xref: /freebsd/sys/arm64/arm64/vfp.c (revision 61e21613)
1 /*-
2  * Copyright (c) 2015-2016 The FreeBSD Foundation
3  *
4  * This software was developed by Andrew Turner under
5  * sponsorship from the FreeBSD Foundation.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #ifdef VFP
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/limits.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/pcpu.h>
37 #include <sys/proc.h>
38 
39 #include <vm/uma.h>
40 
41 #include <machine/armreg.h>
42 #include <machine/md_var.h>
43 #include <machine/pcb.h>
44 #include <machine/vfp.h>
45 
46 /* Sanity check we can store all the VFP registers */
47 CTASSERT(sizeof(((struct pcb *)0)->pcb_fpustate.vfp_regs) == 16 * 32);
48 
49 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
50     "Kernel contexts for VFP state");
51 
52 struct fpu_kern_ctx {
53 	struct vfpstate	*prev;
54 #define	FPU_KERN_CTX_DUMMY	0x01	/* avoided save for the kern thread */
55 #define	FPU_KERN_CTX_INUSE	0x02
56 	uint32_t	 flags;
57 	struct vfpstate	 state;
58 };
59 
60 static uma_zone_t fpu_save_area_zone;
61 static struct vfpstate *fpu_initialstate;
62 
63 void
64 vfp_enable(void)
65 {
66 	uint32_t cpacr;
67 
68 	cpacr = READ_SPECIALREG(cpacr_el1);
69 	cpacr = (cpacr & ~CPACR_FPEN_MASK) | CPACR_FPEN_TRAP_NONE;
70 	WRITE_SPECIALREG(cpacr_el1, cpacr);
71 	isb();
72 }
73 
74 void
75 vfp_disable(void)
76 {
77 	uint32_t cpacr;
78 
79 	cpacr = READ_SPECIALREG(cpacr_el1);
80 	cpacr = (cpacr & ~CPACR_FPEN_MASK) | CPACR_FPEN_TRAP_ALL1;
81 	WRITE_SPECIALREG(cpacr_el1, cpacr);
82 	isb();
83 }
84 
85 /*
86  * Called when the thread is dying or when discarding the kernel VFP state.
87  * If the thread was the last to use the VFP unit mark it as unused to tell
88  * the kernel the fp state is unowned. Ensure the VFP unit is off so we get
89  * an exception on the next access.
90  */
91 void
92 vfp_discard(struct thread *td)
93 {
94 
95 #ifdef INVARIANTS
96 	if (td != NULL)
97 		CRITICAL_ASSERT(td);
98 #endif
99 	if (PCPU_GET(fpcurthread) == td)
100 		PCPU_SET(fpcurthread, NULL);
101 
102 	vfp_disable();
103 }
104 
105 void
106 vfp_store(struct vfpstate *state)
107 {
108 	__uint128_t *vfp_state;
109 	uint64_t fpcr, fpsr;
110 
111 	vfp_state = state->vfp_regs;
112 	__asm __volatile(
113 	    "mrs	%0, fpcr		\n"
114 	    "mrs	%1, fpsr		\n"
115 	    "stp	q0,  q1,  [%2, #16 *  0]\n"
116 	    "stp	q2,  q3,  [%2, #16 *  2]\n"
117 	    "stp	q4,  q5,  [%2, #16 *  4]\n"
118 	    "stp	q6,  q7,  [%2, #16 *  6]\n"
119 	    "stp	q8,  q9,  [%2, #16 *  8]\n"
120 	    "stp	q10, q11, [%2, #16 * 10]\n"
121 	    "stp	q12, q13, [%2, #16 * 12]\n"
122 	    "stp	q14, q15, [%2, #16 * 14]\n"
123 	    "stp	q16, q17, [%2, #16 * 16]\n"
124 	    "stp	q18, q19, [%2, #16 * 18]\n"
125 	    "stp	q20, q21, [%2, #16 * 20]\n"
126 	    "stp	q22, q23, [%2, #16 * 22]\n"
127 	    "stp	q24, q25, [%2, #16 * 24]\n"
128 	    "stp	q26, q27, [%2, #16 * 26]\n"
129 	    "stp	q28, q29, [%2, #16 * 28]\n"
130 	    "stp	q30, q31, [%2, #16 * 30]\n"
131 	    : "=&r"(fpcr), "=&r"(fpsr) : "r"(vfp_state));
