xref: /freebsd/sys/cam/cam_periph.c (revision 38069501)
1 /*-
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/bio.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/buf.h>
42 #include <sys/proc.h>
43 #include <sys/devicestat.h>
44 #include <sys/bus.h>
45 #include <sys/sbuf.h>
46 #include <vm/vm.h>
47 #include <vm/vm_extern.h>
48 
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_queue.h>
52 #include <cam/cam_xpt_periph.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_debug.h>
55 #include <cam/cam_sim.h>
56 
57 #include <cam/scsi/scsi_all.h>
58 #include <cam/scsi/scsi_message.h>
59 #include <cam/scsi/scsi_pass.h>
60 
61 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
62 					  u_int newunit, int wired,
63 					  path_id_t pathid, target_id_t target,
64 					  lun_id_t lun);
65 static	u_int		camperiphunit(struct periph_driver *p_drv,
66 				      path_id_t pathid, target_id_t target,
67 				      lun_id_t lun);
68 static	void		camperiphdone(struct cam_periph *periph,
69 					union ccb *done_ccb);
70 static  void		camperiphfree(struct cam_periph *periph);
71 static int		camperiphscsistatuserror(union ccb *ccb,
72 					        union ccb **orig_ccb,
73 						 cam_flags camflags,
74 						 u_int32_t sense_flags,
75 						 int *openings,
76 						 u_int32_t *relsim_flags,
77 						 u_int32_t *timeout,
78 						 u_int32_t  *action,
79 						 const char **action_string);
80 static	int		camperiphscsisenseerror(union ccb *ccb,
81 					        union ccb **orig_ccb,
82 					        cam_flags camflags,
83 					        u_int32_t sense_flags,
84 					        int *openings,
85 					        u_int32_t *relsim_flags,
86 					        u_int32_t *timeout,
87 					        u_int32_t *action,
88 					        const char **action_string);
89 static void		cam_periph_devctl_notify(union ccb *ccb);
90 
91 static int nperiph_drivers;
92 static int initialized = 0;
93 struct periph_driver **periph_drivers;
94 
95 static MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
96 
97 static int periph_selto_delay = 1000;
98 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
99 static int periph_noresrc_delay = 500;
100 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
101 static int periph_busy_delay = 500;
102 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
103 
104 
105 void
106 periphdriver_register(void *data)
107 {
108 	struct periph_driver *drv = (struct periph_driver *)data;
109 	struct periph_driver **newdrivers, **old;
110 	int ndrivers;
111 
112 again:
113 	ndrivers = nperiph_drivers + 2;
114 	newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
115 			    M_WAITOK);
116 	xpt_lock_buses();
117 	if (ndrivers != nperiph_drivers + 2) {
118 		/*
119 		 * Lost race against itself; go around.
120 		 */
121 		xpt_unlock_buses();
122 		free(newdrivers, M_CAMPERIPH);
123 		goto again;
124 	}
125 	if (periph_drivers)
126 		bcopy(periph_drivers, newdrivers,
127 		      sizeof(*newdrivers) * nperiph_drivers);
128 	newdrivers[nperiph_drivers] = drv;
129 	newdrivers[nperiph_drivers + 1] = NULL;
130 	old = periph_drivers;
131 	periph_drivers = newdrivers;
132 	nperiph_drivers++;
133 	xpt_unlock_buses();
134 	if (old)
135 		free(old, M_CAMPERIPH);
136 	/* If driver marked as early or it is late now, initialize it. */
137 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
138 	    initialized > 1)
139 		(*drv->init)();
140 }
141 
142 int
143 periphdriver_unregister(void *data)
144 {
145 	struct periph_driver *drv = (struct periph_driver *)data;
146 	int error, n;
147 
148 	/* If driver marked as early or it is late now, deinitialize it. */
149 	if (((drv->flags & CAM_PERIPH_DRV_EARLY) != 0 && initialized > 0) ||
150 	    initialized > 1) {
151 		if (drv->deinit == NULL) {
152 			printf("CAM periph driver '%s' doesn't have deinit.\n",
153 			    drv->driver_name);
154 			return (EOPNOTSUPP);
155 		}
156 		error = drv->deinit();
157 		if (error != 0)
158 			return (error);
159 	}
160 
161 	xpt_lock_buses();
162 	for (n = 0; n < nperiph_drivers && periph_drivers[n] != drv; n++)
163 		;
164 	KASSERT(n < nperiph_drivers,
165 	    ("Periph driver '%s' was not registered", drv->driver_name));
166 	for (; n + 1 < nperiph_drivers; n++)
167 		periph_drivers[n] = periph_drivers[n + 1];
168 	periph_drivers[n + 1] = NULL;
169 	nperiph_drivers--;
170 	xpt_unlock_buses();
171 	return (0);
172 }
173 
174 void
175 periphdriver_init(int level)
176 {
177 	int	i, early;
178 
179 	initialized = max(initialized, level);
180 	for (i = 0; periph_drivers[i] != NULL; i++) {
181 		early = (periph_drivers[i]->flags & CAM_PERIPH_DRV_EARLY) ? 1 : 2;
182 		if (early == initialized)
183 			(*periph_drivers[i]->init)();
184 	}
185 }
186 
187 cam_status
188 cam_periph_alloc(periph_ctor_t *periph_ctor,
189 		 periph_oninv_t *periph_oninvalidate,
190 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
191 		 char *name, cam_periph_type type, struct cam_path *path,
192 		 ac_callback_t *ac_callback, ac_code code, void *arg)
193 {
194 	struct		periph_driver **p_drv;
195 	struct		cam_sim *sim;
196 	struct		cam_periph *periph;
197 	struct		cam_periph *cur_periph;
198 	path_id_t	path_id;
199 	target_id_t	target_id;
200 	lun_id_t	lun_id;
201 	cam_status	status;
202 	u_int		init_level;
203 
204 	init_level = 0;
205 	/*
206 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
207 	 * of our type assigned to this path, we are likely waiting for
208 	 * final close on an old, invalidated, peripheral.  If this is
209 	 * the case, queue up a deferred call to the peripheral's async
210 	 * handler.  If it looks like a mistaken re-allocation, complain.
211 	 */
212 	if ((periph = cam_periph_find(path, name)) != NULL) {
213 
214 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
215 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
216 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
217 			periph->deferred_callback = ac_callback;
218 			periph->deferred_ac = code;
219 			return (CAM_REQ_INPROG);
220 		} else {
221 			printf("cam_periph_alloc: attempt to re-allocate "
222 			       "valid device %s%d rejected flags %#x "
223 			       "refcount %d\n", periph->periph_name,
224 			       periph->unit_number, periph->flags,
225 			       periph->refcount);
226 		}
227 		return (CAM_REQ_INVALID);
228 	}
229 
230 	periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
231 					     M_NOWAIT|M_ZERO);
232 
233 	if (periph == NULL)
234 		return (CAM_RESRC_UNAVAIL);
235 
236 	init_level++;
237 
238 
239 	sim = xpt_path_sim(path);
240 	path_id = xpt_path_path_id(path);
241 	target_id = xpt_path_target_id(path);
242 	lun_id = xpt_path_lun_id(path);
243 	periph->periph_start = periph_start;
244 	periph->periph_dtor = periph_dtor;
245 	periph->periph_oninval = periph_oninvalidate;
246 	periph->type = type;
247 	periph->periph_name = name;
248 	periph->scheduled_priority = CAM_PRIORITY_NONE;
249 	periph->immediate_priority = CAM_PRIORITY_NONE;
250 	periph->refcount = 1;		/* Dropped by invalidation. */
251 	periph->sim = sim;
252 	SLIST_INIT(&periph->ccb_list);
253 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
254 	if (status != CAM_REQ_CMP)
255 		goto failure;
256 	periph->path = path;
257 
258 	xpt_lock_buses();
259 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
260 		if (strcmp((*p_drv)->driver_name, name) == 0)
261 			break;
262 	}
263 	if (*p_drv == NULL) {
264 		printf("cam_periph_alloc: invalid periph name '%s'\n", name);
265 		xpt_unlock_buses();
266 		xpt_free_path(periph->path);
267 		free(periph, M_CAMPERIPH);
268 		return (CAM_REQ_INVALID);
269 	}
270 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
271 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
272 	while (cur_periph != NULL
273 	    && cur_periph->unit_number < periph->unit_number)
274 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
275 	if (cur_periph != NULL) {
276 		KASSERT(cur_periph->unit_number != periph->unit_number, ("duplicate units on periph list"));
277 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
278 	} else {
279 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
280 		(*p_drv)->generation++;
281 	}
282 	xpt_unlock_buses();
283 
284 	init_level++;
285 
286 	status = xpt_add_periph(periph);
287 	if (status != CAM_REQ_CMP)
288 		goto failure;
289 
290 	init_level++;
291 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph created\n"));
292 
293 	status = periph_ctor(periph, arg);
294 
295 	if (status == CAM_REQ_CMP)
296 		init_level++;
297 
298 failure:
299 	switch (init_level) {
300 	case 4:
301 		/* Initialized successfully */
302 		break;
303 	case 3:
304 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
305 		xpt_remove_periph(periph);
306 		/* FALLTHROUGH */
307 	case 2:
308 		xpt_lock_buses();
309 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
310 		xpt_unlock_buses();
311 		xpt_free_path(periph->path);
312 		/* FALLTHROUGH */
313 	case 1:
314 		free(periph, M_CAMPERIPH);
315 		/* FALLTHROUGH */
316 	case 0:
317 		/* No cleanup to perform. */
318 		break;
319 	default:
320 		panic("%s: Unknown init level", __func__);
321 	}
322 	return(status);
323 }
324 
325 /*
326  * Find a peripheral structure with the specified path, target, lun,
327  * and (optionally) type.  If the name is NULL, this function will return
328  * the first peripheral driver that matches the specified path.
