xref: /freebsd/sys/cam/scsi/scsi_all.c (revision b0b1dbdd)
1 /*-
2  * Implementation of Utility functions for all SCSI device types.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/stdint.h>
36 
37 #ifdef _KERNEL
38 #include <opt_scsi.h>
39 
40 #include <sys/systm.h>
41 #include <sys/libkern.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/ctype.h>
48 #else
49 #include <errno.h>
50 #include <stdio.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <ctype.h>
54 #endif
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_queue.h>
59 #include <cam/cam_xpt.h>
60 #include <cam/scsi/scsi_all.h>
61 #include <sys/ata.h>
62 #include <sys/sbuf.h>
63 
64 #ifdef _KERNEL
65 #include <cam/cam_periph.h>
66 #include <cam/cam_xpt_sim.h>
67 #include <cam/cam_xpt_periph.h>
68 #include <cam/cam_xpt_internal.h>
69 #else
70 #include <camlib.h>
71 #include <stddef.h>
72 
73 #ifndef FALSE
74 #define FALSE   0
75 #endif /* FALSE */
76 #ifndef TRUE
77 #define TRUE    1
78 #endif /* TRUE */
79 #define ERESTART        -1              /* restart syscall */
80 #define EJUSTRETURN     -2              /* don't modify regs, just return */
81 #endif /* !_KERNEL */
82 
83 /*
84  * This is the default number of milliseconds we wait for devices to settle
85  * after a SCSI bus reset.
86  */
87 #ifndef SCSI_DELAY
88 #define SCSI_DELAY 2000
89 #endif
90 /*
91  * All devices need _some_ sort of bus settle delay, so we'll set it to
92  * a minimum value of 100ms. Note that this is pertinent only for SPI-
93  * not transport like Fibre Channel or iSCSI where 'delay' is completely
94  * meaningless.
95  */
96 #ifndef SCSI_MIN_DELAY
97 #define SCSI_MIN_DELAY 100
98 #endif
99 /*
100  * Make sure the user isn't using seconds instead of milliseconds.
101  */
102 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
103 #error "SCSI_DELAY is in milliseconds, not seconds!  Please use a larger value"
104 #endif
105 
106 int scsi_delay;
107 
108 static int	ascentrycomp(const void *key, const void *member);
109 static int	senseentrycomp(const void *key, const void *member);
110 static void	fetchtableentries(int sense_key, int asc, int ascq,
111 				  struct scsi_inquiry_data *,
112 				  const struct sense_key_table_entry **,
113 				  const struct asc_table_entry **);
114 
115 #ifdef _KERNEL
116 static void	init_scsi_delay(void);
117 static int	sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
118 static int	set_scsi_delay(int delay);
119 #endif
120 
121 #if !defined(SCSI_NO_OP_STRINGS)
122 
123 #define	D	(1 << T_DIRECT)
124 #define	T	(1 << T_SEQUENTIAL)
125 #define	L	(1 << T_PRINTER)
126 #define	P	(1 << T_PROCESSOR)
127 #define	W	(1 << T_WORM)
128 #define	R	(1 << T_CDROM)
129 #define	O	(1 << T_OPTICAL)
130 #define	M	(1 << T_CHANGER)
131 #define	A	(1 << T_STORARRAY)
132 #define	E	(1 << T_ENCLOSURE)
133 #define	B	(1 << T_RBC)
134 #define	K	(1 << T_OCRW)
135 #define	V	(1 << T_ADC)
136 #define	F	(1 << T_OSD)
137 #define	S	(1 << T_SCANNER)
138 #define	C	(1 << T_COMM)
139 
140 #define ALL	(D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
141 
142 static struct op_table_entry plextor_cd_ops[] = {
143 	{ 0xD8, R, "CD-DA READ" }
144 };
145 
146 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
147 	{
148 		/*
149 		 * I believe that 0xD8 is the Plextor proprietary command
150 		 * to read CD-DA data.  I'm not sure which Plextor CDROM
151 		 * models support the command, though.  I know for sure
152 		 * that the 4X, 8X, and 12X models do, and presumably the
153 		 * 12-20X does.  I don't know about any earlier models,
154 		 * though.  If anyone has any more complete information,
155 		 * feel free to change this quirk entry.
156 		 */
157 		{T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
158 		nitems(plextor_cd_ops),
159 		plextor_cd_ops
160 	}
161 };
162 
163 static struct op_table_entry scsi_op_codes[] = {
164 	/*
165 	 * From: http://www.t10.org/lists/op-num.txt
166 	 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
167 	 *              and Jung-uk Kim (jkim@FreeBSD.org)
168 	 *
169 	 * Note:  order is important in this table, scsi_op_desc() currently
170 	 * depends on the opcodes in the table being in order to save
171 	 * search time.
172 	 * Note:  scanner and comm. devices are carried over from the previous
173 	 * version because they were removed in the latest spec.
174 	 */
175 	/* File: OP-NUM.TXT
176 	 *
177 	 * SCSI Operation Codes
178 	 * Numeric Sorted Listing
179 	 * as of  5/26/15
180 	 *
181 	 *     D - DIRECT ACCESS DEVICE (SBC-2)                device column key
182 	 *     .T - SEQUENTIAL ACCESS DEVICE (SSC-2)           -----------------
183 	 *     . L - PRINTER DEVICE (SSC)                      M = Mandatory
184 	 *     .  P - PROCESSOR DEVICE (SPC)                   O = Optional
185 	 *     .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
186 	 *     .  . R - CD/DVE DEVICE (MMC-3)                  Z = Obsolete
187 	 *     .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
188 	 *     .  .  .M - MEDIA CHANGER DEVICE (SMC-2)
189 	 *     .  .  . A - STORAGE ARRAY DEVICE (SCC-2)
190 	 *     .  .  . .E - ENCLOSURE SERVICES DEVICE (SES)
191 	 *     .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
192 	 *     .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
193 	 *     .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
194 	 *     .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
195 	 * OP  DTLPWROMAEBKVF  Description
196 	 * --  --------------  ---------------------------------------------- */
197 	/* 00  MMMMMMMMMMMMMM  TEST UNIT READY */
198 	{ 0x00,	ALL, "TEST UNIT READY" },
199 	/* 01   M              REWIND */
200 	{ 0x01,	T, "REWIND" },
201 	/* 01  Z V ZZZZ        REZERO UNIT */
202 	{ 0x01,	D | W | R | O | M, "REZERO UNIT" },
203 	/* 02  VVVVVV V */
204 	/* 03  MMMMMMMMMMOMMM  REQUEST SENSE */
205 	{ 0x03,	ALL, "REQUEST SENSE" },
206 	/* 04  M    OO         FORMAT UNIT */
207 	{ 0x04,	D | R | O, "FORMAT UNIT" },
208 	/* 04   O              FORMAT MEDIUM */
209 	{ 0x04,	T, "FORMAT MEDIUM" },
210 	/* 04    O             FORMAT */
211 	{ 0x04,	L, "FORMAT" },
212 	/* 05  VMVVVV V        READ BLOCK LIMITS */
213 	{ 0x05,	T, "READ BLOCK LIMITS" },
214 	/* 06  VVVVVV V */
215 	/* 07  OVV O OV        REASSIGN BLOCKS */
216 	{ 0x07,	D | W | O, "REASSIGN BLOCKS" },
217 	/* 07         O        INITIALIZE ELEMENT STATUS */
218 	{ 0x07,	M, "INITIALIZE ELEMENT STATUS" },
219 	/* 08  MOV O OV        READ(6) */
220 	{ 0x08,	D | T | W | O, "READ(6)" },
221 	/* 08     O            RECEIVE */
222 	{ 0x08,	P, "RECEIVE" },
223 	/* 08                  GET MESSAGE(6) */
224 	{ 0x08, C, "GET MESSAGE(6)" },
225 	/* 09  VVVVVV V */
226 	/* 0A  OO  O OV        WRITE(6) */
227 	{ 0x0A,	D | T | W | O, "WRITE(6)" },
228 	/* 0A     M            SEND(6) */
229 	{ 0x0A,	P, "SEND(6)" },
230 	/* 0A                  SEND MESSAGE(6) */
231 	{ 0x0A, C, "SEND MESSAGE(6)" },
232 	/* 0A    M             PRINT */
233 	{ 0x0A,	L, "PRINT" },
234 	/* 0B  Z   ZOZV        SEEK(6) */
235 	{ 0x0B,	D | W | R | O, "SEEK(6)" },
236 	/* 0B   O              SET CAPACITY */
237 	{ 0x0B,	T, "SET CAPACITY" },
238 	/* 0B    O             SLEW AND PRINT */
239 	{ 0x0B,	L, "SLEW AND PRINT" },
240 	/* 0C  VVVVVV V */
241 	/* 0D  VVVVVV V */
242 	/* 0E  VVVVVV V */
243 	/* 0F  VOVVVV V        READ REVERSE(6) */
244 	{ 0x0F,	T, "READ REVERSE(6)" },
245 	/* 10  VM VVV          WRITE FILEMARKS(6) */
246 	{ 0x10,	T, "WRITE FILEMARKS(6)" },
247 	/* 10    O             SYNCHRONIZE BUFFER */
248 	{ 0x10,	L, "SYNCHRONIZE BUFFER" },
249 	/* 11  VMVVVV          SPACE(6) */
250 	{ 0x11,	T, "SPACE(6)" },
251 	/* 12  MMMMMMMMMMMMMM  INQUIRY */
252 	{ 0x12,	ALL, "INQUIRY" },
253 	/* 13  V VVVV */
254 	/* 13   O              VERIFY(6) */
255 	{ 0x13,	T, "VERIFY(6)" },
256 	/* 14  VOOVVV          RECOVER BUFFERED DATA */
257 	{ 0x14,	T | L, "RECOVER BUFFERED DATA" },
258 	/* 15  OMO O OOOO OO   MODE SELECT(6) */
259 	{ 0x15,	ALL & ~(P | R | B | F), "MODE SELECT(6)" },
260 	/* 16  ZZMZO OOOZ O    RESERVE(6) */
261 	{ 0x16,	ALL & ~(R | B | V | F | C), "RESERVE(6)" },
262 	/* 16         Z        RESERVE ELEMENT(6) */
263 	{ 0x16,	M, "RESERVE ELEMENT(6)" },
264 	/* 17  ZZMZO OOOZ O    RELEASE(6) */
265 	{ 0x17,	ALL & ~(R | B | V | F | C), "RELEASE(6)" },
266 	/* 17         Z        RELEASE ELEMENT(6) */
267 	{ 0x17,	M, "RELEASE ELEMENT(6)" },
268 	/* 18  ZZZZOZO    Z    COPY */
269 	{ 0x18,	D | T | L | P | W | R | O | K | S, "COPY" },
270 	/* 19  VMVVVV          ERASE(6) */
271 	{ 0x19,	T, "ERASE(6)" },
272 	/* 1A  OMO O OOOO OO   MODE SENSE(6) */
273 	{ 0x1A,	ALL & ~(P | R | B | F), "MODE SENSE(6)" },
274 	/* 1B  O   OOO O MO O  START STOP UNIT */
275 	{ 0x1B,	D | W | R | O | A | B | K | F, "START STOP UNIT" },
276 	/* 1B   O          M   LOAD UNLOAD */
277 	{ 0x1B,	T | V, "LOAD UNLOAD" },
278 	/* 1B                  SCAN */
279 	{ 0x1B, S, "SCAN" },
280 	/* 1B    O             STOP PRINT */
281 	{ 0x1B,	L, "STOP PRINT" },
282 	/* 1B         O        OPEN/CLOSE IMPORT/EXPORT ELEMENT */
283 	{ 0x1B,	M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
284 	/* 1C  OOOOO OOOM OOO  RECEIVE DIAGNOSTIC RESULTS */
285 	{ 0x1C,	ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
286 	/* 1D  MMMMM MMOM MMM  SEND DIAGNOSTIC */
287 	{ 0x1D,	ALL & ~(R | B), "SEND DIAGNOSTIC" },
288 	/* 1E  OO  OOOO   O O  PREVENT ALLOW MEDIUM REMOVAL */
289 	{ 0x1E,	D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
290 	/* 1F */
291 	/* 20  V   VVV    V */
292 	/* 21  V   VVV    V */
293 	/* 22  V   VVV    V */
294 	/* 23  V   V V    V */
295 	/* 23       O          READ FORMAT CAPACITIES */
296 	{ 0x23,	R, "READ FORMAT CAPACITIES" },
297 	/* 24  V   VV          SET WINDOW */
298 	{ 0x24, S, "SET WINDOW" },
299 	/* 25  M   M M   M     READ CAPACITY(10) */
300 	{ 0x25,	D | W | O | B, "READ CAPACITY(10)" },
301 	/* 25       O          READ CAPACITY */
302 	{ 0x25,	R, "READ CAPACITY" },
303 	/* 25             M    READ CARD CAPACITY */
304 	{ 0x25,	K, "READ CARD CAPACITY" },
305 	/* 25                  GET WINDOW */
306 	{ 0x25, S, "GET WINDOW" },
307 	/* 26  V   VV */
308 	/* 27  V   VV */
309 	/* 28  M   MOM   MM    READ(10) */
310 	{ 0x28,	D | W | R | O | B | K | S, "READ(10)" },
311 	/* 28                  GET MESSAGE(10) */
312 	{ 0x28, C, "GET MESSAGE(10)" },
313 	/* 29  V   VVO         READ GENERATION */
314 	{ 0x29,	O, "READ GENERATION" },
315 	/* 2A  O   MOM   MO    WRITE(10) */
316 	{ 0x2A,	D | W | R | O | B | K, "WRITE(10)" },
317 	/* 2A                  SEND(10) */
318 	{ 0x2A, S, "SEND(10)" },
319 	/* 2A                  SEND MESSAGE(10) */
320 	{ 0x2A, C, "SEND MESSAGE(10)" },
321 	/* 2B  Z   OOO    O    SEEK(10) */
322 	{ 0x2B,	D | W | R | O | K, "SEEK(10)" },
323 	/* 2B   O              LOCATE(10) */
324 	{ 0x2B,	T, "LOCATE(10)" },
325 	/* 2B         O        POSITION TO ELEMENT */
326 	{ 0x2B,	M, "POSITION TO ELEMENT" },
327 	/* 2C  V    OO         ERASE(10) */
328 	{ 0x2C,	R | O, "ERASE(10)" },
329 	/* 2D        O         READ UPDATED BLOCK */
330 	{ 0x2D,	O, "READ UPDATED BLOCK" },
331 	/* 2D  V */
332 	/* 2E  O   OOO   MO    WRITE AND VERIFY(10) */
333 	{ 0x2E,	D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
334 	/* 2F  O   OOO         VERIFY(10) */
335 	{ 0x2F,	D | W | R | O, "VERIFY(10)" },
336 	/* 30  Z   ZZZ         SEARCH DATA HIGH(10) */
337 	{ 0x30,	D | W | R | O, "SEARCH DATA HIGH(10)" },
338 	/* 31  Z   ZZZ         SEARCH DATA EQUAL(10) */
339 	{ 0x31,	D | W | R | O, "SEARCH DATA EQUAL(10)" },
340 	/* 31                  OBJECT POSITION */
341 	{ 0x31, S, "OBJECT POSITION" },
342 	/* 32  Z   ZZZ         SEARCH DATA LOW(10) */
343 	{ 0x32,	D | W | R | O, "SEARCH DATA LOW(10)" },
344 	/* 33  Z   OZO         SET LIMITS(10) */
345 	{ 0x33,	D | W | R | O, "SET LIMITS(10)" },
346 	/* 34  O   O O    O    PRE-FETCH(10) */
347 	{ 0x34,	D | W | O | K, "PRE-FETCH(10)" },
348 	/* 34   M              READ POSITION */
349 	{ 0x34,	T, "READ POSITION" },
350 	/* 34                  GET DATA BUFFER STATUS */
351 	{ 0x34, S, "GET DATA BUFFER STATUS" },
352 	/* 35  O   OOO   MO    SYNCHRONIZE CACHE(10) */
353 	{ 0x35,	D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
354 	/* 36  Z   O O    O    LOCK UNLOCK CACHE(10) */
355 	{ 0x36,	D | W | O | K, "LOCK UNLOCK CACHE(10)" },
356 	/* 37  O     O         READ DEFECT DATA(10) */
357 	{ 0x37,	D | O, "READ DEFECT DATA(10)" },
358 	/* 37         O        INITIALIZE ELEMENT STATUS WITH RANGE */
359 	{ 0x37,	M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
360 	/* 38      O O    O    MEDIUM SCAN */
361 	{ 0x38,	W | O | K, "MEDIUM SCAN" },
362 	/* 39  ZZZZOZO    Z    COMPARE */
363 	{ 0x39,	D | T | L | P | W | R | O | K | S, "COMPARE" },
364 	/* 3A  ZZZZOZO    Z    COPY AND VERIFY */
365 	{ 0x3A,	D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
366 	/* 3B  OOOOOOOOOOMOOO  WRITE BUFFER */
367 	{ 0x3B,	ALL, "WRITE BUFFER" },
368 	/* 3C  OOOOOOOOOO OOO  READ BUFFER */
369 	{ 0x3C,	ALL & ~(B), "READ BUFFER" },
370 	/* 3D        O         UPDATE BLOCK */
371 	{ 0x3D,	O, "UPDATE BLOCK" },
372 	/* 3E  O   O O         READ LONG(10) */
373 	{ 0x3E,	D | W | O, "READ LONG(10)" },
374 	/* 3F  O   O O         WRITE LONG(10) */
375 	{ 0x3F,	D | W | O, "WRITE LONG(10)" },
376 	/* 40  ZZZZOZOZ        CHANGE DEFINITION */
377 	{ 0x40,	D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
378 	/* 41  O               WRITE SAME(10) */
379 	{ 0x41,	D, "WRITE SAME(10)" },
380 	/* 42       O          UNMAP */
381 	{ 0x42,	D, "UNMAP" },
382 	/* 42       O          READ SUB-CHANNEL */
383 	{ 0x42,	R, "READ SUB-CHANNEL" },
384 	/* 43       O          READ TOC/PMA/ATIP */
385 	{ 0x43,	R, "READ TOC/PMA/ATIP" },
386 	/* 44   M          M   REPORT DENSITY SUPPORT */
387 	{ 0x44,	T | V, "REPORT DENSITY SUPPORT" },
388 	/* 44                  READ HEADER */
389 	/* 45       O          PLAY AUDIO(10) */
390 	{ 0x45,	R, "PLAY AUDIO(10)" },
391 	/* 46       M          GET CONFIGURATION */
392 	{ 0x46,	R, "GET CONFIGURATION" },
393 	/* 47       O          PLAY AUDIO MSF */
394 	{ 0x47,	R, "PLAY AUDIO MSF" },
395 	/* 48 */
396 	/* 49 */
397 	/* 4A       M          GET EVENT STATUS NOTIFICATION */
398 	{ 0x4A,	R, "GET EVENT STATUS NOTIFICATION" },
399 	/* 4B       O          PAUSE/RESUME */
400 	{ 0x4B,	R, "PAUSE/RESUME" },
401 	/* 4C  OOOOO OOOO OOO  LOG SELECT */
402 	{ 0x4C,	ALL & ~(R | B), "LOG SELECT" },
403 	/* 4D  OOOOO OOOO OMO  LOG SENSE */
404 	{ 0x4D,	ALL & ~(R | B), "LOG SENSE" },
405 	/* 4E       O          STOP PLAY/SCAN */
406 	{ 0x4E,	R, "STOP PLAY/SCAN" },
407 	/* 4F */
408 	/* 50  O               XDWRITE(10) */
409 	{ 0x50,	D, "XDWRITE(10)" },
410 	/* 51  O               XPWRITE(10) */
411 	{ 0x51,	D, "XPWRITE(10)" },
412 	/* 51       O          READ DISC INFORMATION */
413 	{ 0x51,	R, "READ DISC INFORMATION" },
414 	/* 52  O               XDREAD(10) */
415 	{ 0x52,	D, "XDREAD(10)" },
416 	/* 52       O          READ TRACK INFORMATION */
417 	{ 0x52,	R, "READ TRACK INFORMATION" },
418 	/* 53       O          RESERVE TRACK */
419 	{ 0x53,	R, "RESERVE TRACK" },
420 	/* 54       O          SEND OPC INFORMATION */
421 	{ 0x54,	R, "SEND OPC INFORMATION" },
422 	/* 55  OOO OMOOOOMOMO  MODE SELECT(10) */
423 	{ 0x55,	ALL & ~(P), "MODE SELECT(10)" },
424 	/* 56  ZZMZO OOOZ      RESERVE(10) */
425 	{ 0x56,	ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
426 	/* 56         Z        RESERVE ELEMENT(10) */
427 	{ 0x56,	M, "RESERVE ELEMENT(10)" },
428 	/* 57  ZZMZO OOOZ      RELEASE(10) */
429 	{ 0x57,	ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
430 	/* 57         Z        RELEASE ELEMENT(10) */
431 	{ 0x57,	M, "RELEASE ELEMENT(10)" },
432 	/* 58       O          REPAIR TRACK */
433 	{ 0x58,	R, "REPAIR TRACK" },
434 	/* 59 */
435 	/* 5A  OOO OMOOOOMOMO  MODE SENSE(10) */
436 	{ 0x5A,	ALL & ~(P), "MODE SENSE(10)" },
437 	/* 5B       O          CLOSE TRACK/SESSION */
438 	{ 0x5B,	R, "CLOSE TRACK/SESSION" },
439 	/* 5C       O          READ BUFFER CAPACITY */
440 	{ 0x5C,	R, "READ BUFFER CAPACITY" },
441 	/* 5D       O          SEND CUE SHEET */
442 	{ 0x5D,	R, "SEND CUE SHEET" },
443 	/* 5E  OOOOO OOOO   M  PERSISTENT RESERVE IN */
444 	{ 0x5E,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
445 	/* 5F  OOOOO OOOO   M  PERSISTENT RESERVE OUT */
446 	{ 0x5F,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
447 	/* 7E  OO   O OOOO O   extended CDB */
448 	{ 0x7E,	D | T | R | M | A | E | B | V, "extended CDB" },
449 	/* 7F  O            M  variable length CDB (more than 16 bytes) */
450 	{ 0x7F,	D | F, "variable length CDB (more than 16 bytes)" },
451 	/* 80  Z               XDWRITE EXTENDED(16) */
452 	{ 0x80,	D, "XDWRITE EXTENDED(16)" },
453 	/* 80   M              WRITE FILEMARKS(16) */
454 	{ 0x80,	T, "WRITE FILEMARKS(16)" },
455 	/* 81  Z               REBUILD(16) */
456 	{ 0x81,	D, "REBUILD(16)" },
457 	/* 81   O              READ REVERSE(16) */
458 	{ 0x81,	T, "READ REVERSE(16)" },
459 	/* 82  Z               REGENERATE(16) */
460 	{ 0x82,	D, "REGENERATE(16)" },
461 	/* 83  OOOOO O    OO   EXTENDED COPY */
462 	{ 0x83,	D | T | L | P | W | O | K | V, "EXTENDED COPY" },
463 	/* 84  OOOOO O    OO   RECEIVE COPY RESULTS */
464 	{ 0x84,	D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
465 	/* 85  O    O    O     ATA COMMAND PASS THROUGH(16) */
466 	{ 0x85,	D | R | B, "ATA COMMAND PASS THROUGH(16)" },
467 	/* 86  OO OO OOOOOOO   ACCESS CONTROL IN */
468 	{ 0x86,	ALL & ~(L | R | F), "ACCESS CONTROL IN" },
469 	/* 87  OO OO OOOOOOO   ACCESS CONTROL OUT */
470 	{ 0x87,	ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
471 	/*
472 	 * XXX READ(16)/WRITE(16) were not listed for CD/DVE in op-num.txt
473 	 * but we had it since r1.40.  Do we really want them?
474 	 */
475 	/* 88  MM  O O   O     READ(16) */
476 	{ 0x88,	D | T | W | O | B, "READ(16)" },
477 	/* 89  O               COMPARE AND WRITE*/
478 	{ 0x89,	D, "COMPARE AND WRITE" },
479 	/* 8A  OM  O O   O     WRITE(16) */
480 	{ 0x8A,	D | T | W | O | B, "WRITE(16)" },
481 	/* 8B  O               ORWRITE */
482 	{ 0x8B,	D, "ORWRITE" },
483 	/* 8C  OO  O OO  O M   READ ATTRIBUTE */
484 	{ 0x8C,	D | T | W | O | M | B | V, "READ ATTRIBUTE" },
485 	/* 8D  OO  O OO  O O   WRITE ATTRIBUTE */
486 	{ 0x8D,	D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
487 	/* 8E  O   O O   O     WRITE AND VERIFY(16) */
488 	{ 0x8E,	D | W | O | B, "WRITE AND VERIFY(16)" },
489 	/* 8F  OO  O O   O     VERIFY(16) */
490 	{ 0x8F,	D | T | W | O | B, "VERIFY(16)" },
491 	/* 90  O   O O   O     PRE-FETCH(16) */
492 	{ 0x90,	D | W | O | B, "PRE-FETCH(16)" },
493 	/* 91  O   O O   O     SYNCHRONIZE CACHE(16) */
494 	{ 0x91,	D | W | O | B, "SYNCHRONIZE CACHE(16)" },
495 	/* 91   O              SPACE(16) */
496 	{ 0x91,	T, "SPACE(16)" },
497 	/* 92  Z   O O         LOCK UNLOCK CACHE(16) */
498 	{ 0x92,	D | W | O, "LOCK UNLOCK CACHE(16)" },
499 	/* 92   O              LOCATE(16) */
500 	{ 0x92,	T, "LOCATE(16)" },
501 	/* 93  O               WRITE SAME(16) */
502 	{ 0x93,	D, "WRITE SAME(16)" },
503 	/* 93   M              ERASE(16) */
504 	{ 0x93,	T, "ERASE(16)" },
505 	/* 94  O               ZBC OUT */
506 	{ 0x94,	ALL, "ZBC OUT" },
507 	/* 95  O               ZBC IN */
508 	{ 0x95,	ALL, "ZBC IN" },
509 	/* 96 */
510 	/* 97 */
511 	/* 98 */
512 	/* 99 */
513 	/* 9A  O               WRITE STREAM(16) */
514 	{ 0x9A,	D, "WRITE STREAM(16)" },
515 	/* 9B  OOOOOOOOOO OOO  READ BUFFER(16) */
516 	{ 0x9B,	ALL & ~(B) , "READ BUFFER(16)" },
517 	/* 9C  O              WRITE ATOMIC(16) */
518 	{ 0x9C, D, "WRITE ATOMIC(16)" },
519 	/* 9D                  SERVICE ACTION BIDIRECTIONAL */
520 	{ 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
521 	/* XXX KDM ALL for this?  op-num.txt defines it for none.. */
522 	/* 9E                  SERVICE ACTION IN(16) */
523 	{ 0x9E, ALL, "SERVICE ACTION IN(16)" },
524 	/* 9F              M   SERVICE ACTION OUT(16) */
525 	{ 0x9F,	ALL, "SERVICE ACTION OUT(16)" },
526 	/* A0  MMOOO OMMM OMO  REPORT LUNS */
527 	{ 0xA0,	ALL & ~(R | B), "REPORT LUNS" },
528 	/* A1       O          BLANK */
529 	{ 0xA1,	R, "BLANK" },
530 	/* A1  O         O     ATA COMMAND PASS THROUGH(12) */
531 	{ 0xA1,	D | B, "ATA COMMAND PASS THROUGH(12)" },
532 	/* A2  OO   O      O   SECURITY PROTOCOL IN */
533 	{ 0xA2,	D | T | R | V, "SECURITY PROTOCOL IN" },
534 	/* A3  OOO O OOMOOOM   MAINTENANCE (IN) */
535 	{ 0xA3,	ALL & ~(P | R | F), "MAINTENANCE (IN)" },
536 	/* A3       O          SEND KEY */
537 	{ 0xA3,	R, "SEND KEY" },
538 	/* A4  OOO O OOOOOOO   MAINTENANCE (OUT) */
539 	{ 0xA4,	ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
540 	/* A4       O          REPORT KEY */
541 	{ 0xA4,	R, "REPORT KEY" },
542 	/* A5   O  O OM        MOVE MEDIUM */
543 	{ 0xA5,	T | W | O | M, "MOVE MEDIUM" },
544 	/* A5       O          PLAY AUDIO(12) */
545 	{ 0xA5,	R, "PLAY AUDIO(12)" },
546 	/* A6         O        EXCHANGE MEDIUM */
547 	{ 0xA6,	M, "EXCHANGE MEDIUM" },
548 	/* A6       O          LOAD/UNLOAD C/DVD */
549 	{ 0xA6,	R, "LOAD/UNLOAD C/DVD" },
550 	/* A7  ZZ  O O         MOVE MEDIUM ATTACHED */
551 	{ 0xA7,	D | T | W | O, "MOVE MEDIUM ATTACHED" },
552 	/* A7       O          SET READ AHEAD */
553 	{ 0xA7,	R, "SET READ AHEAD" },
554 	/* A8  O   OOO         READ(12) */
555 	{ 0xA8,	D | W | R | O, "READ(12)" },
556 	/* A8                  GET MESSAGE(12) */
557 	{ 0xA8, C, "GET MESSAGE(12)" },
558 	/* A9              O   SERVICE ACTION OUT(12) */
559 	{ 0xA9,	V, "SERVICE ACTION OUT(12)" },
560 	/* AA  O   OOO         WRITE(12) */
561 	{ 0xAA,	D | W | R | O, "WRITE(12)" },
562 	/* AA                  SEND MESSAGE(12) */
563 	{ 0xAA, C, "SEND MESSAGE(12)" },
564 	/* AB       O      O   SERVICE ACTION IN(12) */
565 	{ 0xAB,	R | V, "SERVICE ACTION IN(12)" },
566 	/* AC        O         ERASE(12) */
567 	{ 0xAC,	O, "ERASE(12)" },
568 	/* AC       O          GET PERFORMANCE */
569 	{ 0xAC,	R, "GET PERFORMANCE" },
570 	/* AD       O          READ DVD STRUCTURE */
571 	{ 0xAD,	R, "READ DVD STRUCTURE" },
572 	/* AE  O   O O         WRITE AND VERIFY(12) */
573 	{ 0xAE,	D | W | O, "WRITE AND VERIFY(12)" },
574 	/* AF  O   OZO         VERIFY(12) */
575 	{ 0xAF,	D | W | R | O, "VERIFY(12)" },
576 	/* B0      ZZZ         SEARCH DATA HIGH(12) */
577 	{ 0xB0,	W | R | O, "SEARCH DATA HIGH(12)" },
578 	/* B1      ZZZ         SEARCH DATA EQUAL(12) */
579 	{ 0xB1,	W | R | O, "SEARCH DATA EQUAL(12)" },
580 	/* B2      ZZZ         SEARCH DATA LOW(12) */
581 	{ 0xB2,	W | R | O, "SEARCH DATA LOW(12)" },
582 	/* B3  Z   OZO         SET LIMITS(12) */
583 	{ 0xB3,	D | W | R | O, "SET LIMITS(12)" },
584 	/* B4  ZZ  OZO         READ ELEMENT STATUS ATTACHED */
585 	{ 0xB4,	D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
586 	/* B5  OO   O      O   SECURITY PROTOCOL OUT */
587 	{ 0xB5,	D | T | R | V, "SECURITY PROTOCOL OUT" },
588 	/* B5         O        REQUEST VOLUME ELEMENT ADDRESS */
589 	{ 0xB5,	M, "REQUEST VOLUME ELEMENT ADDRESS" },
590 	/* B6         O        SEND VOLUME TAG */
591 	{ 0xB6,	M, "SEND VOLUME TAG" },
592 	/* B6       O          SET STREAMING */
593 	{ 0xB6,	R, "SET STREAMING" },
594 	/* B7  O     O         READ DEFECT DATA(12) */
595 	{ 0xB7,	D | O, "READ DEFECT DATA(12)" },
596 	/* B8   O  OZOM        READ ELEMENT STATUS */
597 	{ 0xB8,	T | W | R | O | M, "READ ELEMENT STATUS" },
598 	/* B9       O          READ CD MSF */
599 	{ 0xB9,	R, "READ CD MSF" },
600 	/* BA  O   O OOMO      REDUNDANCY GROUP (IN) */
601 	{ 0xBA,	D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
602 	/* BA       O          SCAN */
603 	{ 0xBA,	R, "SCAN" },
604 	/* BB  O   O OOOO      REDUNDANCY GROUP (OUT) */
605 	{ 0xBB,	D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
606 	/* BB       O          SET CD SPEED */
607 	{ 0xBB,	R, "SET CD SPEED" },
608 	/* BC  O   O OOMO      SPARE (IN) */
609 	{ 0xBC,	D | W | O | M | A | E, "SPARE (IN)" },
610 	/* BD  O   O OOOO      SPARE (OUT) */
611 	{ 0xBD,	D | W | O | M | A | E, "SPARE (OUT)" },
612 	/* BD       O          MECHANISM STATUS */
613 	{ 0xBD,	R, "MECHANISM STATUS" },
614 	/* BE  O   O OOMO      VOLUME SET (IN) */
615 	{ 0xBE,	D | W | O | M | A | E, "VOLUME SET (IN)" },
616 	/* BE       O          READ CD */
617 	{ 0xBE,	R, "READ CD" },
618 	/* BF  O   O OOOO      VOLUME SET (OUT) */
619 	{ 0xBF,	D | W | O | M | A | E, "VOLUME SET (OUT)" },
620 	/* BF       O          SEND DVD STRUCTURE */
621 	{ 0xBF,	R, "SEND DVD STRUCTURE" }
622 };
623 
624 const char *
625 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
626 {
627 	caddr_t match;
628 	int i, j;
629 	u_int32_t opmask;
630 	u_int16_t pd_type;
631 	int       num_ops[2];
632 	struct op_table_entry *table[2];
633 	int num_tables;
634 
635 	/*
636 	 * If we've got inquiry data, use it to determine what type of
637 	 * device we're dealing with here.  Otherwise, assume direct
638 	 * access.
639 	 */
640 	if (inq_data == NULL) {
641 		pd_type = T_DIRECT;
642 		match = NULL;
643 	} else {
644 		pd_type = SID_TYPE(inq_data);
645 
646 		match = cam_quirkmatch((caddr_t)inq_data,
647 				       (caddr_t)scsi_op_quirk_table,
648 				       nitems(scsi_op_quirk_table),
649 				       sizeof(*scsi_op_quirk_table),
650 				       scsi_inquiry_match);
651 	}
652 
653 	if (match != NULL) {
654 		table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
655 		num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
656 		table[1] = scsi_op_codes;
657 		num_ops[1] = nitems(scsi_op_codes);
658 		num_tables = 2;
659 	} else {
660 		/*
661 		 * If this is true, we have a vendor specific opcode that
662 		 * wasn't covered in the quirk table.
663 		 */
664 		if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
665 			return("Vendor Specific Command");
666 
667 		table[0] = scsi_op_codes;
668 		num_ops[0] = nitems(scsi_op_codes);
669 		num_tables = 1;
670 	}
671 
672 	/* RBC is 'Simplified' Direct Access Device */
673 	if (pd_type == T_RBC)
674 		pd_type = T_DIRECT;
675 
676 	/*
677 	 * Host managed drives are direct access for the most part.
678 	 */
679 	if (pd_type == T_ZBC_HM)
680 		pd_type = T_DIRECT;
681 
682 	/* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
683 	if (pd_type == T_NODEVICE)
684 		pd_type = T_DIRECT;
685 
686 	opmask = 1 << pd_type;
687 
688 	for (j = 0; j < num_tables; j++) {
689 		for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
690 			if ((table[j][i].opcode == opcode)
691 			 && ((table[j][i].opmask & opmask) != 0))
692 				return(table[j][i].desc);
693 		}
694 	}
695 
696 	/*
697 	 * If we can't find a match for the command in the table, we just
698 	 * assume it's a vendor specifc command.
699 	 */
700 	return("Vendor Specific Command");
701 
702 }
703 
704 #else /* SCSI_NO_OP_STRINGS */
705 
706 const char *
707 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
708 {
709 	return("");
710 }
711 
712 #endif
713 
714 
715 #if !defined(SCSI_NO_SENSE_STRINGS)
716 #define SST(asc, ascq, action, desc) \
717 	asc, ascq, action, desc
718 #else
719 const char empty_string[] = "";
720 
721 #define SST(asc, ascq, action, desc) \
722 	asc, ascq, action, empty_string
723 #endif
724 
725 const struct sense_key_table_entry sense_key_table[] =
726 {
727 	{ SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
728 	{ SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
729 	{ SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
730 	{ SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
731 	{ SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
732 	{ SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
733 	{ SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
734 	{ SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
735 	{ SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
736 	{ SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
737 	{ SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
738 	{ SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
739 	{ SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
740 	{ SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
741 	{ SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
742 	{ SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
743 };
744 
745 static struct asc_table_entry quantum_fireball_entries[] = {
746 	{ SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
747 	     "Logical unit not ready, initializing cmd. required") }
748 };
749 
750 static struct asc_table_entry sony_mo_entries[] = {
751 	{ SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
752 	     "Logical unit not ready, cause not reportable") }
753 };
754 
755 static struct asc_table_entry hgst_entries[] = {
756 	{ SST(0x04, 0xF0, SS_RDEF,
757 	    "Vendor Unique - Logical Unit Not Ready") },
758 	{ SST(0x0A, 0x01, SS_RDEF,
759 	    "Unrecovered Super Certification Log Write Error") },
760 	{ SST(0x0A, 0x02, SS_RDEF,
761 	    "Unrecovered Super Certification Log Read Error") },
762 	{ SST(0x15, 0x03, SS_RDEF,
763 	    "Unrecovered Sector Error") },
764 	{ SST(0x3E, 0x04, SS_RDEF,
765 	    "Unrecovered Self-Test Hard-Cache Test Fail") },
766 	{ SST(0x3E, 0x05, SS_RDEF,
767 	    "Unrecovered Self-Test OTF-Cache Fail") },
768 	{ SST(0x40, 0x00, SS_RDEF,
769 	    "Unrecovered SAT No Buffer Overflow Error") },
770 	{ SST(0x40, 0x01, SS_RDEF,
771 	    "Unrecovered SAT Buffer Overflow Error") },
772 	{ SST(0x40, 0x02, SS_RDEF,
773 	    "Unrecovered SAT No Buffer Overflow With ECS Fault") },
774 	{ SST(0x40, 0x03, SS_RDEF,
775 	    "Unrecovered SAT Buffer Overflow With ECS Fault") },
776 	{ SST(0x40, 0x81, SS_RDEF,
777 	    "DRAM Failure") },
778 	{ SST(0x44, 0x0B, SS_RDEF,
779 	    "Vendor Unique - Internal Target Failure") },
780 	{ SST(0x44, 0xF2, SS_RDEF,
781 	    "Vendor Unique - Internal Target Failure") },
782 	{ SST(0x44, 0xF6, SS_RDEF,
783 	    "Vendor Unique - Internal Target Failure") },
784 	{ SST(0x44, 0xF9, SS_RDEF,
785 	    "Vendor Unique - Internal Target Failure") },
786 	{ SST(0x44, 0xFA, SS_RDEF,
787 	    "Vendor Unique - Internal Target Failure") },
788 	{ SST(0x5D, 0x22, SS_RDEF,
789 	    "Extreme Over-Temperature Warning") },
790 	{ SST(0x5D, 0x50, SS_RDEF,
791 	    "Load/Unload cycle Count Warning") },
792 	{ SST(0x81, 0x00, SS_RDEF,
793 	    "Vendor Unique - Internal Logic Error") },
794 	{ SST(0x85, 0x00, SS_RDEF,
795 	    "Vendor Unique - Internal Key Seed Error") },
796 };
797 
798 static struct asc_table_entry seagate_entries[] = {
799 	{ SST(0x04, 0xF0, SS_RDEF,
800 	    "Logical Unit Not Ready, super certify in Progress") },
801 	{ SST(0x08, 0x86, SS_RDEF,
802 	    "Write Fault Data Corruption") },
803 	{ SST(0x09, 0x0D, SS_RDEF,
804 	    "Tracking Failure") },
805 	{ SST(0x09, 0x0E, SS_RDEF,
806 	    "ETF Failure") },
807 	{ SST(0x0B, 0x5D, SS_RDEF,
808 	    "Pre-SMART Warning") },
809 	{ SST(0x0B, 0x85, SS_RDEF,
810 	    "5V Voltage Warning") },
811 	{ SST(0x0B, 0x8C, SS_RDEF,
812 	    "12V Voltage Warning") },
813 	{ SST(0x0C, 0xFF, SS_RDEF,
814 	    "Write Error - Too many error recovery revs") },
815 	{ SST(0x11, 0xFF, SS_RDEF,
816 	    "Unrecovered Read Error - Too many error recovery revs") },
817 	{ SST(0x19, 0x0E, SS_RDEF,
818 	    "Fewer than 1/2 defect list copies") },
819 	{ SST(0x20, 0xF3, SS_RDEF,
820 	    "Illegal CDB linked to skip mask cmd") },
821 	{ SST(0x24, 0xF0, SS_RDEF,
822 	    "Illegal byte in CDB, LBA not matching") },
823 	{ SST(0x24, 0xF1, SS_RDEF,
824 	    "Illegal byte in CDB, LEN not matching") },
825 	{ SST(0x24, 0xF2, SS_RDEF,
826 	    "Mask not matching transfer length") },
827 	{ SST(0x24, 0xF3, SS_RDEF,
828 	    "Drive formatted without plist") },
829 	{ SST(0x26, 0x95, SS_RDEF,
830 	    "Invalid Field Parameter - CAP File") },
831 	{ SST(0x26, 0x96, SS_RDEF,
832 	    "Invalid Field Parameter - RAP File") },
833 	{ SST(0x26, 0x97, SS_RDEF,
834 	    "Invalid Field Parameter - TMS Firmware Tag") },
835 	{ SST(0x26, 0x98, SS_RDEF,
836 	    "Invalid Field Parameter - Check Sum") },
837 	{ SST(0x26, 0x99, SS_RDEF,
838 	    "Invalid Field Parameter - Firmware Tag") },
839 	{ SST(0x29, 0x08, SS_RDEF,
840 	    "Write Log Dump data") },
841 	{ SST(0x29, 0x09, SS_RDEF,
842 	    "Write Log Dump data") },
843 	{ SST(0x29, 0x0A, SS_RDEF,
844 	    "Reserved disk space") },
845 	{ SST(0x29, 0x0B, SS_RDEF,
846 	    "SDBP") },
847 	{ SST(0x29, 0x0C, SS_RDEF,
848 	    "SDBP") },
849 	{ SST(0x31, 0x91, SS_RDEF,
850 	    "Format Corrupted World Wide Name (WWN) is Invalid") },
851 	{ SST(0x32, 0x03, SS_RDEF,
852 	    "Defect List - Length exceeds Command Allocated Length") },
853 	{ SST(0x33, 0x00, SS_RDEF,
854 	    "Flash not ready for access") },
855 	{ SST(0x3F, 0x70, SS_RDEF,
856 	    "Invalid RAP block") },
857 	{ SST(0x3F, 0x71, SS_RDEF,
858 	    "RAP/ETF mismatch") },
859 	{ SST(0x3F, 0x90, SS_RDEF,
860 	    "Invalid CAP block") },
861 	{ SST(0x3F, 0x91, SS_RDEF,
862 	    "World Wide Name (WWN) Mismatch") },
863 	{ SST(0x40, 0x01, SS_RDEF,
864 	    "DRAM Parity Error") },
865 	{ SST(0x40, 0x02, SS_RDEF,
866 	    "DRAM Parity Error") },
867 	{ SST(0x42, 0x0A, SS_RDEF,
868 	    "Loopback Test") },
869 	{ SST(0x42, 0x0B, SS_RDEF,
870 	    "Loopback Test") },
871 	{ SST(0x44, 0xF2, SS_RDEF,
872 	    "Compare error during data integrity check") },
873 	{ SST(0x44, 0xF6, SS_RDEF,
874 	    "Unrecoverable error during data integrity check") },
875 	{ SST(0x47, 0x80, SS_RDEF,
876 	    "Fibre Channel Sequence Error") },
877 	{ SST(0x4E, 0x01, SS_RDEF,
878 	    "Information Unit Too Short") },
879 	{ SST(0x80, 0x00, SS_RDEF,
880 	    "General Firmware Error / Command Timeout") },
881 	{ SST(0x80, 0x01, SS_RDEF,
882 	    "Command Timeout") },
883 	{ SST(0x80, 0x02, SS_RDEF,
884 	    "Command Timeout") },
885 	{ SST(0x80, 0x80, SS_RDEF,
886 	    "FC FIFO Error During Read Transfer") },
887 	{ SST(0x80, 0x81, SS_RDEF,
888 	    "FC FIFO Error During Write Transfer") },
889 	{ SST(0x80, 0x82, SS_RDEF,
890 	    "DISC FIFO Error During Read Transfer") },
891 	{ SST(0x80, 0x83, SS_RDEF,
892 	    "DISC FIFO Error During Write Transfer") },
893 	{ SST(0x80, 0x84, SS_RDEF,
894 	    "LBA Seeded LRC Error on Read") },
895 	{ SST(0x80, 0x85, SS_RDEF,
896 	    "LBA Seeded LRC Error on Write") },
897 	{ SST(0x80, 0x86, SS_RDEF,
898 	    "IOEDC Error on Read") },
899 	{ SST(0x80, 0x87, SS_RDEF,
900 	    "IOEDC Error on Write") },
901 	{ SST(0x80, 0x88, SS_RDEF,
902 	    "Host Parity Check Failed") },
903 	{ SST(0x80, 0x89, SS_RDEF,
904 	    "IOEDC error on read detected by formatter") },
905 	{ SST(0x80, 0x8A, SS_RDEF,
906 	    "Host Parity Errors / Host FIFO Initialization Failed") },
907 	{ SST(0x80, 0x8B, SS_RDEF,
908 	    "Host Parity Errors") },
909 	{ SST(0x80, 0x8C, SS_RDEF,
910 	    "Host Parity Errors") },
911 	{ SST(0x80, 0x8D, SS_RDEF,
912 	    "Host Parity Errors") },
913 	{ SST(0x81, 0x00, SS_RDEF,
914 	    "LA Check Failed") },
915 	{ SST(0x82, 0x00, SS_RDEF,
916 	    "Internal client detected insufficient buffer") },
917 	{ SST(0x84, 0x00, SS_RDEF,
918 	    "Scheduled Diagnostic And Repair") },
919 };
920 
921 static struct scsi_sense_quirk_entry sense_quirk_table[] = {
922 	{
923 		/*
924 		 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
925 		 * when they really should return 0x04 0x02.
