xref: /freebsd/sys/cam/scsi/scsi_all.c (revision c03c5b1c)
1 /*-
2  * Implementation of Utility functions for all SCSI device types.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/types.h>
37 #include <sys/stdint.h>
38 
39 #ifdef _KERNEL
40 #include "opt_scsi.h"
41 
42 #include <sys/systm.h>
43 #include <sys/libkern.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/ctype.h>
50 #else
51 #include <errno.h>
52 #include <stdio.h>
53 #include <stdlib.h>
54 #include <string.h>
55 #include <ctype.h>
56 #endif
57 
58 #include <cam/cam.h>
59 #include <cam/cam_ccb.h>
60 #include <cam/cam_queue.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/scsi/scsi_all.h>
63 #include <sys/ata.h>
64 #include <sys/sbuf.h>
65 
66 #ifdef _KERNEL
67 #include <cam/cam_periph.h>
68 #include <cam/cam_xpt_sim.h>
69 #include <cam/cam_xpt_periph.h>
70 #include <cam/cam_xpt_internal.h>
71 #else
72 #include <camlib.h>
73 #include <stddef.h>
74 
75 #ifndef FALSE
76 #define FALSE   0
77 #endif /* FALSE */
78 #ifndef TRUE
79 #define TRUE    1
80 #endif /* TRUE */
81 #define ERESTART        -1              /* restart syscall */
82 #define EJUSTRETURN     -2              /* don't modify regs, just return */
83 #endif /* !_KERNEL */
84 
85 /*
86  * This is the default number of milliseconds we wait for devices to settle
87  * after a SCSI bus reset.
88  */
89 #ifndef SCSI_DELAY
90 #define SCSI_DELAY 2000
91 #endif
92 /*
93  * All devices need _some_ sort of bus settle delay, so we'll set it to
94  * a minimum value of 100ms. Note that this is pertinent only for SPI-
95  * not transport like Fibre Channel or iSCSI where 'delay' is completely
96  * meaningless.
97  */
98 #ifndef SCSI_MIN_DELAY
99 #define SCSI_MIN_DELAY 100
100 #endif
101 /*
102  * Make sure the user isn't using seconds instead of milliseconds.
103  */
104 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
105 #error "SCSI_DELAY is in milliseconds, not seconds!  Please use a larger value"
106 #endif
107 
108 int scsi_delay;
109 
110 static int	ascentrycomp(const void *key, const void *member);
111 static int	senseentrycomp(const void *key, const void *member);
112 static void	fetchtableentries(int sense_key, int asc, int ascq,
113 				  struct scsi_inquiry_data *,
114 				  const struct sense_key_table_entry **,
115 				  const struct asc_table_entry **);
116 
117 #ifdef _KERNEL
118 static void	init_scsi_delay(void);
119 static int	sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
120 static int	set_scsi_delay(int delay);
121 #endif
122 
123 #if !defined(SCSI_NO_OP_STRINGS)
124 
125 #define	D	(1 << T_DIRECT)
126 #define	T	(1 << T_SEQUENTIAL)
127 #define	L	(1 << T_PRINTER)
128 #define	P	(1 << T_PROCESSOR)
129 #define	W	(1 << T_WORM)
130 #define	R	(1 << T_CDROM)
131 #define	O	(1 << T_OPTICAL)
132 #define	M	(1 << T_CHANGER)
133 #define	A	(1 << T_STORARRAY)
134 #define	E	(1 << T_ENCLOSURE)
135 #define	B	(1 << T_RBC)
136 #define	K	(1 << T_OCRW)
137 #define	V	(1 << T_ADC)
138 #define	F	(1 << T_OSD)
139 #define	S	(1 << T_SCANNER)
140 #define	C	(1 << T_COMM)
141 
142 #define ALL	(D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
143 
144 static struct op_table_entry plextor_cd_ops[] = {
145 	{ 0xD8, R, "CD-DA READ" }
146 };
147 
148 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
149 	{
150 		/*
151 		 * I believe that 0xD8 is the Plextor proprietary command
152 		 * to read CD-DA data.  I'm not sure which Plextor CDROM
153 		 * models support the command, though.  I know for sure
154 		 * that the 4X, 8X, and 12X models do, and presumably the
155 		 * 12-20X does.  I don't know about any earlier models,
156 		 * though.  If anyone has any more complete information,
157 		 * feel free to change this quirk entry.
158 		 */
159 		{T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
160 		nitems(plextor_cd_ops),
161 		plextor_cd_ops
162 	}
163 };
164 
165 static struct op_table_entry scsi_op_codes[] = {
166 	/*
167 	 * From: http://www.t10.org/lists/op-num.txt
168 	 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
169 	 *              and Jung-uk Kim (jkim@FreeBSD.org)
170 	 *
171 	 * Note:  order is important in this table, scsi_op_desc() currently
172 	 * depends on the opcodes in the table being in order to save
173 	 * search time.
174 	 * Note:  scanner and comm. devices are carried over from the previous
175 	 * version because they were removed in the latest spec.
176 	 */
177 	/* File: OP-NUM.TXT
178 	 *
179 	 * SCSI Operation Codes
180 	 * Numeric Sorted Listing
181 	 * as of  5/26/15
182 	 *
183 	 *     D - DIRECT ACCESS DEVICE (SBC-2)                device column key
184 	 *     .T - SEQUENTIAL ACCESS DEVICE (SSC-2)           -----------------
185 	 *     . L - PRINTER DEVICE (SSC)                      M = Mandatory
186 	 *     .  P - PROCESSOR DEVICE (SPC)                   O = Optional
187 	 *     .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
188 	 *     .  . R - CD/DVE DEVICE (MMC-3)                  Z = Obsolete
189 	 *     .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
190 	 *     .  .  .M - MEDIA CHANGER DEVICE (SMC-2)
191 	 *     .  .  . A - STORAGE ARRAY DEVICE (SCC-2)
192 	 *     .  .  . .E - ENCLOSURE SERVICES DEVICE (SES)
193 	 *     .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
194 	 *     .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
195 	 *     .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
196 	 *     .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
197 	 * OP  DTLPWROMAEBKVF  Description
198 	 * --  --------------  ---------------------------------------------- */
199 	/* 00  MMMMMMMMMMMMMM  TEST UNIT READY */
200 	{ 0x00,	ALL, "TEST UNIT READY" },
201 	/* 01   M              REWIND */
202 	{ 0x01,	T, "REWIND" },
203 	/* 01  Z V ZZZZ        REZERO UNIT */
204 	{ 0x01,	D | W | R | O | M, "REZERO UNIT" },
205 	/* 02  VVVVVV V */
206 	/* 03  MMMMMMMMMMOMMM  REQUEST SENSE */
207 	{ 0x03,	ALL, "REQUEST SENSE" },
208 	/* 04  M    OO         FORMAT UNIT */
209 	{ 0x04,	D | R | O, "FORMAT UNIT" },
210 	/* 04   O              FORMAT MEDIUM */
211 	{ 0x04,	T, "FORMAT MEDIUM" },
212 	/* 04    O             FORMAT */
213 	{ 0x04,	L, "FORMAT" },
214 	/* 05  VMVVVV V        READ BLOCK LIMITS */
215 	{ 0x05,	T, "READ BLOCK LIMITS" },
216 	/* 06  VVVVVV V */
217 	/* 07  OVV O OV        REASSIGN BLOCKS */
218 	{ 0x07,	D | W | O, "REASSIGN BLOCKS" },
219 	/* 07         O        INITIALIZE ELEMENT STATUS */
220 	{ 0x07,	M, "INITIALIZE ELEMENT STATUS" },
221 	/* 08  MOV O OV        READ(6) */
222 	{ 0x08,	D | T | W | O, "READ(6)" },
223 	/* 08     O            RECEIVE */
224 	{ 0x08,	P, "RECEIVE" },
225 	/* 08                  GET MESSAGE(6) */
226 	{ 0x08, C, "GET MESSAGE(6)" },
227 	/* 09  VVVVVV V */
228 	/* 0A  OO  O OV        WRITE(6) */
229 	{ 0x0A,	D | T | W | O, "WRITE(6)" },
230 	/* 0A     M            SEND(6) */
231 	{ 0x0A,	P, "SEND(6)" },
232 	/* 0A                  SEND MESSAGE(6) */
233 	{ 0x0A, C, "SEND MESSAGE(6)" },
234 	/* 0A    M             PRINT */
235 	{ 0x0A,	L, "PRINT" },
236 	/* 0B  Z   ZOZV        SEEK(6) */
237 	{ 0x0B,	D | W | R | O, "SEEK(6)" },
238 	/* 0B   O              SET CAPACITY */
239 	{ 0x0B,	T, "SET CAPACITY" },
240 	/* 0B    O             SLEW AND PRINT */
241 	{ 0x0B,	L, "SLEW AND PRINT" },
242 	/* 0C  VVVVVV V */
243 	/* 0D  VVVVVV V */
244 	/* 0E  VVVVVV V */
245 	/* 0F  VOVVVV V        READ REVERSE(6) */
246 	{ 0x0F,	T, "READ REVERSE(6)" },
247 	/* 10  VM VVV          WRITE FILEMARKS(6) */
248 	{ 0x10,	T, "WRITE FILEMARKS(6)" },
249 	/* 10    O             SYNCHRONIZE BUFFER */
250 	{ 0x10,	L, "SYNCHRONIZE BUFFER" },
251 	/* 11  VMVVVV          SPACE(6) */
252 	{ 0x11,	T, "SPACE(6)" },
253 	/* 12  MMMMMMMMMMMMMM  INQUIRY */
254 	{ 0x12,	ALL, "INQUIRY" },
255 	/* 13  V VVVV */
256 	/* 13   O              VERIFY(6) */
257 	{ 0x13,	T, "VERIFY(6)" },
258 	/* 14  VOOVVV          RECOVER BUFFERED DATA */
259 	{ 0x14,	T | L, "RECOVER BUFFERED DATA" },
260 	/* 15  OMO O OOOO OO   MODE SELECT(6) */
261 	{ 0x15,	ALL & ~(P | R | B | F), "MODE SELECT(6)" },
262 	/* 16  ZZMZO OOOZ O    RESERVE(6) */
263 	{ 0x16,	ALL & ~(R | B | V | F | C), "RESERVE(6)" },
264 	/* 16         Z        RESERVE ELEMENT(6) */
265 	{ 0x16,	M, "RESERVE ELEMENT(6)" },
266 	/* 17  ZZMZO OOOZ O    RELEASE(6) */
267 	{ 0x17,	ALL & ~(R | B | V | F | C), "RELEASE(6)" },
268 	/* 17         Z        RELEASE ELEMENT(6) */
269 	{ 0x17,	M, "RELEASE ELEMENT(6)" },
270 	/* 18  ZZZZOZO    Z    COPY */
271 	{ 0x18,	D | T | L | P | W | R | O | K | S, "COPY" },
272 	/* 19  VMVVVV          ERASE(6) */
273 	{ 0x19,	T, "ERASE(6)" },
274 	/* 1A  OMO O OOOO OO   MODE SENSE(6) */
275 	{ 0x1A,	ALL & ~(P | R | B | F), "MODE SENSE(6)" },
276 	/* 1B  O   OOO O MO O  START STOP UNIT */
277 	{ 0x1B,	D | W | R | O | A | B | K | F, "START STOP UNIT" },
278 	/* 1B   O          M   LOAD UNLOAD */
279 	{ 0x1B,	T | V, "LOAD UNLOAD" },
280 	/* 1B                  SCAN */
281 	{ 0x1B, S, "SCAN" },
282 	/* 1B    O             STOP PRINT */
283 	{ 0x1B,	L, "STOP PRINT" },
284 	/* 1B         O        OPEN/CLOSE IMPORT/EXPORT ELEMENT */
285 	{ 0x1B,	M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
286 	/* 1C  OOOOO OOOM OOO  RECEIVE DIAGNOSTIC RESULTS */
287 	{ 0x1C,	ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
288 	/* 1D  MMMMM MMOM MMM  SEND DIAGNOSTIC */
289 	{ 0x1D,	ALL & ~(R | B), "SEND DIAGNOSTIC" },
290 	/* 1E  OO  OOOO   O O  PREVENT ALLOW MEDIUM REMOVAL */
291 	{ 0x1E,	D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
292 	/* 1F */
293 	/* 20  V   VVV    V */
294 	/* 21  V   VVV    V */
295 	/* 22  V   VVV    V */
296 	/* 23  V   V V    V */
297 	/* 23       O          READ FORMAT CAPACITIES */
298 	{ 0x23,	R, "READ FORMAT CAPACITIES" },
299 	/* 24  V   VV          SET WINDOW */
300 	{ 0x24, S, "SET WINDOW" },
301 	/* 25  M   M M   M     READ CAPACITY(10) */
302 	{ 0x25,	D | W | O | B, "READ CAPACITY(10)" },
303 	/* 25       O          READ CAPACITY */
304 	{ 0x25,	R, "READ CAPACITY" },
305 	/* 25             M    READ CARD CAPACITY */
306 	{ 0x25,	K, "READ CARD CAPACITY" },
307 	/* 25                  GET WINDOW */
308 	{ 0x25, S, "GET WINDOW" },
309 	/* 26  V   VV */
310 	/* 27  V   VV */
311 	/* 28  M   MOM   MM    READ(10) */
312 	{ 0x28,	D | W | R | O | B | K | S, "READ(10)" },
313 	/* 28                  GET MESSAGE(10) */
314 	{ 0x28, C, "GET MESSAGE(10)" },
315 	/* 29  V   VVO         READ GENERATION */
316 	{ 0x29,	O, "READ GENERATION" },
317 	/* 2A  O   MOM   MO    WRITE(10) */
318 	{ 0x2A,	D | W | R | O | B | K, "WRITE(10)" },
319 	/* 2A                  SEND(10) */
320 	{ 0x2A, S, "SEND(10)" },
321 	/* 2A                  SEND MESSAGE(10) */
322 	{ 0x2A, C, "SEND MESSAGE(10)" },
323 	/* 2B  Z   OOO    O    SEEK(10) */
324 	{ 0x2B,	D | W | R | O | K, "SEEK(10)" },
325 	/* 2B   O              LOCATE(10) */
326 	{ 0x2B,	T, "LOCATE(10)" },
327 	/* 2B         O        POSITION TO ELEMENT */
328 	{ 0x2B,	M, "POSITION TO ELEMENT" },
329 	/* 2C  V    OO         ERASE(10) */
330 	{ 0x2C,	R | O, "ERASE(10)" },
331 	/* 2D        O         READ UPDATED BLOCK */
332 	{ 0x2D,	O, "READ UPDATED BLOCK" },
333 	/* 2D  V */
334 	/* 2E  O   OOO   MO    WRITE AND VERIFY(10) */
335 	{ 0x2E,	D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
336 	/* 2F  O   OOO         VERIFY(10) */
337 	{ 0x2F,	D | W | R | O, "VERIFY(10)" },
338 	/* 30  Z   ZZZ         SEARCH DATA HIGH(10) */
339 	{ 0x30,	D | W | R | O, "SEARCH DATA HIGH(10)" },
340 	/* 31  Z   ZZZ         SEARCH DATA EQUAL(10) */
341 	{ 0x31,	D | W | R | O, "SEARCH DATA EQUAL(10)" },
342 	/* 31                  OBJECT POSITION */
343 	{ 0x31, S, "OBJECT POSITION" },
344 	/* 32  Z   ZZZ         SEARCH DATA LOW(10) */
345 	{ 0x32,	D | W | R | O, "SEARCH DATA LOW(10)" },
346 	/* 33  Z   OZO         SET LIMITS(10) */
347 	{ 0x33,	D | W | R | O, "SET LIMITS(10)" },
348 	/* 34  O   O O    O    PRE-FETCH(10) */
349 	{ 0x34,	D | W | O | K, "PRE-FETCH(10)" },
350 	/* 34   M              READ POSITION */
351 	{ 0x34,	T, "READ POSITION" },
352 	/* 34                  GET DATA BUFFER STATUS */
353 	{ 0x34, S, "GET DATA BUFFER STATUS" },
354 	/* 35  O   OOO   MO    SYNCHRONIZE CACHE(10) */
355 	{ 0x35,	D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
356 	/* 36  Z   O O    O    LOCK UNLOCK CACHE(10) */
357 	{ 0x36,	D | W | O | K, "LOCK UNLOCK CACHE(10)" },
358 	/* 37  O     O         READ DEFECT DATA(10) */
359 	{ 0x37,	D | O, "READ DEFECT DATA(10)" },
360 	/* 37         O        INITIALIZE ELEMENT STATUS WITH RANGE */
361 	{ 0x37,	M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
362 	/* 38      O O    O    MEDIUM SCAN */
363 	{ 0x38,	W | O | K, "MEDIUM SCAN" },
364 	/* 39  ZZZZOZO    Z    COMPARE */
365 	{ 0x39,	D | T | L | P | W | R | O | K | S, "COMPARE" },
366 	/* 3A  ZZZZOZO    Z    COPY AND VERIFY */
367 	{ 0x3A,	D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
368 	/* 3B  OOOOOOOOOOMOOO  WRITE BUFFER */
369 	{ 0x3B,	ALL, "WRITE BUFFER" },
370 	/* 3C  OOOOOOOOOO OOO  READ BUFFER */
371 	{ 0x3C,	ALL & ~(B), "READ BUFFER" },
372 	/* 3D        O         UPDATE BLOCK */
373 	{ 0x3D,	O, "UPDATE BLOCK" },
374 	/* 3E  O   O O         READ LONG(10) */
375 	{ 0x3E,	D | W | O, "READ LONG(10)" },
376 	/* 3F  O   O O         WRITE LONG(10) */
377 	{ 0x3F,	D | W | O, "WRITE LONG(10)" },
378 	/* 40  ZZZZOZOZ        CHANGE DEFINITION */
379 	{ 0x40,	D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
380 	/* 41  O               WRITE SAME(10) */
381 	{ 0x41,	D, "WRITE SAME(10)" },
382 	/* 42  O               UNMAP */
383 	{ 0x42,	D, "UNMAP" },
384 	/* 42       O          READ SUB-CHANNEL */
385 	{ 0x42,	R, "READ SUB-CHANNEL" },
386 	/* 43       O          READ TOC/PMA/ATIP */
387 	{ 0x43,	R, "READ TOC/PMA/ATIP" },
388 	/* 44   M          M   REPORT DENSITY SUPPORT */
389 	{ 0x44,	T | V, "REPORT DENSITY SUPPORT" },
390 	/* 44                  READ HEADER */
391 	/* 45       O          PLAY AUDIO(10) */
392 	{ 0x45,	R, "PLAY AUDIO(10)" },
393 	/* 46       M          GET CONFIGURATION */
394 	{ 0x46,	R, "GET CONFIGURATION" },
395 	/* 47       O          PLAY AUDIO MSF */
396 	{ 0x47,	R, "PLAY AUDIO MSF" },
397 	/* 48  O               SANITIZE */
398 	{ 0x48,	D, "SANITIZE" },
399 	/* 49 */
400 	/* 4A       M          GET EVENT STATUS NOTIFICATION */
401 	{ 0x4A,	R, "GET EVENT STATUS NOTIFICATION" },
402 	/* 4B       O          PAUSE/RESUME */
403 	{ 0x4B,	R, "PAUSE/RESUME" },
404 	/* 4C  OOOOO OOOO OOO  LOG SELECT */
405 	{ 0x4C,	ALL & ~(R | B), "LOG SELECT" },
406 	/* 4D  OOOOO OOOO OMO  LOG SENSE */
407 	{ 0x4D,	ALL & ~(R | B), "LOG SENSE" },
408 	/* 4E       O          STOP PLAY/SCAN */
409 	{ 0x4E,	R, "STOP PLAY/SCAN" },
410 	/* 4F */
411 	/* 50  O               XDWRITE(10) */
412 	{ 0x50,	D, "XDWRITE(10)" },
413 	/* 51  O               XPWRITE(10) */
414 	{ 0x51,	D, "XPWRITE(10)" },
415 	/* 51       O          READ DISC INFORMATION */
416 	{ 0x51,	R, "READ DISC INFORMATION" },
417 	/* 52  O               XDREAD(10) */
418 	{ 0x52,	D, "XDREAD(10)" },
419 	/* 52       O          READ TRACK INFORMATION */
420 	{ 0x52,	R, "READ TRACK INFORMATION" },
421 	/* 53  O               XDWRITEREAD(10) */
422 	{ 0x53,	D, "XDWRITEREAD(10)" },
423 	/* 53       O          RESERVE TRACK */
424 	{ 0x53,	R, "RESERVE TRACK" },
425 	/* 54       O          SEND OPC INFORMATION */
426 	{ 0x54,	R, "SEND OPC INFORMATION" },
427 	/* 55  OOO OMOOOOMOMO  MODE SELECT(10) */
428 	{ 0x55,	ALL & ~(P), "MODE SELECT(10)" },
429 	/* 56  ZZMZO OOOZ      RESERVE(10) */
430 	{ 0x56,	ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
431 	/* 56         Z        RESERVE ELEMENT(10) */
432 	{ 0x56,	M, "RESERVE ELEMENT(10)" },
433 	/* 57  ZZMZO OOOZ      RELEASE(10) */
434 	{ 0x57,	ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
435 	/* 57         Z        RELEASE ELEMENT(10) */
436 	{ 0x57,	M, "RELEASE ELEMENT(10)" },
437 	/* 58       O          REPAIR TRACK */
438 	{ 0x58,	R, "REPAIR TRACK" },
439 	/* 59 */
440 	/* 5A  OOO OMOOOOMOMO  MODE SENSE(10) */
441 	{ 0x5A,	ALL & ~(P), "MODE SENSE(10)" },
442 	/* 5B       O          CLOSE TRACK/SESSION */
443 	{ 0x5B,	R, "CLOSE TRACK/SESSION" },
444 	/* 5C       O          READ BUFFER CAPACITY */
445 	{ 0x5C,	R, "READ BUFFER CAPACITY" },
446 	/* 5D       O          SEND CUE SHEET */
447 	{ 0x5D,	R, "SEND CUE SHEET" },
448 	/* 5E  OOOOO OOOO   M  PERSISTENT RESERVE IN */
449 	{ 0x5E,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
450 	/* 5F  OOOOO OOOO   M  PERSISTENT RESERVE OUT */
451 	{ 0x5F,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
452 	/* 7E  OO   O OOOO O   extended CDB */
453 	{ 0x7E,	D | T | R | M | A | E | B | V, "extended CDB" },
454 	/* 7F  O            M  variable length CDB (more than 16 bytes) */
455 	{ 0x7F,	D | F, "variable length CDB (more than 16 bytes)" },
456 	/* 80  Z               XDWRITE EXTENDED(16) */
457 	{ 0x80,	D, "XDWRITE EXTENDED(16)" },
458 	/* 80   M              WRITE FILEMARKS(16) */
459 	{ 0x80,	T, "WRITE FILEMARKS(16)" },
460 	/* 81  Z               REBUILD(16) */
461 	{ 0x81,	D, "REBUILD(16)" },
462 	/* 81   O              READ REVERSE(16) */
463 	{ 0x81,	T, "READ REVERSE(16)" },
464 	/* 82  Z               REGENERATE(16) */
465 	{ 0x82,	D, "REGENERATE(16)" },
466 	/* 82   O              ALLOW OVERWRITE */
467 	{ 0x82,	T, "ALLOW OVERWRITE" },
468 	/* 83  OOOOO O    OO   EXTENDED COPY */
469 	{ 0x83,	D | T | L | P | W | O | K | V, "EXTENDED COPY" },
470 	/* 84  OOOOO O    OO   RECEIVE COPY RESULTS */
471 	{ 0x84,	D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
472 	/* 85  O    O    O     ATA COMMAND PASS THROUGH(16) */
473 	{ 0x85,	D | R | B, "ATA COMMAND PASS THROUGH(16)" },
