xref: /freebsd/sys/cam/cam_xpt.c (revision 7cc42f6d)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/time.h>
45 #include <sys/conf.h>
46 #include <sys/fcntl.h>
47 #include <sys/proc.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/taskqueue.h>
51 
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56 
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_iosched.h>
60 #include <cam/cam_periph.h>
61 #include <cam/cam_queue.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt.h>
64 #include <cam/cam_xpt_sim.h>
65 #include <cam/cam_xpt_periph.h>
66 #include <cam/cam_xpt_internal.h>
67 #include <cam/cam_debug.h>
68 #include <cam/cam_compat.h>
69 
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/scsi_pass.h>
73 
74 #include <machine/stdarg.h>	/* for xpt_print below */
75 
76 #include "opt_cam.h"
77 
78 /* Wild guess based on not wanting to grow the stack too much */
79 #define XPT_PRINT_MAXLEN	512
80 #ifdef PRINTF_BUFR_SIZE
81 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
82 #else
83 #define XPT_PRINT_LEN	128
84 #endif
85 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
86 
87 /*
88  * This is the maximum number of high powered commands (e.g. start unit)
89  * that can be outstanding at a particular time.
90  */
91 #ifndef CAM_MAX_HIGHPOWER
92 #define CAM_MAX_HIGHPOWER  4
93 #endif
94 
95 /* Datastructures internal to the xpt layer */
96 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
97 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
98 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
99 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
100 
101 struct xpt_softc {
102 	uint32_t		xpt_generation;
103 
104 	/* number of high powered commands that can go through right now */
105 	struct mtx		xpt_highpower_lock;
106 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
107 	int			num_highpower;
108 
109 	/* queue for handling async rescan requests. */
110 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
111 	int buses_to_config;
112 	int buses_config_done;
113 	int announce_nosbuf;
114 
115 	/*
116 	 * Registered buses
117 	 *
118 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
119 	 * "buses" is preferred.
120 	 */
121 	TAILQ_HEAD(,cam_eb)	xpt_busses;
122 	u_int			bus_generation;
123 
124 	int			boot_delay;
125 	struct callout 		boot_callout;
126 	struct task		boot_task;
127 	struct root_hold_token	xpt_rootmount;
128 
129 	struct mtx		xpt_topo_lock;
130 	struct taskqueue	*xpt_taskq;
131 };
132 
133 typedef enum {
134 	DM_RET_COPY		= 0x01,
135 	DM_RET_FLAG_MASK	= 0x0f,
136 	DM_RET_NONE		= 0x00,
137 	DM_RET_STOP		= 0x10,
138 	DM_RET_DESCEND		= 0x20,
139 	DM_RET_ERROR		= 0x30,
140 	DM_RET_ACTION_MASK	= 0xf0
141 } dev_match_ret;
142 
143 typedef enum {
144 	XPT_DEPTH_BUS,
145 	XPT_DEPTH_TARGET,
146 	XPT_DEPTH_DEVICE,
147 	XPT_DEPTH_PERIPH
148 } xpt_traverse_depth;
149 
150 struct xpt_traverse_config {
151 	xpt_traverse_depth	depth;
152 	void			*tr_func;
153 	void			*tr_arg;
154 };
155 
156 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
157 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
158 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
159 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
160 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
161 
162 /* Transport layer configuration information */
163 static struct xpt_softc xsoftc;
164 
165 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
166 
167 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
168            &xsoftc.boot_delay, 0, "Bus registration wait time");
169 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
170 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
171 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
172 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
173 
174 struct cam_doneq {
175 	struct mtx_padalign	cam_doneq_mtx;
176 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
177 	int			cam_doneq_sleep;
178 };
179 
180 static struct cam_doneq cam_doneqs[MAXCPU];
181 static int cam_num_doneqs;
182 static struct proc *cam_proc;
183 
184 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
185            &cam_num_doneqs, 0, "Number of completion queues/threads");
186 
187 struct cam_periph *xpt_periph;
188 
189 static periph_init_t xpt_periph_init;
190 
191 static struct periph_driver xpt_driver =
192 {
193 	xpt_periph_init, "xpt",
194 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
195 	CAM_PERIPH_DRV_EARLY
196 };
197 
198 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
199 
200 static d_open_t xptopen;
201 static d_close_t xptclose;
202 static d_ioctl_t xptioctl;
203 static d_ioctl_t xptdoioctl;
204 
205 static struct cdevsw xpt_cdevsw = {
206 	.d_version =	D_VERSION,
207 	.d_flags =	0,
208 	.d_open =	xptopen,
209 	.d_close =	xptclose,
210 	.d_ioctl =	xptioctl,
211 	.d_name =	"xpt",
212 };
213 
214 /* Storage for debugging datastructures */
215 struct cam_path *cam_dpath;
216 u_int32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
217 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
218 	&cam_dflags, 0, "Enabled debug flags");
219 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
220 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
221 	&cam_debug_delay, 0, "Delay in us after each debug message");
222 
223 /* Our boot-time initialization hook */
224 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
225 
226 static moduledata_t cam_moduledata = {
227 	"cam",
228 	cam_module_event_handler,
229 	NULL
230 };
231 
232 static int	xpt_init(void *);
233 
234 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
235 MODULE_VERSION(cam, 1);
236 
237 static void		xpt_async_bcast(struct async_list *async_head,
238 					u_int32_t async_code,
239 					struct cam_path *path,
240 					void *async_arg);
241 static path_id_t xptnextfreepathid(void);
242 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
243 static union ccb *xpt_get_ccb(struct cam_periph *periph);
244 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
245 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
246 static void	 xpt_run_allocq_task(void *context, int pending);
247 static void	 xpt_run_devq(struct cam_devq *devq);
248 static callout_func_t xpt_release_devq_timeout;
249 static void	 xpt_acquire_bus(struct cam_eb *bus);
250 static void	 xpt_release_bus(struct cam_eb *bus);
251 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
252 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
253 		    int run_queue);
254 static struct cam_et*
255 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
256 static void	 xpt_acquire_target(struct cam_et *target);
257 static void	 xpt_release_target(struct cam_et *target);
258 static struct cam_eb*
259 		 xpt_find_bus(path_id_t path_id);
260 static struct cam_et*
261 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
262 static struct cam_ed*
263 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
264 static void	 xpt_config(void *arg);
265 static void	 xpt_hold_boot_locked(void);
266 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
267 				 u_int32_t new_priority);
268 static xpt_devicefunc_t xptpassannouncefunc;
269 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
270 static void	 xptpoll(struct cam_sim *sim);
271 static void	 camisr_runqueue(void);
272 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
273 static void	 xpt_done_td(void *);
274 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
275 				    u_int num_patterns, struct cam_eb *bus);
276 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
277 				       u_int num_patterns,
278 				       struct cam_ed *device);
279 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
280 				       u_int num_patterns,
281 				       struct cam_periph *periph);
282 static xpt_busfunc_t	xptedtbusfunc;
283 static xpt_targetfunc_t	xptedttargetfunc;
284 static xpt_devicefunc_t	xptedtdevicefunc;
285 static xpt_periphfunc_t	xptedtperiphfunc;
286 static xpt_pdrvfunc_t	xptplistpdrvfunc;
287 static xpt_periphfunc_t	xptplistperiphfunc;
288 static int		xptedtmatch(struct ccb_dev_match *cdm);
289 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
290 static int		xptbustraverse(struct cam_eb *start_bus,
291 				       xpt_busfunc_t *tr_func, void *arg);
292 static int		xpttargettraverse(struct cam_eb *bus,
293 					  struct cam_et *start_target,
294 					  xpt_targetfunc_t *tr_func, void *arg);
295 static int		xptdevicetraverse(struct cam_et *target,
296 					  struct cam_ed *start_device,
297 					  xpt_devicefunc_t *tr_func, void *arg);
298 static int		xptperiphtraverse(struct cam_ed *device,
299 					  struct cam_periph *start_periph,
300 					  xpt_periphfunc_t *tr_func, void *arg);
301 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
302 					xpt_pdrvfunc_t *tr_func, void *arg);
303 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
304 					    struct cam_periph *start_periph,
305 					    xpt_periphfunc_t *tr_func,
306 					    void *arg);
307 static xpt_busfunc_t	xptdefbusfunc;
308 static xpt_targetfunc_t	xptdeftargetfunc;
309 static xpt_devicefunc_t	xptdefdevicefunc;
310 static xpt_periphfunc_t	xptdefperiphfunc;
311 static void		xpt_finishconfig_task(void *context, int pending);
312 static void		xpt_dev_async_default(u_int32_t async_code,
313 					      struct cam_eb *bus,
314 					      struct cam_et *target,
315 					      struct cam_ed *device,
316 					      void *async_arg);
317 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
318 						 struct cam_et *target,
319 						 lun_id_t lun_id);
320 static xpt_devicefunc_t	xptsetasyncfunc;
321 static xpt_busfunc_t	xptsetasyncbusfunc;
322 static cam_status	xptregister(struct cam_periph *periph,
323 				    void *arg);
324 
325 static __inline int
326 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
327 {
328 	int	retval;
329 
330 	mtx_assert(&devq->send_mtx, MA_OWNED);
331 	if ((dev->ccbq.queue.entries > 0) &&
332 	    (dev->ccbq.dev_openings > 0) &&
333 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
334 		/*
335 		 * The priority of a device waiting for controller
336 		 * resources is that of the highest priority CCB
337 		 * enqueued.
338 		 */
339 		retval =
340 		    xpt_schedule_dev(&devq->send_queue,
341 				     &dev->devq_entry,
342 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
343 	} else {
344 		retval = 0;
345 	}
346 	return (retval);
347 }
348 
349 static __inline int
350 device_is_queued(struct cam_ed *device)
351 {
352 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
353 }
354 
355 static void
356 xpt_periph_init(void)
357 {
358 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
359 }
360 
361 static int
362 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
363 {
364 
365 	/*
366 	 * Only allow read-write access.
367 	 */
368 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
369 		return(EPERM);
370 
371 	/*
372 	 * We don't allow nonblocking access.
373 	 */
374 	if ((flags & O_NONBLOCK) != 0) {
375 		printf("%s: can't do nonblocking access\n", devtoname(dev));
376 		return(ENODEV);
377 	}
378 
379 	return(0);
380 }
381 
382 static int
383 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
384 {
385 
386 	return(0);
387 }
388 
389 /*
390  * Don't automatically grab the xpt softc lock here even though this is going
391  * through the xpt device.  The xpt device is really just a back door for
392  * accessing other devices and SIMs, so the right thing to do is to grab
393  * the appropriate SIM lock once the bus/SIM is located.
394  */
395 static int
396 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
397 {
398 	int error;
399 
400 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
401 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
402 	}
403 	return (error);
404 }
405 
406 static int
407 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
408 {
409 	int error;
410 
411 	error = 0;
412 
413 	switch(cmd) {
414 	/*
415 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
416 	 * to accept CCB types that don't quite make sense to send through a
417 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
418 	 * in the CAM spec.
419 	 */
420 	case CAMIOCOMMAND: {
421 		union ccb *ccb;
422 		union ccb *inccb;
423 		struct cam_eb *bus;
424 
425 		inccb = (union ccb *)addr;
426 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
427 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
428 			inccb->csio.bio = NULL;
429 #endif
430 
431 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
432 			return (EINVAL);
433 
434 		bus = xpt_find_bus(inccb->ccb_h.path_id);
435 		if (bus == NULL)
436 			return (EINVAL);
437 
438 		switch (inccb->ccb_h.func_code) {
439 		case XPT_SCAN_BUS:
440 		case XPT_RESET_BUS:
441 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
442 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
443 				xpt_release_bus(bus);
444 				return (EINVAL);
445 			}
446 			break;
447 		case XPT_SCAN_TGT:
448 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
449 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
450 				xpt_release_bus(bus);
451 				return (EINVAL);
452 			}
453 			break;
454 		default:
455 			break;
456 		}
457 
458 		switch(inccb->ccb_h.func_code) {
459 		case XPT_SCAN_BUS:
460 		case XPT_RESET_BUS:
461 		case XPT_PATH_INQ:
462 		case XPT_ENG_INQ:
463 		case XPT_SCAN_LUN:
464 		case XPT_SCAN_TGT:
465 
466 			ccb = xpt_alloc_ccb();
467 
468 			/*
469 			 * Create a path using the bus, target, and lun the
470 			 * user passed in.
471 			 */
472 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
473 					    inccb->ccb_h.path_id,
474 					    inccb->ccb_h.target_id,
475 					    inccb->ccb_h.target_lun) !=
476 					    CAM_REQ_CMP){
477 				error = EINVAL;
478 				xpt_free_ccb(ccb);
479 				break;
480 			}
481 			/* Ensure all of our fields are correct */
482 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
483 				      inccb->ccb_h.pinfo.priority);
484 			xpt_merge_ccb(ccb, inccb);
485 			xpt_path_lock(ccb->ccb_h.path);
486 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
487 			xpt_path_unlock(ccb->ccb_h.path);
488 			bcopy(ccb, inccb, sizeof(union ccb));
489 			xpt_free_path(ccb->ccb_h.path);
490 			xpt_free_ccb(ccb);
491 			break;
492 
493 		case XPT_DEBUG: {
494 			union ccb ccb;
495 
496 			/*
497 			 * This is an immediate CCB, so it's okay to
498 			 * allocate it on the stack.
499 			 */
500 
501 			/*
502 			 * Create a path using the bus, target, and lun the
503 			 * user passed in.
504 			 */
505 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
506 					    inccb->ccb_h.path_id,
507 					    inccb->ccb_h.target_id,
508 					    inccb->ccb_h.target_lun) !=
509 					    CAM_REQ_CMP){
510 				error = EINVAL;
511 				break;
512 			}
513 			/* Ensure all of our fields are correct */
514 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
515 				      inccb->ccb_h.pinfo.priority);
516 			xpt_merge_ccb(&ccb, inccb);
517 			xpt_action(&ccb);
518 			bcopy(&ccb, inccb, sizeof(union ccb));
519 			xpt_free_path(ccb.ccb_h.path);
520 			break;
521 		}
522 		case XPT_DEV_MATCH: {
523 			struct cam_periph_map_info mapinfo;
524 			struct cam_path *old_path;
525 
526 			/*
527 			 * We can't deal with physical addresses for this
528 			 * type of transaction.
529 			 */
530 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
531 			    CAM_DATA_VADDR) {
532 				error = EINVAL;
533 				break;
534 			}
535 
536 			/*
537 			 * Save this in case the caller had it set to
538 			 * something in particular.
539 			 */
540 			old_path = inccb->ccb_h.path;
541 
542 			/*
543 			 * We really don't need a path for the matching
544 			 * code.  The path is needed because of the
545 			 * debugging statements in xpt_action().  They
546 			 * assume that the CCB has a valid path.
547 			 */
548 			inccb->ccb_h.path = xpt_periph->path;
549 
550 			bzero(&mapinfo, sizeof(mapinfo));
551 
552 			/*
553 			 * Map the pattern and match buffers into kernel
554 			 * virtual address space.
555 			 */
556 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
557 
558 			if (error) {
559 				inccb->ccb_h.path = old_path;
560 				break;
561 			}
562 
563 			/*
564 			 * This is an immediate CCB, we can send it on directly.
565 			 */
566 			xpt_action(inccb);
567 
568 			/*
569 			 * Map the buffers back into user space.
570 			 */
571 			cam_periph_unmapmem(inccb, &mapinfo);
572 
573 			inccb->ccb_h.path = old_path;
574 
575 			error = 0;
576 			break;
577 		}
578 		default:
579 			error = ENOTSUP;
580 			break;
581 		}
582 		xpt_release_bus(bus);
583 		break;
584 	}
585 	/*
586 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
587 	 * with the periphal driver name and unit name filled in.  The other
588 	 * fields don't really matter as input.  The passthrough driver name
589 	 * ("pass"), and unit number are passed back in the ccb.  The current
590 	 * device generation number, and the index into the device peripheral
591 	 * driver list, and the status are also passed back.  Note that
592 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
593 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
594 	 * (or rather should be) impossible for the device peripheral driver
595 	 * list to change since we look at the whole thing in one pass, and
596 	 * we do it with lock protection.
597 	 *
598 	 */
599 	case CAMGETPASSTHRU: {
600 		union ccb *ccb;
601 		struct cam_periph *periph;
602 		struct periph_driver **p_drv;
603 		char   *name;
604 		u_int unit;
605 		int base_periph_found;
606 
607 		ccb = (union ccb *)addr;
608 		unit = ccb->cgdl.unit_number;
609 		name = ccb->cgdl.periph_name;
610 		base_periph_found = 0;
611 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
612 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
613 			ccb->csio.bio = NULL;
614 #endif
615 
616 		/*
617 		 * Sanity check -- make sure we don't get a null peripheral
618 		 * driver name.
619 		 */
620 		if (*ccb->cgdl.periph_name == '\0') {
621 			error = EINVAL;
622 			break;
623 		}
624 
625 		/* Keep the list from changing while we traverse it */
626 		xpt_lock_buses();
627 
628 		/* first find our driver in the list of drivers */
629 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
630 			if (strcmp((*p_drv)->driver_name, name) == 0)
631 				break;
632 
633 		if (*p_drv == NULL) {
634 			xpt_unlock_buses();
635 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
636 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
637 			*ccb->cgdl.periph_name = '\0';
638 			ccb->cgdl.unit_number = 0;
639 			error = ENOENT;
640 			break;
641 		}
642 
643 		/*
644 		 * Run through every peripheral instance of this driver
645 		 * and check to see whether it matches the unit passed
646 		 * in by the user.  If it does, get out of the loops and
647 		 * find the passthrough driver associated with that
648 		 * peripheral driver.
649 		 */
650 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
651 		     periph = TAILQ_NEXT(periph, unit_links)) {
652 			if (periph->unit_number == unit)
653 				break;
654 		}
655 		/*
656 		 * If we found the peripheral driver that the user passed
657 		 * in, go through all of the peripheral drivers for that
658 		 * particular device and look for a passthrough driver.
659 		 */
660 		if (periph != NULL) {
661 			struct cam_ed *device;
662 			int i;
663 
664 			base_periph_found = 1;
665 			device = periph->path->device;
666 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
667 			     periph != NULL;
668 			     periph = SLIST_NEXT(periph, periph_links), i++) {
669 				/*
670 				 * Check to see whether we have a
671 				 * passthrough device or not.
672 				 */
673 				if (strcmp(periph->periph_name, "pass") == 0) {
674 					/*
675 					 * Fill in the getdevlist fields.
676 					 */
677 					strlcpy(ccb->cgdl.periph_name,
678 					       periph->periph_name,
679 					       sizeof(ccb->cgdl.periph_name));
680 					ccb->cgdl.unit_number =
681 						periph->unit_number;
682 					if (SLIST_NEXT(periph, periph_links))
683 						ccb->cgdl.status =
684 							CAM_GDEVLIST_MORE_DEVS;
685 					else
686 						ccb->cgdl.status =
687 						       CAM_GDEVLIST_LAST_DEVICE;
688 					ccb->cgdl.generation =
689 						device->generation;
690 					ccb->cgdl.index = i;
691 					/*
692 					 * Fill in some CCB header fields
693 					 * that the user may want.
694 					 */
695 					ccb->ccb_h.path_id =
696 						periph->path->bus->path_id;
697 					ccb->ccb_h.target_id =
698 						periph->path->target->target_id;
699 					ccb->ccb_h.target_lun =
700 						periph->path->device->lun_id;
701 					ccb->ccb_h.status = CAM_REQ_CMP;
702 					break;
703 				}
704 			}
705 		}
706 
707 		/*
708 		 * If the periph is null here, one of two things has
709 		 * happened.  The first possibility is that we couldn't
710 		 * find the unit number of the particular peripheral driver
711 		 * that the user is asking about.  e.g. the user asks for
712 		 * the passthrough driver for "da11".  We find the list of
713 		 * "da" peripherals all right, but there is no unit 11.
714 		 * The other possibility is that we went through the list
715 		 * of peripheral drivers attached to the device structure,
716 		 * but didn't find one with the name "pass".  Either way,
717 		 * we return ENOENT, since we couldn't find something.
718 		 */
719 		if (periph == NULL) {
720 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
721 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
722 			*ccb->cgdl.periph_name = '\0';
723 			ccb->cgdl.unit_number = 0;
724 			error = ENOENT;
725 			/*
726 			 * It is unfortunate that this is even necessary,
727 			 * but there are many, many clueless users out there.
728 			 * If this is true, the user is looking for the
729 			 * passthrough driver, but doesn't have one in his
730 			 * kernel.