329  */
330 struct cam_periph *
331 cam_periph_find(struct cam_path *path, char *name)
332 {
333 	struct periph_driver **p_drv;
334 	struct cam_periph *periph;
335 
336 	xpt_lock_buses();
337 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
338 
339 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
340 			continue;
341 
342 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
343 			if (xpt_path_comp(periph->path, path) == 0) {
344 				xpt_unlock_buses();
345 				cam_periph_assert(periph, MA_OWNED);
346 				return(periph);
347 			}
348 		}
349 		if (name != NULL) {
350 			xpt_unlock_buses();
351 			return(NULL);
352 		}
353 	}
354 	xpt_unlock_buses();
355 	return(NULL);
356 }
357 
358 /*
359  * Find peripheral driver instances attached to the specified path.
360  */
361 int
362 cam_periph_list(struct cam_path *path, struct sbuf *sb)
363 {
364 	struct sbuf local_sb;
365 	struct periph_driver **p_drv;
366 	struct cam_periph *periph;
367 	int count;
368 	int sbuf_alloc_len;
369 
370 	sbuf_alloc_len = 16;
371 retry:
372 	sbuf_new(&local_sb, NULL, sbuf_alloc_len, SBUF_FIXEDLEN);
373 	count = 0;
374 	xpt_lock_buses();
375 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
376 
377 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
378 			if (xpt_path_comp(periph->path, path) != 0)
379 				continue;
380 
381 			if (sbuf_len(&local_sb) != 0)
382 				sbuf_cat(&local_sb, ",");
383 
384 			sbuf_printf(&local_sb, "%s%d", periph->periph_name,
385 				    periph->unit_number);
386 
387 			if (sbuf_error(&local_sb) == ENOMEM) {
388 				sbuf_alloc_len *= 2;
389 				xpt_unlock_buses();
390 				sbuf_delete(&local_sb);
391 				goto retry;
392 			}
393 			count++;
394 		}
395 	}
396 	xpt_unlock_buses();
397 	sbuf_finish(&local_sb);
398 	sbuf_cpy(sb, sbuf_data(&local_sb));
399 	sbuf_delete(&local_sb);
400 	return (count);
401 }
402 
403 cam_status
404 cam_periph_acquire(struct cam_periph *periph)
405 {
406 	cam_status status;
407 
408 	status = CAM_REQ_CMP_ERR;
409 	if (periph == NULL)
410 		return (status);
411 
412 	xpt_lock_buses();
413 	if ((periph->flags & CAM_PERIPH_INVALID) == 0) {
414 		periph->refcount++;
415 		status = CAM_REQ_CMP;
416 	}
417 	xpt_unlock_buses();
418 
419 	return (status);
420 }
421 
422 void
423 cam_periph_doacquire(struct cam_periph *periph)
424 {
425 
426 	xpt_lock_buses();
427 	KASSERT(periph->refcount >= 1,
428 	    ("cam_periph_doacquire() with refcount == %d", periph->refcount));
429 	periph->refcount++;
430 	xpt_unlock_buses();
431 }
432 
433 void
434 cam_periph_release_locked_buses(struct cam_periph *periph)
435 {
436 
437 	cam_periph_assert(periph, MA_OWNED);
438 	KASSERT(periph->refcount >= 1, ("periph->refcount >= 1"));
439 	if (--periph->refcount == 0)
440 		camperiphfree(periph);
441 }
442 
443 void
444 cam_periph_release_locked(struct cam_periph *periph)
445 {
446 
447 	if (periph == NULL)
448 		return;
449 
450 	xpt_lock_buses();
451 	cam_periph_release_locked_buses(periph);
452 	xpt_unlock_buses();
453 }
454 
455 void
456 cam_periph_release(struct cam_periph *periph)
457 {
458 	struct mtx *mtx;
459 
460 	if (periph == NULL)
461 		return;
462 
463 	cam_periph_assert(periph, MA_NOTOWNED);
464 	mtx = cam_periph_mtx(periph);
465 	mtx_lock(mtx);
466 	cam_periph_release_locked(periph);
467 	mtx_unlock(mtx);
468 }
469 
470 int
471 cam_periph_hold(struct cam_periph *periph, int priority)
472 {
473 	int error;
474 
475 	/*
476 	 * Increment the reference count on the peripheral
477 	 * while we wait for our lock attempt to succeed
478 	 * to ensure the peripheral doesn't disappear out
479 	 * from user us while we sleep.
480 	 */
481 
482 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
483 		return (ENXIO);
484 
485 	cam_periph_assert(periph, MA_OWNED);
486 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
487 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
488 		if ((error = cam_periph_sleep(periph, periph, priority,
489 		    "caplck", 0)) != 0) {
490 			cam_periph_release_locked(periph);
491 			return (error);
492 		}
493 		if (periph->flags & CAM_PERIPH_INVALID) {
494 			cam_periph_release_locked(periph);
495 			return (ENXIO);
496 		}
497 	}
498 
499 	periph->flags |= CAM_PERIPH_LOCKED;
500 	return (0);
501 }
502 
503 void
504 cam_periph_unhold(struct cam_periph *periph)
505 {
506 
507 	cam_periph_assert(periph, MA_OWNED);
508 
509 	periph->flags &= ~CAM_PERIPH_LOCKED;
510 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
511 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
512 		wakeup(periph);
513 	}
514 
515 	cam_periph_release_locked(periph);
516 }
517 
518 /*
519  * Look for the next unit number that is not currently in use for this
520  * peripheral type starting at "newunit".  Also exclude unit numbers that
521  * are reserved by for future "hardwiring" unless we already know that this
522  * is a potential wired device.  Only assume that the device is "wired" the
523  * first time through the loop since after that we'll be looking at unit
524  * numbers that did not match a wiring entry.
525  */
526 static u_int
527 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
528 		  path_id_t pathid, target_id_t target, lun_id_t lun)
529 {
530 	struct	cam_periph *periph;
531 	char	*periph_name;
532 	int	i, val, dunit, r;
533 	const char *dname, *strval;
534 
535 	periph_name = p_drv->driver_name;
536 	for (;;newunit++) {
537 
538 		for (periph = TAILQ_FIRST(&p_drv->units);
539 		     periph != NULL && periph->unit_number != newunit;
540 		     periph = TAILQ_NEXT(periph, unit_links))
541 			;
542 
543 		if (periph != NULL && periph->unit_number == newunit) {
544 			if (wired != 0) {
545 				xpt_print(periph->path, "Duplicate Wired "
546 				    "Device entry!\n");
547 				xpt_print(periph->path, "Second device (%s "
548 				    "device at scbus%d target %d lun %d) will "
549 				    "not be wired\n", periph_name, pathid,
550 				    target, lun);
551 				wired = 0;
552 			}
553 			continue;
554 		}
555 		if (wired)
556 			break;
557 
558 		/*
559 		 * Don't match entries like "da 4" as a wired down
560 		 * device, but do match entries like "da 4 target 5"
561 		 * or even "da 4 scbus 1".
562 		 */
563 		i = 0;
564 		dname = periph_name;
565 		for (;;) {
566 			r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
567 			if (r != 0)
568 				break;
569 			/* if no "target" and no specific scbus, skip */
570 			if (resource_int_value(dname, dunit, "target", &val) &&
571 			    (resource_string_value(dname, dunit, "at",&strval)||
572 			     strcmp(strval, "scbus") == 0))
573 				continue;
574 			if (newunit == dunit)
575 				break;
576 		}
577 		if (r != 0)
578 			break;
579 	}
580 	return (newunit);
581 }
582 
583 static u_int
584 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
585 	      target_id_t target, lun_id_t lun)
586 {
587 	u_int	unit;
588 	int	wired, i, val, dunit;
589 	const char *dname, *strval;
590 	char	pathbuf[32], *periph_name;
591 
592 	periph_name = p_drv->driver_name;
593 	snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
594 	unit = 0;
595 	i = 0;
596 	dname = periph_name;
597 	for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
598 	     wired = 0) {
599 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
600 			if (strcmp(strval, pathbuf) != 0)
601 				continue;
602 			wired++;
603 		}
604 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
605 			if (val != target)
606 				continue;
607 			wired++;
608 		}
609 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
610 			if (val != lun)
611 				continue;
612 			wired++;
613 		}
614 		if (wired != 0) {
615 			unit = dunit;
616 			break;
617 		}
618 	}
619 
620 	/*
621 	 * Either start from 0 looking for the next unit or from
622 	 * the unit number given in the resource config.  This way,
623 	 * if we have wildcard matches, we don't return the same
624 	 * unit number twice.