926 		 */
927 		{T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
928 		/*num_sense_keys*/0,
929 		nitems(quantum_fireball_entries),
930 		/*sense key entries*/NULL,
931 		quantum_fireball_entries
932 	},
933 	{
934 		/*
935 		 * This Sony MO drive likes to return 0x04, 0x00 when it
936 		 * isn't spun up.
937 		 */
938 		{T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
939 		/*num_sense_keys*/0,
940 		nitems(sony_mo_entries),
941 		/*sense key entries*/NULL,
942 		sony_mo_entries
943 	},
944 	{
945 		/*
946 		 * HGST vendor-specific error codes
947 		 */
948 		{T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
949 		/*num_sense_keys*/0,
950 		nitems(hgst_entries),
951 		/*sense key entries*/NULL,
952 		hgst_entries
953 	},
954 	{
955 		/*
956 		 * SEAGATE vendor-specific error codes
957 		 */
958 		{T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
959 		/*num_sense_keys*/0,
960 		nitems(seagate_entries),
961 		/*sense key entries*/NULL,
962 		seagate_entries
963 	}
964 };
965 
966 const u_int sense_quirk_table_size = nitems(sense_quirk_table);
967 
968 static struct asc_table_entry asc_table[] = {
969 	/*
970 	 * From: http://www.t10.org/lists/asc-num.txt
971 	 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
972 	 */
973 	/*
974 	 * File: ASC-NUM.TXT
975 	 *
976 	 * SCSI ASC/ASCQ Assignments
977 	 * Numeric Sorted Listing
978 	 * as of  8/12/15
979 	 *
980 	 * D - DIRECT ACCESS DEVICE (SBC-2)                   device column key
981 	 * .T - SEQUENTIAL ACCESS DEVICE (SSC)               -------------------
982 	 * . L - PRINTER DEVICE (SSC)                           blank = reserved
983 	 * .  P - PROCESSOR DEVICE (SPC)                     not blank = allowed
984 	 * .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
985 	 * .  . R - CD DEVICE (MMC)
986 	 * .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
987 	 * .  .  .M - MEDIA CHANGER DEVICE (SMC)
988 	 * .  .  . A - STORAGE ARRAY DEVICE (SCC)
989 	 * .  .  .  E - ENCLOSURE SERVICES DEVICE (SES)
990 	 * .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
991 	 * .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
992 	 * .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
993 	 * .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
994 	 * DTLPWROMAEBKVF
995 	 * ASC      ASCQ  Action
996 	 * Description
997 	 */
998 	/* DTLPWROMAEBKVF */
999 	{ SST(0x00, 0x00, SS_NOP,
1000 	    "No additional sense information") },
1001 	/*  T             */
1002 	{ SST(0x00, 0x01, SS_RDEF,
1003 	    "Filemark detected") },
1004 	/*  T             */
1005 	{ SST(0x00, 0x02, SS_RDEF,
1006 	    "End-of-partition/medium detected") },
1007 	/*  T             */
1008 	{ SST(0x00, 0x03, SS_RDEF,
1009 	    "Setmark detected") },
1010 	/*  T             */
1011 	{ SST(0x00, 0x04, SS_RDEF,
1012 	    "Beginning-of-partition/medium detected") },
1013 	/*  TL            */
1014 	{ SST(0x00, 0x05, SS_RDEF,
1015 	    "End-of-data detected") },
1016 	/* DTLPWROMAEBKVF */
1017 	{ SST(0x00, 0x06, SS_RDEF,
1018 	    "I/O process terminated") },
1019 	/*  T             */
1020 	{ SST(0x00, 0x07, SS_RDEF,	/* XXX TBD */
1021 	    "Programmable early warning detected") },
1022 	/*      R         */
1023 	{ SST(0x00, 0x11, SS_FATAL | EBUSY,
1024 	    "Audio play operation in progress") },
1025 	/*      R         */
1026 	{ SST(0x00, 0x12, SS_NOP,
1027 	    "Audio play operation paused") },
1028 	/*      R         */
1029 	{ SST(0x00, 0x13, SS_NOP,
1030 	    "Audio play operation successfully completed") },
1031 	/*      R         */
1032 	{ SST(0x00, 0x14, SS_RDEF,
1033 	    "Audio play operation stopped due to error") },
1034 	/*      R         */
1035 	{ SST(0x00, 0x15, SS_NOP,
1036 	    "No current audio status to return") },
1037 	/* DTLPWROMAEBKVF */
1038 	{ SST(0x00, 0x16, SS_FATAL | EBUSY,
1039 	    "Operation in progress") },
1040 	/* DTL WROMAEBKVF */
1041 	{ SST(0x00, 0x17, SS_RDEF,
1042 	    "Cleaning requested") },
1043 	/*  T             */
1044 	{ SST(0x00, 0x18, SS_RDEF,	/* XXX TBD */
1045 	    "Erase operation in progress") },
1046 	/*  T             */
1047 	{ SST(0x00, 0x19, SS_RDEF,	/* XXX TBD */
1048 	    "Locate operation in progress") },
1049 	/*  T             */
1050 	{ SST(0x00, 0x1A, SS_RDEF,	/* XXX TBD */
1051 	    "Rewind operation in progress") },
1052 	/*  T             */
1053 	{ SST(0x00, 0x1B, SS_RDEF,	/* XXX TBD */
1054 	    "Set capacity operation in progress") },
1055 	/*  T             */
1056 	{ SST(0x00, 0x1C, SS_RDEF,	/* XXX TBD */
1057 	    "Verify operation in progress") },
1058 	/* DT        B    */
1059 	{ SST(0x00, 0x1D, SS_NOP,
1060 	    "ATA pass through information available") },
1061 	/* DT   R MAEBKV  */
1062 	{ SST(0x00, 0x1E, SS_RDEF,	/* XXX TBD */
1063 	    "Conflicting SA creation request") },
1064 	/* DT        B    */
1065 	{ SST(0x00, 0x1F, SS_RDEF,	/* XXX TBD */
1066 	    "Logical unit transitioning to another power condition") },
1067 	/* DT P      B    */
1068 	{ SST(0x00, 0x20, SS_NOP,
1069 	    "Extended copy information available") },
1070 	/* D              */
1071 	{ SST(0x00, 0x21, SS_RDEF,	/* XXX TBD */
1072 	    "Atomic command aborted due to ACA") },
1073 	/* D   W O   BK   */
1074 	{ SST(0x01, 0x00, SS_RDEF,
1075 	    "No index/sector signal") },
1076 	/* D   WRO   BK   */
1077 	{ SST(0x02, 0x00, SS_RDEF,
1078 	    "No seek complete") },
1079 	/* DTL W O   BK   */
1080 	{ SST(0x03, 0x00, SS_RDEF,
1081 	    "Peripheral device write fault") },
1082 	/*  T             */
1083 	{ SST(0x03, 0x01, SS_RDEF,
1084 	    "No write current") },
1085 	/*  T             */
1086 	{ SST(0x03, 0x02, SS_RDEF,
1087 	    "Excessive write errors") },
1088 	/* DTLPWROMAEBKVF */
1089 	{ SST(0x04, 0x00, SS_RDEF,
1090 	    "Logical unit not ready, cause not reportable") },
1091 	/* DTLPWROMAEBKVF */
1092 	{ SST(0x04, 0x01, SS_WAIT | EBUSY,
1093 	    "Logical unit is in process of becoming ready") },
1094 	/* DTLPWROMAEBKVF */
1095 	{ SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1096 	    "Logical unit not ready, initializing command required") },
1097 	/* DTLPWROMAEBKVF */
1098 	{ SST(0x04, 0x03, SS_FATAL | ENXIO,
1099 	    "Logical unit not ready, manual intervention required") },
1100 	/* DTL  RO   B    */
1101 	{ SST(0x04, 0x04, SS_FATAL | EBUSY,
1102 	    "Logical unit not ready, format in progress") },
1103 	/* DT  W O A BK F */
1104 	{ SST(0x04, 0x05, SS_FATAL | EBUSY,
1105 	    "Logical unit not ready, rebuild in progress") },
1106 	/* DT  W O A BK   */
1107 	{ SST(0x04, 0x06, SS_FATAL | EBUSY,
1108 	    "Logical unit not ready, recalculation in progress") },
1109 	/* DTLPWROMAEBKVF */
1110 	{ SST(0x04, 0x07, SS_FATAL | EBUSY,
1111 	    "Logical unit not ready, operation in progress") },
1112 	/*      R         */
1113 	{ SST(0x04, 0x08, SS_FATAL | EBUSY,
1114 	    "Logical unit not ready, long write in progress") },
1115 	/* DTLPWROMAEBKVF */
1116 	{ SST(0x04, 0x09, SS_RDEF,	/* XXX TBD */
1117 	    "Logical unit not ready, self-test in progress") },
1118 	/* DTLPWROMAEBKVF */
1119 	{ SST(0x04, 0x0A, SS_WAIT | ENXIO,
1120 	    "Logical unit not accessible, asymmetric access state transition")},
1121 	/* DTLPWROMAEBKVF */
1122 	{ SST(0x04, 0x0B, SS_FATAL | ENXIO,
1123 	    "Logical unit not accessible, target port in standby state") },
1124 	/* DTLPWROMAEBKVF */
1125 	{ SST(0x04, 0x0C, SS_FATAL | ENXIO,
1126 	    "Logical unit not accessible, target port in unavailable state") },
1127 	/*              F */
1128 	{ SST(0x04, 0x0D, SS_RDEF,	/* XXX TBD */
1129 	    "Logical unit not ready, structure check required") },
1130 	/* DTL WR MAEBKVF */
1131 	{ SST(0x04, 0x0E, SS_RDEF,	/* XXX TBD */
1132 	    "Logical unit not ready, security session in progress") },
1133 	/* DT  WROM  B    */
1134 	{ SST(0x04, 0x10, SS_RDEF,	/* XXX TBD */
1135 	    "Logical unit not ready, auxiliary memory not accessible") },
1136 	/* DT  WRO AEB VF */
1137 	{ SST(0x04, 0x11, SS_WAIT | EBUSY,
1138 	    "Logical unit not ready, notify (enable spinup) required") },
1139 	/*        M    V  */
1140 	{ SST(0x04, 0x12, SS_RDEF,	/* XXX TBD */
1141 	    "Logical unit not ready, offline") },
1142 	/* DT   R MAEBKV  */
1143 	{ SST(0x04, 0x13, SS_RDEF,	/* XXX TBD */
1144 	    "Logical unit not ready, SA creation in progress") },
1145 	/* D         B    */
1146 	{ SST(0x04, 0x14, SS_RDEF,	/* XXX TBD */
1147 	    "Logical unit not ready, space allocation in progress") },
1148 	/*        M       */
1149 	{ SST(0x04, 0x15, SS_RDEF,	/* XXX TBD */
1150 	    "Logical unit not ready, robotics disabled") },
1151 	/*        M       */
1152 	{ SST(0x04, 0x16, SS_RDEF,	/* XXX TBD */
1153 	    "Logical unit not ready, configuration required") },
1154 	/*        M       */
1155 	{ SST(0x04, 0x17, SS_RDEF,	/* XXX TBD */
1156 	    "Logical unit not ready, calibration required") },
1157 	/*        M       */
1158 	{ SST(0x04, 0x18, SS_RDEF,	/* XXX TBD */
1159 	    "Logical unit not ready, a door is open") },
1160 	/*        M       */
1161 	{ SST(0x04, 0x19, SS_RDEF,	/* XXX TBD */
1162 	    "Logical unit not ready, operating in sequential mode") },
1163 	/* DT        B    */
1164 	{ SST(0x04, 0x1A, SS_RDEF,	/* XXX TBD */
1165 	    "Logical unit not ready, START/STOP UNIT command in progress") },
1166 	/* D         B    */
1167 	{ SST(0x04, 0x1B, SS_RDEF,	/* XXX TBD */
1168 	    "Logical unit not ready, sanitize in progress") },
1169 	/* DT     MAEB    */
1170 	{ SST(0x04, 0x1C, SS_RDEF,	/* XXX TBD */
1171 	    "Logical unit not ready, additional power use not yet granted") },
1172 	/* D              */
1173 	{ SST(0x04, 0x1D, SS_RDEF,	/* XXX TBD */
1174 	    "Logical unit not ready, configuration in progress") },
1175 	/* D              */
1176 	{ SST(0x04, 0x1E, SS_FATAL | ENXIO,
1177 	    "Logical unit not ready, microcode activation required") },
1178 	/* DTLPWROMAEBKVF */
1179 	{ SST(0x04, 0x1F, SS_FATAL | ENXIO,
1180 	    "Logical unit not ready, microcode download required") },
1181 	/* DTLPWROMAEBKVF */
1182 	{ SST(0x04, 0x20, SS_RDEF,	/* XXX TBD */
1183 	    "Logical unit not ready, logical unit reset required") },
1184 	/* DTLPWROMAEBKVF */
1185 	{ SST(0x04, 0x21, SS_RDEF,	/* XXX TBD */
1186 	    "Logical unit not ready, hard reset required") },
1187 	/* DTLPWROMAEBKVF */
1188 	{ SST(0x04, 0x22, SS_RDEF,	/* XXX TBD */
1189 	    "Logical unit not ready, power cycle required") },
1190 	/* DTL WROMAEBKVF */
1191 	{ SST(0x05, 0x00, SS_RDEF,
1192 	    "Logical unit does not respond to selection") },
1193 	/* D   WROM  BK   */
1194 	{ SST(0x06, 0x00, SS_RDEF,
1195 	    "No reference position found") },
1196 	/* DTL WROM  BK   */
1197 	{ SST(0x07, 0x00, SS_RDEF,
1198 	    "Multiple peripheral devices selected") },
1199 	/* DTL WROMAEBKVF */
1200 	{ SST(0x08, 0x00, SS_RDEF,
1201 	    "Logical unit communication failure") },
1202 	/* DTL WROMAEBKVF */
1203 	{ SST(0x08, 0x01, SS_RDEF,
1204 	    "Logical unit communication time-out") },
1205 	/* DTL WROMAEBKVF */
1206 	{ SST(0x08, 0x02, SS_RDEF,
1207 	    "Logical unit communication parity error") },
1208 	/* DT   ROM  BK   */
1209 	{ SST(0x08, 0x03, SS_RDEF,
1210 	    "Logical unit communication CRC error (Ultra-DMA/32)") },
1211 	/* DTLPWRO    K   */
1212 	{ SST(0x08, 0x04, SS_RDEF,	/* XXX TBD */
1213 	    "Unreachable copy target") },
1214 	/* DT  WRO   B    */
1215 	{ SST(0x09, 0x00, SS_RDEF,
1216 	    "Track following error") },
1217 	/*     WRO    K   */
1218 	{ SST(0x09, 0x01, SS_RDEF,
1219 	    "Tracking servo failure") },
1220 	/*     WRO    K   */
1221 	{ SST(0x09, 0x02, SS_RDEF,
1222 	    "Focus servo failure") },
1223 	/*     WRO        */
1224 	{ SST(0x09, 0x03, SS_RDEF,
1225 	    "Spindle servo failure") },
1226 	/* DT  WRO   B    */
1227 	{ SST(0x09, 0x04, SS_RDEF,
1228 	    "Head select fault") },
1229 	/* DT   RO   B    */
1230 	{ SST(0x09, 0x05, SS_RDEF,
1231 	    "Vibration induced tracking error") },
1232 	/* DTLPWROMAEBKVF */
1233 	{ SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1234 	    "Error log overflow") },
1235 	/* DTLPWROMAEBKVF */
1236 	{ SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1237 	    "Warning") },
1238 	/* DTLPWROMAEBKVF */
1239 	{ SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1240 	    "Warning - specified temperature exceeded") },
1241 	/* DTLPWROMAEBKVF */
1242 	{ SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1243 	    "Warning - enclosure degraded") },
1244 	/* DTLPWROMAEBKVF */
1245 	{ SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1246 	    "Warning - background self-test failed") },
1247 	/* DTLPWRO AEBKVF */
1248 	{ SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1249 	    "Warning - background pre-scan detected medium error") },
1250 	/* DTLPWRO AEBKVF */
1251 	{ SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1252 	    "Warning - background medium scan detected medium error") },
1253 	/* DTLPWROMAEBKVF */
1254 	{ SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1255 	    "Warning - non-volatile cache now volatile") },
1256 	/* DTLPWROMAEBKVF */
1257 	{ SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1258 	    "Warning - degraded power to non-volatile cache") },
1259 	/* DTLPWROMAEBKVF */
1260 	{ SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1261 	    "Warning - power loss expected") },
1262 	/* D              */
1263 	{ SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1264 	    "Warning - device statistics notification available") },
1265 	/* DTLPWROMAEBKVF */
1266 	{ SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE,
1267 	    "Warning - High critical temperature limit exceeded") },
1268 	/* DTLPWROMAEBKVF */
1269 	{ SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE,
1270 	    "Warning - Low critical temperature limit exceeded") },
1271 	/* DTLPWROMAEBKVF */
1272 	{ SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE,
1273 	    "Warning - High operating temperature limit exceeded") },
1274 	/* DTLPWROMAEBKVF */
1275 	{ SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE,
1276 	    "Warning - Low operating temperature limit exceeded") },
1277 	/* DTLPWROMAEBKVF */
1278 	{ SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE,
1279 	    "Warning - High citical humidity limit exceeded") },
1280 	/* DTLPWROMAEBKVF */
1281 	{ SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE,
1282 	    "Warning - Low citical humidity limit exceeded") },
1283 	/* DTLPWROMAEBKVF */
1284 	{ SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE,
1285 	    "Warning - High operating humidity limit exceeded") },
1286 	/* DTLPWROMAEBKVF */
1287 	{ SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE,
1288 	    "Warning - Low operating humidity limit exceeded") },
1289 	/*  T   R         */
1290 	{ SST(0x0C, 0x00, SS_RDEF,
1291 	    "Write error") },
1292 	/*            K   */
1293 	{ SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1294 	    "Write error - recovered with auto reallocation") },
1295 	/* D   W O   BK   */
1296 	{ SST(0x0C, 0x02, SS_RDEF,
1297 	    "Write error - auto reallocation failed") },
1298 	/* D   W O   BK   */
1299 	{ SST(0x0C, 0x03, SS_RDEF,
1300 	    "Write error - recommend reassignment") },
1301 	/* DT  W O   B    */
1302 	{ SST(0x0C, 0x04, SS_RDEF,
1303 	    "Compression check miscompare error") },
1304 	/* DT  W O   B    */
1305 	{ SST(0x0C, 0x05, SS_RDEF,
1306 	    "Data expansion occurred during compression") },
1307 	/* DT  W O   B    */
1308 	{ SST(0x0C, 0x06, SS_RDEF,
1309 	    "Block not compressible") },
1310 	/*      R         */
1311 	{ SST(0x0C, 0x07, SS_RDEF,
1312 	    "Write error - recovery needed") },
1313 	/*      R         */
1314 	{ SST(0x0C, 0x08, SS_RDEF,
1315 	    "Write error - recovery failed") },
1316 	/*      R         */
1317 	{ SST(0x0C, 0x09, SS_RDEF,
1318 	    "Write error - loss of streaming") },
1319 	/*      R         */
1320 	{ SST(0x0C, 0x0A, SS_RDEF,
1321 	    "Write error - padding blocks added") },
1322 	/* DT  WROM  B    */
1323 	{ SST(0x0C, 0x0B, SS_RDEF,	/* XXX TBD */
1324 	    "Auxiliary memory write error") },
1325 	/* DTLPWRO AEBKVF */
1326 	{ SST(0x0C, 0x0C, SS_RDEF,	/* XXX TBD */
1327 	    "Write error - unexpected unsolicited data") },
1328 	/* DTLPWRO AEBKVF */
1329 	{ SST(0x0C, 0x0D, SS_RDEF,	/* XXX TBD */
1330 	    "Write error - not enough unsolicited data") },
1331 	/* DT  W O   BK   */
1332 	{ SST(0x0C, 0x0E, SS_RDEF,	/* XXX TBD */
1333 	    "Multiple write errors") },
1334 	/*      R         */
1335 	{ SST(0x0C, 0x0F, SS_RDEF,	/* XXX TBD */
1336 	    "Defects in error window") },
1337 	/* D              */
1338 	{ SST(0x0C, 0x10, SS_RDEF,	/* XXX TBD */
1339 	    "Incomplete multiple atomic write operations") },
1340 	/* D              */
1341 	{ SST(0x0C, 0x11, SS_RDEF,	/* XXX TBD */
1342 	    "Write error - recovery scan needed") },
1343 	/* D              */
1344 	{ SST(0x0C, 0x12, SS_RDEF,	/* XXX TBD */
1345 	    "Write error - insufficient zone resources") },
1346 	/* DTLPWRO A  K   */
1347 	{ SST(0x0D, 0x00, SS_RDEF,	/* XXX TBD */
1348 	    "Error detected by third party temporary initiator") },
1349 	/* DTLPWRO A  K   */
1350 	{ SST(0x0D, 0x01, SS_RDEF,	/* XXX TBD */
1351 	    "Third party device failure") },
1352 	/* DTLPWRO A  K   */
1353 	{ SST(0x0D, 0x02, SS_RDEF,	/* XXX TBD */
1354 	    "Copy target device not reachable") },
1355 	/* DTLPWRO A  K   */
1356 	{ SST(0x0D, 0x03, SS_RDEF,	/* XXX TBD */
1357 	    "Incorrect copy target device type") },
1358 	/* DTLPWRO A  K   */
1359 	{ SST(0x0D, 0x04, SS_RDEF,	/* XXX TBD */
1360 	    "Copy target device data underrun") },
1361 	/* DTLPWRO A  K   */
1362 	{ SST(0x0D, 0x05, SS_RDEF,	/* XXX TBD */
1363 	    "Copy target device data overrun") },
1364 	/* DT PWROMAEBK F */
1365 	{ SST(0x0E, 0x00, SS_RDEF,	/* XXX TBD */
1366 	    "Invalid information unit") },
1367 	/* DT PWROMAEBK F */
1368 	{ SST(0x0E, 0x01, SS_RDEF,	/* XXX TBD */
1369 	    "Information unit too short") },
1370 	/* DT PWROMAEBK F */
1371 	{ SST(0x0E, 0x02, SS_RDEF,	/* XXX TBD */
1372 	    "Information unit too long") },
1373 	/* DT P R MAEBK F */
1374 	{ SST(0x0E, 0x03, SS_FATAL | EINVAL,
1375 	    "Invalid field in command information unit") },
1376 	/* D   W O   BK   */
1377 	{ SST(0x10, 0x00, SS_RDEF,
1378 	    "ID CRC or ECC error") },
1379 	/* DT  W O        */
1380 	{ SST(0x10, 0x01, SS_RDEF,	/* XXX TBD */
1381 	    "Logical block guard check failed") },
1382 	/* DT  W O        */
1383 	{ SST(0x10, 0x02, SS_RDEF,	/* XXX TBD */
1384 	    "Logical block application tag check failed") },
1385 	/* DT  W O        */
1386 	{ SST(0x10, 0x03, SS_RDEF,	/* XXX TBD */
1387 	    "Logical block reference tag check failed") },
1388 	/*  T             */
1389 	{ SST(0x10, 0x04, SS_RDEF,	/* XXX TBD */
1390 	    "Logical block protection error on recovered buffer data") },
1391 	/*  T             */
1392 	{ SST(0x10, 0x05, SS_RDEF,	/* XXX TBD */
1393 	    "Logical block protection method error") },
1394 	/* DT  WRO   BK   */
1395 	{ SST(0x11, 0x00, SS_FATAL|EIO,
1396 	    "Unrecovered read error") },
1397 	/* DT  WRO   BK   */
1398 	{ SST(0x11, 0x01, SS_FATAL|EIO,
1399 	    "Read retries exhausted") },
1400 	/* DT  WRO   BK   */
1401 	{ SST(0x11, 0x02, SS_FATAL|EIO,
1402 	    "Error too long to correct") },
1403 	/* DT  W O   BK   */
1404 	{ SST(0x11, 0x03, SS_FATAL|EIO,
1405 	    "Multiple read errors") },
1406 	/* D   W O   BK   */
1407 	{ SST(0x11, 0x04, SS_FATAL|EIO,
1408 	    "Unrecovered read error - auto reallocate failed") },
1409 	/*     WRO   B    */
1410 	{ SST(0x11, 0x05, SS_FATAL|EIO,
1411 	    "L-EC uncorrectable error") },
1412 	/*     WRO   B    */
1413 	{ SST(0x11, 0x06, SS_FATAL|EIO,
1414 	    "CIRC unrecovered error") },
1415 	/*     W O   B    */
1416 	{ SST(0x11, 0x07, SS_RDEF,
1417 	    "Data re-synchronization error") },
1418 	/*  T             */
1419 	{ SST(0x11, 0x08, SS_RDEF,
1420 	    "Incomplete block read") },
1421 	/*  T             */
1422 	{ SST(0x11, 0x09, SS_RDEF,
1423 	    "No gap found") },
1424 	/* DT    O   BK   */
1425 	{ SST(0x11, 0x0A, SS_RDEF,
1426 	    "Miscorrected error") },
1427 	/* D   W O   BK   */
1428 	{ SST(0x11, 0x0B, SS_FATAL|EIO,
1429 	    "Unrecovered read error - recommend reassignment") },
1430 	/* D   W O   BK   */
1431 	{ SST(0x11, 0x0C, SS_FATAL|EIO,
1432 	    "Unrecovered read error - recommend rewrite the data") },
1433 	/* DT  WRO   B    */
1434 	{ SST(0x11, 0x0D, SS_RDEF,
1435 	    "De-compression CRC error") },
1436 	/* DT  WRO   B    */
1437 	{ SST(0x11, 0x0E, SS_RDEF,
1438 	    "Cannot decompress using declared algorithm") },
1439 	/*      R         */
1440 	{ SST(0x11, 0x0F, SS_RDEF,
1441 	    "Error reading UPC/EAN number") },
1442 	/*      R         */
1443 	{ SST(0x11, 0x10, SS_RDEF,
1444 	    "Error reading ISRC number") },
1445 	/*      R         */
1446 	{ SST(0x11, 0x11, SS_RDEF,
1447 	    "Read error - loss of streaming") },
1448 	/* DT  WROM  B    */
1449 	{ SST(0x11, 0x12, SS_RDEF,	/* XXX TBD */
1450 	    "Auxiliary memory read error") },
1451 	/* DTLPWRO AEBKVF */
1452 	{ SST(0x11, 0x13, SS_RDEF,	/* XXX TBD */
1453 	    "Read error - failed retransmission request") },
1454 	/* D              */
1455 	{ SST(0x11, 0x14, SS_RDEF,	/* XXX TBD */
1456 	    "Read error - LBA marked bad by application client") },
1457 	/* D              */
1458 	{ SST(0x11, 0x15, SS_RDEF,	/* XXX TBD */
1459 	    "Write after sanitize required") },
1460 	/* D   W O   BK   */
1461 	{ SST(0x12, 0x00, SS_RDEF,
1462 	    "Address mark not found for ID field") },
1463 	/* D   W O   BK   */
1464 	{ SST(0x13, 0x00, SS_RDEF,
1465 	    "Address mark not found for data field") },
1466 	/* DTL WRO   BK   */
1467 	{ SST(0x14, 0x00, SS_RDEF,
1468 	    "Recorded entity not found") },
1469 	/* DT  WRO   BK   */
1470 	{ SST(0x14, 0x01, SS_RDEF,
1471 	    "Record not found") },
1472 	/*  T             */
1473 	{ SST(0x14, 0x02, SS_RDEF,
1474 	    "Filemark or setmark not found") },
1475 	/*  T             */
1476 	{ SST(0x14, 0x03, SS_RDEF,
1477 	    "End-of-data not found") },
1478 	/*  T             */
1479 	{ SST(0x14, 0x04, SS_RDEF,
1480 	    "Block sequence error") },
1481 	/* DT  W O   BK   */
1482 	{ SST(0x14, 0x05, SS_RDEF,
1483 	    "Record not found - recommend reassignment") },
1484 	/* DT  W O   BK   */
1485 	{ SST(0x14, 0x06, SS_RDEF,
1486 	    "Record not found - data auto-reallocated") },
1487 	/*  T             */
1488 	{ SST(0x14, 0x07, SS_RDEF,	/* XXX TBD */
1489 	    "Locate operation failure") },
1490 	/* DTL WROM  BK   */
1491 	{ SST(0x15, 0x00, SS_RDEF,
1492 	    "Random positioning error") },
1493 	/* DTL WROM  BK   */
1494 	{ SST(0x15, 0x01, SS_RDEF,
1495 	    "Mechanical positioning error") },
1496 	/* DT  WRO   BK   */
1497 	{ SST(0x15, 0x02, SS_RDEF,
1498 	    "Positioning error detected by read of medium") },
1499 	/* D   W O   BK   */
1500 	{ SST(0x16, 0x00, SS_RDEF,
1501 	    "Data synchronization mark error") },
1502 	/* D   W O   BK   */
1503 	{ SST(0x16, 0x01, SS_RDEF,
1504 	    "Data sync error - data rewritten") },
1505 	/* D   W O   BK   */
1506 	{ SST(0x16, 0x02, SS_RDEF,
1507 	    "Data sync error - recommend rewrite") },
1508 	/* D   W O   BK   */
1509 	{ SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1510 	    "Data sync error - data auto-reallocated") },
1511 	/* D   W O   BK   */
1512 	{ SST(0x16, 0x04, SS_RDEF,
1513 	    "Data sync error - recommend reassignment") },
1514 	/* DT  WRO   BK   */
1515 	{ SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1516 	    "Recovered data with no error correction applied") },
1517 	/* DT  WRO   BK   */
1518 	{ SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1519 	    "Recovered data with retries") },
1520 	/* DT  WRO   BK   */
1521 	{ SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1522 	    "Recovered data with positive head offset") },
1523 	/* DT  WRO   BK   */
1524 	{ SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1525 	    "Recovered data with negative head offset") },
1526 	/*     WRO   B    */
1527 	{ SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1528 	    "Recovered data with retries and/or CIRC applied") },
1529 	/* D   WRO   BK   */
1530 	{ SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1531 	    "Recovered data using previous sector ID") },
1532 	/* D   W O   BK   */
1533 	{ SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1534 	    "Recovered data without ECC - data auto-reallocated") },
1535 	/* D   WRO   BK   */
1536 	{ SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1537 	    "Recovered data without ECC - recommend reassignment") },
1538 	/* D   WRO   BK   */
1539 	{ SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1540 	    "Recovered data without ECC - recommend rewrite") },
1541 	/* D   WRO   BK   */
1542 	{ SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1543 	    "Recovered data without ECC - data rewritten") },
1544 	/* DT  WRO   BK   */
1545 	{ SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1546 	    "Recovered data with error correction applied") },
1547 	/* D   WRO   BK   */
1548 	{ SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1549 	    "Recovered data with error corr. & retries applied") },
1550 	/* D   WRO   BK   */
1551 	{ SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1552 	    "Recovered data - data auto-reallocated") },
1553 	/*      R         */
1554 	{ SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1555 	    "Recovered data with CIRC") },
1556 	/*      R         */
1557 	{ SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1558 	    "Recovered data with L-EC") },
1559 	/* D   WRO   BK   */
1560 	{ SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1561 	    "Recovered data - recommend reassignment") },
1562 	/* D   WRO   BK   */
1563 	{ SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1564 	    "Recovered data - recommend rewrite") },
1565 	/* D   W O   BK   */
1566 	{ SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1567 	    "Recovered data with ECC - data rewritten") },
1568 	/*      R         */
1569 	{ SST(0x18, 0x08, SS_RDEF,	/* XXX TBD */
1570 	    "Recovered data with linking") },
1571 	/* D     O    K   */
1572 	{ SST(0x19, 0x00, SS_RDEF,
1573 	    "Defect list error") },
1574 	/* D     O    K   */
1575 	{ SST(0x19, 0x01, SS_RDEF,
1576 	    "Defect list not available") },
1577 	/* D     O    K   */
1578 	{ SST(0x19, 0x02, SS_RDEF,
1579 	    "Defect list error in primary list") },
1580 	/* D     O    K   */
1581 	{ SST(0x19, 0x03, SS_RDEF,
1582 	    "Defect list error in grown list") },
1583 	/* DTLPWROMAEBKVF */
1584 	{ SST(0x1A, 0x00, SS_RDEF,
1585 	    "Parameter list length error") },
1586 	/* DTLPWROMAEBKVF */
1587 	{ SST(0x1B, 0x00, SS_RDEF,
1588 	    "Synchronous data transfer error") },
1589 	/* D     O   BK   */
1590 	{ SST(0x1C, 0x00, SS_RDEF,
1591 	    "Defect list not found") },
1592 	/* D     O   BK   */
1593 	{ SST(0x1C, 0x01, SS_RDEF,
1594 	    "Primary defect list not found") },
1595 	/* D     O   BK   */
1596 	{ SST(0x1C, 0x02, SS_RDEF,
1597 	    "Grown defect list not found") },
1598 	/* DT  WRO   BK   */
1599 	{ SST(0x1D, 0x00, SS_FATAL,
1600 	    "Miscompare during verify operation") },
1601 	/* D         B    */
1602 	{ SST(0x1D, 0x01, SS_RDEF,	/* XXX TBD */
1603 	    "Miscomparable verify of unmapped LBA") },
1604 	/* D   W O   BK   */
1605 	{ SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1606 	    "Recovered ID with ECC correction") },
1607 	/* D     O    K   */
1608 	{ SST(0x1F, 0x00, SS_RDEF,
1609 	    "Partial defect list transfer") },
1610 	/* DTLPWROMAEBKVF */
1611 	{ SST(0x20, 0x00, SS_FATAL | EINVAL,
1612 	    "Invalid command operation code") },
1613 	/* DT PWROMAEBK   */
1614 	{ SST(0x20, 0x01, SS_RDEF,	/* XXX TBD */
1615 	    "Access denied - initiator pending-enrolled") },
1616 	/* DT PWROMAEBK   */
1617 	{ SST(0x20, 0x02, SS_RDEF,	/* XXX TBD */
1618 	    "Access denied - no access rights") },
1619 	/* DT PWROMAEBK   */
1620 	{ SST(0x20, 0x03, SS_RDEF,	/* XXX TBD */
1621 	    "Access denied - invalid mgmt ID key") },
1622 	/*  T             */
1623 	{ SST(0x20, 0x04, SS_RDEF,	/* XXX TBD */
1624 	    "Illegal command while in write capable state") },
1625 	/*  T             */
1626 	{ SST(0x20, 0x05, SS_RDEF,	/* XXX TBD */
1627 	    "Obsolete") },
1628 	/*  T             */
1629 	{ SST(0x20, 0x06, SS_RDEF,	/* XXX TBD */
1630 	    "Illegal command while in explicit address mode") },
1631 	/*  T             */
1632 	{ SST(0x20, 0x07, SS_RDEF,	/* XXX TBD */
1633 	    "Illegal command while in implicit address mode") },
1634 	/* DT PWROMAEBK   */
1635 	{ SST(0x20, 0x08, SS_RDEF,	/* XXX TBD */
1636 	    "Access denied - enrollment conflict") },
1637 	/* DT PWROMAEBK   */
1638 	{ SST(0x20, 0x09, SS_RDEF,	/* XXX TBD */
1639 	    "Access denied - invalid LU identifier") },
1640 	/* DT PWROMAEBK   */
1641 	{ SST(0x20, 0x0A, SS_RDEF,	/* XXX TBD */
1642 	    "Access denied - invalid proxy token") },
1643 	/* DT PWROMAEBK   */
1644 	{ SST(0x20, 0x0B, SS_RDEF,	/* XXX TBD */
1645 	    "Access denied - ACL LUN conflict") },
1646 	/*  T             */
1647 	{ SST(0x20, 0x0C, SS_FATAL | EINVAL,
1648 	    "Illegal command when not in append-only mode") },
1649 	/* DT  WRO   BK   */
1650 	{ SST(0x21, 0x00, SS_FATAL | EINVAL,
1651 	    "Logical block address out of range") },
1652 	/* DT  WROM  BK   */
1653 	{ SST(0x21, 0x01, SS_FATAL | EINVAL,
1654 	    "Invalid element address") },
1655 	/*      R         */
1656 	{ SST(0x21, 0x02, SS_RDEF,	/* XXX TBD */
1657 	    "Invalid address for write") },
1658 	/*      R         */
1659 	{ SST(0x21, 0x03, SS_RDEF,	/* XXX TBD */
1660 	    "Invalid write crossing layer jump") },
1661 	/* D              */
1662 	{ SST(0x21, 0x04, SS_RDEF,	/* XXX TBD */
1663 	    "Unaligned write command") },
1664 	/* D              */
1665 	{ SST(0x21, 0x05, SS_RDEF,	/* XXX TBD */
1666 	    "Write boundary violation") },
1667 	/* D              */
1668 	{ SST(0x21, 0x06, SS_RDEF,	/* XXX TBD */
1669 	    "Attempt to read invalid data") },
1670 	/* D              */
1671 	{ SST(0x21, 0x07, SS_RDEF,	/* XXX TBD */
1672 	    "Read boundary violation") },
1673 	/* D              */
1674 	{ SST(0x22, 0x00, SS_FATAL | EINVAL,
1675 	    "Illegal function (use 20 00, 24 00, or 26 00)") },
1676 	/* DT P      B    */
1677 	{ SST(0x23, 0x00, SS_FATAL | EINVAL,
1678 	    "Invalid token operation, cause not reportable") },
1679 	/* DT P      B    */
1680 	{ SST(0x23, 0x01, SS_FATAL | EINVAL,
1681 	    "Invalid token operation, unsupported token type") },
1682 	/* DT P      B    */
1683 	{ SST(0x23, 0x02, SS_FATAL | EINVAL,
1684 	    "Invalid token operation, remote token usage not supported") },
1685 	/* DT P      B    */
1686 	{ SST(0x23, 0x03, SS_FATAL | EINVAL,
1687 	    "Invalid token operation, remote ROD token creation not supported") },
1688 	/* DT P      B    */
1689 	{ SST(0x23, 0x04, SS_FATAL | EINVAL,
1690 	    "Invalid token operation, token unknown") },
1691 	/* DT P      B    */
1692 	{ SST(0x23, 0x05, SS_FATAL | EINVAL,
1693 	    "Invalid token operation, token corrupt") },
1694 	/* DT P      B    */
1695 	{ SST(0x23, 0x06, SS_FATAL | EINVAL,
1696 	    "Invalid token operation, token revoked") },
1697 	/* DT P      B    */
1698 	{ SST(0x23, 0x07, SS_FATAL | EINVAL,
1699 	    "Invalid token operation, token expired") },
1700 	/* DT P      B    */
1701 	{ SST(0x23, 0x08, SS_FATAL | EINVAL,
1702 	    "Invalid token operation, token cancelled") },
1703 	/* DT P      B    */
1704 	{ SST(0x23, 0x09, SS_FATAL | EINVAL,
1705 	    "Invalid token operation, token deleted") },
1706 	/* DT P      B    */
1707 	{ SST(0x23, 0x0A, SS_FATAL | EINVAL,
1708 	    "Invalid token operation, invalid token length") },
1709 	/* DTLPWROMAEBKVF */
1710 	{ SST(0x24, 0x00, SS_FATAL | EINVAL,
1711 	    "Invalid field in CDB") },
1712 	/* DTLPWRO AEBKVF */
1713 	{ SST(0x24, 0x01, SS_RDEF,	/* XXX TBD */
1714 	    "CDB decryption error") },
1715 	/*  T             */
1716 	{ SST(0x24, 0x02, SS_RDEF,	/* XXX TBD */
1717 	    "Obsolete") },
1718 	/*  T             */
1719 	{ SST(0x24, 0x03, SS_RDEF,	/* XXX TBD */
1720 	    "Obsolete") },
1721 	/*              F */
1722 	{ SST(0x24, 0x04, SS_RDEF,	/* XXX TBD */
1723 	    "Security audit value frozen") },
1724 	/*              F */
1725 	{ SST(0x24, 0x05, SS_RDEF,	/* XXX TBD */
1726 	    "Security working key frozen") },
1727 	/*              F */
1728 	{ SST(0x24, 0x06, SS_RDEF,	/* XXX TBD */
1729 	    "NONCE not unique") },
1730 	/*              F */
1731 	{ SST(0x24, 0x07, SS_RDEF,	/* XXX TBD */
1732 	    "NONCE timestamp out of range") },
1733 	/* DT   R MAEBKV  */
1734 	{ SST(0x24, 0x08, SS_RDEF,	/* XXX TBD */
1735 	    "Invalid XCDB") },
1736 	/* DTLPWROMAEBKVF */
1737 	{ SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1738 	    "Logical unit not supported") },
1739 	/* DTLPWROMAEBKVF */
1740 	{ SST(0x26, 0x00, SS_FATAL | EINVAL,
1741 	    "Invalid field in parameter list") },
1742 	/* DTLPWROMAEBKVF */
1743 	{ SST(0x26, 0x01, SS_FATAL | EINVAL,
1744 	    "Parameter not supported") },
1745 	/* DTLPWROMAEBKVF */
1746 	{ SST(0x26, 0x02, SS_FATAL | EINVAL,
1747 	    "Parameter value invalid") },
1748 	/* DTLPWROMAE K   */
1749 	{ SST(0x26, 0x03, SS_FATAL | EINVAL,
1750 	    "Threshold parameters not supported") },
1751 	/* DTLPWROMAEBKVF */
1752 	{ SST(0x26, 0x04, SS_FATAL | EINVAL,
1753 	    "Invalid release of persistent reservation") },
1754 	/* DTLPWRO A BK   */
1755 	{ SST(0x26, 0x05, SS_RDEF,	/* XXX TBD */
1756 	    "Data decryption error") },
1757 	/* DTLPWRO    K   */
1758 	{ SST(0x26, 0x06, SS_FATAL | EINVAL,
1759 	    "Too many target descriptors") },
1760 	/* DTLPWRO    K   */
1761 	{ SST(0x26, 0x07, SS_FATAL | EINVAL,
1762 	    "Unsupported target descriptor type code") },
1763 	/* DTLPWRO    K   */
1764 	{ SST(0x26, 0x08, SS_FATAL | EINVAL,
1765 	    "Too many segment descriptors") },
1766 	/* DTLPWRO    K   */
1767 	{ SST(0x26, 0x09, SS_FATAL | EINVAL,
1768 	    "Unsupported segment descriptor type code") },
1769 	/* DTLPWRO    K   */
1770 	{ SST(0x26, 0x0A, SS_FATAL | EINVAL,
1771 	    "Unexpected inexact segment") },
1772 	/* DTLPWRO    K   */
1773 	{ SST(0x26, 0x0B, SS_FATAL | EINVAL,
1774 	    "Inline data length exceeded") },
1775 	/* DTLPWRO    K   */
1776 	{ SST(0x26, 0x0C, SS_FATAL | EINVAL,
1777 	    "Invalid operation for copy source or destination") },
1778 	/* DTLPWRO    K   */
1779 	{ SST(0x26, 0x0D, SS_FATAL | EINVAL,
1780 	    "Copy segment granularity violation") },
1781 	/* DT PWROMAEBK   */
1782 	{ SST(0x26, 0x0E, SS_RDEF,	/* XXX TBD */
1783 	    "Invalid parameter while port is enabled") },
1784 	/*              F */
1785 	{ SST(0x26, 0x0F, SS_RDEF,	/* XXX TBD */
1786 	    "Invalid data-out buffer integrity check value") },
1787 	/*  T             */
1788 	{ SST(0x26, 0x10, SS_RDEF,	/* XXX TBD */
1789 	    "Data decryption key fail limit reached") },
1790 	/*  T             */
1791 	{ SST(0x26, 0x11, SS_RDEF,	/* XXX TBD */
1792 	    "Incomplete key-associated data set") },
1793 	/*  T             */
1794 	{ SST(0x26, 0x12, SS_RDEF,	/* XXX TBD */
1795 	    "Vendor specific key reference not found") },
1796 	/* D              */
1797 	{ SST(0x26, 0x13, SS_RDEF,	/* XXX TBD */
1798 	    "Application tag mode page is invalid") },
1799 	/* DT  WRO   BK   */
1800 	{ SST(0x27, 0x00, SS_FATAL | EACCES,
1801 	    "Write protected") },
1802 	/* DT  WRO   BK   */
1803 	{ SST(0x27, 0x01, SS_FATAL | EACCES,
1804 	    "Hardware write protected") },
1805 	/* DT  WRO   BK   */
1806 	{ SST(0x27, 0x02, SS_FATAL | EACCES,
1807 	    "Logical unit software write protected") },
1808 	/*  T   R         */
1809 	{ SST(0x27, 0x03, SS_FATAL | EACCES,
1810 	    "Associated write protect") },
1811 	/*  T   R         */
1812 	{ SST(0x27, 0x04, SS_FATAL | EACCES,
1813 	    "Persistent write protect") },
1814 	/*  T   R         */
1815 	{ SST(0x27, 0x05, SS_FATAL | EACCES,
1816 	    "Permanent write protect") },
1817 	/*      R       F */
1818 	{ SST(0x27, 0x06, SS_RDEF,	/* XXX TBD */
1819 	    "Conditional write protect") },
1820 	/* D         B    */
1821 	{ SST(0x27, 0x07, SS_FATAL | ENOSPC,
1822 	    "Space allocation failed write protect") },
1823 	/* D              */
1824 	{ SST(0x27, 0x08, SS_FATAL | EACCES,
1825 	    "Zone is read only") },
1826 	/* DTLPWROMAEBKVF */
1827 	{ SST(0x28, 0x00, SS_FATAL | ENXIO,
1828 	    "Not ready to ready change, medium may have changed") },
1829 	/* DT  WROM  B    */
1830 	{ SST(0x28, 0x01, SS_FATAL | ENXIO,
1831 	    "Import or export element accessed") },
1832 	/*      R         */
1833 	{ SST(0x28, 0x02, SS_RDEF,	/* XXX TBD */
1834 	    "Format-layer may have changed") },
1835 	/*        M       */
1836 	{ SST(0x28, 0x03, SS_RDEF,	/* XXX TBD */
1837 	    "Import/export element accessed, medium changed") },
1838 	/*
1839 	 * XXX JGibbs - All of these should use the same errno, but I don't
1840 	 * think ENXIO is the correct choice.  Should we borrow from
1841 	 * the networking errnos?  ECONNRESET anyone?
