pindex(va),
5707 		    (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
5708 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
5709 
5710 		/*
5711 		 * If the allocation of the new page table page fails,
5712 		 * invalidate the 2MB page mapping and return "failure".
5713 		 */
5714 		if (ml3 == NULL) {
5715 			pmap_demote_l2_abort(pmap, va, l2, lockp);
5716 			CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx"
5717 			    " in pmap %p", va, pmap);
5718 			goto fail;
5719 		}
5720 
5721 		if (va < VM_MAXUSER_ADDRESS) {
5722 			ml3->ref_count = NL3PG;
5723 			pmap_resident_count_inc(pmap, 1);
5724 		}
5725 	}
5726 	l3phys = VM_PAGE_TO_PHYS(ml3);
5727 	l3 = (pt_entry_t *)PHYS_TO_DMAP(l3phys);
5728 	newl3 = (oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE;
5729 	KASSERT((oldl2 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) !=
5730 	    (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM),
5731 	    ("pmap_demote_l2: L2 entry is writeable but not dirty"));
5732 
5733 	/*
5734 	 * If the page table page is not leftover from an earlier promotion,
5735 	 * or the mapping attributes have changed, (re)initialize the L3 table.
5736 	 *
5737 	 * When pmap_update_entry() clears the old L2 mapping, it (indirectly)
5738 	 * performs a dsb().  That dsb() ensures that the stores for filling
5739 	 * "l3" are visible before "l3" is added to the page table.
5740 	 */
5741 	if (ml3->valid == 0 || (l3[0] & ATTR_MASK) != (newl3 & ATTR_MASK))
5742 		pmap_fill_l3(l3, newl3);
5743 
5744 	/*
5745 	 * Map the temporary page so we don't lose access to the l2 table.
5746 	 */
5747 	if (tmpl2 != 0) {
5748 		pmap_kenter(tmpl2, PAGE_SIZE,
5749 		    DMAP_TO_PHYS((vm_offset_t)l2) & ~L3_OFFSET,
5750 		    VM_MEMATTR_WRITE_BACK);
5751 		l2 = (pt_entry_t *)(tmpl2 + ((vm_offset_t)l2 & PAGE_MASK));
5752 	}
5753 
5754 	/*
5755 	 * The spare PV entries must be reserved prior to demoting the
5756 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
5757 	 * of the L2 and the PV lists will be inconsistent, which can result
5758 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
5759 	 * wrong PV list and pmap_pv_demote_l2() failing to find the expected
5760 	 * PV entry for the 2MB page mapping that is being demoted.
5761 	 */
5762 	if ((oldl2 & ATTR_SW_MANAGED) != 0)
5763 		reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp);
5764 
5765 	/*
5766 	 * Pass PAGE_SIZE so that a single TLB invalidation is performed on
5767 	 * the 2MB page mapping.
5768 	 */
5769 	pmap_update_entry(pmap, l2, l3phys | L2_TABLE, va, PAGE_SIZE);
5770 
5771 	/*
5772 	 * Demote the PV entry.
5773 	 */
5774 	if ((oldl2 & ATTR_SW_MANAGED) != 0)
5775 		pmap_pv_demote_l2(pmap, va, oldl2 & ~ATTR_MASK, lockp);
5776 
5777 	atomic_add_long(&pmap_l2_demotions, 1);
5778 	CTR3(KTR_PMAP, "pmap_demote_l2: success for va %#lx"
5779 	    " in pmap %p %lx", va, pmap, l3[0]);
5780 
5781 fail:
5782 	if (tmpl2 != 0) {
5783 		pmap_kremove(tmpl2);
5784 		kva_free(tmpl2, PAGE_SIZE);
5785 	}
5786 
5787 	return (l3);
5788 
5789 }
5790 
5791 static pt_entry_t *
5792 pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
5793 {
5794 	struct rwlock *lock;
5795 	pt_entry_t *l3;
5796 
5797 	lock = NULL;
5798 	l3 = pmap_demote_l2_locked(pmap, l2, va, &lock);
5799 	if (lock != NULL)
5800 		rw_wunlock(lock);
5801 	return (l3);
5802 }
5803 
5804 /*
5805  * Perform the pmap work for mincore(2).  If the page is not both referenced and
5806  * modified by this pmap, returns its physical address so that the caller can
5807  * find other mappings.