625 	 */
626 	unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
627 
628 	return (unit);
629 }
630 
631 void
632 cam_periph_invalidate(struct cam_periph *periph)
633 {
634 
635 	cam_periph_assert(periph, MA_OWNED);
636 	/*
637 	 * We only call this routine the first time a peripheral is
638 	 * invalidated.
639 	 */
640 	if ((periph->flags & CAM_PERIPH_INVALID) != 0)
641 		return;
642 
643 	CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph invalidated\n"));
644 	if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting) {
645 		struct sbuf sb;
646 		char buffer[160];
647 
648 		sbuf_new(&sb, buffer, 160, SBUF_FIXEDLEN);
649 		xpt_denounce_periph_sbuf(periph, &sb);
650 		sbuf_finish(&sb);
651 		sbuf_putbuf(&sb);
652 	}
653 	periph->flags |= CAM_PERIPH_INVALID;
654 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
655 	if (periph->periph_oninval != NULL)
656 		periph->periph_oninval(periph);
657 	cam_periph_release_locked(periph);
658 }
659 
660 static void
661 camperiphfree(struct cam_periph *periph)
662 {
663 	struct periph_driver **p_drv;
664 	struct periph_driver *drv;
665 
666 	cam_periph_assert(periph, MA_OWNED);
667 	KASSERT(periph->periph_allocating == 0, ("%s%d: freed while allocating",
668 	    periph->periph_name, periph->unit_number));
669 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
670 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
671 			break;
672 	}
673 	if (*p_drv == NULL) {
674 		printf("camperiphfree: attempt to free non-existant periph\n");
675 		return;
676 	}
677 	/*
678 	 * Cache a pointer to the periph_driver structure.  If a
679 	 * periph_driver is added or removed from the array (see
680 	 * periphdriver_register()) while we drop the toplogy lock
681 	 * below, p_drv may change.  This doesn't protect against this
682 	 * particular periph_driver going away.  That will require full
683 	 * reference counting in the periph_driver infrastructure.
684 	 */
685 	drv = *p_drv;
686 
687 	/*
688 	 * We need to set this flag before dropping the topology lock, to
689 	 * let anyone who is traversing the list that this peripheral is
690 	 * about to be freed, and there will be no more reference count
691 	 * checks.
692 	 */
693 	periph->flags |= CAM_PERIPH_FREE;
694 
695 	/*
696 	 * The peripheral destructor semantics dictate calling with only the
697 	 * SIM mutex held.  Since it might sleep, it should not be called
698 	 * with the topology lock held.
699 	 */
700 	xpt_unlock_buses();
701 
702 	/*
703 	 * We need to call the peripheral destructor prior to removing the
704 	 * peripheral from the list.  Otherwise, we risk running into a
705 	 * scenario where the peripheral unit number may get reused
706 	 * (because it has been removed from the list), but some resources
707 	 * used by the peripheral are still hanging around.  In particular,
708 	 * the devfs nodes used by some peripherals like the pass(4) driver
709 	 * aren't fully cleaned up until the destructor is run.  If the
710 	 * unit number is reused before the devfs instance is fully gone,
711 	 * devfs will panic.
712 	 */
713 	if (periph->periph_dtor != NULL)
714 		periph->periph_dtor(periph);
715 
716 	/*
717 	 * The peripheral list is protected by the topology lock.
718 	 */
719 	xpt_lock_buses();
720 
721 	TAILQ_REMOVE(&drv->units, periph, unit_links);
722 	drv->generation++;
723 
724 	xpt_remove_periph(periph);
725 
726 	xpt_unlock_buses();
727 	if ((periph->flags & CAM_PERIPH_ANNOUNCED) && !rebooting)
728 		xpt_print(periph->path, "Periph destroyed\n");
729 	else
730 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO, ("Periph destroyed\n"));
731 
732 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
733 		union ccb ccb;
734 		void *arg;
735 
736 		switch (periph->deferred_ac) {
737 		case AC_FOUND_DEVICE:
738 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
739 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
740 			xpt_action(&ccb);
741 			arg = &ccb;
742 			break;
743 		case AC_PATH_REGISTERED:
744 			ccb.ccb_h.func_code = XPT_PATH_INQ;
745 			xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
746 			xpt_action(&ccb);
747 			arg = &ccb;
748 			break;
749 		default:
750 			arg = NULL;
751 			break;
752 		}
753 		periph->deferred_callback(NULL, periph->deferred_ac,
754 					  periph->path, arg);
755 	}
756 	xpt_free_path(periph->path);
757 	free(periph, M_CAMPERIPH);
758 	xpt_lock_buses();
759 }
760 
761 /*
762  * Map user virtual pointers into kernel virtual address space, so we can
763  * access the memory.  This is now a generic function that centralizes most
764  * of the sanity checks on the data flags, if any.
765  * This also only works for up to MAXPHYS memory.  Since we use
766  * buffers to map stuff in and out, we're limited to the buffer size.
767  */
768 int
769 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo,
770     u_int maxmap)
771 {
772 	int numbufs, i, j;
773 	int flags[CAM_PERIPH_MAXMAPS];
774 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
775 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
776 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
777 
778 	if (maxmap == 0)
779 		maxmap = DFLTPHYS;	/* traditional default */
780 	else if (maxmap > MAXPHYS)
781 		maxmap = MAXPHYS;	/* for safety */
782 	switch(ccb->ccb_h.func_code) {
783 	case XPT_DEV_MATCH:
784 		if (ccb->cdm.match_buf_len == 0) {
785 			printf("cam_periph_mapmem: invalid match buffer "
786 			       "length 0\n");
787 			return(EINVAL);
788 		}
789 		if (ccb->cdm.pattern_buf_len > 0) {
790 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
791 			lengths[0] = ccb->cdm.pattern_buf_len;
792 			dirs[0] = CAM_DIR_OUT;
793 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
794 			lengths[1] = ccb->cdm.match_buf_len;
795 			dirs[1] = CAM_DIR_IN;
796 			numbufs = 2;
797 		} else {
798 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
799 			lengths[0] = ccb->cdm.match_buf_len;
800 			dirs[0] = CAM_DIR_IN;
801 			numbufs = 1;
802 		}
803 		/*
804 		 * This request will not go to the hardware, no reason
805 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
806 		 */
807 		maxmap = MAXPHYS;
808 		break;
809 	case XPT_SCSI_IO:
810 	case XPT_CONT_TARGET_IO:
811 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
812 			return(0);
813 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
814 			return (EINVAL);
815 		data_ptrs[0] = &ccb->csio.data_ptr;
816 		lengths[0] = ccb->csio.dxfer_len;
817 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
818 		numbufs = 1;
819 		break;
820 	case XPT_ATA_IO:
821 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
822 			return(0);
823 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
824 			return (EINVAL);
825 		data_ptrs[0] = &ccb->ataio.data_ptr;
826 		lengths[0] = ccb->ataio.dxfer_len;
827 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
828 		numbufs = 1;
829 		break;
830 	case XPT_MMC_IO:
831 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
832 			return(0);
833 		/* Two mappings: one for cmd->data and one for cmd->data->data */
834 		data_ptrs[0] = (unsigned char **)&ccb->mmcio.cmd.data;
835 		lengths[0] = sizeof(struct mmc_data *);
836 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
837 		data_ptrs[1] = (unsigned char **)&ccb->mmcio.cmd.data->data;
838 		lengths[1] = ccb->mmcio.cmd.data->len;
839 		dirs[1] = ccb->ccb_h.flags & CAM_DIR_MASK;
840 		numbufs = 2;
841 		break;
842 	case XPT_SMP_IO:
843 		data_ptrs[0] = &ccb->smpio.smp_request;
844 		lengths[0] = ccb->smpio.smp_request_len;
845 		dirs[0] = CAM_DIR_OUT;
846 		data_ptrs[1] = &ccb->smpio.smp_response;
847 		lengths[1] = ccb->smpio.smp_response_len;
848 		dirs[1] = CAM_DIR_IN;
849 		numbufs = 2;
850 		break;
851 	case XPT_NVME_IO:
852 	case XPT_NVME_ADMIN:
853 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
854 			return (0);
855 		if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
856 			return (EINVAL);
857 		data_ptrs[0] = &ccb->nvmeio.data_ptr;
858 		lengths[0] = ccb->nvmeio.dxfer_len;
859 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
860 		numbufs = 1;
861 		break;
862 	case XPT_DEV_ADVINFO:
863 		if (ccb->cdai.bufsiz == 0)
864 			return (0);
865 
866 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
867 		lengths[0] = ccb->cdai.bufsiz;
868 		dirs[0] = CAM_DIR_IN;
869 		numbufs = 1;
870 
871 		/*
872 		 * This request will not go to the hardware, no reason
873 		 * to be so strict. vmapbuf() is able to map up to MAXPHYS.