474 	/* 86  OO OO OOOOOOO   ACCESS CONTROL IN */
475 	{ 0x86,	ALL & ~(L | R | F), "ACCESS CONTROL IN" },
476 	/* 87  OO OO OOOOOOO   ACCESS CONTROL OUT */
477 	{ 0x87,	ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
478 	/* 88  MM  O O   O     READ(16) */
479 	{ 0x88,	D | T | W | O | B, "READ(16)" },
480 	/* 89  O               COMPARE AND WRITE*/
481 	{ 0x89,	D, "COMPARE AND WRITE" },
482 	/* 8A  OM  O O   O     WRITE(16) */
483 	{ 0x8A,	D | T | W | O | B, "WRITE(16)" },
484 	/* 8B  O               ORWRITE */
485 	{ 0x8B,	D, "ORWRITE" },
486 	/* 8C  OO  O OO  O M   READ ATTRIBUTE */
487 	{ 0x8C,	D | T | W | O | M | B | V, "READ ATTRIBUTE" },
488 	/* 8D  OO  O OO  O O   WRITE ATTRIBUTE */
489 	{ 0x8D,	D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
490 	/* 8E  O   O O   O     WRITE AND VERIFY(16) */
491 	{ 0x8E,	D | W | O | B, "WRITE AND VERIFY(16)" },
492 	/* 8F  OO  O O   O     VERIFY(16) */
493 	{ 0x8F,	D | T | W | O | B, "VERIFY(16)" },
494 	/* 90  O   O O   O     PRE-FETCH(16) */
495 	{ 0x90,	D | W | O | B, "PRE-FETCH(16)" },
496 	/* 91  O   O O   O     SYNCHRONIZE CACHE(16) */
497 	{ 0x91,	D | W | O | B, "SYNCHRONIZE CACHE(16)" },
498 	/* 91   O              SPACE(16) */
499 	{ 0x91,	T, "SPACE(16)" },
500 	/* 92  Z   O O         LOCK UNLOCK CACHE(16) */
501 	{ 0x92,	D | W | O, "LOCK UNLOCK CACHE(16)" },
502 	/* 92   O              LOCATE(16) */
503 	{ 0x92,	T, "LOCATE(16)" },
504 	/* 93  O               WRITE SAME(16) */
505 	{ 0x93,	D, "WRITE SAME(16)" },
506 	/* 93   M              ERASE(16) */
507 	{ 0x93,	T, "ERASE(16)" },
508 	/* 94  O               ZBC OUT */
509 	{ 0x94,	ALL, "ZBC OUT" },
510 	/* 95  O               ZBC IN */
511 	{ 0x95,	ALL, "ZBC IN" },
512 	/* 96 */
513 	/* 97 */
514 	/* 98 */
515 	/* 99 */
516 	/* 9A  O               WRITE STREAM(16) */
517 	{ 0x9A,	D, "WRITE STREAM(16)" },
518 	/* 9B  OOOOOOOOOO OOO  READ BUFFER(16) */
519 	{ 0x9B,	ALL & ~(B) , "READ BUFFER(16)" },
520 	/* 9C  O              WRITE ATOMIC(16) */
521 	{ 0x9C, D, "WRITE ATOMIC(16)" },
522 	/* 9D                  SERVICE ACTION BIDIRECTIONAL */
523 	{ 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
524 	/* XXX KDM ALL for this?  op-num.txt defines it for none.. */
525 	/* 9E                  SERVICE ACTION IN(16) */
526 	{ 0x9E, ALL, "SERVICE ACTION IN(16)" },
527 	/* 9F              M   SERVICE ACTION OUT(16) */
528 	{ 0x9F,	ALL, "SERVICE ACTION OUT(16)" },
529 	/* A0  MMOOO OMMM OMO  REPORT LUNS */
530 	{ 0xA0,	ALL & ~(R | B), "REPORT LUNS" },
531 	/* A1       O          BLANK */
532 	{ 0xA1,	R, "BLANK" },
533 	/* A1  O         O     ATA COMMAND PASS THROUGH(12) */
534 	{ 0xA1,	D | B, "ATA COMMAND PASS THROUGH(12)" },
535 	/* A2  OO   O      O   SECURITY PROTOCOL IN */
536 	{ 0xA2,	D | T | R | V, "SECURITY PROTOCOL IN" },
537 	/* A3  OOO O OOMOOOM   MAINTENANCE (IN) */
538 	{ 0xA3,	ALL & ~(P | R | F), "MAINTENANCE (IN)" },
539 	/* A3       O          SEND KEY */
540 	{ 0xA3,	R, "SEND KEY" },
541 	/* A4  OOO O OOOOOOO   MAINTENANCE (OUT) */
542 	{ 0xA4,	ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
543 	/* A4       O          REPORT KEY */
544 	{ 0xA4,	R, "REPORT KEY" },
545 	/* A5   O  O OM        MOVE MEDIUM */
546 	{ 0xA5,	T | W | O | M, "MOVE MEDIUM" },
547 	/* A5       O          PLAY AUDIO(12) */
548 	{ 0xA5,	R, "PLAY AUDIO(12)" },
549 	/* A6         O        EXCHANGE MEDIUM */
550 	{ 0xA6,	M, "EXCHANGE MEDIUM" },
551 	/* A6       O          LOAD/UNLOAD C/DVD */
552 	{ 0xA6,	R, "LOAD/UNLOAD C/DVD" },
553 	/* A7  ZZ  O O         MOVE MEDIUM ATTACHED */
554 	{ 0xA7,	D | T | W | O, "MOVE MEDIUM ATTACHED" },
555 	/* A7       O          SET READ AHEAD */
556 	{ 0xA7,	R, "SET READ AHEAD" },
557 	/* A8  O   OOO         READ(12) */
558 	{ 0xA8,	D | W | R | O, "READ(12)" },
559 	/* A8                  GET MESSAGE(12) */
560 	{ 0xA8, C, "GET MESSAGE(12)" },
561 	/* A9              O   SERVICE ACTION OUT(12) */
562 	{ 0xA9,	V, "SERVICE ACTION OUT(12)" },
563 	/* AA  O   OOO         WRITE(12) */
564 	{ 0xAA,	D | W | R | O, "WRITE(12)" },
565 	/* AA                  SEND MESSAGE(12) */
566 	{ 0xAA, C, "SEND MESSAGE(12)" },
567 	/* AB       O      O   SERVICE ACTION IN(12) */
568 	{ 0xAB,	R | V, "SERVICE ACTION IN(12)" },
569 	/* AC        O         ERASE(12) */
570 	{ 0xAC,	O, "ERASE(12)" },
571 	/* AC       O          GET PERFORMANCE */
572 	{ 0xAC,	R, "GET PERFORMANCE" },
573 	/* AD       O          READ DVD STRUCTURE */
574 	{ 0xAD,	R, "READ DVD STRUCTURE" },
575 	/* AE  O   O O         WRITE AND VERIFY(12) */
576 	{ 0xAE,	D | W | O, "WRITE AND VERIFY(12)" },
577 	/* AF  O   OZO         VERIFY(12) */
578 	{ 0xAF,	D | W | R | O, "VERIFY(12)" },
579 	/* B0      ZZZ         SEARCH DATA HIGH(12) */
580 	{ 0xB0,	W | R | O, "SEARCH DATA HIGH(12)" },
581 	/* B1      ZZZ         SEARCH DATA EQUAL(12) */
582 	{ 0xB1,	W | R | O, "SEARCH DATA EQUAL(12)" },
583 	/* B2      ZZZ         SEARCH DATA LOW(12) */
584 	{ 0xB2,	W | R | O, "SEARCH DATA LOW(12)" },
585 	/* B3  Z   OZO         SET LIMITS(12) */
586 	{ 0xB3,	D | W | R | O, "SET LIMITS(12)" },
587 	/* B4  ZZ  OZO         READ ELEMENT STATUS ATTACHED */
588 	{ 0xB4,	D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
589 	/* B5  OO   O      O   SECURITY PROTOCOL OUT */
590 	{ 0xB5,	D | T | R | V, "SECURITY PROTOCOL OUT" },
591 	/* B5         O        REQUEST VOLUME ELEMENT ADDRESS */
592 	{ 0xB5,	M, "REQUEST VOLUME ELEMENT ADDRESS" },
593 	/* B6         O        SEND VOLUME TAG */
594 	{ 0xB6,	M, "SEND VOLUME TAG" },
595 	/* B6       O          SET STREAMING */
596 	{ 0xB6,	R, "SET STREAMING" },
597 	/* B7  O     O         READ DEFECT DATA(12) */
598 	{ 0xB7,	D | O, "READ DEFECT DATA(12)" },
599 	/* B8   O  OZOM        READ ELEMENT STATUS */
600 	{ 0xB8,	T | W | R | O | M, "READ ELEMENT STATUS" },
601 	/* B9       O          READ CD MSF */
602 	{ 0xB9,	R, "READ CD MSF" },
603 	/* BA  O   O OOMO      REDUNDANCY GROUP (IN) */
604 	{ 0xBA,	D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
605 	/* BA       O          SCAN */
606 	{ 0xBA,	R, "SCAN" },
607 	/* BB  O   O OOOO      REDUNDANCY GROUP (OUT) */
608 	{ 0xBB,	D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
609 	/* BB       O          SET CD SPEED */
610 	{ 0xBB,	R, "SET CD SPEED" },
611 	/* BC  O   O OOMO      SPARE (IN) */
612 	{ 0xBC,	D | W | O | M | A | E, "SPARE (IN)" },
613 	/* BD  O   O OOOO      SPARE (OUT) */
614 	{ 0xBD,	D | W | O | M | A | E, "SPARE (OUT)" },
615 	/* BD       O          MECHANISM STATUS */
616 	{ 0xBD,	R, "MECHANISM STATUS" },
617 	/* BE  O   O OOMO      VOLUME SET (IN) */
618 	{ 0xBE,	D | W | O | M | A | E, "VOLUME SET (IN)" },
619 	/* BE       O          READ CD */
620 	{ 0xBE,	R, "READ CD" },
621 	/* BF  O   O OOOO      VOLUME SET (OUT) */
622 	{ 0xBF,	D | W | O | M | A | E, "VOLUME SET (OUT)" },
623 	/* BF       O          SEND DVD STRUCTURE */
624 	{ 0xBF,	R, "SEND DVD STRUCTURE" }
625 };
626 
627 const char *
628 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
629 {
630 	caddr_t match;
631 	int i, j;
632 	u_int32_t opmask;
633 	u_int16_t pd_type;
634 	int       num_ops[2];
635 	struct op_table_entry *table[2];
636 	int num_tables;
637 
638 	/*
639 	 * If we've got inquiry data, use it to determine what type of
640 	 * device we're dealing with here.  Otherwise, assume direct
641 	 * access.
642 	 */
643 	if (inq_data == NULL) {
644 		pd_type = T_DIRECT;
645 		match = NULL;
646 	} else {
647 		pd_type = SID_TYPE(inq_data);
648 
649 		match = cam_quirkmatch((caddr_t)inq_data,
650 				       (caddr_t)scsi_op_quirk_table,
651 				       nitems(scsi_op_quirk_table),
652 				       sizeof(*scsi_op_quirk_table),
653 				       scsi_inquiry_match);
654 	}
655 
656 	if (match != NULL) {
657 		table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
658 		num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
659 		table[1] = scsi_op_codes;
660 		num_ops[1] = nitems(scsi_op_codes);
661 		num_tables = 2;
662 	} else {
663 		/*
664 		 * If this is true, we have a vendor specific opcode that
665 		 * wasn't covered in the quirk table.
666 		 */
667 		if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
668 			return("Vendor Specific Command");
669 
670 		table[0] = scsi_op_codes;
671 		num_ops[0] = nitems(scsi_op_codes);
672 		num_tables = 1;
673 	}
674 
675 	/* RBC is 'Simplified' Direct Access Device */
676 	if (pd_type == T_RBC)
677 		pd_type = T_DIRECT;
678 
679 	/*
680 	 * Host managed drives are direct access for the most part.
681 	 */
682 	if (pd_type == T_ZBC_HM)
683 		pd_type = T_DIRECT;
684 
685 	/* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
686 	if (pd_type == T_NODEVICE)
687 		pd_type = T_DIRECT;
688 
689 	opmask = 1 << pd_type;
690 
691 	for (j = 0; j < num_tables; j++) {
692 		for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
693 			if ((table[j][i].opcode == opcode)
694 			 && ((table[j][i].opmask & opmask) != 0))
695 				return(table[j][i].desc);
696 		}
697 	}
698 
699 	/*
700 	 * If we can't find a match for the command in the table, we just
701 	 * assume it's a vendor specifc command.
702 	 */
703 	return("Vendor Specific Command");
704 
705 }
706 
707 #else /* SCSI_NO_OP_STRINGS */
708 
709 const char *
710 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
711 {
712 	return("");
713 }
714 
715 #endif
716 
717 #if !defined(SCSI_NO_SENSE_STRINGS)
718 #define SST(asc, ascq, action, desc) \
719 	asc, ascq, action, desc
720 #else
721 const char empty_string[] = "";
722 
723 #define SST(asc, ascq, action, desc) \
724 	asc, ascq, action, empty_string
725 #endif
726 
727 const struct sense_key_table_entry sense_key_table[] =
728 {
729 	{ SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
730 	{ SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
731 	{ SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
732 	{ SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
733 	{ SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
734 	{ SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
735 	{ SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
736 	{ SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
737 	{ SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
738 	{ SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
739 	{ SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
740 	{ SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
741 	{ SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
742 	{ SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
743 	{ SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
744 	{ SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
745 };
746 
747 static struct asc_table_entry quantum_fireball_entries[] = {
748 	{ SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
749 	     "Logical unit not ready, initializing cmd. required") }
750 };
751 
752 static struct asc_table_entry sony_mo_entries[] = {
753 	{ SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
754 	     "Logical unit not ready, cause not reportable") }
755 };
756 
757 static struct asc_table_entry hgst_entries[] = {
758 	{ SST(0x04, 0xF0, SS_RDEF,
759 	    "Vendor Unique - Logical Unit Not Ready") },
760 	{ SST(0x0A, 0x01, SS_RDEF,
761 	    "Unrecovered Super Certification Log Write Error") },
762 	{ SST(0x0A, 0x02, SS_RDEF,
763 	    "Unrecovered Super Certification Log Read Error") },
764 	{ SST(0x15, 0x03, SS_RDEF,
765 	    "Unrecovered Sector Error") },
766 	{ SST(0x3E, 0x04, SS_RDEF,
767 	    "Unrecovered Self-Test Hard-Cache Test Fail") },
768 	{ SST(0x3E, 0x05, SS_RDEF,
769 	    "Unrecovered Self-Test OTF-Cache Fail") },
770 	{ SST(0x40, 0x00, SS_RDEF,
771 	    "Unrecovered SAT No Buffer Overflow Error") },
772 	{ SST(0x40, 0x01, SS_RDEF,
773 	    "Unrecovered SAT Buffer Overflow Error") },
774 	{ SST(0x40, 0x02, SS_RDEF,
775 	    "Unrecovered SAT No Buffer Overflow With ECS Fault") },
776 	{ SST(0x40, 0x03, SS_RDEF,
777 	    "Unrecovered SAT Buffer Overflow With ECS Fault") },
778 	{ SST(0x40, 0x81, SS_RDEF,
779 	    "DRAM Failure") },
780 	{ SST(0x44, 0x0B, SS_RDEF,
781 	    "Vendor Unique - Internal Target Failure") },
782 	{ SST(0x44, 0xF2, SS_RDEF,
783 	    "Vendor Unique - Internal Target Failure") },
784 	{ SST(0x44, 0xF6, SS_RDEF,
785 	    "Vendor Unique - Internal Target Failure") },
786 	{ SST(0x44, 0xF9, SS_RDEF,
787 	    "Vendor Unique - Internal Target Failure") },
788 	{ SST(0x44, 0xFA, SS_RDEF,
789 	    "Vendor Unique - Internal Target Failure") },
790 	{ SST(0x5D, 0x22, SS_RDEF,
791 	    "Extreme Over-Temperature Warning") },
792 	{ SST(0x5D, 0x50, SS_RDEF,
793 	    "Load/Unload cycle Count Warning") },
794 	{ SST(0x81, 0x00, SS_RDEF,
795 	    "Vendor Unique - Internal Logic Error") },
796 	{ SST(0x85, 0x00, SS_RDEF,
797 	    "Vendor Unique - Internal Key Seed Error") },
798 };
799 
800 static struct asc_table_entry seagate_entries[] = {
801 	{ SST(0x04, 0xF0, SS_RDEF,
802 	    "Logical Unit Not Ready, super certify in Progress") },
803 	{ SST(0x08, 0x86, SS_RDEF,
804 	    "Write Fault Data Corruption") },
805 	{ SST(0x09, 0x0D, SS_RDEF,
806 	    "Tracking Failure") },
807 	{ SST(0x09, 0x0E, SS_RDEF,
808 	    "ETF Failure") },
809 	{ SST(0x0B, 0x5D, SS_RDEF,
810 	    "Pre-SMART Warning") },
811 	{ SST(0x0B, 0x85, SS_RDEF,
812 	    "5V Voltage Warning") },
813 	{ SST(0x0B, 0x8C, SS_RDEF,
814 	    "12V Voltage Warning") },
815 	{ SST(0x0C, 0xFF, SS_RDEF,
816 	    "Write Error - Too many error recovery revs") },
817 	{ SST(0x11, 0xFF, SS_RDEF,
818 	    "Unrecovered Read Error - Too many error recovery revs") },
819 	{ SST(0x19, 0x0E, SS_RDEF,
820 	    "Fewer than 1/2 defect list copies") },
821 	{ SST(0x20, 0xF3, SS_RDEF,
822 	    "Illegal CDB linked to skip mask cmd") },
823 	{ SST(0x24, 0xF0, SS_RDEF,
824 	    "Illegal byte in CDB, LBA not matching") },
825 	{ SST(0x24, 0xF1, SS_RDEF,
826 	    "Illegal byte in CDB, LEN not matching") },
827 	{ SST(0x24, 0xF2, SS_RDEF,
828 	    "Mask not matching transfer length") },
829 	{ SST(0x24, 0xF3, SS_RDEF,
830 	    "Drive formatted without plist") },
831 	{ SST(0x26, 0x95, SS_RDEF,
832 	    "Invalid Field Parameter - CAP File") },
833 	{ SST(0x26, 0x96, SS_RDEF,
834 	    "Invalid Field Parameter - RAP File") },
835 	{ SST(0x26, 0x97, SS_RDEF,
836 	    "Invalid Field Parameter - TMS Firmware Tag") },
837 	{ SST(0x26, 0x98, SS_RDEF,
838 	    "Invalid Field Parameter - Check Sum") },
839 	{ SST(0x26, 0x99, SS_RDEF,
840 	    "Invalid Field Parameter - Firmware Tag") },
841 	{ SST(0x29, 0x08, SS_RDEF,
842 	    "Write Log Dump data") },
843 	{ SST(0x29, 0x09, SS_RDEF,
844 	    "Write Log Dump data") },
845 	{ SST(0x29, 0x0A, SS_RDEF,
846 	    "Reserved disk space") },
847 	{ SST(0x29, 0x0B, SS_RDEF,
848 	    "SDBP") },
849 	{ SST(0x29, 0x0C, SS_RDEF,
850 	    "SDBP") },
851 	{ SST(0x31, 0x91, SS_RDEF,
852 	    "Format Corrupted World Wide Name (WWN) is Invalid") },
853 	{ SST(0x32, 0x03, SS_RDEF,
854 	    "Defect List - Length exceeds Command Allocated Length") },
855 	{ SST(0x33, 0x00, SS_RDEF,
856 	    "Flash not ready for access") },
857 	{ SST(0x3F, 0x70, SS_RDEF,
858 	    "Invalid RAP block") },
859 	{ SST(0x3F, 0x71, SS_RDEF,
860 	    "RAP/ETF mismatch") },
861 	{ SST(0x3F, 0x90, SS_RDEF,
862 	    "Invalid CAP block") },
863 	{ SST(0x3F, 0x91, SS_RDEF,
864 	    "World Wide Name (WWN) Mismatch") },
865 	{ SST(0x40, 0x01, SS_RDEF,
866 	    "DRAM Parity Error") },
867 	{ SST(0x40, 0x02, SS_RDEF,
868 	    "DRAM Parity Error") },
869 	{ SST(0x42, 0x0A, SS_RDEF,
870 	    "Loopback Test") },
871 	{ SST(0x42, 0x0B, SS_RDEF,
872 	    "Loopback Test") },
873 	{ SST(0x44, 0xF2, SS_RDEF,
874 	    "Compare error during data integrity check") },
875 	{ SST(0x44, 0xF6, SS_RDEF,
876 	    "Unrecoverable error during data integrity check") },
877 	{ SST(0x47, 0x80, SS_RDEF,
878 	    "Fibre Channel Sequence Error") },
879 	{ SST(0x4E, 0x01, SS_RDEF,
880 	    "Information Unit Too Short") },
881 	{ SST(0x80, 0x00, SS_RDEF,
882 	    "General Firmware Error / Command Timeout") },
883 	{ SST(0x80, 0x01, SS_RDEF,
884 	    "Command Timeout") },
885 	{ SST(0x80, 0x02, SS_RDEF,
886 	    "Command Timeout") },
887 	{ SST(0x80, 0x80, SS_RDEF,
888 	    "FC FIFO Error During Read Transfer") },
889 	{ SST(0x80, 0x81, SS_RDEF,
890 	    "FC FIFO Error During Write Transfer") },
891 	{ SST(0x80, 0x82, SS_RDEF,
892 	    "DISC FIFO Error During Read Transfer") },
893 	{ SST(0x80, 0x83, SS_RDEF,
894 	    "DISC FIFO Error During Write Transfer") },
895 	{ SST(0x80, 0x84, SS_RDEF,
896 	    "LBA Seeded LRC Error on Read") },
897 	{ SST(0x80, 0x85, SS_RDEF,
898 	    "LBA Seeded LRC Error on Write") },
899 	{ SST(0x80, 0x86, SS_RDEF,
900 	    "IOEDC Error on Read") },
901 	{ SST(0x80, 0x87, SS_RDEF,
902 	    "IOEDC Error on Write") },
903 	{ SST(0x80, 0x88, SS_RDEF,
904 	    "Host Parity Check Failed") },
905 	{ SST(0x80, 0x89, SS_RDEF,
906 	    "IOEDC error on read detected by formatter") },
907 	{ SST(0x80, 0x8A, SS_RDEF,
908 	    "Host Parity Errors / Host FIFO Initialization Failed") },
909 	{ SST(0x80, 0x8B, SS_RDEF,
910 	    "Host Parity Errors") },
911 	{ SST(0x80, 0x8C, SS_RDEF,
912 	    "Host Parity Errors") },
913 	{ SST(0x80, 0x8D, SS_RDEF,
914 	    "Host Parity Errors") },
915 	{ SST(0x81, 0x00, SS_RDEF,
916 	    "LA Check Failed") },
917 	{ SST(0x82, 0x00, SS_RDEF,
918 	    "Internal client detected insufficient buffer") },
919 	{ SST(0x84, 0x00, SS_RDEF,
920 	    "Scheduled Diagnostic And Repair") },
921 };
922 
923 static struct scsi_sense_quirk_entry sense_quirk_table[] = {
924 	{
925 		/*
926 		 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
927 		 * when they really should return 0x04 0x02.