5808  */
5809 int
5810 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
5811 {
5812 	pt_entry_t *pte, tpte;
5813 	vm_paddr_t mask, pa;
5814 	int lvl, val;
5815 	bool managed;
5816 
5817 	PMAP_ASSERT_STAGE1(pmap);
5818 	PMAP_LOCK(pmap);
5819 	pte = pmap_pte(pmap, addr, &lvl);
5820 	if (pte != NULL) {
5821 		tpte = pmap_load(pte);
5822 
5823 		switch (lvl) {
5824 		case 3:
5825 			mask = L3_OFFSET;
5826 			break;
5827 		case 2:
5828 			mask = L2_OFFSET;
5829 			break;
5830 		case 1:
5831 			mask = L1_OFFSET;
5832 			break;
5833 		default:
5834 			panic("pmap_mincore: invalid level %d", lvl);
5835 		}
5836 
5837 		managed = (tpte & ATTR_SW_MANAGED) != 0;
5838 		val = MINCORE_INCORE;
5839 		if (lvl != 3)
5840 			val |= MINCORE_SUPER;
5841 		if ((managed && pmap_pte_dirty(pmap, tpte)) || (!managed &&
5842 		    (tpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW)))
5843 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5844 		if ((tpte & ATTR_AF) == ATTR_AF)
5845 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5846 
5847 		pa = (tpte & ~ATTR_MASK) | (addr & mask);
5848 	} else {
5849 		managed = false;
5850 		val = 0;
5851 	}
5852 
5853 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5854 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
5855 		*pap = pa;
5856 	}
5857 	PMAP_UNLOCK(pmap);
5858 	return (val);
5859 }
5860 
5861 /*
5862  * Garbage collect every ASID that is neither active on a processor nor
5863  * reserved.
5864  */
5865 static void
5866 pmap_reset_asid_set(pmap_t pmap)
5867 {
5868 	pmap_t curpmap;
5869 	int asid, cpuid, epoch;
5870 	struct asid_set *set;
5871 
5872 	PMAP_ASSERT_STAGE1(pmap);
5873 
5874 	set = pmap->pm_asid_set;
5875 	KASSERT(set != NULL, ("%s: NULL asid set", __func__));
5876 	mtx_assert(&set->asid_set_mutex, MA_OWNED);
5877 
5878 	/*
5879 	 * Ensure that the store to asid_epoch is globally visible before the
5880 	 * loads from pc_curpmap are performed.
5881 	 */
5882 	epoch = set->asid_epoch + 1;
5883 	if (epoch == INT_MAX)
5884 		epoch = 0;
5885 	set->asid_epoch = epoch;
5886 	dsb(ishst);
5887 	__asm __volatile("tlbi vmalle1is");
5888 	dsb(ish);
5889 	bit_nclear(set->asid_set, ASID_FIRST_AVAILABLE,
5890 	    set->asid_set_size - 1);
5891 	CPU_FOREACH(cpuid) {
5892 		if (cpuid == curcpu)
5893 			continue;
5894 		curpmap = pcpu_find(cpuid)->pc_curpmap;
5895 		KASSERT(curpmap->pm_asid_set == set, ("Incorrect set"));
5896 		asid = COOKIE_TO_ASID(curpmap->pm_cookie);
5897 		if (asid == -1)
5898 			continue;
5899 		bit_set(set->asid_set, asid);
5900 		curpmap->pm_cookie = COOKIE_FROM(asid, epoch);
5901 	}
5902 }
5903 
5904 /*
5905  * Allocate a new ASID for the specified pmap.
5906  */
5907 static void
5908 pmap_alloc_asid(pmap_t pmap)
5909 {
5910 	struct asid_set *set;
5911 	int new_asid;
5912 
5913 	PMAP_ASSERT_STAGE1(pmap);
5914 	set = pmap->pm_asid_set;
5915 	KASSERT(set != NULL, ("%s: NULL asid set", __func__));
5916 
5917 	mtx_lock_spin(&set->asid_set_mutex);
5918 
5919 	/*
5920 	 * While this processor was waiting to acquire the asid set mutex,
5921 	 * pmap_reset_asid_set() running on another processor might have
5922 	 * updated this pmap's cookie to the current epoch.  In which case, we
5923 	 * don't need to allocate a new ASID.
