xref: /freebsd/sys/arm64/arm64/vfp.c (revision 81ad6265)
1 /*-
2  * Copyright (c) 2015-2016 The FreeBSD Foundation
3  *
4  * This software was developed by Andrew Turner under
5  * sponsorship from the FreeBSD Foundation.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #ifdef VFP
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/limits.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/pcpu.h>
39 #include <sys/proc.h>
40 
41 #include <machine/armreg.h>
42 #include <machine/md_var.h>
43 #include <machine/pcb.h>
44 #include <machine/vfp.h>
45 
46 /* Sanity check we can store all the VFP registers */
47 CTASSERT(sizeof(((struct pcb *)0)->pcb_fpustate.vfp_regs) == 16 * 32);
48 
49 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
50     "Kernel contexts for VFP state");
51 
52 struct fpu_kern_ctx {
53 	struct vfpstate	*prev;
54 #define	FPU_KERN_CTX_DUMMY	0x01	/* avoided save for the kern thread */
55 #define	FPU_KERN_CTX_INUSE	0x02
56 	uint32_t	 flags;
57 	struct vfpstate	 state;
58 };
59 
60 static void
61 vfp_enable(void)
62 {
63 	uint32_t cpacr;
64 
65 	cpacr = READ_SPECIALREG(cpacr_el1);
66 	cpacr = (cpacr & ~CPACR_FPEN_MASK) | CPACR_FPEN_TRAP_NONE;
67 	WRITE_SPECIALREG(cpacr_el1, cpacr);
68 	isb();
69 }
70 
71 static void
72 vfp_disable(void)
73 {
74 	uint32_t cpacr;
75 
76 	cpacr = READ_SPECIALREG(cpacr_el1);
77 	cpacr = (cpacr & ~CPACR_FPEN_MASK) | CPACR_FPEN_TRAP_ALL1;
78 	WRITE_SPECIALREG(cpacr_el1, cpacr);
79 	isb();
80 }
81 
82 /*
83  * Called when the thread is dying or when discarding the kernel VFP state.
84  * If the thread was the last to use the VFP unit mark it as unused to tell
85  * the kernel the fp state is unowned. Ensure the VFP unit is off so we get
86  * an exception on the next access.
87  */
88 void
89 vfp_discard(struct thread *td)
90 {
91 
92 #ifdef INVARIANTS
93 	if (td != NULL)
94 		CRITICAL_ASSERT(td);
95 #endif
96 	if (PCPU_GET(fpcurthread) == td)
97 		PCPU_SET(fpcurthread, NULL);
98 
99 	vfp_disable();
100 }
101 
102 static void
103 vfp_store(struct vfpstate *state)
104 {
105 	__uint128_t *vfp_state;
106 	uint64_t fpcr, fpsr;
107 
108 	vfp_state = state->vfp_regs;
109 	__asm __volatile(
110 	    "mrs	%0, fpcr		\n"
111 	    "mrs	%1, fpsr		\n"
112 	    "stp	q0,  q1,  [%2, #16 *  0]\n"
113 	    "stp	q2,  q3,  [%2, #16 *  2]\n"
114 	    "stp	q4,  q5,  [%2, #16 *  4]\n"
115 	    "stp	q6,  q7,  [%2, #16 *  6]\n"
116 	    "stp	q8,  q9,  [%2, #16 *  8]\n"
117 	    "stp	q10, q11, [%2, #16 * 10]\n"
118 	    "stp	q12, q13, [%2, #16 * 12]\n"
119 	    "stp	q14, q15, [%2, #16 * 14]\n"
120 	    "stp	q16, q17, [%2, #16 * 16]\n"