928 		 */
929 		{T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
930 		/*num_sense_keys*/0,
931 		nitems(quantum_fireball_entries),
932 		/*sense key entries*/NULL,
933 		quantum_fireball_entries
934 	},
935 	{
936 		/*
937 		 * This Sony MO drive likes to return 0x04, 0x00 when it
938 		 * isn't spun up.
939 		 */
940 		{T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
941 		/*num_sense_keys*/0,
942 		nitems(sony_mo_entries),
943 		/*sense key entries*/NULL,
944 		sony_mo_entries
945 	},
946 	{
947 		/*
948 		 * HGST vendor-specific error codes
949 		 */
950 		{T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
951 		/*num_sense_keys*/0,
952 		nitems(hgst_entries),
953 		/*sense key entries*/NULL,
954 		hgst_entries
955 	},
956 	{
957 		/*
958 		 * SEAGATE vendor-specific error codes
959 		 */
960 		{T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
961 		/*num_sense_keys*/0,
962 		nitems(seagate_entries),
963 		/*sense key entries*/NULL,
964 		seagate_entries
965 	}
966 };
967 
968 const u_int sense_quirk_table_size = nitems(sense_quirk_table);
969 
970 static struct asc_table_entry asc_table[] = {
971 	/*
972 	 * From: http://www.t10.org/lists/asc-num.txt
973 	 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
974 	 */
975 	/*
976 	 * File: ASC-NUM.TXT
977 	 *
978 	 * SCSI ASC/ASCQ Assignments
979 	 * Numeric Sorted Listing
980 	 * as of  8/12/15
981 	 *
982 	 * D - DIRECT ACCESS DEVICE (SBC-2)                   device column key
983 	 * .T - SEQUENTIAL ACCESS DEVICE (SSC)               -------------------
984 	 * . L - PRINTER DEVICE (SSC)                           blank = reserved
985 	 * .  P - PROCESSOR DEVICE (SPC)                     not blank = allowed
986 	 * .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
987 	 * .  . R - CD DEVICE (MMC)
988 	 * .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
989 	 * .  .  .M - MEDIA CHANGER DEVICE (SMC)
990 	 * .  .  . A - STORAGE ARRAY DEVICE (SCC)
991 	 * .  .  .  E - ENCLOSURE SERVICES DEVICE (SES)
992 	 * .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
993 	 * .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
994 	 * .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
995 	 * .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
996 	 * DTLPWROMAEBKVF
997 	 * ASC      ASCQ  Action
998 	 * Description
999 	 */
1000 	/* DTLPWROMAEBKVF */
1001 	{ SST(0x00, 0x00, SS_NOP,
1002 	    "No additional sense information") },
1003 	/*  T             */
1004 	{ SST(0x00, 0x01, SS_RDEF,
1005 	    "Filemark detected") },
1006 	/*  T             */
1007 	{ SST(0x00, 0x02, SS_RDEF,
1008 	    "End-of-partition/medium detected") },
1009 	/*  T             */
1010 	{ SST(0x00, 0x03, SS_RDEF,
1011 	    "Setmark detected") },
1012 	/*  T             */
1013 	{ SST(0x00, 0x04, SS_RDEF,
1014 	    "Beginning-of-partition/medium detected") },
1015 	/*  TL            */
1016 	{ SST(0x00, 0x05, SS_RDEF,
1017 	    "End-of-data detected") },
1018 	/* DTLPWROMAEBKVF */
1019 	{ SST(0x00, 0x06, SS_RDEF,
1020 	    "I/O process terminated") },
1021 	/*  T             */
1022 	{ SST(0x00, 0x07, SS_RDEF,	/* XXX TBD */
1023 	    "Programmable early warning detected") },
1024 	/*      R         */
1025 	{ SST(0x00, 0x11, SS_FATAL | EBUSY,
1026 	    "Audio play operation in progress") },
1027 	/*      R         */
1028 	{ SST(0x00, 0x12, SS_NOP,
1029 	    "Audio play operation paused") },
1030 	/*      R         */
1031 	{ SST(0x00, 0x13, SS_NOP,
1032 	    "Audio play operation successfully completed") },
1033 	/*      R         */
1034 	{ SST(0x00, 0x14, SS_RDEF,
1035 	    "Audio play operation stopped due to error") },
1036 	/*      R         */
1037 	{ SST(0x00, 0x15, SS_NOP,
1038 	    "No current audio status to return") },
1039 	/* DTLPWROMAEBKVF */
1040 	{ SST(0x00, 0x16, SS_FATAL | EBUSY,
1041 	    "Operation in progress") },
1042 	/* DTL WROMAEBKVF */
1043 	{ SST(0x00, 0x17, SS_RDEF,
1044 	    "Cleaning requested") },
1045 	/*  T             */
1046 	{ SST(0x00, 0x18, SS_RDEF,	/* XXX TBD */
1047 	    "Erase operation in progress") },
1048 	/*  T             */
1049 	{ SST(0x00, 0x19, SS_RDEF,	/* XXX TBD */
1050 	    "Locate operation in progress") },
1051 	/*  T             */
1052 	{ SST(0x00, 0x1A, SS_RDEF,	/* XXX TBD */
1053 	    "Rewind operation in progress") },
1054 	/*  T             */
1055 	{ SST(0x00, 0x1B, SS_RDEF,	/* XXX TBD */
1056 	    "Set capacity operation in progress") },
1057 	/*  T             */
1058 	{ SST(0x00, 0x1C, SS_RDEF,	/* XXX TBD */
1059 	    "Verify operation in progress") },
1060 	/* DT        B    */
1061 	{ SST(0x00, 0x1D, SS_NOP,
1062 	    "ATA pass through information available") },
1063 	/* DT   R MAEBKV  */
1064 	{ SST(0x00, 0x1E, SS_RDEF,	/* XXX TBD */
1065 	    "Conflicting SA creation request") },
1066 	/* DT        B    */
1067 	{ SST(0x00, 0x1F, SS_RDEF,	/* XXX TBD */
1068 	    "Logical unit transitioning to another power condition") },
1069 	/* DT P      B    */
1070 	{ SST(0x00, 0x20, SS_NOP,
1071 	    "Extended copy information available") },
1072 	/* D              */
1073 	{ SST(0x00, 0x21, SS_RDEF,	/* XXX TBD */
1074 	    "Atomic command aborted due to ACA") },
1075 	/* D   W O   BK   */
1076 	{ SST(0x01, 0x00, SS_RDEF,
1077 	    "No index/sector signal") },
1078 	/* D   WRO   BK   */
1079 	{ SST(0x02, 0x00, SS_RDEF,
1080 	    "No seek complete") },
1081 	/* DTL W O   BK   */
1082 	{ SST(0x03, 0x00, SS_RDEF,
1083 	    "Peripheral device write fault") },
1084 	/*  T             */
1085 	{ SST(0x03, 0x01, SS_RDEF,
1086 	    "No write current") },
1087 	/*  T             */
1088 	{ SST(0x03, 0x02, SS_RDEF,
1089 	    "Excessive write errors") },
1090 	/* DTLPWROMAEBKVF */
1091 	{ SST(0x04, 0x00, SS_RDEF,
1092 	    "Logical unit not ready, cause not reportable") },
1093 	/* DTLPWROMAEBKVF */
1094 	{ SST(0x04, 0x01, SS_WAIT | EBUSY,
1095 	    "Logical unit is in process of becoming ready") },
1096 	/* DTLPWROMAEBKVF */
1097 	{ SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1098 	    "Logical unit not ready, initializing command required") },
1099 	/* DTLPWROMAEBKVF */
1100 	{ SST(0x04, 0x03, SS_FATAL | ENXIO,
1101 	    "Logical unit not ready, manual intervention required") },
1102 	/* DTL  RO   B    */
1103 	{ SST(0x04, 0x04, SS_FATAL | EBUSY,
1104 	    "Logical unit not ready, format in progress") },
1105 	/* DT  W O A BK F */
1106 	{ SST(0x04, 0x05, SS_FATAL | EBUSY,
1107 	    "Logical unit not ready, rebuild in progress") },
1108 	/* DT  W O A BK   */
1109 	{ SST(0x04, 0x06, SS_FATAL | EBUSY,
1110 	    "Logical unit not ready, recalculation in progress") },
1111 	/* DTLPWROMAEBKVF */
1112 	{ SST(0x04, 0x07, SS_FATAL | EBUSY,
1113 	    "Logical unit not ready, operation in progress") },
1114 	/*      R         */
1115 	{ SST(0x04, 0x08, SS_FATAL | EBUSY,
1116 	    "Logical unit not ready, long write in progress") },
1117 	/* DTLPWROMAEBKVF */
1118 	{ SST(0x04, 0x09, SS_FATAL | EBUSY,
1119 	    "Logical unit not ready, self-test in progress") },
1120 	/* DTLPWROMAEBKVF */
1121 	{ SST(0x04, 0x0A, SS_WAIT | ENXIO,
1122 	    "Logical unit not accessible, asymmetric access state transition")},
1123 	/* DTLPWROMAEBKVF */
1124 	{ SST(0x04, 0x0B, SS_FATAL | ENXIO,
1125 	    "Logical unit not accessible, target port in standby state") },
1126 	/* DTLPWROMAEBKVF */
1127 	{ SST(0x04, 0x0C, SS_FATAL | ENXIO,
1128 	    "Logical unit not accessible, target port in unavailable state") },
1129 	/*              F */
1130 	{ SST(0x04, 0x0D, SS_RDEF,	/* XXX TBD */
1131 	    "Logical unit not ready, structure check required") },
1132 	/* DTL WR MAEBKVF */
1133 	{ SST(0x04, 0x0E, SS_RDEF,	/* XXX TBD */
1134 	    "Logical unit not ready, security session in progress") },
1135 	/* DT  WROM  B    */
1136 	{ SST(0x04, 0x10, SS_FATAL | ENODEV,
1137 	    "Logical unit not ready, auxiliary memory not accessible") },
1138 	/* DT  WRO AEB VF */
1139 	{ SST(0x04, 0x11, SS_WAIT | ENXIO,
1140 	    "Logical unit not ready, notify (enable spinup) required") },
1141 	/*        M    V  */
1142 	{ SST(0x04, 0x12, SS_FATAL | ENXIO,
1143 	    "Logical unit not ready, offline") },
1144 	/* DT   R MAEBKV  */
1145 	{ SST(0x04, 0x13, SS_WAIT | EBUSY,
1146 	    "Logical unit not ready, SA creation in progress") },
1147 	/* D         B    */
1148 	{ SST(0x04, 0x14, SS_WAIT | ENOSPC,
1149 	    "Logical unit not ready, space allocation in progress") },
1150 	/*        M       */
1151 	{ SST(0x04, 0x15, SS_FATAL | ENXIO,
1152 	    "Logical unit not ready, robotics disabled") },
1153 	/*        M       */
1154 	{ SST(0x04, 0x16, SS_FATAL | ENXIO,
1155 	    "Logical unit not ready, configuration required") },
1156 	/*        M       */
1157 	{ SST(0x04, 0x17, SS_FATAL | ENXIO,
1158 	    "Logical unit not ready, calibration required") },
1159 	/*        M       */
1160 	{ SST(0x04, 0x18, SS_FATAL | ENXIO,
1161 	    "Logical unit not ready, a door is open") },
1162 	/*        M       */
1163 	{ SST(0x04, 0x19, SS_FATAL | ENODEV,
1164 	    "Logical unit not ready, operating in sequential mode") },
1165 	/* DT        B    */
1166 	{ SST(0x04, 0x1A, SS_WAIT | EBUSY,
1167 	    "Logical unit not ready, START/STOP UNIT command in progress") },
1168 	/* D         B    */
1169 	{ SST(0x04, 0x1B, SS_WAIT | EBUSY,
1170 	    "Logical unit not ready, sanitize in progress") },
1171 	/* DT     MAEB    */
1172 	{ SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1173 	    "Logical unit not ready, additional power use not yet granted") },
1174 	/* D              */
1175 	{ SST(0x04, 0x1D, SS_WAIT | EBUSY,
1176 	    "Logical unit not ready, configuration in progress") },
1177 	/* D              */
1178 	{ SST(0x04, 0x1E, SS_FATAL | ENXIO,
1179 	    "Logical unit not ready, microcode activation required") },
1180 	/* DTLPWROMAEBKVF */
1181 	{ SST(0x04, 0x1F, SS_FATAL | ENXIO,
1182 	    "Logical unit not ready, microcode download required") },
1183 	/* DTLPWROMAEBKVF */
1184 	{ SST(0x04, 0x20, SS_FATAL | ENXIO,
1185 	    "Logical unit not ready, logical unit reset required") },
1186 	/* DTLPWROMAEBKVF */
1187 	{ SST(0x04, 0x21, SS_FATAL | ENXIO,
1188 	    "Logical unit not ready, hard reset required") },
1189 	/* DTLPWROMAEBKVF */
1190 	{ SST(0x04, 0x22, SS_FATAL | ENXIO,
1191 	    "Logical unit not ready, power cycle required") },
1192 	/* D              */
1193 	{ SST(0x04, 0x23, SS_FATAL | ENXIO,
1194 	    "Logical unit not ready, affiliation required") },
1195 	/* D              */
1196 	{ SST(0x04, 0x24, SS_FATAL | EBUSY,
1197 	    "Depopulation in progress") },
1198 	/* D              */
1199 	{ SST(0x04, 0x25, SS_FATAL | EBUSY,
1200 	    "Depopulation restoration in progress") },
1201 	/* DTL WROMAEBKVF */
1202 	{ SST(0x05, 0x00, SS_RDEF,
1203 	    "Logical unit does not respond to selection") },
1204 	/* D   WROM  BK   */
1205 	{ SST(0x06, 0x00, SS_RDEF,
1206 	    "No reference position found") },
1207 	/* DTL WROM  BK   */
1208 	{ SST(0x07, 0x00, SS_RDEF,
1209 	    "Multiple peripheral devices selected") },
1210 	/* DTL WROMAEBKVF */
1211 	{ SST(0x08, 0x00, SS_RDEF,
1212 	    "Logical unit communication failure") },
1213 	/* DTL WROMAEBKVF */
1214 	{ SST(0x08, 0x01, SS_RDEF,
1215 	    "Logical unit communication time-out") },
1216 	/* DTL WROMAEBKVF */
1217 	{ SST(0x08, 0x02, SS_RDEF,
1218 	    "Logical unit communication parity error") },
1219 	/* DT   ROM  BK   */
1220 	{ SST(0x08, 0x03, SS_RDEF,
1221 	    "Logical unit communication CRC error (Ultra-DMA/32)") },
1222 	/* DTLPWRO    K   */
1223 	{ SST(0x08, 0x04, SS_RDEF,	/* XXX TBD */
1224 	    "Unreachable copy target") },
1225 	/* DT  WRO   B    */
1226 	{ SST(0x09, 0x00, SS_RDEF,
1227 	    "Track following error") },
1228 	/*     WRO    K   */
1229 	{ SST(0x09, 0x01, SS_RDEF,
1230 	    "Tracking servo failure") },
1231 	/*     WRO    K   */
1232 	{ SST(0x09, 0x02, SS_RDEF,
1233 	    "Focus servo failure") },
1234 	/*     WRO        */
1235 	{ SST(0x09, 0x03, SS_RDEF,
1236 	    "Spindle servo failure") },
1237 	/* DT  WRO   B    */
1238 	{ SST(0x09, 0x04, SS_RDEF,
1239 	    "Head select fault") },
1240 	/* DT   RO   B    */
1241 	{ SST(0x09, 0x05, SS_RDEF,
1242 	    "Vibration induced tracking error") },
1243 	/* DTLPWROMAEBKVF */
1244 	{ SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1245 	    "Error log overflow") },
1246 	/* DTLPWROMAEBKVF */
1247 	{ SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1248 	    "Warning") },
1249 	/* DTLPWROMAEBKVF */
1250 	{ SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1251 	    "Warning - specified temperature exceeded") },
1252 	/* DTLPWROMAEBKVF */
1253 	{ SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1254 	    "Warning - enclosure degraded") },
1255 	/* DTLPWROMAEBKVF */
1256 	{ SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1257 	    "Warning - background self-test failed") },
1258 	/* DTLPWRO AEBKVF */
1259 	{ SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1260 	    "Warning - background pre-scan detected medium error") },
1261 	/* DTLPWRO AEBKVF */
1262 	{ SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1263 	    "Warning - background medium scan detected medium error") },
1264 	/* DTLPWROMAEBKVF */
1265 	{ SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1266 	    "Warning - non-volatile cache now volatile") },
1267 	/* DTLPWROMAEBKVF */
1268 	{ SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1269 	    "Warning - degraded power to non-volatile cache") },
1270 	/* DTLPWROMAEBKVF */
1271 	{ SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1272 	    "Warning - power loss expected") },
1273 	/* D              */
1274 	{ SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1275 	    "Warning - device statistics notification available") },
1276 	/* DTLPWROMAEBKVF */
1277 	{ SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE,
1278 	    "Warning - High critical temperature limit exceeded") },
1279 	/* DTLPWROMAEBKVF */
1280 	{ SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE,
1281 	    "Warning - Low critical temperature limit exceeded") },
1282 	/* DTLPWROMAEBKVF */
1283 	{ SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE,
1284 	    "Warning - High operating temperature limit exceeded") },
1285 	/* DTLPWROMAEBKVF */
1286 	{ SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE,
1287 	    "Warning - Low operating temperature limit exceeded") },
1288 	/* DTLPWROMAEBKVF */
1289 	{ SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE,
1290 	    "Warning - High citical humidity limit exceeded") },
1291 	/* DTLPWROMAEBKVF */
1292 	{ SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE,
1293 	    "Warning - Low citical humidity limit exceeded") },
1294 	/* DTLPWROMAEBKVF */
1295 	{ SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE,
1296 	    "Warning - High operating humidity limit exceeded") },
1297 	/* DTLPWROMAEBKVF */
1298 	{ SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE,
1299 	    "Warning - Low operating humidity limit exceeded") },
1300 	/*  T   R         */
1301 	{ SST(0x0C, 0x00, SS_RDEF,
1302 	    "Write error") },
1303 	/*            K   */
1304 	{ SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1305 	    "Write error - recovered with auto reallocation") },
1306 	/* D   W O   BK   */
1307 	{ SST(0x0C, 0x02, SS_RDEF,
1308 	    "Write error - auto reallocation failed") },
1309 	/* D   W O   BK   */
1310 	{ SST(0x0C, 0x03, SS_RDEF,
1311 	    "Write error - recommend reassignment") },
1312 	/* DT  W O   B    */
1313 	{ SST(0x0C, 0x04, SS_RDEF,
1314 	    "Compression check miscompare error") },
1315 	/* DT  W O   B    */
1316 	{ SST(0x0C, 0x05, SS_RDEF,
1317 	    "Data expansion occurred during compression") },
1318 	/* DT  W O   B    */
1319 	{ SST(0x0C, 0x06, SS_RDEF,
1320 	    "Block not compressible") },
1321 	/*      R         */
1322 	{ SST(0x0C, 0x07, SS_RDEF,
1323 	    "Write error - recovery needed") },
1324 	/*      R         */
1325 	{ SST(0x0C, 0x08, SS_RDEF,
1326 	    "Write error - recovery failed") },
1327 	/*      R         */
1328 	{ SST(0x0C, 0x09, SS_RDEF,
1329 	    "Write error - loss of streaming") },
1330 	/*      R         */
1331 	{ SST(0x0C, 0x0A, SS_RDEF,
1332 	    "Write error - padding blocks added") },
1333 	/* DT  WROM  B    */
1334 	{ SST(0x0C, 0x0B, SS_RDEF,	/* XXX TBD */
1335 	    "Auxiliary memory write error") },
1336 	/* DTLPWRO AEBKVF */
1337 	{ SST(0x0C, 0x0C, SS_RDEF,	/* XXX TBD */
1338 	    "Write error - unexpected unsolicited data") },
1339 	/* DTLPWRO AEBKVF */
1340 	{ SST(0x0C, 0x0D, SS_RDEF,	/* XXX TBD */
1341 	    "Write error - not enough unsolicited data") },
1342 	/* DT  W O   BK   */
1343 	{ SST(0x0C, 0x0E, SS_RDEF,	/* XXX TBD */
1344 	    "Multiple write errors") },
1345 	/*      R         */
1346 	{ SST(0x0C, 0x0F, SS_RDEF,	/* XXX TBD */
1347 	    "Defects in error window") },
1348 	/* D              */
1349 	{ SST(0x0C, 0x10, SS_RDEF,	/* XXX TBD */
1350 	    "Incomplete multiple atomic write operations") },
1351 	/* D              */
1352 	{ SST(0x0C, 0x11, SS_RDEF,	/* XXX TBD */
1353 	    "Write error - recovery scan needed") },
1354 	/* D              */
1355 	{ SST(0x0C, 0x12, SS_RDEF,	/* XXX TBD */
1356 	    "Write error - insufficient zone resources") },
1357 	/* DTLPWRO A  K   */
1358 	{ SST(0x0D, 0x00, SS_RDEF,	/* XXX TBD */
1359 	    "Error detected by third party temporary initiator") },
1360 	/* DTLPWRO A  K   */
1361 	{ SST(0x0D, 0x01, SS_RDEF,	/* XXX TBD */
1362 	    "Third party device failure") },
1363 	/* DTLPWRO A  K   */
1364 	{ SST(0x0D, 0x02, SS_RDEF,	/* XXX TBD */
1365 	    "Copy target device not reachable") },
1366 	/* DTLPWRO A  K   */
1367 	{ SST(0x0D, 0x03, SS_RDEF,	/* XXX TBD */
1368 	    "Incorrect copy target device type") },
1369 	/* DTLPWRO A  K   */
1370 	{ SST(0x0D, 0x04, SS_RDEF,	/* XXX TBD */
1371 	    "Copy target device data underrun") },
1372 	/* DTLPWRO A  K   */
1373 	{ SST(0x0D, 0x05, SS_RDEF,	/* XXX TBD */
1374 	    "Copy target device data overrun") },
1375 	/* DT PWROMAEBK F */
1376 	{ SST(0x0E, 0x00, SS_RDEF,	/* XXX TBD */
1377 	    "Invalid information unit") },
1378 	/* DT PWROMAEBK F */
1379 	{ SST(0x0E, 0x01, SS_RDEF,	/* XXX TBD */
1380 	    "Information unit too short") },
1381 	/* DT PWROMAEBK F */
1382 	{ SST(0x0E, 0x02, SS_RDEF,	/* XXX TBD */
1383 	    "Information unit too long") },
1384 	/* DT P R MAEBK F */
1385 	{ SST(0x0E, 0x03, SS_FATAL | EINVAL,
1386 	    "Invalid field in command information unit") },
1387 	/* D   W O   BK   */
1388 	{ SST(0x10, 0x00, SS_RDEF,
1389 	    "ID CRC or ECC error") },
1390 	/* DT  W O        */
1391 	{ SST(0x10, 0x01, SS_RDEF,	/* XXX TBD */