731 			 */
732 			if (base_periph_found == 1) {
733 				printf("xptioctl: pass driver is not in the "
734 				       "kernel\n");
735 				printf("xptioctl: put \"device pass\" in "
736 				       "your kernel config file\n");
737 			}
738 		}
739 		xpt_unlock_buses();
740 		break;
741 		}
742 	default:
743 		error = ENOTTY;
744 		break;
745 	}
746 
747 	return(error);
748 }
749 
750 static int
751 cam_module_event_handler(module_t mod, int what, void *arg)
752 {
753 	int error;
754 
755 	switch (what) {
756 	case MOD_LOAD:
757 		if ((error = xpt_init(NULL)) != 0)
758 			return (error);
759 		break;
760 	case MOD_UNLOAD:
761 		return EBUSY;
762 	default:
763 		return EOPNOTSUPP;
764 	}
765 
766 	return 0;
767 }
768 
769 static struct xpt_proto *
770 xpt_proto_find(cam_proto proto)
771 {
772 	struct xpt_proto **pp;
773 
774 	SET_FOREACH(pp, cam_xpt_proto_set) {
775 		if ((*pp)->proto == proto)
776 			return *pp;
777 	}
778 
779 	return NULL;
780 }
781 
782 static void
783 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
784 {
785 
786 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
787 		xpt_free_path(done_ccb->ccb_h.path);
788 		xpt_free_ccb(done_ccb);
789 	} else {
790 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
791 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
792 	}
793 	xpt_release_boot();
794 }
795 
796 /* thread to handle bus rescans */
797 static void
798 xpt_scanner_thread(void *dummy)
799 {
800 	union ccb	*ccb;
801 	struct mtx	*mtx;
802 	struct cam_ed	*device;
803 
804 	xpt_lock_buses();
805 	for (;;) {
806 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
807 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
808 			       "-", 0);
809 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
810 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
811 			xpt_unlock_buses();
812 
813 			/*
814 			 * We need to lock the device's mutex which we use as
815 			 * the path mutex. We can't do it directly because the
816 			 * cam_path in the ccb may wind up going away because
817 			 * the path lock may be dropped and the path retired in
818 			 * the completion callback. We do this directly to keep
819 			 * the reference counts in cam_path sane. We also have
820 			 * to copy the device pointer because ccb_h.path may
821 			 * be freed in the callback.
822 			 */
823 			mtx = xpt_path_mtx(ccb->ccb_h.path);
824 			device = ccb->ccb_h.path->device;
825 			xpt_acquire_device(device);
826 			mtx_lock(mtx);
827 			xpt_action(ccb);
828 			mtx_unlock(mtx);
829 			xpt_release_device(device);
830 
831 			xpt_lock_buses();
832 		}
833 	}
834 }
835 
836 void
837 xpt_rescan(union ccb *ccb)
838 {
839 	struct ccb_hdr *hdr;
840 
841 	/* Prepare request */
842 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
843 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
844 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
845 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
846 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
847 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
848 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
849 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
850 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
851 	else {
852 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
853 		xpt_free_path(ccb->ccb_h.path);
854 		xpt_free_ccb(ccb);
855 		return;
856 	}
857 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
858 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
859  		xpt_action_name(ccb->ccb_h.func_code)));
860 
861 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
862 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
863 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
864 	/* Don't make duplicate entries for the same paths. */
865 	xpt_lock_buses();
866 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
867 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
868 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
869 				wakeup(&xsoftc.ccb_scanq);
870 				xpt_unlock_buses();
871 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
872 				xpt_free_path(ccb->ccb_h.path);
873 				xpt_free_ccb(ccb);
874 				return;
875 			}
876 		}
877 	}
878 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
879 	xpt_hold_boot_locked();
880 	wakeup(&xsoftc.ccb_scanq);
881 	xpt_unlock_buses();
882 }
883 
884 /* Functions accessed by the peripheral drivers */
885 static int
886 xpt_init(void *dummy)
887 {
888 	struct cam_sim *xpt_sim;
889 	struct cam_path *path;
890 	struct cam_devq *devq;
891 	cam_status status;
892 	int error, i;
893 
894 	TAILQ_INIT(&xsoftc.xpt_busses);
895 	TAILQ_INIT(&xsoftc.ccb_scanq);
896 	STAILQ_INIT(&xsoftc.highpowerq);
897 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
898 
899 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
900 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
901 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
902 
903 #ifdef CAM_BOOT_DELAY
904 	/*
905 	 * Override this value at compile time to assist our users
906 	 * who don't use loader to boot a kernel.
907 	 */
908 	xsoftc.boot_delay = CAM_BOOT_DELAY;
909 #endif
910 
911 	/*
912 	 * The xpt layer is, itself, the equivalent of a SIM.
913 	 * Allow 16 ccbs in the ccb pool for it.  This should
914 	 * give decent parallelism when we probe buses and
915 	 * perform other XPT functions.
916 	 */
917 	devq = cam_simq_alloc(16);
918 	xpt_sim = cam_sim_alloc(xptaction,
919 				xptpoll,
920 				"xpt",
921 				/*softc*/NULL,
922 				/*unit*/0,
923 				/*mtx*/NULL,
924 				/*max_dev_transactions*/0,
925 				/*max_tagged_dev_transactions*/0,
926 				devq);
927 	if (xpt_sim == NULL)
928 		return (ENOMEM);
929 
930 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
931 		printf("xpt_init: xpt_bus_register failed with status %#x,"
932 		       " failing attach\n", status);
933 		return (EINVAL);
934 	}
935 
936 	/*
937 	 * Looking at the XPT from the SIM layer, the XPT is
938 	 * the equivalent of a peripheral driver.  Allocate
939 	 * a peripheral driver entry for us.
940 	 */
941 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
942 				      CAM_TARGET_WILDCARD,
943 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
944 		printf("xpt_init: xpt_create_path failed with status %#x,"
945 		       " failing attach\n", status);
946 		return (EINVAL);
947 	}
948 	xpt_path_lock(path);
949 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
950 			 path, NULL, 0, xpt_sim);
951 	xpt_path_unlock(path);
952 	xpt_free_path(path);
953 
954 	if (cam_num_doneqs < 1)
955 		cam_num_doneqs = 1 + mp_ncpus / 6;
956 	else if (cam_num_doneqs > MAXCPU)
957 		cam_num_doneqs = MAXCPU;
958 	for (i = 0; i < cam_num_doneqs; i++) {
959 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
960 		    MTX_DEF);
961 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
962 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
963 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
964 		if (error != 0) {
965 			cam_num_doneqs = i;
966 			break;
967 		}
968 	}
969 	if (cam_num_doneqs < 1) {
970 		printf("xpt_init: Cannot init completion queues "
971 		       "- failing attach\n");
972 		return (ENOMEM);
973 	}
974 
975 	/*
976 	 * Register a callback for when interrupts are enabled.
977 	 */
978 	config_intrhook_oneshot(xpt_config, NULL);
979 
980 	return (0);
981 }
982 
983 static cam_status
984 xptregister(struct cam_periph *periph, void *arg)
985 {
986 	struct cam_sim *xpt_sim;
987 
988 	if (periph == NULL) {
989 		printf("xptregister: periph was NULL!!\n");
990 		return(CAM_REQ_CMP_ERR);
991 	}
992 
993 	xpt_sim = (struct cam_sim *)arg;
994 	xpt_sim->softc = periph;
995 	xpt_periph = periph;
996 	periph->softc = NULL;
997 
998 	return(CAM_REQ_CMP);
999 }
1000 
1001 int32_t
1002 xpt_add_periph(struct cam_periph *periph)
1003 {
1004 	struct cam_ed *device;
1005 	int32_t	 status;
1006 
1007 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1008 	device = periph->path->device;
1009 	status = CAM_REQ_CMP;
1010 	if (device != NULL) {
1011 		mtx_lock(&device->target->bus->eb_mtx);
1012 		device->generation++;
1013 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1014 		mtx_unlock(&device->target->bus->eb_mtx);
1015 		atomic_add_32(&xsoftc.xpt_generation, 1);
1016 	}
1017 
1018 	return (status);
1019 }
1020 
1021 void
1022 xpt_remove_periph(struct cam_periph *periph)
1023 {
1024 	struct cam_ed *device;
1025 
1026 	device = periph->path->device;
1027 	if (device != NULL) {
1028 		mtx_lock(&device->target->bus->eb_mtx);
1029 		device->generation++;
1030 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1031 		mtx_unlock(&device->target->bus->eb_mtx);
1032 		atomic_add_32(&xsoftc.xpt_generation, 1);
1033 	}
1034 }
1035 
1036 void
1037 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1038 {
1039 	struct	cam_path *path = periph->path;
1040 	struct  xpt_proto *proto;
1041 
1042 	cam_periph_assert(periph, MA_OWNED);
1043 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1044 
1045 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1046 	       periph->periph_name, periph->unit_number,
1047 	       path->bus->sim->sim_name,
1048 	       path->bus->sim->unit_number,
1049 	       path->bus->sim->bus_id,
1050 	       path->bus->path_id,
1051 	       path->target->target_id,
1052 	       (uintmax_t)path->device->lun_id);
1053 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1054 	proto = xpt_proto_find(path->device->protocol);
1055 	if (proto)
1056 		proto->ops->announce(path->device);
1057 	else
1058 		printf("%s%d: Unknown protocol device %d\n",
1059 		    periph->periph_name, periph->unit_number,
1060 		    path->device->protocol);
1061 	if (path->device->serial_num_len > 0) {
1062 		/* Don't wrap the screen  - print only the first 60 chars */
1063 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1064 		       periph->unit_number, path->device->serial_num);
1065 	}
1066 	/* Announce transport details. */
1067 	path->bus->xport->ops->announce(periph);
1068 	/* Announce command queueing. */
1069 	if (path->device->inq_flags & SID_CmdQue
1070 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1071 		printf("%s%d: Command Queueing enabled\n",
1072 		       periph->periph_name, periph->unit_number);
1073 	}
1074 	/* Announce caller's details if they've passed in. */
1075 	if (announce_string != NULL)
1076 		printf("%s%d: %s\n", periph->periph_name,
1077 		       periph->unit_number, announce_string);
1078 }
1079 
1080 void
1081 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1082     char *announce_string)
1083 {
1084 	struct	cam_path *path = periph->path;
1085 	struct  xpt_proto *proto;
1086 
1087 	cam_periph_assert(periph, MA_OWNED);
1088 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1089 
1090 	/* Fall back to the non-sbuf method if necessary */
1091 	if (xsoftc.announce_nosbuf != 0) {
1092 		xpt_announce_periph(periph, announce_string);
1093 		return;
1094 	}
1095 	proto = xpt_proto_find(path->device->protocol);
1096 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1097 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1098 		xpt_announce_periph(periph, announce_string);
1099 		return;
1100 	}
1101 
1102 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1103 	    periph->periph_name, periph->unit_number,
1104 	    path->bus->sim->sim_name,
1105 	    path->bus->sim->unit_number,
1106 	    path->bus->sim->bus_id,
1107 	    path->bus->path_id,
1108 	    path->target->target_id,
1109 	    (uintmax_t)path->device->lun_id);
1110 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1111 
1112 	if (proto)
1113 		proto->ops->announce_sbuf(path->device, sb);
1114 	else
1115 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1116 		    periph->periph_name, periph->unit_number,
1117 		    path->device->protocol);
1118 	if (path->device->serial_num_len > 0) {
1119 		/* Don't wrap the screen  - print only the first 60 chars */
1120 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1121 		    periph->periph_name, periph->unit_number,
1122 		    path->device->serial_num);
1123 	}
1124 	/* Announce transport details. */
1125 	path->bus->xport->ops->announce_sbuf(periph, sb);
1126 	/* Announce command queueing. */
1127 	if (path->device->inq_flags & SID_CmdQue
1128 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1129 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1130 		    periph->periph_name, periph->unit_number);
1131 	}
1132 	/* Announce caller's details if they've passed in. */
1133 	if (announce_string != NULL)
1134 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1135 		    periph->unit_number, announce_string);
1136 }
1137 
1138 void
1139 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1140 {
1141 	if (quirks != 0) {
1142 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1143 		    periph->unit_number, quirks, bit_string);
1144 	}
1145 }
1146 
1147 void
1148 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1149 			 int quirks, char *bit_string)
1150 {
1151 	if (xsoftc.announce_nosbuf != 0) {
1152 		xpt_announce_quirks(periph, quirks, bit_string);
1153 		return;
1154 	}
1155 
1156 	if (quirks != 0) {
1157 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1158 		    periph->unit_number, quirks, bit_string);
1159 	}
1160 }
1161 
1162 void
1163 xpt_denounce_periph(struct cam_periph *periph)
1164 {
1165 	struct	cam_path *path = periph->path;
1166 	struct  xpt_proto *proto;
1167 
1168 	cam_periph_assert(periph, MA_OWNED);
1169 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1170 	       periph->periph_name, periph->unit_number,
1171 	       path->bus->sim->sim_name,
1172 	       path->bus->sim->unit_number,
1173 	       path->bus->sim->bus_id,
1174 	       path->bus->path_id,
1175 	       path->target->target_id,
1176 	       (uintmax_t)path->device->lun_id);
1177 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1178 	proto = xpt_proto_find(path->device->protocol);
1179 	if (proto)
1180 		proto->ops->denounce(path->device);
1181 	else
1182 		printf("%s%d: Unknown protocol device %d\n",
1183 		    periph->periph_name, periph->unit_number,
1184 		    path->device->protocol);
1185 	if (path->device->serial_num_len > 0)
1186 		printf(" s/n %.60s", path->device->serial_num);
1187 	printf(" detached\n");
1188 }
1189 
1190 void
1191 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1192 {
1193 	struct cam_path *path = periph->path;
1194 	struct xpt_proto *proto;
1195 
1196 	cam_periph_assert(periph, MA_OWNED);
1197 
1198 	/* Fall back to the non-sbuf method if necessary */
1199 	if (xsoftc.announce_nosbuf != 0) {
1200 		xpt_denounce_periph(periph);
1201 		return;
1202 	}
1203 	proto = xpt_proto_find(path->device->protocol);
1204 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1205 		xpt_denounce_periph(periph);
1206 		return;
1207 	}
1208 
1209 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1210 	    periph->periph_name, periph->unit_number,
1211 	    path->bus->sim->sim_name,
1212 	    path->bus->sim->unit_number,
1213 	    path->bus->sim->bus_id,
1214 	    path->bus->path_id,
1215 	    path->target->target_id,
1216 	    (uintmax_t)path->device->lun_id);
1217 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1218 
1219 	if (proto)
1220 		proto->ops->denounce_sbuf(path->device, sb);
1221 	else
1222 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1223 		    periph->periph_name, periph->unit_number,
1224 		    path->device->protocol);
1225 	if (path->device->serial_num_len > 0)
1226 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1227 	sbuf_printf(sb, " detached\n");
1228 }
1229 
1230 int
1231 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1232 {
1233 	int ret = -1, l, o;
1234 	struct ccb_dev_advinfo cdai;
1235 	struct scsi_vpd_device_id *did;
1236 	struct scsi_vpd_id_descriptor *idd;
1237 
1238 	xpt_path_assert(path, MA_OWNED);
1239 
1240 	memset(&cdai, 0, sizeof(cdai));
1241 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1242 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1243 	cdai.flags = CDAI_FLAG_NONE;
1244 	cdai.bufsiz = len;
1245 	cdai.buf = buf;
1246 
1247 	if (!strcmp(attr, "GEOM::ident"))
1248 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1249 	else if (!strcmp(attr, "GEOM::physpath"))
1250 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1251 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1252 		 strcmp(attr, "GEOM::lunname") == 0) {
1253 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1254 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1255 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1256 		if (cdai.buf == NULL) {
1257 			ret = ENOMEM;
1258 			goto out;
1259 		}
1260 	} else
1261 		goto out;
1262 
1263 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1264 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1265 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1266 	if (cdai.provsiz == 0)
1267 		goto out;
1268 	switch(cdai.buftype) {
1269 	case CDAI_TYPE_SCSI_DEVID:
1270 		did = (struct scsi_vpd_device_id *)cdai.buf;
1271 		if (strcmp(attr, "GEOM::lunid") == 0) {
1272 			idd = scsi_get_devid(did, cdai.provsiz,
1273 			    scsi_devid_is_lun_naa);
1274 			if (idd == NULL)
1275 				idd = scsi_get_devid(did, cdai.provsiz,
1276 				    scsi_devid_is_lun_eui64);
1277 			if (idd == NULL)
1278 				idd = scsi_get_devid(did, cdai.provsiz,
1279 				    scsi_devid_is_lun_uuid);
1280 			if (idd == NULL)
1281 				idd = scsi_get_devid(did, cdai.provsiz,
1282 				    scsi_devid_is_lun_md5);
1283 		} else
1284 			idd = NULL;
1285 
1286 		if (idd == NULL)
1287 			idd = scsi_get_devid(did, cdai.provsiz,
1288 			    scsi_devid_is_lun_t10);
1289 		if (idd == NULL)
1290 			idd = scsi_get_devid(did, cdai.provsiz,
1291 			    scsi_devid_is_lun_name);
1292 		if (idd == NULL)
1293 			break;
1294 
1295 		ret = 0;
1296 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1297 		    SVPD_ID_CODESET_ASCII) {
1298 			if (idd->length < len) {
1299 				for (l = 0; l < idd->length; l++)
1300 					buf[l] = idd->identifier[l] ?
1301 					    idd->identifier[l] : ' ';
1302 				buf[l] = 0;
1303 			} else
1304 				ret = EFAULT;
1305 			break;
1306 		}
1307 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1308 		    SVPD_ID_CODESET_UTF8) {
1309 			l = strnlen(idd->identifier, idd->length);
1310 			if (l < len) {
1311 				bcopy(idd->identifier, buf, l);
1312 				buf[l] = 0;
1313 			} else
1314 				ret = EFAULT;
1315 			break;
1316 		}
1317 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1318 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1319 			if ((idd->length - 2) * 2 + 4 >= len) {
1320 				ret = EFAULT;
1321 				break;
1322 			}
1323 			for (l = 2, o = 0; l < idd->length; l++) {
1324 				if (l == 6 || l == 8 || l == 10 || l == 12)
1325 				    o += sprintf(buf + o, "-");
1326 				o += sprintf(buf + o, "%02x",
1327 				    idd->identifier[l]);
1328 			}
1329 			break;
1330 		}
1331 		if (idd->length * 2 < len) {
1332 			for (l = 0; l < idd->length; l++)
1333 				sprintf(buf + l * 2, "%02x",
1334 				    idd->identifier[l]);
1335 		} else
1336 				ret = EFAULT;
1337 		break;
1338 	default:
1339 		if (cdai.provsiz < len) {
1340 			cdai.buf[cdai.provsiz] = 0;
1341 			ret = 0;
1342 		} else
1343 			ret = EFAULT;
1344 		break;
1345 	}
1346 
1347 out:
1348 	if ((char *)cdai.buf != buf)
1349 		free(cdai.buf, M_CAMXPT);
1350 	return ret;
1351 }
1352 
1353 static dev_match_ret
1354 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1355 	    struct cam_eb *bus)
1356 {
1357 	dev_match_ret retval;
1358 	u_int i;
1359 
1360 	retval = DM_RET_NONE;
1361 
1362 	/*
1363 	 * If we aren't given something to match against, that's an error.
1364 	 */
1365 	if (bus == NULL)
1366 		return(DM_RET_ERROR);
1367 
1368 	/*
1369 	 * If there are no match entries, then this bus matches no
1370 	 * matter what.
1371 	 */
1372 	if ((patterns == NULL) || (num_patterns == 0))
1373 		return(DM_RET_DESCEND | DM_RET_COPY);
1374 
1375 	for (i = 0; i < num_patterns; i++) {
1376 		struct bus_match_pattern *cur_pattern;
1377 
1378 		/*
1379 		 * If the pattern in question isn't for a bus node, we
1380 		 * aren't interested.  However, we do indicate to the
1381 		 * calling routine that we should continue descending the
1382 		 * tree, since the user wants to match against lower-level
1383 		 * EDT elements.
1384 		 */
1385 		if (patterns[i].type != DEV_MATCH_BUS) {
1386 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1387 				retval |= DM_RET_DESCEND;
1388 			continue;
1389 		}
1390 
1391 		cur_pattern = &patterns[i].pattern.bus_pattern;
1392 
1393 		/*
1394 		 * If they want to match any bus node, we give them any
1395 		 * device node.
1396 		 */
1397 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1398 			/* set the copy flag */
1399 			retval |= DM_RET_COPY;
1400 
1401 			/*
1402 			 * If we've already decided on an action, go ahead
1403 			 * and return.
1404 			 */
1405 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1406 				return(retval);
1407 		}
1408 
1409 		/*
1410 		 * Not sure why someone would do this...
1411 		 */
1412 		if (cur_pattern->flags == BUS_MATCH_NONE)
1413 			continue;
1414 
1415 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1416 		 && (cur_pattern->path_id != bus->path_id))
1417 			continue;
1418 
1419 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1420 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1421 			continue;
1422 
1423 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1424 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1425 			continue;
1426 
1427 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1428 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1429 			     DEV_IDLEN) != 0))
1430 			continue;
1431 
1432 		/*
1433 		 * If we get to this point, the user definitely wants
1434 		 * information on this bus.  So tell the caller to copy the
1435 		 * data out.