121 	    "stp	q18, q19, [%2, #16 * 18]\n"
122 	    "stp	q20, q21, [%2, #16 * 20]\n"
123 	    "stp	q22, q23, [%2, #16 * 22]\n"
124 	    "stp	q24, q25, [%2, #16 * 24]\n"
125 	    "stp	q26, q27, [%2, #16 * 26]\n"
126 	    "stp	q28, q29, [%2, #16 * 28]\n"
127 	    "stp	q30, q31, [%2, #16 * 30]\n"
128 	    : "=&r"(fpcr), "=&r"(fpsr) : "r"(vfp_state));
129 
130 	state->vfp_fpcr = fpcr;
131 	state->vfp_fpsr = fpsr;
132 }
133 
134 static void
135 vfp_restore(struct vfpstate *state)
136 {
137 	__uint128_t *vfp_state;
138 	uint64_t fpcr, fpsr;
139 
140 	vfp_state = state->vfp_regs;
141 	fpcr = state->vfp_fpcr;
142 	fpsr = state->vfp_fpsr;
143 
144 	__asm __volatile(
145 	    "ldp	q0,  q1,  [%2, #16 *  0]\n"
146 	    "ldp	q2,  q3,  [%2, #16 *  2]\n"
147 	    "ldp	q4,  q5,  [%2, #16 *  4]\n"
148 	    "ldp	q6,  q7,  [%2, #16 *  6]\n"
149 	    "ldp	q8,  q9,  [%2, #16 *  8]\n"
150 	    "ldp	q10, q11, [%2, #16 * 10]\n"
151 	    "ldp	q12, q13, [%2, #16 * 12]\n"
152 	    "ldp	q14, q15, [%2, #16 * 14]\n"
153 	    "ldp	q16, q17, [%2, #16 * 16]\n"
154 	    "ldp	q18, q19, [%2, #16 * 18]\n"
155 	    "ldp	q20, q21, [%2, #16 * 20]\n"
156 	    "ldp	q22, q23, [%2, #16 * 22]\n"
157 	    "ldp	q24, q25, [%2, #16 * 24]\n"
158 	    "ldp	q26, q27, [%2, #16 * 26]\n"
159 	    "ldp	q28, q29, [%2, #16 * 28]\n"
160 	    "ldp	q30, q31, [%2, #16 * 30]\n"
161 	    "msr	fpcr, %0		\n"
162 	    "msr	fpsr, %1		\n"
163 	    : : "r"(fpcr), "r"(fpsr), "r"(vfp_state));
164 }
165 
166 void
167 vfp_save_state(struct thread *td, struct pcb *pcb)
168 {
169 	uint32_t cpacr;
170 
171 	KASSERT(pcb != NULL, ("NULL vfp pcb"));
172 	KASSERT(td == NULL || td->td_pcb == pcb, ("Invalid vfp pcb"));
173 
174 	/*
175 	 * savectx() will be called on panic with dumppcb as an argument,
176 	 * dumppcb doesn't have pcb_fpusaved set, so set it to save
177 	 * the VFP registers.
178 	 */
179 	if (pcb->pcb_fpusaved == NULL)
180 		pcb->pcb_fpusaved = &pcb->pcb_fpustate;
181 
182 	if (td == NULL)
183 		td = curthread;
184 
185 	critical_enter();
186 	/*
187 	 * Only store the registers if the VFP is enabled,
188 	 * i.e. return if we are trapping on FP access.
189 	 */
190 	cpacr = READ_SPECIALREG(cpacr_el1);
191 	if ((cpacr & CPACR_FPEN_MASK) == CPACR_FPEN_TRAP_NONE) {
192 		KASSERT(PCPU_GET(fpcurthread) == td,
193 		    ("Storing an invalid VFP state"));
194 
195 		vfp_store(pcb->pcb_fpusaved);
196 		dsb(ish);
197 		vfp_disable();
198 	}
199 	critical_exit();
200 }
201 
202 /*
203  * Update the VFP state for a forked process or new thread. The PCB will
204  * have been copied from the old thread.