1392 	    "Logical block guard check failed") },
1393 	/* DT  W O        */
1394 	{ SST(0x10, 0x02, SS_RDEF,	/* XXX TBD */
1395 	    "Logical block application tag check failed") },
1396 	/* DT  W O        */
1397 	{ SST(0x10, 0x03, SS_RDEF,	/* XXX TBD */
1398 	    "Logical block reference tag check failed") },
1399 	/*  T             */
1400 	{ SST(0x10, 0x04, SS_RDEF,	/* XXX TBD */
1401 	    "Logical block protection error on recovered buffer data") },
1402 	/*  T             */
1403 	{ SST(0x10, 0x05, SS_RDEF,	/* XXX TBD */
1404 	    "Logical block protection method error") },
1405 	/* DT  WRO   BK   */
1406 	{ SST(0x11, 0x00, SS_FATAL|EIO,
1407 	    "Unrecovered read error") },
1408 	/* DT  WRO   BK   */
1409 	{ SST(0x11, 0x01, SS_FATAL|EIO,
1410 	    "Read retries exhausted") },
1411 	/* DT  WRO   BK   */
1412 	{ SST(0x11, 0x02, SS_FATAL|EIO,
1413 	    "Error too long to correct") },
1414 	/* DT  W O   BK   */
1415 	{ SST(0x11, 0x03, SS_FATAL|EIO,
1416 	    "Multiple read errors") },
1417 	/* D   W O   BK   */
1418 	{ SST(0x11, 0x04, SS_FATAL|EIO,
1419 	    "Unrecovered read error - auto reallocate failed") },
1420 	/*     WRO   B    */
1421 	{ SST(0x11, 0x05, SS_FATAL|EIO,
1422 	    "L-EC uncorrectable error") },
1423 	/*     WRO   B    */
1424 	{ SST(0x11, 0x06, SS_FATAL|EIO,
1425 	    "CIRC unrecovered error") },
1426 	/*     W O   B    */
1427 	{ SST(0x11, 0x07, SS_RDEF,
1428 	    "Data re-synchronization error") },
1429 	/*  T             */
1430 	{ SST(0x11, 0x08, SS_RDEF,
1431 	    "Incomplete block read") },
1432 	/*  T             */
1433 	{ SST(0x11, 0x09, SS_RDEF,
1434 	    "No gap found") },
1435 	/* DT    O   BK   */
1436 	{ SST(0x11, 0x0A, SS_RDEF,
1437 	    "Miscorrected error") },
1438 	/* D   W O   BK   */
1439 	{ SST(0x11, 0x0B, SS_FATAL|EIO,
1440 	    "Unrecovered read error - recommend reassignment") },
1441 	/* D   W O   BK   */
1442 	{ SST(0x11, 0x0C, SS_FATAL|EIO,
1443 	    "Unrecovered read error - recommend rewrite the data") },
1444 	/* DT  WRO   B    */
1445 	{ SST(0x11, 0x0D, SS_RDEF,
1446 	    "De-compression CRC error") },
1447 	/* DT  WRO   B    */
1448 	{ SST(0x11, 0x0E, SS_RDEF,
1449 	    "Cannot decompress using declared algorithm") },
1450 	/*      R         */
1451 	{ SST(0x11, 0x0F, SS_RDEF,
1452 	    "Error reading UPC/EAN number") },
1453 	/*      R         */
1454 	{ SST(0x11, 0x10, SS_RDEF,
1455 	    "Error reading ISRC number") },
1456 	/*      R         */
1457 	{ SST(0x11, 0x11, SS_RDEF,
1458 	    "Read error - loss of streaming") },
1459 	/* DT  WROM  B    */
1460 	{ SST(0x11, 0x12, SS_RDEF,	/* XXX TBD */
1461 	    "Auxiliary memory read error") },
1462 	/* DTLPWRO AEBKVF */
1463 	{ SST(0x11, 0x13, SS_RDEF,	/* XXX TBD */
1464 	    "Read error - failed retransmission request") },
1465 	/* D              */
1466 	{ SST(0x11, 0x14, SS_RDEF,	/* XXX TBD */
1467 	    "Read error - LBA marked bad by application client") },
1468 	/* D              */
1469 	{ SST(0x11, 0x15, SS_FATAL | EIO,
1470 	    "Write after sanitize required") },
1471 	/* D   W O   BK   */
1472 	{ SST(0x12, 0x00, SS_RDEF,
1473 	    "Address mark not found for ID field") },
1474 	/* D   W O   BK   */
1475 	{ SST(0x13, 0x00, SS_RDEF,
1476 	    "Address mark not found for data field") },
1477 	/* DTL WRO   BK   */
1478 	{ SST(0x14, 0x00, SS_RDEF,
1479 	    "Recorded entity not found") },
1480 	/* DT  WRO   BK   */
1481 	{ SST(0x14, 0x01, SS_RDEF,
1482 	    "Record not found") },
1483 	/*  T             */
1484 	{ SST(0x14, 0x02, SS_RDEF,
1485 	    "Filemark or setmark not found") },
1486 	/*  T             */
1487 	{ SST(0x14, 0x03, SS_RDEF,
1488 	    "End-of-data not found") },
1489 	/*  T             */
1490 	{ SST(0x14, 0x04, SS_RDEF,
1491 	    "Block sequence error") },
1492 	/* DT  W O   BK   */
1493 	{ SST(0x14, 0x05, SS_RDEF,
1494 	    "Record not found - recommend reassignment") },
1495 	/* DT  W O   BK   */
1496 	{ SST(0x14, 0x06, SS_RDEF,
1497 	    "Record not found - data auto-reallocated") },
1498 	/*  T             */
1499 	{ SST(0x14, 0x07, SS_RDEF,	/* XXX TBD */
1500 	    "Locate operation failure") },
1501 	/* DTL WROM  BK   */
1502 	{ SST(0x15, 0x00, SS_RDEF,
1503 	    "Random positioning error") },
1504 	/* DTL WROM  BK   */
1505 	{ SST(0x15, 0x01, SS_RDEF,
1506 	    "Mechanical positioning error") },
1507 	/* DT  WRO   BK   */
1508 	{ SST(0x15, 0x02, SS_RDEF,
1509 	    "Positioning error detected by read of medium") },
1510 	/* D   W O   BK   */
1511 	{ SST(0x16, 0x00, SS_RDEF,
1512 	    "Data synchronization mark error") },
1513 	/* D   W O   BK   */
1514 	{ SST(0x16, 0x01, SS_RDEF,
1515 	    "Data sync error - data rewritten") },
1516 	/* D   W O   BK   */
1517 	{ SST(0x16, 0x02, SS_RDEF,
1518 	    "Data sync error - recommend rewrite") },
1519 	/* D   W O   BK   */
1520 	{ SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1521 	    "Data sync error - data auto-reallocated") },
1522 	/* D   W O   BK   */
1523 	{ SST(0x16, 0x04, SS_RDEF,
1524 	    "Data sync error - recommend reassignment") },
1525 	/* DT  WRO   BK   */
1526 	{ SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1527 	    "Recovered data with no error correction applied") },
1528 	/* DT  WRO   BK   */
1529 	{ SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1530 	    "Recovered data with retries") },
1531 	/* DT  WRO   BK   */
1532 	{ SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1533 	    "Recovered data with positive head offset") },
1534 	/* DT  WRO   BK   */
1535 	{ SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1536 	    "Recovered data with negative head offset") },
1537 	/*     WRO   B    */
1538 	{ SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1539 	    "Recovered data with retries and/or CIRC applied") },
1540 	/* D   WRO   BK   */
1541 	{ SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1542 	    "Recovered data using previous sector ID") },
1543 	/* D   W O   BK   */
1544 	{ SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1545 	    "Recovered data without ECC - data auto-reallocated") },
1546 	/* D   WRO   BK   */
1547 	{ SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1548 	    "Recovered data without ECC - recommend reassignment") },
1549 	/* D   WRO   BK   */
1550 	{ SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1551 	    "Recovered data without ECC - recommend rewrite") },
1552 	/* D   WRO   BK   */
1553 	{ SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1554 	    "Recovered data without ECC - data rewritten") },
1555 	/* DT  WRO   BK   */
1556 	{ SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1557 	    "Recovered data with error correction applied") },
1558 	/* D   WRO   BK   */
1559 	{ SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1560 	    "Recovered data with error corr. & retries applied") },
1561 	/* D   WRO   BK   */
1562 	{ SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1563 	    "Recovered data - data auto-reallocated") },
1564 	/*      R         */
1565 	{ SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1566 	    "Recovered data with CIRC") },
1567 	/*      R         */
1568 	{ SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1569 	    "Recovered data with L-EC") },
1570 	/* D   WRO   BK   */
1571 	{ SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1572 	    "Recovered data - recommend reassignment") },
1573 	/* D   WRO   BK   */
1574 	{ SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1575 	    "Recovered data - recommend rewrite") },
1576 	/* D   W O   BK   */
1577 	{ SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1578 	    "Recovered data with ECC - data rewritten") },
1579 	/*      R         */
1580 	{ SST(0x18, 0x08, SS_RDEF,	/* XXX TBD */
1581 	    "Recovered data with linking") },
1582 	/* D     O    K   */
1583 	{ SST(0x19, 0x00, SS_RDEF,
1584 	    "Defect list error") },
1585 	/* D     O    K   */
1586 	{ SST(0x19, 0x01, SS_RDEF,
1587 	    "Defect list not available") },
1588 	/* D     O    K   */
1589 	{ SST(0x19, 0x02, SS_RDEF,
1590 	    "Defect list error in primary list") },
1591 	/* D     O    K   */
1592 	{ SST(0x19, 0x03, SS_RDEF,
1593 	    "Defect list error in grown list") },
1594 	/* DTLPWROMAEBKVF */
1595 	{ SST(0x1A, 0x00, SS_RDEF,
1596 	    "Parameter list length error") },
1597 	/* DTLPWROMAEBKVF */
1598 	{ SST(0x1B, 0x00, SS_RDEF,
1599 	    "Synchronous data transfer error") },
1600 	/* D     O   BK   */
1601 	{ SST(0x1C, 0x00, SS_RDEF,
1602 	    "Defect list not found") },
1603 	/* D     O   BK   */
1604 	{ SST(0x1C, 0x01, SS_RDEF,
1605 	    "Primary defect list not found") },
1606 	/* D     O   BK   */
1607 	{ SST(0x1C, 0x02, SS_RDEF,
1608 	    "Grown defect list not found") },
1609 	/* DT  WRO   BK   */
1610 	{ SST(0x1D, 0x00, SS_FATAL,
1611 	    "Miscompare during verify operation") },
1612 	/* D         B    */
1613 	{ SST(0x1D, 0x01, SS_RDEF,	/* XXX TBD */
1614 	    "Miscomparable verify of unmapped LBA") },
1615 	/* D   W O   BK   */
1616 	{ SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1617 	    "Recovered ID with ECC correction") },
1618 	/* D     O    K   */
1619 	{ SST(0x1F, 0x00, SS_RDEF,
1620 	    "Partial defect list transfer") },
1621 	/* DTLPWROMAEBKVF */
1622 	{ SST(0x20, 0x00, SS_FATAL | EINVAL,
1623 	    "Invalid command operation code") },
1624 	/* DT PWROMAEBK   */
1625 	{ SST(0x20, 0x01, SS_RDEF,	/* XXX TBD */
1626 	    "Access denied - initiator pending-enrolled") },
1627 	/* DT PWROMAEBK   */
1628 	{ SST(0x20, 0x02, SS_FATAL | EPERM,
1629 	    "Access denied - no access rights") },
1630 	/* DT PWROMAEBK   */
1631 	{ SST(0x20, 0x03, SS_RDEF,	/* XXX TBD */
1632 	    "Access denied - invalid mgmt ID key") },
1633 	/*  T             */
1634 	{ SST(0x20, 0x04, SS_RDEF,	/* XXX TBD */
1635 	    "Illegal command while in write capable state") },
1636 	/*  T             */
1637 	{ SST(0x20, 0x05, SS_RDEF,	/* XXX TBD */
1638 	    "Obsolete") },
1639 	/*  T             */
1640 	{ SST(0x20, 0x06, SS_RDEF,	/* XXX TBD */
1641 	    "Illegal command while in explicit address mode") },
1642 	/*  T             */
1643 	{ SST(0x20, 0x07, SS_RDEF,	/* XXX TBD */
1644 	    "Illegal command while in implicit address mode") },
1645 	/* DT PWROMAEBK   */
1646 	{ SST(0x20, 0x08, SS_RDEF,	/* XXX TBD */
1647 	    "Access denied - enrollment conflict") },
1648 	/* DT PWROMAEBK   */
1649 	{ SST(0x20, 0x09, SS_RDEF,	/* XXX TBD */
1650 	    "Access denied - invalid LU identifier") },
1651 	/* DT PWROMAEBK   */
1652 	{ SST(0x20, 0x0A, SS_RDEF,	/* XXX TBD */
1653 	    "Access denied - invalid proxy token") },
1654 	/* DT PWROMAEBK   */
1655 	{ SST(0x20, 0x0B, SS_RDEF,	/* XXX TBD */
1656 	    "Access denied - ACL LUN conflict") },
1657 	/*  T             */
1658 	{ SST(0x20, 0x0C, SS_FATAL | EINVAL,
1659 	    "Illegal command when not in append-only mode") },
1660 	/* DT  WRO   BK   */
1661 	{ SST(0x21, 0x00, SS_FATAL | EINVAL,
1662 	    "Logical block address out of range") },
1663 	/* DT  WROM  BK   */
1664 	{ SST(0x21, 0x01, SS_FATAL | EINVAL,
1665 	    "Invalid element address") },
1666 	/*      R         */
1667 	{ SST(0x21, 0x02, SS_RDEF,	/* XXX TBD */
1668 	    "Invalid address for write") },
1669 	/*      R         */
1670 	{ SST(0x21, 0x03, SS_RDEF,	/* XXX TBD */
1671 	    "Invalid write crossing layer jump") },
1672 	/* D              */
1673 	{ SST(0x21, 0x04, SS_RDEF,	/* XXX TBD */
1674 	    "Unaligned write command") },
1675 	/* D              */
1676 	{ SST(0x21, 0x05, SS_RDEF,	/* XXX TBD */
1677 	    "Write boundary violation") },
1678 	/* D              */
1679 	{ SST(0x21, 0x06, SS_RDEF,	/* XXX TBD */
1680 	    "Attempt to read invalid data") },
1681 	/* D              */
1682 	{ SST(0x21, 0x07, SS_RDEF,	/* XXX TBD */
1683 	    "Read boundary violation") },
1684 	/* D              */
1685 	{ SST(0x22, 0x00, SS_FATAL | EINVAL,
1686 	    "Illegal function (use 20 00, 24 00, or 26 00)") },
1687 	/* DT P      B    */
1688 	{ SST(0x23, 0x00, SS_FATAL | EINVAL,
1689 	    "Invalid token operation, cause not reportable") },
1690 	/* DT P      B    */
1691 	{ SST(0x23, 0x01, SS_FATAL | EINVAL,
1692 	    "Invalid token operation, unsupported token type") },
1693 	/* DT P      B    */
1694 	{ SST(0x23, 0x02, SS_FATAL | EINVAL,
1695 	    "Invalid token operation, remote token usage not supported") },
1696 	/* DT P      B    */
1697 	{ SST(0x23, 0x03, SS_FATAL | EINVAL,
1698 	    "Invalid token operation, remote ROD token creation not supported") },
1699 	/* DT P      B    */
1700 	{ SST(0x23, 0x04, SS_FATAL | EINVAL,
1701 	    "Invalid token operation, token unknown") },
1702 	/* DT P      B    */
1703 	{ SST(0x23, 0x05, SS_FATAL | EINVAL,
1704 	    "Invalid token operation, token corrupt") },
1705 	/* DT P      B    */
1706 	{ SST(0x23, 0x06, SS_FATAL | EINVAL,
1707 	    "Invalid token operation, token revoked") },
1708 	/* DT P      B    */
1709 	{ SST(0x23, 0x07, SS_FATAL | EINVAL,
1710 	    "Invalid token operation, token expired") },
1711 	/* DT P      B    */
1712 	{ SST(0x23, 0x08, SS_FATAL | EINVAL,
1713 	    "Invalid token operation, token cancelled") },
1714 	/* DT P      B    */
1715 	{ SST(0x23, 0x09, SS_FATAL | EINVAL,
1716 	    "Invalid token operation, token deleted") },
1717 	/* DT P      B    */
1718 	{ SST(0x23, 0x0A, SS_FATAL | EINVAL,
1719 	    "Invalid token operation, invalid token length") },
1720 	/* DTLPWROMAEBKVF */
1721 	{ SST(0x24, 0x00, SS_FATAL | EINVAL,
1722 	    "Invalid field in CDB") },
1723 	/* DTLPWRO AEBKVF */
1724 	{ SST(0x24, 0x01, SS_RDEF,	/* XXX TBD */
1725 	    "CDB decryption error") },
1726 	/*  T             */
1727 	{ SST(0x24, 0x02, SS_RDEF,	/* XXX TBD */
1728 	    "Obsolete") },
1729 	/*  T             */
1730 	{ SST(0x24, 0x03, SS_RDEF,	/* XXX TBD */
1731 	    "Obsolete") },
1732 	/*              F */
1733 	{ SST(0x24, 0x04, SS_RDEF,	/* XXX TBD */
1734 	    "Security audit value frozen") },
1735 	/*              F */
1736 	{ SST(0x24, 0x05, SS_RDEF,	/* XXX TBD */
1737 	    "Security working key frozen") },
1738 	/*              F */
1739 	{ SST(0x24, 0x06, SS_RDEF,	/* XXX TBD */
1740 	    "NONCE not unique") },
1741 	/*              F */
1742 	{ SST(0x24, 0x07, SS_RDEF,	/* XXX TBD */
1743 	    "NONCE timestamp out of range") },
1744 	/* DT   R MAEBKV  */
1745 	{ SST(0x24, 0x08, SS_RDEF,	/* XXX TBD */
1746 	    "Invalid XCDB") },
1747 	/* DTLPWROMAEBKVF */
1748 	{ SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1749 	    "Logical unit not supported") },
1750 	/* DTLPWROMAEBKVF */
1751 	{ SST(0x26, 0x00, SS_FATAL | EINVAL,
1752 	    "Invalid field in parameter list") },
1753 	/* DTLPWROMAEBKVF */
1754 	{ SST(0x26, 0x01, SS_FATAL | EINVAL,
1755 	    "Parameter not supported") },
1756 	/* DTLPWROMAEBKVF */
1757 	{ SST(0x26, 0x02, SS_FATAL | EINVAL,
1758 	    "Parameter value invalid") },
1759 	/* DTLPWROMAE K   */
1760 	{ SST(0x26, 0x03, SS_FATAL | EINVAL,
1761 	    "Threshold parameters not supported") },
1762 	/* DTLPWROMAEBKVF */
1763 	{ SST(0x26, 0x04, SS_FATAL | EINVAL,
1764 	    "Invalid release of persistent reservation") },
1765 	/* DTLPWRO A BK   */
1766 	{ SST(0x26, 0x05, SS_RDEF,	/* XXX TBD */
1767 	    "Data decryption error") },
1768 	/* DTLPWRO    K   */
1769 	{ SST(0x26, 0x06, SS_FATAL | EINVAL,
1770 	    "Too many target descriptors") },
1771 	/* DTLPWRO    K   */
1772 	{ SST(0x26, 0x07, SS_FATAL | EINVAL,
1773 	    "Unsupported target descriptor type code") },
1774 	/* DTLPWRO    K   */
1775 	{ SST(0x26, 0x08, SS_FATAL | EINVAL,
1776 	    "Too many segment descriptors") },
1777 	/* DTLPWRO    K   */
1778 	{ SST(0x26, 0x09, SS_FATAL | EINVAL,
1779 	    "Unsupported segment descriptor type code") },
1780 	/* DTLPWRO    K   */
1781 	{ SST(0x26, 0x0A, SS_FATAL | EINVAL,
1782 	    "Unexpected inexact segment") },
1783 	/* DTLPWRO    K   */
1784 	{ SST(0x26, 0x0B, SS_FATAL | EINVAL,
1785 	    "Inline data length exceeded") },
1786 	/* DTLPWRO    K   */
1787 	{ SST(0x26, 0x0C, SS_FATAL | EINVAL,
1788 	    "Invalid operation for copy source or destination") },
1789 	/* DTLPWRO    K   */
1790 	{ SST(0x26, 0x0D, SS_FATAL | EINVAL,
1791 	    "Copy segment granularity violation") },
1792 	/* DT PWROMAEBK   */
1793 	{ SST(0x26, 0x0E, SS_RDEF,	/* XXX TBD */
1794 	    "Invalid parameter while port is enabled") },
1795 	/*              F */
1796 	{ SST(0x26, 0x0F, SS_RDEF,	/* XXX TBD */
1797 	    "Invalid data-out buffer integrity check value") },
1798 	/*  T             */
1799 	{ SST(0x26, 0x10, SS_RDEF,	/* XXX TBD */
1800 	    "Data decryption key fail limit reached") },
1801 	/*  T             */
1802 	{ SST(0x26, 0x11, SS_RDEF,	/* XXX TBD */
1803 	    "Incomplete key-associated data set") },
1804 	/*  T             */
1805 	{ SST(0x26, 0x12, SS_RDEF,	/* XXX TBD */
1806 	    "Vendor specific key reference not found") },
1807 	/* D              */
1808 	{ SST(0x26, 0x13, SS_RDEF,	/* XXX TBD */
1809 	    "Application tag mode page is invalid") },
1810 	/* DT  WRO   BK   */
1811 	{ SST(0x27, 0x00, SS_FATAL | EACCES,
1812 	    "Write protected") },
1813 	/* DT  WRO   BK   */
1814 	{ SST(0x27, 0x01, SS_FATAL | EACCES,
1815 	    "Hardware write protected") },
1816 	/* DT  WRO   BK   */
1817 	{ SST(0x27, 0x02, SS_FATAL | EACCES,
1818 	    "Logical unit software write protected") },
1819 	/*  T   R         */
1820 	{ SST(0x27, 0x03, SS_FATAL | EACCES,
1821 	    "Associated write protect") },
1822 	/*  T   R         */
1823 	{ SST(0x27, 0x04, SS_FATAL | EACCES,
1824 	    "Persistent write protect") },
1825 	/*  T   R         */
1826 	{ SST(0x27, 0x05, SS_FATAL | EACCES,
1827 	    "Permanent write protect") },
1828 	/*      R       F */
1829 	{ SST(0x27, 0x06, SS_RDEF,	/* XXX TBD */
1830 	    "Conditional write protect") },
1831 	/* D         B    */
1832 	{ SST(0x27, 0x07, SS_FATAL | ENOSPC,
1833 	    "Space allocation failed write protect") },
1834 	/* D              */
1835 	{ SST(0x27, 0x08, SS_FATAL | EACCES,
1836 	    "Zone is read only") },
1837 	/* DTLPWROMAEBKVF */
1838 	{ SST(0x28, 0x00, SS_FATAL | ENXIO,
1839 	    "Not ready to ready change, medium may have changed") },
1840 	/* DT  WROM  B    */
1841 	{ SST(0x28, 0x01, SS_FATAL | ENXIO,
1842 	    "Import or export element accessed") },
1843 	/*      R         */
1844 	{ SST(0x28, 0x02, SS_RDEF,	/* XXX TBD */
1845 	    "Format-layer may have changed") },
1846 	/*        M       */
1847 	{ SST(0x28, 0x03, SS_RDEF,	/* XXX TBD */
1848 	    "Import/export element accessed, medium changed") },
1849 	/*
1850 	 * XXX JGibbs - All of these should use the same errno, but I don't
1851 	 * think ENXIO is the correct choice.  Should we borrow from
1852 	 * the networking errnos?  ECONNRESET anyone?