1436 		 */
1437 		retval |= DM_RET_COPY;
1438 
1439 		/*
1440 		 * If the return action has been set to descend, then we
1441 		 * know that we've already seen a non-bus matching
1442 		 * expression, therefore we need to further descend the tree.
1443 		 * This won't change by continuing around the loop, so we
1444 		 * go ahead and return.  If we haven't seen a non-bus
1445 		 * matching expression, we keep going around the loop until
1446 		 * we exhaust the matching expressions.  We'll set the stop
1447 		 * flag once we fall out of the loop.
1448 		 */
1449 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1450 			return(retval);
1451 	}
1452 
1453 	/*
1454 	 * If the return action hasn't been set to descend yet, that means
1455 	 * we haven't seen anything other than bus matching patterns.  So
1456 	 * tell the caller to stop descending the tree -- the user doesn't
1457 	 * want to match against lower level tree elements.
1458 	 */
1459 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1460 		retval |= DM_RET_STOP;
1461 
1462 	return(retval);
1463 }
1464 
1465 static dev_match_ret
1466 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1467 	       struct cam_ed *device)
1468 {
1469 	dev_match_ret retval;
1470 	u_int i;
1471 
1472 	retval = DM_RET_NONE;
1473 
1474 	/*
1475 	 * If we aren't given something to match against, that's an error.
1476 	 */
1477 	if (device == NULL)
1478 		return(DM_RET_ERROR);
1479 
1480 	/*
1481 	 * If there are no match entries, then this device matches no
1482 	 * matter what.
1483 	 */
1484 	if ((patterns == NULL) || (num_patterns == 0))
1485 		return(DM_RET_DESCEND | DM_RET_COPY);
1486 
1487 	for (i = 0; i < num_patterns; i++) {
1488 		struct device_match_pattern *cur_pattern;
1489 		struct scsi_vpd_device_id *device_id_page;
1490 
1491 		/*
1492 		 * If the pattern in question isn't for a device node, we
1493 		 * aren't interested.
1494 		 */
1495 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1496 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1497 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1498 				retval |= DM_RET_DESCEND;
1499 			continue;
1500 		}
1501 
1502 		cur_pattern = &patterns[i].pattern.device_pattern;
1503 
1504 		/* Error out if mutually exclusive options are specified. */
1505 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1506 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1507 			return(DM_RET_ERROR);
1508 
1509 		/*
1510 		 * If they want to match any device node, we give them any
1511 		 * device node.
1512 		 */
1513 		if (cur_pattern->flags == DEV_MATCH_ANY)
1514 			goto copy_dev_node;
1515 
1516 		/*
1517 		 * Not sure why someone would do this...
1518 		 */
1519 		if (cur_pattern->flags == DEV_MATCH_NONE)
1520 			continue;
1521 
1522 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1523 		 && (cur_pattern->path_id != device->target->bus->path_id))
1524 			continue;
1525 
1526 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1527 		 && (cur_pattern->target_id != device->target->target_id))
1528 			continue;
1529 
1530 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1531 		 && (cur_pattern->target_lun != device->lun_id))
1532 			continue;
1533 
1534 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1535 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1536 				    (caddr_t)&cur_pattern->data.inq_pat,
1537 				    1, sizeof(cur_pattern->data.inq_pat),
1538 				    scsi_static_inquiry_match) == NULL))
1539 			continue;
1540 
1541 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1542 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1543 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1544 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1545 				      device->device_id_len
1546 				    - SVPD_DEVICE_ID_HDR_LEN,
1547 				      cur_pattern->data.devid_pat.id,
1548 				      cur_pattern->data.devid_pat.id_len) != 0))
1549 			continue;
1550 
1551 copy_dev_node:
1552 		/*
1553 		 * If we get to this point, the user definitely wants
1554 		 * information on this device.  So tell the caller to copy
1555 		 * the data out.
1556 		 */
1557 		retval |= DM_RET_COPY;
1558 
1559 		/*
1560 		 * If the return action has been set to descend, then we
1561 		 * know that we've already seen a peripheral matching
1562 		 * expression, therefore we need to further descend the tree.
1563 		 * This won't change by continuing around the loop, so we
1564 		 * go ahead and return.  If we haven't seen a peripheral
1565 		 * matching expression, we keep going around the loop until
1566 		 * we exhaust the matching expressions.  We'll set the stop
1567 		 * flag once we fall out of the loop.
1568 		 */
1569 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1570 			return(retval);
1571 	}
1572 
1573 	/*
1574 	 * If the return action hasn't been set to descend yet, that means
1575 	 * we haven't seen any peripheral matching patterns.  So tell the
1576 	 * caller to stop descending the tree -- the user doesn't want to
1577 	 * match against lower level tree elements.
1578 	 */
1579 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1580 		retval |= DM_RET_STOP;
1581 
1582 	return(retval);
1583 }
1584 
1585 /*
1586  * Match a single peripheral against any number of match patterns.
1587  */
1588 static dev_match_ret
1589 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1590 	       struct cam_periph *periph)
1591 {
1592 	dev_match_ret retval;
1593 	u_int i;
1594 
1595 	/*
1596 	 * If we aren't given something to match against, that's an error.
1597 	 */
1598 	if (periph == NULL)
1599 		return(DM_RET_ERROR);
1600 
1601 	/*
1602 	 * If there are no match entries, then this peripheral matches no
1603 	 * matter what.
1604 	 */
1605 	if ((patterns == NULL) || (num_patterns == 0))
1606 		return(DM_RET_STOP | DM_RET_COPY);
1607 
1608 	/*
1609 	 * There aren't any nodes below a peripheral node, so there's no
1610 	 * reason to descend the tree any further.
1611 	 */
1612 	retval = DM_RET_STOP;
1613 
1614 	for (i = 0; i < num_patterns; i++) {
1615 		struct periph_match_pattern *cur_pattern;
1616 
1617 		/*
1618 		 * If the pattern in question isn't for a peripheral, we
1619 		 * aren't interested.
1620 		 */
1621 		if (patterns[i].type != DEV_MATCH_PERIPH)
1622 			continue;
1623 
1624 		cur_pattern = &patterns[i].pattern.periph_pattern;
1625 
1626 		/*
1627 		 * If they want to match on anything, then we will do so.
1628 		 */
1629 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1630 			/* set the copy flag */
1631 			retval |= DM_RET_COPY;
1632 
1633 			/*
1634 			 * We've already set the return action to stop,
1635 			 * since there are no nodes below peripherals in
1636 			 * the tree.
1637 			 */
1638 			return(retval);
1639 		}
1640 
1641 		/*
1642 		 * Not sure why someone would do this...
1643 		 */
1644 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1645 			continue;
1646 
1647 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1648 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1649 			continue;
1650 
1651 		/*
1652 		 * For the target and lun id's, we have to make sure the
1653 		 * target and lun pointers aren't NULL.  The xpt peripheral
1654 		 * has a wildcard target and device.
1655 		 */
1656 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1657 		 && ((periph->path->target == NULL)
1658 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1659 			continue;
1660 
1661 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1662 		 && ((periph->path->device == NULL)
1663 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1664 			continue;
1665 
1666 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1667 		 && (cur_pattern->unit_number != periph->unit_number))
1668 			continue;
1669 
1670 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1671 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1672 			     DEV_IDLEN) != 0))
1673 			continue;
1674 
1675 		/*
1676 		 * If we get to this point, the user definitely wants
1677 		 * information on this peripheral.  So tell the caller to
1678 		 * copy the data out.
1679 		 */
1680 		retval |= DM_RET_COPY;
1681 
1682 		/*
1683 		 * The return action has already been set to stop, since
1684 		 * peripherals don't have any nodes below them in the EDT.
1685 		 */
1686 		return(retval);
1687 	}
1688 
1689 	/*
1690 	 * If we get to this point, the peripheral that was passed in
1691 	 * doesn't match any of the patterns.
1692 	 */
1693 	return(retval);
1694 }
1695 
1696 static int
1697 xptedtbusfunc(struct cam_eb *bus, void *arg)
1698 {
1699 	struct ccb_dev_match *cdm;
1700 	struct cam_et *target;
1701 	dev_match_ret retval;
1702 
1703 	cdm = (struct ccb_dev_match *)arg;
1704 
1705 	/*
1706 	 * If our position is for something deeper in the tree, that means
1707 	 * that we've already seen this node.  So, we keep going down.
1708 	 */
1709 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1710 	 && (cdm->pos.cookie.bus == bus)
1711 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1712 	 && (cdm->pos.cookie.target != NULL))
1713 		retval = DM_RET_DESCEND;
1714 	else
1715 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1716 
1717 	/*
1718 	 * If we got an error, bail out of the search.
1719 	 */
1720 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1721 		cdm->status = CAM_DEV_MATCH_ERROR;
1722 		return(0);
1723 	}
1724 
1725 	/*
1726 	 * If the copy flag is set, copy this bus out.
1727 	 */
1728 	if (retval & DM_RET_COPY) {
1729 		int spaceleft, j;
1730 
1731 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1732 			sizeof(struct dev_match_result));
1733 
1734 		/*
1735 		 * If we don't have enough space to put in another
1736 		 * match result, save our position and tell the
1737 		 * user there are more devices to check.
1738 		 */
1739 		if (spaceleft < sizeof(struct dev_match_result)) {
1740 			bzero(&cdm->pos, sizeof(cdm->pos));
1741 			cdm->pos.position_type =
1742 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1743 
1744 			cdm->pos.cookie.bus = bus;
1745 			cdm->pos.generations[CAM_BUS_GENERATION]=
1746 				xsoftc.bus_generation;
1747 			cdm->status = CAM_DEV_MATCH_MORE;
1748 			return(0);
1749 		}
1750 		j = cdm->num_matches;
1751 		cdm->num_matches++;
1752 		cdm->matches[j].type = DEV_MATCH_BUS;
1753 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1754 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1755 		cdm->matches[j].result.bus_result.unit_number =
1756 			bus->sim->unit_number;
1757 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1758 			bus->sim->sim_name,
1759 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1760 	}
1761 
1762 	/*
1763 	 * If the user is only interested in buses, there's no
1764 	 * reason to descend to the next level in the tree.
1765 	 */
1766 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1767 		return(1);
1768 
1769 	/*
1770 	 * If there is a target generation recorded, check it to
1771 	 * make sure the target list hasn't changed.
1772 	 */
1773 	mtx_lock(&bus->eb_mtx);
1774 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1775 	 && (cdm->pos.cookie.bus == bus)
1776 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1777 	 && (cdm->pos.cookie.target != NULL)) {
1778 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1779 		    bus->generation)) {
1780 			mtx_unlock(&bus->eb_mtx);
1781 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1782 			return (0);
1783 		}
1784 		target = (struct cam_et *)cdm->pos.cookie.target;
1785 		target->refcount++;
1786 	} else
1787 		target = NULL;
1788 	mtx_unlock(&bus->eb_mtx);
1789 
1790 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1791 }
1792 
1793 static int
1794 xptedttargetfunc(struct cam_et *target, void *arg)
1795 {
1796 	struct ccb_dev_match *cdm;
1797 	struct cam_eb *bus;
1798 	struct cam_ed *device;
1799 
1800 	cdm = (struct ccb_dev_match *)arg;
1801 	bus = target->bus;
1802 
1803 	/*
1804 	 * If there is a device list generation recorded, check it to
1805 	 * make sure the device list hasn't changed.
1806 	 */
1807 	mtx_lock(&bus->eb_mtx);
1808 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1809 	 && (cdm->pos.cookie.bus == bus)
1810 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1811 	 && (cdm->pos.cookie.target == target)
1812 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1813 	 && (cdm->pos.cookie.device != NULL)) {
1814 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1815 		    target->generation) {
1816 			mtx_unlock(&bus->eb_mtx);
1817 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1818 			return(0);
1819 		}
1820 		device = (struct cam_ed *)cdm->pos.cookie.device;
1821 		device->refcount++;
1822 	} else
1823 		device = NULL;
1824 	mtx_unlock(&bus->eb_mtx);
1825 
1826 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1827 }
1828 
1829 static int
1830 xptedtdevicefunc(struct cam_ed *device, void *arg)
1831 {
1832 	struct cam_eb *bus;
1833 	struct cam_periph *periph;
1834 	struct ccb_dev_match *cdm;
1835 	dev_match_ret retval;
1836 
1837 	cdm = (struct ccb_dev_match *)arg;
1838 	bus = device->target->bus;
1839 
1840 	/*
1841 	 * If our position is for something deeper in the tree, that means
1842 	 * that we've already seen this node.  So, we keep going down.
1843 	 */
1844 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1845 	 && (cdm->pos.cookie.device == device)
1846 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1847 	 && (cdm->pos.cookie.periph != NULL))
1848 		retval = DM_RET_DESCEND;
1849 	else
1850 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1851 					device);
1852 
1853 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1854 		cdm->status = CAM_DEV_MATCH_ERROR;
1855 		return(0);
1856 	}
1857 
1858 	/*
1859 	 * If the copy flag is set, copy this device out.
1860 	 */
1861 	if (retval & DM_RET_COPY) {
1862 		int spaceleft, j;
1863 
1864 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1865 			sizeof(struct dev_match_result));
1866 
1867 		/*
1868 		 * If we don't have enough space to put in another
1869 		 * match result, save our position and tell the
1870 		 * user there are more devices to check.
1871 		 */
1872 		if (spaceleft < sizeof(struct dev_match_result)) {
1873 			bzero(&cdm->pos, sizeof(cdm->pos));
1874 			cdm->pos.position_type =
1875 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1876 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1877 
1878 			cdm->pos.cookie.bus = device->target->bus;
1879 			cdm->pos.generations[CAM_BUS_GENERATION]=
1880 				xsoftc.bus_generation;
1881 			cdm->pos.cookie.target = device->target;
1882 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1883 				device->target->bus->generation;
1884 			cdm->pos.cookie.device = device;
1885 			cdm->pos.generations[CAM_DEV_GENERATION] =
1886 				device->target->generation;
1887 			cdm->status = CAM_DEV_MATCH_MORE;
1888 			return(0);
1889 		}
1890 		j = cdm->num_matches;
1891 		cdm->num_matches++;
1892 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1893 		cdm->matches[j].result.device_result.path_id =
1894 			device->target->bus->path_id;
1895 		cdm->matches[j].result.device_result.target_id =
1896 			device->target->target_id;
1897 		cdm->matches[j].result.device_result.target_lun =
1898 			device->lun_id;
1899 		cdm->matches[j].result.device_result.protocol =
1900 			device->protocol;
1901 		bcopy(&device->inq_data,
1902 		      &cdm->matches[j].result.device_result.inq_data,
1903 		      sizeof(struct scsi_inquiry_data));
1904 		bcopy(&device->ident_data,
1905 		      &cdm->matches[j].result.device_result.ident_data,
1906 		      sizeof(struct ata_params));
1907 
1908 		/* Let the user know whether this device is unconfigured */
1909 		if (device->flags & CAM_DEV_UNCONFIGURED)
1910 			cdm->matches[j].result.device_result.flags =
1911 				DEV_RESULT_UNCONFIGURED;
1912 		else
1913 			cdm->matches[j].result.device_result.flags =
1914 				DEV_RESULT_NOFLAG;
1915 	}
1916 
1917 	/*
1918 	 * If the user isn't interested in peripherals, don't descend
1919 	 * the tree any further.
1920 	 */
1921 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1922 		return(1);
1923 
1924 	/*
1925 	 * If there is a peripheral list generation recorded, make sure
1926 	 * it hasn't changed.
1927 	 */
1928 	xpt_lock_buses();
1929 	mtx_lock(&bus->eb_mtx);
1930 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1931 	 && (cdm->pos.cookie.bus == bus)
1932 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1933 	 && (cdm->pos.cookie.target == device->target)
1934 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1935 	 && (cdm->pos.cookie.device == device)
1936 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1937 	 && (cdm->pos.cookie.periph != NULL)) {
1938 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1939 		    device->generation) {
1940 			mtx_unlock(&bus->eb_mtx);
1941 			xpt_unlock_buses();
1942 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1943 			return(0);
1944 		}
1945 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1946 		periph->refcount++;
1947 	} else
1948 		periph = NULL;
1949 	mtx_unlock(&bus->eb_mtx);
1950 	xpt_unlock_buses();
1951 
1952 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1953 }
1954 
1955 static int
1956 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1957 {
1958 	struct ccb_dev_match *cdm;
1959 	dev_match_ret retval;
1960 
1961 	cdm = (struct ccb_dev_match *)arg;
1962 
1963 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1964 
1965 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1966 		cdm->status = CAM_DEV_MATCH_ERROR;
1967 		return(0);
1968 	}
1969 
1970 	/*
1971 	 * If the copy flag is set, copy this peripheral out.
1972 	 */
1973 	if (retval & DM_RET_COPY) {
1974 		int spaceleft, j;
1975 		size_t l;
1976 
1977 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1978 			sizeof(struct dev_match_result));
1979 
1980 		/*
1981 		 * If we don't have enough space to put in another
1982 		 * match result, save our position and tell the
1983 		 * user there are more devices to check.
1984 		 */
1985 		if (spaceleft < sizeof(struct dev_match_result)) {
1986 			bzero(&cdm->pos, sizeof(cdm->pos));
1987 			cdm->pos.position_type =
1988 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1989 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1990 				CAM_DEV_POS_PERIPH;
1991 
1992 			cdm->pos.cookie.bus = periph->path->bus;
1993 			cdm->pos.generations[CAM_BUS_GENERATION]=
1994 				xsoftc.bus_generation;
1995 			cdm->pos.cookie.target = periph->path->target;
1996 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1997 				periph->path->bus->generation;
1998 			cdm->pos.cookie.device = periph->path->device;
1999 			cdm->pos.generations[CAM_DEV_GENERATION] =
2000 				periph->path->target->generation;
2001 			cdm->pos.cookie.periph = periph;
2002 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2003 				periph->path->device->generation;
2004 			cdm->status = CAM_DEV_MATCH_MORE;
2005 			return(0);
2006 		}
2007 
2008 		j = cdm->num_matches;
2009 		cdm->num_matches++;
2010 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2011 		cdm->matches[j].result.periph_result.path_id =
2012 			periph->path->bus->path_id;
2013 		cdm->matches[j].result.periph_result.target_id =
2014 			periph->path->target->target_id;
2015 		cdm->matches[j].result.periph_result.target_lun =
2016 			periph->path->device->lun_id;
2017 		cdm->matches[j].result.periph_result.unit_number =
2018 			periph->unit_number;
2019 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2020 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2021 			periph->periph_name, l);
2022 	}
2023 
2024 	return(1);
2025 }
2026 
2027 static int
2028 xptedtmatch(struct ccb_dev_match *cdm)
2029 {
2030 	struct cam_eb *bus;
2031 	int ret;
2032 
2033 	cdm->num_matches = 0;
2034 
2035 	/*
2036 	 * Check the bus list generation.  If it has changed, the user
2037 	 * needs to reset everything and start over.
2038 	 */
2039 	xpt_lock_buses();
2040 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2041 	 && (cdm->pos.cookie.bus != NULL)) {
2042 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2043 		    xsoftc.bus_generation) {
2044 			xpt_unlock_buses();
2045 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2046 			return(0);
2047 		}
2048 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2049 		bus->refcount++;
2050 	} else
2051 		bus = NULL;
2052 	xpt_unlock_buses();
2053 
2054 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2055 
2056 	/*
2057 	 * If we get back 0, that means that we had to stop before fully
2058 	 * traversing the EDT.  It also means that one of the subroutines
2059 	 * has set the status field to the proper value.  If we get back 1,
2060 	 * we've fully traversed the EDT and copied out any matching entries.
2061 	 */
2062 	if (ret == 1)
2063 		cdm->status = CAM_DEV_MATCH_LAST;
2064 
2065 	return(ret);
2066 }
2067 
2068 static int
2069 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2070 {
2071 	struct cam_periph *periph;
2072 	struct ccb_dev_match *cdm;
2073 
2074 	cdm = (struct ccb_dev_match *)arg;
2075 
2076 	xpt_lock_buses();
2077 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2078 	 && (cdm->pos.cookie.pdrv == pdrv)
2079 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2080 	 && (cdm->pos.cookie.periph != NULL)) {
2081 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2082 		    (*pdrv)->generation) {
2083 			xpt_unlock_buses();
2084 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2085 			return(0);
2086 		}
2087 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2088 		periph->refcount++;
2089 	} else
2090 		periph = NULL;
2091 	xpt_unlock_buses();
2092 
2093 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2094 }
2095 
2096 static int
2097 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2098 {
2099 	struct ccb_dev_match *cdm;
2100 	dev_match_ret retval;
2101 
2102 	cdm = (struct ccb_dev_match *)arg;
2103 
2104 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2105 
2106 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2107 		cdm->status = CAM_DEV_MATCH_ERROR;
2108 		return(0);
2109 	}
2110 
2111 	/*
2112 	 * If the copy flag is set, copy this peripheral out.