5924 	 */
5925 	if (COOKIE_TO_EPOCH(pmap->pm_cookie) == set->asid_epoch)
5926 		goto out;
5927 
5928 	bit_ffc_at(set->asid_set, set->asid_next, set->asid_set_size,
5929 	    &new_asid);
5930 	if (new_asid == -1) {
5931 		bit_ffc_at(set->asid_set, ASID_FIRST_AVAILABLE,
5932 		    set->asid_next, &new_asid);
5933 		if (new_asid == -1) {
5934 			pmap_reset_asid_set(pmap);
5935 			bit_ffc_at(set->asid_set, ASID_FIRST_AVAILABLE,
5936 			    set->asid_set_size, &new_asid);
5937 			KASSERT(new_asid != -1, ("ASID allocation failure"));
5938 		}
5939 	}
5940 	bit_set(set->asid_set, new_asid);
5941 	set->asid_next = new_asid + 1;
5942 	pmap->pm_cookie = COOKIE_FROM(new_asid, set->asid_epoch);
5943 out:
5944 	mtx_unlock_spin(&set->asid_set_mutex);
5945 }
5946 
5947 /*
5948  * Compute the value that should be stored in ttbr0 to activate the specified
5949  * pmap.  This value may change from time to time.
5950  */
5951 uint64_t
5952 pmap_to_ttbr0(pmap_t pmap)
5953 {
5954 
5955 	PMAP_ASSERT_STAGE1(pmap);
5956 	return (ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie)) |
5957 	    pmap->pm_l0_paddr);
5958 }
5959 
5960 static bool
5961 pmap_activate_int(pmap_t pmap)
5962 {
5963 	struct asid_set *set;
5964 	int epoch;
5965 
5966 	PMAP_ASSERT_STAGE1(pmap);
5967 	KASSERT(PCPU_GET(curpmap) != NULL, ("no active pmap"));
5968 	KASSERT(pmap != kernel_pmap, ("kernel pmap activation"));
5969 	if (pmap == PCPU_GET(curpmap)) {
5970 		/*
5971 		 * Handle the possibility that the old thread was preempted
5972 		 * after an "ic" or "tlbi" instruction but before it performed
5973 		 * a "dsb" instruction.  If the old thread migrates to a new
5974 		 * processor, its completion of a "dsb" instruction on that
5975 		 * new processor does not guarantee that the "ic" or "tlbi"
5976 		 * instructions performed on the old processor have completed.
5977 		 */
5978 		dsb(ish);
5979 		return (false);
5980 	}
5981 
5982 	set = pmap->pm_asid_set;
5983 	KASSERT(set != NULL, ("%s: NULL asid set", __func__));
5984 
5985 	/*
5986 	 * Ensure that the store to curpmap is globally visible before the
5987 	 * load from asid_epoch is performed.
5988 	 */
5989 	PCPU_SET(curpmap, pmap);
5990 	dsb(ish);
5991 	epoch = COOKIE_TO_EPOCH(pmap->pm_cookie);
5992 	if (epoch >= 0 && epoch != set->asid_epoch)
5993 		pmap_alloc_asid(pmap);
5994 
5995 	set_ttbr0(pmap_to_ttbr0(pmap));
5996 	if (PCPU_GET(bcast_tlbi_workaround) != 0)
5997 		invalidate_local_icache();
5998 	return (true);
5999 }
6000 
6001 void
6002 pmap_activate(struct thread *td)
6003 {
6004 	pmap_t	pmap;
6005 
6006 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6007 	PMAP_ASSERT_STAGE1(pmap);
6008 	critical_enter();
6009 	(void)pmap_activate_int(pmap);
6010 	critical_exit();
6011 }
6012 
6013 /*
6014  * To eliminate the unused parameter "old", we would have to add an instruction
6015  * to cpu_switch().
6016  */
6017 struct pcb *
6018 pmap_switch(struct thread *old __unused, struct thread *new)
6019 {
6020 	pcpu_bp_harden bp_harden;
6021 	struct pcb *pcb;
6022 
6023 	/* Store the new curthread */
6024 	PCPU_SET(curthread, new);
6025 
6026 	/* And the new pcb */
6027 	pcb = new->td_pcb;
6028 	PCPU_SET(curpcb, pcb);
6029 
6030 	/*
6031 	 * TODO: We may need to flush the cache here if switching
6032 	 * to a user process.
6033 	 */
6034 
6035 	if (pmap_activate_int(vmspace_pmap(new->td_proc->p_vmspace))) {
6036 		/*
6037 		 * Stop userspace from training the branch predictor against
6038 		 * other processes. This will call into a CPU specific
6039 		 * function that clears the branch predictor state.