874 		 */
875 		maxmap = MAXPHYS;
876 		break;
877 	default:
878 		return(EINVAL);
879 		break; /* NOTREACHED */
880 	}
881 
882 	/*
883 	 * Check the transfer length and permissions first, so we don't
884 	 * have to unmap any previously mapped buffers.
885 	 */
886 	for (i = 0; i < numbufs; i++) {
887 
888 		flags[i] = 0;
889 
890 		/*
891 		 * The userland data pointer passed in may not be page
892 		 * aligned.  vmapbuf() truncates the address to a page
893 		 * boundary, so if the address isn't page aligned, we'll
894 		 * need enough space for the given transfer length, plus
895 		 * whatever extra space is necessary to make it to the page
896 		 * boundary.
897 		 */
898 		if ((lengths[i] +
899 		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){
900 			printf("cam_periph_mapmem: attempt to map %lu bytes, "
901 			       "which is greater than %lu\n",
902 			       (long)(lengths[i] +
903 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
904 			       (u_long)maxmap);
905 			return(E2BIG);
906 		}
907 
908 		if (dirs[i] & CAM_DIR_OUT) {
909 			flags[i] = BIO_WRITE;
910 		}
911 
912 		if (dirs[i] & CAM_DIR_IN) {
913 			flags[i] = BIO_READ;
914 		}
915 
916 	}
917 
918 	/*
919 	 * This keeps the kernel stack of current thread from getting
920 	 * swapped.  In low-memory situations where the kernel stack might
921 	 * otherwise get swapped out, this holds it and allows the thread
922 	 * to make progress and release the kernel mapped pages sooner.
923 	 *
924 	 * XXX KDM should I use P_NOSWAP instead?
925 	 */
926 	PHOLD(curproc);
927 
928 	for (i = 0; i < numbufs; i++) {
929 		/*
930 		 * Get the buffer.
931 		 */
932 		mapinfo->bp[i] = getpbuf(NULL);
933 
934 		/* put our pointer in the data slot */
935 		mapinfo->bp[i]->b_data = *data_ptrs[i];
936 
937 		/* save the user's data address */
938 		mapinfo->bp[i]->b_caller1 = *data_ptrs[i];
939 
940 		/* set the transfer length, we know it's < MAXPHYS */
941 		mapinfo->bp[i]->b_bufsize = lengths[i];
942 
943 		/* set the direction */
944 		mapinfo->bp[i]->b_iocmd = flags[i];
945 
946 		/*
947 		 * Map the buffer into kernel memory.
948 		 *
949 		 * Note that useracc() alone is not a  sufficient test.
950 		 * vmapbuf() can still fail due to a smaller file mapped
951 		 * into a larger area of VM, or if userland races against
952 		 * vmapbuf() after the useracc() check.
953 		 */
954 		if (vmapbuf(mapinfo->bp[i], 1) < 0) {
955 			for (j = 0; j < i; ++j) {
956 				*data_ptrs[j] = mapinfo->bp[j]->b_caller1;
957 				vunmapbuf(mapinfo->bp[j]);
958 				relpbuf(mapinfo->bp[j], NULL);
959 			}
960 			relpbuf(mapinfo->bp[i], NULL);
961 			PRELE(curproc);
962 			return(EACCES);
963 		}
964 
965 		/* set our pointer to the new mapped area */
966 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
967 
968 		mapinfo->num_bufs_used++;
969 	}
970 
971 	/*
972 	 * Now that we've gotten this far, change ownership to the kernel
973 	 * of the buffers so that we don't run afoul of returning to user
974 	 * space with locks (on the buffer) held.
975 	 */
976 	for (i = 0; i < numbufs; i++) {
977 		BUF_KERNPROC(mapinfo->bp[i]);
978 	}
979 
980 
981 	return(0);
982 }
983 
984 /*
985  * Unmap memory segments mapped into kernel virtual address space by
986  * cam_periph_mapmem().
987  */
988 void
989 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
990 {
991 	int numbufs, i;
992 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
993 
994 	if (mapinfo->num_bufs_used <= 0) {
995 		/* nothing to free and the process wasn't held. */
996 		return;
997 	}
998 
999 	switch (ccb->ccb_h.func_code) {
1000 	case XPT_DEV_MATCH:
1001 		numbufs = min(mapinfo->num_bufs_used, 2);
1002 
1003 		if (numbufs == 1) {
1004 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1005 		} else {
1006 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1007 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1008 		}
1009 		break;
1010 	case XPT_SCSI_IO:
1011 	case XPT_CONT_TARGET_IO:
1012 		data_ptrs[0] = &ccb->csio.data_ptr;
1013 		numbufs = min(mapinfo->num_bufs_used, 1);
1014 		break;
1015 	case XPT_ATA_IO:
1016 		data_ptrs[0] = &ccb->ataio.data_ptr;
1017 		numbufs = min(mapinfo->num_bufs_used, 1);
1018 		break;
1019 	case XPT_SMP_IO:
1020 		numbufs = min(mapinfo->num_bufs_used, 2);
1021 		data_ptrs[0] = &ccb->smpio.smp_request;
1022 		data_ptrs[1] = &ccb->smpio.smp_response;
1023 		break;
1024 	case XPT_DEV_ADVINFO:
1025 		numbufs = min(mapinfo->num_bufs_used, 1);
1026 		data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1027 		break;
1028 	case XPT_NVME_IO:
1029 	case XPT_NVME_ADMIN:
1030 		data_ptrs[0] = &ccb->nvmeio.data_ptr;
1031 		numbufs = min(mapinfo->num_bufs_used, 1);
1032 		break;
1033 	default:
1034 		/* allow ourselves to be swapped once again */
1035 		PRELE(curproc);
1036 		return;
1037 		break; /* NOTREACHED */
1038 	}
1039 
1040 	for (i = 0; i < numbufs; i++) {
1041 		/* Set the user's pointer back to the original value */
1042 		*data_ptrs[i] = mapinfo->bp[i]->b_caller1;
1043 
1044 		/* unmap the buffer */
1045 		vunmapbuf(mapinfo->bp[i]);
1046 
1047 		/* release the buffer */
1048 		relpbuf(mapinfo->bp[i], NULL);
1049 	}
1050 
1051 	/* allow ourselves to be swapped once again */
1052 	PRELE(curproc);
1053 }
1054 
1055 int
1056 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
1057 		 int (*error_routine)(union ccb *ccb,
1058 				      cam_flags camflags,
1059 				      u_int32_t sense_flags))
1060 {
1061 	union ccb 	     *ccb;
1062 	int 		     error;
1063 	int		     found;
1064 
1065 	error = found = 0;
1066 
1067 	switch(cmd){
1068 	case CAMGETPASSTHRU:
1069 		ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
1070 		xpt_setup_ccb(&ccb->ccb_h,
1071 			      ccb->ccb_h.path,
1072 			      CAM_PRIORITY_NORMAL);
1073 		ccb->ccb_h.func_code = XPT_GDEVLIST;
1074 
1075 		/*
1076 		 * Basically, the point of this is that we go through
1077 		 * getting the list of devices, until we find a passthrough
1078 		 * device.  In the current version of the CAM code, the
1079 		 * only way to determine what type of device we're dealing
1080 		 * with is by its name.