132 
133 	state->vfp_fpcr = fpcr;
134 	state->vfp_fpsr = fpsr;
135 }
136 
137 void
138 vfp_restore(struct vfpstate *state)
139 {
140 	__uint128_t *vfp_state;
141 	uint64_t fpcr, fpsr;
142 
143 	vfp_state = state->vfp_regs;
144 	fpcr = state->vfp_fpcr;
145 	fpsr = state->vfp_fpsr;
146 
147 	__asm __volatile(
148 	    "ldp	q0,  q1,  [%2, #16 *  0]\n"
149 	    "ldp	q2,  q3,  [%2, #16 *  2]\n"
150 	    "ldp	q4,  q5,  [%2, #16 *  4]\n"
151 	    "ldp	q6,  q7,  [%2, #16 *  6]\n"
152 	    "ldp	q8,  q9,  [%2, #16 *  8]\n"
153 	    "ldp	q10, q11, [%2, #16 * 10]\n"
154 	    "ldp	q12, q13, [%2, #16 * 12]\n"
155 	    "ldp	q14, q15, [%2, #16 * 14]\n"
156 	    "ldp	q16, q17, [%2, #16 * 16]\n"
157 	    "ldp	q18, q19, [%2, #16 * 18]\n"
158 	    "ldp	q20, q21, [%2, #16 * 20]\n"
159 	    "ldp	q22, q23, [%2, #16 * 22]\n"
160 	    "ldp	q24, q25, [%2, #16 * 24]\n"
161 	    "ldp	q26, q27, [%2, #16 * 26]\n"
162 	    "ldp	q28, q29, [%2, #16 * 28]\n"
163 	    "ldp	q30, q31, [%2, #16 * 30]\n"
164 	    "msr	fpcr, %0		\n"
165 	    "msr	fpsr, %1		\n"
166 	    : : "r"(fpcr), "r"(fpsr), "r"(vfp_state));
167 }
168 
169 void
170 vfp_save_state(struct thread *td, struct pcb *pcb)
171 {
172 	uint32_t cpacr;
173 
174 	KASSERT(pcb != NULL, ("NULL vfp pcb"));
175 	KASSERT(td == NULL || td->td_pcb == pcb, ("Invalid vfp pcb"));
176 
177 	/*
178 	 * savectx() will be called on panic with dumppcb as an argument,
179 	 * dumppcb doesn't have pcb_fpusaved set, so set it to save
180 	 * the VFP registers.
181 	 */
182 	if (pcb->pcb_fpusaved == NULL)
183 		pcb->pcb_fpusaved = &pcb->pcb_fpustate;
184 
185 	if (td == NULL)
186 		td = curthread;
187 
188 	critical_enter();
189 	/*
190 	 * Only store the registers if the VFP is enabled,
191 	 * i.e. return if we are trapping on FP access.
192 	 */
193 	cpacr = READ_SPECIALREG(cpacr_el1);
194 	if ((cpacr & CPACR_FPEN_MASK) == CPACR_FPEN_TRAP_NONE) {
195 		KASSERT(PCPU_GET(fpcurthread) == td,
196 		    ("Storing an invalid VFP state"));
197 
198 		vfp_store(pcb->pcb_fpusaved);
199 		dsb(ish);
200 		vfp_disable();
201 	}
202 	critical_exit();
203 }
204 
205 /*
206  * Update the VFP state for a forked process or new thread. The PCB will
207  * have been copied from the old thread.
208  */
209 void
210 vfp_new_thread(struct thread *newtd, struct thread *oldtd, bool fork)
211 {
212 	struct pcb *newpcb;
213 
214 	newpcb = newtd->td_pcb;
215 
216 	/* Kernel threads start with clean VFP */
217 	if ((oldtd->td_pflags & TDP_KTHREAD) != 0) {
218 		newpcb->pcb_fpflags &=
219 		    ~(PCB_FP_STARTED | PCB_FP_KERN | PCB_FP_NOSAVE);
220 	} else {
221 		MPASS((newpcb->pcb_fpflags & (PCB_FP_KERN|PCB_FP_NOSAVE)) == 0);
222 		if (!fork) {
223 			newpcb->pcb_fpflags &= ~PCB_FP_STARTED;
224 		}
225 	}
226 
227 	newpcb->pcb_fpusaved = &newpcb->pcb_fpustate;
228 	newpcb->pcb_vfpcpu = UINT_MAX;
229 }
230 
231 /*
232  * Reset the FP state to avoid leaking state from the parent process across
233  * execve() (and to ensure that we get a consistent floating point environment
234  * in every new process).