2113 	 */
2114 	if (retval & DM_RET_COPY) {
2115 		int spaceleft, j;
2116 		size_t l;
2117 
2118 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2119 			sizeof(struct dev_match_result));
2120 
2121 		/*
2122 		 * If we don't have enough space to put in another
2123 		 * match result, save our position and tell the
2124 		 * user there are more devices to check.
2125 		 */
2126 		if (spaceleft < sizeof(struct dev_match_result)) {
2127 			struct periph_driver **pdrv;
2128 
2129 			pdrv = NULL;
2130 			bzero(&cdm->pos, sizeof(cdm->pos));
2131 			cdm->pos.position_type =
2132 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2133 				CAM_DEV_POS_PERIPH;
2134 
2135 			/*
2136 			 * This may look a bit non-sensical, but it is
2137 			 * actually quite logical.  There are very few
2138 			 * peripheral drivers, and bloating every peripheral
2139 			 * structure with a pointer back to its parent
2140 			 * peripheral driver linker set entry would cost
2141 			 * more in the long run than doing this quick lookup.
2142 			 */
2143 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2144 				if (strcmp((*pdrv)->driver_name,
2145 				    periph->periph_name) == 0)
2146 					break;
2147 			}
2148 
2149 			if (*pdrv == NULL) {
2150 				cdm->status = CAM_DEV_MATCH_ERROR;
2151 				return(0);
2152 			}
2153 
2154 			cdm->pos.cookie.pdrv = pdrv;
2155 			/*
2156 			 * The periph generation slot does double duty, as
2157 			 * does the periph pointer slot.  They are used for
2158 			 * both edt and pdrv lookups and positioning.
2159 			 */
2160 			cdm->pos.cookie.periph = periph;
2161 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2162 				(*pdrv)->generation;
2163 			cdm->status = CAM_DEV_MATCH_MORE;
2164 			return(0);
2165 		}
2166 
2167 		j = cdm->num_matches;
2168 		cdm->num_matches++;
2169 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2170 		cdm->matches[j].result.periph_result.path_id =
2171 			periph->path->bus->path_id;
2172 
2173 		/*
2174 		 * The transport layer peripheral doesn't have a target or
2175 		 * lun.
2176 		 */
2177 		if (periph->path->target)
2178 			cdm->matches[j].result.periph_result.target_id =
2179 				periph->path->target->target_id;
2180 		else
2181 			cdm->matches[j].result.periph_result.target_id =
2182 				CAM_TARGET_WILDCARD;
2183 
2184 		if (periph->path->device)
2185 			cdm->matches[j].result.periph_result.target_lun =
2186 				periph->path->device->lun_id;
2187 		else
2188 			cdm->matches[j].result.periph_result.target_lun =
2189 				CAM_LUN_WILDCARD;
2190 
2191 		cdm->matches[j].result.periph_result.unit_number =
2192 			periph->unit_number;
2193 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2194 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2195 			periph->periph_name, l);
2196 	}
2197 
2198 	return(1);
2199 }
2200 
2201 static int
2202 xptperiphlistmatch(struct ccb_dev_match *cdm)
2203 {
2204 	int ret;
2205 
2206 	cdm->num_matches = 0;
2207 
2208 	/*
2209 	 * At this point in the edt traversal function, we check the bus
2210 	 * list generation to make sure that no buses have been added or
2211 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2212 	 * For the peripheral driver list traversal function, however, we
2213 	 * don't have to worry about new peripheral driver types coming or
2214 	 * going; they're in a linker set, and therefore can't change
2215 	 * without a recompile.
2216 	 */
2217 
2218 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2219 	 && (cdm->pos.cookie.pdrv != NULL))
2220 		ret = xptpdrvtraverse(
2221 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2222 				xptplistpdrvfunc, cdm);
2223 	else
2224 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2225 
2226 	/*
2227 	 * If we get back 0, that means that we had to stop before fully
2228 	 * traversing the peripheral driver tree.  It also means that one of
2229 	 * the subroutines has set the status field to the proper value.  If
2230 	 * we get back 1, we've fully traversed the EDT and copied out any
2231 	 * matching entries.
2232 	 */
2233 	if (ret == 1)
2234 		cdm->status = CAM_DEV_MATCH_LAST;
2235 
2236 	return(ret);
2237 }
2238 
2239 static int
2240 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2241 {
2242 	struct cam_eb *bus, *next_bus;
2243 	int retval;
2244 
2245 	retval = 1;
2246 	if (start_bus)
2247 		bus = start_bus;
2248 	else {
2249 		xpt_lock_buses();
2250 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2251 		if (bus == NULL) {
2252 			xpt_unlock_buses();
2253 			return (retval);
2254 		}
2255 		bus->refcount++;
2256 		xpt_unlock_buses();
2257 	}
2258 	for (; bus != NULL; bus = next_bus) {
2259 		retval = tr_func(bus, arg);
2260 		if (retval == 0) {
2261 			xpt_release_bus(bus);
2262 			break;
2263 		}
2264 		xpt_lock_buses();
2265 		next_bus = TAILQ_NEXT(bus, links);
2266 		if (next_bus)
2267 			next_bus->refcount++;
2268 		xpt_unlock_buses();
2269 		xpt_release_bus(bus);
2270 	}
2271 	return(retval);
2272 }
2273 
2274 static int
2275 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2276 		  xpt_targetfunc_t *tr_func, void *arg)
2277 {
2278 	struct cam_et *target, *next_target;
2279 	int retval;
2280 
2281 	retval = 1;
2282 	if (start_target)
2283 		target = start_target;
2284 	else {
2285 		mtx_lock(&bus->eb_mtx);
2286 		target = TAILQ_FIRST(&bus->et_entries);
2287 		if (target == NULL) {
2288 			mtx_unlock(&bus->eb_mtx);
2289 			return (retval);
2290 		}
2291 		target->refcount++;
2292 		mtx_unlock(&bus->eb_mtx);
2293 	}
2294 	for (; target != NULL; target = next_target) {
2295 		retval = tr_func(target, arg);
2296 		if (retval == 0) {
2297 			xpt_release_target(target);
2298 			break;
2299 		}
2300 		mtx_lock(&bus->eb_mtx);
2301 		next_target = TAILQ_NEXT(target, links);
2302 		if (next_target)
2303 			next_target->refcount++;
2304 		mtx_unlock(&bus->eb_mtx);
2305 		xpt_release_target(target);
2306 	}
2307 	return(retval);
2308 }
2309 
2310 static int
2311 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2312 		  xpt_devicefunc_t *tr_func, void *arg)
2313 {
2314 	struct cam_eb *bus;
2315 	struct cam_ed *device, *next_device;
2316 	int retval;
2317 
2318 	retval = 1;
2319 	bus = target->bus;
2320 	if (start_device)
2321 		device = start_device;
2322 	else {
2323 		mtx_lock(&bus->eb_mtx);
2324 		device = TAILQ_FIRST(&target->ed_entries);
2325 		if (device == NULL) {
2326 			mtx_unlock(&bus->eb_mtx);
2327 			return (retval);
2328 		}
2329 		device->refcount++;
2330 		mtx_unlock(&bus->eb_mtx);
2331 	}
2332 	for (; device != NULL; device = next_device) {
2333 		mtx_lock(&device->device_mtx);
2334 		retval = tr_func(device, arg);
2335 		mtx_unlock(&device->device_mtx);
2336 		if (retval == 0) {
2337 			xpt_release_device(device);
2338 			break;
2339 		}
2340 		mtx_lock(&bus->eb_mtx);
2341 		next_device = TAILQ_NEXT(device, links);
2342 		if (next_device)
2343 			next_device->refcount++;
2344 		mtx_unlock(&bus->eb_mtx);
2345 		xpt_release_device(device);
2346 	}
2347 	return(retval);
2348 }
2349 
2350 static int
2351 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2352 		  xpt_periphfunc_t *tr_func, void *arg)
2353 {
2354 	struct cam_eb *bus;
2355 	struct cam_periph *periph, *next_periph;
2356 	int retval;
2357 
2358 	retval = 1;
2359 
2360 	bus = device->target->bus;
2361 	if (start_periph)
2362 		periph = start_periph;
2363 	else {
2364 		xpt_lock_buses();
2365 		mtx_lock(&bus->eb_mtx);
2366 		periph = SLIST_FIRST(&device->periphs);
2367 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2368 			periph = SLIST_NEXT(periph, periph_links);
2369 		if (periph == NULL) {
2370 			mtx_unlock(&bus->eb_mtx);
2371 			xpt_unlock_buses();
2372 			return (retval);
2373 		}
2374 		periph->refcount++;
2375 		mtx_unlock(&bus->eb_mtx);
2376 		xpt_unlock_buses();
2377 	}
2378 	for (; periph != NULL; periph = next_periph) {
2379 		retval = tr_func(periph, arg);
2380 		if (retval == 0) {
2381 			cam_periph_release_locked(periph);
2382 			break;
2383 		}
2384 		xpt_lock_buses();
2385 		mtx_lock(&bus->eb_mtx);
2386 		next_periph = SLIST_NEXT(periph, periph_links);
2387 		while (next_periph != NULL &&
2388 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2389 			next_periph = SLIST_NEXT(next_periph, periph_links);
2390 		if (next_periph)
2391 			next_periph->refcount++;
2392 		mtx_unlock(&bus->eb_mtx);
2393 		xpt_unlock_buses();
2394 		cam_periph_release_locked(periph);
2395 	}
2396 	return(retval);
2397 }
2398 
2399 static int
2400 xptpdrvtraverse(struct periph_driver **start_pdrv,
2401 		xpt_pdrvfunc_t *tr_func, void *arg)
2402 {
2403 	struct periph_driver **pdrv;
2404 	int retval;
2405 
2406 	retval = 1;
2407 
2408 	/*
2409 	 * We don't traverse the peripheral driver list like we do the
2410 	 * other lists, because it is a linker set, and therefore cannot be
2411 	 * changed during runtime.  If the peripheral driver list is ever
2412 	 * re-done to be something other than a linker set (i.e. it can
2413 	 * change while the system is running), the list traversal should
2414 	 * be modified to work like the other traversal functions.
2415 	 */
2416 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2417 	     *pdrv != NULL; pdrv++) {
2418 		retval = tr_func(pdrv, arg);
2419 
2420 		if (retval == 0)
2421 			return(retval);
2422 	}
2423 
2424 	return(retval);
2425 }
2426 
2427 static int
2428 xptpdperiphtraverse(struct periph_driver **pdrv,
2429 		    struct cam_periph *start_periph,
2430 		    xpt_periphfunc_t *tr_func, void *arg)
2431 {
2432 	struct cam_periph *periph, *next_periph;
2433 	int retval;
2434 
2435 	retval = 1;
2436 
2437 	if (start_periph)
2438 		periph = start_periph;
2439 	else {
2440 		xpt_lock_buses();
2441 		periph = TAILQ_FIRST(&(*pdrv)->units);
2442 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2443 			periph = TAILQ_NEXT(periph, unit_links);
2444 		if (periph == NULL) {
2445 			xpt_unlock_buses();
2446 			return (retval);
2447 		}
2448 		periph->refcount++;
2449 		xpt_unlock_buses();
2450 	}
2451 	for (; periph != NULL; periph = next_periph) {
2452 		cam_periph_lock(periph);
2453 		retval = tr_func(periph, arg);
2454 		cam_periph_unlock(periph);
2455 		if (retval == 0) {
2456 			cam_periph_release(periph);
2457 			break;
2458 		}
2459 		xpt_lock_buses();
2460 		next_periph = TAILQ_NEXT(periph, unit_links);
2461 		while (next_periph != NULL &&
2462 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2463 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2464 		if (next_periph)
2465 			next_periph->refcount++;
2466 		xpt_unlock_buses();
2467 		cam_periph_release(periph);
2468 	}
2469 	return(retval);
2470 }
2471 
2472 static int
2473 xptdefbusfunc(struct cam_eb *bus, void *arg)
2474 {
2475 	struct xpt_traverse_config *tr_config;
2476 
2477 	tr_config = (struct xpt_traverse_config *)arg;
2478 
2479 	if (tr_config->depth == XPT_DEPTH_BUS) {
2480 		xpt_busfunc_t *tr_func;
2481 
2482 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2483 
2484 		return(tr_func(bus, tr_config->tr_arg));
2485 	} else
2486 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2487 }
2488 
2489 static int
2490 xptdeftargetfunc(struct cam_et *target, void *arg)
2491 {
2492 	struct xpt_traverse_config *tr_config;
2493 
2494 	tr_config = (struct xpt_traverse_config *)arg;
2495 
2496 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2497 		xpt_targetfunc_t *tr_func;
2498 
2499 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2500 
2501 		return(tr_func(target, tr_config->tr_arg));
2502 	} else
2503 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2504 }
2505 
2506 static int
2507 xptdefdevicefunc(struct cam_ed *device, void *arg)
2508 {
2509 	struct xpt_traverse_config *tr_config;
2510 
2511 	tr_config = (struct xpt_traverse_config *)arg;
2512 
2513 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2514 		xpt_devicefunc_t *tr_func;
2515 
2516 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2517 
2518 		return(tr_func(device, tr_config->tr_arg));
2519 	} else
2520 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2521 }
2522 
2523 static int
2524 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2525 {
2526 	struct xpt_traverse_config *tr_config;
2527 	xpt_periphfunc_t *tr_func;
2528 
2529 	tr_config = (struct xpt_traverse_config *)arg;
2530 
2531 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2532 
2533 	/*
2534 	 * Unlike the other default functions, we don't check for depth
2535 	 * here.  The peripheral driver level is the last level in the EDT,
2536 	 * so if we're here, we should execute the function in question.
2537 	 */
2538 	return(tr_func(periph, tr_config->tr_arg));
2539 }
2540 
2541 /*
2542  * Execute the given function for every bus in the EDT.
2543  */
2544 static int
2545 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2546 {
2547 	struct xpt_traverse_config tr_config;
2548 
2549 	tr_config.depth = XPT_DEPTH_BUS;
2550 	tr_config.tr_func = tr_func;
2551 	tr_config.tr_arg = arg;
2552 
2553 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2554 }
2555 
2556 /*
2557  * Execute the given function for every device in the EDT.
2558  */
2559 static int
2560 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2561 {
2562 	struct xpt_traverse_config tr_config;
2563 
2564 	tr_config.depth = XPT_DEPTH_DEVICE;
2565 	tr_config.tr_func = tr_func;
2566 	tr_config.tr_arg = arg;
2567 
2568 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2569 }
2570 
2571 static int
2572 xptsetasyncfunc(struct cam_ed *device, void *arg)
2573 {
2574 	struct cam_path path;
2575 	struct ccb_getdev cgd;
2576 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2577 
2578 	/*
2579 	 * Don't report unconfigured devices (Wildcard devs,
2580 	 * devices only for target mode, device instances
2581 	 * that have been invalidated but are waiting for
2582 	 * their last reference count to be released).
2583 	 */
2584 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2585 		return (1);
2586 
2587 	xpt_compile_path(&path,
2588 			 NULL,
2589 			 device->target->bus->path_id,
2590 			 device->target->target_id,
2591 			 device->lun_id);
2592 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2593 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2594 	xpt_action((union ccb *)&cgd);
2595 	csa->callback(csa->callback_arg,
2596 			    AC_FOUND_DEVICE,
2597 			    &path, &cgd);
2598 	xpt_release_path(&path);
2599 
2600 	return(1);
2601 }
2602 
2603 static int
2604 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2605 {
2606 	struct cam_path path;
2607 	struct ccb_pathinq cpi;
2608 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2609 
2610 	xpt_compile_path(&path, /*periph*/NULL,
2611 			 bus->path_id,
2612 			 CAM_TARGET_WILDCARD,
2613 			 CAM_LUN_WILDCARD);
2614 	xpt_path_lock(&path);
2615 	xpt_path_inq(&cpi, &path);
2616 	csa->callback(csa->callback_arg,
2617 			    AC_PATH_REGISTERED,
2618 			    &path, &cpi);
2619 	xpt_path_unlock(&path);
2620 	xpt_release_path(&path);
2621 
2622 	return(1);
2623 }
2624 
2625 void
2626 xpt_action(union ccb *start_ccb)
2627 {
2628 
2629 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2630 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2631 		xpt_action_name(start_ccb->ccb_h.func_code)));
2632 
2633 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2634 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2635 }
2636 
2637 void
2638 xpt_action_default(union ccb *start_ccb)
2639 {
2640 	struct cam_path *path;
2641 	struct cam_sim *sim;
2642 	struct mtx *mtx;
2643 
2644 	path = start_ccb->ccb_h.path;
2645 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2646 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2647 		xpt_action_name(start_ccb->ccb_h.func_code)));
2648 
2649 	switch (start_ccb->ccb_h.func_code) {
2650 	case XPT_SCSI_IO:
2651 	{
2652 		struct cam_ed *device;
2653 
2654 		/*
2655 		 * For the sake of compatibility with SCSI-1
2656 		 * devices that may not understand the identify
2657 		 * message, we include lun information in the
2658 		 * second byte of all commands.  SCSI-1 specifies
2659 		 * that luns are a 3 bit value and reserves only 3
2660 		 * bits for lun information in the CDB.  Later
2661 		 * revisions of the SCSI spec allow for more than 8
2662 		 * luns, but have deprecated lun information in the
2663 		 * CDB.  So, if the lun won't fit, we must omit.
2664 		 *
2665 		 * Also be aware that during initial probing for devices,
2666 		 * the inquiry information is unknown but initialized to 0.
2667 		 * This means that this code will be exercised while probing
2668 		 * devices with an ANSI revision greater than 2.
2669 		 */
2670 		device = path->device;
2671 		if (device->protocol_version <= SCSI_REV_2
2672 		 && start_ccb->ccb_h.target_lun < 8
2673 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2674 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2675 			    start_ccb->ccb_h.target_lun << 5;
2676 		}
2677 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2678 	}
2679 	/* FALLTHROUGH */
2680 	case XPT_TARGET_IO:
2681 	case XPT_CONT_TARGET_IO:
2682 		start_ccb->csio.sense_resid = 0;
2683 		start_ccb->csio.resid = 0;
2684 		/* FALLTHROUGH */
2685 	case XPT_ATA_IO:
2686 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2687 			start_ccb->ataio.resid = 0;
2688 		/* FALLTHROUGH */
2689 	case XPT_NVME_IO:
2690 	case XPT_NVME_ADMIN:
2691 	case XPT_MMC_IO:
2692 	case XPT_RESET_DEV:
2693 	case XPT_ENG_EXEC:
2694 	case XPT_SMP_IO:
2695 	{
2696 		struct cam_devq *devq;
2697 
2698 		devq = path->bus->sim->devq;
2699 		mtx_lock(&devq->send_mtx);
2700 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2701 		if (xpt_schedule_devq(devq, path->device) != 0)
2702 			xpt_run_devq(devq);
2703 		mtx_unlock(&devq->send_mtx);
2704 		break;
2705 	}
2706 	case XPT_CALC_GEOMETRY:
2707 		/* Filter out garbage */
2708 		if (start_ccb->ccg.block_size == 0
2709 		 || start_ccb->ccg.volume_size == 0) {
2710 			start_ccb->ccg.cylinders = 0;
2711 			start_ccb->ccg.heads = 0;
2712 			start_ccb->ccg.secs_per_track = 0;
2713 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2714 			break;
2715 		}
2716 		goto call_sim;
2717 	case XPT_ABORT:
2718 	{
2719 		union ccb* abort_ccb;
2720 
2721 		abort_ccb = start_ccb->cab.abort_ccb;
2722 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2723 			struct cam_ed *device;
2724 			struct cam_devq *devq;
2725 
2726 			device = abort_ccb->ccb_h.path->device;
2727 			devq = device->sim->devq;
2728 
2729 			mtx_lock(&devq->send_mtx);
2730 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2731 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2732 				abort_ccb->ccb_h.status =
2733 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2734 				xpt_freeze_devq_device(device, 1);
2735 				mtx_unlock(&devq->send_mtx);
2736 				xpt_done(abort_ccb);
2737 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2738 				break;
2739 			}
2740 			mtx_unlock(&devq->send_mtx);
2741 
2742 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2743 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2744 				/*
2745 				 * We've caught this ccb en route to
2746 				 * the SIM.  Flag it for abort and the
2747 				 * SIM will do so just before starting
2748 				 * real work on the CCB.
2749 				 */
2750 				abort_ccb->ccb_h.status =
2751 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2752 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2753 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2754 				break;
2755 			}
2756 		}
2757 		if (XPT_FC_IS_QUEUED(abort_ccb)
2758 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2759 			/*
2760 			 * It's already completed but waiting
2761 			 * for our SWI to get to it.