1081 		 */
1082 		while (found == 0) {
1083 			ccb->cgdl.index = 0;
1084 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
1085 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
1086 
1087 				/* we want the next device in the list */
1088 				xpt_action(ccb);
1089 				if (strncmp(ccb->cgdl.periph_name,
1090 				    "pass", 4) == 0){
1091 					found = 1;
1092 					break;
1093 				}
1094 			}
1095 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
1096 			    (found == 0)) {
1097 				ccb->cgdl.periph_name[0] = '\0';
1098 				ccb->cgdl.unit_number = 0;
1099 				break;
1100 			}
1101 		}
1102 
1103 		/* copy the result back out */
1104 		bcopy(ccb, addr, sizeof(union ccb));
1105 
1106 		/* and release the ccb */
1107 		xpt_release_ccb(ccb);
1108 
1109 		break;
1110 	default:
1111 		error = ENOTTY;
1112 		break;
1113 	}
1114 	return(error);
1115 }
1116 
1117 static void
1118 cam_periph_done_panic(struct cam_periph *periph, union ccb *done_ccb)
1119 {
1120 
1121 	panic("%s: already done with ccb %p", __func__, done_ccb);
1122 }
1123 
1124 static void
1125 cam_periph_done(struct cam_periph *periph, union ccb *done_ccb)
1126 {
1127 
1128 	/* Caller will release the CCB */
1129 	xpt_path_assert(done_ccb->ccb_h.path, MA_OWNED);
1130 	done_ccb->ccb_h.cbfcnp = cam_periph_done_panic;
1131 	wakeup(&done_ccb->ccb_h.cbfcnp);
1132 }
1133 
1134 static void
1135 cam_periph_ccbwait(union ccb *ccb)
1136 {
1137 
1138 	if ((ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
1139 		while (ccb->ccb_h.cbfcnp != cam_periph_done_panic)
1140 			xpt_path_sleep(ccb->ccb_h.path, &ccb->ccb_h.cbfcnp,
1141 			    PRIBIO, "cbwait", 0);
1142 	}
1143 	KASSERT(ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX &&
1144 	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG,
1145 	    ("%s: proceeding with incomplete ccb: ccb=%p, func_code=%#x, "
1146 	     "status=%#x, index=%d", __func__, ccb, ccb->ccb_h.func_code,
1147 	     ccb->ccb_h.status, ccb->ccb_h.pinfo.index));
1148 }
1149 
1150 int
1151 cam_periph_runccb(union ccb *ccb,
1152 		  int (*error_routine)(union ccb *ccb,
1153 				       cam_flags camflags,
1154 				       u_int32_t sense_flags),
1155 		  cam_flags camflags, u_int32_t sense_flags,
1156 		  struct devstat *ds)
1157 {
1158 	struct bintime *starttime;
1159 	struct bintime ltime;
1160 	int error;
1161 
1162 	starttime = NULL;
1163 	xpt_path_assert(ccb->ccb_h.path, MA_OWNED);
1164 	KASSERT((ccb->ccb_h.flags & CAM_UNLOCKED) == 0,
1165 	    ("%s: ccb=%p, func_code=%#x, flags=%#x", __func__, ccb,
1166 	     ccb->ccb_h.func_code, ccb->ccb_h.flags));
1167 
1168 	/*
1169 	 * If the user has supplied a stats structure, and if we understand
1170 	 * this particular type of ccb, record the transaction start.
1171 	 */
1172 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO ||
1173 	    ccb->ccb_h.func_code == XPT_ATA_IO)) {
1174 		starttime = &ltime;
1175 		binuptime(starttime);
1176 		devstat_start_transaction(ds, starttime);
1177 	}
1178 
1179 	ccb->ccb_h.cbfcnp = cam_periph_done;
1180 	xpt_action(ccb);
1181 
1182 	do {
1183 		cam_periph_ccbwait(ccb);
1184 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
1185 			error = 0;
1186 		else if (error_routine != NULL) {
1187 			ccb->ccb_h.cbfcnp = cam_periph_done;
1188 			error = (*error_routine)(ccb, camflags, sense_flags);
1189 		} else
1190 			error = 0;
1191 
1192 	} while (error == ERESTART);
1193 
1194 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
1195 		cam_release_devq(ccb->ccb_h.path,
1196 				 /* relsim_flags */0,
1197 				 /* openings */0,
1198 				 /* timeout */0,
1199 				 /* getcount_only */ FALSE);
1200 		ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1201 	}
1202 
1203 	if (ds != NULL) {
1204 		if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
1205 			devstat_end_transaction(ds,
1206 					ccb->csio.dxfer_len - ccb->csio.resid,
1207 					ccb->csio.tag_action & 0x3,
1208 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
1209 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
1210 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
1211 					DEVSTAT_WRITE :
1212 					DEVSTAT_READ, NULL, starttime);
1213 		} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
1214 			devstat_end_transaction(ds,
1215 					ccb->ataio.dxfer_len - ccb->ataio.resid,
1216 					0, /* Not used in ATA */
1217 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
1218 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
1219 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
1220 					DEVSTAT_WRITE :
1221 					DEVSTAT_READ, NULL, starttime);
1222 		}
1223 	}
1224 
1225 	return(error);
1226 }
1227 
1228 void
1229 cam_freeze_devq(struct cam_path *path)
1230 {
1231 	struct ccb_hdr ccb_h;
1232 
1233 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_freeze_devq\n"));
1234 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
1235 	ccb_h.func_code = XPT_NOOP;
1236 	ccb_h.flags = CAM_DEV_QFREEZE;
1237 	xpt_action((union ccb *)&ccb_h);
1238 }
1239 
1240 u_int32_t
1241 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
1242 		 u_int32_t openings, u_int32_t arg,
1243 		 int getcount_only)
1244 {
1245 	struct ccb_relsim crs;
1246 
1247 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("cam_release_devq(%u, %u, %u, %d)\n",
1248 	    relsim_flags, openings, arg, getcount_only));
1249 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
1250 	crs.ccb_h.func_code = XPT_REL_SIMQ;
1251 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
1252 	crs.release_flags = relsim_flags;
1253 	crs.openings = openings;
1254 	crs.release_timeout = arg;
1255 	xpt_action((union ccb *)&crs);
1256 	return (crs.qfrozen_cnt);
1257 }
1258 
1259 #define saved_ccb_ptr ppriv_ptr0
1260 static void
1261 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
1262 {
1263 	union ccb      *saved_ccb;
1264 	cam_status	status;
1265 	struct scsi_start_stop_unit *scsi_cmd;
1266 	int    error_code, sense_key, asc, ascq;
1267 
1268 	scsi_cmd = (struct scsi_start_stop_unit *)
1269 	    &done_ccb->csio.cdb_io.cdb_bytes;
1270 	status = done_ccb->ccb_h.status;
1271 
1272 	if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1273 		if (scsi_extract_sense_ccb(done_ccb,
1274 		    &error_code, &sense_key, &asc, &ascq)) {
1275 			/*
1276 			 * If the error is "invalid field in CDB",
1277 			 * and the load/eject flag is set, turn the
1278 			 * flag off and try again.  This is just in
1279 			 * case the drive in question barfs on the
1280 			 * load eject flag.  The CAM code should set
1281 			 * the load/eject flag by default for
1282 			 * removable media.
1283 			 */
1284 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1285 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1286 			     (asc == 0x24) && (ascq == 0x00)) {
1287 				scsi_cmd->how &= ~SSS_LOEJ;
1288 				if (status & CAM_DEV_QFRZN) {
1289 					cam_release_devq(done_ccb->ccb_h.path,
1290 					    0, 0, 0, 0);
1291 					done_ccb->ccb_h.status &=
1292 					    ~CAM_DEV_QFRZN;
1293 				}
1294 				xpt_action(done_ccb);
1295 				goto out;
1296 			}
1297 		}
1298 		if (cam_periph_error(done_ccb,
1299 		    0, SF_RETRY_UA | SF_NO_PRINT, NULL) == ERESTART)
1300 			goto out;
1301 		if (done_ccb->ccb_h.status & CAM_DEV_QFRZN) {
1302 			cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1303 			done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1304 		}
1305 	} else {
1306 		/*
1307 		 * If we have successfully taken a device from the not
1308 		 * ready to ready state, re-scan the device and re-get
1309 		 * the inquiry information.  Many devices (mostly disks)
1310 		 * don't properly report their inquiry information unless
1311 		 * they are spun up.
1312 		 */
1313 		if (scsi_cmd->opcode == START_STOP_UNIT)
1314 			xpt_async(AC_INQ_CHANGED, done_ccb->ccb_h.path, NULL);
1315 	}
1316 
1317 	/*
1318 	 * Perform the final retry with the original CCB so that final
1319 	 * error processing is performed by the owner of the CCB.
1320 	 */
1321 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1322 	bcopy(saved_ccb, done_ccb, sizeof(*done_ccb));
1323 	xpt_free_ccb(saved_ccb);
1324 	if (done_ccb->ccb_h.cbfcnp != camperiphdone)
1325 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1326 	xpt_action(done_ccb);
1327 
1328 out:
1329 	/* Drop freeze taken due to CAM_DEV_QFREEZE flag set. */
1330 	cam_release_devq(done_ccb->ccb_h.path, 0, 0, 0, 0);
1331 }
1332 
1333 /*
1334  * Generic Async Event handler.  Peripheral drivers usually
1335  * filter out the events that require personal attention,
1336  * and leave the rest to this function.