6040 		 */
6041 		bp_harden = PCPU_GET(bp_harden);
6042 		if (bp_harden != NULL)
6043 			bp_harden();
6044 	}
6045 
6046 	return (pcb);
6047 }
6048 
6049 void
6050 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
6051 {
6052 
6053 	PMAP_ASSERT_STAGE1(pmap);
6054 	if (va >= VM_MIN_KERNEL_ADDRESS) {
6055 		cpu_icache_sync_range(va, sz);
6056 	} else {
6057 		u_int len, offset;
6058 		vm_paddr_t pa;
6059 
6060 		/* Find the length of data in this page to flush */
6061 		offset = va & PAGE_MASK;
6062 		len = imin(PAGE_SIZE - offset, sz);
6063 
6064 		while (sz != 0) {
6065 			/* Extract the physical address & find it in the DMAP */
6066 			pa = pmap_extract(pmap, va);
6067 			if (pa != 0)
6068 				cpu_icache_sync_range(PHYS_TO_DMAP(pa), len);
6069 
6070 			/* Move to the next page */
6071 			sz -= len;
6072 			va += len;
6073 			/* Set the length for the next iteration */
6074 			len = imin(PAGE_SIZE, sz);
6075 		}
6076 	}
6077 }
6078 
6079 int
6080 pmap_fault(pmap_t pmap, uint64_t esr, uint64_t far)
6081 {
6082 	pt_entry_t pte, *ptep;
6083 	register_t intr;
6084 	uint64_t ec, par;
6085 	int lvl, rv;
6086 
6087 	PMAP_ASSERT_STAGE1(pmap);
6088 	rv = KERN_FAILURE;
6089 
6090 	ec = ESR_ELx_EXCEPTION(esr);
6091 	switch (ec) {
6092 	case EXCP_INSN_ABORT_L:
6093 	case EXCP_INSN_ABORT:
6094 	case EXCP_DATA_ABORT_L:
6095 	case EXCP_DATA_ABORT:
6096 		break;
6097 	default:
6098 		return (rv);
6099 	}
6100 
6101 	/* Data and insn aborts use same encoding for FSC field. */
6102 	switch (esr & ISS_DATA_DFSC_MASK) {
6103 	case ISS_DATA_DFSC_AFF_L1:
6104 	case ISS_DATA_DFSC_AFF_L2:
6105 	case ISS_DATA_DFSC_AFF_L3:
6106 		PMAP_LOCK(pmap);
6107 		ptep = pmap_pte(pmap, far, &lvl);
6108 		if (ptep != NULL) {
6109 			pmap_set_bits(ptep, ATTR_AF);
6110 			rv = KERN_SUCCESS;
6111 			/*
6112 			 * XXXMJ as an optimization we could mark the entry
6113 			 * dirty if this is a write fault.
6114 			 */
6115 		}
6116 		PMAP_UNLOCK(pmap);
6117 		break;
6118 	case ISS_DATA_DFSC_PF_L1:
6119 	case ISS_DATA_DFSC_PF_L2:
6120 	case ISS_DATA_DFSC_PF_L3:
6121 		if ((ec != EXCP_DATA_ABORT_L && ec != EXCP_DATA_ABORT) ||
6122 		    (esr & ISS_DATA_WnR) == 0)
6123 			return (rv);
6124 		PMAP_LOCK(pmap);
6125 		ptep = pmap_pte(pmap, far, &lvl);
6126 		if (ptep != NULL &&
6127 		    ((pte = pmap_load(ptep)) & ATTR_SW_DBM) != 0) {
6128 			if ((pte & ATTR_S1_AP_RW_BIT) ==
6129 			    ATTR_S1_AP(ATTR_S1_AP_RO)) {
6130 				pmap_clear_bits(ptep, ATTR_S1_AP_RW_BIT);
6131 				pmap_invalidate_page(pmap, far);
6132 			}
6133 			rv = KERN_SUCCESS;
6134 		}
6135 		PMAP_UNLOCK(pmap);
6136 		break;
6137 	case ISS_DATA_DFSC_TF_L0:
6138 	case ISS_DATA_DFSC_TF_L1:
6139 	case ISS_DATA_DFSC_TF_L2:
6140 	case ISS_DATA_DFSC_TF_L3:
6141 		/*
6142 		 * Retry the translation.  A break-before-make sequence can
6143 		 * produce a transient fault.