2762 			 */
2763 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2764 			break;
2765 		}
2766 		/*
2767 		 * If we weren't able to take care of the abort request
2768 		 * in the XPT, pass the request down to the SIM for processing.
2769 		 */
2770 	}
2771 	/* FALLTHROUGH */
2772 	case XPT_ACCEPT_TARGET_IO:
2773 	case XPT_EN_LUN:
2774 	case XPT_IMMED_NOTIFY:
2775 	case XPT_NOTIFY_ACK:
2776 	case XPT_RESET_BUS:
2777 	case XPT_IMMEDIATE_NOTIFY:
2778 	case XPT_NOTIFY_ACKNOWLEDGE:
2779 	case XPT_GET_SIM_KNOB_OLD:
2780 	case XPT_GET_SIM_KNOB:
2781 	case XPT_SET_SIM_KNOB:
2782 	case XPT_GET_TRAN_SETTINGS:
2783 	case XPT_SET_TRAN_SETTINGS:
2784 	case XPT_PATH_INQ:
2785 call_sim:
2786 		sim = path->bus->sim;
2787 		mtx = sim->mtx;
2788 		if (mtx && !mtx_owned(mtx))
2789 			mtx_lock(mtx);
2790 		else
2791 			mtx = NULL;
2792 
2793 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2794 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2795 		(*(sim->sim_action))(sim, start_ccb);
2796 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2797 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2798 		if (mtx)
2799 			mtx_unlock(mtx);
2800 		break;
2801 	case XPT_PATH_STATS:
2802 		start_ccb->cpis.last_reset = path->bus->last_reset;
2803 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2804 		break;
2805 	case XPT_GDEV_TYPE:
2806 	{
2807 		struct cam_ed *dev;
2808 
2809 		dev = path->device;
2810 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2811 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2812 		} else {
2813 			struct ccb_getdev *cgd;
2814 
2815 			cgd = &start_ccb->cgd;
2816 			cgd->protocol = dev->protocol;
2817 			cgd->inq_data = dev->inq_data;
2818 			cgd->ident_data = dev->ident_data;
2819 			cgd->inq_flags = dev->inq_flags;
2820 			cgd->ccb_h.status = CAM_REQ_CMP;
2821 			cgd->serial_num_len = dev->serial_num_len;
2822 			if ((dev->serial_num_len > 0)
2823 			 && (dev->serial_num != NULL))
2824 				bcopy(dev->serial_num, cgd->serial_num,
2825 				      dev->serial_num_len);
2826 		}
2827 		break;
2828 	}
2829 	case XPT_GDEV_STATS:
2830 	{
2831 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2832 		struct cam_ed *dev = path->device;
2833 		struct cam_eb *bus = path->bus;
2834 		struct cam_et *tar = path->target;
2835 		struct cam_devq *devq = bus->sim->devq;
2836 
2837 		mtx_lock(&devq->send_mtx);
2838 		cgds->dev_openings = dev->ccbq.dev_openings;
2839 		cgds->dev_active = dev->ccbq.dev_active;
2840 		cgds->allocated = dev->ccbq.allocated;
2841 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2842 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2843 		cgds->last_reset = tar->last_reset;
2844 		cgds->maxtags = dev->maxtags;
2845 		cgds->mintags = dev->mintags;
2846 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2847 			cgds->last_reset = bus->last_reset;
2848 		mtx_unlock(&devq->send_mtx);
2849 		cgds->ccb_h.status = CAM_REQ_CMP;
2850 		break;
2851 	}
2852 	case XPT_GDEVLIST:
2853 	{
2854 		struct cam_periph	*nperiph;
2855 		struct periph_list	*periph_head;
2856 		struct ccb_getdevlist	*cgdl;
2857 		u_int			i;
2858 		struct cam_ed		*device;
2859 		int			found;
2860 
2861 		found = 0;
2862 
2863 		/*
2864 		 * Don't want anyone mucking with our data.
2865 		 */
2866 		device = path->device;
2867 		periph_head = &device->periphs;
2868 		cgdl = &start_ccb->cgdl;
2869 
2870 		/*
2871 		 * Check and see if the list has changed since the user
2872 		 * last requested a list member.  If so, tell them that the
2873 		 * list has changed, and therefore they need to start over
2874 		 * from the beginning.
2875 		 */
2876 		if ((cgdl->index != 0) &&
2877 		    (cgdl->generation != device->generation)) {
2878 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2879 			break;
2880 		}
2881 
2882 		/*
2883 		 * Traverse the list of peripherals and attempt to find
2884 		 * the requested peripheral.
2885 		 */
2886 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2887 		     (nperiph != NULL) && (i <= cgdl->index);
2888 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2889 			if (i == cgdl->index) {
2890 				strlcpy(cgdl->periph_name,
2891 					nperiph->periph_name,
2892 					sizeof(cgdl->periph_name));
2893 				cgdl->unit_number = nperiph->unit_number;
2894 				found = 1;
2895 			}
2896 		}
2897 		if (found == 0) {
2898 			cgdl->status = CAM_GDEVLIST_ERROR;
2899 			break;
2900 		}
2901 
2902 		if (nperiph == NULL)
2903 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2904 		else
2905 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2906 
2907 		cgdl->index++;
2908 		cgdl->generation = device->generation;
2909 
2910 		cgdl->ccb_h.status = CAM_REQ_CMP;
2911 		break;
2912 	}
2913 	case XPT_DEV_MATCH:
2914 	{
2915 		dev_pos_type position_type;
2916 		struct ccb_dev_match *cdm;
2917 
2918 		cdm = &start_ccb->cdm;
2919 
2920 		/*
2921 		 * There are two ways of getting at information in the EDT.
2922 		 * The first way is via the primary EDT tree.  It starts
2923 		 * with a list of buses, then a list of targets on a bus,
2924 		 * then devices/luns on a target, and then peripherals on a
2925 		 * device/lun.  The "other" way is by the peripheral driver
2926 		 * lists.  The peripheral driver lists are organized by
2927 		 * peripheral driver.  (obviously)  So it makes sense to
2928 		 * use the peripheral driver list if the user is looking
2929 		 * for something like "da1", or all "da" devices.  If the
2930 		 * user is looking for something on a particular bus/target
2931 		 * or lun, it's generally better to go through the EDT tree.
2932 		 */
2933 
2934 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2935 			position_type = cdm->pos.position_type;
2936 		else {
2937 			u_int i;
2938 
2939 			position_type = CAM_DEV_POS_NONE;
2940 
2941 			for (i = 0; i < cdm->num_patterns; i++) {
2942 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2943 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2944 					position_type = CAM_DEV_POS_EDT;
2945 					break;
2946 				}
2947 			}
2948 
2949 			if (cdm->num_patterns == 0)
2950 				position_type = CAM_DEV_POS_EDT;
2951 			else if (position_type == CAM_DEV_POS_NONE)
2952 				position_type = CAM_DEV_POS_PDRV;
2953 		}
2954 
2955 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2956 		case CAM_DEV_POS_EDT:
2957 			xptedtmatch(cdm);
2958 			break;
2959 		case CAM_DEV_POS_PDRV:
2960 			xptperiphlistmatch(cdm);
2961 			break;
2962 		default:
2963 			cdm->status = CAM_DEV_MATCH_ERROR;
2964 			break;
2965 		}
2966 
2967 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2968 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2969 		else
2970 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2971 
2972 		break;
2973 	}
2974 	case XPT_SASYNC_CB:
2975 	{
2976 		struct ccb_setasync *csa;
2977 		struct async_node *cur_entry;
2978 		struct async_list *async_head;
2979 		u_int32_t added;
2980 
2981 		csa = &start_ccb->csa;
2982 		added = csa->event_enable;
2983 		async_head = &path->device->asyncs;
2984 
2985 		/*
2986 		 * If there is already an entry for us, simply
2987 		 * update it.
2988 		 */
2989 		cur_entry = SLIST_FIRST(async_head);
2990 		while (cur_entry != NULL) {
2991 			if ((cur_entry->callback_arg == csa->callback_arg)
2992 			 && (cur_entry->callback == csa->callback))
2993 				break;
2994 			cur_entry = SLIST_NEXT(cur_entry, links);
2995 		}
2996 
2997 		if (cur_entry != NULL) {
2998 		 	/*
2999 			 * If the request has no flags set,
3000 			 * remove the entry.
3001 			 */
3002 			added &= ~cur_entry->event_enable;
3003 			if (csa->event_enable == 0) {
3004 				SLIST_REMOVE(async_head, cur_entry,
3005 					     async_node, links);
3006 				xpt_release_device(path->device);
3007 				free(cur_entry, M_CAMXPT);
3008 			} else {
3009 				cur_entry->event_enable = csa->event_enable;
3010 			}
3011 			csa->event_enable = added;
3012 		} else {
3013 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3014 					   M_NOWAIT);
3015 			if (cur_entry == NULL) {
3016 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3017 				break;
3018 			}
3019 			cur_entry->event_enable = csa->event_enable;
3020 			cur_entry->event_lock = (path->bus->sim->mtx &&
3021 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3022 			cur_entry->callback_arg = csa->callback_arg;
3023 			cur_entry->callback = csa->callback;
3024 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3025 			xpt_acquire_device(path->device);
3026 		}
3027 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3028 		break;
3029 	}
3030 	case XPT_REL_SIMQ:
3031 	{
3032 		struct ccb_relsim *crs;
3033 		struct cam_ed *dev;
3034 
3035 		crs = &start_ccb->crs;
3036 		dev = path->device;
3037 		if (dev == NULL) {
3038 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3039 			break;
3040 		}
3041 
3042 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3043 			/* Don't ever go below one opening */
3044 			if (crs->openings > 0) {
3045 				xpt_dev_ccbq_resize(path, crs->openings);
3046 				if (bootverbose) {
3047 					xpt_print(path,
3048 					    "number of openings is now %d\n",
3049 					    crs->openings);
3050 				}
3051 			}
3052 		}
3053 
3054 		mtx_lock(&dev->sim->devq->send_mtx);
3055 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3056 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3057 				/*
3058 				 * Just extend the old timeout and decrement
3059 				 * the freeze count so that a single timeout
3060 				 * is sufficient for releasing the queue.
3061 				 */
3062 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3063 				callout_stop(&dev->callout);
3064 			} else {
3065 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3066 			}
3067 
3068 			callout_reset_sbt(&dev->callout,
3069 			    SBT_1MS * crs->release_timeout, 0,
3070 			    xpt_release_devq_timeout, dev, 0);
3071 
3072 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3073 		}
3074 
3075 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3076 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3077 				/*
3078 				 * Decrement the freeze count so that a single
3079 				 * completion is still sufficient to unfreeze
3080 				 * the queue.
3081 				 */
3082 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3083 			} else {
3084 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3085 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3086 			}
3087 		}
3088 
3089 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3090 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3091 			 || (dev->ccbq.dev_active == 0)) {
3092 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3093 			} else {
3094 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3095 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3096 			}
3097 		}
3098 		mtx_unlock(&dev->sim->devq->send_mtx);
3099 
3100 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3101 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3102 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3103 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3104 		break;
3105 	}
3106 	case XPT_DEBUG: {
3107 		struct cam_path *oldpath;
3108 
3109 		/* Check that all request bits are supported. */
3110 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3111 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3112 			break;
3113 		}
3114 
3115 		cam_dflags = CAM_DEBUG_NONE;
3116 		if (cam_dpath != NULL) {
3117 			oldpath = cam_dpath;
3118 			cam_dpath = NULL;
3119 			xpt_free_path(oldpath);
3120 		}
3121 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3122 			if (xpt_create_path(&cam_dpath, NULL,
3123 					    start_ccb->ccb_h.path_id,
3124 					    start_ccb->ccb_h.target_id,
3125 					    start_ccb->ccb_h.target_lun) !=
3126 					    CAM_REQ_CMP) {
3127 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3128 			} else {
3129 				cam_dflags = start_ccb->cdbg.flags;
3130 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3131 				xpt_print(cam_dpath, "debugging flags now %x\n",
3132 				    cam_dflags);
3133 			}
3134 		} else
3135 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3136 		break;
3137 	}
3138 	case XPT_NOOP:
3139 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3140 			xpt_freeze_devq(path, 1);
3141 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3142 		break;
3143 	case XPT_REPROBE_LUN:
3144 		xpt_async(AC_INQ_CHANGED, path, NULL);
3145 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3146 		xpt_done(start_ccb);
3147 		break;
3148 	case XPT_ASYNC:
3149 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3150 		xpt_done(start_ccb);
3151 		break;
3152 	default:
3153 	case XPT_SDEV_TYPE:
3154 	case XPT_TERM_IO:
3155 	case XPT_ENG_INQ:
3156 		/* XXX Implement */
3157 		xpt_print(start_ccb->ccb_h.path,
3158 		    "%s: CCB type %#x %s not supported\n", __func__,
3159 		    start_ccb->ccb_h.func_code,
3160 		    xpt_action_name(start_ccb->ccb_h.func_code));
3161 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3162 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3163 			xpt_done(start_ccb);
3164 		}
3165 		break;
3166 	}
3167 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3168 	    ("xpt_action_default: func= %#x %s status %#x\n",
3169 		start_ccb->ccb_h.func_code,
3170  		xpt_action_name(start_ccb->ccb_h.func_code),
3171 		start_ccb->ccb_h.status));
3172 }
3173 
3174 /*
3175  * Call the sim poll routine to allow the sim to complete
3176  * any inflight requests, then call camisr_runqueue to
3177  * complete any CCB that the polling completed.
3178  */
3179 void
3180 xpt_sim_poll(struct cam_sim *sim)
3181 {
3182 	struct mtx *mtx;
3183 
3184 	mtx = sim->mtx;
3185 	if (mtx)
3186 		mtx_lock(mtx);
3187 	(*(sim->sim_poll))(sim);
3188 	if (mtx)
3189 		mtx_unlock(mtx);
3190 	camisr_runqueue();
3191 }
3192 
3193 uint32_t
3194 xpt_poll_setup(union ccb *start_ccb)
3195 {
3196 	u_int32_t timeout;
3197 	struct	  cam_sim *sim;
3198 	struct	  cam_devq *devq;
3199 	struct	  cam_ed *dev;
3200 
3201 	timeout = start_ccb->ccb_h.timeout * 10;
3202 	sim = start_ccb->ccb_h.path->bus->sim;
3203 	devq = sim->devq;
3204 	dev = start_ccb->ccb_h.path->device;
3205 
3206 	/*
3207 	 * Steal an opening so that no other queued requests
3208 	 * can get it before us while we simulate interrupts.
3209 	 */
3210 	mtx_lock(&devq->send_mtx);
3211 	dev->ccbq.dev_openings--;
3212 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3213 	    (--timeout > 0)) {
3214 		mtx_unlock(&devq->send_mtx);
3215 		DELAY(100);
3216 		xpt_sim_poll(sim);
3217 		mtx_lock(&devq->send_mtx);
3218 	}
3219 	dev->ccbq.dev_openings++;
3220 	mtx_unlock(&devq->send_mtx);
3221 
3222 	return (timeout);
3223 }
3224 
3225 void
3226 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3227 {
3228 
3229 	while (--timeout > 0) {
3230 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3231 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3232 		    != CAM_REQ_INPROG)
3233 			break;
3234 		DELAY(100);
3235 	}
3236 
3237 	if (timeout == 0) {
3238 		/*
3239 		 * XXX Is it worth adding a sim_timeout entry
3240 		 * point so we can attempt recovery?  If
3241 		 * this is only used for dumps, I don't think
3242 		 * it is.
3243 		 */
3244 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3245 	}
3246 }
3247 
3248 void
3249 xpt_polled_action(union ccb *start_ccb)
3250 {
3251 	uint32_t	timeout;
3252 	struct cam_ed	*dev;
3253 
3254 	timeout = start_ccb->ccb_h.timeout * 10;
3255 	dev = start_ccb->ccb_h.path->device;
3256 
3257 	mtx_unlock(&dev->device_mtx);
3258 
3259 	timeout = xpt_poll_setup(start_ccb);
3260 	if (timeout > 0) {
3261 		xpt_action(start_ccb);
3262 		xpt_pollwait(start_ccb, timeout);
3263 	} else {
3264 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3265 	}
3266 
3267 	mtx_lock(&dev->device_mtx);
3268 }
3269 
3270 /*
3271  * Schedule a peripheral driver to receive a ccb when its
3272  * target device has space for more transactions.
3273  */
3274 void
3275 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3276 {
3277 
3278 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3279 	cam_periph_assert(periph, MA_OWNED);
3280 	if (new_priority < periph->scheduled_priority) {
3281 		periph->scheduled_priority = new_priority;
3282 		xpt_run_allocq(periph, 0);
3283 	}
3284 }
3285 
3286 /*
3287  * Schedule a device to run on a given queue.
3288  * If the device was inserted as a new entry on the queue,
3289  * return 1 meaning the device queue should be run. If we
3290  * were already queued, implying someone else has already
3291  * started the queue, return 0 so the caller doesn't attempt
3292  * to run the queue.
3293  */
3294 static int
3295 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3296 		 u_int32_t new_priority)
3297 {
3298 	int retval;
3299 	u_int32_t old_priority;
3300 
3301 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3302 
3303 	old_priority = pinfo->priority;
3304 
3305 	/*
3306 	 * Are we already queued?
3307 	 */
3308 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3309 		/* Simply reorder based on new priority */
3310 		if (new_priority < old_priority) {
3311 			camq_change_priority(queue, pinfo->index,
3312 					     new_priority);
3313 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3314 					("changed priority to %d\n",
3315 					 new_priority));
3316 			retval = 1;
3317 		} else
3318 			retval = 0;
3319 	} else {
3320 		/* New entry on the queue */
3321 		if (new_priority < old_priority)
3322 			pinfo->priority = new_priority;
3323 
3324 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3325 				("Inserting onto queue\n"));
3326 		pinfo->generation = ++queue->generation;
3327 		camq_insert(queue, pinfo);
3328 		retval = 1;
3329 	}
3330 	return (retval);
3331 }
3332 
3333 static void
3334 xpt_run_allocq_task(void *context, int pending)
3335 {
3336 	struct cam_periph *periph = context;
3337 
3338 	cam_periph_lock(periph);
3339 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3340 	xpt_run_allocq(periph, 1);
3341 	cam_periph_unlock(periph);
3342 	cam_periph_release(periph);
3343 }
3344 
3345 static void
3346 xpt_run_allocq(struct cam_periph *periph, int sleep)
3347 {
3348 	struct cam_ed	*device;
3349 	union ccb	*ccb;
3350 	uint32_t	 prio;
3351 
3352 	cam_periph_assert(periph, MA_OWNED);
3353 	if (periph->periph_allocating)
3354 		return;
3355 	cam_periph_doacquire(periph);
3356 	periph->periph_allocating = 1;
3357 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3358 	device = periph->path->device;
3359 	ccb = NULL;
3360 restart:
3361 	while ((prio = min(periph->scheduled_priority,
3362 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3363 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3364 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3365 		if (ccb == NULL &&
3366 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3367 			if (sleep) {
3368 				ccb = xpt_get_ccb(periph);
3369 				goto restart;
3370 			}
3371 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3372 				break;
3373 			cam_periph_doacquire(periph);
3374 			periph->flags |= CAM_PERIPH_RUN_TASK;
3375 			taskqueue_enqueue(xsoftc.xpt_taskq,
3376 			    &periph->periph_run_task);
3377 			break;
3378 		}
3379 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3380 		if (prio == periph->immediate_priority) {
3381 			periph->immediate_priority = CAM_PRIORITY_NONE;
3382 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3383 					("waking cam_periph_getccb()\n"));
3384 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3385 					  periph_links.sle);
3386 			wakeup(&periph->ccb_list);
3387 		} else {
3388 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3389 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3390 					("calling periph_start()\n"));
3391 			periph->periph_start(periph, ccb);
3392 		}
3393 		ccb = NULL;
3394 	}
3395 	if (ccb != NULL)
3396 		xpt_release_ccb(ccb);
3397 	periph->periph_allocating = 0;
3398 	cam_periph_release_locked(periph);
3399 }
3400 
3401 static void
3402 xpt_run_devq(struct cam_devq *devq)
3403 {
3404 	struct mtx *mtx;
3405 
3406 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3407 
3408 	devq->send_queue.qfrozen_cnt++;
3409 	while ((devq->send_queue.entries > 0)
3410 	    && (devq->send_openings > 0)
3411 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3412 		struct	cam_ed *device;
3413 		union ccb *work_ccb;
3414 		struct	cam_sim *sim;
3415 		struct xpt_proto *proto;
3416 
3417 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3418 							   CAMQ_HEAD);
3419 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3420 				("running device %p\n", device));
3421 
3422 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3423 		if (work_ccb == NULL) {
3424 			printf("device on run queue with no ccbs???\n");
3425 			continue;
3426 		}
3427 
3428 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3429 			mtx_lock(&xsoftc.xpt_highpower_lock);
3430 		 	if (xsoftc.num_highpower <= 0) {
3431 				/*
3432 				 * We got a high power command, but we
3433 				 * don't have any available slots.  Freeze
3434 				 * the device queue until we have a slot
3435 				 * available.