1853 	 */
1854 	/* DTLPWROMAEBKVF */
1855 	{ SST(0x29, 0x00, SS_FATAL | ENXIO,
1856 	    "Power on, reset, or bus device reset occurred") },
1857 	/* DTLPWROMAEBKVF */
1858 	{ SST(0x29, 0x01, SS_RDEF,
1859 	    "Power on occurred") },
1860 	/* DTLPWROMAEBKVF */
1861 	{ SST(0x29, 0x02, SS_RDEF,
1862 	    "SCSI bus reset occurred") },
1863 	/* DTLPWROMAEBKVF */
1864 	{ SST(0x29, 0x03, SS_RDEF,
1865 	    "Bus device reset function occurred") },
1866 	/* DTLPWROMAEBKVF */
1867 	{ SST(0x29, 0x04, SS_RDEF,
1868 	    "Device internal reset") },
1869 	/* DTLPWROMAEBKVF */
1870 	{ SST(0x29, 0x05, SS_RDEF,
1871 	    "Transceiver mode changed to single-ended") },
1872 	/* DTLPWROMAEBKVF */
1873 	{ SST(0x29, 0x06, SS_RDEF,
1874 	    "Transceiver mode changed to LVD") },
1875 	/* DTLPWROMAEBKVF */
1876 	{ SST(0x29, 0x07, SS_RDEF,	/* XXX TBD */
1877 	    "I_T nexus loss occurred") },
1878 	/* DTL WROMAEBKVF */
1879 	{ SST(0x2A, 0x00, SS_RDEF,
1880 	    "Parameters changed") },
1881 	/* DTL WROMAEBKVF */
1882 	{ SST(0x2A, 0x01, SS_RDEF,
1883 	    "Mode parameters changed") },
1884 	/* DTL WROMAE K   */
1885 	{ SST(0x2A, 0x02, SS_RDEF,
1886 	    "Log parameters changed") },
1887 	/* DTLPWROMAE K   */
1888 	{ SST(0x2A, 0x03, SS_RDEF,
1889 	    "Reservations preempted") },
1890 	/* DTLPWROMAE     */
1891 	{ SST(0x2A, 0x04, SS_RDEF,	/* XXX TBD */
1892 	    "Reservations released") },
1893 	/* DTLPWROMAE     */
1894 	{ SST(0x2A, 0x05, SS_RDEF,	/* XXX TBD */
1895 	    "Registrations preempted") },
1896 	/* DTLPWROMAEBKVF */
1897 	{ SST(0x2A, 0x06, SS_RDEF,	/* XXX TBD */
1898 	    "Asymmetric access state changed") },
1899 	/* DTLPWROMAEBKVF */
1900 	{ SST(0x2A, 0x07, SS_RDEF,	/* XXX TBD */
1901 	    "Implicit asymmetric access state transition failed") },
1902 	/* DT  WROMAEBKVF */
1903 	{ SST(0x2A, 0x08, SS_RDEF,	/* XXX TBD */
1904 	    "Priority changed") },
1905 	/* D              */
1906 	{ SST(0x2A, 0x09, SS_RDEF,	/* XXX TBD */
1907 	    "Capacity data has changed") },
1908 	/* DT             */
1909 	{ SST(0x2A, 0x0A, SS_RDEF,	/* XXX TBD */
1910 	    "Error history I_T nexus cleared") },
1911 	/* DT             */
1912 	{ SST(0x2A, 0x0B, SS_RDEF,	/* XXX TBD */
1913 	    "Error history snapshot released") },
1914 	/*              F */
1915 	{ SST(0x2A, 0x0C, SS_RDEF,	/* XXX TBD */
1916 	    "Error recovery attributes have changed") },
1917 	/*  T             */
1918 	{ SST(0x2A, 0x0D, SS_RDEF,	/* XXX TBD */
1919 	    "Data encryption capabilities changed") },
1920 	/* DT     M E  V  */
1921 	{ SST(0x2A, 0x10, SS_RDEF,	/* XXX TBD */
1922 	    "Timestamp changed") },
1923 	/*  T             */
1924 	{ SST(0x2A, 0x11, SS_RDEF,	/* XXX TBD */
1925 	    "Data encryption parameters changed by another I_T nexus") },
1926 	/*  T             */
1927 	{ SST(0x2A, 0x12, SS_RDEF,	/* XXX TBD */
1928 	    "Data encryption parameters changed by vendor specific event") },
1929 	/*  T             */
1930 	{ SST(0x2A, 0x13, SS_RDEF,	/* XXX TBD */
1931 	    "Data encryption key instance counter has changed") },
1932 	/* DT   R MAEBKV  */
1933 	{ SST(0x2A, 0x14, SS_RDEF,	/* XXX TBD */
1934 	    "SA creation capabilities data has changed") },
1935 	/*  T     M    V  */
1936 	{ SST(0x2A, 0x15, SS_RDEF,	/* XXX TBD */
1937 	    "Medium removal prevention preempted") },
1938 	/* DTLPWRO    K   */
1939 	{ SST(0x2B, 0x00, SS_RDEF,
1940 	    "Copy cannot execute since host cannot disconnect") },
1941 	/* DTLPWROMAEBKVF */
1942 	{ SST(0x2C, 0x00, SS_RDEF,
1943 	    "Command sequence error") },
1944 	/*                */
1945 	{ SST(0x2C, 0x01, SS_RDEF,
1946 	    "Too many windows specified") },
1947 	/*                */
1948 	{ SST(0x2C, 0x02, SS_RDEF,
1949 	    "Invalid combination of windows specified") },
1950 	/*      R         */
1951 	{ SST(0x2C, 0x03, SS_RDEF,
1952 	    "Current program area is not empty") },
1953 	/*      R         */
1954 	{ SST(0x2C, 0x04, SS_RDEF,
1955 	    "Current program area is empty") },
1956 	/*           B    */
1957 	{ SST(0x2C, 0x05, SS_RDEF,	/* XXX TBD */
1958 	    "Illegal power condition request") },
1959 	/*      R         */
1960 	{ SST(0x2C, 0x06, SS_RDEF,	/* XXX TBD */
1961 	    "Persistent prevent conflict") },
1962 	/* DTLPWROMAEBKVF */
1963 	{ SST(0x2C, 0x07, SS_RDEF,	/* XXX TBD */
1964 	    "Previous busy status") },
1965 	/* DTLPWROMAEBKVF */
1966 	{ SST(0x2C, 0x08, SS_RDEF,	/* XXX TBD */
1967 	    "Previous task set full status") },
1968 	/* DTLPWROM EBKVF */
1969 	{ SST(0x2C, 0x09, SS_RDEF,	/* XXX TBD */
1970 	    "Previous reservation conflict status") },
1971 	/*              F */
1972 	{ SST(0x2C, 0x0A, SS_RDEF,	/* XXX TBD */
1973 	    "Partition or collection contains user objects") },
1974 	/*  T             */
1975 	{ SST(0x2C, 0x0B, SS_RDEF,	/* XXX TBD */
1976 	    "Not reserved") },
1977 	/* D              */
1978 	{ SST(0x2C, 0x0C, SS_RDEF,	/* XXX TBD */
1979 	    "ORWRITE generation does not match") },
1980 	/* D              */
1981 	{ SST(0x2C, 0x0D, SS_RDEF,	/* XXX TBD */
1982 	    "Reset write pointer not allowed") },
1983 	/* D              */
1984 	{ SST(0x2C, 0x0E, SS_RDEF,	/* XXX TBD */
1985 	    "Zone is offline") },
1986 	/* D              */
1987 	{ SST(0x2C, 0x0F, SS_RDEF,	/* XXX TBD */
1988 	    "Stream not open") },
1989 	/* D              */
1990 	{ SST(0x2C, 0x10, SS_RDEF,	/* XXX TBD */
1991 	    "Unwritten data in zone") },
1992 	/*  T             */
1993 	{ SST(0x2D, 0x00, SS_RDEF,
1994 	    "Overwrite error on update in place") },
1995 	/*      R         */
1996 	{ SST(0x2E, 0x00, SS_RDEF,	/* XXX TBD */
1997 	    "Insufficient time for operation") },
1998 	/* D              */
1999 	{ SST(0x2E, 0x01, SS_RDEF,	/* XXX TBD */
2000 	    "Command timeout before processing") },
2001 	/* D              */
2002 	{ SST(0x2E, 0x02, SS_RDEF,	/* XXX TBD */
2003 	    "Command timeout during processing") },
2004 	/* D              */
2005 	{ SST(0x2E, 0x03, SS_RDEF,	/* XXX TBD */
2006 	    "Command timeout during processing due to error recovery") },
2007 	/* DTLPWROMAEBKVF */
2008 	{ SST(0x2F, 0x00, SS_RDEF,
2009 	    "Commands cleared by another initiator") },
2010 	/* D              */
2011 	{ SST(0x2F, 0x01, SS_RDEF,	/* XXX TBD */
2012 	    "Commands cleared by power loss notification") },
2013 	/* DTLPWROMAEBKVF */
2014 	{ SST(0x2F, 0x02, SS_RDEF,	/* XXX TBD */
2015 	    "Commands cleared by device server") },
2016 	/* DTLPWROMAEBKVF */
2017 	{ SST(0x2F, 0x03, SS_RDEF,	/* XXX TBD */
2018 	    "Some commands cleared by queuing layer event") },
2019 	/* DT  WROM  BK   */
2020 	{ SST(0x30, 0x00, SS_RDEF,
2021 	    "Incompatible medium installed") },
2022 	/* DT  WRO   BK   */
2023 	{ SST(0x30, 0x01, SS_RDEF,
2024 	    "Cannot read medium - unknown format") },
2025 	/* DT  WRO   BK   */
2026 	{ SST(0x30, 0x02, SS_RDEF,
2027 	    "Cannot read medium - incompatible format") },
2028 	/* DT   R     K   */
2029 	{ SST(0x30, 0x03, SS_RDEF,
2030 	    "Cleaning cartridge installed") },
2031 	/* DT  WRO   BK   */
2032 	{ SST(0x30, 0x04, SS_RDEF,
2033 	    "Cannot write medium - unknown format") },
2034 	/* DT  WRO   BK   */
2035 	{ SST(0x30, 0x05, SS_RDEF,
2036 	    "Cannot write medium - incompatible format") },
2037 	/* DT  WRO   B    */
2038 	{ SST(0x30, 0x06, SS_RDEF,
2039 	    "Cannot format medium - incompatible medium") },
2040 	/* DTL WROMAEBKVF */
2041 	{ SST(0x30, 0x07, SS_RDEF,
2042 	    "Cleaning failure") },
2043 	/*      R         */
2044 	{ SST(0x30, 0x08, SS_RDEF,
2045 	    "Cannot write - application code mismatch") },
2046 	/*      R         */
2047 	{ SST(0x30, 0x09, SS_RDEF,
2048 	    "Current session not fixated for append") },
2049 	/* DT  WRO AEBK   */
2050 	{ SST(0x30, 0x0A, SS_RDEF,	/* XXX TBD */
2051 	    "Cleaning request rejected") },
2052 	/*  T             */
2053 	{ SST(0x30, 0x0C, SS_RDEF,	/* XXX TBD */
2054 	    "WORM medium - overwrite attempted") },
2055 	/*  T             */
2056 	{ SST(0x30, 0x0D, SS_RDEF,	/* XXX TBD */
2057 	    "WORM medium - integrity check") },
2058 	/*      R         */
2059 	{ SST(0x30, 0x10, SS_RDEF,	/* XXX TBD */
2060 	    "Medium not formatted") },
2061 	/*        M       */
2062 	{ SST(0x30, 0x11, SS_RDEF,	/* XXX TBD */
2063 	    "Incompatible volume type") },
2064 	/*        M       */
2065 	{ SST(0x30, 0x12, SS_RDEF,	/* XXX TBD */
2066 	    "Incompatible volume qualifier") },
2067 	/*        M       */
2068 	{ SST(0x30, 0x13, SS_RDEF,	/* XXX TBD */
2069 	    "Cleaning volume expired") },
2070 	/* DT  WRO   BK   */
2071 	{ SST(0x31, 0x00, SS_FATAL | ENXIO,
2072 	    "Medium format corrupted") },
2073 	/* D L  RO   B    */
2074 	{ SST(0x31, 0x01, SS_RDEF,
2075 	    "Format command failed") },
2076 	/*      R         */
2077 	{ SST(0x31, 0x02, SS_RDEF,	/* XXX TBD */
2078 	    "Zoned formatting failed due to spare linking") },
2079 	/* D         B    */
2080 	{ SST(0x31, 0x03, SS_FATAL | EIO,
2081 	    "SANITIZE command failed") },
2082 	/* D              */
2083 	{ SST(0x31, 0x04, SS_FATAL | EIO,
2084 	    "Depopulation failed") },
2085 	/* D              */
2086 	{ SST(0x31, 0x05, SS_FATAL | EIO,
2087 	    "Depopulation restoration failed") },
2088 	/* D   W O   BK   */
2089 	{ SST(0x32, 0x00, SS_RDEF,
2090 	    "No defect spare location available") },
2091 	/* D   W O   BK   */
2092 	{ SST(0x32, 0x01, SS_RDEF,
2093 	    "Defect list update failure") },
2094 	/*  T             */
2095 	{ SST(0x33, 0x00, SS_RDEF,
2096 	    "Tape length error") },
2097 	/* DTLPWROMAEBKVF */
2098 	{ SST(0x34, 0x00, SS_RDEF,
2099 	    "Enclosure failure") },
2100 	/* DTLPWROMAEBKVF */
2101 	{ SST(0x35, 0x00, SS_RDEF,
2102 	    "Enclosure services failure") },
2103 	/* DTLPWROMAEBKVF */
2104 	{ SST(0x35, 0x01, SS_RDEF,
2105 	    "Unsupported enclosure function") },
2106 	/* DTLPWROMAEBKVF */
2107 	{ SST(0x35, 0x02, SS_RDEF,
2108 	    "Enclosure services unavailable") },
2109 	/* DTLPWROMAEBKVF */
2110 	{ SST(0x35, 0x03, SS_RDEF,
2111 	    "Enclosure services transfer failure") },
2112 	/* DTLPWROMAEBKVF */
2113 	{ SST(0x35, 0x04, SS_RDEF,
2114 	    "Enclosure services transfer refused") },
2115 	/* DTL WROMAEBKVF */
2116 	{ SST(0x35, 0x05, SS_RDEF,	/* XXX TBD */
2117 	    "Enclosure services checksum error") },
2118 	/*   L            */
2119 	{ SST(0x36, 0x00, SS_RDEF,
2120 	    "Ribbon, ink, or toner failure") },
2121 	/* DTL WROMAEBKVF */
2122 	{ SST(0x37, 0x00, SS_RDEF,
2123 	    "Rounded parameter") },
2124 	/*           B    */
2125 	{ SST(0x38, 0x00, SS_RDEF,	/* XXX TBD */
2126 	    "Event status notification") },
2127 	/*           B    */
2128 	{ SST(0x38, 0x02, SS_RDEF,	/* XXX TBD */
2129 	    "ESN - power management class event") },
2130 	/*           B    */
2131 	{ SST(0x38, 0x04, SS_RDEF,	/* XXX TBD */
2132 	    "ESN - media class event") },
2133 	/*           B    */
2134 	{ SST(0x38, 0x06, SS_RDEF,	/* XXX TBD */
2135 	    "ESN - device busy class event") },
2136 	/* D              */
2137 	{ SST(0x38, 0x07, SS_RDEF,	/* XXX TBD */
2138 	    "Thin provisioning soft threshold reached") },
2139 	/* DTL WROMAE K   */
2140 	{ SST(0x39, 0x00, SS_RDEF,
2141 	    "Saving parameters not supported") },
2142 	/* DTL WROM  BK   */
2143 	{ SST(0x3A, 0x00, SS_FATAL | ENXIO,
2144 	    "Medium not present") },
2145 	/* DT  WROM  BK   */
2146 	{ SST(0x3A, 0x01, SS_FATAL | ENXIO,
2147 	    "Medium not present - tray closed") },
2148 	/* DT  WROM  BK   */
2149 	{ SST(0x3A, 0x02, SS_FATAL | ENXIO,
2150 	    "Medium not present - tray open") },
2151 	/* DT  WROM  B    */
2152 	{ SST(0x3A, 0x03, SS_RDEF,	/* XXX TBD */
2153 	    "Medium not present - loadable") },
2154 	/* DT  WRO   B    */
2155 	{ SST(0x3A, 0x04, SS_RDEF,	/* XXX TBD */
2156 	    "Medium not present - medium auxiliary memory accessible") },
2157 	/*  TL            */
2158 	{ SST(0x3B, 0x00, SS_RDEF,
2159 	    "Sequential positioning error") },
2160 	/*  T             */
2161 	{ SST(0x3B, 0x01, SS_RDEF,
2162 	    "Tape position error at beginning-of-medium") },
2163 	/*  T             */
2164 	{ SST(0x3B, 0x02, SS_RDEF,
2165 	    "Tape position error at end-of-medium") },
2166 	/*   L            */
2167 	{ SST(0x3B, 0x03, SS_RDEF,
2168 	    "Tape or electronic vertical forms unit not ready") },
2169 	/*   L            */
2170 	{ SST(0x3B, 0x04, SS_RDEF,
2171 	    "Slew failure") },
2172 	/*   L            */
2173 	{ SST(0x3B, 0x05, SS_RDEF,
2174 	    "Paper jam") },
2175 	/*   L            */
2176 	{ SST(0x3B, 0x06, SS_RDEF,
2177 	    "Failed to sense top-of-form") },
2178 	/*   L            */
2179 	{ SST(0x3B, 0x07, SS_RDEF,
2180 	    "Failed to sense bottom-of-form") },
2181 	/*  T             */
2182 	{ SST(0x3B, 0x08, SS_RDEF,
2183 	    "Reposition error") },
2184 	/*                */
2185 	{ SST(0x3B, 0x09, SS_RDEF,
2186 	    "Read past end of medium") },
2187 	/*                */
2188 	{ SST(0x3B, 0x0A, SS_RDEF,
2189 	    "Read past beginning of medium") },
2190 	/*                */
2191 	{ SST(0x3B, 0x0B, SS_RDEF,
2192 	    "Position past end of medium") },
2193 	/*  T             */
2194 	{ SST(0x3B, 0x0C, SS_RDEF,
2195 	    "Position past beginning of medium") },
2196 	/* DT  WROM  BK   */
2197 	{ SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2198 	    "Medium destination element full") },
2199 	/* DT  WROM  BK   */
2200 	{ SST(0x3B, 0x0E, SS_RDEF,
2201 	    "Medium source element empty") },
2202 	/*      R         */
2203 	{ SST(0x3B, 0x0F, SS_RDEF,
2204 	    "End of medium reached") },
2205 	/* DT  WROM  BK   */
2206 	{ SST(0x3B, 0x11, SS_RDEF,
2207 	    "Medium magazine not accessible") },
2208 	/* DT  WROM  BK   */
2209 	{ SST(0x3B, 0x12, SS_RDEF,
2210 	    "Medium magazine removed") },
2211 	/* DT  WROM  BK   */
2212 	{ SST(0x3B, 0x13, SS_RDEF,
2213 	    "Medium magazine inserted") },
2214 	/* DT  WROM  BK   */
2215 	{ SST(0x3B, 0x14, SS_RDEF,
2216 	    "Medium magazine locked") },
2217 	/* DT  WROM  BK   */
2218 	{ SST(0x3B, 0x15, SS_RDEF,
2219 	    "Medium magazine unlocked") },
2220 	/*      R         */
2221 	{ SST(0x3B, 0x16, SS_RDEF,	/* XXX TBD */
2222 	    "Mechanical positioning or changer error") },
2223 	/*              F */
2224 	{ SST(0x3B, 0x17, SS_RDEF,	/* XXX TBD */
2225 	    "Read past end of user object") },
2226 	/*        M       */
2227 	{ SST(0x3B, 0x18, SS_RDEF,	/* XXX TBD */
2228 	    "Element disabled") },
2229 	/*        M       */
2230 	{ SST(0x3B, 0x19, SS_RDEF,	/* XXX TBD */
2231 	    "Element enabled") },
2232 	/*        M       */
2233 	{ SST(0x3B, 0x1A, SS_RDEF,	/* XXX TBD */
2234 	    "Data transfer device removed") },
2235 	/*        M       */
2236 	{ SST(0x3B, 0x1B, SS_RDEF,	/* XXX TBD */
2237 	    "Data transfer device inserted") },
2238 	/*  T             */
2239 	{ SST(0x3B, 0x1C, SS_RDEF,	/* XXX TBD */
2240 	    "Too many logical objects on partition to support operation") },
2241 	/* DTLPWROMAE K   */
2242 	{ SST(0x3D, 0x00, SS_RDEF,
2243 	    "Invalid bits in IDENTIFY message") },
2244 	/* DTLPWROMAEBKVF */
2245 	{ SST(0x3E, 0x00, SS_RDEF,
2246 	    "Logical unit has not self-configured yet") },
2247 	/* DTLPWROMAEBKVF */
2248 	{ SST(0x3E, 0x01, SS_RDEF,
2249 	    "Logical unit failure") },
2250 	/* DTLPWROMAEBKVF */
2251 	{ SST(0x3E, 0x02, SS_RDEF,
2252 	    "Timeout on logical unit") },
2253 	/* DTLPWROMAEBKVF */
2254 	{ SST(0x3E, 0x03, SS_RDEF,	/* XXX TBD */
2255 	    "Logical unit failed self-test") },
2256 	/* DTLPWROMAEBKVF */
2257 	{ SST(0x3E, 0x04, SS_RDEF,	/* XXX TBD */
2258 	    "Logical unit unable to update self-test log") },
2259 	/* DTLPWROMAEBKVF */
2260 	{ SST(0x3F, 0x00, SS_RDEF,
2261 	    "Target operating conditions have changed") },
2262 	/* DTLPWROMAEBKVF */
2263 	{ SST(0x3F, 0x01, SS_RDEF,
2264 	    "Microcode has been changed") },
2265 	/* DTLPWROM  BK   */
2266 	{ SST(0x3F, 0x02, SS_RDEF,
2267 	    "Changed operating definition") },
2268 	/* DTLPWROMAEBKVF */
2269 	{ SST(0x3F, 0x03, SS_RDEF,
2270 	    "INQUIRY data has changed") },
2271 	/* DT  WROMAEBK   */
2272 	{ SST(0x3F, 0x04, SS_RDEF,
2273 	    "Component device attached") },
2274 	/* DT  WROMAEBK   */
2275 	{ SST(0x3F, 0x05, SS_RDEF,
2276 	    "Device identifier changed") },
2277 	/* DT  WROMAEB    */
2278 	{ SST(0x3F, 0x06, SS_RDEF,
2279 	    "Redundancy group created or modified") },
2280 	/* DT  WROMAEB    */
2281 	{ SST(0x3F, 0x07, SS_RDEF,
2282 	    "Redundancy group deleted") },
2283 	/* DT  WROMAEB    */
2284 	{ SST(0x3F, 0x08, SS_RDEF,
2285 	    "Spare created or modified") },
2286 	/* DT  WROMAEB    */
2287 	{ SST(0x3F, 0x09, SS_RDEF,
2288 	    "Spare deleted") },
2289 	/* DT  WROMAEBK   */
2290 	{ SST(0x3F, 0x0A, SS_RDEF,
2291 	    "Volume set created or modified") },
2292 	/* DT  WROMAEBK   */
2293 	{ SST(0x3F, 0x0B, SS_RDEF,
2294 	    "Volume set deleted") },
2295 	/* DT  WROMAEBK   */
2296 	{ SST(0x3F, 0x0C, SS_RDEF,
2297 	    "Volume set deassigned") },
2298 	/* DT  WROMAEBK   */
2299 	{ SST(0x3F, 0x0D, SS_RDEF,
2300 	    "Volume set reassigned") },
2301 	/* DTLPWROMAE     */
2302 	{ SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2303 	    "Reported LUNs data has changed") },
2304 	/* DTLPWROMAEBKVF */
2305 	{ SST(0x3F, 0x0F, SS_RDEF,	/* XXX TBD */
2306 	    "Echo buffer overwritten") },
2307 	/* DT  WROM  B    */
2308 	{ SST(0x3F, 0x10, SS_RDEF,	/* XXX TBD */
2309 	    "Medium loadable") },
2310 	/* DT  WROM  B    */
2311 	{ SST(0x3F, 0x11, SS_RDEF,	/* XXX TBD */
2312 	    "Medium auxiliary memory accessible") },
2313 	/* DTLPWR MAEBK F */
2314 	{ SST(0x3F, 0x12, SS_RDEF,	/* XXX TBD */
2315 	    "iSCSI IP address added") },