1842 	 */
1843 	/* DTLPWROMAEBKVF */
1844 	{ SST(0x29, 0x00, SS_FATAL | ENXIO,
1845 	    "Power on, reset, or bus device reset occurred") },
1846 	/* DTLPWROMAEBKVF */
1847 	{ SST(0x29, 0x01, SS_RDEF,
1848 	    "Power on occurred") },
1849 	/* DTLPWROMAEBKVF */
1850 	{ SST(0x29, 0x02, SS_RDEF,
1851 	    "SCSI bus reset occurred") },
1852 	/* DTLPWROMAEBKVF */
1853 	{ SST(0x29, 0x03, SS_RDEF,
1854 	    "Bus device reset function occurred") },
1855 	/* DTLPWROMAEBKVF */
1856 	{ SST(0x29, 0x04, SS_RDEF,
1857 	    "Device internal reset") },
1858 	/* DTLPWROMAEBKVF */
1859 	{ SST(0x29, 0x05, SS_RDEF,
1860 	    "Transceiver mode changed to single-ended") },
1861 	/* DTLPWROMAEBKVF */
1862 	{ SST(0x29, 0x06, SS_RDEF,
1863 	    "Transceiver mode changed to LVD") },
1864 	/* DTLPWROMAEBKVF */
1865 	{ SST(0x29, 0x07, SS_RDEF,	/* XXX TBD */
1866 	    "I_T nexus loss occurred") },
1867 	/* DTL WROMAEBKVF */
1868 	{ SST(0x2A, 0x00, SS_RDEF,
1869 	    "Parameters changed") },
1870 	/* DTL WROMAEBKVF */
1871 	{ SST(0x2A, 0x01, SS_RDEF,
1872 	    "Mode parameters changed") },
1873 	/* DTL WROMAE K   */
1874 	{ SST(0x2A, 0x02, SS_RDEF,
1875 	    "Log parameters changed") },
1876 	/* DTLPWROMAE K   */
1877 	{ SST(0x2A, 0x03, SS_RDEF,
1878 	    "Reservations preempted") },
1879 	/* DTLPWROMAE     */
1880 	{ SST(0x2A, 0x04, SS_RDEF,	/* XXX TBD */
1881 	    "Reservations released") },
1882 	/* DTLPWROMAE     */
1883 	{ SST(0x2A, 0x05, SS_RDEF,	/* XXX TBD */
1884 	    "Registrations preempted") },
1885 	/* DTLPWROMAEBKVF */
1886 	{ SST(0x2A, 0x06, SS_RDEF,	/* XXX TBD */
1887 	    "Asymmetric access state changed") },
1888 	/* DTLPWROMAEBKVF */
1889 	{ SST(0x2A, 0x07, SS_RDEF,	/* XXX TBD */
1890 	    "Implicit asymmetric access state transition failed") },
1891 	/* DT  WROMAEBKVF */
1892 	{ SST(0x2A, 0x08, SS_RDEF,	/* XXX TBD */
1893 	    "Priority changed") },
1894 	/* D              */
1895 	{ SST(0x2A, 0x09, SS_RDEF,	/* XXX TBD */
1896 	    "Capacity data has changed") },
1897 	/* DT             */
1898 	{ SST(0x2A, 0x0A, SS_RDEF,	/* XXX TBD */
1899 	    "Error history I_T nexus cleared") },
1900 	/* DT             */
1901 	{ SST(0x2A, 0x0B, SS_RDEF,	/* XXX TBD */
1902 	    "Error history snapshot released") },
1903 	/*              F */
1904 	{ SST(0x2A, 0x0C, SS_RDEF,	/* XXX TBD */
1905 	    "Error recovery attributes have changed") },
1906 	/*  T             */
1907 	{ SST(0x2A, 0x0D, SS_RDEF,	/* XXX TBD */
1908 	    "Data encryption capabilities changed") },
1909 	/* DT     M E  V  */
1910 	{ SST(0x2A, 0x10, SS_RDEF,	/* XXX TBD */
1911 	    "Timestamp changed") },
1912 	/*  T             */
1913 	{ SST(0x2A, 0x11, SS_RDEF,	/* XXX TBD */
1914 	    "Data encryption parameters changed by another I_T nexus") },
1915 	/*  T             */
1916 	{ SST(0x2A, 0x12, SS_RDEF,	/* XXX TBD */
1917 	    "Data encryption parameters changed by vendor specific event") },
1918 	/*  T             */
1919 	{ SST(0x2A, 0x13, SS_RDEF,	/* XXX TBD */
1920 	    "Data encryption key instance counter has changed") },
1921 	/* DT   R MAEBKV  */
1922 	{ SST(0x2A, 0x14, SS_RDEF,	/* XXX TBD */
1923 	    "SA creation capabilities data has changed") },
1924 	/*  T     M    V  */
1925 	{ SST(0x2A, 0x15, SS_RDEF,	/* XXX TBD */
1926 	    "Medium removal prevention preempted") },
1927 	/* DTLPWRO    K   */
1928 	{ SST(0x2B, 0x00, SS_RDEF,
1929 	    "Copy cannot execute since host cannot disconnect") },
1930 	/* DTLPWROMAEBKVF */
1931 	{ SST(0x2C, 0x00, SS_RDEF,
1932 	    "Command sequence error") },
1933 	/*                */
1934 	{ SST(0x2C, 0x01, SS_RDEF,
1935 	    "Too many windows specified") },
1936 	/*                */
1937 	{ SST(0x2C, 0x02, SS_RDEF,
1938 	    "Invalid combination of windows specified") },
1939 	/*      R         */
1940 	{ SST(0x2C, 0x03, SS_RDEF,
1941 	    "Current program area is not empty") },
1942 	/*      R         */
1943 	{ SST(0x2C, 0x04, SS_RDEF,
1944 	    "Current program area is empty") },
1945 	/*           B    */
1946 	{ SST(0x2C, 0x05, SS_RDEF,	/* XXX TBD */
1947 	    "Illegal power condition request") },
1948 	/*      R         */
1949 	{ SST(0x2C, 0x06, SS_RDEF,	/* XXX TBD */
1950 	    "Persistent prevent conflict") },
1951 	/* DTLPWROMAEBKVF */
1952 	{ SST(0x2C, 0x07, SS_RDEF,	/* XXX TBD */
1953 	    "Previous busy status") },
1954 	/* DTLPWROMAEBKVF */
1955 	{ SST(0x2C, 0x08, SS_RDEF,	/* XXX TBD */
1956 	    "Previous task set full status") },
1957 	/* DTLPWROM EBKVF */
1958 	{ SST(0x2C, 0x09, SS_RDEF,	/* XXX TBD */
1959 	    "Previous reservation conflict status") },
1960 	/*              F */
1961 	{ SST(0x2C, 0x0A, SS_RDEF,	/* XXX TBD */
1962 	    "Partition or collection contains user objects") },
1963 	/*  T             */
1964 	{ SST(0x2C, 0x0B, SS_RDEF,	/* XXX TBD */
1965 	    "Not reserved") },
1966 	/* D              */
1967 	{ SST(0x2C, 0x0C, SS_RDEF,	/* XXX TBD */
1968 	    "ORWRITE generation does not match") },
1969 	/* D              */
1970 	{ SST(0x2C, 0x0D, SS_RDEF,	/* XXX TBD */
1971 	    "Reset write pointer not allowed") },
1972 	/* D              */
1973 	{ SST(0x2C, 0x0E, SS_RDEF,	/* XXX TBD */
1974 	    "Zone is offline") },
1975 	/* D              */
1976 	{ SST(0x2C, 0x0F, SS_RDEF,	/* XXX TBD */
1977 	    "Stream not open") },
1978 	/* D              */
1979 	{ SST(0x2C, 0x10, SS_RDEF,	/* XXX TBD */
1980 	    "Unwritten data in zone") },
1981 	/*  T             */
1982 	{ SST(0x2D, 0x00, SS_RDEF,
1983 	    "Overwrite error on update in place") },
1984 	/*      R         */
1985 	{ SST(0x2E, 0x00, SS_RDEF,	/* XXX TBD */
1986 	    "Insufficient time for operation") },
1987 	/* D              */
1988 	{ SST(0x2E, 0x01, SS_RDEF,	/* XXX TBD */
1989 	    "Command timeout before processing") },
1990 	/* D              */
1991 	{ SST(0x2E, 0x02, SS_RDEF,	/* XXX TBD */
1992 	    "Command timeout during processing") },
1993 	/* D              */
1994 	{ SST(0x2E, 0x03, SS_RDEF,	/* XXX TBD */
1995 	    "Command timeout during processing due to error recovery") },
1996 	/* DTLPWROMAEBKVF */
1997 	{ SST(0x2F, 0x00, SS_RDEF,
1998 	    "Commands cleared by another initiator") },
1999 	/* D              */
2000 	{ SST(0x2F, 0x01, SS_RDEF,	/* XXX TBD */
2001 	    "Commands cleared by power loss notification") },
2002 	/* DTLPWROMAEBKVF */
2003 	{ SST(0x2F, 0x02, SS_RDEF,	/* XXX TBD */
2004 	    "Commands cleared by device server") },
2005 	/* DTLPWROMAEBKVF */
2006 	{ SST(0x2F, 0x03, SS_RDEF,	/* XXX TBD */
2007 	    "Some commands cleared by queuing layer event") },
2008 	/* DT  WROM  BK   */
2009 	{ SST(0x30, 0x00, SS_RDEF,
2010 	    "Incompatible medium installed") },
2011 	/* DT  WRO   BK   */
2012 	{ SST(0x30, 0x01, SS_RDEF,
2013 	    "Cannot read medium - unknown format") },
2014 	/* DT  WRO   BK   */
2015 	{ SST(0x30, 0x02, SS_RDEF,
2016 	    "Cannot read medium - incompatible format") },
2017 	/* DT   R     K   */
2018 	{ SST(0x30, 0x03, SS_RDEF,
2019 	    "Cleaning cartridge installed") },
2020 	/* DT  WRO   BK   */
2021 	{ SST(0x30, 0x04, SS_RDEF,
2022 	    "Cannot write medium - unknown format") },
2023 	/* DT  WRO   BK   */
2024 	{ SST(0x30, 0x05, SS_RDEF,
2025 	    "Cannot write medium - incompatible format") },
2026 	/* DT  WRO   B    */
2027 	{ SST(0x30, 0x06, SS_RDEF,
2028 	    "Cannot format medium - incompatible medium") },
2029 	/* DTL WROMAEBKVF */
2030 	{ SST(0x30, 0x07, SS_RDEF,
2031 	    "Cleaning failure") },
2032 	/*      R         */
2033 	{ SST(0x30, 0x08, SS_RDEF,
2034 	    "Cannot write - application code mismatch") },
2035 	/*      R         */
2036 	{ SST(0x30, 0x09, SS_RDEF,
2037 	    "Current session not fixated for append") },
2038 	/* DT  WRO AEBK   */
2039 	{ SST(0x30, 0x0A, SS_RDEF,	/* XXX TBD */
2040 	    "Cleaning request rejected") },
2041 	/*  T             */
2042 	{ SST(0x30, 0x0C, SS_RDEF,	/* XXX TBD */
2043 	    "WORM medium - overwrite attempted") },
2044 	/*  T             */
2045 	{ SST(0x30, 0x0D, SS_RDEF,	/* XXX TBD */
2046 	    "WORM medium - integrity check") },
2047 	/*      R         */
2048 	{ SST(0x30, 0x10, SS_RDEF,	/* XXX TBD */
2049 	    "Medium not formatted") },
2050 	/*        M       */
2051 	{ SST(0x30, 0x11, SS_RDEF,	/* XXX TBD */
2052 	    "Incompatible volume type") },
2053 	/*        M       */
2054 	{ SST(0x30, 0x12, SS_RDEF,	/* XXX TBD */
2055 	    "Incompatible volume qualifier") },
2056 	/*        M       */
2057 	{ SST(0x30, 0x13, SS_RDEF,	/* XXX TBD */
2058 	    "Cleaning volume expired") },
2059 	/* DT  WRO   BK   */
2060 	{ SST(0x31, 0x00, SS_RDEF,
2061 	    "Medium format corrupted") },
2062 	/* D L  RO   B    */
2063 	{ SST(0x31, 0x01, SS_RDEF,
2064 	    "Format command failed") },
2065 	/*      R         */
2066 	{ SST(0x31, 0x02, SS_RDEF,	/* XXX TBD */
2067 	    "Zoned formatting failed due to spare linking") },
2068 	/* D         B    */
2069 	{ SST(0x31, 0x03, SS_RDEF,	/* XXX TBD */
2070 	    "SANITIZE command failed") },
2071 	/* D   W O   BK   */
2072 	{ SST(0x32, 0x00, SS_RDEF,
2073 	    "No defect spare location available") },
2074 	/* D   W O   BK   */
2075 	{ SST(0x32, 0x01, SS_RDEF,
2076 	    "Defect list update failure") },
2077 	/*  T             */
2078 	{ SST(0x33, 0x00, SS_RDEF,
2079 	    "Tape length error") },
2080 	/* DTLPWROMAEBKVF */
2081 	{ SST(0x34, 0x00, SS_RDEF,
2082 	    "Enclosure failure") },
2083 	/* DTLPWROMAEBKVF */
2084 	{ SST(0x35, 0x00, SS_RDEF,
2085 	    "Enclosure services failure") },
2086 	/* DTLPWROMAEBKVF */
2087 	{ SST(0x35, 0x01, SS_RDEF,
2088 	    "Unsupported enclosure function") },
2089 	/* DTLPWROMAEBKVF */
2090 	{ SST(0x35, 0x02, SS_RDEF,
2091 	    "Enclosure services unavailable") },
2092 	/* DTLPWROMAEBKVF */
2093 	{ SST(0x35, 0x03, SS_RDEF,
2094 	    "Enclosure services transfer failure") },
2095 	/* DTLPWROMAEBKVF */
2096 	{ SST(0x35, 0x04, SS_RDEF,
2097 	    "Enclosure services transfer refused") },
2098 	/* DTL WROMAEBKVF */
2099 	{ SST(0x35, 0x05, SS_RDEF,	/* XXX TBD */
2100 	    "Enclosure services checksum error") },
2101 	/*   L            */
2102 	{ SST(0x36, 0x00, SS_RDEF,
2103 	    "Ribbon, ink, or toner failure") },
2104 	/* DTL WROMAEBKVF */
2105 	{ SST(0x37, 0x00, SS_RDEF,
2106 	    "Rounded parameter") },
2107 	/*           B    */
2108 	{ SST(0x38, 0x00, SS_RDEF,	/* XXX TBD */
2109 	    "Event status notification") },
2110 	/*           B    */
2111 	{ SST(0x38, 0x02, SS_RDEF,	/* XXX TBD */
2112 	    "ESN - power management class event") },
2113 	/*           B    */
2114 	{ SST(0x38, 0x04, SS_RDEF,	/* XXX TBD */
2115 	    "ESN - media class event") },
2116 	/*           B    */
2117 	{ SST(0x38, 0x06, SS_RDEF,	/* XXX TBD */
2118 	    "ESN - device busy class event") },
2119 	/* D              */
2120 	{ SST(0x38, 0x07, SS_RDEF,	/* XXX TBD */
2121 	    "Thin provisioning soft threshold reached") },
2122 	/* DTL WROMAE K   */
2123 	{ SST(0x39, 0x00, SS_RDEF,
2124 	    "Saving parameters not supported") },
2125 	/* DTL WROM  BK   */
2126 	{ SST(0x3A, 0x00, SS_FATAL | ENXIO,
2127 	    "Medium not present") },
2128 	/* DT  WROM  BK   */
2129 	{ SST(0x3A, 0x01, SS_FATAL | ENXIO,
2130 	    "Medium not present - tray closed") },
2131 	/* DT  WROM  BK   */
2132 	{ SST(0x3A, 0x02, SS_FATAL | ENXIO,
2133 	    "Medium not present - tray open") },
2134 	/* DT  WROM  B    */
2135 	{ SST(0x3A, 0x03, SS_RDEF,	/* XXX TBD */
2136 	    "Medium not present - loadable") },
2137 	/* DT  WRO   B    */
2138 	{ SST(0x3A, 0x04, SS_RDEF,	/* XXX TBD */
2139 	    "Medium not present - medium auxiliary memory accessible") },
2140 	/*  TL            */
2141 	{ SST(0x3B, 0x00, SS_RDEF,
2142 	    "Sequential positioning error") },
2143 	/*  T             */
2144 	{ SST(0x3B, 0x01, SS_RDEF,
2145 	    "Tape position error at beginning-of-medium") },
2146 	/*  T             */
2147 	{ SST(0x3B, 0x02, SS_RDEF,
2148 	    "Tape position error at end-of-medium") },
2149 	/*   L            */
2150 	{ SST(0x3B, 0x03, SS_RDEF,
2151 	    "Tape or electronic vertical forms unit not ready") },
2152 	/*   L            */
2153 	{ SST(0x3B, 0x04, SS_RDEF,
2154 	    "Slew failure") },
2155 	/*   L            */
2156 	{ SST(0x3B, 0x05, SS_RDEF,
2157 	    "Paper jam") },
2158 	/*   L            */
2159 	{ SST(0x3B, 0x06, SS_RDEF,
2160 	    "Failed to sense top-of-form") },
2161 	/*   L            */
2162 	{ SST(0x3B, 0x07, SS_RDEF,
2163 	    "Failed to sense bottom-of-form") },
2164 	/*  T             */
2165 	{ SST(0x3B, 0x08, SS_RDEF,
2166 	    "Reposition error") },
2167 	/*                */
2168 	{ SST(0x3B, 0x09, SS_RDEF,
2169 	    "Read past end of medium") },
2170 	/*                */
2171 	{ SST(0x3B, 0x0A, SS_RDEF,
2172 	    "Read past beginning of medium") },
2173 	/*                */
2174 	{ SST(0x3B, 0x0B, SS_RDEF,
2175 	    "Position past end of medium") },
2176 	/*  T             */
2177 	{ SST(0x3B, 0x0C, SS_RDEF,
2178 	    "Position past beginning of medium") },
2179 	/* DT  WROM  BK   */
2180 	{ SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2181 	    "Medium destination element full") },
2182 	/* DT  WROM  BK   */
2183 	{ SST(0x3B, 0x0E, SS_RDEF,
2184 	    "Medium source element empty") },
2185 	/*      R         */
2186 	{ SST(0x3B, 0x0F, SS_RDEF,
2187 	    "End of medium reached") },
2188 	/* DT  WROM  BK   */
2189 	{ SST(0x3B, 0x11, SS_RDEF,
2190 	    "Medium magazine not accessible") },
2191 	/* DT  WROM  BK   */
2192 	{ SST(0x3B, 0x12, SS_RDEF,
2193 	    "Medium magazine removed") },
2194 	/* DT  WROM  BK   */
2195 	{ SST(0x3B, 0x13, SS_RDEF,
2196 	    "Medium magazine inserted") },
2197 	/* DT  WROM  BK   */
2198 	{ SST(0x3B, 0x14, SS_RDEF,
2199 	    "Medium magazine locked") },
2200 	/* DT  WROM  BK   */
2201 	{ SST(0x3B, 0x15, SS_RDEF,
2202 	    "Medium magazine unlocked") },
2203 	/*      R         */
2204 	{ SST(0x3B, 0x16, SS_RDEF,	/* XXX TBD */
2205 	    "Mechanical positioning or changer error") },
2206 	/*              F */
2207 	{ SST(0x3B, 0x17, SS_RDEF,	/* XXX TBD */
2208 	    "Read past end of user object") },
2209 	/*        M       */
2210 	{ SST(0x3B, 0x18, SS_RDEF,	/* XXX TBD */
2211 	    "Element disabled") },
2212 	/*        M       */
2213 	{ SST(0x3B, 0x19, SS_RDEF,	/* XXX TBD */
2214 	    "Element enabled") },
2215 	/*        M       */
2216 	{ SST(0x3B, 0x1A, SS_RDEF,	/* XXX TBD */
2217 	    "Data transfer device removed") },
2218 	/*        M       */
2219 	{ SST(0x3B, 0x1B, SS_RDEF,	/* XXX TBD */
2220 	    "Data transfer device inserted") },
2221 	/*  T             */
2222 	{ SST(0x3B, 0x1C, SS_RDEF,	/* XXX TBD */
2223 	    "Too many logical objects on partition to support operation") },
2224 	/* DTLPWROMAE K   */
2225 	{ SST(0x3D, 0x00, SS_RDEF,
2226 	    "Invalid bits in IDENTIFY message") },
2227 	/* DTLPWROMAEBKVF */
2228 	{ SST(0x3E, 0x00, SS_RDEF,
2229 	    "Logical unit has not self-configured yet") },
2230 	/* DTLPWROMAEBKVF */
2231 	{ SST(0x3E, 0x01, SS_RDEF,
2232 	    "Logical unit failure") },
2233 	/* DTLPWROMAEBKVF */
2234 	{ SST(0x3E, 0x02, SS_RDEF,
2235 	    "Timeout on logical unit") },
2236 	/* DTLPWROMAEBKVF */
2237 	{ SST(0x3E, 0x03, SS_RDEF,	/* XXX TBD */
2238 	    "Logical unit failed self-test") },
2239 	/* DTLPWROMAEBKVF */
2240 	{ SST(0x3E, 0x04, SS_RDEF,	/* XXX TBD */
2241 	    "Logical unit unable to update self-test log") },
2242 	/* DTLPWROMAEBKVF */
2243 	{ SST(0x3F, 0x00, SS_RDEF,
2244 	    "Target operating conditions have changed") },
2245 	/* DTLPWROMAEBKVF */
2246 	{ SST(0x3F, 0x01, SS_RDEF,
2247 	    "Microcode has been changed") },
2248 	/* DTLPWROM  BK   */
2249 	{ SST(0x3F, 0x02, SS_RDEF,
2250 	    "Changed operating definition") },
2251 	/* DTLPWROMAEBKVF */
2252 	{ SST(0x3F, 0x03, SS_RDEF,
2253 	    "INQUIRY data has changed") },
2254 	/* DT  WROMAEBK   */
2255 	{ SST(0x3F, 0x04, SS_RDEF,
2256 	    "Component device attached") },
2257 	/* DT  WROMAEBK   */
2258 	{ SST(0x3F, 0x05, SS_RDEF,
2259 	    "Device identifier changed") },
2260 	/* DT  WROMAEB    */
2261 	{ SST(0x3F, 0x06, SS_RDEF,
2262 	    "Redundancy group created or modified") },
2263 	/* DT  WROMAEB    */
2264 	{ SST(0x3F, 0x07, SS_RDEF,
2265 	    "Redundancy group deleted") },
2266 	/* DT  WROMAEB    */
2267 	{ SST(0x3F, 0x08, SS_RDEF,
2268 	    "Spare created or modified") },
2269 	/* DT  WROMAEB    */
2270 	{ SST(0x3F, 0x09, SS_RDEF,
2271 	    "Spare deleted") },
2272 	/* DT  WROMAEBK   */
2273 	{ SST(0x3F, 0x0A, SS_RDEF,
2274 	    "Volume set created or modified") },
2275 	/* DT  WROMAEBK   */
2276 	{ SST(0x3F, 0x0B, SS_RDEF,
2277 	    "Volume set deleted") },
2278 	/* DT  WROMAEBK   */
2279 	{ SST(0x3F, 0x0C, SS_RDEF,
2280 	    "Volume set deassigned") },
2281 	/* DT  WROMAEBK   */
2282 	{ SST(0x3F, 0x0D, SS_RDEF,
2283 	    "Volume set reassigned") },
2284 	/* DTLPWROMAE     */
2285 	{ SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2286 	    "Reported LUNs data has changed") },
2287 	/* DTLPWROMAEBKVF */
2288 	{ SST(0x3F, 0x0F, SS_RDEF,	/* XXX TBD */
2289 	    "Echo buffer overwritten") },
2290 	/* DT  WROM  B    */
2291 	{ SST(0x3F, 0x10, SS_RDEF,	/* XXX TBD */
2292 	    "Medium loadable") },
2293 	/* DT  WROM  B    */
2294 	{ SST(0x3F, 0x11, SS_RDEF,	/* XXX TBD */
2295 	    "Medium auxiliary memory accessible") },
2296 	/* DTLPWR MAEBK F */
2297 	{ SST(0x3F, 0x12, SS_RDEF,	/* XXX TBD */
2298 	    "iSCSI IP address added") },
2299 	/* DTLPWR MAEBK F */
2300 	{ SST(0x3F, 0x13, SS_RDEF,	/* XXX TBD */
2301 	    "iSCSI IP address removed") },
2302 	/* DTLPWR MAEBK F */
2303 	{ SST(0x3F, 0x14, SS_RDEF,	/* XXX TBD */
2304 	    "iSCSI IP address changed") },
2305 	/* DTLPWR MAEBK   */
2306 	{ SST(0x3F, 0x15, SS_RDEF,	/* XXX TBD */
2307 	    "Inspect referrals sense descriptors") },
2308 	/* DTLPWROMAEBKVF */
2309 	{ SST(0x3F, 0x16, SS_RDEF,	/* XXX TBD */
2310 	    "Microcode has been changed without reset") },
2311 	/* D              */
2312 	{ SST(0x3F, 0x17, SS_RDEF,	/* XXX TBD */
2313 	    "Zone transition to full") },
2314 	/* D              */
2315 	{ SST(0x40, 0x00, SS_RDEF,
2316 	    "RAM failure") },		/* deprecated - use 40 NN instead */
2317 	/* DTLPWROMAEBKVF */
2318 	{ SST(0x40, 0x80, SS_RDEF,
2319 	    "Diagnostic failure: ASCQ = Component ID") },
2320 	/* DTLPWROMAEBKVF */
2321 	{ SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2322 	    NULL) },			/* Range 0x80->0xFF */
2323 	/* D              */
2324 	{ SST(0x41, 0x00, SS_RDEF,
2325 	    "Data path failure") },	/* deprecated - use 40 NN instead */
2326 	/* D              */
2327 	{ SST(0x42, 0x00, SS_RDEF,
2328 	    "Power-on or self-test failure") },
2329 					/* deprecated - use 40 NN instead */
2330 	/* DTLPWROMAEBKVF */
2331 	{ SST(0x43, 0x00, SS_RDEF,
2332 	    "Message error") },
2333 	/* DTLPWROMAEBKVF */
2334 	{ SST(0x44, 0x00, SS_FATAL | EIO,
2335 	    "Internal target failure") },
2336 	/* DT P   MAEBKVF */
2337 	{ SST(0x44, 0x01, SS_RDEF,	/* XXX TBD */
2338 	    "Persistent reservation information lost") },
2339 	/* DT        B    */
2340 	{ SST(0x44, 0x71, SS_RDEF,	/* XXX TBD */
2341 	    "ATA device failed set features") },
2342 	/* DTLPWROMAEBKVF */
2343 	{ SST(0x45, 0x00, SS_RDEF,
2344 	    "Select or reselect failure") },
2345 	/* DTLPWROM  BK   */
2346 	{ SST(0x46, 0x00, SS_RDEF,
2347 	    "Unsuccessful soft reset") },
2348 	/* DTLPWROMAEBKVF */
2349 	{ SST(0x47, 0x00, SS_RDEF,
2350 	    "SCSI parity error") },
2351 	/* DTLPWROMAEBKVF */
2352 	{ SST(0x47, 0x01, SS_RDEF,	/* XXX TBD */
2353 	    "Data phase CRC error detected") },
2354 	/* DTLPWROMAEBKVF */
2355 	{ SST(0x47, 0x02, SS_RDEF,	/* XXX TBD */
2356 	    "SCSI parity error detected during ST data phase") },
2357 	/* DTLPWROMAEBKVF */
2358 	{ SST(0x47, 0x03, SS_RDEF,	/* XXX TBD */
2359 	    "Information unit iuCRC error detected") },
2360 	/* DTLPWROMAEBKVF */
2361 	{ SST(0x47, 0x04, SS_RDEF,	/* XXX TBD */
2362 	    "Asynchronous information protection error detected") },
2363 	/* DTLPWROMAEBKVF */
2364 	{ SST(0x47, 0x05, SS_RDEF,	/* XXX TBD */
2365 	    "Protocol service CRC error") },
2366 	/* DT     MAEBKVF */
2367 	{ SST(0x47, 0x06, SS_RDEF,	/* XXX TBD */
2368 	    "PHY test function in progress") },
2369 	/* DT PWROMAEBK   */
2370 	{ SST(0x47, 0x7F, SS_RDEF,	/* XXX TBD */
2371 	    "Some commands cleared by iSCSI protocol event") },
2372 	/* DTLPWROMAEBKVF */
2373 	{ SST(0x48, 0x00, SS_RDEF,
2374 	    "Initiator detected error message received") },
2375 	/* DTLPWROMAEBKVF */
2376 	{ SST(0x49, 0x00, SS_RDEF,
2377 	    "Invalid message error") },
2378 	/* DTLPWROMAEBKVF */
2379 	{ SST(0x4A, 0x00, SS_RDEF,
2380 	    "Command phase error") },
2381 	/* DTLPWROMAEBKVF */
2382 	{ SST(0x4B, 0x00, SS_RDEF,
2383 	    "Data phase error") },
2384 	/* DT PWROMAEBK   */
2385 	{ SST(0x4B, 0x01, SS_RDEF,	/* XXX TBD */
2386 	    "Invalid target port transfer tag received") },
2387 	/* DT PWROMAEBK   */
2388 	{ SST(0x4B, 0x02, SS_RDEF,	/* XXX TBD */
2389 	    "Too much write data") },
2390 	/* DT PWROMAEBK   */
2391 	{ SST(0x4B, 0x03, SS_RDEF,	/* XXX TBD */
2392 	    "ACK/NAK timeout") },
2393 	/* DT PWROMAEBK   */
2394 	{ SST(0x4B, 0x04, SS_RDEF,	/* XXX TBD */
2395 	    "NAK received") },
2396 	/* DT PWROMAEBK   */
2397 	{ SST(0x4B, 0x05, SS_RDEF,	/* XXX TBD */
2398 	    "Data offset error") },
2399 	/* DT PWROMAEBK   */
2400 	{ SST(0x4B, 0x06, SS_RDEF,	/* XXX TBD */
2401 	    "Initiator response timeout") },
2402 	/* DT PWROMAEBK F */
2403 	{ SST(0x4B, 0x07, SS_RDEF,	/* XXX TBD */
2404 	    "Connection lost") },
2405 	/* DT PWROMAEBK F */
2406 	{ SST(0x4B, 0x08, SS_RDEF,	/* XXX TBD */
2407 	    "Data-in buffer overflow - data buffer size") },
2408 	/* DT PWROMAEBK F */
2409 	{ SST(0x4B, 0x09, SS_RDEF,	/* XXX TBD */
2410 	    "Data-in buffer overflow - data buffer descriptor area") },
2411 	/* DT PWROMAEBK F */
2412 	{ SST(0x4B, 0x0A, SS_RDEF,	/* XXX TBD */
2413 	    "Data-in buffer error") },
2414 	/* DT PWROMAEBK F */
2415 	{ SST(0x4B, 0x0B, SS_RDEF,	/* XXX TBD */
2416 	    "Data-out buffer overflow - data buffer size") },
2417 	/* DT PWROMAEBK F */
2418 	{ SST(0x4B, 0x0C, SS_RDEF,	/* XXX TBD */
2419 	    "Data-out buffer overflow - data buffer descriptor area") },
2420 	/* DT PWROMAEBK F */
2421 	{ SST(0x4B, 0x0D, SS_RDEF,	/* XXX TBD */
2422 	    "Data-out buffer error") },
2423 	/* DT PWROMAEBK F */
2424 	{ SST(0x4B, 0x0E, SS_RDEF,	/* XXX TBD */
2425 	    "PCIe fabric error") },
2426 	/* DT PWROMAEBK F */
2427 	{ SST(0x4B, 0x0F, SS_RDEF,	/* XXX TBD */
2428 	    "PCIe completion timeout") },
2429 	/* DT PWROMAEBK F */
2430 	{ SST(0x4B, 0x10, SS_RDEF,	/* XXX TBD */
2431 	    "PCIe completer abort") },
2432 	/* DT PWROMAEBK F */
2433 	{ SST(0x4B, 0x11, SS_RDEF,	/* XXX TBD */
2434 	    "PCIe poisoned TLP received") },
2435 	/* DT PWROMAEBK F */
2436 	{ SST(0x4B, 0x12, SS_RDEF,	/* XXX TBD */
2437 	    "PCIe ECRC check failed") },
2438 	/* DT PWROMAEBK F */
2439 	{ SST(0x4B, 0x13, SS_RDEF,	/* XXX TBD */
2440 	    "PCIe unsupported request") },
2441 	/* DT PWROMAEBK F */
2442 	{ SST(0x4B, 0x14, SS_RDEF,	/* XXX TBD */
2443 	    "PCIe ACS violation") },
2444 	/* DT PWROMAEBK F */
2445 	{ SST(0x4B, 0x15, SS_RDEF,	/* XXX TBD */
2446 	    "PCIe TLP prefix blocket") },
2447 	/* DTLPWROMAEBKVF */
2448 	{ SST(0x4C, 0x00, SS_RDEF,
2449 	    "Logical unit failed self-configuration") },
2450 	/* DTLPWROMAEBKVF */
2451 	{ SST(0x4D, 0x00, SS_RDEF,
2452 	    "Tagged overlapped commands: ASCQ = Queue tag ID") },
2453 	/* DTLPWROMAEBKVF */
2454 	{ SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2455 	    NULL) },			/* Range 0x00->0xFF */
2456 	/* DTLPWROMAEBKVF */
2457 	{ SST(0x4E, 0x00, SS_RDEF,
2458 	    "Overlapped commands attempted") },
2459 	/*  T             */
2460 	{ SST(0x50, 0x00, SS_RDEF,
2461 	    "Write append error") },
2462 	/*  T             */
2463 	{ SST(0x50, 0x01, SS_RDEF,
2464 	    "Write append position error") },
2465 	/*  T             */
2466 	{ SST(0x50, 0x02, SS_RDEF,
2467 	    "Position error related to timing") },
2468 	/*  T   RO        */
2469 	{ SST(0x51, 0x00, SS_RDEF,
2470 	    "Erase failure") },
2471 	/*      R         */
2472 	{ SST(0x51, 0x01, SS_RDEF,	/* XXX TBD */
2473 	    "Erase failure - incomplete erase operation detected") },
2474 	/*  T             */
2475 	{ SST(0x52, 0x00, SS_RDEF,
2476 	    "Cartridge fault") },
2477 	/* DTL WROM  BK   */
2478 	{ SST(0x53, 0x00, SS_RDEF,
2479 	    "Media load or eject failed") },
2480 	/*  T             */
2481 	{ SST(0x53, 0x01, SS_RDEF,
2482 	    "Unload tape failure") },
2483 	/* DT  WROM  BK   */
2484 	{ SST(0x53, 0x02, SS_RDEF,
2485 	    "Medium removal prevented") },
2486 	/*        M       */
2487 	{ SST(0x53, 0x03, SS_RDEF,	/* XXX TBD */
2488 	    "Medium removal prevented by data transfer element") },
2489 	/*  T             */
2490 	{ SST(0x53, 0x04, SS_RDEF,	/* XXX TBD */
2491 	    "Medium thread or unthread failure") },
2492 	/*        M       */
2493 	{ SST(0x53, 0x05, SS_RDEF,	/* XXX TBD */
2494 	    "Volume identifier invalid") },
2495 	/*  T             */
2496 	{ SST(0x53, 0x06, SS_RDEF,	/* XXX TBD */
2497 	    "Volume identifier missing") },
2498 	/*        M       */
2499 	{ SST(0x53, 0x07, SS_RDEF,	/* XXX TBD */
2500 	    "Duplicate volume identifier") },
2501 	/*        M       */
2502 	{ SST(0x53, 0x08, SS_RDEF,	/* XXX TBD */
2503 	    "Element status unknown") },
2504 	/*        M       */
2505 	{ SST(0x53, 0x09, SS_RDEF,	/* XXX TBD */
2506 	    "Data transfer device error - load failed") },
2507 	/*        M       */
2508 	{ SST(0x53, 0x0A, SS_RDEF,	/* XXX TBD */
2509 	    "Data transfer device error - unload failed") },
2510 	/*        M       */
2511 	{ SST(0x53, 0x0B, SS_RDEF,	/* XXX TBD */
2512 	    "Data transfer device error - unload missing") },
2513 	/*        M       */
2514 	{ SST(0x53, 0x0C, SS_RDEF,	/* XXX TBD */
2515 	    "Data transfer device error - eject failed") },
2516 	/*        M       */
2517 	{ SST(0x53, 0x0D, SS_RDEF,	/* XXX TBD */
2518 	    "Data transfer device error - library communication failed") },
2519 	/*    P           */
2520 	{ SST(0x54, 0x00, SS_RDEF,
2521 	    "SCSI to host system interface failure") },
2522 	/*    P           */
2523 	{ SST(0x55, 0x00, SS_RDEF,
2524 	    "System resource failure") },
2525 	/* D     O   BK   */
2526 	{ SST(0x55, 0x01, SS_FATAL | ENOSPC,
2527 	    "System buffer full") },
2528 	/* DTLPWROMAE K   */
2529 	{ SST(0x55, 0x02, SS_RDEF,	/* XXX TBD */
2530 	    "Insufficient reservation resources") },
2531 	/* DTLPWROMAE K   */
2532 	{ SST(0x55, 0x03, SS_RDEF,	/* XXX TBD */
2533 	    "Insufficient resources") },
2534 	/* DTLPWROMAE K   */
2535 	{ SST(0x55, 0x04, SS_RDEF,	/* XXX TBD */
2536 	    "Insufficient registration resources") },
2537 	/* DT PWROMAEBK   */
2538 	{ SST(0x55, 0x05, SS_RDEF,	/* XXX TBD */
2539 	    "Insufficient access control resources") },
2540 	/* DT  WROM  B    */
2541 	{ SST(0x55, 0x06, SS_RDEF,	/* XXX TBD */
2542 	    "Auxiliary memory out of space") },
2543 	/*              F */
2544 	{ SST(0x55, 0x07, SS_RDEF,	/* XXX TBD */
2545 	    "Quota error") },
2546 	/*  T             */
2547 	{ SST(0x55, 0x08, SS_RDEF,	/* XXX TBD */
2548 	    "Maximum number of supplemental decryption keys exceeded") },
2549 	/*        M       */
2550 	{ SST(0x55, 0x09, SS_RDEF,	/* XXX TBD */
2551 	    "Medium auxiliary memory not accessible") },
2552 	/*        M       */
2553 	{ SST(0x55, 0x0A, SS_RDEF,	/* XXX TBD */
2554 	    "Data currently unavailable") },
2555 	/* DTLPWROMAEBKVF */
2556 	{ SST(0x55, 0x0B, SS_RDEF,	/* XXX TBD */
2557 	    "Insufficient power for operation") },
2558 	/* DT P      B    */
2559 	{ SST(0x55, 0x0C, SS_RDEF,	/* XXX TBD */
2560 	    "Insufficient resources to create ROD") },
2561 	/* DT P      B    */
2562 	{ SST(0x55, 0x0D, SS_RDEF,	/* XXX TBD */
2563 	    "Insufficient resources to create ROD token") },
2564 	/* D              */
2565 	{ SST(0x55, 0x0E, SS_RDEF,	/* XXX TBD */
2566 	    "Insufficient zone resources") },
2567 	/* D              */
2568 	{ SST(0x55, 0x0F, SS_RDEF,	/* XXX TBD */
2569 	    "Insufficient zone resources to complete write") },
2570 	/* D              */
2571 	{ SST(0x55, 0x10, SS_RDEF,	/* XXX TBD */
2572 	    "Maximum number of streams open") },
2573 	/*      R         */
2574 	{ SST(0x57, 0x00, SS_RDEF,
2575 	    "Unable to recover table-of-contents") },
2576 	/*       O        */
2577 	{ SST(0x58, 0x00, SS_RDEF,
2578 	    "Generation does not exist") },
2579 	/*       O        */
2580 	{ SST(0x59, 0x00, SS_RDEF,
2581 	    "Updated block read") },
2582 	/* DTLPWRO   BK   */
2583 	{ SST(0x5A, 0x00, SS_RDEF,
2584 	    "Operator request or state change input") },
2585 	/* DT  WROM  BK   */
2586 	{ SST(0x5A, 0x01, SS_RDEF,
2587 	    "Operator medium removal request") },
2588 	/* DT  WRO A BK   */
2589 	{ SST(0x5A, 0x02, SS_RDEF,
2590 	    "Operator selected write protect") },
2591 	/* DT  WRO A BK   */
2592 	{ SST(0x5A, 0x03, SS_RDEF,
2593 	    "Operator selected write permit") },
2594 	/* DTLPWROM   K   */
2595 	{ SST(0x5B, 0x00, SS_RDEF,
2596 	    "Log exception") },
2597 	/* DTLPWROM   K   */
2598 	{ SST(0x5B, 0x01, SS_RDEF,
2599 	    "Threshold condition met") },
2600 	/* DTLPWROM   K   */
2601 	{ SST(0x5B, 0x02, SS_RDEF,
2602 	    "Log counter at maximum") },
2603 	/* DTLPWROM   K   */
2604 	{ SST(0x5B, 0x03, SS_RDEF,
2605 	    "Log list codes exhausted") },
2606 	/* D     O        */
2607 	{ SST(0x5C, 0x00, SS_RDEF,
2608 	    "RPL status change") },
2609 	/* D     O        */
2610 	{ SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2611 	    "Spindles synchronized") },
2612 	/* D     O        */
2613 	{ SST(0x5C, 0x02, SS_RDEF,
2614 	    "Spindles not synchronized") },
2615 	/* DTLPWROMAEBKVF */
2616 	{ SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE,
2617 	    "Failure prediction threshold exceeded") },
2618 	/*      R    B    */
2619 	{ SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2620 	    "Media failure prediction threshold exceeded") },
2621 	/*      R         */
2622 	{ SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE,
2623 	    "Logical unit failure prediction threshold exceeded") },
2624 	/*      R         */
2625 	{ SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE,
2626 	    "Spare area exhaustion prediction threshold exceeded") },
2627 	/* D         B    */
2628 	{ SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE,
2629 	    "Hardware impending failure general hard drive failure") },
2630 	/* D         B    */
2631 	{ SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE,
2632 	    "Hardware impending failure drive error rate too high") },
2633 	/* D         B    */
2634 	{ SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE,
2635 	    "Hardware impending failure data error rate too high") },
2636 	/* D         B    */
2637 	{ SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE,
2638 	    "Hardware impending failure seek error rate too high") },
2639 	/* D         B    */
2640 	{ SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE,
2641 	    "Hardware impending failure too many block reassigns") },
2642 	/* D         B    */
2643 	{ SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE,
2644 	    "Hardware impending failure access times too high") },
2645 	/* D         B    */
2646 	{ SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE,
2647 	    "Hardware impending failure start unit times too high") },
2648 	/* D         B    */
2649 	{ SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE,
2650 	    "Hardware impending failure channel parametrics") },
2651 	/* D         B    */
2652 	{ SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE,
2653 	    "Hardware impending failure controller detected") },
2654 	/* D         B    */
2655 	{ SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE,
2656 	    "Hardware impending failure throughput performance") },
2657 	/* D         B    */
2658 	{ SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE,
2659 	    "Hardware impending failure seek time performance") },
2660 	/* D         B    */
2661 	{ SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE,
2662 	    "Hardware impending failure spin-up retry count") },
2663 	/* D         B    */
2664 	{ SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE,
2665 	    "Hardware impending failure drive calibration retry count") },
2666 	/* D         B    */
2667 	{ SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE,
2668 	    "Hardware impending failure power loss protection circuit") },
2669 	/* D         B    */
2670 	{ SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE,
2671 	    "Controller impending failure general hard drive failure") },
2672 	/* D         B    */
2673 	{ SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE,
2674 	    "Controller impending failure drive error rate too high") },
2675 	/* D         B    */
2676 	{ SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE,
2677 	    "Controller impending failure data error rate too high") },
2678 	/* D         B    */
2679 	{ SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE,
2680 	    "Controller impending failure seek error rate too high") },
2681 	/* D         B    */
2682 	{ SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE,
2683 	    "Controller impending failure too many block reassigns") },
2684 	/* D         B    */
2685 	{ SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE,
2686 	    "Controller impending failure access times too high") },
2687 	/* D         B    */
2688 	{ SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE,
2689 	    "Controller impending failure start unit times too high") },
2690 	/* D         B    */
2691 	{ SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE,
2692 	    "Controller impending failure channel parametrics") },
2693 	/* D         B    */
2694 	{ SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE,
2695 	    "Controller impending failure controller detected") },
2696 	/* D         B    */
2697 	{ SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE,
2698 	    "Controller impending failure throughput performance") },
2699 	/* D         B    */
2700 	{ SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE,
2701 	    "Controller impending failure seek time performance") },
2702 	/* D         B    */
2703 	{ SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE,
2704 	    "Controller impending failure spin-up retry count") },
2705 	/* D         B    */
2706 	{ SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE,
2707 	    "Controller impending failure drive calibration retry count") },
2708 	/* D         B    */
2709 	{ SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE,
2710 	    "Data channel impending failure general hard drive failure") },
2711 	/* D         B    */
2712 	{ SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE,
2713 	    "Data channel impending failure drive error rate too high") },
2714 	/* D         B    */
2715 	{ SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE,
2716 	    "Data channel impending failure data error rate too high") },
2717 	/* D         B    */
2718 	{ SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE,
2719 	    "Data channel impending failure seek error rate too high") },
2720 	/* D         B    */
2721 	{ SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE,
2722 	    "Data channel impending failure too many block reassigns") },
2723 	/* D         B    */
2724 	{ SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE,
2725 	    "Data channel impending failure access times too high") },
2726 	/* D         B    */
2727 	{ SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE,
2728 	    "Data channel impending failure start unit times too high") },
2729 	/* D         B    */
2730 	{ SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE,
2731 	    "Data channel impending failure channel parametrics") },
2732 	/* D         B    */
2733 	{ SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE,
2734 	    "Data channel impending failure controller detected") },
2735 	/* D         B    */
2736 	{ SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE,
2737 	    "Data channel impending failure throughput performance") },
2738 	/* D         B    */
2739 	{ SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE,
2740 	    "Data channel impending failure seek time performance") },