6144 		 */
6145 		if (pmap == kernel_pmap) {
6146 			/*
6147 			 * The translation fault may have occurred within a
6148 			 * critical section.  Therefore, we must check the
6149 			 * address without acquiring the kernel pmap's lock.
6150 			 */
6151 			if (pmap_kextract(far) != 0)
6152 				rv = KERN_SUCCESS;
6153 		} else {
6154 			PMAP_LOCK(pmap);
6155 			/* Ask the MMU to check the address. */
6156 			intr = intr_disable();
6157 			par = arm64_address_translate_s1e0r(far);
6158 			intr_restore(intr);
6159 			PMAP_UNLOCK(pmap);
6160 
6161 			/*
6162 			 * If the translation was successful, then we can
6163 			 * return success to the trap handler.
6164 			 */
6165 			if (PAR_SUCCESS(par))
6166 				rv = KERN_SUCCESS;
6167 		}
6168 		break;
6169 	}
6170 
6171 	return (rv);
6172 }
6173 
6174 /*
6175  *	Increase the starting virtual address of the given mapping if a
6176  *	different alignment might result in more superpage mappings.
6177  */
6178 void
6179 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6180     vm_offset_t *addr, vm_size_t size)
6181 {
6182 	vm_offset_t superpage_offset;
6183 
6184 	if (size < L2_SIZE)
6185 		return;
6186 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6187 		offset += ptoa(object->pg_color);
6188 	superpage_offset = offset & L2_OFFSET;
6189 	if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) < L2_SIZE ||
6190 	    (*addr & L2_OFFSET) == superpage_offset)
6191 		return;
6192 	if ((*addr & L2_OFFSET) < superpage_offset)
6193 		*addr = (*addr & ~L2_OFFSET) + superpage_offset;
6194 	else
6195 		*addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) + superpage_offset;
6196 }
6197 
6198 /**
6199  * Get the kernel virtual address of a set of physical pages. If there are
6200  * physical addresses not covered by the DMAP perform a transient mapping
6201  * that will be removed when calling pmap_unmap_io_transient.
6202  *
6203  * \param page        The pages the caller wishes to obtain the virtual
6204  *                    address on the kernel memory map.
6205  * \param vaddr       On return contains the kernel virtual memory address
6206  *                    of the pages passed in the page parameter.
6207  * \param count       Number of pages passed in.
6208  * \param can_fault   TRUE if the thread using the mapped pages can take
6209  *                    page faults, FALSE otherwise.
6210  *
6211  * \returns TRUE if the caller must call pmap_unmap_io_transient when
6212  *          finished or FALSE otherwise.
6213  *
6214  */
6215 boolean_t
6216 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
6217     boolean_t can_fault)
6218 {
6219 	vm_paddr_t paddr;
6220 	boolean_t needs_mapping;
6221 	int error, i;
6222 
6223 	/*
6224 	 * Allocate any KVA space that we need, this is done in a separate
6225 	 * loop to prevent calling vmem_alloc while pinned.
6226 	 */
6227 	needs_mapping = FALSE;
6228 	for (i = 0; i < count; i++) {
6229 		paddr = VM_PAGE_TO_PHYS(page[i]);
6230 		if (__predict_false(!PHYS_IN_DMAP(paddr))) {
6231 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
6232 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
6233 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
6234 			needs_mapping = TRUE;
6235 		} else {
6236 			vaddr[i] = PHYS_TO_DMAP(paddr);
6237 		}
6238 	}
6239 
6240 	/* Exit early if everything is covered by the DMAP */
6241 	if (!needs_mapping)
6242 		return (FALSE);
6243 
6244 	if (!can_fault)
6245 		sched_pin();
6246 	for (i = 0; i < count; i++) {
6247 		paddr = VM_PAGE_TO_PHYS(page[i]);
6248 		if (!PHYS_IN_DMAP(paddr)) {
6249 			panic(
6250 			   "pmap_map_io_transient: TODO: Map out of DMAP data");
6251 		}
6252 	}
6253 
6254 	return (needs_mapping);
6255 }
6256 
6257 void
6258 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
6259     boolean_t can_fault)
6260 {
6261 	vm_paddr_t paddr;
6262 	int i;
6263 
6264 	if (!can_fault)
6265 		sched_unpin();
6266 	for (i = 0; i < count; i++) {
6267 		paddr = VM_PAGE_TO_PHYS(page[i]);
6268 		if (!PHYS_IN_DMAP(paddr)) {
6269 			panic("ARM64TODO: pmap_unmap_io_transient: Unmap data");
6270 		}
6271 	}
6272 }
6273 
6274 boolean_t
6275 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
6276 {
6277 
6278 	return (mode >= VM_MEMATTR_DEVICE && mode <= VM_MEMATTR_WRITE_THROUGH);
6279 }
6280 
6281 /*
6282  * Track a range of the kernel's virtual address space that is contiguous
6283  * in various mapping attributes.