205  */
206 void
207 vfp_new_thread(struct thread *newtd, struct thread *oldtd, bool fork)
208 {
209 	struct pcb *newpcb;
210 
211 	newpcb = newtd->td_pcb;
212 
213 	/* Kernel threads start with clean VFP */
214 	if ((oldtd->td_pflags & TDP_KTHREAD) != 0) {
215 		newpcb->pcb_fpflags &=
216 		    ~(PCB_FP_STARTED | PCB_FP_KERN | PCB_FP_NOSAVE);
217 	} else {
218 		MPASS((newpcb->pcb_fpflags & (PCB_FP_KERN|PCB_FP_NOSAVE)) == 0);
219 		if (!fork) {
220 			newpcb->pcb_fpflags &= ~PCB_FP_STARTED;
221 		}
222 	}
223 
224 	newpcb->pcb_fpusaved = &newpcb->pcb_fpustate;
225 	newpcb->pcb_vfpcpu = UINT_MAX;
226 }
227 
228 /*
229  * Reset the FP state to avoid leaking state from the parent process across
230  * execve() (and to ensure that we get a consistent floating point environment
231  * in every new process).
232  */
233 void
234 vfp_reset_state(struct thread *td, struct pcb *pcb)
235 {
236 	/* Discard the threads VFP state before resetting it */
237 	critical_enter();
238 	vfp_discard(td);
239 	critical_exit();
240 
241 	/*
242 	 * Clear the thread state. The VFP is disabled and is not the current
243 	 * VFP thread so we won't change any of these on context switch.
244 	 */
245 	bzero(&pcb->pcb_fpustate.vfp_regs, sizeof(pcb->pcb_fpustate.vfp_regs));
246 	KASSERT(pcb->pcb_fpusaved == &pcb->pcb_fpustate,
247 	    ("pcb_fpusaved should point to pcb_fpustate."));
248 	pcb->pcb_fpustate.vfp_fpcr = VFPCR_INIT;
249 	pcb->pcb_fpustate.vfp_fpsr = 0;
250 	pcb->pcb_vfpcpu = UINT_MAX;
251 	pcb->pcb_fpflags = 0;
252 }
253 
254 void
255 vfp_restore_state(void)
256 {
257 	struct pcb *curpcb;
258 	u_int cpu;
259 
260 	critical_enter();
261 
262 	cpu = PCPU_GET(cpuid);
263 	curpcb = curthread->td_pcb;
264 	curpcb->pcb_fpflags |= PCB_FP_STARTED;
265 
266 	vfp_enable();
267 
268 	/*
269 	 * If the previous thread on this cpu to use the VFP was not the
270 	 * current thread, or the current thread last used it on a different
271 	 * cpu we need to restore the old state.
272 	 */
273 	if (PCPU_GET(fpcurthread) != curthread || cpu != curpcb->pcb_vfpcpu) {
274 		vfp_restore(curthread->td_pcb->pcb_fpusaved);
275 		PCPU_SET(fpcurthread, curthread);
276 		curpcb->pcb_vfpcpu = cpu;
277 	}
278 
279 	critical_exit();
280 }
281 
282 void
283 vfp_init(void)
284 {
285 	uint64_t pfr;
286 
287 	/* Check if there is a vfp unit present */
288 	pfr = READ_SPECIALREG(id_aa64pfr0_el1);
289 	if ((pfr & ID_AA64PFR0_FP_MASK) == ID_AA64PFR0_FP_NONE)
290 		return;
291 
292 	/* Disable to be enabled when it's used */
293 	vfp_disable();
294 
295 	if (PCPU_GET(cpuid) == 0)
296 		thread0.td_pcb->pcb_fpusaved->vfp_fpcr = VFPCR_INIT;
297 }
298 
299 SYSINIT(vfp, SI_SUB_CPU, SI_ORDER_ANY, vfp_init, NULL);
300 
301 struct fpu_kern_ctx *
302 fpu_kern_alloc_ctx(u_int flags)
303 {
304 	struct fpu_kern_ctx *res;
305 	size_t sz;
306 
307 	sz = sizeof(struct fpu_kern_ctx);
308 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
309 	    M_NOWAIT : M_WAITOK) | M_ZERO);
310 	return (res);
311 }
312 
313 void
314 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
315 {
316 
317 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
318 	/* XXXAndrew clear the memory ? */
319 	free(ctx, M_FPUKERN_CTX);
320 }
321 
322 void
323 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
324 {
325 	struct pcb *pcb;
326 
327 	pcb = td->td_pcb;
328 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
329 	    ("ctx is required when !FPU_KERN_NOCTX"));
330 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
331 	    ("using inuse ctx"));
332 	KASSERT((pcb->pcb_fpflags & PCB_FP_NOSAVE) == 0,
333 	    ("recursive fpu_kern_enter while in PCB_FP_NOSAVE state"));
334 
335 	if ((flags & FPU_KERN_NOCTX) != 0) {
336 		critical_enter();
337 		if (curthread == PCPU_GET(fpcurthread)) {
338 			vfp_save_state(curthread, pcb);
339 		}
340 		PCPU_SET(fpcurthread, NULL);
341 
342 		vfp_enable();
343 		pcb->pcb_fpflags |= PCB_FP_KERN | PCB_FP_NOSAVE |
344 		    PCB_FP_STARTED;
345 		return;
346 	}
347 
348 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
349 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
350 		return;
351 	}
352 	/*
353 	 * Check either we are already using the VFP in the kernel, or
354 	 * the saved state points to the default user space.