2741 	/* D         B    */
2742 	{ SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE,
2743 	    "Data channel impending failure spin-up retry count") },
2744 	/* D         B    */
2745 	{ SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE,
2746 	    "Data channel impending failure drive calibration retry count") },
2747 	/* D         B    */
2748 	{ SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE,
2749 	    "Servo impending failure general hard drive failure") },
2750 	/* D         B    */
2751 	{ SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE,
2752 	    "Servo impending failure drive error rate too high") },
2753 	/* D         B    */
2754 	{ SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE,
2755 	    "Servo impending failure data error rate too high") },
2756 	/* D         B    */
2757 	{ SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE,
2758 	    "Servo impending failure seek error rate too high") },
2759 	/* D         B    */
2760 	{ SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE,
2761 	    "Servo impending failure too many block reassigns") },
2762 	/* D         B    */
2763 	{ SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE,
2764 	    "Servo impending failure access times too high") },
2765 	/* D         B    */
2766 	{ SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE,
2767 	    "Servo impending failure start unit times too high") },
2768 	/* D         B    */
2769 	{ SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE,
2770 	    "Servo impending failure channel parametrics") },
2771 	/* D         B    */
2772 	{ SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE,
2773 	    "Servo impending failure controller detected") },
2774 	/* D         B    */
2775 	{ SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE,
2776 	    "Servo impending failure throughput performance") },
2777 	/* D         B    */
2778 	{ SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE,
2779 	    "Servo impending failure seek time performance") },
2780 	/* D         B    */
2781 	{ SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE,
2782 	    "Servo impending failure spin-up retry count") },
2783 	/* D         B    */
2784 	{ SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE,
2785 	    "Servo impending failure drive calibration retry count") },
2786 	/* D         B    */
2787 	{ SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE,
2788 	    "Spindle impending failure general hard drive failure") },
2789 	/* D         B    */
2790 	{ SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE,
2791 	    "Spindle impending failure drive error rate too high") },
2792 	/* D         B    */
2793 	{ SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE,
2794 	    "Spindle impending failure data error rate too high") },
2795 	/* D         B    */
2796 	{ SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE,
2797 	    "Spindle impending failure seek error rate too high") },
2798 	/* D         B    */
2799 	{ SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE,
2800 	    "Spindle impending failure too many block reassigns") },
2801 	/* D         B    */
2802 	{ SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE,
2803 	    "Spindle impending failure access times too high") },
2804 	/* D         B    */
2805 	{ SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE,
2806 	    "Spindle impending failure start unit times too high") },
2807 	/* D         B    */
2808 	{ SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE,
2809 	    "Spindle impending failure channel parametrics") },
2810 	/* D         B    */
2811 	{ SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE,
2812 	    "Spindle impending failure controller detected") },
2813 	/* D         B    */
2814 	{ SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE,
2815 	    "Spindle impending failure throughput performance") },
2816 	/* D         B    */
2817 	{ SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE,
2818 	    "Spindle impending failure seek time performance") },
2819 	/* D         B    */
2820 	{ SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE,
2821 	    "Spindle impending failure spin-up retry count") },
2822 	/* D         B    */
2823 	{ SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE,
2824 	    "Spindle impending failure drive calibration retry count") },
2825 	/* D         B    */
2826 	{ SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE,
2827 	    "Firmware impending failure general hard drive failure") },
2828 	/* D         B    */
2829 	{ SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE,
2830 	    "Firmware impending failure drive error rate too high") },
2831 	/* D         B    */
2832 	{ SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE,
2833 	    "Firmware impending failure data error rate too high") },
2834 	/* D         B    */
2835 	{ SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE,
2836 	    "Firmware impending failure seek error rate too high") },
2837 	/* D         B    */
2838 	{ SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE,
2839 	    "Firmware impending failure too many block reassigns") },
2840 	/* D         B    */
2841 	{ SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE,
2842 	    "Firmware impending failure access times too high") },
2843 	/* D         B    */
2844 	{ SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE,
2845 	    "Firmware impending failure start unit times too high") },
2846 	/* D         B    */
2847 	{ SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE,
2848 	    "Firmware impending failure channel parametrics") },
2849 	/* D         B    */
2850 	{ SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE,
2851 	    "Firmware impending failure controller detected") },
2852 	/* D         B    */
2853 	{ SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE,
2854 	    "Firmware impending failure throughput performance") },
2855 	/* D         B    */
2856 	{ SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE,
2857 	    "Firmware impending failure seek time performance") },
2858 	/* D         B    */
2859 	{ SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE,
2860 	    "Firmware impending failure spin-up retry count") },
2861 	/* D         B    */
2862 	{ SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE,
2863 	    "Firmware impending failure drive calibration retry count") },
2864 	/* D         B    */
2865 	{ SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE,
2866 	    "Media impending failure endurance limit met") },
2867 	/* DTLPWROMAEBKVF */
2868 	{ SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE,
2869 	    "Failure prediction threshold exceeded (false)") },
2870 	/* DTLPWRO A  K   */
2871 	{ SST(0x5E, 0x00, SS_RDEF,
2872 	    "Low power condition on") },
2873 	/* DTLPWRO A  K   */
2874 	{ SST(0x5E, 0x01, SS_RDEF,
2875 	    "Idle condition activated by timer") },
2876 	/* DTLPWRO A  K   */
2877 	{ SST(0x5E, 0x02, SS_RDEF,
2878 	    "Standby condition activated by timer") },
2879 	/* DTLPWRO A  K   */
2880 	{ SST(0x5E, 0x03, SS_RDEF,
2881 	    "Idle condition activated by command") },
2882 	/* DTLPWRO A  K   */
2883 	{ SST(0x5E, 0x04, SS_RDEF,
2884 	    "Standby condition activated by command") },
2885 	/* DTLPWRO A  K   */
2886 	{ SST(0x5E, 0x05, SS_RDEF,
2887 	    "Idle-B condition activated by timer") },
2888 	/* DTLPWRO A  K   */
2889 	{ SST(0x5E, 0x06, SS_RDEF,
2890 	    "Idle-B condition activated by command") },
2891 	/* DTLPWRO A  K   */
2892 	{ SST(0x5E, 0x07, SS_RDEF,
2893 	    "Idle-C condition activated by timer") },
2894 	/* DTLPWRO A  K   */
2895 	{ SST(0x5E, 0x08, SS_RDEF,
2896 	    "Idle-C condition activated by command") },
2897 	/* DTLPWRO A  K   */
2898 	{ SST(0x5E, 0x09, SS_RDEF,
2899 	    "Standby-Y condition activated by timer") },
2900 	/* DTLPWRO A  K   */
2901 	{ SST(0x5E, 0x0A, SS_RDEF,
2902 	    "Standby-Y condition activated by command") },
2903 	/*           B    */
2904 	{ SST(0x5E, 0x41, SS_RDEF,	/* XXX TBD */
2905 	    "Power state change to active") },
2906 	/*           B    */
2907 	{ SST(0x5E, 0x42, SS_RDEF,	/* XXX TBD */
2908 	    "Power state change to idle") },
2909 	/*           B    */
2910 	{ SST(0x5E, 0x43, SS_RDEF,	/* XXX TBD */
2911 	    "Power state change to standby") },
2912 	/*           B    */
2913 	{ SST(0x5E, 0x45, SS_RDEF,	/* XXX TBD */
2914 	    "Power state change to sleep") },
2915 	/*           BK   */
2916 	{ SST(0x5E, 0x47, SS_RDEF,	/* XXX TBD */
2917 	    "Power state change to device control") },
2918 	/*                */
2919 	{ SST(0x60, 0x00, SS_RDEF,
2920 	    "Lamp failure") },
2921 	/*                */
2922 	{ SST(0x61, 0x00, SS_RDEF,
2923 	    "Video acquisition error") },
2924 	/*                */
2925 	{ SST(0x61, 0x01, SS_RDEF,
2926 	    "Unable to acquire video") },
2927 	/*                */
2928 	{ SST(0x61, 0x02, SS_RDEF,
2929 	    "Out of focus") },
2930 	/*                */
2931 	{ SST(0x62, 0x00, SS_RDEF,
2932 	    "Scan head positioning error") },
2933 	/*      R         */
2934 	{ SST(0x63, 0x00, SS_RDEF,
2935 	    "End of user area encountered on this track") },
2936 	/*      R         */
2937 	{ SST(0x63, 0x01, SS_FATAL | ENOSPC,
2938 	    "Packet does not fit in available space") },
2939 	/*      R         */
2940 	{ SST(0x64, 0x00, SS_FATAL | ENXIO,
2941 	    "Illegal mode for this track") },
2942 	/*      R         */
2943 	{ SST(0x64, 0x01, SS_RDEF,
2944 	    "Invalid packet size") },
2945 	/* DTLPWROMAEBKVF */
2946 	{ SST(0x65, 0x00, SS_RDEF,
2947 	    "Voltage fault") },
2948 	/*                */
2949 	{ SST(0x66, 0x00, SS_RDEF,
2950 	    "Automatic document feeder cover up") },
2951 	/*                */
2952 	{ SST(0x66, 0x01, SS_RDEF,
2953 	    "Automatic document feeder lift up") },
2954 	/*                */
2955 	{ SST(0x66, 0x02, SS_RDEF,
2956 	    "Document jam in automatic document feeder") },
2957 	/*                */
2958 	{ SST(0x66, 0x03, SS_RDEF,
2959 	    "Document miss feed automatic in document feeder") },
2960 	/*         A      */
2961 	{ SST(0x67, 0x00, SS_RDEF,
2962 	    "Configuration failure") },
2963 	/*         A      */
2964 	{ SST(0x67, 0x01, SS_RDEF,
2965 	    "Configuration of incapable logical units failed") },
2966 	/*         A      */
2967 	{ SST(0x67, 0x02, SS_RDEF,
2968 	    "Add logical unit failed") },
2969 	/*         A      */
2970 	{ SST(0x67, 0x03, SS_RDEF,
2971 	    "Modification of logical unit failed") },
2972 	/*         A      */
2973 	{ SST(0x67, 0x04, SS_RDEF,
2974 	    "Exchange of logical unit failed") },
2975 	/*         A      */
2976 	{ SST(0x67, 0x05, SS_RDEF,
2977 	    "Remove of logical unit failed") },
2978 	/*         A      */
2979 	{ SST(0x67, 0x06, SS_RDEF,
2980 	    "Attachment of logical unit failed") },
2981 	/*         A      */
2982 	{ SST(0x67, 0x07, SS_RDEF,
2983 	    "Creation of logical unit failed") },
2984 	/*         A      */
2985 	{ SST(0x67, 0x08, SS_RDEF,	/* XXX TBD */
2986 	    "Assign failure occurred") },
2987 	/*         A      */
2988 	{ SST(0x67, 0x09, SS_RDEF,	/* XXX TBD */
2989 	    "Multiply assigned logical unit") },
2990 	/* DTLPWROMAEBKVF */
2991 	{ SST(0x67, 0x0A, SS_RDEF,	/* XXX TBD */
2992 	    "Set target port groups command failed") },
2993 	/* DT        B    */
2994 	{ SST(0x67, 0x0B, SS_RDEF,	/* XXX TBD */
2995 	    "ATA device feature not enabled") },
2996 	/*         A      */
2997 	{ SST(0x68, 0x00, SS_RDEF,
2998 	    "Logical unit not configured") },
2999 	/* D              */
3000 	{ SST(0x68, 0x01, SS_RDEF,
3001 	    "Subsidiary logical unit not configured") },
3002 	/*         A      */
3003 	{ SST(0x69, 0x00, SS_RDEF,
3004 	    "Data loss on logical unit") },
3005 	/*         A      */
3006 	{ SST(0x69, 0x01, SS_RDEF,
3007 	    "Multiple logical unit failures") },
3008 	/*         A      */
3009 	{ SST(0x69, 0x02, SS_RDEF,
3010 	    "Parity/data mismatch") },
3011 	/*         A      */
3012 	{ SST(0x6A, 0x00, SS_RDEF,
3013 	    "Informational, refer to log") },
3014 	/*         A      */
3015 	{ SST(0x6B, 0x00, SS_RDEF,
3016 	    "State change has occurred") },
3017 	/*         A      */
3018 	{ SST(0x6B, 0x01, SS_RDEF,
3019 	    "Redundancy level got better") },
3020 	/*         A      */
3021 	{ SST(0x6B, 0x02, SS_RDEF,
3022 	    "Redundancy level got worse") },
3023 	/*         A      */
3024 	{ SST(0x6C, 0x00, SS_RDEF,
3025 	    "Rebuild failure occurred") },
3026 	/*         A      */
3027 	{ SST(0x6D, 0x00, SS_RDEF,
3028 	    "Recalculate failure occurred") },
3029 	/*         A      */
3030 	{ SST(0x6E, 0x00, SS_RDEF,
3031 	    "Command to logical unit failed") },
3032 	/*      R         */
3033 	{ SST(0x6F, 0x00, SS_RDEF,	/* XXX TBD */
3034 	    "Copy protection key exchange failure - authentication failure") },
3035 	/*      R         */
3036 	{ SST(0x6F, 0x01, SS_RDEF,	/* XXX TBD */
3037 	    "Copy protection key exchange failure - key not present") },
3038 	/*      R         */
3039 	{ SST(0x6F, 0x02, SS_RDEF,	/* XXX TBD */
3040 	    "Copy protection key exchange failure - key not established") },
3041 	/*      R         */
3042 	{ SST(0x6F, 0x03, SS_RDEF,	/* XXX TBD */
3043 	    "Read of scrambled sector without authentication") },
3044 	/*      R         */
3045 	{ SST(0x6F, 0x04, SS_RDEF,	/* XXX TBD */
3046 	    "Media region code is mismatched to logical unit region") },
3047 	/*      R         */
3048 	{ SST(0x6F, 0x05, SS_RDEF,	/* XXX TBD */
3049 	    "Drive region must be permanent/region reset count error") },
3050 	/*      R         */
3051 	{ SST(0x6F, 0x06, SS_RDEF,	/* XXX TBD */
3052 	    "Insufficient block count for binding NONCE recording") },
3053 	/*      R         */
3054 	{ SST(0x6F, 0x07, SS_RDEF,	/* XXX TBD */
3055 	    "Conflict in binding NONCE recording") },
3056 	/*  T             */
3057 	{ SST(0x70, 0x00, SS_RDEF,
3058 	    "Decompression exception short: ASCQ = Algorithm ID") },
3059 	/*  T             */
3060 	{ SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3061 	    NULL) },			/* Range 0x00 -> 0xFF */
3062 	/*  T             */
3063 	{ SST(0x71, 0x00, SS_RDEF,
3064 	    "Decompression exception long: ASCQ = Algorithm ID") },
3065 	/*  T             */
3066 	{ SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3067 	    NULL) },			/* Range 0x00 -> 0xFF */
3068 	/*      R         */
3069 	{ SST(0x72, 0x00, SS_RDEF,
3070 	    "Session fixation error") },
3071 	/*      R         */
3072 	{ SST(0x72, 0x01, SS_RDEF,
3073 	    "Session fixation error writing lead-in") },
3074 	/*      R         */
3075 	{ SST(0x72, 0x02, SS_RDEF,
3076 	    "Session fixation error writing lead-out") },
3077 	/*      R         */
3078 	{ SST(0x72, 0x03, SS_RDEF,
3079 	    "Session fixation error - incomplete track in session") },
3080 	/*      R         */
3081 	{ SST(0x72, 0x04, SS_RDEF,
3082 	    "Empty or partially written reserved track") },
3083 	/*      R         */
3084 	{ SST(0x72, 0x05, SS_RDEF,	/* XXX TBD */
3085 	    "No more track reservations allowed") },
3086 	/*      R         */
3087 	{ SST(0x72, 0x06, SS_RDEF,	/* XXX TBD */
3088 	    "RMZ extension is not allowed") },
3089 	/*      R         */
3090 	{ SST(0x72, 0x07, SS_RDEF,	/* XXX TBD */
3091 	    "No more test zone extensions are allowed") },
3092 	/*      R         */
3093 	{ SST(0x73, 0x00, SS_RDEF,
3094 	    "CD control error") },
3095 	/*      R         */
3096 	{ SST(0x73, 0x01, SS_RDEF,
3097 	    "Power calibration area almost full") },
3098 	/*      R         */
3099 	{ SST(0x73, 0x02, SS_FATAL | ENOSPC,
3100 	    "Power calibration area is full") },
3101 	/*      R         */
3102 	{ SST(0x73, 0x03, SS_RDEF,
3103 	    "Power calibration area error") },
3104 	/*      R         */
3105 	{ SST(0x73, 0x04, SS_RDEF,
3106 	    "Program memory area update failure") },
3107 	/*      R         */
3108 	{ SST(0x73, 0x05, SS_RDEF,
3109 	    "Program memory area is full") },
3110 	/*      R         */
3111 	{ SST(0x73, 0x06, SS_RDEF,	/* XXX TBD */
3112 	    "RMA/PMA is almost full") },
3113 	/*      R         */
3114 	{ SST(0x73, 0x10, SS_RDEF,	/* XXX TBD */
3115 	    "Current power calibration area almost full") },
3116 	/*      R         */
3117 	{ SST(0x73, 0x11, SS_RDEF,	/* XXX TBD */
3118 	    "Current power calibration area is full") },
3119 	/*      R         */
3120 	{ SST(0x73, 0x17, SS_RDEF,	/* XXX TBD */
3121 	    "RDZ is full") },
3122 	/*  T             */
3123 	{ SST(0x74, 0x00, SS_RDEF,	/* XXX TBD */
3124 	    "Security error") },
3125 	/*  T             */
3126 	{ SST(0x74, 0x01, SS_RDEF,	/* XXX TBD */
3127 	    "Unable to decrypt data") },
3128 	/*  T             */
3129 	{ SST(0x74, 0x02, SS_RDEF,	/* XXX TBD */
3130 	    "Unencrypted data encountered while decrypting") },
3131 	/*  T             */
3132 	{ SST(0x74, 0x03, SS_RDEF,	/* XXX TBD */
3133 	    "Incorrect data encryption key") },
3134 	/*  T             */
3135 	{ SST(0x74, 0x04, SS_RDEF,	/* XXX TBD */
3136 	    "Cryptographic integrity validation failed") },
3137 	/*  T             */
3138 	{ SST(0x74, 0x05, SS_RDEF,	/* XXX TBD */
3139 	    "Error decrypting data") },
3140 	/*  T             */
3141 	{ SST(0x74, 0x06, SS_RDEF,	/* XXX TBD */
3142 	    "Unknown signature verification key") },
3143 	/*  T             */
3144 	{ SST(0x74, 0x07, SS_RDEF,	/* XXX TBD */
3145 	    "Encryption parameters not useable") },
3146 	/* DT   R M E  VF */
3147 	{ SST(0x74, 0x08, SS_RDEF,	/* XXX TBD */
3148 	    "Digital signature validation failure") },
3149 	/*  T             */
3150 	{ SST(0x74, 0x09, SS_RDEF,	/* XXX TBD */
3151 	    "Encryption mode mismatch on read") },
3152 	/*  T             */
3153 	{ SST(0x74, 0x0A, SS_RDEF,	/* XXX TBD */
3154 	    "Encrypted block not raw read enabled") },
3155 	/*  T             */
3156 	{ SST(0x74, 0x0B, SS_RDEF,	/* XXX TBD */
3157 	    "Incorrect encryption parameters") },
3158 	/* DT   R MAEBKV  */
3159 	{ SST(0x74, 0x0C, SS_RDEF,	/* XXX TBD */
3160 	    "Unable to decrypt parameter list") },
3161 	/*  T             */
3162 	{ SST(0x74, 0x0D, SS_RDEF,	/* XXX TBD */
3163 	    "Encryption algorithm disabled") },
3164 	/* DT   R MAEBKV  */
3165 	{ SST(0x74, 0x10, SS_RDEF,	/* XXX TBD */
3166 	    "SA creation parameter value invalid") },
3167 	/* DT   R MAEBKV  */
3168 	{ SST(0x74, 0x11, SS_RDEF,	/* XXX TBD */
3169 	    "SA creation parameter value rejected") },
3170 	/* DT   R MAEBKV  */
3171 	{ SST(0x74, 0x12, SS_RDEF,	/* XXX TBD */
3172 	    "Invalid SA usage") },
3173 	/*  T             */
3174 	{ SST(0x74, 0x21, SS_RDEF,	/* XXX TBD */
3175 	    "Data encryption configuration prevented") },
3176 	/* DT   R MAEBKV  */
3177 	{ SST(0x74, 0x30, SS_RDEF,	/* XXX TBD */
3178 	    "SA creation parameter not supported") },
3179 	/* DT   R MAEBKV  */
3180 	{ SST(0x74, 0x40, SS_RDEF,	/* XXX TBD */
3181 	    "Authentication failed") },
3182 	/*             V  */
3183 	{ SST(0x74, 0x61, SS_RDEF,	/* XXX TBD */
3184 	    "External data encryption key manager access error") },
3185 	/*             V  */
3186 	{ SST(0x74, 0x62, SS_RDEF,	/* XXX TBD */
3187 	    "External data encryption key manager error") },
3188 	/*             V  */
3189 	{ SST(0x74, 0x63, SS_RDEF,	/* XXX TBD */
3190 	    "External data encryption key not found") },
3191 	/*             V  */
3192 	{ SST(0x74, 0x64, SS_RDEF,	/* XXX TBD */
3193 	    "External data encryption request not authorized") },
3194 	/*  T             */
3195 	{ SST(0x74, 0x6E, SS_RDEF,	/* XXX TBD */
3196 	    "External data encryption control timeout") },
3197 	/*  T             */
3198 	{ SST(0x74, 0x6F, SS_RDEF,	/* XXX TBD */
3199 	    "External data encryption control error") },
3200 	/* DT   R M E  V  */
3201 	{ SST(0x74, 0x71, SS_FATAL | EACCES,
3202 	    "Logical unit access not authorized") },
3203 	/* D              */
3204 	{ SST(0x74, 0x79, SS_FATAL | EACCES,
3205 	    "Security conflict in translated device") }
3206 };
3207 
3208 const u_int asc_table_size = nitems(asc_table);
3209 
3210 struct asc_key
3211 {
3212 	int asc;
3213 	int ascq;
3214 };
3215 
3216 static int
3217 ascentrycomp(const void *key, const void *member)
3218 {
3219 	int asc;
3220 	int ascq;
3221 	const struct asc_table_entry *table_entry;
3222 
3223 	asc = ((const struct asc_key *)key)->asc;
3224 	ascq = ((const struct asc_key *)key)->ascq;
3225 	table_entry = (const struct asc_table_entry *)member;
3226 
3227 	if (asc >= table_entry->asc) {
3228 
3229 		if (asc > table_entry->asc)
3230 			return (1);
3231 
3232 		if (ascq <= table_entry->ascq) {
3233 			/* Check for ranges */
3234 			if (ascq == table_entry->ascq
3235 		 	 || ((table_entry->action & SSQ_RANGE) != 0
3236 		  	   && ascq >= (table_entry - 1)->ascq))
3237 				return (0);
3238 			return (-1);
3239 		}
3240 		return (1);
3241 	}
3242 	return (-1);
3243 }
3244 
3245 static int
3246 senseentrycomp(const void *key, const void *member)
3247 {
3248 	int sense_key;
3249 	const struct sense_key_table_entry *table_entry;
3250 
3251 	sense_key = *((const int *)key);
3252 	table_entry = (const struct sense_key_table_entry *)member;
3253 
3254 	if (sense_key >= table_entry->sense_key) {
3255 		if (sense_key == table_entry->sense_key)
3256 			return (0);
3257 		return (1);
3258 	}
3259 	return (-1);
3260 }
3261 
3262 static void
3263 fetchtableentries(int sense_key, int asc, int ascq,
3264 		  struct scsi_inquiry_data *inq_data,
3265 		  const struct sense_key_table_entry **sense_entry,
3266 		  const struct asc_table_entry **asc_entry)
3267 {
3268 	caddr_t match;
3269 	const struct asc_table_entry *asc_tables[2];
3270 	const struct sense_key_table_entry *sense_tables[2];
3271 	struct asc_key asc_ascq;
3272 	size_t asc_tables_size[2];
3273 	size_t sense_tables_size[2];
3274 	int num_asc_tables;
3275 	int num_sense_tables;
3276 	int i;
3277 
3278 	/* Default to failure */
3279 	*sense_entry = NULL;
3280 	*asc_entry = NULL;
3281 	match = NULL;
3282 	if (inq_data != NULL)
3283 		match = cam_quirkmatch((caddr_t)inq_data,
3284 				       (caddr_t)sense_quirk_table,
3285 				       sense_quirk_table_size,
3286 				       sizeof(*sense_quirk_table),
3287 				       scsi_inquiry_match);
3288 
3289 	if (match != NULL) {
3290 		struct scsi_sense_quirk_entry *quirk;
3291 
3292 		quirk = (struct scsi_sense_quirk_entry *)match;
3293 		asc_tables[0] = quirk->asc_info;
3294 		asc_tables_size[0] = quirk->num_ascs;
3295 		asc_tables[1] = asc_table;
3296 		asc_tables_size[1] = asc_table_size;
3297 		num_asc_tables = 2;
3298 		sense_tables[0] = quirk->sense_key_info;
3299 		sense_tables_size[0] = quirk->num_sense_keys;
3300 		sense_tables[1] = sense_key_table;
3301 		sense_tables_size[1] = nitems(sense_key_table);
3302 		num_sense_tables = 2;
3303 	} else {
3304 		asc_tables[0] = asc_table;
3305 		asc_tables_size[0] = asc_table_size;
3306 		num_asc_tables = 1;
3307 		sense_tables[0] = sense_key_table;
3308 		sense_tables_size[0] = nitems(sense_key_table);
3309 		num_sense_tables = 1;
3310 	}
3311 
3312 	asc_ascq.asc = asc;
3313 	asc_ascq.ascq = ascq;
3314 	for (i = 0; i < num_asc_tables; i++) {
3315 		void *found_entry;
3316 
3317 		found_entry = bsearch(&asc_ascq, asc_tables[i],
3318 				      asc_tables_size[i],
3319 				      sizeof(**asc_tables),
3320 				      ascentrycomp);
3321 
3322 		if (found_entry) {
3323 			*asc_entry = (struct asc_table_entry *)found_entry;
3324 			break;
3325 		}
3326 	}
3327 
3328 	for (i = 0; i < num_sense_tables; i++) {
3329 		void *found_entry;
3330 
3331 		found_entry = bsearch(&sense_key, sense_tables[i],
3332 				      sense_tables_size[i],
3333 				      sizeof(**sense_tables),
3334 				      senseentrycomp);
3335 
3336 		if (found_entry) {
3337 			*sense_entry =
3338 			    (struct sense_key_table_entry *)found_entry;
3339 			break;
3340 		}
3341 	}
3342 }
3343 
3344 void
3345 scsi_sense_desc(int sense_key, int asc, int ascq,
3346 		struct scsi_inquiry_data *inq_data,
3347 		const char **sense_key_desc, const char **asc_desc)
3348 {
3349 	const struct asc_table_entry *asc_entry;
3350 	const struct sense_key_table_entry *sense_entry;
3351 
3352 	fetchtableentries(sense_key, asc, ascq,
3353 			  inq_data,
3354 			  &sense_entry,
3355 			  &asc_entry);
3356 
3357 	if (sense_entry != NULL)
3358 		*sense_key_desc = sense_entry->desc;
3359 	else
3360 		*sense_key_desc = "Invalid Sense Key";
3361 
3362 	if (asc_entry != NULL)
3363 		*asc_desc = asc_entry->desc;
3364 	else if (asc >= 0x80 && asc <= 0xff)
3365 		*asc_desc = "Vendor Specific ASC";
3366 	else if (ascq >= 0x80 && ascq <= 0xff)
3367 		*asc_desc = "Vendor Specific ASCQ";
3368 	else
3369 		*asc_desc = "Reserved ASC/ASCQ pair";
3370 }
3371 
3372 /*
3373  * Given sense and device type information, return the appropriate action.
3374  * If we do not understand the specific error as identified by the ASC/ASCQ
3375  * pair, fall back on the more generic actions derived from the sense key.
3376  */
3377 scsi_sense_action
3378 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3379 		  u_int32_t sense_flags)
3380 {
3381 	const struct asc_table_entry *asc_entry;
3382 	const struct sense_key_table_entry *sense_entry;
3383 	int error_code, sense_key, asc, ascq;
3384 	scsi_sense_action action;
3385 
3386 	if (!scsi_extract_sense_ccb((union ccb *)csio,
3387 	    &error_code, &sense_key, &asc, &ascq)) {
3388 		action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO;
3389 	} else if ((error_code == SSD_DEFERRED_ERROR)
3390 	 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3391 		/*
3392 		 * XXX dufault@FreeBSD.org
3393 		 * This error doesn't relate to the command associated
3394 		 * with this request sense.  A deferred error is an error
3395 		 * for a command that has already returned GOOD status
3396 		 * (see SCSI2 8.2.14.2).
3397 		 *
3398 		 * By my reading of that section, it looks like the current
3399 		 * command has been cancelled, we should now clean things up
3400 		 * (hopefully recovering any lost data) and then retry the
3401 		 * current command.  There are two easy choices, both wrong:
3402 		 *
3403 		 * 1. Drop through (like we had been doing), thus treating
3404 		 *    this as if the error were for the current command and
3405 		 *    return and stop the current command.
3406 		 *
3407 		 * 2. Issue a retry (like I made it do) thus hopefully
3408 		 *    recovering the current transfer, and ignoring the
3409 		 *    fact that we've dropped a command.
3410 		 *
3411 		 * These should probably be handled in a device specific
3412 		 * sense handler or punted back up to a user mode daemon
3413 		 */
3414 		action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3415 	} else {
3416 		fetchtableentries(sense_key, asc, ascq,
3417 				  inq_data,
3418 				  &sense_entry,
3419 				  &asc_entry);
3420 
3421 		/*
3422 		 * Override the 'No additional Sense' entry (0,0)
3423 		 * with the error action of the sense key.
3424 		 */
3425 		if (asc_entry != NULL
3426 		 && (asc != 0 || ascq != 0))
3427 			action = asc_entry->action;
3428 		else if (sense_entry != NULL)
3429 			action = sense_entry->action;
3430 		else
3431 			action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3432 
3433 		if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3434 			/*
3435 			 * The action succeeded but the device wants
3436 			 * the user to know that some recovery action
3437 			 * was required.
3438 			 */
3439 			action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3440 			action |= SS_NOP|SSQ_PRINT_SENSE;
3441 		} else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3442 			if ((sense_flags & SF_QUIET_IR) != 0)
3443 				action &= ~SSQ_PRINT_SENSE;
3444 		} else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3445 			if ((sense_flags & SF_RETRY_UA) != 0
3446 			 && (action & SS_MASK) == SS_FAIL) {
3447 				action &= ~(SS_MASK|SSQ_MASK);
3448 				action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3449 					  SSQ_PRINT_SENSE;
3450 			}
3451 			action |= SSQ_UA;
3452 		}
3453 	}
3454 	if ((action & SS_MASK) >= SS_START &&
3455 	    (sense_flags & SF_NO_RECOVERY)) {
3456 		action &= ~SS_MASK;
3457 		action |= SS_FAIL;
3458 	} else if ((action & SS_MASK) == SS_RETRY &&
3459 	    (sense_flags & SF_NO_RETRY)) {
3460 		action &= ~SS_MASK;
3461 		action |= SS_FAIL;
3462 	}
3463 	if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3464 		action |= SSQ_PRINT_SENSE;
3465 	else if ((sense_flags & SF_NO_PRINT) != 0)
3466 		action &= ~SSQ_PRINT_SENSE;
3467 
3468 	return (action);
3469 }
3470 
3471 char *
3472 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len)
3473 {
3474 	struct sbuf sb;
3475 	int error;
3476 
3477 	if (len == 0)
3478 		return ("");
3479 
3480 	sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3481 
3482 	scsi_cdb_sbuf(cdb_ptr, &sb);
3483 
3484 	/* ENOMEM just means that the fixed buffer is full, OK to ignore */
3485 	error = sbuf_finish(&sb);
3486 	if (error != 0 && error != ENOMEM)
3487 		return ("");
3488 
3489 	return(sbuf_data(&sb));
3490 }
3491 
3492 void
3493 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb)
3494 {
3495 	u_int8_t cdb_len;
3496 	int i;
3497 
3498 	if (cdb_ptr == NULL)
3499 		return;
3500 
3501 	/*
3502 	 * This is taken from the SCSI-3 draft spec.
3503 	 * (T10/1157D revision 0.3)
3504 	 * The top 3 bits of an opcode are the group code.  The next 5 bits
3505 	 * are the command code.
3506 	 * Group 0:  six byte commands
3507 	 * Group 1:  ten byte commands
3508 	 * Group 2:  ten byte commands
3509 	 * Group 3:  reserved
3510 	 * Group 4:  sixteen byte commands
3511 	 * Group 5:  twelve byte commands
3512 	 * Group 6:  vendor specific
3513 	 * Group 7:  vendor specific
3514 	 */
3515 	switch((*cdb_ptr >> 5) & 0x7) {
3516 		case 0:
3517 			cdb_len = 6;
3518 			break;
3519 		case 1:
3520 		case 2:
3521 			cdb_len = 10;
3522 			break;
3523 		case 3:
3524 		case 6:
3525 		case 7:
3526 			/* in this case, just print out the opcode */
3527 			cdb_len = 1;
3528 			break;
3529 		case 4:
3530 			cdb_len = 16;
3531 			break;
3532 		case 5:
3533 			cdb_len = 12;
3534 			break;
3535 	}
3536 
3537 	for (i = 0; i < cdb_len; i++)
3538 		sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3539 
3540 	return;
3541 }
3542 
3543 const char *
3544 scsi_status_string(struct ccb_scsiio *csio)
3545 {
3546 	switch(csio->scsi_status) {
3547 	case SCSI_STATUS_OK:
3548 		return("OK");
3549 	case SCSI_STATUS_CHECK_COND:
3550 		return("Check Condition");
3551 	case SCSI_STATUS_BUSY:
3552 		return("Busy");
3553 	case SCSI_STATUS_INTERMED:
3554 		return("Intermediate");
3555 	case SCSI_STATUS_INTERMED_COND_MET:
3556 		return("Intermediate-Condition Met");
3557 	case SCSI_STATUS_RESERV_CONFLICT:
3558 		return("Reservation Conflict");
3559 	case SCSI_STATUS_CMD_TERMINATED:
3560 		return("Command Terminated");
3561 	case SCSI_STATUS_QUEUE_FULL:
3562 		return("Queue Full");
3563 	case SCSI_STATUS_ACA_ACTIVE:
3564 		return("ACA Active");
3565 	case SCSI_STATUS_TASK_ABORTED:
3566 		return("Task Aborted");
3567 	default: {
3568 		static char unkstr[64];
3569 		snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3570 			 csio->scsi_status);
3571 		return(unkstr);
3572 	}
3573 	}
3574 }
3575 
3576 /*
3577  * scsi_command_string() returns 0 for success and -1 for failure.
3578  */
3579 #ifdef _KERNEL
3580 int
3581 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3582 #else /* !_KERNEL */
3583 int
3584 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3585 		    struct sbuf *sb)
3586 #endif /* _KERNEL/!_KERNEL */
3587 {
3588 	struct scsi_inquiry_data *inq_data;
3589 #ifdef _KERNEL
3590 	struct	  ccb_getdev *cgd;
3591 #endif /* _KERNEL */
3592 
3593 #ifdef _KERNEL
3594 	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3595 		return(-1);
3596 	/*
3597 	 * Get the device information.
3598 	 */
3599 	xpt_setup_ccb(&cgd->ccb_h,
3600 		      csio->ccb_h.path,
3601 		      CAM_PRIORITY_NORMAL);
3602 	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
3603 	xpt_action((union ccb *)cgd);
3604 
3605 	/*
3606 	 * If the device is unconfigured, just pretend that it is a hard
3607 	 * drive.  scsi_op_desc() needs this.
3608 	 */
3609 	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3610 		cgd->inq_data.device = T_DIRECT;
3611 
3612 	inq_data = &cgd->inq_data;
3613 
3614 #else /* !_KERNEL */
3615 
3616 	inq_data = &device->inq_data;
3617 
3618 #endif /* _KERNEL/!_KERNEL */
3619 
3620 	sbuf_printf(sb, "%s. CDB: ",
3621 		    scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data));
3622 	scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb);
3623 
3624 #ifdef _KERNEL
3625 	xpt_free_ccb((union ccb *)cgd);
3626 #endif
3627 
3628 	return(0);
3629 }
3630 
3631 /*
3632  * Iterate over sense descriptors.  Each descriptor is passed into iter_func().
3633  * If iter_func() returns 0, list traversal continues.  If iter_func()
3634  * returns non-zero, list traversal is stopped.
3635  */
3636 void
3637 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3638 		  int (*iter_func)(struct scsi_sense_data_desc *sense,
3639 				   u_int, struct scsi_sense_desc_header *,
3640 				   void *), void *arg)
3641 {
3642 	int cur_pos;
3643 	int desc_len;
3644 
3645 	/*
3646 	 * First make sure the extra length field is present.
3647 	 */
3648 	if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3649 		return;
3650 
3651 	/*
3652 	 * The length of data actually returned may be different than the
3653 	 * extra_len recorded in the structure.
3654 	 */
3655 	desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3656 
3657 	/*
3658 	 * Limit this further by the extra length reported, and the maximum
3659 	 * allowed extra length.
3660 	 */
3661 	desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3662 
3663 	/*
3664 	 * Subtract the size of the header from the descriptor length.
3665 	 * This is to ensure that we have at least the header left, so we
3666 	 * don't have to check that inside the loop.  This can wind up
3667 	 * being a negative value.
3668 	 */
3669 	desc_len -= sizeof(struct scsi_sense_desc_header);
3670 
3671 	for (cur_pos = 0; cur_pos < desc_len;) {
3672 		struct scsi_sense_desc_header *header;
3673 
3674 		header = (struct scsi_sense_desc_header *)
3675 			&sense->sense_desc[cur_pos];
3676 
3677 		/*
3678 		 * Check to make sure we have the entire descriptor.  We
3679 		 * don't call iter_func() unless we do.
3680 		 *
3681 		 * Note that although cur_pos is at the beginning of the
3682 		 * descriptor, desc_len already has the header length
3683 		 * subtracted.  So the comparison of the length in the
3684 		 * header (which does not include the header itself) to
3685 		 * desc_len - cur_pos is correct.
3686 		 */
3687 		if (header->length > (desc_len - cur_pos))
3688 			break;
3689 
3690 		if (iter_func(sense, sense_len, header, arg) != 0)
3691 			break;
3692 
3693 		cur_pos += sizeof(*header) + header->length;
3694 	}
3695 }
3696 
3697 struct scsi_find_desc_info {
3698 	uint8_t desc_type;
3699 	struct scsi_sense_desc_header *header;
3700 };
3701 
3702 static int
3703 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3704 		    struct scsi_sense_desc_header *header, void *arg)
3705 {
3706 	struct scsi_find_desc_info *desc_info;
3707 
3708 	desc_info = (struct scsi_find_desc_info *)arg;
3709 
3710 	if (header->desc_type == desc_info->desc_type) {
3711 		desc_info->header = header;
3712 
3713 		/* We found the descriptor, tell the iterator to stop. */
3714 		return (1);
3715 	} else
3716 		return (0);
3717 }
3718 
3719 /*
3720  * Given a descriptor type, return a pointer to it if it is in the sense
3721  * data and not truncated.  Avoiding truncating sense data will simplify
3722  * things significantly for the caller.
3723  */
3724 uint8_t *
3725 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3726 	       uint8_t desc_type)
3727 {
3728 	struct scsi_find_desc_info desc_info;
3729 
3730 	desc_info.desc_type = desc_type;
3731 	desc_info.header = NULL;
3732 
3733 	scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3734 
3735 	return ((uint8_t *)desc_info.header);
3736 }
3737 
3738 /*
3739  * Fill in SCSI descriptor sense data with the specified parameters.