3436 				 */
3437 				xpt_freeze_devq_device(device, 1);
3438 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3439 						   highpowerq_entry);
3440 
3441 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3442 				continue;
3443 			} else {
3444 				/*
3445 				 * Consume a high power slot while
3446 				 * this ccb runs.
3447 				 */
3448 				xsoftc.num_highpower--;
3449 			}
3450 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3451 		}
3452 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3453 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3454 		devq->send_openings--;
3455 		devq->send_active++;
3456 		xpt_schedule_devq(devq, device);
3457 		mtx_unlock(&devq->send_mtx);
3458 
3459 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3460 			/*
3461 			 * The client wants to freeze the queue
3462 			 * after this CCB is sent.
3463 			 */
3464 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3465 		}
3466 
3467 		/* In Target mode, the peripheral driver knows best... */
3468 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3469 			if ((device->inq_flags & SID_CmdQue) != 0
3470 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3471 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3472 			else
3473 				/*
3474 				 * Clear this in case of a retried CCB that
3475 				 * failed due to a rejected tag.
3476 				 */
3477 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3478 		}
3479 
3480 		KASSERT(device == work_ccb->ccb_h.path->device,
3481 		    ("device (%p) / path->device (%p) mismatch",
3482 			device, work_ccb->ccb_h.path->device));
3483 		proto = xpt_proto_find(device->protocol);
3484 		if (proto && proto->ops->debug_out)
3485 			proto->ops->debug_out(work_ccb);
3486 
3487 		/*
3488 		 * Device queues can be shared among multiple SIM instances
3489 		 * that reside on different buses.  Use the SIM from the
3490 		 * queued device, rather than the one from the calling bus.
3491 		 */
3492 		sim = device->sim;
3493 		mtx = sim->mtx;
3494 		if (mtx && !mtx_owned(mtx))
3495 			mtx_lock(mtx);
3496 		else
3497 			mtx = NULL;
3498 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3499 		(*(sim->sim_action))(sim, work_ccb);
3500 		if (mtx)
3501 			mtx_unlock(mtx);
3502 		mtx_lock(&devq->send_mtx);
3503 	}
3504 	devq->send_queue.qfrozen_cnt--;
3505 }
3506 
3507 /*
3508  * This function merges stuff from the src ccb into the dst ccb, while keeping
3509  * important fields in the dst ccb constant.
3510  */
3511 void
3512 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3513 {
3514 
3515 	/*
3516 	 * Pull fields that are valid for peripheral drivers to set
3517 	 * into the dst CCB along with the CCB "payload".
3518 	 */
3519 	dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3520 	dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3521 	dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3522 	dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3523 	bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3524 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3525 }
3526 
3527 void
3528 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3529 		    u_int32_t priority, u_int32_t flags)
3530 {
3531 
3532 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3533 	ccb_h->pinfo.priority = priority;
3534 	ccb_h->path = path;
3535 	ccb_h->path_id = path->bus->path_id;
3536 	if (path->target)
3537 		ccb_h->target_id = path->target->target_id;
3538 	else
3539 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3540 	if (path->device) {
3541 		ccb_h->target_lun = path->device->lun_id;
3542 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3543 	} else {
3544 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3545 	}
3546 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3547 	ccb_h->flags = flags;
3548 	ccb_h->xflags = 0;
3549 }
3550 
3551 void
3552 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3553 {
3554 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3555 }
3556 
3557 /* Path manipulation functions */
3558 cam_status
3559 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3560 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3561 {
3562 	struct	   cam_path *path;
3563 	cam_status status;
3564 
3565 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3566 
3567 	if (path == NULL) {
3568 		status = CAM_RESRC_UNAVAIL;
3569 		return(status);
3570 	}
3571 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3572 	if (status != CAM_REQ_CMP) {
3573 		free(path, M_CAMPATH);
3574 		path = NULL;
3575 	}
3576 	*new_path_ptr = path;
3577 	return (status);
3578 }
3579 
3580 cam_status
3581 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3582 			 struct cam_periph *periph, path_id_t path_id,
3583 			 target_id_t target_id, lun_id_t lun_id)
3584 {
3585 
3586 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3587 	    lun_id));
3588 }
3589 
3590 cam_status
3591 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3592 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3593 {
3594 	struct	     cam_eb *bus;
3595 	struct	     cam_et *target;
3596 	struct	     cam_ed *device;
3597 	cam_status   status;
3598 
3599 	status = CAM_REQ_CMP;	/* Completed without error */
3600 	target = NULL;		/* Wildcarded */
3601 	device = NULL;		/* Wildcarded */
3602 
3603 	/*
3604 	 * We will potentially modify the EDT, so block interrupts
3605 	 * that may attempt to create cam paths.
3606 	 */
3607 	bus = xpt_find_bus(path_id);
3608 	if (bus == NULL) {
3609 		status = CAM_PATH_INVALID;
3610 	} else {
3611 		xpt_lock_buses();
3612 		mtx_lock(&bus->eb_mtx);
3613 		target = xpt_find_target(bus, target_id);
3614 		if (target == NULL) {
3615 			/* Create one */
3616 			struct cam_et *new_target;
3617 
3618 			new_target = xpt_alloc_target(bus, target_id);
3619 			if (new_target == NULL) {
3620 				status = CAM_RESRC_UNAVAIL;
3621 			} else {
3622 				target = new_target;
3623 			}
3624 		}
3625 		xpt_unlock_buses();
3626 		if (target != NULL) {
3627 			device = xpt_find_device(target, lun_id);
3628 			if (device == NULL) {
3629 				/* Create one */
3630 				struct cam_ed *new_device;
3631 
3632 				new_device =
3633 				    (*(bus->xport->ops->alloc_device))(bus,
3634 								       target,
3635 								       lun_id);
3636 				if (new_device == NULL) {
3637 					status = CAM_RESRC_UNAVAIL;
3638 				} else {
3639 					device = new_device;
3640 				}
3641 			}
3642 		}
3643 		mtx_unlock(&bus->eb_mtx);
3644 	}
3645 
3646 	/*
3647 	 * Only touch the user's data if we are successful.
3648 	 */
3649 	if (status == CAM_REQ_CMP) {
3650 		new_path->periph = perph;
3651 		new_path->bus = bus;
3652 		new_path->target = target;
3653 		new_path->device = device;
3654 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3655 	} else {
3656 		if (device != NULL)
3657 			xpt_release_device(device);
3658 		if (target != NULL)
3659 			xpt_release_target(target);
3660 		if (bus != NULL)
3661 			xpt_release_bus(bus);
3662 	}
3663 	return (status);
3664 }
3665 
3666 cam_status
3667 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3668 {
3669 	struct	   cam_path *new_path;
3670 
3671 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3672 	if (new_path == NULL)
3673 		return(CAM_RESRC_UNAVAIL);
3674 	*new_path = *path;
3675 	if (path->bus != NULL)
3676 		xpt_acquire_bus(path->bus);
3677 	if (path->target != NULL)
3678 		xpt_acquire_target(path->target);
3679 	if (path->device != NULL)
3680 		xpt_acquire_device(path->device);
3681 	*new_path_ptr = new_path;
3682 	return (CAM_REQ_CMP);
3683 }
3684 
3685 void
3686 xpt_release_path(struct cam_path *path)
3687 {
3688 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3689 	if (path->device != NULL) {
3690 		xpt_release_device(path->device);
3691 		path->device = NULL;
3692 	}
3693 	if (path->target != NULL) {
3694 		xpt_release_target(path->target);
3695 		path->target = NULL;
3696 	}
3697 	if (path->bus != NULL) {
3698 		xpt_release_bus(path->bus);
3699 		path->bus = NULL;
3700 	}
3701 }
3702 
3703 void
3704 xpt_free_path(struct cam_path *path)
3705 {
3706 
3707 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3708 	xpt_release_path(path);
3709 	free(path, M_CAMPATH);
3710 }
3711 
3712 void
3713 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3714     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3715 {
3716 
3717 	xpt_lock_buses();
3718 	if (bus_ref) {
3719 		if (path->bus)
3720 			*bus_ref = path->bus->refcount;
3721 		else
3722 			*bus_ref = 0;
3723 	}
3724 	if (periph_ref) {
3725 		if (path->periph)
3726 			*periph_ref = path->periph->refcount;
3727 		else
3728 			*periph_ref = 0;
3729 	}
3730 	xpt_unlock_buses();
3731 	if (target_ref) {
3732 		if (path->target)
3733 			*target_ref = path->target->refcount;
3734 		else
3735 			*target_ref = 0;
3736 	}
3737 	if (device_ref) {
3738 		if (path->device)
3739 			*device_ref = path->device->refcount;
3740 		else
3741 			*device_ref = 0;
3742 	}
3743 }
3744 
3745 /*
3746  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3747  * in path1, 2 for match with wildcards in path2.
3748  */
3749 int
3750 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3751 {
3752 	int retval = 0;
3753 
3754 	if (path1->bus != path2->bus) {
3755 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3756 			retval = 1;
3757 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3758 			retval = 2;
3759 		else
3760 			return (-1);
3761 	}
3762 	if (path1->target != path2->target) {
3763 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3764 			if (retval == 0)
3765 				retval = 1;
3766 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3767 			retval = 2;
3768 		else
3769 			return (-1);
3770 	}
3771 	if (path1->device != path2->device) {
3772 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3773 			if (retval == 0)
3774 				retval = 1;
3775 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3776 			retval = 2;
3777 		else
3778 			return (-1);
3779 	}
3780 	return (retval);
3781 }
3782 
3783 int
3784 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3785 {
3786 	int retval = 0;
3787 
3788 	if (path->bus != dev->target->bus) {
3789 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3790 			retval = 1;
3791 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3792 			retval = 2;
3793 		else
3794 			return (-1);
3795 	}
3796 	if (path->target != dev->target) {
3797 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3798 			if (retval == 0)
3799 				retval = 1;
3800 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3801 			retval = 2;
3802 		else
3803 			return (-1);
3804 	}
3805 	if (path->device != dev) {
3806 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3807 			if (retval == 0)
3808 				retval = 1;
3809 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3810 			retval = 2;
3811 		else
3812 			return (-1);
3813 	}
3814 	return (retval);
3815 }
3816 
3817 void
3818 xpt_print_path(struct cam_path *path)
3819 {
3820 	struct sbuf sb;
3821 	char buffer[XPT_PRINT_LEN];
3822 
3823 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3824 	xpt_path_sbuf(path, &sb);
3825 	sbuf_finish(&sb);
3826 	printf("%s", sbuf_data(&sb));
3827 	sbuf_delete(&sb);
3828 }
3829 
3830 void
3831 xpt_print_device(struct cam_ed *device)
3832 {
3833 
3834 	if (device == NULL)
3835 		printf("(nopath): ");
3836 	else {
3837 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3838 		       device->sim->unit_number,
3839 		       device->sim->bus_id,
3840 		       device->target->target_id,
3841 		       (uintmax_t)device->lun_id);
3842 	}
3843 }
3844 
3845 void
3846 xpt_print(struct cam_path *path, const char *fmt, ...)
3847 {
3848 	va_list ap;
3849 	struct sbuf sb;
3850 	char buffer[XPT_PRINT_LEN];
3851 
3852 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3853 
3854 	xpt_path_sbuf(path, &sb);
3855 	va_start(ap, fmt);
3856 	sbuf_vprintf(&sb, fmt, ap);
3857 	va_end(ap);
3858 
3859 	sbuf_finish(&sb);
3860 	printf("%s", sbuf_data(&sb));
3861 	sbuf_delete(&sb);
3862 }
3863 
3864 int
3865 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3866 {
3867 	struct sbuf sb;
3868 	int len;
3869 
3870 	sbuf_new(&sb, str, str_len, 0);
3871 	len = xpt_path_sbuf(path, &sb);
3872 	sbuf_finish(&sb);
3873 	return (len);
3874 }
3875 
3876 int
3877 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3878 {
3879 
3880 	if (path == NULL)
3881 		sbuf_printf(sb, "(nopath): ");
3882 	else {
3883 		if (path->periph != NULL)
3884 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3885 				    path->periph->unit_number);
3886 		else
3887 			sbuf_printf(sb, "(noperiph:");
3888 
3889 		if (path->bus != NULL)
3890 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3891 				    path->bus->sim->unit_number,
3892 				    path->bus->sim->bus_id);
3893 		else
3894 			sbuf_printf(sb, "nobus:");
3895 
3896 		if (path->target != NULL)
3897 			sbuf_printf(sb, "%d:", path->target->target_id);
3898 		else
3899 			sbuf_printf(sb, "X:");
3900 
3901 		if (path->device != NULL)
3902 			sbuf_printf(sb, "%jx): ",
3903 			    (uintmax_t)path->device->lun_id);
3904 		else
3905 			sbuf_printf(sb, "X): ");
3906 	}
3907 
3908 	return(sbuf_len(sb));
3909 }
3910 
3911 path_id_t
3912 xpt_path_path_id(struct cam_path *path)
3913 {
3914 	return(path->bus->path_id);
3915 }
3916 
3917 target_id_t
3918 xpt_path_target_id(struct cam_path *path)
3919 {
3920 	if (path->target != NULL)
3921 		return (path->target->target_id);
3922 	else
3923 		return (CAM_TARGET_WILDCARD);
3924 }
3925 
3926 lun_id_t
3927 xpt_path_lun_id(struct cam_path *path)
3928 {
3929 	if (path->device != NULL)
3930 		return (path->device->lun_id);
3931 	else
3932 		return (CAM_LUN_WILDCARD);
3933 }
3934 
3935 struct cam_sim *
3936 xpt_path_sim(struct cam_path *path)
3937 {
3938 
3939 	return (path->bus->sim);
3940 }
3941 
3942 struct cam_periph*
3943 xpt_path_periph(struct cam_path *path)
3944 {
3945 
3946 	return (path->periph);
3947 }
3948 
3949 /*
3950  * Release a CAM control block for the caller.  Remit the cost of the structure
3951  * to the device referenced by the path.  If the this device had no 'credits'
3952  * and peripheral drivers have registered async callbacks for this notification
3953  * call them now.
3954  */
3955 void
3956 xpt_release_ccb(union ccb *free_ccb)
3957 {
3958 	struct	 cam_ed *device;
3959 	struct	 cam_periph *periph;
3960 
3961 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3962 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3963 	device = free_ccb->ccb_h.path->device;
3964 	periph = free_ccb->ccb_h.path->periph;
3965 
3966 	xpt_free_ccb(free_ccb);
3967 	periph->periph_allocated--;
3968 	cam_ccbq_release_opening(&device->ccbq);
3969 	xpt_run_allocq(periph, 0);
3970 }
3971 
3972 /* Functions accessed by SIM drivers */
3973 
3974 static struct xpt_xport_ops xport_default_ops = {
3975 	.alloc_device = xpt_alloc_device_default,
3976 	.action = xpt_action_default,
3977 	.async = xpt_dev_async_default,
3978 };
3979 static struct xpt_xport xport_default = {
3980 	.xport = XPORT_UNKNOWN,
3981 	.name = "unknown",
3982 	.ops = &xport_default_ops,
3983 };
3984 
3985 CAM_XPT_XPORT(xport_default);
3986 
3987 /*
3988  * A sim structure, listing the SIM entry points and instance
3989  * identification info is passed to xpt_bus_register to hook the SIM
3990  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3991  * for this new bus and places it in the array of buses and assigns
3992  * it a path_id.  The path_id may be influenced by "hard wiring"
3993  * information specified by the user.  Once interrupt services are
3994  * available, the bus will be probed.
3995  */
3996 int32_t
3997 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3998 {
3999 	struct cam_eb *new_bus;
4000 	struct cam_eb *old_bus;
4001 	struct ccb_pathinq cpi;
4002 	struct cam_path *path;
4003 	cam_status status;
4004 
4005 	sim->bus_id = bus;
4006 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4007 					  M_CAMXPT, M_NOWAIT|M_ZERO);
4008 	if (new_bus == NULL) {
4009 		/* Couldn't satisfy request */
4010 		return (CAM_RESRC_UNAVAIL);
4011 	}
4012 
4013 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4014 	TAILQ_INIT(&new_bus->et_entries);
4015 	cam_sim_hold(sim);
4016 	new_bus->sim = sim;
4017 	timevalclear(&new_bus->last_reset);
4018 	new_bus->flags = 0;
4019 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4020 	new_bus->generation = 0;
4021 
4022 	xpt_lock_buses();
4023 	sim->path_id = new_bus->path_id =
4024 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4025 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4026 	while (old_bus != NULL
4027 	    && old_bus->path_id < new_bus->path_id)
4028 		old_bus = TAILQ_NEXT(old_bus, links);
4029 	if (old_bus != NULL)
4030 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4031 	else
4032 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4033 	xsoftc.bus_generation++;
4034 	xpt_unlock_buses();
4035 
4036 	/*
4037 	 * Set a default transport so that a PATH_INQ can be issued to
4038 	 * the SIM.  This will then allow for probing and attaching of
4039 	 * a more appropriate transport.
4040 	 */
4041 	new_bus->xport = &xport_default;
4042 
4043 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4044 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4045 	if (status != CAM_REQ_CMP) {
4046 		xpt_release_bus(new_bus);
4047 		return (CAM_RESRC_UNAVAIL);
4048 	}
4049 
4050 	xpt_path_inq(&cpi, path);
4051 
4052 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4053 		struct xpt_xport **xpt;
4054 
4055 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4056 			if ((*xpt)->xport == cpi.transport) {
4057 				new_bus->xport = *xpt;
4058 				break;
4059 			}
4060 		}
4061 		if (new_bus->xport == NULL) {
4062 			xpt_print(path,
4063 			    "No transport found for %d\n", cpi.transport);
4064 			xpt_release_bus(new_bus);
4065 			free(path, M_CAMXPT);
4066 			return (CAM_RESRC_UNAVAIL);
4067 		}
4068 	}
4069 
4070 	/* Notify interested parties */
4071 	if (sim->path_id != CAM_XPT_PATH_ID) {
4072 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4073 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4074 			union	ccb *scan_ccb;
4075 
4076 			/* Initiate bus rescan. */
4077 			scan_ccb = xpt_alloc_ccb_nowait();
4078 			if (scan_ccb != NULL) {
4079 				scan_ccb->ccb_h.path = path;
4080 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4081 				scan_ccb->crcn.flags = 0;
4082 				xpt_rescan(scan_ccb);
4083 			} else {
4084 				xpt_print(path,
4085 					  "Can't allocate CCB to scan bus\n");
4086 				xpt_free_path(path);
4087 			}
4088 		} else
4089 			xpt_free_path(path);
4090 	} else
4091 		xpt_free_path(path);
4092 	return (CAM_SUCCESS);
4093 }
4094 
4095 int32_t
4096 xpt_bus_deregister(path_id_t pathid)
4097 {
4098 	struct cam_path bus_path;
4099 	cam_status status;
4100 
4101 	status = xpt_compile_path(&bus_path, NULL, pathid,
4102 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4103 	if (status != CAM_REQ_CMP)
4104 		return (status);
4105 
4106 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4107 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4108 
4109 	/* Release the reference count held while registered. */
4110 	xpt_release_bus(bus_path.bus);
4111 	xpt_release_path(&bus_path);
4112 
4113 	return (CAM_REQ_CMP);
4114 }
4115 
4116 static path_id_t
4117 xptnextfreepathid(void)
4118 {
4119 	struct cam_eb *bus;
4120 	path_id_t pathid;
4121 	const char *strval;
4122 
4123 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4124 	pathid = 0;
4125 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4126 retry:
4127 	/* Find an unoccupied pathid */
4128 	while (bus != NULL && bus->path_id <= pathid) {
4129 		if (bus->path_id == pathid)
4130 			pathid++;
4131 		bus = TAILQ_NEXT(bus, links);
4132 	}
4133 
4134 	/*
4135 	 * Ensure that this pathid is not reserved for
4136 	 * a bus that may be registered in the future.