1337  */
1338 void
1339 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1340 		 struct cam_path *path, void *arg)
1341 {
1342 	switch (code) {
1343 	case AC_LOST_DEVICE:
1344 		cam_periph_invalidate(periph);
1345 		break;
1346 	default:
1347 		break;
1348 	}
1349 }
1350 
1351 void
1352 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1353 {
1354 	struct ccb_getdevstats cgds;
1355 
1356 	xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
1357 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1358 	xpt_action((union ccb *)&cgds);
1359 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1360 }
1361 
1362 void
1363 cam_periph_freeze_after_event(struct cam_periph *periph,
1364 			      struct timeval* event_time, u_int duration_ms)
1365 {
1366 	struct timeval delta;
1367 	struct timeval duration_tv;
1368 
1369 	if (!timevalisset(event_time))
1370 		return;
1371 
1372 	microtime(&delta);
1373 	timevalsub(&delta, event_time);
1374 	duration_tv.tv_sec = duration_ms / 1000;
1375 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1376 	if (timevalcmp(&delta, &duration_tv, <)) {
1377 		timevalsub(&duration_tv, &delta);
1378 
1379 		duration_ms = duration_tv.tv_sec * 1000;
1380 		duration_ms += duration_tv.tv_usec / 1000;
1381 		cam_freeze_devq(periph->path);
1382 		cam_release_devq(periph->path,
1383 				RELSIM_RELEASE_AFTER_TIMEOUT,
1384 				/*reduction*/0,
1385 				/*timeout*/duration_ms,
1386 				/*getcount_only*/0);
1387 	}
1388 
1389 }
1390 
1391 static int
1392 camperiphscsistatuserror(union ccb *ccb, union ccb **orig_ccb,
1393     cam_flags camflags, u_int32_t sense_flags,
1394     int *openings, u_int32_t *relsim_flags,
1395     u_int32_t *timeout, u_int32_t *action, const char **action_string)
1396 {
1397 	int error;
1398 
1399 	switch (ccb->csio.scsi_status) {
1400 	case SCSI_STATUS_OK:
1401 	case SCSI_STATUS_COND_MET:
1402 	case SCSI_STATUS_INTERMED:
1403 	case SCSI_STATUS_INTERMED_COND_MET:
1404 		error = 0;
1405 		break;
1406 	case SCSI_STATUS_CMD_TERMINATED:
1407 	case SCSI_STATUS_CHECK_COND:
1408 		error = camperiphscsisenseerror(ccb, orig_ccb,
1409 					        camflags,
1410 					        sense_flags,
1411 					        openings,
1412 					        relsim_flags,
1413 					        timeout,
1414 					        action,
1415 					        action_string);
1416 		break;
1417 	case SCSI_STATUS_QUEUE_FULL:
1418 	{
1419 		/* no decrement */
1420 		struct ccb_getdevstats cgds;
1421 
1422 		/*
1423 		 * First off, find out what the current
1424 		 * transaction counts are.
1425 		 */
1426 		xpt_setup_ccb(&cgds.ccb_h,
1427 			      ccb->ccb_h.path,
1428 			      CAM_PRIORITY_NORMAL);
1429 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1430 		xpt_action((union ccb *)&cgds);
1431 
1432 		/*
1433 		 * If we were the only transaction active, treat
1434 		 * the QUEUE FULL as if it were a BUSY condition.
1435 		 */
1436 		if (cgds.dev_active != 0) {
1437 			int total_openings;
1438 
1439 			/*
1440 		 	 * Reduce the number of openings to
1441 			 * be 1 less than the amount it took
1442 			 * to get a queue full bounded by the
1443 			 * minimum allowed tag count for this
1444 			 * device.
1445 		 	 */
1446 			total_openings = cgds.dev_active + cgds.dev_openings;
1447 			*openings = cgds.dev_active;
1448 			if (*openings < cgds.mintags)
1449 				*openings = cgds.mintags;
1450 			if (*openings < total_openings)
1451 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1452 			else {
1453 				/*
1454 				 * Some devices report queue full for
1455 				 * temporary resource shortages.  For
1456 				 * this reason, we allow a minimum
1457 				 * tag count to be entered via a
1458 				 * quirk entry to prevent the queue
1459 				 * count on these devices from falling
1460 				 * to a pessimisticly low value.  We
1461 				 * still wait for the next successful
1462 				 * completion, however, before queueing
1463 				 * more transactions to the device.
1464 				 */
1465 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1466 			}
1467 			*timeout = 0;
1468 			error = ERESTART;
1469 			*action &= ~SSQ_PRINT_SENSE;
1470 			break;
1471 		}
1472 		/* FALLTHROUGH */
1473 	}
1474 	case SCSI_STATUS_BUSY:
1475 		/*
1476 		 * Restart the queue after either another
1477 		 * command completes or a 1 second timeout.
1478 		 */
1479 		if ((sense_flags & SF_RETRY_BUSY) != 0 ||
1480 		    (ccb->ccb_h.retry_count--) > 0) {
1481 			error = ERESTART;
1482 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1483 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1484 			*timeout = 1000;
1485 		} else {
1486 			error = EIO;
1487 		}
1488 		break;
1489 	case SCSI_STATUS_RESERV_CONFLICT:
1490 	default:
1491 		error = EIO;
1492 		break;
1493 	}
1494 	return (error);
1495 }
1496 
1497 static int
1498 camperiphscsisenseerror(union ccb *ccb, union ccb **orig,
1499     cam_flags camflags, u_int32_t sense_flags,
1500     int *openings, u_int32_t *relsim_flags,
1501     u_int32_t *timeout, u_int32_t *action, const char **action_string)
1502 {
1503 	struct cam_periph *periph;
1504 	union ccb *orig_ccb = ccb;
1505 	int error, recoveryccb;
1506 
1507 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1508 	if (ccb->ccb_h.func_code == XPT_SCSI_IO && ccb->csio.bio != NULL)
1509 		biotrack(ccb->csio.bio, __func__);
1510 #endif
1511 
1512 	periph = xpt_path_periph(ccb->ccb_h.path);
1513 	recoveryccb = (ccb->ccb_h.cbfcnp == camperiphdone);
1514 	if ((periph->flags & CAM_PERIPH_RECOVERY_INPROG) && !recoveryccb) {
1515 		/*
1516 		 * If error recovery is already in progress, don't attempt
1517 		 * to process this error, but requeue it unconditionally
1518 		 * and attempt to process it once error recovery has
1519 		 * completed.  This failed command is probably related to
1520 		 * the error that caused the currently active error recovery
1521 		 * action so our  current recovery efforts should also
1522 		 * address this command.  Be aware that the error recovery
1523 		 * code assumes that only one recovery action is in progress
1524 		 * on a particular peripheral instance at any given time
1525 		 * (e.g. only one saved CCB for error recovery) so it is
1526 		 * imperitive that we don't violate this assumption.
1527 		 */
1528 		error = ERESTART;
1529 		*action &= ~SSQ_PRINT_SENSE;
1530 	} else {
1531 		scsi_sense_action err_action;
1532 		struct ccb_getdev cgd;
1533 
1534 		/*
1535 		 * Grab the inquiry data for this device.
1536 		 */
1537 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
1538 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1539 		xpt_action((union ccb *)&cgd);
1540 
1541 		err_action = scsi_error_action(&ccb->csio, &cgd.inq_data,
1542 		    sense_flags);
1543 		error = err_action & SS_ERRMASK;
1544 
1545 		/*
1546 		 * Do not autostart sequential access devices
1547 		 * to avoid unexpected tape loading.
1548 		 */
1549 		if ((err_action & SS_MASK) == SS_START &&
1550 		    SID_TYPE(&cgd.inq_data) == T_SEQUENTIAL) {
1551 			*action_string = "Will not autostart a "
1552 			    "sequential access device";
1553 			goto sense_error_done;
1554 		}
1555 
1556 		/*
1557 		 * Avoid recovery recursion if recovery action is the same.
1558 		 */
1559 		if ((err_action & SS_MASK) >= SS_START && recoveryccb) {
1560 			if (((err_action & SS_MASK) == SS_START &&
1561 			     ccb->csio.cdb_io.cdb_bytes[0] == START_STOP_UNIT) ||
1562 			    ((err_action & SS_MASK) == SS_TUR &&
1563 			     (ccb->csio.cdb_io.cdb_bytes[0] == TEST_UNIT_READY))) {
1564 				err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1565 				*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1566 				*timeout = 500;
1567 			}
1568 		}
1569 
1570 		/*
1571 		 * If the recovery action will consume a retry,
1572 		 * make sure we actually have retries available.
1573 		 */
1574 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1575 		 	if (ccb->ccb_h.retry_count > 0 &&
1576 			    (periph->flags & CAM_PERIPH_INVALID) == 0)
1577 		 		ccb->ccb_h.retry_count--;
1578 			else {
1579 				*action_string = "Retries exhausted";
1580 				goto sense_error_done;
1581 			}
1582 		}
1583 
1584 		if ((err_action & SS_MASK) >= SS_START) {
1585 			/*
1586 			 * Do common portions of commands that
1587 			 * use recovery CCBs.