2316 	/* DTLPWR MAEBK F */
2317 	{ SST(0x3F, 0x13, SS_RDEF,	/* XXX TBD */
2318 	    "iSCSI IP address removed") },
2319 	/* DTLPWR MAEBK F */
2320 	{ SST(0x3F, 0x14, SS_RDEF,	/* XXX TBD */
2321 	    "iSCSI IP address changed") },
2322 	/* DTLPWR MAEBK   */
2323 	{ SST(0x3F, 0x15, SS_RDEF,	/* XXX TBD */
2324 	    "Inspect referrals sense descriptors") },
2325 	/* DTLPWROMAEBKVF */
2326 	{ SST(0x3F, 0x16, SS_RDEF,	/* XXX TBD */
2327 	    "Microcode has been changed without reset") },
2328 	/* D              */
2329 	{ SST(0x3F, 0x17, SS_RDEF,	/* XXX TBD */
2330 	    "Zone transition to full") },
2331 	/* D              */
2332 	{ SST(0x40, 0x00, SS_RDEF,
2333 	    "RAM failure") },		/* deprecated - use 40 NN instead */
2334 	/* DTLPWROMAEBKVF */
2335 	{ SST(0x40, 0x80, SS_RDEF,
2336 	    "Diagnostic failure: ASCQ = Component ID") },
2337 	/* DTLPWROMAEBKVF */
2338 	{ SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2339 	    NULL) },			/* Range 0x80->0xFF */
2340 	/* D              */
2341 	{ SST(0x41, 0x00, SS_RDEF,
2342 	    "Data path failure") },	/* deprecated - use 40 NN instead */
2343 	/* D              */
2344 	{ SST(0x42, 0x00, SS_RDEF,
2345 	    "Power-on or self-test failure") },
2346 					/* deprecated - use 40 NN instead */
2347 	/* DTLPWROMAEBKVF */
2348 	{ SST(0x43, 0x00, SS_RDEF,
2349 	    "Message error") },
2350 	/* DTLPWROMAEBKVF */
2351 	{ SST(0x44, 0x00, SS_FATAL | EIO,
2352 	    "Internal target failure") },
2353 	/* DT P   MAEBKVF */
2354 	{ SST(0x44, 0x01, SS_RDEF,	/* XXX TBD */
2355 	    "Persistent reservation information lost") },
2356 	/* DT        B    */
2357 	{ SST(0x44, 0x71, SS_RDEF,	/* XXX TBD */
2358 	    "ATA device failed set features") },
2359 	/* DTLPWROMAEBKVF */
2360 	{ SST(0x45, 0x00, SS_RDEF,
2361 	    "Select or reselect failure") },
2362 	/* DTLPWROM  BK   */
2363 	{ SST(0x46, 0x00, SS_RDEF,
2364 	    "Unsuccessful soft reset") },
2365 	/* DTLPWROMAEBKVF */
2366 	{ SST(0x47, 0x00, SS_RDEF,
2367 	    "SCSI parity error") },
2368 	/* DTLPWROMAEBKVF */
2369 	{ SST(0x47, 0x01, SS_RDEF,	/* XXX TBD */
2370 	    "Data phase CRC error detected") },
2371 	/* DTLPWROMAEBKVF */
2372 	{ SST(0x47, 0x02, SS_RDEF,	/* XXX TBD */
2373 	    "SCSI parity error detected during ST data phase") },
2374 	/* DTLPWROMAEBKVF */
2375 	{ SST(0x47, 0x03, SS_RDEF,	/* XXX TBD */
2376 	    "Information unit iuCRC error detected") },
2377 	/* DTLPWROMAEBKVF */
2378 	{ SST(0x47, 0x04, SS_RDEF,	/* XXX TBD */
2379 	    "Asynchronous information protection error detected") },
2380 	/* DTLPWROMAEBKVF */
2381 	{ SST(0x47, 0x05, SS_RDEF,	/* XXX TBD */
2382 	    "Protocol service CRC error") },
2383 	/* DT     MAEBKVF */
2384 	{ SST(0x47, 0x06, SS_RDEF,	/* XXX TBD */
2385 	    "PHY test function in progress") },
2386 	/* DT PWROMAEBK   */
2387 	{ SST(0x47, 0x7F, SS_RDEF,	/* XXX TBD */
2388 	    "Some commands cleared by iSCSI protocol event") },
2389 	/* DTLPWROMAEBKVF */
2390 	{ SST(0x48, 0x00, SS_RDEF,
2391 	    "Initiator detected error message received") },
2392 	/* DTLPWROMAEBKVF */
2393 	{ SST(0x49, 0x00, SS_RDEF,
2394 	    "Invalid message error") },
2395 	/* DTLPWROMAEBKVF */
2396 	{ SST(0x4A, 0x00, SS_RDEF,
2397 	    "Command phase error") },
2398 	/* DTLPWROMAEBKVF */
2399 	{ SST(0x4B, 0x00, SS_RDEF,
2400 	    "Data phase error") },
2401 	/* DT PWROMAEBK   */
2402 	{ SST(0x4B, 0x01, SS_RDEF,	/* XXX TBD */
2403 	    "Invalid target port transfer tag received") },
2404 	/* DT PWROMAEBK   */
2405 	{ SST(0x4B, 0x02, SS_RDEF,	/* XXX TBD */
2406 	    "Too much write data") },
2407 	/* DT PWROMAEBK   */
2408 	{ SST(0x4B, 0x03, SS_RDEF,	/* XXX TBD */
2409 	    "ACK/NAK timeout") },
2410 	/* DT PWROMAEBK   */
2411 	{ SST(0x4B, 0x04, SS_RDEF,	/* XXX TBD */
2412 	    "NAK received") },
2413 	/* DT PWROMAEBK   */
2414 	{ SST(0x4B, 0x05, SS_RDEF,	/* XXX TBD */
2415 	    "Data offset error") },
2416 	/* DT PWROMAEBK   */
2417 	{ SST(0x4B, 0x06, SS_RDEF,	/* XXX TBD */
2418 	    "Initiator response timeout") },
2419 	/* DT PWROMAEBK F */
2420 	{ SST(0x4B, 0x07, SS_RDEF,	/* XXX TBD */
2421 	    "Connection lost") },
2422 	/* DT PWROMAEBK F */
2423 	{ SST(0x4B, 0x08, SS_RDEF,	/* XXX TBD */
2424 	    "Data-in buffer overflow - data buffer size") },
2425 	/* DT PWROMAEBK F */
2426 	{ SST(0x4B, 0x09, SS_RDEF,	/* XXX TBD */
2427 	    "Data-in buffer overflow - data buffer descriptor area") },
2428 	/* DT PWROMAEBK F */
2429 	{ SST(0x4B, 0x0A, SS_RDEF,	/* XXX TBD */
2430 	    "Data-in buffer error") },
2431 	/* DT PWROMAEBK F */
2432 	{ SST(0x4B, 0x0B, SS_RDEF,	/* XXX TBD */
2433 	    "Data-out buffer overflow - data buffer size") },
2434 	/* DT PWROMAEBK F */
2435 	{ SST(0x4B, 0x0C, SS_RDEF,	/* XXX TBD */
2436 	    "Data-out buffer overflow - data buffer descriptor area") },
2437 	/* DT PWROMAEBK F */
2438 	{ SST(0x4B, 0x0D, SS_RDEF,	/* XXX TBD */
2439 	    "Data-out buffer error") },
2440 	/* DT PWROMAEBK F */
2441 	{ SST(0x4B, 0x0E, SS_RDEF,	/* XXX TBD */
2442 	    "PCIe fabric error") },
2443 	/* DT PWROMAEBK F */
2444 	{ SST(0x4B, 0x0F, SS_RDEF,	/* XXX TBD */
2445 	    "PCIe completion timeout") },
2446 	/* DT PWROMAEBK F */
2447 	{ SST(0x4B, 0x10, SS_RDEF,	/* XXX TBD */
2448 	    "PCIe completer abort") },
2449 	/* DT PWROMAEBK F */
2450 	{ SST(0x4B, 0x11, SS_RDEF,	/* XXX TBD */
2451 	    "PCIe poisoned TLP received") },
2452 	/* DT PWROMAEBK F */
2453 	{ SST(0x4B, 0x12, SS_RDEF,	/* XXX TBD */
2454 	    "PCIe ECRC check failed") },
2455 	/* DT PWROMAEBK F */
2456 	{ SST(0x4B, 0x13, SS_RDEF,	/* XXX TBD */
2457 	    "PCIe unsupported request") },
2458 	/* DT PWROMAEBK F */
2459 	{ SST(0x4B, 0x14, SS_RDEF,	/* XXX TBD */
2460 	    "PCIe ACS violation") },
2461 	/* DT PWROMAEBK F */
2462 	{ SST(0x4B, 0x15, SS_RDEF,	/* XXX TBD */
2463 	    "PCIe TLP prefix blocket") },
2464 	/* DTLPWROMAEBKVF */
2465 	{ SST(0x4C, 0x00, SS_RDEF,
2466 	    "Logical unit failed self-configuration") },
2467 	/* DTLPWROMAEBKVF */
2468 	{ SST(0x4D, 0x00, SS_RDEF,
2469 	    "Tagged overlapped commands: ASCQ = Queue tag ID") },
2470 	/* DTLPWROMAEBKVF */
2471 	{ SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2472 	    NULL) },			/* Range 0x00->0xFF */
2473 	/* DTLPWROMAEBKVF */
2474 	{ SST(0x4E, 0x00, SS_RDEF,
2475 	    "Overlapped commands attempted") },
2476 	/*  T             */
2477 	{ SST(0x50, 0x00, SS_RDEF,
2478 	    "Write append error") },
2479 	/*  T             */
2480 	{ SST(0x50, 0x01, SS_RDEF,
2481 	    "Write append position error") },
2482 	/*  T             */
2483 	{ SST(0x50, 0x02, SS_RDEF,
2484 	    "Position error related to timing") },
2485 	/*  T   RO        */
2486 	{ SST(0x51, 0x00, SS_RDEF,
2487 	    "Erase failure") },
2488 	/*      R         */
2489 	{ SST(0x51, 0x01, SS_RDEF,	/* XXX TBD */
2490 	    "Erase failure - incomplete erase operation detected") },
2491 	/*  T             */
2492 	{ SST(0x52, 0x00, SS_RDEF,
2493 	    "Cartridge fault") },
2494 	/* DTL WROM  BK   */
2495 	{ SST(0x53, 0x00, SS_RDEF,
2496 	    "Media load or eject failed") },
2497 	/*  T             */
2498 	{ SST(0x53, 0x01, SS_RDEF,
2499 	    "Unload tape failure") },
2500 	/* DT  WROM  BK   */
2501 	{ SST(0x53, 0x02, SS_RDEF,
2502 	    "Medium removal prevented") },
2503 	/*        M       */
2504 	{ SST(0x53, 0x03, SS_RDEF,	/* XXX TBD */
2505 	    "Medium removal prevented by data transfer element") },
2506 	/*  T             */
2507 	{ SST(0x53, 0x04, SS_RDEF,	/* XXX TBD */
2508 	    "Medium thread or unthread failure") },
2509 	/*        M       */
2510 	{ SST(0x53, 0x05, SS_RDEF,	/* XXX TBD */
2511 	    "Volume identifier invalid") },
2512 	/*  T             */
2513 	{ SST(0x53, 0x06, SS_RDEF,	/* XXX TBD */
2514 	    "Volume identifier missing") },
2515 	/*        M       */
2516 	{ SST(0x53, 0x07, SS_RDEF,	/* XXX TBD */
2517 	    "Duplicate volume identifier") },
2518 	/*        M       */
2519 	{ SST(0x53, 0x08, SS_RDEF,	/* XXX TBD */
2520 	    "Element status unknown") },
2521 	/*        M       */
2522 	{ SST(0x53, 0x09, SS_RDEF,	/* XXX TBD */
2523 	    "Data transfer device error - load failed") },
2524 	/*        M       */
2525 	{ SST(0x53, 0x0A, SS_RDEF,	/* XXX TBD */
2526 	    "Data transfer device error - unload failed") },
2527 	/*        M       */
2528 	{ SST(0x53, 0x0B, SS_RDEF,	/* XXX TBD */
2529 	    "Data transfer device error - unload missing") },
2530 	/*        M       */
2531 	{ SST(0x53, 0x0C, SS_RDEF,	/* XXX TBD */
2532 	    "Data transfer device error - eject failed") },
2533 	/*        M       */
2534 	{ SST(0x53, 0x0D, SS_RDEF,	/* XXX TBD */
2535 	    "Data transfer device error - library communication failed") },
2536 	/*    P           */
2537 	{ SST(0x54, 0x00, SS_RDEF,
2538 	    "SCSI to host system interface failure") },
2539 	/*    P           */
2540 	{ SST(0x55, 0x00, SS_RDEF,
2541 	    "System resource failure") },
2542 	/* D     O   BK   */
2543 	{ SST(0x55, 0x01, SS_FATAL | ENOSPC,
2544 	    "System buffer full") },
2545 	/* DTLPWROMAE K   */
2546 	{ SST(0x55, 0x02, SS_RDEF,	/* XXX TBD */
2547 	    "Insufficient reservation resources") },
2548 	/* DTLPWROMAE K   */
2549 	{ SST(0x55, 0x03, SS_RDEF,	/* XXX TBD */
2550 	    "Insufficient resources") },
2551 	/* DTLPWROMAE K   */
2552 	{ SST(0x55, 0x04, SS_RDEF,	/* XXX TBD */
2553 	    "Insufficient registration resources") },
2554 	/* DT PWROMAEBK   */
2555 	{ SST(0x55, 0x05, SS_RDEF,	/* XXX TBD */
2556 	    "Insufficient access control resources") },
2557 	/* DT  WROM  B    */
2558 	{ SST(0x55, 0x06, SS_RDEF,	/* XXX TBD */
2559 	    "Auxiliary memory out of space") },
2560 	/*              F */
2561 	{ SST(0x55, 0x07, SS_RDEF,	/* XXX TBD */
2562 	    "Quota error") },
2563 	/*  T             */
2564 	{ SST(0x55, 0x08, SS_RDEF,	/* XXX TBD */
2565 	    "Maximum number of supplemental decryption keys exceeded") },
2566 	/*        M       */
2567 	{ SST(0x55, 0x09, SS_RDEF,	/* XXX TBD */
2568 	    "Medium auxiliary memory not accessible") },
2569 	/*        M       */
2570 	{ SST(0x55, 0x0A, SS_RDEF,	/* XXX TBD */
2571 	    "Data currently unavailable") },
2572 	/* DTLPWROMAEBKVF */
2573 	{ SST(0x55, 0x0B, SS_RDEF,	/* XXX TBD */
2574 	    "Insufficient power for operation") },
2575 	/* DT P      B    */
2576 	{ SST(0x55, 0x0C, SS_RDEF,	/* XXX TBD */
2577 	    "Insufficient resources to create ROD") },
2578 	/* DT P      B    */
2579 	{ SST(0x55, 0x0D, SS_RDEF,	/* XXX TBD */
2580 	    "Insufficient resources to create ROD token") },
2581 	/* D              */
2582 	{ SST(0x55, 0x0E, SS_RDEF,	/* XXX TBD */
2583 	    "Insufficient zone resources") },
2584 	/* D              */
2585 	{ SST(0x55, 0x0F, SS_RDEF,	/* XXX TBD */
2586 	    "Insufficient zone resources to complete write") },
2587 	/* D              */
2588 	{ SST(0x55, 0x10, SS_RDEF,	/* XXX TBD */
2589 	    "Maximum number of streams open") },
2590 	/*      R         */
2591 	{ SST(0x57, 0x00, SS_RDEF,
2592 	    "Unable to recover table-of-contents") },
2593 	/*       O        */
2594 	{ SST(0x58, 0x00, SS_RDEF,
2595 	    "Generation does not exist") },
2596 	/*       O        */
2597 	{ SST(0x59, 0x00, SS_RDEF,
2598 	    "Updated block read") },
2599 	/* DTLPWRO   BK   */
2600 	{ SST(0x5A, 0x00, SS_RDEF,
2601 	    "Operator request or state change input") },
2602 	/* DT  WROM  BK   */
2603 	{ SST(0x5A, 0x01, SS_RDEF,
2604 	    "Operator medium removal request") },
2605 	/* DT  WRO A BK   */
2606 	{ SST(0x5A, 0x02, SS_RDEF,
2607 	    "Operator selected write protect") },
2608 	/* DT  WRO A BK   */
2609 	{ SST(0x5A, 0x03, SS_RDEF,
2610 	    "Operator selected write permit") },
2611 	/* DTLPWROM   K   */
2612 	{ SST(0x5B, 0x00, SS_RDEF,
2613 	    "Log exception") },
2614 	/* DTLPWROM   K   */
2615 	{ SST(0x5B, 0x01, SS_RDEF,
2616 	    "Threshold condition met") },
2617 	/* DTLPWROM   K   */
2618 	{ SST(0x5B, 0x02, SS_RDEF,
2619 	    "Log counter at maximum") },
2620 	/* DTLPWROM   K   */
2621 	{ SST(0x5B, 0x03, SS_RDEF,
2622 	    "Log list codes exhausted") },
2623 	/* D     O        */
2624 	{ SST(0x5C, 0x00, SS_RDEF,
2625 	    "RPL status change") },
2626 	/* D     O        */
2627 	{ SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2628 	    "Spindles synchronized") },
2629 	/* D     O        */
2630 	{ SST(0x5C, 0x02, SS_RDEF,
2631 	    "Spindles not synchronized") },
2632 	/* DTLPWROMAEBKVF */
2633 	{ SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE,
2634 	    "Failure prediction threshold exceeded") },
2635 	/*      R    B    */
2636 	{ SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2637 	    "Media failure prediction threshold exceeded") },
2638 	/*      R         */
2639 	{ SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE,
2640 	    "Logical unit failure prediction threshold exceeded") },
2641 	/*      R         */
2642 	{ SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE,
2643 	    "Spare area exhaustion prediction threshold exceeded") },
2644 	/* D         B    */
2645 	{ SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE,
2646 	    "Hardware impending failure general hard drive failure") },
2647 	/* D         B    */
2648 	{ SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE,
2649 	    "Hardware impending failure drive error rate too high") },
2650 	/* D         B    */
2651 	{ SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE,
2652 	    "Hardware impending failure data error rate too high") },
2653 	/* D         B    */
2654 	{ SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE,
2655 	    "Hardware impending failure seek error rate too high") },
2656 	/* D         B    */
2657 	{ SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE,
2658 	    "Hardware impending failure too many block reassigns") },
2659 	/* D         B    */
2660 	{ SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE,
2661 	    "Hardware impending failure access times too high") },
2662 	/* D         B    */
2663 	{ SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE,
2664 	    "Hardware impending failure start unit times too high") },
2665 	/* D         B    */
2666 	{ SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE,
2667 	    "Hardware impending failure channel parametrics") },
2668 	/* D         B    */
2669 	{ SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE,
2670 	    "Hardware impending failure controller detected") },
2671 	/* D         B    */
2672 	{ SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE,
2673 	    "Hardware impending failure throughput performance") },
2674 	/* D         B    */
2675 	{ SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE,
2676 	    "Hardware impending failure seek time performance") },
2677 	/* D         B    */
2678 	{ SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE,
2679 	    "Hardware impending failure spin-up retry count") },
2680 	/* D         B    */
2681 	{ SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE,
2682 	    "Hardware impending failure drive calibration retry count") },
2683 	/* D         B    */
2684 	{ SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE,
2685 	    "Hardware impending failure power loss protection circuit") },
2686 	/* D         B    */
2687 	{ SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE,
2688 	    "Controller impending failure general hard drive failure") },
2689 	/* D         B    */
2690 	{ SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE,
2691 	    "Controller impending failure drive error rate too high") },
2692 	/* D         B    */
2693 	{ SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE,
2694 	    "Controller impending failure data error rate too high") },
2695 	/* D         B    */
2696 	{ SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE,
2697 	    "Controller impending failure seek error rate too high") },
2698 	/* D         B    */
2699 	{ SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE,
2700 	    "Controller impending failure too many block reassigns") },
2701 	/* D         B    */
2702 	{ SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE,
2703 	    "Controller impending failure access times too high") },
2704 	/* D         B    */
2705 	{ SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE,
2706 	    "Controller impending failure start unit times too high") },
2707 	/* D         B    */
2708 	{ SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE,
2709 	    "Controller impending failure channel parametrics") },
2710 	/* D         B    */
2711 	{ SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE,
2712 	    "Controller impending failure controller detected") },
2713 	/* D         B    */
2714 	{ SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE,
2715 	    "Controller impending failure throughput performance") },
2716 	/* D         B    */
2717 	{ SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE,
2718 	    "Controller impending failure seek time performance") },
2719 	/* D         B    */
2720 	{ SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE,
2721 	    "Controller impending failure spin-up retry count") },
2722 	/* D         B    */
2723 	{ SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE,
2724 	    "Controller impending failure drive calibration retry count") },
2725 	/* D         B    */
2726 	{ SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE,
2727 	    "Data channel impending failure general hard drive failure") },
2728 	/* D         B    */
2729 	{ SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE,