4137 	 */
4138 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4139 		++pathid;
4140 		/* Start the search over */
4141 		goto retry;
4142 	}
4143 	return (pathid);
4144 }
4145 
4146 static path_id_t
4147 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4148 {
4149 	path_id_t pathid;
4150 	int i, dunit, val;
4151 	char buf[32];
4152 	const char *dname;
4153 
4154 	pathid = CAM_XPT_PATH_ID;
4155 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4156 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4157 		return (pathid);
4158 	i = 0;
4159 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4160 		if (strcmp(dname, "scbus")) {
4161 			/* Avoid a bit of foot shooting. */
4162 			continue;
4163 		}
4164 		if (dunit < 0)		/* unwired?! */
4165 			continue;
4166 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4167 			if (sim_bus == val) {
4168 				pathid = dunit;
4169 				break;
4170 			}
4171 		} else if (sim_bus == 0) {
4172 			/* Unspecified matches bus 0 */
4173 			pathid = dunit;
4174 			break;
4175 		} else {
4176 			printf("Ambiguous scbus configuration for %s%d "
4177 			       "bus %d, cannot wire down.  The kernel "
4178 			       "config entry for scbus%d should "
4179 			       "specify a controller bus.\n"
4180 			       "Scbus will be assigned dynamically.\n",
4181 			       sim_name, sim_unit, sim_bus, dunit);
4182 			break;
4183 		}
4184 	}
4185 
4186 	if (pathid == CAM_XPT_PATH_ID)
4187 		pathid = xptnextfreepathid();
4188 	return (pathid);
4189 }
4190 
4191 static const char *
4192 xpt_async_string(u_int32_t async_code)
4193 {
4194 
4195 	switch (async_code) {
4196 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4197 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4198 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4199 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4200 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4201 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4202 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4203 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4204 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4205 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4206 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4207 	case AC_CONTRACT: return ("AC_CONTRACT");
4208 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4209 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4210 	}
4211 	return ("AC_UNKNOWN");
4212 }
4213 
4214 static int
4215 xpt_async_size(u_int32_t async_code)
4216 {
4217 
4218 	switch (async_code) {
4219 	case AC_BUS_RESET: return (0);
4220 	case AC_UNSOL_RESEL: return (0);
4221 	case AC_SCSI_AEN: return (0);
4222 	case AC_SENT_BDR: return (0);
4223 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4224 	case AC_PATH_DEREGISTERED: return (0);
4225 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4226 	case AC_LOST_DEVICE: return (0);
4227 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4228 	case AC_INQ_CHANGED: return (0);
4229 	case AC_GETDEV_CHANGED: return (0);
4230 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4231 	case AC_ADVINFO_CHANGED: return (-1);
4232 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4233 	}
4234 	return (0);
4235 }
4236 
4237 static int
4238 xpt_async_process_dev(struct cam_ed *device, void *arg)
4239 {
4240 	union ccb *ccb = arg;
4241 	struct cam_path *path = ccb->ccb_h.path;
4242 	void *async_arg = ccb->casync.async_arg_ptr;
4243 	u_int32_t async_code = ccb->casync.async_code;
4244 	int relock;
4245 
4246 	if (path->device != device
4247 	 && path->device->lun_id != CAM_LUN_WILDCARD
4248 	 && device->lun_id != CAM_LUN_WILDCARD)
4249 		return (1);
4250 
4251 	/*
4252 	 * The async callback could free the device.
4253 	 * If it is a broadcast async, it doesn't hold
4254 	 * device reference, so take our own reference.
4255 	 */
4256 	xpt_acquire_device(device);
4257 
4258 	/*
4259 	 * If async for specific device is to be delivered to
4260 	 * the wildcard client, take the specific device lock.
4261 	 * XXX: We may need a way for client to specify it.
4262 	 */
4263 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4264 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4265 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4266 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4267 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4268 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4269 		mtx_unlock(&device->device_mtx);
4270 		xpt_path_lock(path);
4271 		relock = 1;
4272 	} else
4273 		relock = 0;
4274 
4275 	(*(device->target->bus->xport->ops->async))(async_code,
4276 	    device->target->bus, device->target, device, async_arg);
4277 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4278 
4279 	if (relock) {
4280 		xpt_path_unlock(path);
4281 		mtx_lock(&device->device_mtx);
4282 	}
4283 	xpt_release_device(device);
4284 	return (1);
4285 }
4286 
4287 static int
4288 xpt_async_process_tgt(struct cam_et *target, void *arg)
4289 {
4290 	union ccb *ccb = arg;
4291 	struct cam_path *path = ccb->ccb_h.path;
4292 
4293 	if (path->target != target
4294 	 && path->target->target_id != CAM_TARGET_WILDCARD
4295 	 && target->target_id != CAM_TARGET_WILDCARD)
4296 		return (1);
4297 
4298 	if (ccb->casync.async_code == AC_SENT_BDR) {
4299 		/* Update our notion of when the last reset occurred */
4300 		microtime(&target->last_reset);
4301 	}
4302 
4303 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4304 }
4305 
4306 static void
4307 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4308 {
4309 	struct cam_eb *bus;
4310 	struct cam_path *path;
4311 	void *async_arg;
4312 	u_int32_t async_code;
4313 
4314 	path = ccb->ccb_h.path;
4315 	async_code = ccb->casync.async_code;
4316 	async_arg = ccb->casync.async_arg_ptr;
4317 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4318 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4319 	bus = path->bus;
4320 
4321 	if (async_code == AC_BUS_RESET) {
4322 		/* Update our notion of when the last reset occurred */
4323 		microtime(&bus->last_reset);
4324 	}
4325 
4326 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4327 
4328 	/*
4329 	 * If this wasn't a fully wildcarded async, tell all
4330 	 * clients that want all async events.
4331 	 */
4332 	if (bus != xpt_periph->path->bus) {
4333 		xpt_path_lock(xpt_periph->path);
4334 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4335 		xpt_path_unlock(xpt_periph->path);
4336 	}
4337 
4338 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4339 		xpt_release_devq(path, 1, TRUE);
4340 	else
4341 		xpt_release_simq(path->bus->sim, TRUE);
4342 	if (ccb->casync.async_arg_size > 0)
4343 		free(async_arg, M_CAMXPT);
4344 	xpt_free_path(path);
4345 	xpt_free_ccb(ccb);
4346 }
4347 
4348 static void
4349 xpt_async_bcast(struct async_list *async_head,
4350 		u_int32_t async_code,
4351 		struct cam_path *path, void *async_arg)
4352 {
4353 	struct async_node *cur_entry;
4354 	struct mtx *mtx;
4355 
4356 	cur_entry = SLIST_FIRST(async_head);
4357 	while (cur_entry != NULL) {
4358 		struct async_node *next_entry;
4359 		/*
4360 		 * Grab the next list entry before we call the current
4361 		 * entry's callback.  This is because the callback function
4362 		 * can delete its async callback entry.
4363 		 */
4364 		next_entry = SLIST_NEXT(cur_entry, links);
4365 		if ((cur_entry->event_enable & async_code) != 0) {
4366 			mtx = cur_entry->event_lock ?
4367 			    path->device->sim->mtx : NULL;
4368 			if (mtx)
4369 				mtx_lock(mtx);
4370 			cur_entry->callback(cur_entry->callback_arg,
4371 					    async_code, path,
4372 					    async_arg);
4373 			if (mtx)
4374 				mtx_unlock(mtx);
4375 		}
4376 		cur_entry = next_entry;
4377 	}
4378 }
4379 
4380 void
4381 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4382 {
4383 	union ccb *ccb;
4384 	int size;
4385 
4386 	ccb = xpt_alloc_ccb_nowait();
4387 	if (ccb == NULL) {
4388 		xpt_print(path, "Can't allocate CCB to send %s\n",
4389 		    xpt_async_string(async_code));
4390 		return;
4391 	}
4392 
4393 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4394 		xpt_print(path, "Can't allocate path to send %s\n",
4395 		    xpt_async_string(async_code));
4396 		xpt_free_ccb(ccb);
4397 		return;
4398 	}
4399 	ccb->ccb_h.path->periph = NULL;
4400 	ccb->ccb_h.func_code = XPT_ASYNC;
4401 	ccb->ccb_h.cbfcnp = xpt_async_process;
4402 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4403 	ccb->casync.async_code = async_code;
4404 	ccb->casync.async_arg_size = 0;
4405 	size = xpt_async_size(async_code);
4406 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4407 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4408 		ccb->ccb_h.func_code,
4409 		xpt_action_name(ccb->ccb_h.func_code),
4410 		async_code,
4411 		xpt_async_string(async_code)));
4412 	if (size > 0 && async_arg != NULL) {
4413 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4414 		if (ccb->casync.async_arg_ptr == NULL) {
4415 			xpt_print(path, "Can't allocate argument to send %s\n",
4416 			    xpt_async_string(async_code));
4417 			xpt_free_path(ccb->ccb_h.path);
4418 			xpt_free_ccb(ccb);
4419 			return;
4420 		}
4421 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4422 		ccb->casync.async_arg_size = size;
4423 	} else if (size < 0) {
4424 		ccb->casync.async_arg_ptr = async_arg;
4425 		ccb->casync.async_arg_size = size;
4426 	}
4427 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4428 		xpt_freeze_devq(path, 1);
4429 	else
4430 		xpt_freeze_simq(path->bus->sim, 1);
4431 	xpt_action(ccb);
4432 }
4433 
4434 static void
4435 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4436 		      struct cam_et *target, struct cam_ed *device,
4437 		      void *async_arg)
4438 {
4439 
4440 	/*
4441 	 * We only need to handle events for real devices.
4442 	 */
4443 	if (target->target_id == CAM_TARGET_WILDCARD
4444 	 || device->lun_id == CAM_LUN_WILDCARD)
4445 		return;
4446 
4447 	printf("%s called\n", __func__);
4448 }
4449 
4450 static uint32_t
4451 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4452 {
4453 	struct cam_devq	*devq;
4454 	uint32_t freeze;
4455 
4456 	devq = dev->sim->devq;
4457 	mtx_assert(&devq->send_mtx, MA_OWNED);
4458 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4459 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4460 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4461 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4462 	/* Remove frozen device from sendq. */
4463 	if (device_is_queued(dev))
4464 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4465 	return (freeze);
4466 }
4467 
4468 u_int32_t
4469 xpt_freeze_devq(struct cam_path *path, u_int count)
4470 {
4471 	struct cam_ed	*dev = path->device;
4472 	struct cam_devq	*devq;
4473 	uint32_t	 freeze;
4474 
4475 	devq = dev->sim->devq;
4476 	mtx_lock(&devq->send_mtx);
4477 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4478 	freeze = xpt_freeze_devq_device(dev, count);
4479 	mtx_unlock(&devq->send_mtx);
4480 	return (freeze);
4481 }
4482 
4483 u_int32_t
4484 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4485 {
4486 	struct cam_devq	*devq;
4487 	uint32_t	 freeze;
4488 
4489 	devq = sim->devq;
4490 	mtx_lock(&devq->send_mtx);
4491 	freeze = (devq->send_queue.qfrozen_cnt += count);
4492 	mtx_unlock(&devq->send_mtx);
4493 	return (freeze);
4494 }
4495 
4496 static void
4497 xpt_release_devq_timeout(void *arg)
4498 {
4499 	struct cam_ed *dev;
4500 	struct cam_devq *devq;
4501 
4502 	dev = (struct cam_ed *)arg;
4503 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4504 	devq = dev->sim->devq;
4505 	mtx_assert(&devq->send_mtx, MA_OWNED);
4506 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4507 		xpt_run_devq(devq);
4508 }
4509 
4510 void
4511 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4512 {
4513 	struct cam_ed *dev;
4514 	struct cam_devq *devq;
4515 
4516 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4517 	    count, run_queue));
4518 	dev = path->device;
4519 	devq = dev->sim->devq;
4520 	mtx_lock(&devq->send_mtx);
4521 	if (xpt_release_devq_device(dev, count, run_queue))
4522 		xpt_run_devq(dev->sim->devq);
4523 	mtx_unlock(&devq->send_mtx);
4524 }
4525 
4526 static int
4527 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4528 {
4529 
4530 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4531 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4532 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4533 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4534 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4535 #ifdef INVARIANTS
4536 		printf("xpt_release_devq(): requested %u > present %u\n",
4537 		    count, dev->ccbq.queue.qfrozen_cnt);
4538 #endif
4539 		count = dev->ccbq.queue.qfrozen_cnt;
4540 	}
4541 	dev->ccbq.queue.qfrozen_cnt -= count;
4542 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4543 		/*
4544 		 * No longer need to wait for a successful
4545 		 * command completion.
4546 		 */
4547 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4548 		/*
4549 		 * Remove any timeouts that might be scheduled
4550 		 * to release this queue.
4551 		 */
4552 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4553 			callout_stop(&dev->callout);
4554 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4555 		}
4556 		/*
4557 		 * Now that we are unfrozen schedule the
4558 		 * device so any pending transactions are
4559 		 * run.
4560 		 */
4561 		xpt_schedule_devq(dev->sim->devq, dev);
4562 	} else
4563 		run_queue = 0;
4564 	return (run_queue);
4565 }
4566 
4567 void
4568 xpt_release_simq(struct cam_sim *sim, int run_queue)
4569 {
4570 	struct cam_devq	*devq;
4571 
4572 	devq = sim->devq;
4573 	mtx_lock(&devq->send_mtx);
4574 	if (devq->send_queue.qfrozen_cnt <= 0) {
4575 #ifdef INVARIANTS
4576 		printf("xpt_release_simq: requested 1 > present %u\n",
4577 		    devq->send_queue.qfrozen_cnt);
4578 #endif
4579 	} else
4580 		devq->send_queue.qfrozen_cnt--;
4581 	if (devq->send_queue.qfrozen_cnt == 0) {
4582 		/*
4583 		 * If there is a timeout scheduled to release this
4584 		 * sim queue, remove it.  The queue frozen count is
4585 		 * already at 0.
4586 		 */
4587 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4588 			callout_stop(&sim->callout);
4589 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4590 		}
4591 		if (run_queue) {
4592 			/*
4593 			 * Now that we are unfrozen run the send queue.
4594 			 */
4595 			xpt_run_devq(sim->devq);
4596 		}
4597 	}
4598 	mtx_unlock(&devq->send_mtx);
4599 }
4600 
4601 void
4602 xpt_done(union ccb *done_ccb)
4603 {
4604 	struct cam_doneq *queue;
4605 	int	run, hash;
4606 
4607 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4608 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4609 	    done_ccb->csio.bio != NULL)
4610 		biotrack(done_ccb->csio.bio, __func__);
4611 #endif
4612 
4613 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4614 	    ("xpt_done: func= %#x %s status %#x\n",
4615 		done_ccb->ccb_h.func_code,
4616 		xpt_action_name(done_ccb->ccb_h.func_code),
4617 		done_ccb->ccb_h.status));
4618 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4619 		return;
4620 
4621 	/* Store the time the ccb was in the sim */
4622 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4623 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4624 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4625 	queue = &cam_doneqs[hash];
4626 	mtx_lock(&queue->cam_doneq_mtx);
4627 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4628 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4629 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4630 	mtx_unlock(&queue->cam_doneq_mtx);
4631 	if (run)
4632 		wakeup(&queue->cam_doneq);
4633 }
4634 
4635 void
4636 xpt_done_direct(union ccb *done_ccb)
4637 {
4638 
4639 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4640 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4641 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4642 		return;
4643 
4644 	/* Store the time the ccb was in the sim */
4645 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4646 	xpt_done_process(&done_ccb->ccb_h);
4647 }
4648 
4649 union ccb *
4650 xpt_alloc_ccb(void)
4651 {
4652 	union ccb *new_ccb;
4653 
4654 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4655 	return (new_ccb);
4656 }
4657 
4658 union ccb *
4659 xpt_alloc_ccb_nowait(void)
4660 {
4661 	union ccb *new_ccb;
4662 
4663 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4664 	return (new_ccb);
4665 }
4666 
4667 void
4668 xpt_free_ccb(union ccb *free_ccb)
4669 {
4670 	free(free_ccb, M_CAMCCB);
4671 }
4672 
4673 /* Private XPT functions */
4674 
4675 /*
4676  * Get a CAM control block for the caller. Charge the structure to the device
4677  * referenced by the path.  If we don't have sufficient resources to allocate
4678  * more ccbs, we return NULL.
4679  */
4680 static union ccb *
4681 xpt_get_ccb_nowait(struct cam_periph *periph)
4682 {
4683 	union ccb *new_ccb;
4684 
4685 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4686 	if (new_ccb == NULL)
4687 		return (NULL);
4688 	periph->periph_allocated++;
4689 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4690 	return (new_ccb);
4691 }
4692 
4693 static union ccb *
4694 xpt_get_ccb(struct cam_periph *periph)
4695 {
4696 	union ccb *new_ccb;
4697 
4698 	cam_periph_unlock(periph);
4699 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4700 	cam_periph_lock(periph);
4701 	periph->periph_allocated++;
4702 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4703 	return (new_ccb);
4704 }
4705 
4706 union ccb *
4707 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4708 {
4709 	struct ccb_hdr *ccb_h;
4710 
4711 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4712 	cam_periph_assert(periph, MA_OWNED);
4713 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4714 	    ccb_h->pinfo.priority != priority) {
4715 		if (priority < periph->immediate_priority) {
4716 			periph->immediate_priority = priority;
4717 			xpt_run_allocq(periph, 0);
4718 		} else
4719 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4720 			    "cgticb", 0);
4721 	}
4722 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4723 	return ((union ccb *)ccb_h);
4724 }
4725 
4726 static void
4727 xpt_acquire_bus(struct cam_eb *bus)
4728 {
4729 
4730 	xpt_lock_buses();
4731 	bus->refcount++;
4732 	xpt_unlock_buses();
4733 }
4734 
4735 static void
4736 xpt_release_bus(struct cam_eb *bus)
4737 {
4738 
4739 	xpt_lock_buses();
4740 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4741 	if (--bus->refcount > 0) {
4742 		xpt_unlock_buses();
4743 		return;
4744 	}
4745 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4746 	xsoftc.bus_generation++;
4747 	xpt_unlock_buses();
4748 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4749 	    ("destroying bus, but target list is not empty"));
4750 	cam_sim_release(bus->sim);
4751 	mtx_destroy(&bus->eb_mtx);
4752 	free(bus, M_CAMXPT);
4753 }
4754 
4755 static struct cam_et *
4756 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4757 {
4758 	struct cam_et *cur_target, *target;
4759 
4760 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4761 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4762 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4763 					 M_NOWAIT|M_ZERO);
4764 	if (target == NULL)
4765 		return (NULL);
4766 
4767 	TAILQ_INIT(&target->ed_entries);
4768 	target->bus = bus;
4769 	target->target_id = target_id;
4770 	target->refcount = 1;
4771 	target->generation = 0;
4772 	target->luns = NULL;
4773 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4774 	timevalclear(&target->last_reset);
4775 	/*
4776 	 * Hold a reference to our parent bus so it
4777 	 * will not go away before we do.
4778 	 */
4779 	bus->refcount++;
4780 
4781 	/* Insertion sort into our bus's target list */
4782 	cur_target = TAILQ_FIRST(&bus->et_entries);
4783 	while (cur_target != NULL && cur_target->target_id < target_id)
4784 		cur_target = TAILQ_NEXT(cur_target, links);
4785 	if (cur_target != NULL) {
4786 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4787 	} else {
4788 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4789 	}
4790 	bus->generation++;
4791 	return (target);
4792 }
4793 
4794 static void
4795 xpt_acquire_target(struct cam_et *target)
4796 {
4797 	struct cam_eb *bus = target->bus;
4798 
4799 	mtx_lock(&bus->eb_mtx);
4800 	target->refcount++;
4801 	mtx_unlock(&bus->eb_mtx);
4802 }
4803 
4804 static void
4805 xpt_release_target(struct cam_et *target)
4806 {
4807 	struct cam_eb *bus = target->bus;
4808 
4809 	mtx_lock(&bus->eb_mtx);
4810 	if (--target->refcount > 0) {
4811 		mtx_unlock(&bus->eb_mtx);
4812 		return;
4813 	}
4814 	TAILQ_REMOVE(&bus->et_entries, target, links);
4815 	bus->generation++;
4816 	mtx_unlock(&bus->eb_mtx);
4817 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4818 	    ("destroying target, but device list is not empty"));
4819 	xpt_release_bus(bus);
4820 	mtx_destroy(&target->luns_mtx);
4821 	if (target->luns)
4822 		free(target->luns, M_CAMXPT);
4823 	free(target, M_CAMXPT);
4824 }
4825 
4826 static struct cam_ed *
4827 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4828 			 lun_id_t lun_id)
4829 {
4830 	struct cam_ed *device;
4831 
4832 	device = xpt_alloc_device(bus, target, lun_id);
4833 	if (device == NULL)
4834 		return (NULL);
4835 
4836 	device->mintags = 1;
4837 	device->maxtags = 1;
4838 	return (device);
4839 }
4840 
4841 static void
4842 xpt_destroy_device(void *context, int pending)
4843 {
4844 	struct cam_ed	*device = context;
4845 
4846 	mtx_lock(&device->device_mtx);
4847 	mtx_destroy(&device->device_mtx);
4848 	free(device, M_CAMDEV);
4849 }
4850 
4851 struct cam_ed *
4852 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4853 {
4854 	struct cam_ed	*cur_device, *device;
4855 	struct cam_devq	*devq;
4856 	cam_status status;
4857 
4858 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4859 	/* Make space for us in the device queue on our bus */
4860 	devq = bus->sim->devq;
4861 	mtx_lock(&devq->send_mtx);
4862 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4863 	mtx_unlock(&devq->send_mtx);
4864 	if (status != CAM_REQ_CMP)
4865 		return (NULL);
4866 
4867 	device = (struct cam_ed *)malloc(sizeof(*device),
4868 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4869 	if (device == NULL)
4870 		return (NULL);
4871 
4872 	cam_init_pinfo(&device->devq_entry);
4873 	device->target = target;
4874 	device->lun_id = lun_id;
4875 	device->sim = bus->sim;
4876 	if (cam_ccbq_init(&device->ccbq,
4877 			  bus->sim->max_dev_openings) != 0) {
4878 		free(device, M_CAMDEV);
4879 		return (NULL);
4880 	}
4881 	SLIST_INIT(&device->asyncs);
4882 	SLIST_INIT(&device->periphs);
4883 	device->generation = 0;
4884 	device->flags = CAM_DEV_UNCONFIGURED;
4885 	device->tag_delay_count = 0;
4886 	device->tag_saved_openings = 0;
4887 	device->refcount = 1;
4888 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4889 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4890 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4891 	/*
4892 	 * Hold a reference to our parent bus so it
4893 	 * will not go away before we do.