235  */
236 void
237 vfp_reset_state(struct thread *td, struct pcb *pcb)
238 {
239 	/* Discard the threads VFP state before resetting it */
240 	critical_enter();
241 	vfp_discard(td);
242 	critical_exit();
243 
244 	/*
245 	 * Clear the thread state. The VFP is disabled and is not the current
246 	 * VFP thread so we won't change any of these on context switch.
247 	 */
248 	bzero(&pcb->pcb_fpustate.vfp_regs, sizeof(pcb->pcb_fpustate.vfp_regs));
249 	KASSERT(pcb->pcb_fpusaved == &pcb->pcb_fpustate,
250 	    ("pcb_fpusaved should point to pcb_fpustate."));
251 	pcb->pcb_fpustate.vfp_fpcr = VFPCR_INIT;
252 	pcb->pcb_fpustate.vfp_fpsr = 0;
253 	pcb->pcb_vfpcpu = UINT_MAX;
254 	pcb->pcb_fpflags = 0;
255 }
256 
257 void
258 vfp_restore_state(void)
259 {
260 	struct pcb *curpcb;
261 	u_int cpu;
262 
263 	critical_enter();
264 
265 	cpu = PCPU_GET(cpuid);
266 	curpcb = curthread->td_pcb;
267 	curpcb->pcb_fpflags |= PCB_FP_STARTED;
268 
269 	vfp_enable();
270 
271 	/*
272 	 * If the previous thread on this cpu to use the VFP was not the
273 	 * current thread, or the current thread last used it on a different
274 	 * cpu we need to restore the old state.
275 	 */
276 	if (PCPU_GET(fpcurthread) != curthread || cpu != curpcb->pcb_vfpcpu) {
277 		vfp_restore(curthread->td_pcb->pcb_fpusaved);
278 		PCPU_SET(fpcurthread, curthread);
279 		curpcb->pcb_vfpcpu = cpu;
280 	}
281 
282 	critical_exit();
283 }
284 
285 void
286 vfp_init_secondary(void)
287 {
288 	uint64_t pfr;
289 
290 	/* Check if there is a vfp unit present */
291 	pfr = READ_SPECIALREG(id_aa64pfr0_el1);
292 	if ((pfr & ID_AA64PFR0_FP_MASK) == ID_AA64PFR0_FP_NONE)
293 		return;
294 
295 	/* Disable to be enabled when it's used */
296 	vfp_disable();
297 }
298 
299 static void
300 vfp_init(const void *dummy __unused)
301 {
302 	uint64_t pfr;
303 
304 	/* Check if there is a vfp unit present */
305 	pfr = READ_SPECIALREG(id_aa64pfr0_el1);
306 	if ((pfr & ID_AA64PFR0_FP_MASK) == ID_AA64PFR0_FP_NONE)
307 		return;
308 
309 	fpu_save_area_zone = uma_zcreate("VFP_save_area",
310 	    sizeof(struct vfpstate), NULL, NULL, NULL, NULL,
311 	    _Alignof(struct vfpstate) - 1, 0);
312 	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
313 
314 	/* Ensure the VFP is enabled before accessing it in vfp_store */
315 	vfp_enable();
316 	vfp_store(fpu_initialstate);
317 
318 	/* Disable to be enabled when it's used */
319 	vfp_disable();
320 
321 	/* Zero the VFP registers but keep fpcr and fpsr */
322 	bzero(fpu_initialstate->vfp_regs, sizeof(fpu_initialstate->vfp_regs));
323 
324 	thread0.td_pcb->pcb_fpusaved->vfp_fpcr = VFPCR_INIT;
325 }
326 
327 SYSINIT(vfp, SI_SUB_CPU, SI_ORDER_ANY, vfp_init, NULL);
328 
329 struct fpu_kern_ctx *
330 fpu_kern_alloc_ctx(u_int flags)
331 {
332 	struct fpu_kern_ctx *res;
333 	size_t sz;
334 
335 	sz = sizeof(struct fpu_kern_ctx);
336 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
337 	    M_NOWAIT : M_WAITOK) | M_ZERO);
338 	return (res);
339 }
340 
341 void
342 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
343 {
344 
345 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
346 	/* XXXAndrew clear the memory ? */
347 	free(ctx, M_FPUKERN_CTX);
348 }
349 
350 void
351 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
352 {
353 	struct pcb *pcb;
354 
355 	pcb = td->td_pcb;
356 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
357 	    ("ctx is required when !FPU_KERN_NOCTX"));
358 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
359 	    ("using inuse ctx"));
360 	KASSERT((pcb->pcb_fpflags & PCB_FP_NOSAVE) == 0,
361 	    ("recursive fpu_kern_enter while in PCB_FP_NOSAVE state"));
362 
363 	if ((flags & FPU_KERN_NOCTX) != 0) {
364 		critical_enter();
365 		if (curthread == PCPU_GET(fpcurthread)) {
366 			vfp_save_state(curthread, pcb);
367 		}
368 		PCPU_SET(fpcurthread, NULL);
369 
370 		vfp_enable();
371 		pcb->pcb_fpflags |= PCB_FP_KERN | PCB_FP_NOSAVE |
372 		    PCB_FP_STARTED;
373 		return;
374 	}
375 
376 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
377 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
378 		return;
379 	}
380 	/*
381 	 * Check either we are already using the VFP in the kernel, or
382 	 * the saved state points to the default user space.