3740  */
3741 static void
3742 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data,
3743     u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3744     int sense_key, int asc, int ascq, va_list ap)
3745 {
3746 	struct scsi_sense_data_desc *sense;
3747 	scsi_sense_elem_type elem_type;
3748 	int space, len;
3749 	uint8_t *desc, *data;
3750 
3751 	memset(sense_data, 0, sizeof(*sense_data));
3752 	sense = (struct scsi_sense_data_desc *)sense_data;
3753 	if (current_error != 0)
3754 		sense->error_code = SSD_DESC_CURRENT_ERROR;
3755 	else
3756 		sense->error_code = SSD_DESC_DEFERRED_ERROR;
3757 	sense->sense_key = sense_key;
3758 	sense->add_sense_code = asc;
3759 	sense->add_sense_code_qual = ascq;
3760 	sense->flags = 0;
3761 
3762 	desc = &sense->sense_desc[0];
3763 	space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc);
3764 	while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3765 	    SSD_ELEM_NONE) {
3766 		if (elem_type >= SSD_ELEM_MAX) {
3767 			printf("%s: invalid sense type %d\n", __func__,
3768 			       elem_type);
3769 			break;
3770 		}
3771 		len = va_arg(ap, int);
3772 		data = va_arg(ap, uint8_t *);
3773 
3774 		switch (elem_type) {
3775 		case SSD_ELEM_SKIP:
3776 			break;
3777 		case SSD_ELEM_DESC:
3778 			if (space < len) {
3779 				sense->flags |= SSDD_SDAT_OVFL;
3780 				break;
3781 			}
3782 			bcopy(data, desc, len);
3783 			desc += len;
3784 			space -= len;
3785 			break;
3786 		case SSD_ELEM_SKS: {
3787 			struct scsi_sense_sks *sks = (void *)desc;
3788 
3789 			if (len > sizeof(sks->sense_key_spec))
3790 				break;
3791 			if (space < sizeof(*sks)) {
3792 				sense->flags |= SSDD_SDAT_OVFL;
3793 				break;
3794 			}
3795 			sks->desc_type = SSD_DESC_SKS;
3796 			sks->length = sizeof(*sks) -
3797 			    (offsetof(struct scsi_sense_sks, length) + 1);
3798 			bcopy(data, &sks->sense_key_spec, len);
3799 			desc += sizeof(*sks);
3800 			space -= sizeof(*sks);
3801 			break;
3802 		}
3803 		case SSD_ELEM_COMMAND: {
3804 			struct scsi_sense_command *cmd = (void *)desc;
3805 
3806 			if (len > sizeof(cmd->command_info))
3807 				break;
3808 			if (space < sizeof(*cmd)) {
3809 				sense->flags |= SSDD_SDAT_OVFL;
3810 				break;
3811 			}
3812 			cmd->desc_type = SSD_DESC_COMMAND;
3813 			cmd->length = sizeof(*cmd) -
3814 			    (offsetof(struct scsi_sense_command, length) + 1);
3815 			bcopy(data, &cmd->command_info[
3816 			    sizeof(cmd->command_info) - len], len);
3817 			desc += sizeof(*cmd);
3818 			space -= sizeof(*cmd);
3819 			break;
3820 		}
3821 		case SSD_ELEM_INFO: {
3822 			struct scsi_sense_info *info = (void *)desc;
3823 
3824 			if (len > sizeof(info->info))
3825 				break;
3826 			if (space < sizeof(*info)) {
3827 				sense->flags |= SSDD_SDAT_OVFL;
3828 				break;
3829 			}
3830 			info->desc_type = SSD_DESC_INFO;
3831 			info->length = sizeof(*info) -
3832 			    (offsetof(struct scsi_sense_info, length) + 1);
3833 			info->byte2 = SSD_INFO_VALID;
3834 			bcopy(data, &info->info[sizeof(info->info) - len], len);
3835 			desc += sizeof(*info);
3836 			space -= sizeof(*info);
3837 			break;
3838 		}
3839 		case SSD_ELEM_FRU: {
3840 			struct scsi_sense_fru *fru = (void *)desc;
3841 
3842 			if (len > sizeof(fru->fru))
3843 				break;
3844 			if (space < sizeof(*fru)) {
3845 				sense->flags |= SSDD_SDAT_OVFL;
3846 				break;
3847 			}
3848 			fru->desc_type = SSD_DESC_FRU;
3849 			fru->length = sizeof(*fru) -
3850 			    (offsetof(struct scsi_sense_fru, length) + 1);
3851 			fru->fru = *data;
3852 			desc += sizeof(*fru);
3853 			space -= sizeof(*fru);
3854 			break;
3855 		}
3856 		case SSD_ELEM_STREAM: {
3857 			struct scsi_sense_stream *stream = (void *)desc;
3858 
3859 			if (len > sizeof(stream->byte3))
3860 				break;
3861 			if (space < sizeof(*stream)) {
3862 				sense->flags |= SSDD_SDAT_OVFL;
3863 				break;
3864 			}
3865 			stream->desc_type = SSD_DESC_STREAM;
3866 			stream->length = sizeof(*stream) -
3867 			    (offsetof(struct scsi_sense_stream, length) + 1);
3868 			stream->byte3 = *data;
3869 			desc += sizeof(*stream);
3870 			space -= sizeof(*stream);
3871 			break;
3872 		}
3873 		default:
3874 			/*
3875 			 * We shouldn't get here, but if we do, do nothing.
3876 			 * We've already consumed the arguments above.
3877 			 */
3878 			break;
3879 		}
3880 	}
3881 	sense->extra_len = desc - &sense->sense_desc[0];
3882 	*sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 +
3883 	    sense->extra_len;
3884 }
3885 
3886 /*
3887  * Fill in SCSI fixed sense data with the specified parameters.
3888  */
3889 static void
3890 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data,
3891     u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3892     int sense_key, int asc, int ascq, va_list ap)
3893 {
3894 	struct scsi_sense_data_fixed *sense;
3895 	scsi_sense_elem_type elem_type;
3896 	uint8_t *data;
3897 	int len;
3898 
3899 	memset(sense_data, 0, sizeof(*sense_data));
3900 	sense = (struct scsi_sense_data_fixed *)sense_data;
3901 	if (current_error != 0)
3902 		sense->error_code = SSD_CURRENT_ERROR;
3903 	else
3904 		sense->error_code = SSD_DEFERRED_ERROR;
3905 	sense->flags = sense_key & SSD_KEY;
3906 	sense->extra_len = 0;
3907 	if (*sense_len >= 13) {
3908 		sense->add_sense_code = asc;
3909 		sense->extra_len = MAX(sense->extra_len, 5);
3910 	} else
3911 		sense->flags |= SSD_SDAT_OVFL;
3912 	if (*sense_len >= 14) {
3913 		sense->add_sense_code_qual = ascq;
3914 		sense->extra_len = MAX(sense->extra_len, 6);
3915 	} else
3916 		sense->flags |= SSD_SDAT_OVFL;
3917 
3918 	while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3919 	    SSD_ELEM_NONE) {
3920 		if (elem_type >= SSD_ELEM_MAX) {
3921 			printf("%s: invalid sense type %d\n", __func__,
3922 			       elem_type);
3923 			break;
3924 		}
3925 		len = va_arg(ap, int);
3926 		data = va_arg(ap, uint8_t *);
3927 
3928 		switch (elem_type) {
3929 		case SSD_ELEM_SKIP:
3930 			break;
3931 		case SSD_ELEM_SKS:
3932 			if (len > sizeof(sense->sense_key_spec))
3933 				break;
3934 			if (*sense_len < 18) {
3935 				sense->flags |= SSD_SDAT_OVFL;
3936 				break;
3937 			}
3938 			bcopy(data, &sense->sense_key_spec[0], len);
3939 			sense->extra_len = MAX(sense->extra_len, 10);
3940 			break;
3941 		case SSD_ELEM_COMMAND:
3942 			if (*sense_len < 12) {
3943 				sense->flags |= SSD_SDAT_OVFL;
3944 				break;
3945 			}
3946 			if (len > sizeof(sense->cmd_spec_info)) {
3947 				data += len - sizeof(sense->cmd_spec_info);
3948 				len -= len - sizeof(sense->cmd_spec_info);
3949 			}
3950 			bcopy(data, &sense->cmd_spec_info[
3951 			    sizeof(sense->cmd_spec_info) - len], len);
3952 			sense->extra_len = MAX(sense->extra_len, 4);
3953 			break;
3954 		case SSD_ELEM_INFO:
3955 			/* Set VALID bit only if no overflow. */
3956 			sense->error_code |= SSD_ERRCODE_VALID;
3957 			while (len > sizeof(sense->info)) {
3958 				if (data[0] != 0)
3959 					sense->error_code &= ~SSD_ERRCODE_VALID;
3960 				data ++;
3961 				len --;
3962 			}
3963 			bcopy(data, &sense->info[sizeof(sense->info) - len], len);
3964 			break;
3965 		case SSD_ELEM_FRU:
3966 			if (*sense_len < 15) {
3967 				sense->flags |= SSD_SDAT_OVFL;
3968 				break;
3969 			}
3970 			sense->fru = *data;
3971 			sense->extra_len = MAX(sense->extra_len, 7);
3972 			break;
3973 		case SSD_ELEM_STREAM:
3974 			sense->flags |= *data &
3975 			    (SSD_ILI | SSD_EOM | SSD_FILEMARK);
3976 			break;
3977 		default:
3978 
3979 			/*
3980 			 * We can't handle that in fixed format.  Skip it.
3981 			 */
3982 			break;
3983 		}
3984 	}
3985 	*sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 +
3986 	    sense->extra_len;
3987 }
3988 
3989 /*
3990  * Fill in SCSI sense data with the specified parameters.  This routine can
3991  * fill in either fixed or descriptor type sense data.
3992  */
3993 void
3994 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len,
3995 		      scsi_sense_data_type sense_format, int current_error,
3996 		      int sense_key, int asc, int ascq, va_list ap)
3997 {
3998 
3999 	if (*sense_len > SSD_FULL_SIZE)
4000 		*sense_len = SSD_FULL_SIZE;
4001 	if (sense_format == SSD_TYPE_DESC)
4002 		scsi_set_sense_data_desc_va(sense_data, sense_len,
4003 		    sense_format, current_error, sense_key, asc, ascq, ap);
4004 	else
4005 		scsi_set_sense_data_fixed_va(sense_data, sense_len,
4006 		    sense_format, current_error, sense_key, asc, ascq, ap);
4007 }
4008 
4009 void
4010 scsi_set_sense_data(struct scsi_sense_data *sense_data,
4011 		    scsi_sense_data_type sense_format, int current_error,
4012 		    int sense_key, int asc, int ascq, ...)
4013 {
4014 	va_list ap;
4015 	u_int	sense_len = SSD_FULL_SIZE;
4016 
4017 	va_start(ap, ascq);
4018 	scsi_set_sense_data_va(sense_data, &sense_len, sense_format,
4019 	    current_error, sense_key, asc, ascq, ap);
4020 	va_end(ap);
4021 }
4022 
4023 void
4024 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len,
4025 		    scsi_sense_data_type sense_format, int current_error,
4026 		    int sense_key, int asc, int ascq, ...)
4027 {
4028 	va_list ap;
4029 
4030 	va_start(ap, ascq);
4031 	scsi_set_sense_data_va(sense_data, sense_len, sense_format,
4032 	    current_error, sense_key, asc, ascq, ap);
4033 	va_end(ap);
4034 }
4035 
4036 /*
4037  * Get sense information for three similar sense data types.
4038  */
4039 int
4040 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4041 		    uint8_t info_type, uint64_t *info, int64_t *signed_info)
4042 {
4043 	scsi_sense_data_type sense_type;
4044 
4045 	if (sense_len == 0)
4046 		goto bailout;
4047 
4048 	sense_type = scsi_sense_type(sense_data);
4049 
4050 	switch (sense_type) {
4051 	case SSD_TYPE_DESC: {
4052 		struct scsi_sense_data_desc *sense;
4053 		uint8_t *desc;
4054 
4055 		sense = (struct scsi_sense_data_desc *)sense_data;
4056 
4057 		desc = scsi_find_desc(sense, sense_len, info_type);
4058 		if (desc == NULL)
4059 			goto bailout;
4060 
4061 		switch (info_type) {
4062 		case SSD_DESC_INFO: {
4063 			struct scsi_sense_info *info_desc;
4064 
4065 			info_desc = (struct scsi_sense_info *)desc;
4066 			*info = scsi_8btou64(info_desc->info);
4067 			if (signed_info != NULL)
4068 				*signed_info = *info;
4069 			break;
4070 		}
4071 		case SSD_DESC_COMMAND: {
4072 			struct scsi_sense_command *cmd_desc;
4073 
4074 			cmd_desc = (struct scsi_sense_command *)desc;
4075 
4076 			*info = scsi_8btou64(cmd_desc->command_info);
4077 			if (signed_info != NULL)
4078 				*signed_info = *info;
4079 			break;
4080 		}
4081 		case SSD_DESC_FRU: {
4082 			struct scsi_sense_fru *fru_desc;
4083 
4084 			fru_desc = (struct scsi_sense_fru *)desc;
4085 
4086 			*info = fru_desc->fru;
4087 			if (signed_info != NULL)
4088 				*signed_info = (int8_t)fru_desc->fru;
4089 			break;
4090 		}
4091 		default:
4092 			goto bailout;
4093 			break;
4094 		}
4095 		break;
4096 	}
4097 	case SSD_TYPE_FIXED: {
4098 		struct scsi_sense_data_fixed *sense;
4099 
4100 		sense = (struct scsi_sense_data_fixed *)sense_data;
4101 
4102 		switch (info_type) {
4103 		case SSD_DESC_INFO: {
4104 			uint32_t info_val;
4105 
4106 			if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4107 				goto bailout;
4108 
4109 			if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4110 				goto bailout;
4111 
4112 			info_val = scsi_4btoul(sense->info);
4113 
4114 			*info = info_val;
4115 			if (signed_info != NULL)
4116 				*signed_info = (int32_t)info_val;
4117 			break;
4118 		}
4119 		case SSD_DESC_COMMAND: {
4120 			uint32_t cmd_val;
4121 
4122 			if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4123 			     cmd_spec_info) == 0)
4124 			 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4125 				goto bailout;
4126 
4127 			cmd_val = scsi_4btoul(sense->cmd_spec_info);
4128 			if (cmd_val == 0)
4129 				goto bailout;
4130 
4131 			*info = cmd_val;
4132 			if (signed_info != NULL)
4133 				*signed_info = (int32_t)cmd_val;
4134 			break;
4135 		}
4136 		case SSD_DESC_FRU:
4137 			if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4138 			 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4139 				goto bailout;
4140 
4141 			if (sense->fru == 0)
4142 				goto bailout;
4143 
4144 			*info = sense->fru;
4145 			if (signed_info != NULL)
4146 				*signed_info = (int8_t)sense->fru;
4147 			break;
4148 		default:
4149 			goto bailout;
4150 			break;
4151 		}
4152 		break;
4153 	}
4154 	default:
4155 		goto bailout;
4156 		break;
4157 	}
4158 
4159 	return (0);
4160 bailout:
4161 	return (1);
4162 }
4163 
4164 int
4165 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4166 {
4167 	scsi_sense_data_type sense_type;
4168 
4169 	if (sense_len == 0)
4170 		goto bailout;
4171 
4172 	sense_type = scsi_sense_type(sense_data);
4173 
4174 	switch (sense_type) {
4175 	case SSD_TYPE_DESC: {
4176 		struct scsi_sense_data_desc *sense;
4177 		struct scsi_sense_sks *desc;
4178 
4179 		sense = (struct scsi_sense_data_desc *)sense_data;
4180 
4181 		desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4182 							       SSD_DESC_SKS);
4183 		if (desc == NULL)
4184 			goto bailout;
4185 
4186 		/*
4187 		 * No need to check the SKS valid bit for descriptor sense.
4188 		 * If the descriptor is present, it is valid.
4189 		 */
4190 		bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4191 		break;
4192 	}
4193 	case SSD_TYPE_FIXED: {
4194 		struct scsi_sense_data_fixed *sense;
4195 
4196 		sense = (struct scsi_sense_data_fixed *)sense_data;
4197 
4198 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4199 		 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4200 			goto bailout;
4201 
4202 		if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4203 			goto bailout;
4204 
4205 		bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4206 		break;
4207 	}
4208 	default:
4209 		goto bailout;
4210 		break;
4211 	}
4212 	return (0);
4213 bailout:
4214 	return (1);
4215 }
4216 
4217 /*
4218  * Provide a common interface for fixed and descriptor sense to detect
4219  * whether we have block-specific sense information.  It is clear by the
4220  * presence of the block descriptor in descriptor mode, but we have to
4221  * infer from the inquiry data and ILI bit in fixed mode.
4222  */
4223 int
4224 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4225 		    struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4226 {
4227 	scsi_sense_data_type sense_type;
4228 
4229 	if (inq_data != NULL) {
4230 		switch (SID_TYPE(inq_data)) {
4231 		case T_DIRECT:
4232 		case T_RBC:
4233 		case T_ZBC_HM:
4234 			break;
4235 		default:
4236 			goto bailout;
4237 			break;
4238 		}
4239 	}
4240 
4241 	sense_type = scsi_sense_type(sense_data);
4242 
4243 	switch (sense_type) {
4244 	case SSD_TYPE_DESC: {
4245 		struct scsi_sense_data_desc *sense;
4246 		struct scsi_sense_block *block;
4247 
4248 		sense = (struct scsi_sense_data_desc *)sense_data;
4249 
4250 		block = (struct scsi_sense_block *)scsi_find_desc(sense,
4251 		    sense_len, SSD_DESC_BLOCK);
4252 		if (block == NULL)
4253 			goto bailout;
4254 
4255 		*block_bits = block->byte3;
4256 		break;
4257 	}
4258 	case SSD_TYPE_FIXED: {
4259 		struct scsi_sense_data_fixed *sense;
4260 
4261 		sense = (struct scsi_sense_data_fixed *)sense_data;
4262 
4263 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4264 			goto bailout;
4265 
4266 		if ((sense->flags & SSD_ILI) == 0)
4267 			goto bailout;
4268 
4269 		*block_bits = sense->flags & SSD_ILI;
4270 		break;
4271 	}
4272 	default:
4273 		goto bailout;
4274 		break;
4275 	}
4276 	return (0);
4277 bailout:
4278 	return (1);
4279 }
4280 
4281 int
4282 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4283 		     struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4284 {
4285 	scsi_sense_data_type sense_type;
4286 
4287 	if (inq_data != NULL) {
4288 		switch (SID_TYPE(inq_data)) {
4289 		case T_SEQUENTIAL:
4290 			break;
4291 		default:
4292 			goto bailout;
4293 			break;
4294 		}
4295 	}
4296 
4297 	sense_type = scsi_sense_type(sense_data);
4298 
4299 	switch (sense_type) {
4300 	case SSD_TYPE_DESC: {
4301 		struct scsi_sense_data_desc *sense;
4302 		struct scsi_sense_stream *stream;
4303 
4304 		sense = (struct scsi_sense_data_desc *)sense_data;
4305 
4306 		stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4307 		    sense_len, SSD_DESC_STREAM);
4308 		if (stream == NULL)
4309 			goto bailout;
4310 
4311 		*stream_bits = stream->byte3;
4312 		break;
4313 	}
4314 	case SSD_TYPE_FIXED: {
4315 		struct scsi_sense_data_fixed *sense;
4316 
4317 		sense = (struct scsi_sense_data_fixed *)sense_data;
4318 
4319 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4320 			goto bailout;
4321 
4322 		if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0)
4323 			goto bailout;
4324 
4325 		*stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4326 		break;
4327 	}
4328 	default:
4329 		goto bailout;
4330 		break;
4331 	}
4332 	return (0);
4333 bailout:
4334 	return (1);
4335 }
4336 
4337 void
4338 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4339 	       struct scsi_inquiry_data *inq_data, uint64_t info)
4340 {
4341 	sbuf_printf(sb, "Info: %#jx", info);
4342 }
4343 
4344 void
4345 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4346 		  struct scsi_inquiry_data *inq_data, uint64_t csi)
4347 {
4348 	sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4349 }
4350 
4351 
4352 void
4353 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4354 {
4355 	sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4356 		    (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4357 		    progress, SSD_SKS_PROGRESS_DENOM);
4358 }
4359 
4360 /*
4361  * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4362  */
4363 int
4364 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4365 {
4366 	if ((sks[0] & SSD_SKS_VALID) == 0)
4367 		return (1);
4368 
4369 	switch (sense_key) {
4370 	case SSD_KEY_ILLEGAL_REQUEST: {
4371 		struct scsi_sense_sks_field *field;
4372 		int bad_command;
4373 		char tmpstr[40];
4374 
4375 		/*Field Pointer*/
4376 		field = (struct scsi_sense_sks_field *)sks;
4377 
4378 		if (field->byte0 & SSD_SKS_FIELD_CMD)
4379 			bad_command = 1;
4380 		else
4381 			bad_command = 0;
4382 
4383 		tmpstr[0] = '\0';
4384 
4385 		/* Bit pointer is valid */
4386 		if (field->byte0 & SSD_SKS_BPV)
4387 			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4388 				 field->byte0 & SSD_SKS_BIT_VALUE);
4389 
4390 		sbuf_printf(sb, "%s byte %d %sis invalid",
4391 			    bad_command ? "Command" : "Data",
4392 			    scsi_2btoul(field->field), tmpstr);
4393 		break;
4394 	}
4395 	case SSD_KEY_UNIT_ATTENTION: {
4396 		struct scsi_sense_sks_overflow *overflow;
4397 
4398 		overflow = (struct scsi_sense_sks_overflow *)sks;
4399 
4400 		/*UA Condition Queue Overflow*/
4401 		sbuf_printf(sb, "Unit Attention Condition Queue %s",
4402 			    (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4403 			    "Overflowed" : "Did Not Overflow??");
4404 		break;
4405 	}
4406 	case SSD_KEY_RECOVERED_ERROR:
4407 	case SSD_KEY_HARDWARE_ERROR:
4408 	case SSD_KEY_MEDIUM_ERROR: {
4409 		struct scsi_sense_sks_retry *retry;
4410 
4411 		/*Actual Retry Count*/
4412 		retry = (struct scsi_sense_sks_retry *)sks;
4413 
4414 		sbuf_printf(sb, "Actual Retry Count: %d",
4415 			    scsi_2btoul(retry->actual_retry_count));
4416 		break;
4417 	}
4418 	case SSD_KEY_NO_SENSE:
4419 	case SSD_KEY_NOT_READY: {
4420 		struct scsi_sense_sks_progress *progress;
4421 		int progress_val;
4422 
4423 		/*Progress Indication*/
4424 		progress = (struct scsi_sense_sks_progress *)sks;
4425 		progress_val = scsi_2btoul(progress->progress);
4426 
4427 		scsi_progress_sbuf(sb, progress_val);
4428 		break;
4429 	}
4430 	case SSD_KEY_COPY_ABORTED: {
4431 		struct scsi_sense_sks_segment *segment;
4432 		char tmpstr[40];
4433 
4434 		/*Segment Pointer*/
4435 		segment = (struct scsi_sense_sks_segment *)sks;
4436 
4437 		tmpstr[0] = '\0';
4438 
4439 		if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4440 			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4441 				 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4442 
4443 		sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4444 			    SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4445 			    scsi_2btoul(segment->field), tmpstr);
4446 		break;
4447 	}
4448 	default:
4449 		sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4450 			    scsi_2btoul(&sks[1]));
4451 		break;
4452 	}
4453 
4454 	return (0);
4455 }
4456 
4457 void
4458 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4459 {
4460 	sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4461 }
4462 
4463 void
4464 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info)
4465 {
4466 	int need_comma;
4467 
4468 	need_comma = 0;
4469 	/*
4470 	 * XXX KDM this needs more descriptive decoding.
4471 	 */
4472 	if (stream_bits & SSD_DESC_STREAM_FM) {
4473 		sbuf_printf(sb, "Filemark");
4474 		need_comma = 1;
4475 	}
4476 
4477 	if (stream_bits & SSD_DESC_STREAM_EOM) {
4478 		sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4479 		need_comma = 1;
4480 	}
4481 
4482 	if (stream_bits & SSD_DESC_STREAM_ILI)
4483 		sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4484 
4485 	sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info);
4486 }
4487 
4488 void
4489 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info)
4490 {
4491 	if (block_bits & SSD_DESC_BLOCK_ILI)
4492 		sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info);
4493 }
4494 
4495 void
4496 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4497 		     u_int sense_len, uint8_t *cdb, int cdb_len,
4498 		     struct scsi_inquiry_data *inq_data,
4499 		     struct scsi_sense_desc_header *header)
4500 {
4501 	struct scsi_sense_info *info;
4502 
4503 	info = (struct scsi_sense_info *)header;
4504 
4505 	scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4506 }
4507 
4508 void
4509 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4510 			u_int sense_len, uint8_t *cdb, int cdb_len,
4511 			struct scsi_inquiry_data *inq_data,
4512 			struct scsi_sense_desc_header *header)
4513 {
4514 	struct scsi_sense_command *command;
4515 
4516 	command = (struct scsi_sense_command *)header;
4517 
4518 	scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4519 			  scsi_8btou64(command->command_info));
4520 }
4521 
4522 void
4523 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4524 		    u_int sense_len, uint8_t *cdb, int cdb_len,
4525 		    struct scsi_inquiry_data *inq_data,
4526 		    struct scsi_sense_desc_header *header)
4527 {
4528 	struct scsi_sense_sks *sks;
4529 	int error_code, sense_key, asc, ascq;
4530 
4531 	sks = (struct scsi_sense_sks *)header;
4532 
4533 	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4534 			       &asc, &ascq, /*show_errors*/ 1);
4535 
4536 	scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4537 }
4538 
4539 void
4540 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4541 		    u_int sense_len, uint8_t *cdb, int cdb_len,
4542 		    struct scsi_inquiry_data *inq_data,
4543 		    struct scsi_sense_desc_header *header)
4544 {
4545 	struct scsi_sense_fru *fru;
4546 
4547 	fru = (struct scsi_sense_fru *)header;
4548 
4549 	scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4550 }
4551 
4552 void
4553 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4554 		       u_int sense_len, uint8_t *cdb, int cdb_len,
4555 		       struct scsi_inquiry_data *inq_data,
4556 		       struct scsi_sense_desc_header *header)
4557 {
4558 	struct scsi_sense_stream *stream;
4559 	uint64_t info;
4560 
4561 	stream = (struct scsi_sense_stream *)header;
4562 	info = 0;
4563 
4564 	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4565 
4566 	scsi_stream_sbuf(sb, stream->byte3, info);
4567 }
4568 
4569 void
4570 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4571 		      u_int sense_len, uint8_t *cdb, int cdb_len,
4572 		      struct scsi_inquiry_data *inq_data,
4573 		      struct scsi_sense_desc_header *header)
4574 {
4575 	struct scsi_sense_block *block;
4576 	uint64_t info;
4577 
4578 	block = (struct scsi_sense_block *)header;
4579 	info = 0;
4580 
4581 	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4582 
4583 	scsi_block_sbuf(sb, block->byte3, info);
4584 }
4585 
4586 void
4587 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4588 			 u_int sense_len, uint8_t *cdb, int cdb_len,
4589 			 struct scsi_inquiry_data *inq_data,
4590 			 struct scsi_sense_desc_header *header)
4591 {
4592 	struct scsi_sense_progress *progress;
4593 	const char *sense_key_desc;
4594 	const char *asc_desc;
4595 	int progress_val;
4596 
4597 	progress = (struct scsi_sense_progress *)header;
4598 
4599 	/*
4600 	 * Get descriptions for the sense key, ASC, and ASCQ in the
4601 	 * progress descriptor.  These could be different than the values
4602 	 * in the overall sense data.
4603 	 */
4604 	scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4605 			progress->add_sense_code_qual, inq_data,
4606 			&sense_key_desc, &asc_desc);
4607 
4608 	progress_val = scsi_2btoul(progress->progress);
4609 
4610 	/*
4611 	 * The progress indicator is for the operation described by the
4612 	 * sense key, ASC, and ASCQ in the descriptor.
4613 	 */
4614 	sbuf_cat(sb, sense_key_desc);
4615 	sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4616 		    progress->add_sense_code_qual, asc_desc);
4617 	scsi_progress_sbuf(sb, progress_val);
4618 }
4619 
4620 void
4621 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4622 			 u_int sense_len, uint8_t *cdb, int cdb_len,
4623 			 struct scsi_inquiry_data *inq_data,
4624 			 struct scsi_sense_desc_header *header)
4625 {
4626 	struct scsi_sense_ata_ret_desc *res;
4627 
4628 	res = (struct scsi_sense_ata_ret_desc *)header;
4629 
4630 	sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ",
4631 	    res->status,
4632 	    (res->status & 0x80) ? "BSY " : "",
4633 	    (res->status & 0x40) ? "DRDY " : "",
4634 	    (res->status & 0x20) ? "DF " : "",
4635 	    (res->status & 0x10) ? "SERV " : "",
4636 	    (res->status & 0x08) ? "DRQ " : "",
4637 	    (res->status & 0x04) ? "CORR " : "",
4638 	    (res->status & 0x02) ? "IDX " : "",
4639 	    (res->status & 0x01) ? "ERR" : "");
4640 	if (res->status & 1) {
4641 	    sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ",
4642 		res->error,
4643 		(res->error & 0x80) ? "ICRC " : "",
4644 		(res->error & 0x40) ? "UNC " : "",
4645 		(res->error & 0x20) ? "MC " : "",
4646 		(res->error & 0x10) ? "IDNF " : "",
4647 		(res->error & 0x08) ? "MCR " : "",
4648 		(res->error & 0x04) ? "ABRT " : "",
4649 		(res->error & 0x02) ? "NM " : "",
4650 		(res->error & 0x01) ? "ILI" : "");
4651 	}
4652 
4653 	if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) {
4654 		sbuf_printf(sb, "count: %02x%02x, ",
4655 		    res->count_15_8, res->count_7_0);
4656 		sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ",
4657 		    res->lba_47_40, res->lba_39_32, res->lba_31_24,
4658 		    res->lba_23_16, res->lba_15_8, res->lba_7_0);
4659 	} else {
4660 		sbuf_printf(sb, "count: %02x, ", res->count_7_0);
4661 		sbuf_printf(sb, "LBA: %02x%02x%02x, ",
4662 		    res->lba_23_16, res->lba_15_8, res->lba_7_0);
4663 	}
4664 	sbuf_printf(sb, "device: %02x, ", res->device);
4665 }
4666 
4667 void
4668 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4669 			 u_int sense_len, uint8_t *cdb, int cdb_len,
4670 			 struct scsi_inquiry_data *inq_data,
4671 			 struct scsi_sense_desc_header *header)
4672 {
4673 	struct scsi_sense_forwarded *forwarded;
4674 	const char *sense_key_desc;
4675 	const char *asc_desc;
4676 	int error_code, sense_key, asc, ascq;
4677 
4678 	forwarded = (struct scsi_sense_forwarded *)header;
4679 	scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data,
4680 	    forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1);
4681 	scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc);
4682 
4683 	sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ",
4684 	    sense_key_desc, asc, ascq, asc_desc);
4685 }
4686 
4687 /*
4688  * Generic sense descriptor printing routine.  This is used when we have
4689  * not yet implemented a specific printing routine for this descriptor.
4690  */
4691 void
4692 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4693 			u_int sense_len, uint8_t *cdb, int cdb_len,
4694 			struct scsi_inquiry_data *inq_data,
4695 			struct scsi_sense_desc_header *header)
4696 {
4697 	int i;
4698 	uint8_t *buf_ptr;
4699 
4700 	sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4701 
4702 	buf_ptr = (uint8_t *)&header[1];
4703 
4704 	for (i = 0; i < header->length; i++, buf_ptr++)
4705 		sbuf_printf(sb, " %02x", *buf_ptr);
4706 }
4707 
4708 /*
4709  * Keep this list in numeric order.  This speeds the array traversal.
4710  */
4711 struct scsi_sense_desc_printer {
4712 	uint8_t desc_type;
4713 	/*
4714 	 * The function arguments here are the superset of what is needed
4715 	 * to print out various different descriptors.  Command and
4716 	 * information descriptors need inquiry data and command type.
4717 	 * Sense key specific descriptors need the sense key.
4718 	 *
4719 	 * The sense, cdb, and inquiry data arguments may be NULL, but the
4720 	 * information printed may not be fully decoded as a result.
4721 	 */
4722 	void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4723 			   u_int sense_len, uint8_t *cdb, int cdb_len,
4724 			   struct scsi_inquiry_data *inq_data,
4725 			   struct scsi_sense_desc_header *header);
4726 } scsi_sense_printers[] = {
4727 	{SSD_DESC_INFO, scsi_sense_info_sbuf},
4728 	{SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4729 	{SSD_DESC_SKS, scsi_sense_sks_sbuf},
4730 	{SSD_DESC_FRU, scsi_sense_fru_sbuf},
4731 	{SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4732 	{SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4733 	{SSD_DESC_ATA, scsi_sense_ata_sbuf},
4734 	{SSD_DESC_PROGRESS, scsi_sense_progress_sbuf},
4735 	{SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf}
4736 };
4737 
4738 void
4739 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4740 		     u_int sense_len, uint8_t *cdb, int cdb_len,
4741 		     struct scsi_inquiry_data *inq_data,
4742 		     struct scsi_sense_desc_header *header)
4743 {
4744 	u_int i;
4745 
4746 	for (i = 0; i < nitems(scsi_sense_printers); i++) {
4747 		struct scsi_sense_desc_printer *printer;
4748 
4749 		printer = &scsi_sense_printers[i];
4750 
4751 		/*
4752 		 * The list is sorted, so quit if we've passed our
4753 		 * descriptor number.
4754 		 */
4755 		if (printer->desc_type > header->desc_type)
4756 			break;
4757 
4758 		if (printer->desc_type != header->desc_type)
4759 			continue;
4760 
4761 		printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4762 				    inq_data, header);
4763 
4764 		return;
4765 	}
4766 
4767 	/*
4768 	 * No specific printing routine, so use the generic routine.
4769 	 */
4770 	scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4771 				inq_data, header);
4772 }
4773 
4774 scsi_sense_data_type
4775 scsi_sense_type(struct scsi_sense_data *sense_data)
4776 {
4777 	switch (sense_data->error_code & SSD_ERRCODE) {
4778 	case SSD_DESC_CURRENT_ERROR:
4779 	case SSD_DESC_DEFERRED_ERROR:
4780 		return (SSD_TYPE_DESC);
4781 		break;
4782 	case SSD_CURRENT_ERROR:
4783 	case SSD_DEFERRED_ERROR:
4784 		return (SSD_TYPE_FIXED);
4785 		break;
4786 	default:
4787 		break;
4788 	}
4789 
4790 	return (SSD_TYPE_NONE);
4791 }
4792 
4793 struct scsi_print_sense_info {
4794 	struct sbuf *sb;
4795 	char *path_str;
4796 	uint8_t *cdb;
4797 	int cdb_len;
4798 	struct scsi_inquiry_data *inq_data;
4799 };
4800 
4801 static int
4802 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4803 		     struct scsi_sense_desc_header *header, void *arg)
4804 {
4805 	struct scsi_print_sense_info *print_info;
4806 
4807 	print_info = (struct scsi_print_sense_info *)arg;
4808 
4809 	switch (header->desc_type) {
4810 	case SSD_DESC_INFO:
4811 	case SSD_DESC_FRU:
4812 	case SSD_DESC_COMMAND:
4813 	case SSD_DESC_SKS:
4814 	case SSD_DESC_BLOCK:
4815 	case SSD_DESC_STREAM:
4816 		/*
4817 		 * We have already printed these descriptors, if they are
4818 		 * present.
4819 		 */
4820 		break;
4821 	default: {
4822 		sbuf_printf(print_info->sb, "%s", print_info->path_str);
4823 		scsi_sense_desc_sbuf(print_info->sb,
4824 				     (struct scsi_sense_data *)sense, sense_len,
4825 				     print_info->cdb, print_info->cdb_len,
4826 				     print_info->inq_data, header);
4827 		sbuf_printf(print_info->sb, "\n");
4828 		break;
4829 	}
4830 	}
4831 
4832 	/*
4833 	 * Tell the iterator that we want to see more descriptors if they
4834 	 * are present.
4835 	 */
4836 	return (0);
4837 }
4838 
4839 void
4840 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4841 		     struct sbuf *sb, char *path_str,
4842 		     struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4843 		     int cdb_len)
4844 {
4845 	int error_code, sense_key, asc, ascq;
4846 
4847 	sbuf_cat(sb, path_str);
4848 
4849 	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4850 			       &asc, &ascq, /*show_errors*/ 1);
4851 
4852 	sbuf_printf(sb, "SCSI sense: ");
4853 	switch (error_code) {
4854 	case SSD_DEFERRED_ERROR:
4855 	case SSD_DESC_DEFERRED_ERROR:
4856 		sbuf_printf(sb, "Deferred error: ");
4857 
4858 		/* FALLTHROUGH */
4859 	case SSD_CURRENT_ERROR:
4860 	case SSD_DESC_CURRENT_ERROR:
4861 	{
4862 		struct scsi_sense_data_desc *desc_sense;
4863 		struct scsi_print_sense_info print_info;
4864 		const char *sense_key_desc;
4865 		const char *asc_desc;
4866 		uint8_t sks[3];
4867 		uint64_t val;
4868 		int info_valid;
4869 
4870 		/*
4871 		 * Get descriptions for the sense key, ASC, and ASCQ.  If
4872 		 * these aren't present in the sense data (i.e. the sense
4873 		 * data isn't long enough), the -1 values that
4874 		 * scsi_extract_sense_len() returns will yield default
4875 		 * or error descriptions.
4876 		 */
4877 		scsi_sense_desc(sense_key, asc, ascq, inq_data,
4878 				&sense_key_desc, &asc_desc);
4879 
4880 		/*
4881 		 * We first print the sense key and ASC/ASCQ.
4882 		 */
4883 		sbuf_cat(sb, sense_key_desc);
4884 		sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
4885 
4886 		/*
4887 		 * Get the info field if it is valid.
4888 		 */
4889 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
4890 					&val, NULL) == 0)
4891 			info_valid = 1;
4892 		else
4893 			info_valid = 0;
4894 
4895 		if (info_valid != 0) {
4896 			uint8_t bits;
4897 
4898 			/*
4899 			 * Determine whether we have any block or stream
4900 			 * device-specific information.
4901 			 */
4902 			if (scsi_get_block_info(sense, sense_len, inq_data,
4903 						&bits) == 0) {
4904 				sbuf_cat(sb, path_str);
4905 				scsi_block_sbuf(sb, bits, val);
4906 				sbuf_printf(sb, "\n");
4907 			} else if (scsi_get_stream_info(sense, sense_len,
4908 							inq_data, &bits) == 0) {
4909 				sbuf_cat(sb, path_str);
4910 				scsi_stream_sbuf(sb, bits, val);
4911 				sbuf_printf(sb, "\n");
4912 			} else if (val != 0) {
4913 				/*
4914 				 * The information field can be valid but 0.
4915 				 * If the block or stream bits aren't set,
4916 				 * and this is 0, it isn't terribly useful
4917 				 * to print it out.
4918 				 */
4919 				sbuf_cat(sb, path_str);
4920 				scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
4921 				sbuf_printf(sb, "\n");
4922 			}
4923 		}
4924 
4925 		/*
4926 		 * Print the FRU.
4927 		 */
4928 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
4929 					&val, NULL) == 0) {
4930 			sbuf_cat(sb, path_str);
4931 			scsi_fru_sbuf(sb, val);
4932 			sbuf_printf(sb, "\n");
4933 		}
4934 
4935 		/*
4936 		 * Print any command-specific information.
4937 		 */
4938 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
4939 					&val, NULL) == 0) {
4940 			sbuf_cat(sb, path_str);
4941 			scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
4942 			sbuf_printf(sb, "\n");
4943 		}
4944 
4945 		/*
4946 		 * Print out any sense-key-specific information.
4947 		 */
4948 		if (scsi_get_sks(sense, sense_len, sks) == 0) {
4949 			sbuf_cat(sb, path_str);
4950 			scsi_sks_sbuf(sb, sense_key, sks);
4951 			sbuf_printf(sb, "\n");
4952 		}
4953 
4954 		/*
4955 		 * If this is fixed sense, we're done.  If we have
4956 		 * descriptor sense, we might have more information
4957 		 * available.
4958 		 */
4959 		if (scsi_sense_type(sense) != SSD_TYPE_DESC)
4960 			break;
4961 
4962 		desc_sense = (struct scsi_sense_data_desc *)sense;
4963 
4964 		print_info.sb = sb;
4965 		print_info.path_str = path_str;
4966 		print_info.cdb = cdb;
4967 		print_info.cdb_len = cdb_len;
4968 		print_info.inq_data = inq_data;
4969 
4970 		/*
4971 		 * Print any sense descriptors that we have not already printed.
4972 		 */
4973 		scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
4974 				  &print_info);
4975 		break;
4976 
4977 	}
4978 	case -1:
4979 		/*
4980 		 * scsi_extract_sense_len() sets values to -1 if the
4981 		 * show_errors flag is set and they aren't present in the
4982 		 * sense data.  This means that sense_len is 0.
4983 		 */
4984 		sbuf_printf(sb, "No sense data present\n");
4985 		break;
4986 	default: {
4987 		sbuf_printf(sb, "Error code 0x%x", error_code);
4988 		if (sense->error_code & SSD_ERRCODE_VALID) {
4989 			struct scsi_sense_data_fixed *fixed_sense;
4990 
4991 			fixed_sense = (struct scsi_sense_data_fixed *)sense;
4992 
4993 			if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
4994 				uint32_t info;
4995 
4996 				info = scsi_4btoul(fixed_sense->info);
4997 
4998 				sbuf_printf(sb, " at block no. %d (decimal)",
4999 					    info);
5000 			}
5001 		}
5002 		sbuf_printf(sb, "\n");
5003 		break;
5004 	}
5005 	}
5006 }
5007 
5008 /*
5009  * scsi_sense_sbuf() returns 0 for success and -1 for failure.
5010  */
5011 #ifdef _KERNEL
5012 int
5013 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
5014 		scsi_sense_string_flags flags)
5015 #else /* !_KERNEL */
5016 int
5017 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
5018 		struct sbuf *sb, scsi_sense_string_flags flags)
5019 #endif /* _KERNEL/!_KERNEL */
5020 {
5021 	struct	  scsi_sense_data *sense;
5022 	struct	  scsi_inquiry_data *inq_data;
5023 #ifdef _KERNEL
5024 	struct	  ccb_getdev *cgd;
5025 #endif /* _KERNEL */
5026 	char	  path_str[64];
5027 
5028 #ifndef _KERNEL
5029 	if (device == NULL)
5030 		return(-1);
5031 #endif /* !_KERNEL */
5032 	if ((csio == NULL) || (sb == NULL))
5033 		return(-1);
5034 
5035 	/*
5036 	 * If the CDB is a physical address, we can't deal with it..
5037 	 */
5038 	if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
5039 		flags &= ~SSS_FLAG_PRINT_COMMAND;
5040 
5041 #ifdef _KERNEL
5042 	xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5043 #else /* !_KERNEL */
5044 	cam_path_string(device, path_str, sizeof(path_str));
5045 #endif /* _KERNEL/!_KERNEL */
5046 
5047 #ifdef _KERNEL
5048 	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5049 		return(-1);
5050 	/*
5051 	 * Get the device information.
5052 	 */
5053 	xpt_setup_ccb(&cgd->ccb_h,
5054 		      csio->ccb_h.path,
5055 		      CAM_PRIORITY_NORMAL);
5056 	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
5057 	xpt_action((union ccb *)cgd);
5058 
5059 	/*
5060 	 * If the device is unconfigured, just pretend that it is a hard
5061 	 * drive.  scsi_op_desc() needs this.
5062 	 */
5063 	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5064 		cgd->inq_data.device = T_DIRECT;
5065 
5066 	inq_data = &cgd->inq_data;
5067 
5068 #else /* !_KERNEL */
5069 
5070 	inq_data = &device->inq_data;
5071 
5072 #endif /* _KERNEL/!_KERNEL */
5073 
5074 	sense = NULL;
5075 
5076 	if (flags & SSS_FLAG_PRINT_COMMAND) {
5077 
5078 		sbuf_cat(sb, path_str);
5079 
5080 #ifdef _KERNEL
5081 		scsi_command_string(csio, sb);
5082 #else /* !_KERNEL */
5083 		scsi_command_string(device, csio, sb);
5084 #endif /* _KERNEL/!_KERNEL */
5085 		sbuf_printf(sb, "\n");
5086 	}
5087 
5088 	/*
5089 	 * If the sense data is a physical pointer, forget it.
5090 	 */
5091 	if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5092 		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5093 #ifdef _KERNEL
5094 			xpt_free_ccb((union ccb*)cgd);
5095 #endif /* _KERNEL/!_KERNEL */
5096 			return(-1);
5097 		} else {
5098 			/*
5099 			 * bcopy the pointer to avoid unaligned access
5100 			 * errors on finicky architectures.  We don't
5101 			 * ensure that the sense data is pointer aligned.
5102 			 */
5103 			bcopy(&csio->sense_data, &sense,
5104 			      sizeof(struct scsi_sense_data *));
5105 		}
5106 	} else {
5107 		/*
5108 		 * If the physical sense flag is set, but the sense pointer
5109 		 * is not also set, we assume that the user is an idiot and
5110 		 * return.  (Well, okay, it could be that somehow, the
5111 		 * entire csio is physical, but we would have probably core
5112 		 * dumped on one of the bogus pointer deferences above
5113 		 * already.)