4894 	 */
4895 	target->refcount++;
4896 
4897 	cur_device = TAILQ_FIRST(&target->ed_entries);
4898 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4899 		cur_device = TAILQ_NEXT(cur_device, links);
4900 	if (cur_device != NULL)
4901 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4902 	else
4903 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4904 	target->generation++;
4905 	return (device);
4906 }
4907 
4908 void
4909 xpt_acquire_device(struct cam_ed *device)
4910 {
4911 	struct cam_eb *bus = device->target->bus;
4912 
4913 	mtx_lock(&bus->eb_mtx);
4914 	device->refcount++;
4915 	mtx_unlock(&bus->eb_mtx);
4916 }
4917 
4918 void
4919 xpt_release_device(struct cam_ed *device)
4920 {
4921 	struct cam_eb *bus = device->target->bus;
4922 	struct cam_devq *devq;
4923 
4924 	mtx_lock(&bus->eb_mtx);
4925 	if (--device->refcount > 0) {
4926 		mtx_unlock(&bus->eb_mtx);
4927 		return;
4928 	}
4929 
4930 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4931 	device->target->generation++;
4932 	mtx_unlock(&bus->eb_mtx);
4933 
4934 	/* Release our slot in the devq */
4935 	devq = bus->sim->devq;
4936 	mtx_lock(&devq->send_mtx);
4937 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4938 
4939 	KASSERT(SLIST_EMPTY(&device->periphs),
4940 	    ("destroying device, but periphs list is not empty"));
4941 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4942 	    ("destroying device while still queued for ccbs"));
4943 
4944 	/* The send_mtx must be held when accessing the callout */
4945 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4946 		callout_stop(&device->callout);
4947 
4948 	mtx_unlock(&devq->send_mtx);
4949 
4950 	xpt_release_target(device->target);
4951 
4952 	cam_ccbq_fini(&device->ccbq);
4953 	/*
4954 	 * Free allocated memory.  free(9) does nothing if the
4955 	 * supplied pointer is NULL, so it is safe to call without
4956 	 * checking.
4957 	 */
4958 	free(device->supported_vpds, M_CAMXPT);
4959 	free(device->device_id, M_CAMXPT);
4960 	free(device->ext_inq, M_CAMXPT);
4961 	free(device->physpath, M_CAMXPT);
4962 	free(device->rcap_buf, M_CAMXPT);
4963 	free(device->serial_num, M_CAMXPT);
4964 	free(device->nvme_data, M_CAMXPT);
4965 	free(device->nvme_cdata, M_CAMXPT);
4966 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4967 }
4968 
4969 u_int32_t
4970 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4971 {
4972 	int	result;
4973 	struct	cam_ed *dev;
4974 
4975 	dev = path->device;
4976 	mtx_lock(&dev->sim->devq->send_mtx);
4977 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4978 	mtx_unlock(&dev->sim->devq->send_mtx);
4979 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4980 	 || (dev->inq_flags & SID_CmdQue) != 0)
4981 		dev->tag_saved_openings = newopenings;
4982 	return (result);
4983 }
4984 
4985 static struct cam_eb *
4986 xpt_find_bus(path_id_t path_id)
4987 {
4988 	struct cam_eb *bus;
4989 
4990 	xpt_lock_buses();
4991 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4992 	     bus != NULL;
4993 	     bus = TAILQ_NEXT(bus, links)) {
4994 		if (bus->path_id == path_id) {
4995 			bus->refcount++;
4996 			break;
4997 		}
4998 	}
4999 	xpt_unlock_buses();
5000 	return (bus);
5001 }
5002 
5003 static struct cam_et *
5004 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5005 {
5006 	struct cam_et *target;
5007 
5008 	mtx_assert(&bus->eb_mtx, MA_OWNED);
5009 	for (target = TAILQ_FIRST(&bus->et_entries);
5010 	     target != NULL;
5011 	     target = TAILQ_NEXT(target, links)) {
5012 		if (target->target_id == target_id) {
5013 			target->refcount++;
5014 			break;
5015 		}
5016 	}
5017 	return (target);
5018 }
5019 
5020 static struct cam_ed *
5021 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5022 {
5023 	struct cam_ed *device;
5024 
5025 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5026 	for (device = TAILQ_FIRST(&target->ed_entries);
5027 	     device != NULL;
5028 	     device = TAILQ_NEXT(device, links)) {
5029 		if (device->lun_id == lun_id) {
5030 			device->refcount++;
5031 			break;
5032 		}
5033 	}
5034 	return (device);
5035 }
5036 
5037 void
5038 xpt_start_tags(struct cam_path *path)
5039 {
5040 	struct ccb_relsim crs;
5041 	struct cam_ed *device;
5042 	struct cam_sim *sim;
5043 	int    newopenings;
5044 
5045 	device = path->device;
5046 	sim = path->bus->sim;
5047 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5048 	xpt_freeze_devq(path, /*count*/1);
5049 	device->inq_flags |= SID_CmdQue;
5050 	if (device->tag_saved_openings != 0)
5051 		newopenings = device->tag_saved_openings;
5052 	else
5053 		newopenings = min(device->maxtags,
5054 				  sim->max_tagged_dev_openings);
5055 	xpt_dev_ccbq_resize(path, newopenings);
5056 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5057 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5058 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5059 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5060 	crs.openings
5061 	    = crs.release_timeout
5062 	    = crs.qfrozen_cnt
5063 	    = 0;
5064 	xpt_action((union ccb *)&crs);
5065 }
5066 
5067 void
5068 xpt_stop_tags(struct cam_path *path)
5069 {
5070 	struct ccb_relsim crs;
5071 	struct cam_ed *device;
5072 	struct cam_sim *sim;
5073 
5074 	device = path->device;
5075 	sim = path->bus->sim;
5076 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5077 	device->tag_delay_count = 0;
5078 	xpt_freeze_devq(path, /*count*/1);
5079 	device->inq_flags &= ~SID_CmdQue;
5080 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5081 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5082 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5083 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5084 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5085 	crs.openings
5086 	    = crs.release_timeout
5087 	    = crs.qfrozen_cnt
5088 	    = 0;
5089 	xpt_action((union ccb *)&crs);
5090 }
5091 
5092 /*
5093  * Assume all possible buses are detected by this time, so allow boot
5094  * as soon as they all are scanned.
5095  */
5096 static void
5097 xpt_boot_delay(void *arg)
5098 {
5099 
5100 	xpt_release_boot();
5101 }
5102 
5103 /*
5104  * Now that all config hooks have completed, start boot_delay timer,
5105  * waiting for possibly still undetected buses (USB) to appear.
5106  */
5107 static void
5108 xpt_ch_done(void *arg)
5109 {
5110 
5111 	callout_init(&xsoftc.boot_callout, 1);
5112 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5113 	    xpt_boot_delay, NULL, 0);
5114 }
5115 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5116 
5117 /*
5118  * Now that interrupts are enabled, go find our devices
5119  */
5120 static void
5121 xpt_config(void *arg)
5122 {
5123 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5124 		printf("xpt_config: failed to create taskqueue thread.\n");
5125 
5126 	/* Setup debugging path */
5127 	if (cam_dflags != CAM_DEBUG_NONE) {
5128 		if (xpt_create_path(&cam_dpath, NULL,
5129 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5130 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5131 			printf("xpt_config: xpt_create_path() failed for debug"
5132 			       " target %d:%d:%d, debugging disabled\n",
5133 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5134 			cam_dflags = CAM_DEBUG_NONE;
5135 		}
5136 	} else
5137 		cam_dpath = NULL;
5138 
5139 	periphdriver_init(1);
5140 	xpt_hold_boot();
5141 
5142 	/* Fire up rescan thread. */
5143 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5144 	    "cam", "scanner")) {
5145 		printf("xpt_config: failed to create rescan thread.\n");
5146 	}
5147 }
5148 
5149 void
5150 xpt_hold_boot_locked(void)
5151 {
5152 
5153 	if (xsoftc.buses_to_config++ == 0)
5154 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5155 }
5156 
5157 void
5158 xpt_hold_boot(void)
5159 {
5160 
5161 	xpt_lock_buses();
5162 	xpt_hold_boot_locked();
5163 	xpt_unlock_buses();
5164 }
5165 
5166 void
5167 xpt_release_boot(void)
5168 {
5169 
5170 	xpt_lock_buses();
5171 	if (--xsoftc.buses_to_config == 0) {
5172 		if (xsoftc.buses_config_done == 0) {
5173 			xsoftc.buses_config_done = 1;
5174 			xsoftc.buses_to_config++;
5175 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5176 			    NULL);
5177 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5178 		} else
5179 			root_mount_rel(&xsoftc.xpt_rootmount);
5180 	}
5181 	xpt_unlock_buses();
5182 }
5183 
5184 /*
5185  * If the given device only has one peripheral attached to it, and if that
5186  * peripheral is the passthrough driver, announce it.  This insures that the
5187  * user sees some sort of announcement for every peripheral in their system.
5188  */
5189 static int
5190 xptpassannouncefunc(struct cam_ed *device, void *arg)
5191 {
5192 	struct cam_periph *periph;
5193 	int i;
5194 
5195 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5196 	     periph = SLIST_NEXT(periph, periph_links), i++);
5197 
5198 	periph = SLIST_FIRST(&device->periphs);
5199 	if ((i == 1)
5200 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5201 		xpt_announce_periph(periph, NULL);
5202 
5203 	return(1);
5204 }
5205 
5206 static void
5207 xpt_finishconfig_task(void *context, int pending)
5208 {
5209 
5210 	periphdriver_init(2);
5211 	/*
5212 	 * Check for devices with no "standard" peripheral driver
5213 	 * attached.  For any devices like that, announce the
5214 	 * passthrough driver so the user will see something.
5215 	 */
5216 	if (!bootverbose)
5217 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5218 
5219 	xpt_release_boot();
5220 }
5221 
5222 cam_status
5223 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5224 		   struct cam_path *path)
5225 {
5226 	struct ccb_setasync csa;
5227 	cam_status status;
5228 	int xptpath = 0;
5229 
5230 	if (path == NULL) {
5231 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5232 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5233 		if (status != CAM_REQ_CMP)
5234 			return (status);
5235 		xpt_path_lock(path);
5236 		xptpath = 1;
5237 	}
5238 
5239 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5240 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5241 	csa.event_enable = event;
5242 	csa.callback = cbfunc;
5243 	csa.callback_arg = cbarg;
5244 	xpt_action((union ccb *)&csa);
5245 	status = csa.ccb_h.status;
5246 
5247 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5248 	    ("xpt_register_async: func %p\n", cbfunc));
5249 
5250 	if (xptpath) {
5251 		xpt_path_unlock(path);
5252 		xpt_free_path(path);
5253 	}
5254 
5255 	if ((status == CAM_REQ_CMP) &&
5256 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5257 		/*
5258 		 * Get this peripheral up to date with all
5259 		 * the currently existing devices.
5260 		 */
5261 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5262 	}
5263 	if ((status == CAM_REQ_CMP) &&
5264 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5265 		/*
5266 		 * Get this peripheral up to date with all
5267 		 * the currently existing buses.
5268 		 */
5269 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5270 	}
5271 
5272 	return (status);
5273 }
5274 
5275 static void
5276 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5277 {
5278 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5279 
5280 	switch (work_ccb->ccb_h.func_code) {
5281 	/* Common cases first */
5282 	case XPT_PATH_INQ:		/* Path routing inquiry */
5283 	{
5284 		struct ccb_pathinq *cpi;
5285 
5286 		cpi = &work_ccb->cpi;
5287 		cpi->version_num = 1; /* XXX??? */
5288 		cpi->hba_inquiry = 0;
5289 		cpi->target_sprt = 0;
5290 		cpi->hba_misc = 0;
5291 		cpi->hba_eng_cnt = 0;
5292 		cpi->max_target = 0;
5293 		cpi->max_lun = 0;
5294 		cpi->initiator_id = 0;
5295 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5296 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5297 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5298 		cpi->unit_number = sim->unit_number;
5299 		cpi->bus_id = sim->bus_id;
5300 		cpi->base_transfer_speed = 0;
5301 		cpi->protocol = PROTO_UNSPECIFIED;
5302 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5303 		cpi->transport = XPORT_UNSPECIFIED;
5304 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5305 		cpi->ccb_h.status = CAM_REQ_CMP;
5306 		break;
5307 	}
5308 	default:
5309 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5310 		break;
5311 	}
5312 	xpt_done(work_ccb);
5313 }
5314 
5315 /*
5316  * The xpt as a "controller" has no interrupt sources, so polling
5317  * is a no-op.
5318  */
5319 static void
5320 xptpoll(struct cam_sim *sim)
5321 {
5322 }
5323 
5324 void
5325 xpt_lock_buses(void)
5326 {
5327 	mtx_lock(&xsoftc.xpt_topo_lock);
5328 }
5329 
5330 void
5331 xpt_unlock_buses(void)
5332 {
5333 	mtx_unlock(&xsoftc.xpt_topo_lock);
5334 }
5335 
5336 struct mtx *
5337 xpt_path_mtx(struct cam_path *path)
5338 {
5339 
5340 	return (&path->device->device_mtx);
5341 }
5342 
5343 static void
5344 xpt_done_process(struct ccb_hdr *ccb_h)
5345 {
5346 	struct cam_sim *sim = NULL;
5347 	struct cam_devq *devq = NULL;
5348 	struct mtx *mtx = NULL;
5349 
5350 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5351 	struct ccb_scsiio *csio;
5352 
5353 	if (ccb_h->func_code == XPT_SCSI_IO) {
5354 		csio = &((union ccb *)ccb_h)->csio;
5355 		if (csio->bio != NULL)
5356 			biotrack(csio->bio, __func__);
5357 	}
5358 #endif
5359 
5360 	if (ccb_h->flags & CAM_HIGH_POWER) {
5361 		struct highpowerlist	*hphead;
5362 		struct cam_ed		*device;
5363 
5364 		mtx_lock(&xsoftc.xpt_highpower_lock);
5365 		hphead = &xsoftc.highpowerq;
5366 
5367 		device = STAILQ_FIRST(hphead);
5368 
5369 		/*
5370 		 * Increment the count since this command is done.
5371 		 */
5372 		xsoftc.num_highpower++;
5373 
5374 		/*
5375 		 * Any high powered commands queued up?
5376 		 */
5377 		if (device != NULL) {
5378 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5379 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5380 
5381 			mtx_lock(&device->sim->devq->send_mtx);
5382 			xpt_release_devq_device(device,
5383 					 /*count*/1, /*runqueue*/TRUE);
5384 			mtx_unlock(&device->sim->devq->send_mtx);
5385 		} else
5386 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5387 	}
5388 
5389 	/*
5390 	 * Insulate against a race where the periph is destroyed but CCBs are
5391 	 * still not all processed. This shouldn't happen, but allows us better
5392 	 * bug diagnostic when it does.
5393 	 */
5394 	if (ccb_h->path->bus)
5395 		sim = ccb_h->path->bus->sim;
5396 
5397 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5398 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5399 		xpt_release_simq(sim, /*run_queue*/FALSE);
5400 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5401 	}
5402 
5403 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5404 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5405 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5406 		ccb_h->status &= ~CAM_DEV_QFRZN;
5407 	}
5408 
5409 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5410 		struct cam_ed *dev = ccb_h->path->device;
5411 
5412 		if (sim)
5413 			devq = sim->devq;
5414 		KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5415 			ccb_h, xpt_action_name(ccb_h->func_code)));
5416 
5417 		mtx_lock(&devq->send_mtx);
5418 		devq->send_active--;
5419 		devq->send_openings++;
5420 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5421 
5422 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5423 		  && (dev->ccbq.dev_active == 0))) {
5424 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5425 			xpt_release_devq_device(dev, /*count*/1,
5426 					 /*run_queue*/FALSE);
5427 		}
5428 
5429 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5430 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5431 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5432 			xpt_release_devq_device(dev, /*count*/1,
5433 					 /*run_queue*/FALSE);
5434 		}
5435 
5436 		if (!device_is_queued(dev))
5437 			(void)xpt_schedule_devq(devq, dev);
5438 		xpt_run_devq(devq);
5439 		mtx_unlock(&devq->send_mtx);
5440 
5441 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5442 			mtx = xpt_path_mtx(ccb_h->path);
5443 			mtx_lock(mtx);
5444 
5445 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5446 			 && (--dev->tag_delay_count == 0))
5447 				xpt_start_tags(ccb_h->path);
5448 		}
5449 	}
5450 
5451 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5452 		if (mtx == NULL) {
5453 			mtx = xpt_path_mtx(ccb_h->path);
5454 			mtx_lock(mtx);
5455 		}
5456 	} else {
5457 		if (mtx != NULL) {
5458 			mtx_unlock(mtx);
5459 			mtx = NULL;
5460 		}
5461 	}
5462 
5463 	/* Call the peripheral driver's callback */
5464 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5465 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5466 	if (mtx != NULL)
5467 		mtx_unlock(mtx);
5468 }
5469 
5470 void
5471 xpt_done_td(void *arg)
5472 {
5473 	struct cam_doneq *queue = arg;
5474 	struct ccb_hdr *ccb_h;
5475 	STAILQ_HEAD(, ccb_hdr)	doneq;
5476 
5477 	STAILQ_INIT(&doneq);
5478 	mtx_lock(&queue->cam_doneq_mtx);
5479 	while (1) {
5480 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5481 			queue->cam_doneq_sleep = 1;
5482 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5483 			    PRIBIO, "-", 0);
5484 			queue->cam_doneq_sleep = 0;
5485 		}
5486 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5487 		mtx_unlock(&queue->cam_doneq_mtx);
5488 
5489 		THREAD_NO_SLEEPING();
5490 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5491 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5492 			xpt_done_process(ccb_h);
5493 		}
5494 		THREAD_SLEEPING_OK();
5495 
5496 		mtx_lock(&queue->cam_doneq_mtx);
5497 	}
5498 }
5499 
5500 static void
5501 camisr_runqueue(void)
5502 {
5503 	struct	ccb_hdr *ccb_h;
5504 	struct cam_doneq *queue;
5505 	int i;
5506 
5507 	/* Process global queues. */
5508 	for (i = 0; i < cam_num_doneqs; i++) {
5509 		queue = &cam_doneqs[i];
5510 		mtx_lock(&queue->cam_doneq_mtx);
5511 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5512 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5513 			mtx_unlock(&queue->cam_doneq_mtx);
5514 			xpt_done_process(ccb_h);
5515 			mtx_lock(&queue->cam_doneq_mtx);
5516 		}
5517 		mtx_unlock(&queue->cam_doneq_mtx);
5518 	}
5519 }
5520 
5521 struct kv
5522 {
5523 	uint32_t v;
5524 	const char *name;
5525 };
5526 
5527 static struct kv map[] = {
5528 	{ XPT_NOOP, "XPT_NOOP" },
5529 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5530 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5531 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5532 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5533 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5534 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5535 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5536 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5537 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5538 	{ XPT_DEBUG, "XPT_DEBUG" },
5539 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5540 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5541 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5542 	{ XPT_ASYNC, "XPT_ASYNC" },
5543 	{ XPT_ABORT, "XPT_ABORT" },
5544 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5545 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5546 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5547 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5548 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5549 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5550 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5551 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5552 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5553 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5554 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5555 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5556 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5557 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5558 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5559 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5560 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5561 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5562 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5563 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5564 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5565 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5566 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5567 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5568 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5569 	{ 0, 0 }
5570 };
5571 
5572 const char *
5573 xpt_action_name(uint32_t action)
5574 {
5575 	static char buffer[32];	/* Only for unknown messages -- racy */
5576 	struct kv *walker = map;
5577 
5578 	while (walker->name != NULL) {
5579 		if (walker->v == action)
5580 			return (walker->name);
5581 		walker++;
5582 	}
5583 
5584 	snprintf(buffer, sizeof(buffer), "%#x", action);
5585 	return (buffer);
5586 }
5587