1588 			 */
1589 			orig_ccb = xpt_alloc_ccb_nowait();
1590 			if (orig_ccb == NULL) {
1591 				*action_string = "Can't allocate recovery CCB";
1592 				goto sense_error_done;
1593 			}
1594 			/*
1595 			 * Clear freeze flag for original request here, as
1596 			 * this freeze will be dropped as part of ERESTART.
1597 			 */
1598 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1599 			bcopy(ccb, orig_ccb, sizeof(*orig_ccb));
1600 		}
1601 
1602 		switch (err_action & SS_MASK) {
1603 		case SS_NOP:
1604 			*action_string = "No recovery action needed";
1605 			error = 0;
1606 			break;
1607 		case SS_RETRY:
1608 			*action_string = "Retrying command (per sense data)";
1609 			error = ERESTART;
1610 			break;
1611 		case SS_FAIL:
1612 			*action_string = "Unretryable error";
1613 			break;
1614 		case SS_START:
1615 		{
1616 			int le;
1617 
1618 			/*
1619 			 * Send a start unit command to the device, and
1620 			 * then retry the command.
1621 			 */
1622 			*action_string = "Attempting to start unit";
1623 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1624 
1625 			/*
1626 			 * Check for removable media and set
1627 			 * load/eject flag appropriately.
1628 			 */
1629 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1630 				le = TRUE;
1631 			else
1632 				le = FALSE;
1633 
1634 			scsi_start_stop(&ccb->csio,
1635 					/*retries*/1,
1636 					camperiphdone,
1637 					MSG_SIMPLE_Q_TAG,
1638 					/*start*/TRUE,
1639 					/*load/eject*/le,
1640 					/*immediate*/FALSE,
1641 					SSD_FULL_SIZE,
1642 					/*timeout*/50000);
1643 			break;
1644 		}
1645 		case SS_TUR:
1646 		{
1647 			/*
1648 			 * Send a Test Unit Ready to the device.
1649 			 * If the 'many' flag is set, we send 120
1650 			 * test unit ready commands, one every half
1651 			 * second.  Otherwise, we just send one TUR.
1652 			 * We only want to do this if the retry
1653 			 * count has not been exhausted.
1654 			 */
1655 			int retries;
1656 
1657 			if ((err_action & SSQ_MANY) != 0) {
1658 				*action_string = "Polling device for readiness";
1659 				retries = 120;
1660 			} else {
1661 				*action_string = "Testing device for readiness";
1662 				retries = 1;
1663 			}
1664 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1665 			scsi_test_unit_ready(&ccb->csio,
1666 					     retries,
1667 					     camperiphdone,
1668 					     MSG_SIMPLE_Q_TAG,
1669 					     SSD_FULL_SIZE,
1670 					     /*timeout*/5000);
1671 
1672 			/*
1673 			 * Accomplish our 500ms delay by deferring
1674 			 * the release of our device queue appropriately.
1675 			 */
1676 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1677 			*timeout = 500;
1678 			break;
1679 		}
1680 		default:
1681 			panic("Unhandled error action %x", err_action);
1682 		}
1683 
1684 		if ((err_action & SS_MASK) >= SS_START) {
1685 			/*
1686 			 * Drop the priority, so that the recovery
1687 			 * CCB is the first to execute.  Freeze the queue
1688 			 * after this command is sent so that we can
1689 			 * restore the old csio and have it queued in
1690 			 * the proper order before we release normal
1691 			 * transactions to the device.
1692 			 */
1693 			ccb->ccb_h.pinfo.priority--;
1694 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1695 			ccb->ccb_h.saved_ccb_ptr = orig_ccb;
1696 			error = ERESTART;
1697 			*orig = orig_ccb;
1698 		}
1699 
1700 sense_error_done:
1701 		*action = err_action;
1702 	}
1703 	return (error);
1704 }
1705 
1706 /*
1707  * Generic error handler.  Peripheral drivers usually filter
1708  * out the errors that they handle in a unique manner, then
1709  * call this function.
1710  */
1711 int
1712 cam_periph_error(union ccb *ccb, cam_flags camflags,
1713 		 u_int32_t sense_flags, union ccb *save_ccb)
1714 {
1715 	struct cam_path *newpath;
1716 	union ccb  *orig_ccb, *scan_ccb;
1717 	struct cam_periph *periph;
1718 	const char *action_string;
1719 	cam_status  status;
1720 	int	    frozen, error, openings, devctl_err;
1721 	u_int32_t   action, relsim_flags, timeout;
1722 
1723 	action = SSQ_PRINT_SENSE;
1724 	periph = xpt_path_periph(ccb->ccb_h.path);
1725 	action_string = NULL;
1726 	status = ccb->ccb_h.status;
1727 	frozen = (status & CAM_DEV_QFRZN) != 0;
1728 	status &= CAM_STATUS_MASK;
1729 	devctl_err = openings = relsim_flags = timeout = 0;
1730 	orig_ccb = ccb;
1731 
1732 	/* Filter the errors that should be reported via devctl */
1733 	switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
1734 	case CAM_CMD_TIMEOUT:
1735 	case CAM_REQ_ABORTED:
1736 	case CAM_REQ_CMP_ERR:
1737 	case CAM_REQ_TERMIO:
1738 	case CAM_UNREC_HBA_ERROR:
1739 	case CAM_DATA_RUN_ERR:
1740 	case CAM_SCSI_STATUS_ERROR:
1741 	case CAM_ATA_STATUS_ERROR:
1742 	case CAM_SMP_STATUS_ERROR:
1743 		devctl_err++;
1744 		break;
1745 	default:
1746 		break;
1747 	}
1748 
1749 	switch (status) {
1750 	case CAM_REQ_CMP:
1751 		error = 0;
1752 		action &= ~SSQ_PRINT_SENSE;
1753 		break;
1754 	case CAM_SCSI_STATUS_ERROR:
1755 		error = camperiphscsistatuserror(ccb, &orig_ccb,
1756 		    camflags, sense_flags, &openings, &relsim_flags,
1757 		    &timeout, &action, &action_string);
1758 		break;
1759 	case CAM_AUTOSENSE_FAIL:
1760 		error = EIO;	/* we have to kill the command */
1761 		break;
1762 	case CAM_UA_ABORT:
1763 	case CAM_UA_TERMIO:
1764 	case CAM_MSG_REJECT_REC:
1765 		/* XXX Don't know that these are correct */
1766 		error = EIO;
1767 		break;
1768 	case CAM_SEL_TIMEOUT:
1769 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1770 			if (ccb->ccb_h.retry_count > 0 &&
1771 			    (periph->flags & CAM_PERIPH_INVALID) == 0) {
1772 				ccb->ccb_h.retry_count--;
1773 				error = ERESTART;
1774 
1775 				/*
1776 				 * Wait a bit to give the device
1777 				 * time to recover before we try again.
1778 				 */
1779 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1780 				timeout = periph_selto_delay;
1781 				break;
1782 			}
1783 			action_string = "Retries exhausted";
1784 		}
1785 		/* FALLTHROUGH */
1786 	case CAM_DEV_NOT_THERE:
1787 		error = ENXIO;
1788 		action = SSQ_LOST;
1789 		break;
1790 	case CAM_REQ_INVALID:
1791 	case CAM_PATH_INVALID:
1792 	case CAM_NO_HBA:
1793 	case CAM_PROVIDE_FAIL:
1794 	case CAM_REQ_TOO_BIG:
1795 	case CAM_LUN_INVALID:
1796 	case CAM_TID_INVALID:
1797 	case CAM_FUNC_NOTAVAIL:
1798 		error = EINVAL;
1799 		break;
1800 	case CAM_SCSI_BUS_RESET:
1801 	case CAM_BDR_SENT:
1802 		/*
1803 		 * Commands that repeatedly timeout and cause these
1804 		 * kinds of error recovery actions, should return
1805 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1806 		 * that this command was an innocent bystander to
1807 		 * these events and should be unconditionally
1808 		 * retried.