5114 		 */
5115 		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5116 #ifdef _KERNEL
5117 			xpt_free_ccb((union ccb*)cgd);
5118 #endif /* _KERNEL/!_KERNEL */
5119 			return(-1);
5120 		} else
5121 			sense = &csio->sense_data;
5122 	}
5123 
5124 	scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5125 	    path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len);
5126 
5127 #ifdef _KERNEL
5128 	xpt_free_ccb((union ccb*)cgd);
5129 #endif /* _KERNEL/!_KERNEL */
5130 	return(0);
5131 }
5132 
5133 
5134 
5135 #ifdef _KERNEL
5136 char *
5137 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5138 #else /* !_KERNEL */
5139 char *
5140 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5141 		  char *str, int str_len)
5142 #endif /* _KERNEL/!_KERNEL */
5143 {
5144 	struct sbuf sb;
5145 
5146 	sbuf_new(&sb, str, str_len, 0);
5147 
5148 #ifdef _KERNEL
5149 	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5150 #else /* !_KERNEL */
5151 	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5152 #endif /* _KERNEL/!_KERNEL */
5153 
5154 	sbuf_finish(&sb);
5155 
5156 	return(sbuf_data(&sb));
5157 }
5158 
5159 #ifdef _KERNEL
5160 void
5161 scsi_sense_print(struct ccb_scsiio *csio)
5162 {
5163 	struct sbuf sb;
5164 	char str[512];
5165 
5166 	sbuf_new(&sb, str, sizeof(str), 0);
5167 
5168 	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5169 
5170 	sbuf_finish(&sb);
5171 
5172 	printf("%s", sbuf_data(&sb));
5173 }
5174 
5175 #else /* !_KERNEL */
5176 void
5177 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5178 		 FILE *ofile)
5179 {
5180 	struct sbuf sb;
5181 	char str[512];
5182 
5183 	if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5184 		return;
5185 
5186 	sbuf_new(&sb, str, sizeof(str), 0);
5187 
5188 	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5189 
5190 	sbuf_finish(&sb);
5191 
5192 	fprintf(ofile, "%s", sbuf_data(&sb));
5193 }
5194 
5195 #endif /* _KERNEL/!_KERNEL */
5196 
5197 /*
5198  * Extract basic sense information.  This is backward-compatible with the
5199  * previous implementation.  For new implementations,
5200  * scsi_extract_sense_len() is recommended.
5201  */
5202 void
5203 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5204 		   int *sense_key, int *asc, int *ascq)
5205 {
5206 	scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5207 			       sense_key, asc, ascq, /*show_errors*/ 0);
5208 }
5209 
5210 /*
5211  * Extract basic sense information from SCSI I/O CCB structure.
5212  */
5213 int
5214 scsi_extract_sense_ccb(union ccb *ccb,
5215     int *error_code, int *sense_key, int *asc, int *ascq)
5216 {
5217 	struct scsi_sense_data *sense_data;
5218 
5219 	/* Make sure there are some sense data we can access. */
5220 	if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5221 	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5222 	    (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5223 	    (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5224 	    (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5225 		return (0);
5226 
5227 	if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5228 		bcopy(&ccb->csio.sense_data, &sense_data,
5229 		    sizeof(struct scsi_sense_data *));
5230 	else
5231 		sense_data = &ccb->csio.sense_data;
5232 	scsi_extract_sense_len(sense_data,
5233 	    ccb->csio.sense_len - ccb->csio.sense_resid,
5234 	    error_code, sense_key, asc, ascq, 1);
5235 	if (*error_code == -1)
5236 		return (0);
5237 	return (1);
5238 }
5239 
5240 /*
5241  * Extract basic sense information.  If show_errors is set, sense values
5242  * will be set to -1 if they are not present.
5243  */
5244 void
5245 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5246 		       int *error_code, int *sense_key, int *asc, int *ascq,
5247 		       int show_errors)
5248 {
5249 	/*
5250 	 * If we have no length, we have no sense.
5251 	 */
5252 	if (sense_len == 0) {
5253 		if (show_errors == 0) {
5254 			*error_code = 0;
5255 			*sense_key = 0;
5256 			*asc = 0;
5257 			*ascq = 0;
5258 		} else {
5259 			*error_code = -1;
5260 			*sense_key = -1;
5261 			*asc = -1;
5262 			*ascq = -1;
5263 		}
5264 		return;
5265 	}
5266 
5267 	*error_code = sense_data->error_code & SSD_ERRCODE;
5268 
5269 	switch (*error_code) {
5270 	case SSD_DESC_CURRENT_ERROR:
5271 	case SSD_DESC_DEFERRED_ERROR: {
5272 		struct scsi_sense_data_desc *sense;
5273 
5274 		sense = (struct scsi_sense_data_desc *)sense_data;
5275 
5276 		if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5277 			*sense_key = sense->sense_key & SSD_KEY;
5278 		else
5279 			*sense_key = (show_errors) ? -1 : 0;
5280 
5281 		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5282 			*asc = sense->add_sense_code;
5283 		else
5284 			*asc = (show_errors) ? -1 : 0;
5285 
5286 		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5287 			*ascq = sense->add_sense_code_qual;
5288 		else
5289 			*ascq = (show_errors) ? -1 : 0;
5290 		break;
5291 	}
5292 	case SSD_CURRENT_ERROR:
5293 	case SSD_DEFERRED_ERROR:
5294 	default: {
5295 		struct scsi_sense_data_fixed *sense;
5296 
5297 		sense = (struct scsi_sense_data_fixed *)sense_data;
5298 
5299 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5300 			*sense_key = sense->flags & SSD_KEY;
5301 		else
5302 			*sense_key = (show_errors) ? -1 : 0;
5303 
5304 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5305 		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5306 			*asc = sense->add_sense_code;
5307 		else
5308 			*asc = (show_errors) ? -1 : 0;
5309 
5310 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5311 		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5312 			*ascq = sense->add_sense_code_qual;
5313 		else
5314 			*ascq = (show_errors) ? -1 : 0;
5315 		break;
5316 	}
5317 	}
5318 }
5319 
5320 int
5321 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5322 		   int show_errors)
5323 {
5324 	int error_code, sense_key, asc, ascq;
5325 
5326 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5327 			       &sense_key, &asc, &ascq, show_errors);
5328 
5329 	return (sense_key);
5330 }
5331 
5332 int
5333 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5334 	     int show_errors)
5335 {
5336 	int error_code, sense_key, asc, ascq;
5337 
5338 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5339 			       &sense_key, &asc, &ascq, show_errors);
5340 
5341 	return (asc);
5342 }
5343 
5344 int
5345 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5346 	      int show_errors)
5347 {
5348 	int error_code, sense_key, asc, ascq;
5349 
5350 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5351 			       &sense_key, &asc, &ascq, show_errors);
5352 
5353 	return (ascq);
5354 }
5355 
5356 /*
5357  * This function currently requires at least 36 bytes, or
5358  * SHORT_INQUIRY_LENGTH, worth of data to function properly.  If this
5359  * function needs more or less data in the future, another length should be
5360  * defined in scsi_all.h to indicate the minimum amount of data necessary
5361  * for this routine to function properly.
5362  */
5363 void
5364 scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5365 {
5366 	u_int8_t type;
5367 	char *dtype, *qtype;
5368 	char vendor[16], product[48], revision[16], rstr[12];
5369 
5370 	type = SID_TYPE(inq_data);
5371 
5372 	/*
5373 	 * Figure out basic device type and qualifier.
5374 	 */
5375 	if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5376 		qtype = " (vendor-unique qualifier)";
5377 	} else {
5378 		switch (SID_QUAL(inq_data)) {
5379 		case SID_QUAL_LU_CONNECTED:
5380 			qtype = "";
5381 			break;
5382 
5383 		case SID_QUAL_LU_OFFLINE:
5384 			qtype = " (offline)";
5385 			break;
5386 
5387 		case SID_QUAL_RSVD:
5388 			qtype = " (reserved qualifier)";
5389 			break;
5390 		default:
5391 		case SID_QUAL_BAD_LU:
5392 			qtype = " (LUN not supported)";
5393 			break;
5394 		}
5395 	}
5396 
5397 	switch (type) {
5398 	case T_DIRECT:
5399 		dtype = "Direct Access";
5400 		break;
5401 	case T_SEQUENTIAL:
5402 		dtype = "Sequential Access";
5403 		break;
5404 	case T_PRINTER:
5405 		dtype = "Printer";
5406 		break;
5407 	case T_PROCESSOR:
5408 		dtype = "Processor";
5409 		break;
5410 	case T_WORM:
5411 		dtype = "WORM";
5412 		break;
5413 	case T_CDROM:
5414 		dtype = "CD-ROM";
5415 		break;
5416 	case T_SCANNER:
5417 		dtype = "Scanner";
5418 		break;
5419 	case T_OPTICAL:
5420 		dtype = "Optical";
5421 		break;
5422 	case T_CHANGER:
5423 		dtype = "Changer";
5424 		break;
5425 	case T_COMM:
5426 		dtype = "Communication";
5427 		break;
5428 	case T_STORARRAY:
5429 		dtype = "Storage Array";
5430 		break;
5431 	case T_ENCLOSURE:
5432 		dtype = "Enclosure Services";
5433 		break;
5434 	case T_RBC:
5435 		dtype = "Simplified Direct Access";
5436 		break;
5437 	case T_OCRW:
5438 		dtype = "Optical Card Read/Write";
5439 		break;
5440 	case T_OSD:
5441 		dtype = "Object-Based Storage";
5442 		break;
5443 	case T_ADC:
5444 		dtype = "Automation/Drive Interface";
5445 		break;
5446 	case T_ZBC_HM:
5447 		dtype = "Host Managed Zoned Block";
5448 		break;
5449 	case T_NODEVICE:
5450 		dtype = "Uninstalled";
5451 		break;
5452 	default:
5453 		dtype = "unknown";
5454 		break;
5455 	}
5456 
5457 	cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
5458 		   sizeof(vendor));
5459 	cam_strvis(product, inq_data->product, sizeof(inq_data->product),
5460 		   sizeof(product));
5461 	cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
5462 		   sizeof(revision));
5463 
5464 	if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5465 		snprintf(rstr, sizeof(rstr), "SCSI");
5466 	else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5467 		snprintf(rstr, sizeof(rstr), "SCSI-%d",
5468 		    SID_ANSI_REV(inq_data));
5469 	} else {
5470 		snprintf(rstr, sizeof(rstr), "SPC-%d SCSI",
5471 		    SID_ANSI_REV(inq_data) - 2);
5472 	}
5473 	printf("<%s %s %s> %s %s %s device%s\n",
5474 	       vendor, product, revision,
5475 	       SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed",
5476 	       dtype, rstr, qtype);
5477 }
5478 
5479 void
5480 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5481 {
5482 	char vendor[16], product[48], revision[16];
5483 
5484 	cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
5485 		   sizeof(vendor));
5486 	cam_strvis(product, inq_data->product, sizeof(inq_data->product),
5487 		   sizeof(product));
5488 	cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
5489 		   sizeof(revision));
5490 
5491 	printf("<%s %s %s>", vendor, product, revision);
5492 }
5493 
5494 /*
5495  * Table of syncrates that don't follow the "divisible by 4"
5496  * rule. This table will be expanded in future SCSI specs.
5497  */
5498 static struct {
5499 	u_int period_factor;
5500 	u_int period;	/* in 100ths of ns */
5501 } scsi_syncrates[] = {
5502 	{ 0x08, 625 },	/* FAST-160 */
5503 	{ 0x09, 1250 },	/* FAST-80 */
5504 	{ 0x0a, 2500 },	/* FAST-40 40MHz */
5505 	{ 0x0b, 3030 },	/* FAST-40 33MHz */
5506 	{ 0x0c, 5000 }	/* FAST-20 */
5507 };
5508 
5509 /*
5510  * Return the frequency in kHz corresponding to the given
5511  * sync period factor.
5512  */
5513 u_int
5514 scsi_calc_syncsrate(u_int period_factor)
5515 {
5516 	u_int i;
5517 	u_int num_syncrates;
5518 
5519 	/*
5520 	 * It's a bug if period is zero, but if it is anyway, don't
5521 	 * die with a divide fault- instead return something which
5522 	 * 'approximates' async
5523 	 */
5524 	if (period_factor == 0) {
5525 		return (3300);
5526 	}
5527 
5528 	num_syncrates = nitems(scsi_syncrates);
5529 	/* See if the period is in the "exception" table */
5530 	for (i = 0; i < num_syncrates; i++) {
5531 
5532 		if (period_factor == scsi_syncrates[i].period_factor) {
5533 			/* Period in kHz */
5534 			return (100000000 / scsi_syncrates[i].period);
5535 		}
5536 	}
5537 
5538 	/*
5539 	 * Wasn't in the table, so use the standard
5540 	 * 4 times conversion.
5541 	 */
5542 	return (10000000 / (period_factor * 4 * 10));
5543 }
5544 
5545 /*
5546  * Return the SCSI sync parameter that corresponds to
5547  * the passed in period in 10ths of ns.
5548  */
5549 u_int
5550 scsi_calc_syncparam(u_int period)
5551 {
5552 	u_int i;
5553 	u_int num_syncrates;
5554 
5555 	if (period == 0)
5556 		return (~0);	/* Async */
5557 
5558 	/* Adjust for exception table being in 100ths. */
5559 	period *= 10;
5560 	num_syncrates = nitems(scsi_syncrates);
5561 	/* See if the period is in the "exception" table */
5562 	for (i = 0; i < num_syncrates; i++) {
5563 
5564 		if (period <= scsi_syncrates[i].period) {
5565 			/* Period in 100ths of ns */
5566 			return (scsi_syncrates[i].period_factor);
5567 		}
5568 	}
5569 
5570 	/*
5571 	 * Wasn't in the table, so use the standard
5572 	 * 1/4 period in ns conversion.
5573 	 */
5574 	return (period/400);
5575 }
5576 
5577 int
5578 scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5579 {
5580 	struct scsi_vpd_id_descriptor *descr;
5581 	struct scsi_vpd_id_naa_basic *naa;
5582 
5583 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5584 	naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5585 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5586 		return 0;
5587 	if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5588 		return 0;
5589 	if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG)
5590 		return 0;
5591 	return 1;
5592 }
5593 
5594 int
5595 scsi_devid_is_sas_target(uint8_t *bufp)
5596 {
5597 	struct scsi_vpd_id_descriptor *descr;
5598 
5599 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5600 	if (!scsi_devid_is_naa_ieee_reg(bufp))
5601 		return 0;
5602 	if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5603 		return 0;
5604 	if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5605 		return 0;
5606 	return 1;
5607 }
5608 
5609 int
5610 scsi_devid_is_lun_eui64(uint8_t *bufp)
5611 {
5612 	struct scsi_vpd_id_descriptor *descr;
5613 
5614 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5615 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5616 		return 0;
5617 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5618 		return 0;
5619 	return 1;
5620 }
5621 
5622 int
5623 scsi_devid_is_lun_naa(uint8_t *bufp)
5624 {
5625 	struct scsi_vpd_id_descriptor *descr;
5626 
5627 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5628 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5629 		return 0;
5630 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5631 		return 0;
5632 	return 1;
5633 }
5634 
5635 int
5636 scsi_devid_is_lun_t10(uint8_t *bufp)
5637 {
5638 	struct scsi_vpd_id_descriptor *descr;
5639 
5640 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5641 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5642 		return 0;
5643 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5644 		return 0;
5645 	return 1;
5646 }
5647 
5648 int
5649 scsi_devid_is_lun_name(uint8_t *bufp)
5650 {
5651 	struct scsi_vpd_id_descriptor *descr;
5652 
5653 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5654 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5655 		return 0;
5656 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5657 		return 0;
5658 	return 1;
5659 }
5660 
5661 int
5662 scsi_devid_is_lun_md5(uint8_t *bufp)
5663 {
5664 	struct scsi_vpd_id_descriptor *descr;
5665 
5666 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5667 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5668 		return 0;
5669 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID)
5670 		return 0;
5671 	return 1;
5672 }
5673 
5674 int
5675 scsi_devid_is_lun_uuid(uint8_t *bufp)
5676 {
5677 	struct scsi_vpd_id_descriptor *descr;
5678 
5679 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5680 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5681 		return 0;
5682 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID)
5683 		return 0;
5684 	return 1;
5685 }
5686 
5687 int
5688 scsi_devid_is_port_naa(uint8_t *bufp)
5689 {
5690 	struct scsi_vpd_id_descriptor *descr;
5691 
5692 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5693 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5694 		return 0;
5695 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5696 		return 0;
5697 	return 1;
5698 }
5699 
5700 struct scsi_vpd_id_descriptor *
5701 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5702     scsi_devid_checkfn_t ck_fn)
5703 {
5704 	uint8_t *desc_buf_end;
5705 
5706 	desc_buf_end = (uint8_t *)desc + len;
5707 
5708 	for (; desc->identifier <= desc_buf_end &&
5709 	    desc->identifier + desc->length <= desc_buf_end;
5710 	    desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5711 						    + desc->length)) {
5712 
5713 		if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5714 			return (desc);
5715 	}
5716 	return (NULL);
5717 }
5718 
5719 struct scsi_vpd_id_descriptor *
5720 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5721     scsi_devid_checkfn_t ck_fn)
5722 {
5723 	uint32_t len;
5724 
5725 	if (page_len < sizeof(*id))
5726 		return (NULL);
5727 	len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5728 	return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5729 	    id->desc_list, len, ck_fn));
5730 }
5731 
5732 int
5733 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5734 		      uint32_t valid_len)
5735 {
5736 	switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5737 	case SCSI_PROTO_FC: {
5738 		struct scsi_transportid_fcp *fcp;
5739 		uint64_t n_port_name;
5740 
5741 		fcp = (struct scsi_transportid_fcp *)hdr;
5742 
5743 		n_port_name = scsi_8btou64(fcp->n_port_name);
5744 
5745 		sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5746 		break;
5747 	}
5748 	case SCSI_PROTO_SPI: {
5749 		struct scsi_transportid_spi *spi;
5750 
5751 		spi = (struct scsi_transportid_spi *)hdr;
5752 
5753 		sbuf_printf(sb, "SPI address: %u,%u",
5754 			    scsi_2btoul(spi->scsi_addr),
5755 			    scsi_2btoul(spi->rel_trgt_port_id));
5756 		break;
5757 	}
5758 	case SCSI_PROTO_SSA:
5759 		/*
5760 		 * XXX KDM there is no transport ID defined in SPC-4 for
5761 		 * SSA.
5762 		 */
5763 		break;
5764 	case SCSI_PROTO_1394: {
5765 		struct scsi_transportid_1394 *sbp;
5766 		uint64_t eui64;
5767 
5768 		sbp = (struct scsi_transportid_1394 *)hdr;
5769 
5770 		eui64 = scsi_8btou64(sbp->eui64);
5771 		sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5772 		break;
5773 	}
5774 	case SCSI_PROTO_RDMA: {
5775 		struct scsi_transportid_rdma *rdma;
5776 		unsigned int i;
5777 
5778 		rdma = (struct scsi_transportid_rdma *)hdr;
5779 
5780 		sbuf_printf(sb, "RDMA address: 0x");
5781 		for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5782 			sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5783 		break;
5784 	}
5785 	case SCSI_PROTO_ISCSI: {
5786 		uint32_t add_len, i;
5787 		uint8_t *iscsi_name = NULL;
5788 		int nul_found = 0;
5789 
5790 		sbuf_printf(sb, "iSCSI address: ");
5791 		if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5792 		    SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5793 			struct scsi_transportid_iscsi_device *dev;
5794 
5795 			dev = (struct scsi_transportid_iscsi_device *)hdr;
5796 
5797 			/*
5798 			 * Verify how much additional data we really have.
5799 			 */
5800 			add_len = scsi_2btoul(dev->additional_length);
5801 			add_len = MIN(add_len, valid_len -
5802 				__offsetof(struct scsi_transportid_iscsi_device,
5803 					   iscsi_name));
5804 			iscsi_name = &dev->iscsi_name[0];
5805 
5806 		} else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5807 			    SCSI_TRN_ISCSI_FORMAT_PORT) {
5808 			struct scsi_transportid_iscsi_port *port;
5809 
5810 			port = (struct scsi_transportid_iscsi_port *)hdr;
5811 
5812 			add_len = scsi_2btoul(port->additional_length);
5813 			add_len = MIN(add_len, valid_len -
5814 				__offsetof(struct scsi_transportid_iscsi_port,
5815 					   iscsi_name));
5816 			iscsi_name = &port->iscsi_name[0];
5817 		} else {
5818 			sbuf_printf(sb, "unknown format %x",
5819 				    (hdr->format_protocol &
5820 				     SCSI_TRN_FORMAT_MASK) >>
5821 				     SCSI_TRN_FORMAT_SHIFT);
5822 			break;
5823 		}
5824 		if (add_len == 0) {
5825 			sbuf_printf(sb, "not enough data");
5826 			break;
5827 		}
5828 		/*
5829 		 * This is supposed to be a NUL-terminated ASCII
5830 		 * string, but you never know.  So we're going to
5831 		 * check.  We need to do this because there is no
5832 		 * sbuf equivalent of strncat().
5833 		 */
5834 		for (i = 0; i < add_len; i++) {
5835 			if (iscsi_name[i] == '\0') {
5836 				nul_found = 1;
5837 				break;
5838 			}
5839 		}
5840 		/*
5841 		 * If there is a NUL in the name, we can just use
5842 		 * sbuf_cat().  Otherwise we need to use sbuf_bcat().
5843 		 */
5844 		if (nul_found != 0)
5845 			sbuf_cat(sb, iscsi_name);
5846 		else
5847 			sbuf_bcat(sb, iscsi_name, add_len);
5848 		break;
5849 	}
5850 	case SCSI_PROTO_SAS: {
5851 		struct scsi_transportid_sas *sas;
5852 		uint64_t sas_addr;
5853 
5854 		sas = (struct scsi_transportid_sas *)hdr;
5855 
5856 		sas_addr = scsi_8btou64(sas->sas_address);
5857 		sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5858 		break;
5859 	}
5860 	case SCSI_PROTO_ADITP:
5861 	case SCSI_PROTO_ATA:
5862 	case SCSI_PROTO_UAS:
5863 		/*
5864 		 * No Transport ID format for ADI, ATA or USB is defined in
5865 		 * SPC-4.
5866 		 */
5867 		sbuf_printf(sb, "No known Transport ID format for protocol "
5868 			    "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5869 		break;
5870 	case SCSI_PROTO_SOP: {
5871 		struct scsi_transportid_sop *sop;
5872 		struct scsi_sop_routing_id_norm *rid;
5873 
5874 		sop = (struct scsi_transportid_sop *)hdr;
5875 		rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5876 
5877 		/*
5878 		 * Note that there is no alternate format specified in SPC-4
5879 		 * for the PCIe routing ID, so we don't really have a way
5880 		 * to know whether the second byte of the routing ID is
5881 		 * a device and function or just a function.  So we just
5882 		 * assume bus,device,function.
5883 		 */
5884 		sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
5885 			    rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
5886 			    rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
5887 		break;
5888 	}
5889 	case SCSI_PROTO_NONE:
5890 	default:
5891 		sbuf_printf(sb, "Unknown protocol %#x",
5892 			    hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5893 		break;
5894 	}
5895 
5896 	return (0);
5897 }
5898 
5899 struct scsi_nv scsi_proto_map[] = {
5900 	{ "fcp", SCSI_PROTO_FC },
5901 	{ "spi", SCSI_PROTO_SPI },
5902 	{ "ssa", SCSI_PROTO_SSA },
5903 	{ "sbp", SCSI_PROTO_1394 },
5904 	{ "1394", SCSI_PROTO_1394 },
5905 	{ "srp", SCSI_PROTO_RDMA },
5906 	{ "rdma", SCSI_PROTO_RDMA },
5907 	{ "iscsi", SCSI_PROTO_ISCSI },
5908 	{ "iqn", SCSI_PROTO_ISCSI },
5909 	{ "sas", SCSI_PROTO_SAS },
5910 	{ "aditp", SCSI_PROTO_ADITP },
5911 	{ "ata", SCSI_PROTO_ATA },
5912 	{ "uas", SCSI_PROTO_UAS },
5913 	{ "usb", SCSI_PROTO_UAS },
5914 	{ "sop", SCSI_PROTO_SOP }
5915 };
5916 
5917 const char *
5918 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
5919 {
5920 	int i;
5921 
5922 	for (i = 0; i < num_table_entries; i++) {
5923 		if (table[i].value == value)
5924 			return (table[i].name);
5925 	}
5926 
5927 	return (NULL);
5928 }
5929 
5930 /*
5931  * Given a name/value table, find a value matching the given name.
5932  * Return values:
5933  *	SCSI_NV_FOUND - match found
5934  *	SCSI_NV_AMBIGUOUS - more than one match, none of them exact
5935  *	SCSI_NV_NOT_FOUND - no match found
5936  */
5937 scsi_nv_status
5938 scsi_get_nv(struct scsi_nv *table, int num_table_entries,
5939 	    char *name, int *table_entry, scsi_nv_flags flags)
5940 {
5941 	int i, num_matches = 0;
5942 
5943 	for (i = 0; i < num_table_entries; i++) {
5944 		size_t table_len, name_len;
5945 
5946 		table_len = strlen(table[i].name);
5947 		name_len = strlen(name);
5948 
5949 		if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
5950 		  && (strncasecmp(table[i].name, name, name_len) == 0))
5951 		|| (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
5952 		 && (strncmp(table[i].name, name, name_len) == 0))) {
5953 			*table_entry = i;
5954 
5955 			/*
5956 			 * Check for an exact match.  If we have the same
5957 			 * number of characters in the table as the argument,
5958 			 * and we already know they're the same, we have
5959 			 * an exact match.
5960 		 	 */
5961 			if (table_len == name_len)
5962 				return (SCSI_NV_FOUND);
5963 
5964 			/*
5965 			 * Otherwise, bump up the number of matches.  We'll
5966 			 * see later how many we have.
5967 			 */
5968 			num_matches++;
5969 		}
5970 	}
5971 
5972 	if (num_matches > 1)
5973 		return (SCSI_NV_AMBIGUOUS);
5974 	else if (num_matches == 1)
5975 		return (SCSI_NV_FOUND);
5976 	else
5977 		return (SCSI_NV_NOT_FOUND);
5978 }
5979 
5980 /*
5981  * Parse transport IDs for Fibre Channel, 1394 and SAS.  Since these are
5982  * all 64-bit numbers, the code is similar.
5983  */
5984 int
5985 scsi_parse_transportid_64bit(int proto_id, char *id_str,
5986 			     struct scsi_transportid_header **hdr,
5987 			     unsigned int *alloc_len,
5988 #ifdef _KERNEL
5989 			     struct malloc_type *type, int flags,
5990 #endif
5991 			     char *error_str, int error_str_len)
5992 {
5993 	uint64_t value;
5994 	char *endptr;
5995 	int retval;
5996 	size_t alloc_size;
5997 
5998 	retval = 0;
5999 
6000 	value = strtouq(id_str, &endptr, 0);
6001 	if (*endptr != '\0') {
6002 		if (error_str != NULL) {
6003 			snprintf(error_str, error_str_len, "%s: error "
6004 				 "parsing ID %s, 64-bit number required",
6005 				 __func__, id_str);
6006 		}
6007 		retval = 1;
6008 		goto bailout;
6009 	}
6010 
6011 	switch (proto_id) {
6012 	case SCSI_PROTO_FC:
6013 		alloc_size = sizeof(struct scsi_transportid_fcp);
6014 		break;
6015 	case SCSI_PROTO_1394:
6016 		alloc_size = sizeof(struct scsi_transportid_1394);
6017 		break;
6018 	case SCSI_PROTO_SAS:
6019 		alloc_size = sizeof(struct scsi_transportid_sas);
6020 		break;
6021 	default:
6022 		if (error_str != NULL) {
6023 			snprintf(error_str, error_str_len, "%s: unsupported "
6024 				 "protocol %d", __func__, proto_id);
6025 		}
6026 		retval = 1;
6027 		goto bailout;
6028 		break; /* NOTREACHED */
6029 	}
6030 #ifdef _KERNEL
6031 	*hdr = malloc(alloc_size, type, flags);
6032 #else /* _KERNEL */
6033 	*hdr = malloc(alloc_size);
6034 #endif /*_KERNEL */
6035 	if (*hdr == NULL) {
6036 		if (error_str != NULL) {
6037 			snprintf(error_str, error_str_len, "%s: unable to "
6038 				 "allocate %zu bytes", __func__, alloc_size);
6039 		}
6040 		retval = 1;
6041 		goto bailout;
6042 	}
6043 
6044 	*alloc_len = alloc_size;
6045 
6046 	bzero(*hdr, alloc_size);
6047 
6048 	switch (proto_id) {
6049 	case SCSI_PROTO_FC: {
6050 		struct scsi_transportid_fcp *fcp;
6051 
6052 		fcp = (struct scsi_transportid_fcp *)(*hdr);
6053 		fcp->format_protocol = SCSI_PROTO_FC |
6054 				       SCSI_TRN_FCP_FORMAT_DEFAULT;
6055 		scsi_u64to8b(value, fcp->n_port_name);
6056 		break;
6057 	}
6058 	case SCSI_PROTO_1394: {
6059 		struct scsi_transportid_1394 *sbp;
6060 
6061 		sbp = (struct scsi_transportid_1394 *)(*hdr);
6062 		sbp->format_protocol = SCSI_PROTO_1394 |
6063 				       SCSI_TRN_1394_FORMAT_DEFAULT;
6064 		scsi_u64to8b(value, sbp->eui64);
6065 		break;
6066 	}
6067 	case SCSI_PROTO_SAS: {
6068 		struct scsi_transportid_sas *sas;
6069 
6070 		sas = (struct scsi_transportid_sas *)(*hdr);
6071 		sas->format_protocol = SCSI_PROTO_SAS |
6072 				       SCSI_TRN_SAS_FORMAT_DEFAULT;
6073 		scsi_u64to8b(value, sas->sas_address);
6074 		break;
6075 	}
6076 	default:
6077 		break;
6078 	}
6079 bailout:
6080 	return (retval);
6081 }
6082 
6083 /*
6084  * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6085  */
6086 int
6087 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6088 			   unsigned int *alloc_len,
6089 #ifdef _KERNEL
6090 			   struct malloc_type *type, int flags,
6091 #endif
6092 			   char *error_str, int error_str_len)
6093 {
6094 	unsigned long scsi_addr, target_port;
6095 	struct scsi_transportid_spi *spi;
6096 	char *tmpstr, *endptr;
6097 	int retval;
6098 
6099 	retval = 0;
6100 
6101 	tmpstr = strsep(&id_str, ",");
6102 	if (tmpstr == NULL) {
6103 		if (error_str != NULL) {
6104 			snprintf(error_str, error_str_len,
6105 				 "%s: no ID found", __func__);
6106 		}
6107 		retval = 1;
6108 		goto bailout;
6109 	}
6110 	scsi_addr = strtoul(tmpstr, &endptr, 0);
6111 	if (*endptr != '\0') {
6112 		if (error_str != NULL) {
6113 			snprintf(error_str, error_str_len, "%s: error "
6114 				 "parsing SCSI ID %s, number required",
6115 				 __func__, tmpstr);
6116 		}
6117 		retval = 1;
6118 		goto bailout;
6119 	}
6120 
6121 	if (id_str == NULL) {
6122 		if (error_str != NULL) {
6123 			snprintf(error_str, error_str_len, "%s: no relative "
6124 				 "target port found", __func__);
6125 		}
6126 		retval = 1;
6127 		goto bailout;
6128 	}
6129 
6130 	target_port = strtoul(id_str, &endptr, 0);
6131 	if (*endptr != '\0') {
6132 		if (error_str != NULL) {
6133 			snprintf(error_str, error_str_len, "%s: error "
6134 				 "parsing relative target port %s, number "
6135 				 "required", __func__, id_str);
6136 		}
6137 		retval = 1;
6138 		goto bailout;
6139 	}
6140 #ifdef _KERNEL
6141 	spi = malloc(sizeof(*spi), type, flags);
6142 #else
6143 	spi = malloc(sizeof(*spi));
6144 #endif
6145 	if (spi == NULL) {
6146 		if (error_str != NULL) {
6147 			snprintf(error_str, error_str_len, "%s: unable to "
6148 				 "allocate %zu bytes", __func__,
6149 				 sizeof(*spi));
6150 		}
6151 		retval = 1;
6152 		goto bailout;
6153 	}
6154 	*alloc_len = sizeof(*spi);
6155 	bzero(spi, sizeof(*spi));
6156 
6157 	spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6158 	scsi_ulto2b(scsi_addr, spi->scsi_addr);
6159 	scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6160 
6161 	*hdr = (struct scsi_transportid_header *)spi;
6162 bailout:
6163 	return (retval);
6164 }
6165 
6166 /*
6167  * Parse an RDMA/SRP Initiator Port ID string.  This is 32 hexadecimal digits,
6168  * optionally prefixed by "0x" or "0X".
6169  */
6170 int
6171 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6172 			    unsigned int *alloc_len,
6173 #ifdef _KERNEL
6174 			    struct malloc_type *type, int flags,
6175 #endif
6176 			    char *error_str, int error_str_len)
6177 {
6178 	struct scsi_transportid_rdma *rdma;
6179 	int retval;
6180 	size_t id_len, rdma_id_size;
6181 	uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6182 	char *tmpstr;
6183 	unsigned int i, j;
6184 
6185 	retval = 0;
6186 	id_len = strlen(id_str);
6187 	rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6188 
6189 	/*
6190 	 * Check the size.  It needs to be either 32 or 34 characters long.
6191 	 */
6192 	if ((id_len != (rdma_id_size * 2))
6193 	 && (id_len != ((rdma_id_size * 2) + 2))) {
6194 		if (error_str != NULL) {
6195 			snprintf(error_str, error_str_len, "%s: RDMA ID "
6196 				 "must be 32 hex digits (0x prefix "
6197 				 "optional), only %zu seen", __func__, id_len);
6198 		}
6199 		retval = 1;
6200 		goto bailout;
6201 	}
6202 
6203 	tmpstr = id_str;
6204 	/*
6205 	 * If the user gave us 34 characters, the string needs to start
6206 	 * with '0x'.
6207 	 */
6208 	if (id_len == ((rdma_id_size * 2) + 2)) {
6209 	 	if ((tmpstr[0] == '0')
6210 		 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6211 			tmpstr += 2;
6212 		} else {
6213 			if (error_str != NULL) {
6214 				snprintf(error_str, error_str_len, "%s: RDMA "
6215 					 "ID prefix, if used, must be \"0x\", "
6216 					 "got %s", __func__, tmpstr);
6217 			}
6218 			retval = 1;
6219 			goto bailout;
6220 		}
6221 	}
6222 	bzero(rdma_id, sizeof(rdma_id));
6223 
6224 	/*
6225 	 * Convert ASCII hex into binary bytes.  There is no standard
6226 	 * 128-bit integer type, and so no strtou128t() routine to convert
6227 	 * from hex into a large integer.  In the end, we're not going to
6228 	 * an integer, but rather to a byte array, so that and the fact
6229 	 * that we require the user to give us 32 hex digits simplifies the
6230 	 * logic.
6231 	 */
6232 	for (i = 0; i < (rdma_id_size * 2); i++) {
6233 		int cur_shift;
6234 		unsigned char c;
6235 
6236 		/* Increment the byte array one for every 2 hex digits */
6237 		j = i >> 1;
6238 
6239 		/*
6240 		 * The first digit in every pair is the most significant
6241 		 * 4 bits.  The second is the least significant 4 bits.
6242 		 */
6243 		if ((i % 2) == 0)
6244 			cur_shift = 4;
6245 		else
6246 			cur_shift = 0;
6247 
6248 		c = tmpstr[i];
6249 		/* Convert the ASCII hex character into a number */
6250 		if (isdigit(c))
6251 			c -= '0';
6252 		else if (isalpha(c))
6253 			c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6254 		else {
6255 			if (error_str != NULL) {
6256 				snprintf(error_str, error_str_len, "%s: "
6257 					 "RDMA ID must be hex digits, got "
6258 					 "invalid character %c", __func__,
6259 					 tmpstr[i]);
6260 			}
6261 			retval = 1;
6262 			goto bailout;
6263 		}
6264 		/*
6265 		 * The converted number can't be less than 0; the type is
6266 		 * unsigned, and the subtraction logic will not give us
6267 		 * a negative number.  So we only need to make sure that
6268 		 * the value is not greater than 0xf.  (i.e. make sure the
6269 		 * user didn't give us a value like "0x12jklmno").
6270 		 */
6271 		if (c > 0xf) {
6272 			if (error_str != NULL) {
6273 				snprintf(error_str, error_str_len, "%s: "
6274 					 "RDMA ID must be hex digits, got "
6275 					 "invalid character %c", __func__,
6276 					 tmpstr[i]);
6277 			}
6278 			retval = 1;
6279 			goto bailout;
6280 		}
6281 
6282 		rdma_id[j] |= c << cur_shift;
6283 	}
6284 
6285 #ifdef _KERNEL
6286 	rdma = malloc(sizeof(*rdma), type, flags);
6287 #else
6288 	rdma = malloc(sizeof(*rdma));
6289 #endif
6290 	if (rdma == NULL) {
6291 		if (error_str != NULL) {
6292 			snprintf(error_str, error_str_len, "%s: unable to "
6293 				 "allocate %zu bytes", __func__,
6294 				 sizeof(*rdma));
6295 		}
6296 		retval = 1;
6297 		goto bailout;
6298 	}
6299 	*alloc_len = sizeof(*rdma);
6300 	bzero(rdma, *alloc_len);
6301 
6302 	rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6303 	bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6304 
6305 	*hdr = (struct scsi_transportid_header *)rdma;
6306 
6307 bailout:
6308 	return (retval);
6309 }
6310 
6311 /*
6312  * Parse an iSCSI name.  The format is either just the name:
6313  *
6314  *	iqn.2012-06.com.example:target0
6315  * or the name, separator and initiator session ID:
6316  *
6317  *	iqn.2012-06.com.example:target0,i,0x123
6318  *
6319  * The separator format is exact.
6320  */
6321 int
6322 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6323 			     unsigned int *alloc_len,
6324 #ifdef _KERNEL
6325 			     struct malloc_type *type, int flags,
6326 #endif
6327 			     char *error_str, int error_str_len)
6328 {
6329 	size_t id_len, sep_len, id_size, name_len;
6330 	int retval;
6331 	unsigned int i, sep_pos, sep_found;
6332 	const char *sep_template = ",i,0x";
6333 	const char *iqn_prefix = "iqn.";
6334 	struct scsi_transportid_iscsi_device *iscsi;
6335 
6336 	retval = 0;
6337 	sep_found = 0;
6338 
6339 	id_len = strlen(id_str);
6340 	sep_len = strlen(sep_template);
6341 
6342 	/*
6343 	 * The separator is defined as exactly ',i,0x'.  Any other commas,
6344 	 * or any other form, is an error.  So look for a comma, and once
6345 	 * we find that, the next few characters must match the separator
6346 	 * exactly.  Once we get through the separator, there should be at
6347 	 * least one character.
6348 	 */
6349 	for (i = 0, sep_pos = 0; i < id_len; i++) {
6350 		if (sep_pos == 0) {
6351 		 	if (id_str[i] == sep_template[sep_pos])
6352 				sep_pos++;
6353 
6354 			continue;
6355 		}
6356 		if (sep_pos < sep_len) {
6357 			if (id_str[i] == sep_template[sep_pos]) {
6358 				sep_pos++;
6359 				continue;
6360 			}
6361 			if (error_str != NULL) {
6362 				snprintf(error_str, error_str_len, "%s: "
6363 					 "invalid separator in iSCSI name "
6364 					 "\"%s\"",
6365 					 __func__, id_str);
6366 			}
6367 			retval = 1;
6368 			goto bailout;
6369 		} else {
6370 			sep_found = 1;
6371 			break;
6372 		}
6373 	}
6374 
6375 	/*
6376 	 * Check to see whether we have a separator but no digits after it.
6377 	 */
6378 	if ((sep_pos != 0)
6379 	 && (sep_found == 0)) {
6380 		if (error_str != NULL) {
6381 			snprintf(error_str, error_str_len, "%s: no digits "
6382 				 "found after separator in iSCSI name \"%s\"",
6383 				 __func__, id_str);
6384 		}
6385 		retval = 1;
6386 		goto bailout;
6387 	}
6388 
6389 	/*
6390 	 * The incoming ID string has the "iqn." prefix stripped off.  We
6391 	 * need enough space for the base structure (the structures are the
6392 	 * same for the two iSCSI forms), the prefix, the ID string and a
6393 	 * terminating NUL.
6394 	 */
6395 	id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6396 
6397 #ifdef _KERNEL
6398 	iscsi = malloc(id_size, type, flags);
6399 #else
6400 	iscsi = malloc(id_size);
6401 #endif
6402 	if (iscsi == NULL) {
6403 		if (error_str != NULL) {
6404 			snprintf(error_str, error_str_len, "%s: unable to "
6405 				 "allocate %zu bytes", __func__, id_size);
6406 		}
6407 		retval = 1;
6408 		goto bailout;
6409 	}
6410 	*alloc_len = id_size;
6411 	bzero(iscsi, id_size);
6412 
6413 	iscsi->format_protocol = SCSI_PROTO_ISCSI;
6414 	if (sep_found == 0)
6415 		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6416 	else
6417 		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6418 	name_len = id_size - sizeof(*iscsi);
6419 	scsi_ulto2b(name_len, iscsi->additional_length);
6420 	snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6421 
6422 	*hdr = (struct scsi_transportid_header *)iscsi;
6423 
6424 bailout:
6425 	return (retval);
6426 }
6427 
6428 /*
6429  * Parse a SCSI over PCIe (SOP) identifier.  The Routing ID can either be
6430  * of the form 'bus,device,function' or 'bus,function'.
6431  */
6432 int
6433 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6434 			   unsigned int *alloc_len,
6435 #ifdef _KERNEL
6436 			   struct malloc_type *type, int flags,
6437 #endif
6438 			   char *error_str, int error_str_len)
6439 {
6440 	struct scsi_transportid_sop *sop;
6441 	unsigned long bus, device, function;
6442 	char *tmpstr, *endptr;
6443 	int retval, device_spec;
6444 
6445 	retval = 0;
6446 	device_spec = 0;
6447 	device = 0;
6448 
6449 	tmpstr = strsep(&id_str, ",");
6450 	if ((tmpstr == NULL)
6451 	 || (*tmpstr == '\0')) {
6452 		if (error_str != NULL) {
6453 			snprintf(error_str, error_str_len, "%s: no ID found",
6454 				 __func__);
6455 		}
6456 		retval = 1;
6457 		goto bailout;
6458 	}
6459 	bus = strtoul(tmpstr, &endptr, 0);
6460 	if (*endptr != '\0') {
6461 		if (error_str != NULL) {
6462 			snprintf(error_str, error_str_len, "%s: error "
6463 				 "parsing PCIe bus %s, number required",
6464 				 __func__, tmpstr);
6465 		}
6466 		retval = 1;
6467 		goto bailout;
6468 	}
6469 	if ((id_str == NULL)
6470 	 || (*id_str == '\0')) {
6471 		if (error_str != NULL) {
6472 			snprintf(error_str, error_str_len, "%s: no PCIe "
6473 				 "device or function found", __func__);
6474 		}
6475 		retval = 1;
6476 		goto bailout;
6477 	}
6478 	tmpstr = strsep(&id_str, ",");
6479 	function = strtoul(tmpstr, &endptr, 0);
6480 	if (*endptr != '\0') {
6481 		if (error_str != NULL) {
6482 			snprintf(error_str, error_str_len, "%s: error "
6483 				 "parsing PCIe device/function %s, number "
6484 				 "required", __func__, tmpstr);
6485 		}
6486 		retval = 1;
6487 		goto bailout;
6488 	}
6489 	/*
6490 	 * Check to see whether the user specified a third value.  If so,
6491 	 * the second is the device.
6492 	 */
6493 	if (id_str != NULL) {
6494 		if (*id_str == '\0') {
6495 			if (error_str != NULL) {
6496 				snprintf(error_str, error_str_len, "%s: "
6497 					 "no PCIe function found", __func__);
6498 			}
6499 			retval = 1;
6500 			goto bailout;
6501 		}
6502 		device = function;
6503 		device_spec = 1;
6504 		function = strtoul(id_str, &endptr, 0);
6505 		if (*endptr != '\0') {
6506 			if (error_str != NULL) {
6507 				snprintf(error_str, error_str_len, "%s: "
6508 					 "error parsing PCIe function %s, "
6509 					 "number required", __func__, id_str);
6510 			}
6511 			retval = 1;
6512 			goto bailout;
6513 		}
6514 	}
6515 	if (bus > SCSI_TRN_SOP_BUS_MAX) {
6516 		if (error_str != NULL) {
6517 			snprintf(error_str, error_str_len, "%s: bus value "
6518 				 "%lu greater than maximum %u", __func__,
6519 				 bus, SCSI_TRN_SOP_BUS_MAX);
6520 		}
6521 		retval = 1;
6522 		goto bailout;
6523 	}
6524 
6525 	if ((device_spec != 0)
6526 	 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6527 		if (error_str != NULL) {
6528 			snprintf(error_str, error_str_len, "%s: device value "
6529 				 "%lu greater than maximum %u", __func__,
6530 				 device, SCSI_TRN_SOP_DEV_MAX);
6531 		}
6532 		retval = 1;
6533 		goto bailout;
6534 	}
6535 
6536 	if (((device_spec != 0)
6537 	  && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6538 	 || ((device_spec == 0)
6539 	  && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6540 		if (error_str != NULL) {
6541 			snprintf(error_str, error_str_len, "%s: function value "
6542 				 "%lu greater than maximum %u", __func__,
6543 				 function, (device_spec == 0) ?