2730 	    "Data channel impending failure drive error rate too high") },
2731 	/* D         B    */
2732 	{ SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE,
2733 	    "Data channel impending failure data error rate too high") },
2734 	/* D         B    */
2735 	{ SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE,
2736 	    "Data channel impending failure seek error rate too high") },
2737 	/* D         B    */
2738 	{ SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE,
2739 	    "Data channel impending failure too many block reassigns") },
2740 	/* D         B    */
2741 	{ SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE,
2742 	    "Data channel impending failure access times too high") },
2743 	/* D         B    */
2744 	{ SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE,
2745 	    "Data channel impending failure start unit times too high") },
2746 	/* D         B    */
2747 	{ SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE,
2748 	    "Data channel impending failure channel parametrics") },
2749 	/* D         B    */
2750 	{ SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE,
2751 	    "Data channel impending failure controller detected") },
2752 	/* D         B    */
2753 	{ SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE,
2754 	    "Data channel impending failure throughput performance") },
2755 	/* D         B    */
2756 	{ SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE,
2757 	    "Data channel impending failure seek time performance") },
2758 	/* D         B    */
2759 	{ SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE,
2760 	    "Data channel impending failure spin-up retry count") },
2761 	/* D         B    */
2762 	{ SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE,
2763 	    "Data channel impending failure drive calibration retry count") },
2764 	/* D         B    */
2765 	{ SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE,
2766 	    "Servo impending failure general hard drive failure") },
2767 	/* D         B    */
2768 	{ SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE,
2769 	    "Servo impending failure drive error rate too high") },
2770 	/* D         B    */
2771 	{ SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE,
2772 	    "Servo impending failure data error rate too high") },
2773 	/* D         B    */
2774 	{ SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE,
2775 	    "Servo impending failure seek error rate too high") },
2776 	/* D         B    */
2777 	{ SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE,
2778 	    "Servo impending failure too many block reassigns") },
2779 	/* D         B    */
2780 	{ SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE,
2781 	    "Servo impending failure access times too high") },
2782 	/* D         B    */
2783 	{ SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE,
2784 	    "Servo impending failure start unit times too high") },
2785 	/* D         B    */
2786 	{ SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE,
2787 	    "Servo impending failure channel parametrics") },
2788 	/* D         B    */
2789 	{ SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE,
2790 	    "Servo impending failure controller detected") },
2791 	/* D         B    */
2792 	{ SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE,
2793 	    "Servo impending failure throughput performance") },
2794 	/* D         B    */
2795 	{ SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE,
2796 	    "Servo impending failure seek time performance") },
2797 	/* D         B    */
2798 	{ SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE,
2799 	    "Servo impending failure spin-up retry count") },
2800 	/* D         B    */
2801 	{ SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE,
2802 	    "Servo impending failure drive calibration retry count") },
2803 	/* D         B    */
2804 	{ SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE,
2805 	    "Spindle impending failure general hard drive failure") },
2806 	/* D         B    */
2807 	{ SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE,
2808 	    "Spindle impending failure drive error rate too high") },
2809 	/* D         B    */
2810 	{ SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE,
2811 	    "Spindle impending failure data error rate too high") },
2812 	/* D         B    */
2813 	{ SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE,
2814 	    "Spindle impending failure seek error rate too high") },
2815 	/* D         B    */
2816 	{ SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE,
2817 	    "Spindle impending failure too many block reassigns") },
2818 	/* D         B    */
2819 	{ SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE,
2820 	    "Spindle impending failure access times too high") },
2821 	/* D         B    */
2822 	{ SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE,
2823 	    "Spindle impending failure start unit times too high") },
2824 	/* D         B    */
2825 	{ SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE,
2826 	    "Spindle impending failure channel parametrics") },
2827 	/* D         B    */
2828 	{ SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE,
2829 	    "Spindle impending failure controller detected") },
2830 	/* D         B    */
2831 	{ SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE,
2832 	    "Spindle impending failure throughput performance") },
2833 	/* D         B    */
2834 	{ SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE,
2835 	    "Spindle impending failure seek time performance") },
2836 	/* D         B    */
2837 	{ SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE,
2838 	    "Spindle impending failure spin-up retry count") },
2839 	/* D         B    */
2840 	{ SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE,
2841 	    "Spindle impending failure drive calibration retry count") },
2842 	/* D         B    */
2843 	{ SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE,
2844 	    "Firmware impending failure general hard drive failure") },
2845 	/* D         B    */
2846 	{ SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE,
2847 	    "Firmware impending failure drive error rate too high") },
2848 	/* D         B    */
2849 	{ SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE,
2850 	    "Firmware impending failure data error rate too high") },
2851 	/* D         B    */
2852 	{ SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE,
2853 	    "Firmware impending failure seek error rate too high") },
2854 	/* D         B    */
2855 	{ SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE,
2856 	    "Firmware impending failure too many block reassigns") },
2857 	/* D         B    */
2858 	{ SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE,
2859 	    "Firmware impending failure access times too high") },
2860 	/* D         B    */
2861 	{ SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE,
2862 	    "Firmware impending failure start unit times too high") },
2863 	/* D         B    */
2864 	{ SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE,
2865 	    "Firmware impending failure channel parametrics") },
2866 	/* D         B    */
2867 	{ SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE,
2868 	    "Firmware impending failure controller detected") },
2869 	/* D         B    */
2870 	{ SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE,
2871 	    "Firmware impending failure throughput performance") },
2872 	/* D         B    */
2873 	{ SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE,
2874 	    "Firmware impending failure seek time performance") },
2875 	/* D         B    */
2876 	{ SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE,
2877 	    "Firmware impending failure spin-up retry count") },
2878 	/* D         B    */
2879 	{ SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE,
2880 	    "Firmware impending failure drive calibration retry count") },
2881 	/* D         B    */
2882 	{ SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE,
2883 	    "Media impending failure endurance limit met") },
2884 	/* DTLPWROMAEBKVF */
2885 	{ SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE,
2886 	    "Failure prediction threshold exceeded (false)") },
2887 	/* DTLPWRO A  K   */
2888 	{ SST(0x5E, 0x00, SS_RDEF,
2889 	    "Low power condition on") },
2890 	/* DTLPWRO A  K   */
2891 	{ SST(0x5E, 0x01, SS_RDEF,
2892 	    "Idle condition activated by timer") },
2893 	/* DTLPWRO A  K   */
2894 	{ SST(0x5E, 0x02, SS_RDEF,
2895 	    "Standby condition activated by timer") },
2896 	/* DTLPWRO A  K   */
2897 	{ SST(0x5E, 0x03, SS_RDEF,
2898 	    "Idle condition activated by command") },
2899 	/* DTLPWRO A  K   */
2900 	{ SST(0x5E, 0x04, SS_RDEF,
2901 	    "Standby condition activated by command") },
2902 	/* DTLPWRO A  K   */
2903 	{ SST(0x5E, 0x05, SS_RDEF,
2904 	    "Idle-B condition activated by timer") },
2905 	/* DTLPWRO A  K   */
2906 	{ SST(0x5E, 0x06, SS_RDEF,
2907 	    "Idle-B condition activated by command") },
2908 	/* DTLPWRO A  K   */
2909 	{ SST(0x5E, 0x07, SS_RDEF,
2910 	    "Idle-C condition activated by timer") },
2911 	/* DTLPWRO A  K   */
2912 	{ SST(0x5E, 0x08, SS_RDEF,
2913 	    "Idle-C condition activated by command") },
2914 	/* DTLPWRO A  K   */
2915 	{ SST(0x5E, 0x09, SS_RDEF,
2916 	    "Standby-Y condition activated by timer") },
2917 	/* DTLPWRO A  K   */
2918 	{ SST(0x5E, 0x0A, SS_RDEF,
2919 	    "Standby-Y condition activated by command") },
2920 	/*           B    */
2921 	{ SST(0x5E, 0x41, SS_RDEF,	/* XXX TBD */
2922 	    "Power state change to active") },
2923 	/*           B    */
2924 	{ SST(0x5E, 0x42, SS_RDEF,	/* XXX TBD */
2925 	    "Power state change to idle") },
2926 	/*           B    */
2927 	{ SST(0x5E, 0x43, SS_RDEF,	/* XXX TBD */
2928 	    "Power state change to standby") },
2929 	/*           B    */
2930 	{ SST(0x5E, 0x45, SS_RDEF,	/* XXX TBD */
2931 	    "Power state change to sleep") },
2932 	/*           BK   */
2933 	{ SST(0x5E, 0x47, SS_RDEF,	/* XXX TBD */
2934 	    "Power state change to device control") },
2935 	/*                */
2936 	{ SST(0x60, 0x00, SS_RDEF,
2937 	    "Lamp failure") },
2938 	/*                */
2939 	{ SST(0x61, 0x00, SS_RDEF,
2940 	    "Video acquisition error") },
2941 	/*                */
2942 	{ SST(0x61, 0x01, SS_RDEF,
2943 	    "Unable to acquire video") },
2944 	/*                */
2945 	{ SST(0x61, 0x02, SS_RDEF,
2946 	    "Out of focus") },
2947 	/*                */
2948 	{ SST(0x62, 0x00, SS_RDEF,
2949 	    "Scan head positioning error") },
2950 	/*      R         */
2951 	{ SST(0x63, 0x00, SS_RDEF,
2952 	    "End of user area encountered on this track") },
2953 	/*      R         */
2954 	{ SST(0x63, 0x01, SS_FATAL | ENOSPC,
2955 	    "Packet does not fit in available space") },
2956 	/*      R         */
2957 	{ SST(0x64, 0x00, SS_FATAL | ENXIO,
2958 	    "Illegal mode for this track") },
2959 	/*      R         */
2960 	{ SST(0x64, 0x01, SS_RDEF,
2961 	    "Invalid packet size") },
2962 	/* DTLPWROMAEBKVF */
2963 	{ SST(0x65, 0x00, SS_RDEF,
2964 	    "Voltage fault") },
2965 	/*                */
2966 	{ SST(0x66, 0x00, SS_RDEF,
2967 	    "Automatic document feeder cover up") },
2968 	/*                */
2969 	{ SST(0x66, 0x01, SS_RDEF,
2970 	    "Automatic document feeder lift up") },
2971 	/*                */
2972 	{ SST(0x66, 0x02, SS_RDEF,
2973 	    "Document jam in automatic document feeder") },
2974 	/*                */
2975 	{ SST(0x66, 0x03, SS_RDEF,
2976 	    "Document miss feed automatic in document feeder") },
2977 	/*         A      */
2978 	{ SST(0x67, 0x00, SS_RDEF,
2979 	    "Configuration failure") },
2980 	/*         A      */
2981 	{ SST(0x67, 0x01, SS_RDEF,
2982 	    "Configuration of incapable logical units failed") },
2983 	/*         A      */
2984 	{ SST(0x67, 0x02, SS_RDEF,
2985 	    "Add logical unit failed") },
2986 	/*         A      */
2987 	{ SST(0x67, 0x03, SS_RDEF,
2988 	    "Modification of logical unit failed") },
2989 	/*         A      */
2990 	{ SST(0x67, 0x04, SS_RDEF,
2991 	    "Exchange of logical unit failed") },
2992 	/*         A      */
2993 	{ SST(0x67, 0x05, SS_RDEF,
2994 	    "Remove of logical unit failed") },
2995 	/*         A      */
2996 	{ SST(0x67, 0x06, SS_RDEF,
2997 	    "Attachment of logical unit failed") },
2998 	/*         A      */
2999 	{ SST(0x67, 0x07, SS_RDEF,
3000 	    "Creation of logical unit failed") },
3001 	/*         A      */
3002 	{ SST(0x67, 0x08, SS_RDEF,	/* XXX TBD */
3003 	    "Assign failure occurred") },
3004 	/*         A      */
3005 	{ SST(0x67, 0x09, SS_RDEF,	/* XXX TBD */
3006 	    "Multiply assigned logical unit") },
3007 	/* DTLPWROMAEBKVF */
3008 	{ SST(0x67, 0x0A, SS_RDEF,	/* XXX TBD */
3009 	    "Set target port groups command failed") },
3010 	/* DT        B    */
3011 	{ SST(0x67, 0x0B, SS_RDEF,	/* XXX TBD */
3012 	    "ATA device feature not enabled") },
3013 	/*         A      */
3014 	{ SST(0x68, 0x00, SS_RDEF,
3015 	    "Logical unit not configured") },
3016 	/* D              */
3017 	{ SST(0x68, 0x01, SS_RDEF,
3018 	    "Subsidiary logical unit not configured") },
3019 	/*         A      */
3020 	{ SST(0x69, 0x00, SS_RDEF,
3021 	    "Data loss on logical unit") },
3022 	/*         A      */
3023 	{ SST(0x69, 0x01, SS_RDEF,
3024 	    "Multiple logical unit failures") },
3025 	/*         A      */
3026 	{ SST(0x69, 0x02, SS_RDEF,
3027 	    "Parity/data mismatch") },
3028 	/*         A      */
3029 	{ SST(0x6A, 0x00, SS_RDEF,
3030 	    "Informational, refer to log") },
3031 	/*         A      */
3032 	{ SST(0x6B, 0x00, SS_RDEF,
3033 	    "State change has occurred") },
3034 	/*         A      */
3035 	{ SST(0x6B, 0x01, SS_RDEF,
3036 	    "Redundancy level got better") },
3037 	/*         A      */
3038 	{ SST(0x6B, 0x02, SS_RDEF,
3039 	    "Redundancy level got worse") },
3040 	/*         A      */
3041 	{ SST(0x6C, 0x00, SS_RDEF,
3042 	    "Rebuild failure occurred") },
3043 	/*         A      */
3044 	{ SST(0x6D, 0x00, SS_RDEF,
3045 	    "Recalculate failure occurred") },
3046 	/*         A      */
3047 	{ SST(0x6E, 0x00, SS_RDEF,
3048 	    "Command to logical unit failed") },
3049 	/*      R         */
3050 	{ SST(0x6F, 0x00, SS_RDEF,	/* XXX TBD */
3051 	    "Copy protection key exchange failure - authentication failure") },
3052 	/*      R         */
3053 	{ SST(0x6F, 0x01, SS_RDEF,	/* XXX TBD */
3054 	    "Copy protection key exchange failure - key not present") },
3055 	/*      R         */
3056 	{ SST(0x6F, 0x02, SS_RDEF,	/* XXX TBD */
3057 	    "Copy protection key exchange failure - key not established") },
3058 	/*      R         */
3059 	{ SST(0x6F, 0x03, SS_RDEF,	/* XXX TBD */
3060 	    "Read of scrambled sector without authentication") },
3061 	/*      R         */
3062 	{ SST(0x6F, 0x04, SS_RDEF,	/* XXX TBD */
3063 	    "Media region code is mismatched to logical unit region") },
3064 	/*      R         */
3065 	{ SST(0x6F, 0x05, SS_RDEF,	/* XXX TBD */
3066 	    "Drive region must be permanent/region reset count error") },
3067 	/*      R         */
3068 	{ SST(0x6F, 0x06, SS_RDEF,	/* XXX TBD */
3069 	    "Insufficient block count for binding NONCE recording") },
3070 	/*      R         */
3071 	{ SST(0x6F, 0x07, SS_RDEF,	/* XXX TBD */
3072 	    "Conflict in binding NONCE recording") },
3073 	/*  T             */
3074 	{ SST(0x70, 0x00, SS_RDEF,
3075 	    "Decompression exception short: ASCQ = Algorithm ID") },
3076 	/*  T             */
3077 	{ SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3078 	    NULL) },			/* Range 0x00 -> 0xFF */
3079 	/*  T             */
3080 	{ SST(0x71, 0x00, SS_RDEF,
3081 	    "Decompression exception long: ASCQ = Algorithm ID") },
3082 	/*  T             */
3083 	{ SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3084 	    NULL) },			/* Range 0x00 -> 0xFF */
3085 	/*      R         */
3086 	{ SST(0x72, 0x00, SS_RDEF,
3087 	    "Session fixation error") },
3088 	/*      R         */
3089 	{ SST(0x72, 0x01, SS_RDEF,
3090 	    "Session fixation error writing lead-in") },
3091 	/*      R         */
3092 	{ SST(0x72, 0x02, SS_RDEF,
3093 	    "Session fixation error writing lead-out") },
3094 	/*      R         */
3095 	{ SST(0x72, 0x03, SS_RDEF,
3096 	    "Session fixation error - incomplete track in session") },
3097 	/*      R         */
3098 	{ SST(0x72, 0x04, SS_RDEF,
3099 	    "Empty or partially written reserved track") },
3100 	/*      R         */
3101 	{ SST(0x72, 0x05, SS_RDEF,	/* XXX TBD */
3102 	    "No more track reservations allowed") },
3103 	/*      R         */
3104 	{ SST(0x72, 0x06, SS_RDEF,	/* XXX TBD */
3105 	    "RMZ extension is not allowed") },
3106 	/*      R         */
3107 	{ SST(0x72, 0x07, SS_RDEF,	/* XXX TBD */
3108 	    "No more test zone extensions are allowed") },
3109 	/*      R         */
3110 	{ SST(0x73, 0x00, SS_RDEF,
3111 	    "CD control error") },
3112 	/*      R         */
3113 	{ SST(0x73, 0x01, SS_RDEF,
3114 	    "Power calibration area almost full") },
3115 	/*      R         */
3116 	{ SST(0x73, 0x02, SS_FATAL | ENOSPC,
3117 	    "Power calibration area is full") },
3118 	/*      R         */
3119 	{ SST(0x73, 0x03, SS_RDEF,
3120 	    "Power calibration area error") },
3121 	/*      R         */
3122 	{ SST(0x73, 0x04, SS_RDEF,
3123 	    "Program memory area update failure") },
3124 	/*      R         */
3125 	{ SST(0x73, 0x05, SS_RDEF,
3126 	    "Program memory area is full") },