1809 		 */
1810 	case CAM_REQUEUE_REQ:
1811 		/* Unconditional requeue if device is still there */
1812 		if (periph->flags & CAM_PERIPH_INVALID) {
1813 			action_string = "Periph was invalidated";
1814 			error = EIO;
1815 		} else if (sense_flags & SF_NO_RETRY) {
1816 			error = EIO;
1817 			action_string = "Retry was blocked";
1818 		} else {
1819 			error = ERESTART;
1820 			action &= ~SSQ_PRINT_SENSE;
1821 		}
1822 		break;
1823 	case CAM_RESRC_UNAVAIL:
1824 		/* Wait a bit for the resource shortage to abate. */
1825 		timeout = periph_noresrc_delay;
1826 		/* FALLTHROUGH */
1827 	case CAM_BUSY:
1828 		if (timeout == 0) {
1829 			/* Wait a bit for the busy condition to abate. */
1830 			timeout = periph_busy_delay;
1831 		}
1832 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1833 		/* FALLTHROUGH */
1834 	case CAM_ATA_STATUS_ERROR:
1835 	case CAM_REQ_CMP_ERR:
1836 	case CAM_CMD_TIMEOUT:
1837 	case CAM_UNEXP_BUSFREE:
1838 	case CAM_UNCOR_PARITY:
1839 	case CAM_DATA_RUN_ERR:
1840 	default:
1841 		if (periph->flags & CAM_PERIPH_INVALID) {
1842 			error = EIO;
1843 			action_string = "Periph was invalidated";
1844 		} else if (ccb->ccb_h.retry_count == 0) {
1845 			error = EIO;
1846 			action_string = "Retries exhausted";
1847 		} else if (sense_flags & SF_NO_RETRY) {
1848 			error = EIO;
1849 			action_string = "Retry was blocked";
1850 		} else {
1851 			ccb->ccb_h.retry_count--;
1852 			error = ERESTART;
1853 		}
1854 		break;
1855 	}
1856 
1857 	if ((sense_flags & SF_PRINT_ALWAYS) ||
1858 	    CAM_DEBUGGED(ccb->ccb_h.path, CAM_DEBUG_INFO))
1859 		action |= SSQ_PRINT_SENSE;
1860 	else if (sense_flags & SF_NO_PRINT)
1861 		action &= ~SSQ_PRINT_SENSE;
1862 	if ((action & SSQ_PRINT_SENSE) != 0)
1863 		cam_error_print(orig_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1864 	if (error != 0 && (action & SSQ_PRINT_SENSE) != 0) {
1865 		if (error != ERESTART) {
1866 			if (action_string == NULL)
1867 				action_string = "Unretryable error";
1868 			xpt_print(ccb->ccb_h.path, "Error %d, %s\n",
1869 			    error, action_string);
1870 		} else if (action_string != NULL)
1871 			xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1872 		else
1873 			xpt_print(ccb->ccb_h.path, "Retrying command\n");
1874 	}
1875 
1876 	if (devctl_err && (error != 0 || (action & SSQ_PRINT_SENSE) != 0))
1877 		cam_periph_devctl_notify(orig_ccb);
1878 
1879 	if ((action & SSQ_LOST) != 0) {
1880 		lun_id_t lun_id;
1881 
1882 		/*
1883 		 * For a selection timeout, we consider all of the LUNs on
1884 		 * the target to be gone.  If the status is CAM_DEV_NOT_THERE,
1885 		 * then we only get rid of the device(s) specified by the
1886 		 * path in the original CCB.
1887 		 */
1888 		if (status == CAM_SEL_TIMEOUT)
1889 			lun_id = CAM_LUN_WILDCARD;
1890 		else
1891 			lun_id = xpt_path_lun_id(ccb->ccb_h.path);
1892 
1893 		/* Should we do more if we can't create the path?? */
1894 		if (xpt_create_path(&newpath, periph,
1895 				    xpt_path_path_id(ccb->ccb_h.path),
1896 				    xpt_path_target_id(ccb->ccb_h.path),
1897 				    lun_id) == CAM_REQ_CMP) {
1898 
1899 			/*
1900 			 * Let peripheral drivers know that this
1901 			 * device has gone away.
1902 			 */
1903 			xpt_async(AC_LOST_DEVICE, newpath, NULL);
1904 			xpt_free_path(newpath);
1905 		}
1906 	}
1907 
1908 	/* Broadcast UNIT ATTENTIONs to all periphs. */
1909 	if ((action & SSQ_UA) != 0)
1910 		xpt_async(AC_UNIT_ATTENTION, orig_ccb->ccb_h.path, orig_ccb);
1911 
1912 	/* Rescan target on "Reported LUNs data has changed" */
1913 	if ((action & SSQ_RESCAN) != 0) {
1914 		if (xpt_create_path(&newpath, NULL,
1915 				    xpt_path_path_id(ccb->ccb_h.path),
1916 				    xpt_path_target_id(ccb->ccb_h.path),
1917 				    CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
1918 
1919 			scan_ccb = xpt_alloc_ccb_nowait();
1920 			if (scan_ccb != NULL) {
1921 				scan_ccb->ccb_h.path = newpath;
1922 				scan_ccb->ccb_h.func_code = XPT_SCAN_TGT;
1923 				scan_ccb->crcn.flags = 0;
1924 				xpt_rescan(scan_ccb);
1925 			} else {
1926 				xpt_print(newpath,
1927 				    "Can't allocate CCB to rescan target\n");
1928 				xpt_free_path(newpath);
1929 			}
1930 		}
1931 	}
1932 
1933 	/* Attempt a retry */
1934 	if (error == ERESTART || error == 0) {
1935 		if (frozen != 0)
1936 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1937 		if (error == ERESTART)
1938 			xpt_action(ccb);
1939 		if (frozen != 0)
1940 			cam_release_devq(ccb->ccb_h.path,
1941 					 relsim_flags,
1942 					 openings,
1943 					 timeout,
1944 					 /*getcount_only*/0);
1945 	}
1946 
1947 	return (error);
1948 }
1949 
1950 #define CAM_PERIPH_DEVD_MSG_SIZE	256
1951 
1952 static void
1953 cam_periph_devctl_notify(union ccb *ccb)
1954 {
1955 	struct cam_periph *periph;
1956 	struct ccb_getdev *cgd;
1957 	struct sbuf sb;
1958 	int serr, sk, asc, ascq;
1959 	char *sbmsg, *type;
1960 
1961 	sbmsg = malloc(CAM_PERIPH_DEVD_MSG_SIZE, M_CAMPERIPH, M_NOWAIT);
1962 	if (sbmsg == NULL)
1963 		return;
1964 
1965 	sbuf_new(&sb, sbmsg, CAM_PERIPH_DEVD_MSG_SIZE, SBUF_FIXEDLEN);
1966 
1967 	periph = xpt_path_periph(ccb->ccb_h.path);
1968 	sbuf_printf(&sb, "device=%s%d ", periph->periph_name,
1969 	    periph->unit_number);
1970 
1971 	sbuf_printf(&sb, "serial=\"");
1972 	if ((cgd = (struct ccb_getdev *)xpt_alloc_ccb_nowait()) != NULL) {
1973 		xpt_setup_ccb(&cgd->ccb_h, ccb->ccb_h.path,
1974 		    CAM_PRIORITY_NORMAL);
1975 		cgd->ccb_h.func_code = XPT_GDEV_TYPE;
1976 		xpt_action((union ccb *)cgd);
1977 
1978 		if (cgd->ccb_h.status == CAM_REQ_CMP)
1979 			sbuf_bcat(&sb, cgd->serial_num, cgd->serial_num_len);
1980 		xpt_free_ccb((union ccb *)cgd);
1981 	}
1982 	sbuf_printf(&sb, "\" ");
1983 	sbuf_printf(&sb, "cam_status=\"0x%x\" ", ccb->ccb_h.status);
1984 
1985 	switch (ccb->ccb_h.status & CAM_STATUS_MASK) {
1986 	case CAM_CMD_TIMEOUT:
1987 		sbuf_printf(&sb, "timeout=%d ", ccb->ccb_h.timeout);
1988 		type = "timeout";
1989 		break;
1990 	case CAM_SCSI_STATUS_ERROR:
1991 		sbuf_printf(&sb, "scsi_status=%d ", ccb->csio.scsi_status);
1992 		if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq))
1993 			sbuf_printf(&sb, "scsi_sense=\"%02x %02x %02x %02x\" ",
1994 			    serr, sk, asc, ascq);
1995 		type = "error";
1996 		break;
1997 	case CAM_ATA_STATUS_ERROR:
1998 		sbuf_printf(&sb, "RES=\"");
1999 		ata_res_sbuf(&ccb->ataio.res, &sb);
2000 		sbuf_printf(&sb, "\" ");
2001 		type = "error";
2002 		break;
2003 	default:
2004 		type = "error";
2005 		break;
2006 	}
2007 
2008 	if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
2009 		sbuf_printf(&sb, "CDB=\"");
2010 		scsi_cdb_sbuf(scsiio_cdb_ptr(&ccb->csio), &sb);
2011 		sbuf_printf(&sb, "\" ");
2012 	} else if (ccb->ccb_h.func_code == XPT_ATA_IO) {
2013 		sbuf_printf(&sb, "ACB=\"");
2014 		ata_cmd_sbuf(&ccb->ataio.cmd, &sb);
2015 		sbuf_printf(&sb, "\" ");
2016 	}
2017 
2018 	if (sbuf_finish(&sb) == 0)
2019 		devctl_notify("CAM", "periph", type, sbuf_data(&sb));
2020 	sbuf_delete(&sb);
2021 	free(sbmsg, M_CAMPERIPH);
2022 }
2023 
2024