6284  */
6285 struct pmap_kernel_map_range {
6286 	vm_offset_t sva;
6287 	pt_entry_t attrs;
6288 	int l3pages;
6289 	int l3contig;
6290 	int l2blocks;
6291 	int l1blocks;
6292 };
6293 
6294 static void
6295 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
6296     vm_offset_t eva)
6297 {
6298 	const char *mode;
6299 	int index;
6300 
6301 	if (eva <= range->sva)
6302 		return;
6303 
6304 	index = range->attrs & ATTR_S1_IDX_MASK;
6305 	switch (index) {
6306 	case ATTR_S1_IDX(VM_MEMATTR_DEVICE):
6307 		mode = "DEV";
6308 		break;
6309 	case ATTR_S1_IDX(VM_MEMATTR_UNCACHEABLE):
6310 		mode = "UC";
6311 		break;
6312 	case ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK):
6313 		mode = "WB";
6314 		break;
6315 	case ATTR_S1_IDX(VM_MEMATTR_WRITE_THROUGH):
6316 		mode = "WT";
6317 		break;
6318 	default:
6319 		printf(
6320 		    "%s: unknown memory type %x for range 0x%016lx-0x%016lx\n",
6321 		    __func__, index, range->sva, eva);
6322 		mode = "??";
6323 		break;
6324 	}
6325 
6326 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c %3s %d %d %d %d\n",
6327 	    range->sva, eva,
6328 	    (range->attrs & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP_RW ? 'w' : '-',
6329 	    (range->attrs & ATTR_S1_PXN) != 0 ? '-' : 'x',
6330 	    (range->attrs & ATTR_S1_AP_USER) != 0 ? 'u' : 's',
6331 	    mode, range->l1blocks, range->l2blocks, range->l3contig,
6332 	    range->l3pages);
6333 
6334 	/* Reset to sentinel value. */
6335 	range->sva = 0xfffffffffffffffful;
6336 }
6337 
6338 /*
6339  * Determine whether the attributes specified by a page table entry match those
6340  * being tracked by the current range.
6341  */
6342 static bool
6343 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
6344 {
6345 
6346 	return (range->attrs == attrs);
6347 }
6348 
6349 static void
6350 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
6351     pt_entry_t attrs)
6352 {
6353 
6354 	memset(range, 0, sizeof(*range));
6355 	range->sva = va;
6356 	range->attrs = attrs;
6357 }
6358 
6359 /*
6360  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
6361  * those of the current run, dump the address range and its attributes, and
6362  * begin a new run.
6363  */
6364 static void
6365 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
6366     vm_offset_t va, pd_entry_t l0e, pd_entry_t l1e, pd_entry_t l2e,
6367     pt_entry_t l3e)
6368 {
6369 	pt_entry_t attrs;
6370 
6371 	attrs = l0e & (ATTR_S1_AP_MASK | ATTR_S1_XN);
6372 	attrs |= l1e & (ATTR_S1_AP_MASK | ATTR_S1_XN);
6373 	if ((l1e & ATTR_DESCR_MASK) == L1_BLOCK)
6374 		attrs |= l1e & ATTR_S1_IDX_MASK;
6375 	attrs |= l2e & (ATTR_S1_AP_MASK | ATTR_S1_XN);
6376 	if ((l2e & ATTR_DESCR_MASK) == L2_BLOCK)
6377 		attrs |= l2e & ATTR_S1_IDX_MASK;
6378 	attrs |= l3e & (ATTR_S1_AP_MASK | ATTR_S1_XN | ATTR_S1_IDX_MASK);
6379 
6380 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
6381 		sysctl_kmaps_dump(sb, range, va);
6382 		sysctl_kmaps_reinit(range, va, attrs);
6383 	}
6384 }
6385 
6386 static int
6387 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
6388 {
6389 	struct pmap_kernel_map_range range;
6390 	struct sbuf sbuf, *sb;
6391 	pd_entry_t l0e, *l1, l1e, *l2, l2e;
6392 	pt_entry_t *l3, l3e;
6393 	vm_offset_t sva;
6394 	vm_paddr_t pa;
6395 	int error, i, j, k, l;
6396 
6397 	error = sysctl_wire_old_buffer(req, 0);
6398 	if (error != 0)
6399 		return (error);
6400 	sb = &sbuf;
6401 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
6402 
6403 	/* Sentinel value. */
6404 	range.sva = 0xfffffffffffffffful;
6405 
6406 	/*
6407 	 * Iterate over the kernel page tables without holding the kernel pmap
6408 	 * lock.  Kernel page table pages are never freed, so at worst we will
6409 	 * observe inconsistencies in the output.