6544 				 SCSI_TRN_SOP_FUNC_ALT_MAX :
6545 				 SCSI_TRN_SOP_FUNC_NORM_MAX);
6546 		}
6547 		retval = 1;
6548 		goto bailout;
6549 	}
6550 
6551 #ifdef _KERNEL
6552 	sop = malloc(sizeof(*sop), type, flags);
6553 #else
6554 	sop = malloc(sizeof(*sop));
6555 #endif
6556 	if (sop == NULL) {
6557 		if (error_str != NULL) {
6558 			snprintf(error_str, error_str_len, "%s: unable to "
6559 				 "allocate %zu bytes", __func__, sizeof(*sop));
6560 		}
6561 		retval = 1;
6562 		goto bailout;
6563 	}
6564 	*alloc_len = sizeof(*sop);
6565 	bzero(sop, sizeof(*sop));
6566 	sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6567 	if (device_spec != 0) {
6568 		struct scsi_sop_routing_id_norm rid;
6569 
6570 		rid.bus = bus;
6571 		rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6572 		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6573 		      sizeof(sop->routing_id)));
6574 	} else {
6575 		struct scsi_sop_routing_id_alt rid;
6576 
6577 		rid.bus = bus;
6578 		rid.function = function;
6579 		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6580 		      sizeof(sop->routing_id)));
6581 	}
6582 
6583 	*hdr = (struct scsi_transportid_header *)sop;
6584 bailout:
6585 	return (retval);
6586 }
6587 
6588 /*
6589  * transportid_str: NUL-terminated string with format: protcol,id
6590  *		    The ID is protocol specific.
6591  * hdr:		    Storage will be allocated for the transport ID.
6592  * alloc_len:	    The amount of memory allocated is returned here.
6593  * type:	    Malloc bucket (kernel only).
6594  * flags:	    Malloc flags (kernel only).
6595  * error_str:	    If non-NULL, it will contain error information (without
6596  * 		    a terminating newline) if an error is returned.
6597  * error_str_len:   Allocated length of the error string.
6598  *
6599  * Returns 0 for success, non-zero for failure.
6600  */
6601 int
6602 scsi_parse_transportid(char *transportid_str,
6603 		       struct scsi_transportid_header **hdr,
6604 		       unsigned int *alloc_len,
6605 #ifdef _KERNEL
6606 		       struct malloc_type *type, int flags,
6607 #endif
6608 		       char *error_str, int error_str_len)
6609 {
6610 	char *tmpstr;
6611 	scsi_nv_status status;
6612 	u_int num_proto_entries;
6613 	int retval, table_entry;
6614 
6615 	retval = 0;
6616 	table_entry = 0;
6617 
6618 	/*
6619 	 * We do allow a period as well as a comma to separate the protocol
6620 	 * from the ID string.  This is to accommodate iSCSI names, which
6621 	 * start with "iqn.".
6622 	 */
6623 	tmpstr = strsep(&transportid_str, ",.");
6624 	if (tmpstr == NULL) {
6625 		if (error_str != NULL) {
6626 			snprintf(error_str, error_str_len,
6627 				 "%s: transportid_str is NULL", __func__);
6628 		}
6629 		retval = 1;
6630 		goto bailout;
6631 	}
6632 
6633 	num_proto_entries = nitems(scsi_proto_map);
6634 	status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6635 			     &table_entry, SCSI_NV_FLAG_IG_CASE);
6636 	if (status != SCSI_NV_FOUND) {
6637 		if (error_str != NULL) {
6638 			snprintf(error_str, error_str_len, "%s: %s protocol "
6639 				 "name %s", __func__,
6640 				 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6641 				 "invalid", tmpstr);
6642 		}
6643 		retval = 1;
6644 		goto bailout;
6645 	}
6646 	switch (scsi_proto_map[table_entry].value) {
6647 	case SCSI_PROTO_FC:
6648 	case SCSI_PROTO_1394:
6649 	case SCSI_PROTO_SAS:
6650 		retval = scsi_parse_transportid_64bit(
6651 		    scsi_proto_map[table_entry].value, transportid_str, hdr,
6652 		    alloc_len,
6653 #ifdef _KERNEL
6654 		    type, flags,
6655 #endif
6656 		    error_str, error_str_len);
6657 		break;
6658 	case SCSI_PROTO_SPI:
6659 		retval = scsi_parse_transportid_spi(transportid_str, hdr,
6660 		    alloc_len,
6661 #ifdef _KERNEL
6662 		    type, flags,
6663 #endif
6664 		    error_str, error_str_len);
6665 		break;
6666 	case SCSI_PROTO_RDMA:
6667 		retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6668 		    alloc_len,
6669 #ifdef _KERNEL
6670 		    type, flags,
6671 #endif
6672 		    error_str, error_str_len);
6673 		break;
6674 	case SCSI_PROTO_ISCSI:
6675 		retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6676 		    alloc_len,
6677 #ifdef _KERNEL
6678 		    type, flags,
6679 #endif
6680 		    error_str, error_str_len);
6681 		break;
6682 	case SCSI_PROTO_SOP:
6683 		retval = scsi_parse_transportid_sop(transportid_str, hdr,
6684 		    alloc_len,
6685 #ifdef _KERNEL
6686 		    type, flags,
6687 #endif
6688 		    error_str, error_str_len);
6689 		break;
6690 	case SCSI_PROTO_SSA:
6691 	case SCSI_PROTO_ADITP:
6692 	case SCSI_PROTO_ATA:
6693 	case SCSI_PROTO_UAS:
6694 	case SCSI_PROTO_NONE:
6695 	default:
6696 		/*
6697 		 * There is no format defined for a Transport ID for these
6698 		 * protocols.  So even if the user gives us something, we
6699 		 * have no way to turn it into a standard SCSI Transport ID.
6700 		 */
6701 		retval = 1;
6702 		if (error_str != NULL) {
6703 			snprintf(error_str, error_str_len, "%s: no Transport "
6704 				 "ID format exists for protocol %s",
6705 				 __func__, tmpstr);
6706 		}
6707 		goto bailout;
6708 		break;	/* NOTREACHED */
6709 	}
6710 bailout:
6711 	return (retval);
6712 }
6713 
6714 struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6715 	{ SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6716 	  "Remaining Capacity in Partition",
6717 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6718 	{ SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6719 	  "Maximum Capacity in Partition",
6720 	  /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6721 	{ SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6722 	  "TapeAlert Flags",
6723 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6724 	{ SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6725 	  "Load Count",
6726 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6727 	{ SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6728 	  "MAM Space Remaining",
6729 	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6730 	  /*parse_str*/ NULL },
6731 	{ SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6732 	  "Assigning Organization",
6733 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6734 	  /*parse_str*/ NULL },
6735 	{ SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6736 	  "Format Density Code",
6737 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6738 	{ SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6739 	  "Initialization Count",
6740 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6741 	{ SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6742 	  "Volume Identifier",
6743 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6744 	  /*parse_str*/ NULL },
6745 	{ SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6746 	  "Volume Change Reference",
6747 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6748 	  /*parse_str*/ NULL },
6749 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6750 	  "Device Vendor/Serial at Last Load",
6751 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6752 	  /*parse_str*/ NULL },
6753 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6754 	  "Device Vendor/Serial at Last Load - 1",
6755 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6756 	  /*parse_str*/ NULL },
6757 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6758 	  "Device Vendor/Serial at Last Load - 2",
6759 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6760 	  /*parse_str*/ NULL },
6761 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6762 	  "Device Vendor/Serial at Last Load - 3",
6763 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6764 	  /*parse_str*/ NULL },
6765 	{ SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6766 	  "Total MB Written in Medium Life",
6767 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6768 	  /*parse_str*/ NULL },
6769 	{ SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6770 	  "Total MB Read in Medium Life",
6771 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6772 	  /*parse_str*/ NULL },
6773 	{ SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6774 	  "Total MB Written in Current/Last Load",
6775 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6776 	  /*parse_str*/ NULL },
6777 	{ SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6778 	  "Total MB Read in Current/Last Load",
6779 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6780 	  /*parse_str*/ NULL },
6781 	{ SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6782 	  "Logical Position of First Encrypted Block",
6783 	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6784 	  /*parse_str*/ NULL },
6785 	{ SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6786 	  "Logical Position of First Unencrypted Block after First "
6787 	  "Encrypted Block",
6788 	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6789 	  /*parse_str*/ NULL },
6790 	{ SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6791 	  "Medium Usage History",
6792 	  /*suffix*/ NULL, /*to_str*/ NULL,
6793 	  /*parse_str*/ NULL },
6794 	{ SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6795 	  "Partition Usage History",
6796 	  /*suffix*/ NULL, /*to_str*/ NULL,
6797 	  /*parse_str*/ NULL },
6798 	{ SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6799 	  "Medium Manufacturer",
6800 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6801 	  /*parse_str*/ NULL },
6802 	{ SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6803 	  "Medium Serial Number",
6804 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6805 	  /*parse_str*/ NULL },
6806 	{ SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6807 	  "Medium Length",
6808 	  /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6809 	  /*parse_str*/ NULL },
6810 	{ SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6811 	  SCSI_ATTR_FLAG_FP_1DIGIT,
6812 	  "Medium Width",
6813 	  /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6814 	  /*parse_str*/ NULL },
6815 	{ SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6816 	  "Assigning Organization",
6817 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6818 	  /*parse_str*/ NULL },
6819 	{ SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6820 	  "Medium Density Code",
6821 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6822 	  /*parse_str*/ NULL },
6823 	{ SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6824 	  "Medium Manufacture Date",
6825 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6826 	  /*parse_str*/ NULL },
6827 	{ SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6828 	  "MAM Capacity",
6829 	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6830 	  /*parse_str*/ NULL },
6831 	{ SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6832 	  "Medium Type",
6833 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6834 	  /*parse_str*/ NULL },
6835 	{ SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6836 	  "Medium Type Information",
6837 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6838 	  /*parse_str*/ NULL },
6839 	{ SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6840 	  "Medium Serial Number",
6841 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6842 	  /*parse_str*/ NULL },
6843 	{ SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6844 	  "Application Vendor",
6845 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6846 	  /*parse_str*/ NULL },
6847 	{ SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6848 	  "Application Name",
6849 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6850 	  /*parse_str*/ NULL },
6851 	{ SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6852 	  "Application Version",
6853 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6854 	  /*parse_str*/ NULL },
6855 	{ SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6856 	  "User Medium Text Label",
6857 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6858 	  /*parse_str*/ NULL },
6859 	{ SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6860 	  "Date and Time Last Written",
6861 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6862 	  /*parse_str*/ NULL },
6863 	{ SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6864 	  "Text Localization Identifier",
6865 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6866 	  /*parse_str*/ NULL },
6867 	{ SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6868 	  "Barcode",
6869 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6870 	  /*parse_str*/ NULL },
6871 	{ SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6872 	  "Owning Host Textual Name",
6873 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6874 	  /*parse_str*/ NULL },
6875 	{ SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6876 	  "Media Pool",
6877 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6878 	  /*parse_str*/ NULL },
6879 	{ SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
6880 	  "Partition User Text Label",
6881 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6882 	  /*parse_str*/ NULL },
6883 	{ SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
6884 	  "Load/Unload at Partition",
6885 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6886 	  /*parse_str*/ NULL },
6887 	{ SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
6888 	  "Application Format Version",
6889 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6890 	  /*parse_str*/ NULL },
6891 	{ SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
6892 	  "Volume Coherency Information",
6893 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
6894 	  /*parse_str*/ NULL },
6895 	{ 0x0ff1, SCSI_ATTR_FLAG_NONE,
6896 	  "Spectra MLM Creation",
6897 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6898 	  /*parse_str*/ NULL },
6899 	{ 0x0ff2, SCSI_ATTR_FLAG_NONE,
6900 	  "Spectra MLM C3",
6901 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6902 	  /*parse_str*/ NULL },
6903 	{ 0x0ff3, SCSI_ATTR_FLAG_NONE,
6904 	  "Spectra MLM RW",
6905 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6906 	  /*parse_str*/ NULL },
6907 	{ 0x0ff4, SCSI_ATTR_FLAG_NONE,
6908 	  "Spectra MLM SDC List",
6909 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6910 	  /*parse_str*/ NULL },
6911 	{ 0x0ff7, SCSI_ATTR_FLAG_NONE,
6912 	  "Spectra MLM Post Scan",
6913 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6914 	  /*parse_str*/ NULL },
6915 	{ 0x0ffe, SCSI_ATTR_FLAG_NONE,
6916 	  "Spectra MLM Checksum",
6917 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6918 	  /*parse_str*/ NULL },
6919 	{ 0x17f1, SCSI_ATTR_FLAG_NONE,
6920 	  "Spectra MLM Creation",
6921 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6922 	  /*parse_str*/ NULL },
6923 	{ 0x17f2, SCSI_ATTR_FLAG_NONE,
6924 	  "Spectra MLM C3",
6925 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6926 	  /*parse_str*/ NULL },
6927 	{ 0x17f3, SCSI_ATTR_FLAG_NONE,
6928 	  "Spectra MLM RW",
6929 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6930 	  /*parse_str*/ NULL },
6931 	{ 0x17f4, SCSI_ATTR_FLAG_NONE,
6932 	  "Spectra MLM SDC List",
6933 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6934 	  /*parse_str*/ NULL },
6935 	{ 0x17f7, SCSI_ATTR_FLAG_NONE,
6936 	  "Spectra MLM Post Scan",
6937 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6938 	  /*parse_str*/ NULL },
6939 	{ 0x17ff, SCSI_ATTR_FLAG_NONE,
6940 	  "Spectra MLM Checksum",
6941 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6942 	  /*parse_str*/ NULL },
6943 };
6944 
6945 /*
6946  * Print out Volume Coherency Information (Attribute 0x080c).
6947  * This field has two variable length members, including one at the
6948  * beginning, so it isn't practical to have a fixed structure definition.
6949  * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
6950  * 2013.
6951  */
6952 int
6953 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6954 			 uint32_t valid_len, uint32_t flags,
6955 			 uint32_t output_flags, char *error_str,
6956 			 int error_str_len)
6957 {
6958 	size_t avail_len;
6959 	uint32_t field_size;
6960 	uint64_t tmp_val;
6961 	uint8_t *cur_ptr;
6962 	int retval;
6963 	int vcr_len, as_len;
6964 
6965 	retval = 0;
6966 	tmp_val = 0;
6967 
6968 	field_size = scsi_2btoul(hdr->length);
6969 	avail_len = valid_len - sizeof(*hdr);
6970 	if (field_size > avail_len) {
6971 		if (error_str != NULL) {
6972 			snprintf(error_str, error_str_len, "Available "
6973 				 "length of attribute ID 0x%.4x %zu < field "
6974 				 "length %u", scsi_2btoul(hdr->id), avail_len,
6975 				 field_size);
6976 		}
6977 		retval = 1;
6978 		goto bailout;
6979 	} else if (field_size == 0) {
6980 		/*
6981 		 * It isn't clear from the spec whether a field length of
6982 		 * 0 is invalid here.  It probably is, but be lenient here
6983 		 * to avoid inconveniencing the user.
6984 		 */
6985 		goto bailout;
6986 	}
6987 	cur_ptr = hdr->attribute;
6988 	vcr_len = *cur_ptr;
6989 	cur_ptr++;
6990 
6991 	sbuf_printf(sb, "\n\tVolume Change Reference Value:");
6992 
6993 	switch (vcr_len) {
6994 	case 0:
6995 		if (error_str != NULL) {
6996 			snprintf(error_str, error_str_len, "Volume Change "
6997 				 "Reference value has length of 0");
6998 		}
6999 		retval = 1;
7000 		goto bailout;
7001 		break; /*NOTREACHED*/
7002 	case 1:
7003 		tmp_val = *cur_ptr;
7004 		break;
7005 	case 2:
7006 		tmp_val = scsi_2btoul(cur_ptr);
7007 		break;
7008 	case 3:
7009 		tmp_val = scsi_3btoul(cur_ptr);
7010 		break;
7011 	case 4:
7012 		tmp_val = scsi_4btoul(cur_ptr);
7013 		break;
7014 	case 8:
7015 		tmp_val = scsi_8btou64(cur_ptr);
7016 		break;
7017 	default:
7018 		sbuf_printf(sb, "\n");
7019 		sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
7020 		break;
7021 	}
7022 	if (vcr_len <= 8)
7023 		sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
7024 
7025 	cur_ptr += vcr_len;
7026 	tmp_val = scsi_8btou64(cur_ptr);
7027 	sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
7028 
7029 	cur_ptr += sizeof(tmp_val);
7030 	tmp_val = scsi_8btou64(cur_ptr);
7031 	sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
7032 		    (uintmax_t)tmp_val);
7033 
7034 	/*
7035 	 * Figure out how long the Application Client Specific Information
7036 	 * is and produce a hexdump.
7037 	 */
7038 	cur_ptr += sizeof(tmp_val);
7039 	as_len = scsi_2btoul(cur_ptr);
7040 	cur_ptr += sizeof(uint16_t);
7041 	sbuf_printf(sb, "\tApplication Client Specific Information: ");
7042 	if (((as_len == SCSI_LTFS_VER0_LEN)
7043 	  || (as_len == SCSI_LTFS_VER1_LEN))
7044 	 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
7045 		sbuf_printf(sb, "LTFS\n");
7046 		cur_ptr += SCSI_LTFS_STR_LEN + 1;
7047 		if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
7048 			cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
7049 		sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
7050 		cur_ptr += SCSI_LTFS_UUID_LEN + 1;
7051 		/* XXX KDM check the length */
7052 		sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
7053 	} else {
7054 		sbuf_printf(sb, "Unknown\n");
7055 		sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
7056 	}
7057 
7058 bailout:
7059 	return (retval);
7060 }
7061 
7062 int
7063 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7064 			 uint32_t valid_len, uint32_t flags,
7065 			 uint32_t output_flags, char *error_str,
7066 			 int error_str_len)
7067 {
7068 	size_t avail_len;
7069 	uint32_t field_size;
7070 	struct scsi_attrib_vendser *vendser;
7071 	cam_strvis_flags strvis_flags;
7072 	int retval = 0;
7073 
7074 	field_size = scsi_2btoul(hdr->length);
7075 	avail_len = valid_len - sizeof(*hdr);
7076 	if (field_size > avail_len) {
7077 		if (error_str != NULL) {
7078 			snprintf(error_str, error_str_len, "Available "
7079 				 "length of attribute ID 0x%.4x %zu < field "
7080 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7081 				 field_size);
7082 		}
7083 		retval = 1;
7084 		goto bailout;
7085 	} else if (field_size == 0) {
7086 		/*
7087 		 * A field size of 0 doesn't make sense here.  The device
7088 		 * can at least give you the vendor ID, even if it can't
7089 		 * give you the serial number.
7090 		 */
7091 		if (error_str != NULL) {
7092 			snprintf(error_str, error_str_len, "The length of "
7093 				 "attribute ID 0x%.4x is 0",
7094 				 scsi_2btoul(hdr->id));
7095 		}
7096 		retval = 1;
7097 		goto bailout;
7098 	}
7099 	vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7100 
7101 	switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7102 	case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7103 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7104 		break;
7105 	case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7106 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7107 		break;
7108 	case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7109 	default:
7110 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7111 		break;;
7112 	}
7113 	cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7114 	    strvis_flags);
7115 	sbuf_putc(sb, ' ');
7116 	cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7117 	    strvis_flags);
7118 bailout:
7119 	return (retval);
7120 }
7121 
7122 int
7123 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7124 			 uint32_t valid_len, uint32_t flags,
7125 			 uint32_t output_flags, char *error_str,
7126 			 int error_str_len)
7127 {
7128 	uint32_t field_size;
7129 	ssize_t avail_len;
7130 	uint32_t print_len;
7131 	uint8_t *num_ptr;
7132 	int retval = 0;
7133 
7134 	field_size = scsi_2btoul(hdr->length);
7135 	avail_len = valid_len - sizeof(*hdr);
7136 	print_len = MIN(avail_len, field_size);
7137 	num_ptr = hdr->attribute;
7138 
7139 	if (print_len > 0) {
7140 		sbuf_printf(sb, "\n");
7141 		sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7142 	}
7143 
7144 	return (retval);
7145 }
7146 
7147 int
7148 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7149 		     uint32_t valid_len, uint32_t flags,
7150 		     uint32_t output_flags, char *error_str,
7151 		     int error_str_len)
7152 {
7153 	uint64_t print_number;
7154 	size_t avail_len;
7155 	uint32_t number_size;
7156 	int retval = 0;
7157 
7158 	number_size = scsi_2btoul(hdr->length);
7159 
7160 	avail_len = valid_len - sizeof(*hdr);
7161 	if (avail_len < number_size) {
7162 		if (error_str != NULL) {
7163 			snprintf(error_str, error_str_len, "Available "
7164 				 "length of attribute ID 0x%.4x %zu < field "
7165 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7166 				 number_size);
7167 		}
7168 		retval = 1;
7169 		goto bailout;
7170 	}
7171 
7172 	switch (number_size) {
7173 	case 0:
7174 		/*
7175 		 * We don't treat this as an error, since there may be
7176 		 * scenarios where a device reports a field but then gives
7177 		 * a length of 0.  See the note in scsi_attrib_ascii_sbuf().
7178 		 */
7179 		goto bailout;
7180 		break; /*NOTREACHED*/
7181 	case 1:
7182 		print_number = hdr->attribute[0];
7183 		break;
7184 	case 2:
7185 		print_number = scsi_2btoul(hdr->attribute);
7186 		break;
7187 	case 3:
7188 		print_number = scsi_3btoul(hdr->attribute);
7189 		break;
7190 	case 4:
7191 		print_number = scsi_4btoul(hdr->attribute);
7192 		break;
7193 	case 8:
7194 		print_number = scsi_8btou64(hdr->attribute);
7195 		break;
7196 	default:
7197 		/*
7198 		 * If we wind up here, the number is too big to print
7199 		 * normally, so just do a hexdump.
7200 		 */
7201 		retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7202 						  flags, output_flags,
7203 						  error_str, error_str_len);
7204 		goto bailout;
7205 		break;
7206 	}
7207 
7208 	if (flags & SCSI_ATTR_FLAG_FP) {
7209 #ifndef _KERNEL
7210 		long double num_float;
7211 
7212 		num_float = (long double)print_number;
7213 
7214 		if (flags & SCSI_ATTR_FLAG_DIV_10)
7215 			num_float /= 10;
7216 
7217 		sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7218 			    1 : 0, num_float);
7219 #else /* _KERNEL */
7220 		sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7221 			    (print_number / 10) : print_number);
7222 #endif /* _KERNEL */
7223 	} else if (flags & SCSI_ATTR_FLAG_HEX) {
7224 		sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7225 	} else
7226 		sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7227 
7228 bailout:
7229 	return (retval);
7230 }
7231 
7232 int
7233 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7234 		       uint32_t valid_len, uint32_t flags,
7235 		       uint32_t output_flags, char *error_str,
7236 		       int error_str_len)
7237 {
7238 	size_t avail_len;
7239 	uint32_t field_size, print_size;
7240 	int retval = 0;
7241 
7242 	avail_len = valid_len - sizeof(*hdr);
7243 	field_size = scsi_2btoul(hdr->length);
7244 	print_size = MIN(avail_len, field_size);
7245 
7246 	if (print_size > 0) {
7247 		cam_strvis_flags strvis_flags;
7248 
7249 		switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7250 		case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7251 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7252 			break;
7253 		case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7254 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7255 			break;
7256 		case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7257 		default:
7258 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7259 			break;
7260 		}
7261 		cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7262 	} else if (avail_len < field_size) {
7263 		/*
7264 		 * We only report an error if the user didn't allocate
7265 		 * enough space to hold the full value of this field.  If
7266 		 * the field length is 0, that is allowed by the spec.
7267 		 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7268 		 * "This attribute indicates the current volume identifier
7269 		 * (see SMC-3) of the medium. If the device server supports
7270 		 * this attribute but does not have access to the volume
7271 		 * identifier, the device server shall report this attribute
7272 		 * with an attribute length value of zero."
7273 		 */
7274 		if (error_str != NULL) {
7275 			snprintf(error_str, error_str_len, "Available "
7276 				 "length of attribute ID 0x%.4x %zu < field "
7277 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7278 				 field_size);
7279 		}
7280 		retval = 1;
7281 	}
7282 
7283 	return (retval);
7284 }
7285 
7286 int
7287 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7288 		      uint32_t valid_len, uint32_t flags,
7289 		      uint32_t output_flags, char *error_str,
7290 		      int error_str_len)
7291 {
7292 	size_t avail_len;
7293 	uint32_t field_size, print_size;
7294 	int retval = 0;
7295 	int esc_text = 1;
7296 
7297 	avail_len = valid_len - sizeof(*hdr);
7298 	field_size = scsi_2btoul(hdr->length);
7299 	print_size = MIN(avail_len, field_size);
7300 
7301 	if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7302 	     SCSI_ATTR_OUTPUT_TEXT_RAW)
7303 		esc_text = 0;
7304 
7305 	if (print_size > 0) {
7306 		uint32_t i;
7307 
7308 		for (i = 0; i < print_size; i++) {
7309 			if (hdr->attribute[i] == '\0')
7310 				continue;
7311 			else if (((unsigned char)hdr->attribute[i] < 0x80)
7312 			      || (esc_text == 0))
7313 				sbuf_putc(sb, hdr->attribute[i]);
7314 			else
7315 				sbuf_printf(sb, "%%%02x",
7316 				    (unsigned char)hdr->attribute[i]);
7317 		}
7318 	} else if (avail_len < field_size) {
7319 		/*
7320 		 * We only report an error if the user didn't allocate
7321 		 * enough space to hold the full value of this field.
7322 		 */
7323 		if (error_str != NULL) {
7324 			snprintf(error_str, error_str_len, "Available "
7325 				 "length of attribute ID 0x%.4x %zu < field "
7326 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7327 				 field_size);
7328 		}
7329 		retval = 1;
7330 	}
7331 
7332 	return (retval);
7333 }
7334 
7335 struct scsi_attrib_table_entry *
7336 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7337 		       size_t num_table_entries, uint32_t id)
7338 {
7339 	uint32_t i;
7340 
7341 	for (i = 0; i < num_table_entries; i++) {
7342 		if (table[i].id == id)
7343 			return (&table[i]);
7344 	}
7345 
7346 	return (NULL);
7347 }
7348 
7349 struct scsi_attrib_table_entry *
7350 scsi_get_attrib_entry(uint32_t id)
7351 {
7352 	return (scsi_find_attrib_entry(scsi_mam_attr_table,
7353 	    nitems(scsi_mam_attr_table), id));
7354 }
7355 
7356 int
7357 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7358    struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7359    char *error_str, size_t error_str_len)
7360 {
7361 	int retval;
7362 
7363 	switch (hdr->byte2 & SMA_FORMAT_MASK) {
7364 	case SMA_FORMAT_ASCII:
7365 		retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7366 		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7367 		break;
7368 	case SMA_FORMAT_BINARY:
7369 		if (scsi_2btoul(hdr->length) <= 8)
7370 			retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7371 			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7372 			    error_str_len);
7373 		else
7374 			retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7375 			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7376 			    error_str_len);
7377 		break;
7378 	case SMA_FORMAT_TEXT:
7379 		retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7380 		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7381 		    error_str_len);
7382 		break;
7383 	default:
7384 		if (error_str != NULL) {
7385 			snprintf(error_str, error_str_len, "Unknown attribute "
7386 			    "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7387 		}
7388 		retval = 1;
7389 		goto bailout;
7390 		break; /*NOTREACHED*/
7391 	}
7392 
7393 	sbuf_trim(sb);
7394 
7395 bailout:
7396 
7397 	return (retval);
7398 }
7399 
7400 void
7401 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7402 			struct scsi_mam_attribute_header *hdr,
7403 			uint32_t valid_len, const char *desc)
7404 {
7405 	int need_space = 0;
7406 	uint32_t len;
7407 	uint32_t id;
7408 
7409 	/*
7410 	 * We can't do anything if we don't have enough valid data for the
7411 	 * header.
7412 	 */
7413 	if (valid_len < sizeof(*hdr))
7414 		return;
7415 
7416 	id = scsi_2btoul(hdr->id);
7417 	/*
7418 	 * Note that we print out the value of the attribute listed in the
7419 	 * header, regardless of whether we actually got that many bytes
7420 	 * back from the device through the controller.  A truncated result
7421 	 * could be the result of a failure to ask for enough data; the
7422 	 * header indicates how many bytes are allocated for this attribute
7423 	 * in the MAM.
7424 	 */
7425 	len = scsi_2btoul(hdr->length);
7426 
7427 	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7428 	    SCSI_ATTR_OUTPUT_FIELD_NONE)
7429 		return;
7430 
7431 	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7432 	 && (desc != NULL)) {
7433 		sbuf_printf(sb, "%s", desc);
7434 		need_space = 1;
7435 	}
7436 
7437 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7438 		sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7439 		need_space = 0;
7440 	}
7441 
7442 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7443 		sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7444 		need_space = 0;
7445 	}
7446 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7447 		sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7448 			    (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7449 	}
7450 	sbuf_printf(sb, ": ");
7451 }
7452 
7453 int
7454 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7455 		 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7456 		 size_t num_user_entries, int prefer_user_table,
7457 		 uint32_t output_flags, char *error_str, int error_str_len)
7458 {
7459 	int retval;
7460 	struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7461 	struct scsi_attrib_table_entry *entry = NULL;
7462 	size_t table1_size = 0, table2_size = 0;
7463 	uint32_t id;
7464 
7465 	retval = 0;
7466 
7467 	if (valid_len < sizeof(*hdr)) {
7468 		retval = 1;
7469 		goto bailout;
7470 	}
7471 
7472 	id = scsi_2btoul(hdr->id);
7473 
7474 	if (user_table != NULL) {
7475 		if (prefer_user_table != 0) {
7476 			table1 = user_table;
7477 			table1_size = num_user_entries;
7478 			table2 = scsi_mam_attr_table;
7479 			table2_size = nitems(scsi_mam_attr_table);
7480 		} else {
7481 			table1 = scsi_mam_attr_table;
7482 			table1_size = nitems(scsi_mam_attr_table);
7483 			table2 = user_table;
7484 			table2_size = num_user_entries;
7485 		}
7486 	} else {
7487 		table1 = scsi_mam_attr_table;
7488 		table1_size = nitems(scsi_mam_attr_table);
7489 	}
7490 
7491 	entry = scsi_find_attrib_entry(table1, table1_size, id);
7492 	if (entry != NULL) {
7493 		scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7494 					entry->desc);
7495 		if (entry->to_str == NULL)
7496 			goto print_default;
7497 		retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7498 				       output_flags, error_str, error_str_len);
7499 		goto bailout;
7500 	}
7501 	if (table2 != NULL) {
7502 		entry = scsi_find_attrib_entry(table2, table2_size, id);
7503 		if (entry != NULL) {
7504 			if (entry->to_str == NULL)
7505 				goto print_default;
7506 
7507 			scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7508 						valid_len, entry->desc);
7509 			retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7510 					       output_flags, error_str,
7511 					       error_str_len);
7512 			goto bailout;
7513 		}
7514 	}
7515 
7516 	scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7517 
7518 print_default:
7519 	retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7520 	    error_str, error_str_len);
7521 bailout:
7522 	if (retval == 0) {
7523 	 	if ((entry != NULL)
7524 		 && (entry->suffix != NULL))
7525 			sbuf_printf(sb, " %s", entry->suffix);
7526 
7527 		sbuf_trim(sb);
7528 		sbuf_printf(sb, "\n");
7529 	}
7530 
7531 	return (retval);
7532 }
7533 
7534 void
7535 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries,
7536 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7537 		     u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout)
7538 {
7539 	struct scsi_test_unit_ready *scsi_cmd;
7540 
7541 	cam_fill_csio(csio,
7542 		      retries,
7543 		      cbfcnp,
7544 		      CAM_DIR_NONE,
7545 		      tag_action,
7546 		      /*data_ptr*/NULL,
7547 		      /*dxfer_len*/0,
7548 		      sense_len,
7549 		      sizeof(*scsi_cmd),
7550 		      timeout);
7551 
7552 	scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7553 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7554 	scsi_cmd->opcode = TEST_UNIT_READY;
7555 }
7556 
7557 void
7558 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries,
7559 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7560 		   void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action,
7561 		   u_int8_t sense_len, u_int32_t timeout)
7562 {
7563 	struct scsi_request_sense *scsi_cmd;
7564 
7565 	cam_fill_csio(csio,
7566 		      retries,
7567 		      cbfcnp,
7568 		      CAM_DIR_IN,
7569 		      tag_action,
7570 		      data_ptr,
7571 		      dxfer_len,
7572 		      sense_len,
7573 		      sizeof(*scsi_cmd),
7574 		      timeout);
7575 
7576 	scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7577 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7578 	scsi_cmd->opcode = REQUEST_SENSE;
7579 	scsi_cmd->length = dxfer_len;
7580 }
7581 
7582 void
7583 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries,
7584 	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7585 	     u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len,
7586 	     int evpd, u_int8_t page_code, u_int8_t sense_len,
7587 	     u_int32_t timeout)
7588 {
7589 	struct scsi_inquiry *scsi_cmd;
7590 
7591 	cam_fill_csio(csio,
7592 		      retries,
7593 		      cbfcnp,
7594 		      /*flags*/CAM_DIR_IN,
7595 		      tag_action,
7596 		      /*data_ptr*/inq_buf,
7597 		      /*dxfer_len*/inq_len,
7598 		      sense_len,
7599 		      sizeof(*scsi_cmd),
7600 		      timeout);
7601 
7602 	scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7603 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7604 	scsi_cmd->opcode = INQUIRY;
7605 	if (evpd) {
7606 		scsi_cmd->byte2 |= SI_EVPD;
7607 		scsi_cmd->page_code = page_code;
7608 	}
7609 	scsi_ulto2b(inq_len, scsi_cmd->length);
7610 }
7611 
7612 void
7613 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries,
7614     void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7615     int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7616     uint8_t sense_len, uint32_t timeout)
7617 {
7618 
7619 	scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7620 	    pc, page, 0, param_buf, param_len, 0, sense_len, timeout);
7621 }
7622 
7623 void
7624 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries,
7625     void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7626     int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7627     int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
7628 {
7629 
7630 	scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7631 	    pc, page, 0, param_buf, param_len, minimum_cmd_size,
7632 	    sense_len, timeout);
7633 }
7634 
7635 void
7636 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries,
7637     void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7638     int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf,
7639     uint32_t param_len, int minimum_cmd_size, uint8_t sense_len,
7640     uint32_t timeout)
7641 {
7642 	u_int8_t cdb_len;
7643 
7644 	/*
7645 	 * Use the smallest possible command to perform the operation.
7646 	 */
7647 	if ((param_len < 256)
7648 	 && (minimum_cmd_size < 10)) {
7649 		/*
7650 		 * We can fit in a 6 byte cdb.
7651 		 */
7652 		struct scsi_mode_sense_6 *scsi_cmd;
7653 
7654 		scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7655 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7656 		scsi_cmd->opcode = MODE_SENSE_6;
7657 		if (dbd != 0)
7658 			scsi_cmd->byte2 |= SMS_DBD;
7659 		scsi_cmd->page = pc | page;
7660 		scsi_cmd->subpage = subpage;
7661 		scsi_cmd->length = param_len;
7662 		cdb_len = sizeof(*scsi_cmd);
7663 	} else {
7664 		/*
7665 		 * Need a 10 byte cdb.
7666 		 */
7667 		struct scsi_mode_sense_10 *scsi_cmd;
7668 
7669 		scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7670 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7671 		scsi_cmd->opcode = MODE_SENSE_10;
7672 		if (dbd != 0)
7673 			scsi_cmd->byte2 |= SMS_DBD;
7674 		scsi_cmd->page = pc | page;
7675 		scsi_cmd->subpage = subpage;
7676 		scsi_ulto2b(param_len, scsi_cmd->length);
7677 		cdb_len = sizeof(*scsi_cmd);
7678 	}
7679 	cam_fill_csio(csio,
7680 		      retries,
7681 		      cbfcnp,
7682 		      CAM_DIR_IN,
7683 		      tag_action,
7684 		      param_buf,
7685 		      param_len,
7686 		      sense_len,
7687 		      cdb_len,
7688 		      timeout);
7689 }
7690 
7691 void
7692 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries,
7693 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7694 		 u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7695 		 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7696 		 u_int32_t timeout)
7697 {
7698 	scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7699 			     scsi_page_fmt, save_pages, param_buf,
7700 			     param_len, 0, sense_len, timeout);
7701 }
7702 
7703 void
7704 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries,
7705 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7706 		     u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7707 		     u_int8_t *param_buf, u_int32_t param_len,
7708 		     int minimum_cmd_size, u_int8_t sense_len,
7709 		     u_int32_t timeout)
7710 {
7711 	u_int8_t cdb_len;
7712 
7713 	/*
7714 	 * Use the smallest possible command to perform the operation.
7715 	 */
7716 	if ((param_len < 256)
7717 	 && (minimum_cmd_size < 10)) {
7718 		/*
7719 		 * We can fit in a 6 byte cdb.
7720 		 */
7721 		struct scsi_mode_select_6 *scsi_cmd;
7722 
7723 		scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7724 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7725 		scsi_cmd->opcode = MODE_SELECT_6;
7726 		if (scsi_page_fmt != 0)
7727 			scsi_cmd->byte2 |= SMS_PF;
7728 		if (save_pages != 0)
7729 			scsi_cmd->byte2 |= SMS_SP;
7730 		scsi_cmd->length = param_len;
7731 		cdb_len = sizeof(*scsi_cmd);
7732 	} else {
7733 		/*
7734 		 * Need a 10 byte cdb.
7735 		 */
7736 		struct scsi_mode_select_10 *scsi_cmd;
7737 
7738 		scsi_cmd =
7739 		    (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7740 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7741 		scsi_cmd->opcode = MODE_SELECT_10;
7742 		if (scsi_page_fmt != 0)
7743 			scsi_cmd->byte2 |= SMS_PF;
7744 		if (save_pages != 0)
7745 			scsi_cmd->byte2 |= SMS_SP;
7746 		scsi_ulto2b(param_len, scsi_cmd->length);
7747 		cdb_len = sizeof(*scsi_cmd);
7748 	}
7749 	cam_fill_csio(csio,
7750 		      retries,
7751 		      cbfcnp,
7752 		      CAM_DIR_OUT,
7753 		      tag_action,
7754 		      param_buf,
7755 		      param_len,
7756 		      sense_len,
7757 		      cdb_len,
7758 		      timeout);
7759 }
7760 
7761 void
7762 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries,
7763 	       void (*cbfcnp)(struct cam_periph *, union ccb *),
7764 	       u_int8_t tag_action, u_int8_t page_code, u_int8_t page,
7765 	       int save_pages, int ppc, u_int32_t paramptr,
7766 	       u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7767 	       u_int32_t timeout)
7768 {
7769 	struct scsi_log_sense *scsi_cmd;
7770 	u_int8_t cdb_len;
7771 
7772 	scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7773 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7774 	scsi_cmd->opcode = LOG_SENSE;
7775 	scsi_cmd->page = page_code | page;
7776 	if (save_pages != 0)
7777 		scsi_cmd->byte2 |= SLS_SP;
7778 	if (ppc != 0)
7779 		scsi_cmd->byte2 |= SLS_PPC;
7780 	scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7781 	scsi_ulto2b(param_len, scsi_cmd->length);
7782 	cdb_len = sizeof(*scsi_cmd);
7783 
7784 	cam_fill_csio(csio,
7785 		      retries,
7786 		      cbfcnp,
7787 		      /*flags*/CAM_DIR_IN,
7788 		      tag_action,
7789 		      /*data_ptr*/param_buf,
7790 		      /*dxfer_len*/param_len,
7791 		      sense_len,
7792 		      cdb_len,
7793 		      timeout);
7794 }
7795 
7796 void
7797 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries,
7798 		void (*cbfcnp)(struct cam_periph *, union ccb *),
7799 		u_int8_t tag_action, u_int8_t page_code, int save_pages,
7800 		int pc_reset, u_int8_t *param_buf, u_int32_t param_len,
7801 		u_int8_t sense_len, u_int32_t timeout)
7802 {
7803 	struct scsi_log_select *scsi_cmd;
7804 	u_int8_t cdb_len;
7805 
7806 	scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7807 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7808 	scsi_cmd->opcode = LOG_SELECT;
7809 	scsi_cmd->page = page_code & SLS_PAGE_CODE;
7810 	if (save_pages != 0)
7811 		scsi_cmd->byte2 |= SLS_SP;
7812 	if (pc_reset != 0)
7813 		scsi_cmd->byte2 |= SLS_PCR;
7814 	scsi_ulto2b(param_len, scsi_cmd->length);
7815 	cdb_len = sizeof(*scsi_cmd);
7816 
7817 	cam_fill_csio(csio,
7818 		      retries,
7819 		      cbfcnp,
7820 		      /*flags*/CAM_DIR_OUT,
7821 		      tag_action,
7822 		      /*data_ptr*/param_buf,
7823 		      /*dxfer_len*/param_len,
7824 		      sense_len,
7825 		      cdb_len,
7826 		      timeout);
7827 }
7828 
7829 /*
7830  * Prevent or allow the user to remove the media
7831  */
7832 void
7833 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries,
7834 	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7835 	     u_int8_t tag_action, u_int8_t action,
7836 	     u_int8_t sense_len, u_int32_t timeout)
7837 {
7838 	struct scsi_prevent *scsi_cmd;
7839 
7840 	cam_fill_csio(csio,
7841 		      retries,
7842 		      cbfcnp,
7843 		      /*flags*/CAM_DIR_NONE,
7844 		      tag_action,
7845 		      /*data_ptr*/NULL,
7846 		      /*dxfer_len*/0,
7847 		      sense_len,
7848 		      sizeof(*scsi_cmd),
7849 		      timeout);
7850 
7851 	scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7852 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7853 	scsi_cmd->opcode = PREVENT_ALLOW;
7854 	scsi_cmd->how = action;
7855 }
7856 
7857 /* XXX allow specification of address and PMI bit and LBA */
7858 void
7859 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries,
7860 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7861 		   u_int8_t tag_action,
7862 		   struct scsi_read_capacity_data *rcap_buf,
7863 		   u_int8_t sense_len, u_int32_t timeout)
7864 {
7865 	struct scsi_read_capacity *scsi_cmd;
7866 
7867 	cam_fill_csio(csio,
7868 		      retries,
7869 		      cbfcnp,
7870 		      /*flags*/CAM_DIR_IN,
7871 		      tag_action,
7872 		      /*data_ptr*/(u_int8_t *)rcap_buf,
7873 		      /*dxfer_len*/sizeof(*rcap_buf),
7874 		      sense_len,
7875 		      sizeof(*scsi_cmd),
7876 		      timeout);
7877 
7878 	scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7879 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7880 	scsi_cmd->opcode = READ_CAPACITY;
7881 }
7882 
7883 void
7884 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
7885 		      void (*cbfcnp)(struct cam_periph *, union ccb *),
7886 		      uint8_t tag_action, uint64_t lba, int reladr, int pmi,
7887 		      uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
7888 		      uint32_t timeout)
7889 {
7890 	struct scsi_read_capacity_16 *scsi_cmd;
7891 
7892 
7893 	cam_fill_csio(csio,
7894 		      retries,
7895 		      cbfcnp,
7896 		      /*flags*/CAM_DIR_IN,
7897 		      tag_action,
7898 		      /*data_ptr*/(u_int8_t *)rcap_buf,
7899 		      /*dxfer_len*/rcap_buf_len,
7900 		      sense_len,
7901 		      sizeof(*scsi_cmd),
7902 		      timeout);
7903 	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
7904 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7905 	scsi_cmd->opcode = SERVICE_ACTION_IN;
7906 	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
7907 	scsi_u64to8b(lba, scsi_cmd->addr);
7908 	scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
7909 	if (pmi)
7910 		reladr |= SRC16_PMI;
7911 	if (reladr)
7912 		reladr |= SRC16_RELADR;
7913 }
7914 
7915 void
7916 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries,
7917 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7918 		 u_int8_t tag_action, u_int8_t select_report,
7919 		 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len,
7920 		 u_int8_t sense_len, u_int32_t timeout)
7921 {
7922 	struct scsi_report_luns *scsi_cmd;
7923 
7924 	cam_fill_csio(csio,
7925 		      retries,
7926 		      cbfcnp,
7927 		      /*flags*/CAM_DIR_IN,
7928 		      tag_action,
7929 		      /*data_ptr*/(u_int8_t *)rpl_buf,
7930 		      /*dxfer_len*/alloc_len,
7931 		      sense_len,
7932 		      sizeof(*scsi_cmd),
7933 		      timeout);
7934 	scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
7935 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7936 	scsi_cmd->opcode = REPORT_LUNS;
7937 	scsi_cmd->select_report = select_report;
7938 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7939 }
7940 
7941 void
7942 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7943 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7944 		 u_int8_t tag_action, u_int8_t pdf,
7945 		 void *buf, u_int32_t alloc_len,
7946 		 u_int8_t sense_len, u_int32_t timeout)
7947 {
7948 	struct scsi_target_group *scsi_cmd;
7949 
7950 	cam_fill_csio(csio,
7951 		      retries,
7952 		      cbfcnp,
7953 		      /*flags*/CAM_DIR_IN,
7954 		      tag_action,
7955 		      /*data_ptr*/(u_int8_t *)buf,
7956 		      /*dxfer_len*/alloc_len,
7957 		      sense_len,
7958 		      sizeof(*scsi_cmd),
7959 		      timeout);
7960 	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7961 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7962 	scsi_cmd->opcode = MAINTENANCE_IN;
7963 	scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
7964 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7965 }
7966 
7967 void
7968 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries,
7969 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7970 		 u_int8_t tag_action, u_int8_t pdf,
7971 		 void *buf, u_int32_t alloc_len,
7972 		 u_int8_t sense_len, u_int32_t timeout)
7973 {
7974 	struct scsi_timestamp *scsi_cmd;
7975 
7976 	cam_fill_csio(csio,
7977 		      retries,
7978 		      cbfcnp,
7979 		      /*flags*/CAM_DIR_IN,
7980 		      tag_action,
7981 		      /*data_ptr*/(u_int8_t *)buf,
7982 		      /*dxfer_len*/alloc_len,
7983 		      sense_len,
7984 		      sizeof(*scsi_cmd),
7985 		      timeout);
7986 	scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
7987 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7988 	scsi_cmd->opcode = MAINTENANCE_IN;
7989 	scsi_cmd->service_action = REPORT_TIMESTAMP | pdf;
7990 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7991 }
7992 
7993 void
7994 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7995 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7996 		 u_int8_t tag_action, void *buf, u_int32_t alloc_len,
7997 		 u_int8_t sense_len, u_int32_t timeout)
7998 {
7999 	struct scsi_target_group *scsi_cmd;
8000 
8001 	cam_fill_csio(csio,
8002 		      retries,
8003 		      cbfcnp,
8004 		      /*flags*/CAM_DIR_OUT,
8005 		      tag_action,
8006 		      /*data_ptr*/(u_int8_t *)buf,
8007 		      /*dxfer_len*/alloc_len,
8008 		      sense_len,
8009 		      sizeof(*scsi_cmd),
8010 		      timeout);
8011 	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8012 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8013 	scsi_cmd->opcode = MAINTENANCE_OUT;
8014 	scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
8015 	scsi_ulto4b(alloc_len, scsi_cmd->length);
8016 }
8017 
8018 void
8019 scsi_create_timestamp(uint8_t *timestamp_6b_buf,
8020 		      uint64_t timestamp)
8021 {
8022 	uint8_t buf[8];
8023 	scsi_u64to8b(timestamp, buf);
8024 	/*
8025 	 * Using memcopy starting at buf[2] because the set timestamp parameters
8026 	 * only has six bytes for the timestamp to fit into, and we don't have a
8027 	 * scsi_u64to6b function.