355 	 */
356 	KASSERT((pcb->pcb_fpflags & PCB_FP_KERN) != 0 ||
357 	    pcb->pcb_fpusaved == &pcb->pcb_fpustate,
358 	    ("Mangled pcb_fpusaved %x %p %p", pcb->pcb_fpflags, pcb->pcb_fpusaved, &pcb->pcb_fpustate));
359 	ctx->flags = FPU_KERN_CTX_INUSE;
360 	vfp_save_state(curthread, pcb);
361 	ctx->prev = pcb->pcb_fpusaved;
362 	pcb->pcb_fpusaved = &ctx->state;
363 	pcb->pcb_fpflags |= PCB_FP_KERN;
364 	pcb->pcb_fpflags &= ~PCB_FP_STARTED;
365 
366 	return;
367 }
368 
369 int
370 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
371 {
372 	struct pcb *pcb;
373 
374 	pcb = td->td_pcb;
375 
376 	if ((pcb->pcb_fpflags & PCB_FP_NOSAVE) != 0) {
377 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
378 		KASSERT(PCPU_GET(fpcurthread) == NULL,
379 		    ("non-NULL fpcurthread for PCB_FP_NOSAVE"));
380 		CRITICAL_ASSERT(td);
381 
382 		vfp_disable();
383 		pcb->pcb_fpflags &= ~(PCB_FP_NOSAVE | PCB_FP_STARTED);
384 		critical_exit();
385 	} else {
386 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
387 		    ("FPU context not inuse"));
388 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
389 
390 		if (is_fpu_kern_thread(0) &&
391 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
392 			return (0);
393 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0, ("dummy ctx"));
394 		critical_enter();
395 		vfp_discard(td);
396 		critical_exit();
397 		pcb->pcb_fpflags &= ~PCB_FP_STARTED;
398 		pcb->pcb_fpusaved = ctx->prev;
399 	}
400 
401 	if (pcb->pcb_fpusaved == &pcb->pcb_fpustate) {
402 		pcb->pcb_fpflags &= ~PCB_FP_KERN;
403 	} else {
404 		KASSERT((pcb->pcb_fpflags & PCB_FP_KERN) != 0,
405 		    ("unpaired fpu_kern_leave"));
406 	}
407 
408 	return (0);
409 }
410 
411 int
412 fpu_kern_thread(u_int flags __unused)
413 {
414 	struct pcb *pcb = curthread->td_pcb;
415 
416 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
417 	    ("Only kthread may use fpu_kern_thread"));
418 	KASSERT(pcb->pcb_fpusaved == &pcb->pcb_fpustate,
419 	    ("Mangled pcb_fpusaved"));
420 	KASSERT((pcb->pcb_fpflags & PCB_FP_KERN) == 0,
421 	    ("Thread already setup for the VFP"));
422 	pcb->pcb_fpflags |= PCB_FP_KERN;
423 	return (0);
424 }
425 
426 int
427 is_fpu_kern_thread(u_int flags __unused)
428 {
429 	struct pcb *curpcb;
430 
431 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
432 		return (0);
433 	curpcb = curthread->td_pcb;
434 	return ((curpcb->pcb_fpflags & PCB_FP_KERN) != 0);
435 }
436 #endif
437