6410 	 */
6411 	for (sva = 0xffff000000000000ul, i = pmap_l0_index(sva); i < Ln_ENTRIES;
6412 	    i++) {
6413 		if (i == pmap_l0_index(DMAP_MIN_ADDRESS))
6414 			sbuf_printf(sb, "\nDirect map:\n");
6415 		else if (i == pmap_l0_index(VM_MIN_KERNEL_ADDRESS))
6416 			sbuf_printf(sb, "\nKernel map:\n");
6417 
6418 		l0e = kernel_pmap->pm_l0[i];
6419 		if ((l0e & ATTR_DESCR_VALID) == 0) {
6420 			sysctl_kmaps_dump(sb, &range, sva);
6421 			sva += L0_SIZE;
6422 			continue;
6423 		}
6424 		pa = l0e & ~ATTR_MASK;
6425 		l1 = (pd_entry_t *)PHYS_TO_DMAP(pa);
6426 
6427 		for (j = pmap_l1_index(sva); j < Ln_ENTRIES; j++) {
6428 			l1e = l1[j];
6429 			if ((l1e & ATTR_DESCR_VALID) == 0) {
6430 				sysctl_kmaps_dump(sb, &range, sva);
6431 				sva += L1_SIZE;
6432 				continue;
6433 			}
6434 			if ((l1e & ATTR_DESCR_MASK) == L1_BLOCK) {
6435 				sysctl_kmaps_check(sb, &range, sva, l0e, l1e,
6436 				    0, 0);
6437 				range.l1blocks++;
6438 				sva += L1_SIZE;
6439 				continue;
6440 			}
6441 			pa = l1e & ~ATTR_MASK;
6442 			l2 = (pd_entry_t *)PHYS_TO_DMAP(pa);
6443 
6444 			for (k = pmap_l2_index(sva); k < Ln_ENTRIES; k++) {
6445 				l2e = l2[k];
6446 				if ((l2e & ATTR_DESCR_VALID) == 0) {
6447 					sysctl_kmaps_dump(sb, &range, sva);
6448 					sva += L2_SIZE;
6449 					continue;
6450 				}
6451 				if ((l2e & ATTR_DESCR_MASK) == L2_BLOCK) {
6452 					sysctl_kmaps_check(sb, &range, sva,
6453 					    l0e, l1e, l2e, 0);
6454 					range.l2blocks++;
6455 					sva += L2_SIZE;
6456 					continue;
6457 				}
6458 				pa = l2e & ~ATTR_MASK;
6459 				l3 = (pt_entry_t *)PHYS_TO_DMAP(pa);
6460 
6461 				for (l = pmap_l3_index(sva); l < Ln_ENTRIES;
6462 				    l++, sva += L3_SIZE) {
6463 					l3e = l3[l];
6464 					if ((l3e & ATTR_DESCR_VALID) == 0) {
6465 						sysctl_kmaps_dump(sb, &range,
6466 						    sva);
6467 						continue;
6468 					}
6469 					sysctl_kmaps_check(sb, &range, sva,
6470 					    l0e, l1e, l2e, l3e);
6471 					if ((l3e & ATTR_CONTIGUOUS) != 0)
6472 						range.l3contig += l % 16 == 0 ?
6473 						    1 : 0;
6474 					else
6475 						range.l3pages++;
6476 				}
6477 			}
6478 		}
6479 	}
6480 
6481 	error = sbuf_finish(sb);
6482 	sbuf_delete(sb);
6483 	return (error);
6484 }
6485 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
6486     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
6487     NULL, 0, sysctl_kmaps, "A",
6488     "Dump kernel address layout");
6489