8028 	 */
8029 	memcpy(timestamp_6b_buf, &buf[2], 6);
8030 }
8031 
8032 void
8033 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries,
8034 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
8035 		   u_int8_t tag_action, void *buf, u_int32_t alloc_len,
8036 		   u_int8_t sense_len, u_int32_t timeout)
8037 {
8038 	struct scsi_timestamp *scsi_cmd;
8039 
8040 	cam_fill_csio(csio,
8041 		      retries,
8042 		      cbfcnp,
8043 		      /*flags*/CAM_DIR_OUT,
8044 		      tag_action,
8045 		      /*data_ptr*/(u_int8_t *) buf,
8046 		      /*dxfer_len*/alloc_len,
8047 		      sense_len,
8048 		      sizeof(*scsi_cmd),
8049 		      timeout);
8050 	scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8051 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8052 	scsi_cmd->opcode = MAINTENANCE_OUT;
8053 	scsi_cmd->service_action = SET_TIMESTAMP;
8054 	scsi_ulto4b(alloc_len, scsi_cmd->length);
8055 }
8056 
8057 /*
8058  * Syncronize the media to the contents of the cache for
8059  * the given lba/count pair.  Specifying 0/0 means sync
8060  * the whole cache.
8061  */
8062 void
8063 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries,
8064 		       void (*cbfcnp)(struct cam_periph *, union ccb *),
8065 		       u_int8_t tag_action, u_int32_t begin_lba,
8066 		       u_int16_t lb_count, u_int8_t sense_len,
8067 		       u_int32_t timeout)
8068 {
8069 	struct scsi_sync_cache *scsi_cmd;
8070 
8071 	cam_fill_csio(csio,
8072 		      retries,
8073 		      cbfcnp,
8074 		      /*flags*/CAM_DIR_NONE,
8075 		      tag_action,
8076 		      /*data_ptr*/NULL,
8077 		      /*dxfer_len*/0,
8078 		      sense_len,
8079 		      sizeof(*scsi_cmd),
8080 		      timeout);
8081 
8082 	scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
8083 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8084 	scsi_cmd->opcode = SYNCHRONIZE_CACHE;
8085 	scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
8086 	scsi_ulto2b(lb_count, scsi_cmd->lb_count);
8087 }
8088 
8089 void
8090 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries,
8091 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8092 		u_int8_t tag_action, int readop, u_int8_t byte2,
8093 		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8094 		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8095 		u_int32_t timeout)
8096 {
8097 	int read;
8098 	u_int8_t cdb_len;
8099 
8100 	read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
8101 
8102 	/*
8103 	 * Use the smallest possible command to perform the operation
8104 	 * as some legacy hardware does not support the 10 byte commands.
8105 	 * If any of the bits in byte2 is set, we have to go with a larger
8106 	 * command.
8107 	 */
8108 	if ((minimum_cmd_size < 10)
8109 	 && ((lba & 0x1fffff) == lba)
8110 	 && ((block_count & 0xff) == block_count)
8111 	 && (byte2 == 0)) {
8112 		/*
8113 		 * We can fit in a 6 byte cdb.
8114 		 */
8115 		struct scsi_rw_6 *scsi_cmd;
8116 
8117 		scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
8118 		scsi_cmd->opcode = read ? READ_6 : WRITE_6;
8119 		scsi_ulto3b(lba, scsi_cmd->addr);
8120 		scsi_cmd->length = block_count & 0xff;
8121 		scsi_cmd->control = 0;
8122 		cdb_len = sizeof(*scsi_cmd);
8123 
8124 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8125 			  ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
8126 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8127 			   scsi_cmd->length, dxfer_len));
8128 	} else if ((minimum_cmd_size < 12)
8129 		&& ((block_count & 0xffff) == block_count)
8130 		&& ((lba & 0xffffffff) == lba)) {
8131 		/*
8132 		 * Need a 10 byte cdb.
8133 		 */
8134 		struct scsi_rw_10 *scsi_cmd;
8135 
8136 		scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
8137 		scsi_cmd->opcode = read ? READ_10 : WRITE_10;
8138 		scsi_cmd->byte2 = byte2;
8139 		scsi_ulto4b(lba, scsi_cmd->addr);
8140 		scsi_cmd->reserved = 0;
8141 		scsi_ulto2b(block_count, scsi_cmd->length);
8142 		scsi_cmd->control = 0;
8143 		cdb_len = sizeof(*scsi_cmd);
8144 
8145 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8146 			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8147 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8148 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8149 			   scsi_cmd->length[1], dxfer_len));
8150 	} else if ((minimum_cmd_size < 16)
8151 		&& ((block_count & 0xffffffff) == block_count)
8152 		&& ((lba & 0xffffffff) == lba)) {
8153 		/*
8154 		 * The block count is too big for a 10 byte CDB, use a 12
8155 		 * byte CDB.
8156 		 */
8157 		struct scsi_rw_12 *scsi_cmd;
8158 
8159 		scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8160 		scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8161 		scsi_cmd->byte2 = byte2;
8162 		scsi_ulto4b(lba, scsi_cmd->addr);
8163 		scsi_cmd->reserved = 0;
8164 		scsi_ulto4b(block_count, scsi_cmd->length);
8165 		scsi_cmd->control = 0;
8166 		cdb_len = sizeof(*scsi_cmd);
8167 
8168 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8169 			  ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8170 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8171 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8172 			   scsi_cmd->length[1], scsi_cmd->length[2],
8173 			   scsi_cmd->length[3], dxfer_len));
8174 	} else {
8175 		/*
8176 		 * 16 byte CDB.  We'll only get here if the LBA is larger
8177 		 * than 2^32, or if the user asks for a 16 byte command.
8178 		 */
8179 		struct scsi_rw_16 *scsi_cmd;
8180 
8181 		scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8182 		scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8183 		scsi_cmd->byte2 = byte2;
8184 		scsi_u64to8b(lba, scsi_cmd->addr);
8185 		scsi_cmd->reserved = 0;
8186 		scsi_ulto4b(block_count, scsi_cmd->length);
8187 		scsi_cmd->control = 0;
8188 		cdb_len = sizeof(*scsi_cmd);
8189 	}
8190 	cam_fill_csio(csio,
8191 		      retries,
8192 		      cbfcnp,
8193 		      (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8194 		      ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8195 		      tag_action,
8196 		      data_ptr,
8197 		      dxfer_len,
8198 		      sense_len,
8199 		      cdb_len,
8200 		      timeout);
8201 }
8202 
8203 void
8204 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries,
8205 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8206 		u_int8_t tag_action, u_int8_t byte2,
8207 		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8208 		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8209 		u_int32_t timeout)
8210 {
8211 	u_int8_t cdb_len;
8212 	if ((minimum_cmd_size < 16) &&
8213 	    ((block_count & 0xffff) == block_count) &&
8214 	    ((lba & 0xffffffff) == lba)) {
8215 		/*
8216 		 * Need a 10 byte cdb.
8217 		 */
8218 		struct scsi_write_same_10 *scsi_cmd;
8219 
8220 		scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8221 		scsi_cmd->opcode = WRITE_SAME_10;
8222 		scsi_cmd->byte2 = byte2;
8223 		scsi_ulto4b(lba, scsi_cmd->addr);
8224 		scsi_cmd->group = 0;
8225 		scsi_ulto2b(block_count, scsi_cmd->length);
8226 		scsi_cmd->control = 0;
8227 		cdb_len = sizeof(*scsi_cmd);
8228 
8229 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8230 			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8231 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8232 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8233 			   scsi_cmd->length[1], dxfer_len));
8234 	} else {
8235 		/*
8236 		 * 16 byte CDB.  We'll only get here if the LBA is larger
8237 		 * than 2^32, or if the user asks for a 16 byte command.
8238 		 */
8239 		struct scsi_write_same_16 *scsi_cmd;
8240 
8241 		scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8242 		scsi_cmd->opcode = WRITE_SAME_16;
8243 		scsi_cmd->byte2 = byte2;
8244 		scsi_u64to8b(lba, scsi_cmd->addr);
8245 		scsi_ulto4b(block_count, scsi_cmd->length);
8246 		scsi_cmd->group = 0;
8247 		scsi_cmd->control = 0;
8248 		cdb_len = sizeof(*scsi_cmd);
8249 
8250 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8251 			  ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8252 			   scsi_cmd->addr[0], scsi_cmd->addr[1],
8253 			   scsi_cmd->addr[2], scsi_cmd->addr[3],
8254 			   scsi_cmd->addr[4], scsi_cmd->addr[5],
8255 			   scsi_cmd->addr[6], scsi_cmd->addr[7],
8256 			   scsi_cmd->length[0], scsi_cmd->length[1],
8257 			   scsi_cmd->length[2], scsi_cmd->length[3],
8258 			   dxfer_len));
8259 	}
8260 	cam_fill_csio(csio,
8261 		      retries,
8262 		      cbfcnp,
8263 		      /*flags*/CAM_DIR_OUT,
8264 		      tag_action,
8265 		      data_ptr,
8266 		      dxfer_len,
8267 		      sense_len,
8268 		      cdb_len,
8269 		      timeout);
8270 }
8271 
8272 void
8273 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries,
8274 		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8275 		  u_int8_t tag_action, u_int8_t *data_ptr,
8276 		  u_int16_t dxfer_len, u_int8_t sense_len,
8277 		  u_int32_t timeout)
8278 {
8279 	scsi_ata_pass(csio,
8280 		      retries,
8281 		      cbfcnp,
8282 		      /*flags*/CAM_DIR_IN,
8283 		      tag_action,
8284 		      /*protocol*/AP_PROTO_PIO_IN,
8285 		      /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8286 				   AP_FLAG_BYT_BLOK_BYTES |
8287 				   AP_FLAG_TLEN_SECT_CNT,
8288 		      /*features*/0,
8289 		      /*sector_count*/dxfer_len,
8290 		      /*lba*/0,
8291 		      /*command*/ATA_ATA_IDENTIFY,
8292 		      /*device*/ 0,
8293 		      /*icc*/ 0,
8294 		      /*auxiliary*/ 0,
8295 		      /*control*/0,
8296 		      data_ptr,
8297 		      dxfer_len,
8298 		      /*cdb_storage*/ NULL,
8299 		      /*cdb_storage_len*/ 0,
8300 		      /*minimum_cmd_size*/ 0,
8301 		      sense_len,
8302 		      timeout);
8303 }
8304 
8305 void
8306 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries,
8307 	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8308 	      u_int8_t tag_action, u_int16_t block_count,
8309 	      u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8310 	      u_int32_t timeout)
8311 {
8312 	scsi_ata_pass_16(csio,
8313 			 retries,
8314 			 cbfcnp,
8315 			 /*flags*/CAM_DIR_OUT,
8316 			 tag_action,
8317 			 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8318 			 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8319 			 /*features*/ATA_DSM_TRIM,
8320 			 /*sector_count*/block_count,
8321 			 /*lba*/0,
8322 			 /*command*/ATA_DATA_SET_MANAGEMENT,
8323 			 /*control*/0,
8324 			 data_ptr,
8325 			 dxfer_len,
8326 			 sense_len,
8327 			 timeout);
8328 }
8329 
8330 int
8331 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries,
8332 		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8333 		  uint8_t tag_action, uint32_t log_address,
8334 		  uint32_t page_number, uint16_t block_count,
8335 		  uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
8336 		  uint8_t sense_len, uint32_t timeout)
8337 {
8338 	uint8_t command, protocol_out;
8339 	uint16_t count_out;
8340 	uint64_t lba;
8341 	int retval;
8342 
8343 	retval = 0;
8344 
8345 	switch (protocol) {
8346 	case AP_PROTO_DMA:
8347 		count_out = block_count;
8348 		command = ATA_READ_LOG_DMA_EXT;
8349 		protocol_out = AP_PROTO_DMA;
8350 		break;
8351 	case AP_PROTO_PIO_IN:
8352 	default:
8353 		count_out = block_count;
8354 		command = ATA_READ_LOG_EXT;
8355 		protocol_out = AP_PROTO_PIO_IN;
8356 		break;
8357 	}
8358 
8359 	lba = (((uint64_t)page_number & 0xff00) << 32) |
8360 	      ((page_number & 0x00ff) << 8) |
8361 	      (log_address & 0xff);
8362 
8363 	protocol_out |= AP_EXTEND;
8364 
8365 	retval = scsi_ata_pass(csio,
8366 			       retries,
8367 			       cbfcnp,
8368 			       /*flags*/CAM_DIR_IN,
8369 			       tag_action,
8370 			       /*protocol*/ protocol_out,
8371 			       /*ata_flags*/AP_FLAG_TLEN_SECT_CNT |
8372 					    AP_FLAG_BYT_BLOK_BLOCKS |
8373 					    AP_FLAG_TDIR_FROM_DEV,
8374 			       /*feature*/ 0,
8375 			       /*sector_count*/ count_out,
8376 			       /*lba*/ lba,
8377 			       /*command*/ command,
8378 			       /*device*/ 0,
8379 			       /*icc*/ 0,
8380 			       /*auxiliary*/ 0,
8381 			       /*control*/0,
8382 			       data_ptr,
8383 			       dxfer_len,
8384 			       /*cdb_storage*/ NULL,
8385 			       /*cdb_storage_len*/ 0,
8386 			       /*minimum_cmd_size*/ 0,
8387 			       sense_len,
8388 			       timeout);
8389 
8390 	return (retval);
8391 }
8392 
8393 /*
8394  * Note! This is an unusual CDB building function because it can return
8395  * an error in the event that the command in question requires a variable
8396  * length CDB, but the caller has not given storage space for one or has not
8397  * given enough storage space.  If there is enough space available in the
8398  * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage.
8399  */
8400 int
8401 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries,
8402 	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8403 	      uint32_t flags, uint8_t tag_action,
8404 	      uint8_t protocol, uint8_t ata_flags, uint16_t features,
8405 	      uint16_t sector_count, uint64_t lba, uint8_t command,
8406 	      uint8_t device, uint8_t icc, uint32_t auxiliary,
8407 	      uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len,
8408 	      uint8_t *cdb_storage, size_t cdb_storage_len,
8409 	      int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout)
8410 {
8411 	uint32_t cam_flags;
8412 	uint8_t *cdb_ptr;
8413 	int cmd_size;
8414 	int retval;
8415 	uint8_t cdb_len;
8416 
8417 	retval = 0;
8418 	cam_flags = flags;
8419 
8420 	/*
8421 	 * Round the user's request to the nearest command size that is at
8422 	 * least as big as what he requested.
8423 	 */
8424 	if (minimum_cmd_size <= 12)
8425 		cmd_size = 12;
8426 	else if (minimum_cmd_size > 16)
8427 		cmd_size = 32;
8428 	else
8429 		cmd_size = 16;
8430 
8431 	/*
8432 	 * If we have parameters that require a 48-bit ATA command, we have to
8433 	 * use the 16 byte ATA PASS-THROUGH command at least.
8434 	 */
8435 	if (((lba > ATA_MAX_28BIT_LBA)
8436 	  || (sector_count > 255)
8437 	  || (features > 255)
8438 	  || (protocol & AP_EXTEND))
8439 	 && ((cmd_size < 16)
8440 	  || ((protocol & AP_EXTEND) == 0))) {
8441 		if (cmd_size < 16)
8442 			cmd_size = 16;
8443 		protocol |= AP_EXTEND;
8444 	}
8445 
8446 	/*
8447 	 * The icc and auxiliary ATA registers are only supported in the
8448 	 * 32-byte version of the ATA PASS-THROUGH command.
8449 	 */
8450 	if ((icc != 0)
8451 	 || (auxiliary != 0)) {
8452 		cmd_size = 32;
8453 		protocol |= AP_EXTEND;
8454 	}
8455 
8456 
8457 	if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes))
8458 	 && ((cdb_storage == NULL)
8459 	  || (cdb_storage_len < cmd_size))) {
8460 		retval = 1;
8461 		goto bailout;
8462 	}
8463 
8464 	/*
8465 	 * At this point we know we have enough space to store the command
8466 	 * in one place or another.  We prefer the built-in array, but used
8467 	 * the passed in storage if necessary.
8468 	 */
8469 	if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes))
8470 		cdb_ptr = csio->cdb_io.cdb_bytes;
8471 	else {
8472 		cdb_ptr = cdb_storage;
8473 		cam_flags |= CAM_CDB_POINTER;
8474 	}
8475 
8476 	if (cmd_size <= 12) {
8477 		struct ata_pass_12 *cdb;
8478 
8479 		cdb = (struct ata_pass_12 *)cdb_ptr;
8480 		cdb_len = sizeof(*cdb);
8481 		bzero(cdb, cdb_len);
8482 
8483 		cdb->opcode = ATA_PASS_12;
8484 		cdb->protocol = protocol;
8485 		cdb->flags = ata_flags;
8486 		cdb->features = features;
8487 		cdb->sector_count = sector_count;
8488 		cdb->lba_low = lba & 0xff;
8489 		cdb->lba_mid = (lba >> 8) & 0xff;
8490 		cdb->lba_high = (lba >> 16) & 0xff;
8491 		cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8492 		cdb->command = command;
8493 		cdb->control = control;
8494 	} else if (cmd_size <= 16) {
8495 		struct ata_pass_16 *cdb;
8496 
8497 		cdb = (struct ata_pass_16 *)cdb_ptr;
8498 		cdb_len = sizeof(*cdb);
8499 		bzero(cdb, cdb_len);
8500 
8501 		cdb->opcode = ATA_PASS_16;
8502 		cdb->protocol = protocol;
8503 		cdb->flags = ata_flags;
8504 		cdb->features = features & 0xff;
8505 		cdb->sector_count = sector_count & 0xff;
8506 		cdb->lba_low = lba & 0xff;
8507 		cdb->lba_mid = (lba >> 8) & 0xff;
8508 		cdb->lba_high = (lba >> 16) & 0xff;
8509 		/*
8510 		 * If AP_EXTEND is set, we're sending a 48-bit command.
8511 		 * Otherwise it's a 28-bit command.
8512 		 */
8513 		if (protocol & AP_EXTEND) {
8514 			cdb->lba_low_ext = (lba >> 24) & 0xff;
8515 			cdb->lba_mid_ext = (lba >> 32) & 0xff;
8516 			cdb->lba_high_ext = (lba >> 40) & 0xff;
8517 			cdb->features_ext = (features >> 8) & 0xff;
8518 			cdb->sector_count_ext = (sector_count >> 8) & 0xff;
8519 			cdb->device = device | ATA_DEV_LBA;
8520 		} else {
8521 			cdb->lba_low_ext = (lba >> 24) & 0xf;
8522 			cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8523 		}
8524 		cdb->command = command;
8525 		cdb->control = control;
8526 	} else {
8527 		struct ata_pass_32 *cdb;
8528 		uint8_t tmp_lba[8];
8529 
8530 		cdb = (struct ata_pass_32 *)cdb_ptr;
8531 		cdb_len = sizeof(*cdb);
8532 		bzero(cdb, cdb_len);
8533 		cdb->opcode = VARIABLE_LEN_CDB;
8534 		cdb->control = control;
8535 		cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32,
8536 							service_action);
8537 		scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action);
8538 		cdb->protocol = protocol;
8539 		cdb->flags = ata_flags;
8540 
8541 		if ((protocol & AP_EXTEND) == 0) {
8542 			lba &= 0x0fffffff;
8543 			cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8544 			features &= 0xff;
8545 			sector_count &= 0xff;
8546 		} else {
8547 			cdb->device = device | ATA_DEV_LBA;
8548 		}
8549 		scsi_u64to8b(lba, tmp_lba);
8550 		bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba));
8551 		scsi_ulto2b(features, cdb->features);
8552 		scsi_ulto2b(sector_count, cdb->count);
8553 		cdb->command = command;
8554 		cdb->icc = icc;
8555 		scsi_ulto4b(auxiliary, cdb->auxiliary);
8556 	}
8557 
8558 	cam_fill_csio(csio,
8559 		      retries,
8560 		      cbfcnp,
8561 		      cam_flags,
8562 		      tag_action,
8563 		      data_ptr,
8564 		      dxfer_len,
8565 		      sense_len,
8566 		      cmd_size,
8567 		      timeout);
8568 bailout:
8569 	return (retval);
8570 }
8571 
8572 void
8573 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries,
8574 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8575 		 u_int32_t flags, u_int8_t tag_action,
8576 		 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features,
8577 		 u_int16_t sector_count, uint64_t lba, u_int8_t command,
8578 		 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len,
8579 		 u_int8_t sense_len, u_int32_t timeout)
8580 {
8581 	struct ata_pass_16 *ata_cmd;
8582 
8583 	ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8584 	ata_cmd->opcode = ATA_PASS_16;
8585 	ata_cmd->protocol = protocol;
8586 	ata_cmd->flags = ata_flags;
8587 	ata_cmd->features_ext = features >> 8;
8588 	ata_cmd->features = features;
8589 	ata_cmd->sector_count_ext = sector_count >> 8;
8590 	ata_cmd->sector_count = sector_count;
8591 	ata_cmd->lba_low = lba;
8592 	ata_cmd->lba_mid = lba >> 8;
8593 	ata_cmd->lba_high = lba >> 16;
8594 	ata_cmd->device = ATA_DEV_LBA;
8595 	if (protocol & AP_EXTEND) {
8596 		ata_cmd->lba_low_ext = lba >> 24;
8597 		ata_cmd->lba_mid_ext = lba >> 32;
8598 		ata_cmd->lba_high_ext = lba >> 40;
8599 	} else
8600 		ata_cmd->device |= (lba >> 24) & 0x0f;
8601 	ata_cmd->command = command;
8602 	ata_cmd->control = control;
8603 
8604 	cam_fill_csio(csio,
8605 		      retries,
8606 		      cbfcnp,
8607 		      flags,
8608 		      tag_action,
8609 		      data_ptr,
8610 		      dxfer_len,
8611 		      sense_len,
8612 		      sizeof(*ata_cmd),
8613 		      timeout);
8614 }
8615 
8616 void
8617 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries,
8618 	   void (*cbfcnp)(struct cam_periph *, union ccb *),
8619 	   u_int8_t tag_action, u_int8_t byte2,
8620 	   u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8621 	   u_int32_t timeout)
8622 {
8623 	struct scsi_unmap *scsi_cmd;
8624 
8625 	scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8626 	scsi_cmd->opcode = UNMAP;
8627 	scsi_cmd->byte2 = byte2;
8628 	scsi_ulto4b(0, scsi_cmd->reserved);
8629 	scsi_cmd->group = 0;
8630 	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8631 	scsi_cmd->control = 0;
8632 
8633 	cam_fill_csio(csio,
8634 		      retries,
8635 		      cbfcnp,
8636 		      /*flags*/CAM_DIR_OUT,
8637 		      tag_action,
8638 		      data_ptr,
8639 		      dxfer_len,
8640 		      sense_len,
8641 		      sizeof(*scsi_cmd),
8642 		      timeout);
8643 }
8644 
8645 void
8646 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries,
8647 				void (*cbfcnp)(struct cam_periph *, union ccb*),
8648 				uint8_t tag_action, int pcv, uint8_t page_code,
8649 				uint8_t *data_ptr, uint16_t allocation_length,
8650 				uint8_t sense_len, uint32_t timeout)
8651 {
8652 	struct scsi_receive_diag *scsi_cmd;
8653 
8654 	scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8655 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8656 	scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8657 	if (pcv) {
8658 		scsi_cmd->byte2 |= SRD_PCV;
8659 		scsi_cmd->page_code = page_code;
8660 	}
8661 	scsi_ulto2b(allocation_length, scsi_cmd->length);
8662 
8663 	cam_fill_csio(csio,
8664 		      retries,
8665 		      cbfcnp,
8666 		      /*flags*/CAM_DIR_IN,
8667 		      tag_action,
8668 		      data_ptr,
8669 		      allocation_length,
8670 		      sense_len,
8671 		      sizeof(*scsi_cmd),
8672 		      timeout);
8673 }
8674 
8675 void
8676 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries,
8677 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
8678 		     uint8_t tag_action, int unit_offline, int device_offline,
8679 		     int self_test, int page_format, int self_test_code,
8680 		     uint8_t *data_ptr, uint16_t param_list_length,
8681 		     uint8_t sense_len, uint32_t timeout)
8682 {
8683 	struct scsi_send_diag *scsi_cmd;
8684 
8685 	scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8686 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8687 	scsi_cmd->opcode = SEND_DIAGNOSTIC;
8688 
8689 	/*
8690 	 * The default self-test mode control and specific test
8691 	 * control are mutually exclusive.
8692 	 */
8693 	if (self_test)
8694 		self_test_code = SSD_SELF_TEST_CODE_NONE;
8695 
8696 	scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8697 			 & SSD_SELF_TEST_CODE_MASK)
8698 			| (unit_offline   ? SSD_UNITOFFL : 0)
8699 			| (device_offline ? SSD_DEVOFFL  : 0)
8700 			| (self_test      ? SSD_SELFTEST : 0)
8701 			| (page_format    ? SSD_PF       : 0);
8702 	scsi_ulto2b(param_list_length, scsi_cmd->length);
8703 
8704 	cam_fill_csio(csio,
8705 		      retries,
8706 		      cbfcnp,
8707 		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8708 		      tag_action,
8709 		      data_ptr,
8710 		      param_list_length,
8711 		      sense_len,
8712 		      sizeof(*scsi_cmd),
8713 		      timeout);
8714 }
8715 
8716 void
8717 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8718 			void (*cbfcnp)(struct cam_periph *, union ccb*),
8719 			uint8_t tag_action, int mode,
8720 			uint8_t buffer_id, u_int32_t offset,
8721 			uint8_t *data_ptr, uint32_t allocation_length,
8722 			uint8_t sense_len, uint32_t timeout)
8723 {
8724 	struct scsi_read_buffer *scsi_cmd;
8725 
8726 	scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8727 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8728 	scsi_cmd->opcode = READ_BUFFER;
8729 	scsi_cmd->byte2 = mode;
8730 	scsi_cmd->buffer_id = buffer_id;
8731 	scsi_ulto3b(offset, scsi_cmd->offset);
8732 	scsi_ulto3b(allocation_length, scsi_cmd->length);
8733 
8734 	cam_fill_csio(csio,
8735 		      retries,
8736 		      cbfcnp,
8737 		      /*flags*/CAM_DIR_IN,
8738 		      tag_action,
8739 		      data_ptr,
8740 		      allocation_length,
8741 		      sense_len,
8742 		      sizeof(*scsi_cmd),
8743 		      timeout);
8744 }
8745 
8746 void
8747 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8748 			void (*cbfcnp)(struct cam_periph *, union ccb *),
8749 			uint8_t tag_action, int mode,
8750 			uint8_t buffer_id, u_int32_t offset,
8751 			uint8_t *data_ptr, uint32_t param_list_length,
8752 			uint8_t sense_len, uint32_t timeout)
8753 {
8754 	struct scsi_write_buffer *scsi_cmd;
8755 
8756 	scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8757 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8758 	scsi_cmd->opcode = WRITE_BUFFER;
8759 	scsi_cmd->byte2 = mode;
8760 	scsi_cmd->buffer_id = buffer_id;
8761 	scsi_ulto3b(offset, scsi_cmd->offset);
8762 	scsi_ulto3b(param_list_length, scsi_cmd->length);
8763 
8764 	cam_fill_csio(csio,
8765 		      retries,
8766 		      cbfcnp,
8767 		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8768 		      tag_action,
8769 		      data_ptr,
8770 		      param_list_length,
8771 		      sense_len,
8772 		      sizeof(*scsi_cmd),
8773 		      timeout);
8774 }
8775 
8776 void
8777 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries,
8778 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8779 		u_int8_t tag_action, int start, int load_eject,
8780 		int immediate, u_int8_t sense_len, u_int32_t timeout)
8781 {
8782 	struct scsi_start_stop_unit *scsi_cmd;
8783 	int extra_flags = 0;
8784 
8785 	scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
8786 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8787 	scsi_cmd->opcode = START_STOP_UNIT;
8788 	if (start != 0) {
8789 		scsi_cmd->how |= SSS_START;
8790 		/* it takes a lot of power to start a drive */
8791 		extra_flags |= CAM_HIGH_POWER;
8792 	}
8793 	if (load_eject != 0)
8794 		scsi_cmd->how |= SSS_LOEJ;
8795 	if (immediate != 0)
8796 		scsi_cmd->byte2 |= SSS_IMMED;
8797 
8798 	cam_fill_csio(csio,
8799 		      retries,
8800 		      cbfcnp,
8801 		      /*flags*/CAM_DIR_NONE | extra_flags,
8802 		      tag_action,
8803 		      /*data_ptr*/NULL,
8804 		      /*dxfer_len*/0,
8805 		      sense_len,
8806 		      sizeof(*scsi_cmd),
8807 		      timeout);
8808 }
8809 
8810 void
8811 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8812 		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8813 		    u_int8_t tag_action, u_int8_t service_action,
8814 		    uint32_t element, u_int8_t elem_type, int logical_volume,
8815 		    int partition, u_int32_t first_attribute, int cache,
8816 		    u_int8_t *data_ptr, u_int32_t length, int sense_len,
8817 		    u_int32_t timeout)
8818 {
8819 	struct scsi_read_attribute *scsi_cmd;
8820 
8821 	scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
8822 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8823 
8824 	scsi_cmd->opcode = READ_ATTRIBUTE;
8825 	scsi_cmd->service_action = service_action;
8826 	scsi_ulto2b(element, scsi_cmd->element);
8827 	scsi_cmd->elem_type = elem_type;
8828 	scsi_cmd->logical_volume = logical_volume;
8829 	scsi_cmd->partition = partition;
8830 	scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
8831 	scsi_ulto4b(length, scsi_cmd->length);
8832 	if (cache != 0)
8833 		scsi_cmd->cache |= SRA_CACHE;
8834 
8835 	cam_fill_csio(csio,
8836 		      retries,
8837 		      cbfcnp,
8838 		      /*flags*/CAM_DIR_IN,
8839 		      tag_action,
8840 		      /*data_ptr*/data_ptr,
8841 		      /*dxfer_len*/length,
8842 		      sense_len,
8843 		      sizeof(*scsi_cmd),
8844 		      timeout);
8845 }
8846 
8847 void
8848 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8849 		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8850 		    u_int8_t tag_action, uint32_t element, int logical_volume,
8851 		    int partition, int wtc, u_int8_t *data_ptr,
8852 		    u_int32_t length, int sense_len, u_int32_t timeout)
8853 {
8854 	struct scsi_write_attribute *scsi_cmd;
8855 
8856 	scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
8857 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8858 
8859 	scsi_cmd->opcode = WRITE_ATTRIBUTE;
8860 	if (wtc != 0)
8861 		scsi_cmd->byte2 = SWA_WTC;
8862 	scsi_ulto3b(element, scsi_cmd->element);
8863 	scsi_cmd->logical_volume = logical_volume;
8864 	scsi_cmd->partition = partition;
8865 	scsi_ulto4b(length, scsi_cmd->length);
8866 
8867 	cam_fill_csio(csio,
8868 		      retries,
8869 		      cbfcnp,
8870 		      /*flags*/CAM_DIR_OUT,
8871 		      tag_action,
8872 		      /*data_ptr*/data_ptr,
8873 		      /*dxfer_len*/length,
8874 		      sense_len,
8875 		      sizeof(*scsi_cmd),
8876 		      timeout);
8877 }
8878 
8879 void
8880 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
8881 			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8882 			   uint8_t tag_action, int service_action,
8883 			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8884 			   int timeout)
8885 {
8886 	struct scsi_per_res_in *scsi_cmd;
8887 
8888 	scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
8889 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8890 
8891 	scsi_cmd->opcode = PERSISTENT_RES_IN;
8892 	scsi_cmd->action = service_action;
8893 	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8894 
8895 	cam_fill_csio(csio,
8896 		      retries,
8897 		      cbfcnp,
8898 		      /*flags*/CAM_DIR_IN,
8899 		      tag_action,
8900 		      data_ptr,
8901 		      dxfer_len,
8902 		      sense_len,
8903 		      sizeof(*scsi_cmd),
8904 		      timeout);
8905 }
8906 
8907 void
8908 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
8909 			    void (*cbfcnp)(struct cam_periph *, union ccb *),
8910 			    uint8_t tag_action, int service_action,
8911 			    int scope, int res_type, uint8_t *data_ptr,
8912 			    uint32_t dxfer_len, int sense_len, int timeout)
8913 {
8914 	struct scsi_per_res_out *scsi_cmd;
8915 
8916 	scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
8917 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8918 
8919 	scsi_cmd->opcode = PERSISTENT_RES_OUT;
8920 	scsi_cmd->action = service_action;
8921 	scsi_cmd->scope_type = scope | res_type;
8922 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8923 
8924 	cam_fill_csio(csio,
8925 		      retries,
8926 		      cbfcnp,
8927 		      /*flags*/CAM_DIR_OUT,
8928 		      tag_action,
8929 		      /*data_ptr*/data_ptr,
8930 		      /*dxfer_len*/dxfer_len,
8931 		      sense_len,
8932 		      sizeof(*scsi_cmd),
8933 		      timeout);
8934 }
8935 
8936 void
8937 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
8938 			  void (*cbfcnp)(struct cam_periph *, union ccb *),
8939 			  uint8_t tag_action, uint32_t security_protocol,
8940 			  uint32_t security_protocol_specific, int byte4,
8941 			  uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8942 			  int timeout)
8943 {
8944 	struct scsi_security_protocol_in *scsi_cmd;
8945 
8946 	scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
8947 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8948 
8949 	scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
8950 
8951 	scsi_cmd->security_protocol = security_protocol;
8952 	scsi_ulto2b(security_protocol_specific,
8953 		    scsi_cmd->security_protocol_specific);
8954 	scsi_cmd->byte4 = byte4;
8955 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8956 
8957 	cam_fill_csio(csio,
8958 		      retries,
8959 		      cbfcnp,
8960 		      /*flags*/CAM_DIR_IN,
8961 		      tag_action,
8962 		      data_ptr,
8963 		      dxfer_len,
8964 		      sense_len,
8965 		      sizeof(*scsi_cmd),
8966 		      timeout);
8967 }
8968 
8969 void
8970 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
8971 			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8972 			   uint8_t tag_action, uint32_t security_protocol,
8973 			   uint32_t security_protocol_specific, int byte4,
8974 			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8975 			   int timeout)
8976 {
8977 	struct scsi_security_protocol_out *scsi_cmd;
8978 
8979 	scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
8980 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8981 
8982 	scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
8983 
8984 	scsi_cmd->security_protocol = security_protocol;
8985 	scsi_ulto2b(security_protocol_specific,
8986 		    scsi_cmd->security_protocol_specific);
8987 	scsi_cmd->byte4 = byte4;
8988 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8989 
8990 	cam_fill_csio(csio,
8991 		      retries,
8992 		      cbfcnp,
8993 		      /*flags*/CAM_DIR_OUT,
8994 		      tag_action,
8995 		      data_ptr,
8996 		      dxfer_len,
8997 		      sense_len,
8998 		      sizeof(*scsi_cmd),
8999 		      timeout);
9000 }
9001 
9002 void
9003 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
9004 			      void (*cbfcnp)(struct cam_periph *, union ccb *),
9005 			      uint8_t tag_action, int options, int req_opcode,
9006 			      int req_service_action, uint8_t *data_ptr,
9007 			      uint32_t dxfer_len, int sense_len, int timeout)
9008 {
9009 	struct scsi_report_supported_opcodes *scsi_cmd;
9010 
9011 	scsi_cmd = (struct scsi_report_supported_opcodes *)
9012 	    &csio->cdb_io.cdb_bytes;
9013 	bzero(scsi_cmd, sizeof(*scsi_cmd));
9014 
9015 	scsi_cmd->opcode = MAINTENANCE_IN;
9016 	scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
9017 	scsi_cmd->options = options;
9018 	scsi_cmd->requested_opcode = req_opcode;
9019 	scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
9020 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
9021 
9022 	cam_fill_csio(csio,
9023 		      retries,
9024 		      cbfcnp,
9025 		      /*flags*/CAM_DIR_IN,
9026 		      tag_action,
9027 		      data_ptr,
9028 		      dxfer_len,
9029 		      sense_len,
9030 		      sizeof(*scsi_cmd),
9031 		      timeout);
9032 }
9033 
9034 /*
9035  * Try make as good a match as possible with
9036  * available sub drivers
9037  */
9038 int
9039 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9040 {
9041 	struct scsi_inquiry_pattern *entry;
9042 	struct scsi_inquiry_data *inq;
9043 
9044 	entry = (struct scsi_inquiry_pattern *)table_entry;
9045 	inq = (struct scsi_inquiry_data *)inqbuffer;
9046 
9047 	if (((SID_TYPE(inq) == entry->type)
9048 	  || (entry->type == T_ANY))
9049 	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9050 				   : entry->media_type & SIP_MEDIA_FIXED)
9051 	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9052 	 && (cam_strmatch(inq->product, entry->product,
9053 			  sizeof(inq->product)) == 0)
9054 	 && (cam_strmatch(inq->revision, entry->revision,
9055 			  sizeof(inq->revision)) == 0)) {
9056 		return (0);
9057 	}
9058         return (-1);
9059 }
9060 
9061 /*
9062  * Try make as good a match as possible with
9063  * available sub drivers
9064  */
9065 int
9066 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9067 {
9068 	struct scsi_static_inquiry_pattern *entry;
9069 	struct scsi_inquiry_data *inq;
9070 
9071 	entry = (struct scsi_static_inquiry_pattern *)table_entry;
9072 	inq = (struct scsi_inquiry_data *)inqbuffer;
9073 
9074 	if (((SID_TYPE(inq) == entry->type)
9075 	  || (entry->type == T_ANY))
9076 	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9077 				   : entry->media_type & SIP_MEDIA_FIXED)
9078 	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9079 	 && (cam_strmatch(inq->product, entry->product,
9080 			  sizeof(inq->product)) == 0)
9081 	 && (cam_strmatch(inq->revision, entry->revision,
9082 			  sizeof(inq->revision)) == 0)) {
9083 		return (0);
9084 	}
9085         return (-1);
9086 }
9087 
9088 /**
9089  * Compare two buffers of vpd device descriptors for a match.
9090  *
9091  * \param lhs      Pointer to first buffer of descriptors to compare.
9092  * \param lhs_len  The length of the first buffer.
9093  * \param rhs	   Pointer to second buffer of descriptors to compare.
9094  * \param rhs_len  The length of the second buffer.
9095  *
9096  * \return  0 on a match, -1 otherwise.
9097  *
9098  * Treat rhs and lhs as arrays of vpd device id descriptors.  Walk lhs matching
9099  * against each element in rhs until all data are exhausted or we have found
9100  * a match.
9101  */
9102 int
9103 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
9104 {
9105 	struct scsi_vpd_id_descriptor *lhs_id;
9106 	struct scsi_vpd_id_descriptor *lhs_last;
9107 	struct scsi_vpd_id_descriptor *rhs_last;
9108 	uint8_t *lhs_end;
9109 	uint8_t *rhs_end;
9110 
9111 	lhs_end = lhs + lhs_len;
9112 	rhs_end = rhs + rhs_len;
9113 
9114 	/*
9115 	 * rhs_last and lhs_last are the last posible position of a valid
9116 	 * descriptor assuming it had a zero length identifier.  We use
9117 	 * these variables to insure we can safely dereference the length
9118 	 * field in our loop termination tests.
9119 	 */
9120 	lhs_last = (struct scsi_vpd_id_descriptor *)
9121 	    (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9122 	rhs_last = (struct scsi_vpd_id_descriptor *)
9123 	    (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9124 
9125 	lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
9126 	while (lhs_id <= lhs_last
9127 	    && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
9128 		struct scsi_vpd_id_descriptor *rhs_id;
9129 
9130 		rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
9131 		while (rhs_id <= rhs_last
9132 		    && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
9133 
9134 			if ((rhs_id->id_type &
9135 			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
9136 			    (lhs_id->id_type &
9137 			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
9138 			 && rhs_id->length == lhs_id->length
9139 			 && memcmp(rhs_id->identifier, lhs_id->identifier,
9140 				   rhs_id->length) == 0)
9141 				return (0);
9142 
9143 			rhs_id = (struct scsi_vpd_id_descriptor *)
9144 			   (rhs_id->identifier + rhs_id->length);
9145 		}
9146 		lhs_id = (struct scsi_vpd_id_descriptor *)
9147 		   (lhs_id->identifier + lhs_id->length);
9148 	}
9149 	return (-1);
9150 }
9151 
9152 #ifdef _KERNEL
9153 int
9154 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
9155 {
9156 	struct cam_ed *device;
9157 	struct scsi_vpd_supported_pages *vpds;
9158 	int i, num_pages;
9159 
9160 	device = periph->path->device;
9161 	vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
9162 
9163 	if (vpds != NULL) {
9164 		num_pages = device->supported_vpds_len -
9165 		    SVPD_SUPPORTED_PAGES_HDR_LEN;
9166 		for (i = 0; i < num_pages; i++) {
9167 			if (vpds->page_list[i] == page_id)
9168 				return (1);
9169 		}
9170 	}
9171 
9172 	return (0);
9173 }
9174 
9175 static void
9176 init_scsi_delay(void)
9177 {
9178 	int delay;
9179 
9180 	delay = SCSI_DELAY;
9181 	TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
9182 
9183 	if (set_scsi_delay(delay) != 0) {
9184 		printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
9185 		set_scsi_delay(SCSI_DELAY);
9186 	}
9187 }
9188 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
9189 
9190 static int
9191 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
9192 {
9193 	int error, delay;
9194 
9195 	delay = scsi_delay;
9196 	error = sysctl_handle_int(oidp, &delay, 0, req);
9197 	if (error != 0 || req->newptr == NULL)
9198 		return (error);
9199 	return (set_scsi_delay(delay));
9200 }
9201 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW,
9202     0, 0, sysctl_scsi_delay, "I",
9203     "Delay to allow devices to settle after a SCSI bus reset (ms)");
9204 
9205 static int
9206 set_scsi_delay(int delay)
9207 {
9208 	/*
9209          * If someone sets this to 0, we assume that they want the
9210          * minimum allowable bus settle delay.
9211 	 */
9212 	if (delay == 0) {
9213 		printf("cam: using minimum scsi_delay (%dms)\n",
9214 		    SCSI_MIN_DELAY);
9215 		delay = SCSI_MIN_DELAY;
9216 	}
9217 	if (delay < SCSI_MIN_DELAY)
9218 		return (EINVAL);
9219 	scsi_delay = delay;
9220 	return (0);
9221 }
9222 #endif /* _KERNEL */
9223