383 	 */
384 	KASSERT((pcb->pcb_fpflags & PCB_FP_KERN) != 0 ||
385 	    pcb->pcb_fpusaved == &pcb->pcb_fpustate,
386 	    ("Mangled pcb_fpusaved %x %p %p", pcb->pcb_fpflags, pcb->pcb_fpusaved, &pcb->pcb_fpustate));
387 	ctx->flags = FPU_KERN_CTX_INUSE;
388 	vfp_save_state(curthread, pcb);
389 	ctx->prev = pcb->pcb_fpusaved;
390 	pcb->pcb_fpusaved = &ctx->state;
391 	pcb->pcb_fpflags |= PCB_FP_KERN;
392 	pcb->pcb_fpflags &= ~PCB_FP_STARTED;
393 
394 	return;
395 }
396 
397 int
398 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
399 {
400 	struct pcb *pcb;
401 
402 	pcb = td->td_pcb;
403 
404 	if ((pcb->pcb_fpflags & PCB_FP_NOSAVE) != 0) {
405 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
406 		KASSERT(PCPU_GET(fpcurthread) == NULL,
407 		    ("non-NULL fpcurthread for PCB_FP_NOSAVE"));
408 		CRITICAL_ASSERT(td);
409 
410 		vfp_disable();
411 		pcb->pcb_fpflags &= ~(PCB_FP_NOSAVE | PCB_FP_STARTED);
412 		critical_exit();
413 	} else {
414 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
415 		    ("FPU context not inuse"));
416 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
417 
418 		if (is_fpu_kern_thread(0) &&
419 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
420 			return (0);
421 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0, ("dummy ctx"));
422 		critical_enter();
423 		vfp_discard(td);
424 		critical_exit();
425 		pcb->pcb_fpflags &= ~PCB_FP_STARTED;
426 		pcb->pcb_fpusaved = ctx->prev;
427 	}
428 
429 	if (pcb->pcb_fpusaved == &pcb->pcb_fpustate) {
430 		pcb->pcb_fpflags &= ~PCB_FP_KERN;
431 	} else {
432 		KASSERT((pcb->pcb_fpflags & PCB_FP_KERN) != 0,
433 		    ("unpaired fpu_kern_leave"));
434 	}
435 
436 	return (0);
437 }
438 
439 int
440 fpu_kern_thread(u_int flags __unused)
441 {
442 	struct pcb *pcb = curthread->td_pcb;
443 
444 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
445 	    ("Only kthread may use fpu_kern_thread"));
446 	KASSERT(pcb->pcb_fpusaved == &pcb->pcb_fpustate,
447 	    ("Mangled pcb_fpusaved"));
448 	KASSERT((pcb->pcb_fpflags & PCB_FP_KERN) == 0,
449 	    ("Thread already setup for the VFP"));
450 	pcb->pcb_fpflags |= PCB_FP_KERN;
451 	return (0);
452 }
453 
454 int
455 is_fpu_kern_thread(u_int flags __unused)
456 {
457 	struct pcb *curpcb;
458 
459 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
460 		return (0);
461 	curpcb = curthread->td_pcb;
462 	return ((curpcb->pcb_fpflags & PCB_FP_KERN) != 0);
463 }
464 
465 /*
466  * FPU save area alloc/free/init utility routines
467  */
468 struct vfpstate *
469 fpu_save_area_alloc(void)
470 {
471 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
472 }
473 
474 void
475 fpu_save_area_free(struct vfpstate *fsa)
476 {
477 	uma_zfree(fpu_save_area_zone, fsa);
478 }
479 
480 void
481 fpu_save_area_reset(struct vfpstate *fsa)
482 {
483 	memcpy(fsa, fpu_initialstate, sizeof(*fsa));
484 }
485 #endif
486