3127 	/*      R         */
3128 	{ SST(0x73, 0x06, SS_RDEF,	/* XXX TBD */
3129 	    "RMA/PMA is almost full") },
3130 	/*      R         */
3131 	{ SST(0x73, 0x10, SS_RDEF,	/* XXX TBD */
3132 	    "Current power calibration area almost full") },
3133 	/*      R         */
3134 	{ SST(0x73, 0x11, SS_RDEF,	/* XXX TBD */
3135 	    "Current power calibration area is full") },
3136 	/*      R         */
3137 	{ SST(0x73, 0x17, SS_RDEF,	/* XXX TBD */
3138 	    "RDZ is full") },
3139 	/*  T             */
3140 	{ SST(0x74, 0x00, SS_RDEF,	/* XXX TBD */
3141 	    "Security error") },
3142 	/*  T             */
3143 	{ SST(0x74, 0x01, SS_RDEF,	/* XXX TBD */
3144 	    "Unable to decrypt data") },
3145 	/*  T             */
3146 	{ SST(0x74, 0x02, SS_RDEF,	/* XXX TBD */
3147 	    "Unencrypted data encountered while decrypting") },
3148 	/*  T             */
3149 	{ SST(0x74, 0x03, SS_RDEF,	/* XXX TBD */
3150 	    "Incorrect data encryption key") },
3151 	/*  T             */
3152 	{ SST(0x74, 0x04, SS_RDEF,	/* XXX TBD */
3153 	    "Cryptographic integrity validation failed") },
3154 	/*  T             */
3155 	{ SST(0x74, 0x05, SS_RDEF,	/* XXX TBD */
3156 	    "Error decrypting data") },
3157 	/*  T             */
3158 	{ SST(0x74, 0x06, SS_RDEF,	/* XXX TBD */
3159 	    "Unknown signature verification key") },
3160 	/*  T             */
3161 	{ SST(0x74, 0x07, SS_RDEF,	/* XXX TBD */
3162 	    "Encryption parameters not useable") },
3163 	/* DT   R M E  VF */
3164 	{ SST(0x74, 0x08, SS_RDEF,	/* XXX TBD */
3165 	    "Digital signature validation failure") },
3166 	/*  T             */
3167 	{ SST(0x74, 0x09, SS_RDEF,	/* XXX TBD */
3168 	    "Encryption mode mismatch on read") },
3169 	/*  T             */
3170 	{ SST(0x74, 0x0A, SS_RDEF,	/* XXX TBD */
3171 	    "Encrypted block not raw read enabled") },
3172 	/*  T             */
3173 	{ SST(0x74, 0x0B, SS_RDEF,	/* XXX TBD */
3174 	    "Incorrect encryption parameters") },
3175 	/* DT   R MAEBKV  */
3176 	{ SST(0x74, 0x0C, SS_RDEF,	/* XXX TBD */
3177 	    "Unable to decrypt parameter list") },
3178 	/*  T             */
3179 	{ SST(0x74, 0x0D, SS_RDEF,	/* XXX TBD */
3180 	    "Encryption algorithm disabled") },
3181 	/* DT   R MAEBKV  */
3182 	{ SST(0x74, 0x10, SS_RDEF,	/* XXX TBD */
3183 	    "SA creation parameter value invalid") },
3184 	/* DT   R MAEBKV  */
3185 	{ SST(0x74, 0x11, SS_RDEF,	/* XXX TBD */
3186 	    "SA creation parameter value rejected") },
3187 	/* DT   R MAEBKV  */
3188 	{ SST(0x74, 0x12, SS_RDEF,	/* XXX TBD */
3189 	    "Invalid SA usage") },
3190 	/*  T             */
3191 	{ SST(0x74, 0x21, SS_RDEF,	/* XXX TBD */
3192 	    "Data encryption configuration prevented") },
3193 	/* DT   R MAEBKV  */
3194 	{ SST(0x74, 0x30, SS_RDEF,	/* XXX TBD */
3195 	    "SA creation parameter not supported") },
3196 	/* DT   R MAEBKV  */
3197 	{ SST(0x74, 0x40, SS_RDEF,	/* XXX TBD */
3198 	    "Authentication failed") },
3199 	/*             V  */
3200 	{ SST(0x74, 0x61, SS_RDEF,	/* XXX TBD */
3201 	    "External data encryption key manager access error") },
3202 	/*             V  */
3203 	{ SST(0x74, 0x62, SS_RDEF,	/* XXX TBD */
3204 	    "External data encryption key manager error") },
3205 	/*             V  */
3206 	{ SST(0x74, 0x63, SS_RDEF,	/* XXX TBD */
3207 	    "External data encryption key not found") },
3208 	/*             V  */
3209 	{ SST(0x74, 0x64, SS_RDEF,	/* XXX TBD */
3210 	    "External data encryption request not authorized") },
3211 	/*  T             */
3212 	{ SST(0x74, 0x6E, SS_RDEF,	/* XXX TBD */
3213 	    "External data encryption control timeout") },
3214 	/*  T             */
3215 	{ SST(0x74, 0x6F, SS_RDEF,	/* XXX TBD */
3216 	    "External data encryption control error") },
3217 	/* DT   R M E  V  */
3218 	{ SST(0x74, 0x71, SS_FATAL | EACCES,
3219 	    "Logical unit access not authorized") },
3220 	/* D              */
3221 	{ SST(0x74, 0x79, SS_FATAL | EACCES,
3222 	    "Security conflict in translated device") }
3223 };
3224 
3225 const u_int asc_table_size = nitems(asc_table);
3226 
3227 struct asc_key
3228 {
3229 	int asc;
3230 	int ascq;
3231 };
3232 
3233 static int
3234 ascentrycomp(const void *key, const void *member)
3235 {
3236 	int asc;
3237 	int ascq;
3238 	const struct asc_table_entry *table_entry;
3239 
3240 	asc = ((const struct asc_key *)key)->asc;
3241 	ascq = ((const struct asc_key *)key)->ascq;
3242 	table_entry = (const struct asc_table_entry *)member;
3243 
3244 	if (asc >= table_entry->asc) {
3245 		if (asc > table_entry->asc)
3246 			return (1);
3247 
3248 		if (ascq <= table_entry->ascq) {
3249 			/* Check for ranges */
3250 			if (ascq == table_entry->ascq
3251 		 	 || ((table_entry->action & SSQ_RANGE) != 0
3252 		  	   && ascq >= (table_entry - 1)->ascq))
3253 				return (0);
3254 			return (-1);
3255 		}
3256 		return (1);
3257 	}
3258 	return (-1);
3259 }
3260 
3261 static int
3262 senseentrycomp(const void *key, const void *member)
3263 {
3264 	int sense_key;
3265 	const struct sense_key_table_entry *table_entry;
3266 
3267 	sense_key = *((const int *)key);
3268 	table_entry = (const struct sense_key_table_entry *)member;
3269 
3270 	if (sense_key >= table_entry->sense_key) {
3271 		if (sense_key == table_entry->sense_key)
3272 			return (0);
3273 		return (1);
3274 	}
3275 	return (-1);
3276 }
3277 
3278 static void
3279 fetchtableentries(int sense_key, int asc, int ascq,
3280 		  struct scsi_inquiry_data *inq_data,
3281 		  const struct sense_key_table_entry **sense_entry,
3282 		  const struct asc_table_entry **asc_entry)
3283 {
3284 	caddr_t match;
3285 	const struct asc_table_entry *asc_tables[2];
3286 	const struct sense_key_table_entry *sense_tables[2];
3287 	struct asc_key asc_ascq;
3288 	size_t asc_tables_size[2];
3289 	size_t sense_tables_size[2];
3290 	int num_asc_tables;
3291 	int num_sense_tables;
3292 	int i;
3293 
3294 	/* Default to failure */
3295 	*sense_entry = NULL;
3296 	*asc_entry = NULL;
3297 	match = NULL;
3298 	if (inq_data != NULL)
3299 		match = cam_quirkmatch((caddr_t)inq_data,
3300 				       (caddr_t)sense_quirk_table,
3301 				       sense_quirk_table_size,
3302 				       sizeof(*sense_quirk_table),
3303 				       scsi_inquiry_match);
3304 
3305 	if (match != NULL) {
3306 		struct scsi_sense_quirk_entry *quirk;
3307 
3308 		quirk = (struct scsi_sense_quirk_entry *)match;
3309 		asc_tables[0] = quirk->asc_info;
3310 		asc_tables_size[0] = quirk->num_ascs;
3311 		asc_tables[1] = asc_table;
3312 		asc_tables_size[1] = asc_table_size;
3313 		num_asc_tables = 2;
3314 		sense_tables[0] = quirk->sense_key_info;
3315 		sense_tables_size[0] = quirk->num_sense_keys;
3316 		sense_tables[1] = sense_key_table;
3317 		sense_tables_size[1] = nitems(sense_key_table);
3318 		num_sense_tables = 2;
3319 	} else {
3320 		asc_tables[0] = asc_table;
3321 		asc_tables_size[0] = asc_table_size;
3322 		num_asc_tables = 1;
3323 		sense_tables[0] = sense_key_table;
3324 		sense_tables_size[0] = nitems(sense_key_table);
3325 		num_sense_tables = 1;
3326 	}
3327 
3328 	asc_ascq.asc = asc;
3329 	asc_ascq.ascq = ascq;
3330 	for (i = 0; i < num_asc_tables; i++) {
3331 		void *found_entry;
3332 
3333 		found_entry = bsearch(&asc_ascq, asc_tables[i],
3334 				      asc_tables_size[i],
3335 				      sizeof(**asc_tables),
3336 				      ascentrycomp);
3337 
3338 		if (found_entry) {
3339 			*asc_entry = (struct asc_table_entry *)found_entry;
3340 			break;
3341 		}
3342 	}
3343 
3344 	for (i = 0; i < num_sense_tables; i++) {
3345 		void *found_entry;
3346 
3347 		found_entry = bsearch(&sense_key, sense_tables[i],
3348 				      sense_tables_size[i],
3349 				      sizeof(**sense_tables),
3350 				      senseentrycomp);
3351 
3352 		if (found_entry) {
3353 			*sense_entry =
3354 			    (struct sense_key_table_entry *)found_entry;
3355 			break;
3356 		}
3357 	}
3358 }
3359 
3360 void
3361 scsi_sense_desc(int sense_key, int asc, int ascq,
3362 		struct scsi_inquiry_data *inq_data,
3363 		const char **sense_key_desc, const char **asc_desc)
3364 {
3365 	const struct asc_table_entry *asc_entry;
3366 	const struct sense_key_table_entry *sense_entry;
3367 
3368 	fetchtableentries(sense_key, asc, ascq,
3369 			  inq_data,
3370 			  &sense_entry,
3371 			  &asc_entry);
3372 
3373 	if (sense_entry != NULL)
3374 		*sense_key_desc = sense_entry->desc;
3375 	else
3376 		*sense_key_desc = "Invalid Sense Key";
3377 
3378 	if (asc_entry != NULL)
3379 		*asc_desc = asc_entry->desc;
3380 	else if (asc >= 0x80 && asc <= 0xff)
3381 		*asc_desc = "Vendor Specific ASC";
3382 	else if (ascq >= 0x80 && ascq <= 0xff)
3383 		*asc_desc = "Vendor Specific ASCQ";
3384 	else
3385 		*asc_desc = "Reserved ASC/ASCQ pair";
3386 }
3387 
3388 /*
3389  * Given sense and device type information, return the appropriate action.
3390  * If we do not understand the specific error as identified by the ASC/ASCQ
3391  * pair, fall back on the more generic actions derived from the sense key.
3392  */
3393 scsi_sense_action
3394 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3395 		  u_int32_t sense_flags)
3396 {
3397 	const struct asc_table_entry *asc_entry;
3398 	const struct sense_key_table_entry *sense_entry;
3399 	int error_code, sense_key, asc, ascq;
3400 	scsi_sense_action action;
3401 
3402 	if (!scsi_extract_sense_ccb((union ccb *)csio,
3403 	    &error_code, &sense_key, &asc, &ascq)) {
3404 		action = SS_RDEF;
3405 	} else if ((error_code == SSD_DEFERRED_ERROR)
3406 	 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3407 		/*
3408 		 * XXX dufault@FreeBSD.org
3409 		 * This error doesn't relate to the command associated
3410 		 * with this request sense.  A deferred error is an error
3411 		 * for a command that has already returned GOOD status
3412 		 * (see SCSI2 8.2.14.2).
3413 		 *
3414 		 * By my reading of that section, it looks like the current
3415 		 * command has been cancelled, we should now clean things up
3416 		 * (hopefully recovering any lost data) and then retry the
3417 		 * current command.  There are two easy choices, both wrong:
3418 		 *
3419 		 * 1. Drop through (like we had been doing), thus treating
3420 		 *    this as if the error were for the current command and
3421 		 *    return and stop the current command.
3422 		 *
3423 		 * 2. Issue a retry (like I made it do) thus hopefully
3424 		 *    recovering the current transfer, and ignoring the
3425 		 *    fact that we've dropped a command.
3426 		 *
3427 		 * These should probably be handled in a device specific
3428 		 * sense handler or punted back up to a user mode daemon
3429 		 */
3430 		action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3431 	} else {
3432 		fetchtableentries(sense_key, asc, ascq,
3433 				  inq_data,
3434 				  &sense_entry,
3435 				  &asc_entry);
3436 
3437 		/*
3438 		 * Override the 'No additional Sense' entry (0,0)
3439 		 * with the error action of the sense key.
3440 		 */
3441 		if (asc_entry != NULL
3442 		 && (asc != 0 || ascq != 0))
3443 			action = asc_entry->action;
3444 		else if (sense_entry != NULL)
3445 			action = sense_entry->action;
3446 		else
3447 			action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3448 
3449 		if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3450 			/*
3451 			 * The action succeeded but the device wants
3452 			 * the user to know that some recovery action
3453 			 * was required.
3454 			 */
3455 			action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3456 			action |= SS_NOP|SSQ_PRINT_SENSE;
3457 		} else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3458 			if ((sense_flags & SF_QUIET_IR) != 0)
3459 				action &= ~SSQ_PRINT_SENSE;
3460 		} else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3461 			if ((sense_flags & SF_RETRY_UA) != 0
3462 			 && (action & SS_MASK) == SS_FAIL) {
3463 				action &= ~(SS_MASK|SSQ_MASK);
3464 				action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3465 					  SSQ_PRINT_SENSE;
3466 			}
3467 			action |= SSQ_UA;
3468 		}
3469 	}
3470 	if ((action & SS_MASK) >= SS_START &&
3471 	    (sense_flags & SF_NO_RECOVERY)) {
3472 		action &= ~SS_MASK;
3473 		action |= SS_FAIL;
3474 	} else if ((action & SS_MASK) == SS_RETRY &&
3475 	    (sense_flags & SF_NO_RETRY)) {
3476 		action &= ~SS_MASK;
3477 		action |= SS_FAIL;
3478 	}
3479 	if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3480 		action |= SSQ_PRINT_SENSE;
3481 	else if ((sense_flags & SF_NO_PRINT) != 0)
3482 		action &= ~SSQ_PRINT_SENSE;
3483 
3484 	return (action);
3485 }
3486 
3487 char *
3488 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len)
3489 {
3490 	struct sbuf sb;
3491 	int error;
3492 
3493 	if (len == 0)
3494 		return ("");
3495 
3496 	sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3497 
3498 	scsi_cdb_sbuf(cdb_ptr, &sb);
3499 
3500 	/* ENOMEM just means that the fixed buffer is full, OK to ignore */
3501 	error = sbuf_finish(&sb);
3502 	if (error != 0 &&
3503 #ifdef _KERNEL
3504 	    error != ENOMEM)
3505 #else
3506 	    errno != ENOMEM)
3507 #endif
3508 		return ("");
3509 
3510 	return(sbuf_data(&sb));
3511 }
3512 
3513 void
3514 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb)
3515 {
3516 	u_int8_t cdb_len;
3517 	int i;
3518 
3519 	if (cdb_ptr == NULL)
3520 		return;
3521 
3522 	/*
3523 	 * This is taken from the SCSI-3 draft spec.
3524 	 * (T10/1157D revision 0.3)
3525 	 * The top 3 bits of an opcode are the group code.  The next 5 bits
3526 	 * are the command code.
3527 	 * Group 0:  six byte commands
3528 	 * Group 1:  ten byte commands
3529 	 * Group 2:  ten byte commands
3530 	 * Group 3:  reserved
3531 	 * Group 4:  sixteen byte commands
3532 	 * Group 5:  twelve byte commands
3533 	 * Group 6:  vendor specific
3534 	 * Group 7:  vendor specific
3535 	 */
3536 	switch((*cdb_ptr >> 5) & 0x7) {
3537 		case 0:
3538 			cdb_len = 6;
3539 			break;
3540 		case 1:
3541 		case 2:
3542 			cdb_len = 10;
3543 			break;
3544 		case 3:
3545 		case 6:
3546 		case 7:
3547 			/* in this case, just print out the opcode */
3548 			cdb_len = 1;
3549 			break;
3550 		case 4:
3551 			cdb_len = 16;
3552 			break;
3553 		case 5:
3554 			cdb_len = 12;
3555 			break;
3556 	}
3557 
3558 	for (i = 0; i < cdb_len; i++)
3559 		sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3560 
3561 	return;
3562 }
3563 
3564 const char *
3565 scsi_status_string(struct ccb_scsiio *csio)
3566 {
3567 	switch(csio->scsi_status) {
3568 	case SCSI_STATUS_OK:
3569 		return("OK");
3570 	case SCSI_STATUS_CHECK_COND:
3571 		return("Check Condition");
3572 	case SCSI_STATUS_BUSY:
3573 		return("Busy");
3574 	case SCSI_STATUS_INTERMED:
3575 		return("Intermediate");
3576 	case SCSI_STATUS_INTERMED_COND_MET:
3577 		return("Intermediate-Condition Met");
3578 	case SCSI_STATUS_RESERV_CONFLICT:
3579 		return("Reservation Conflict");
3580 	case SCSI_STATUS_CMD_TERMINATED:
3581 		return("Command Terminated");
3582 	case SCSI_STATUS_QUEUE_FULL:
3583 		return("Queue Full");
3584 	case SCSI_STATUS_ACA_ACTIVE:
3585 		return("ACA Active");
3586 	case SCSI_STATUS_TASK_ABORTED:
3587 		return("Task Aborted");
3588 	default: {
3589 		static char unkstr[64];
3590 		snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3591 			 csio->scsi_status);
3592 		return(unkstr);
3593 	}
3594 	}
3595 }
3596 
3597 /*
3598  * scsi_command_string() returns 0 for success and -1 for failure.
3599  */
3600 #ifdef _KERNEL
3601 int
3602 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3603 #else /* !_KERNEL */
3604 int
3605 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3606 		    struct sbuf *sb)
3607 #endif /* _KERNEL/!_KERNEL */
3608 {
3609 	struct scsi_inquiry_data *inq_data;
3610 #ifdef _KERNEL
3611 	struct	  ccb_getdev *cgd;
3612 #endif /* _KERNEL */
3613 
3614 #ifdef _KERNEL
3615 	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3616 		return(-1);
3617 	/*
3618 	 * Get the device information.
3619 	 */
3620 	xpt_setup_ccb(&cgd->ccb_h,
3621 		      csio->ccb_h.path,
3622 		      CAM_PRIORITY_NORMAL);
3623 	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
3624 	xpt_action((union ccb *)cgd);
3625 
3626 	/*
3627 	 * If the device is unconfigured, just pretend that it is a hard
3628 	 * drive.  scsi_op_desc() needs this.
3629 	 */
3630 	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3631 		cgd->inq_data.device = T_DIRECT;
3632 
3633 	inq_data = &cgd->inq_data;
3634 
3635 #else /* !_KERNEL */
3636 
3637 	inq_data = &device->inq_data;
3638 
3639 #endif /* _KERNEL/!_KERNEL */
3640 
3641 	sbuf_printf(sb, "%s. CDB: ",
3642 		    scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data));
3643 	scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb);
3644 
3645 #ifdef _KERNEL
3646 	xpt_free_ccb((union ccb *)cgd);
3647 #endif
3648 
3649 	return(0);
3650 }
3651 
3652 /*
3653  * Iterate over sense descriptors.  Each descriptor is passed into iter_func().
3654  * If iter_func() returns 0, list traversal continues.  If iter_func()
3655  * returns non-zero, list traversal is stopped.
3656  */
3657 void
3658 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3659 		  int (*iter_func)(struct scsi_sense_data_desc *sense,
3660 				   u_int, struct scsi_sense_desc_header *,
3661 				   void *), void *arg)
3662 {
3663 	int cur_pos;
3664 	int desc_len;
3665 
3666 	/*
3667 	 * First make sure the extra length field is present.
3668 	 */
3669 	if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3670 		return;
3671 
3672 	/*
3673 	 * The length of data actually returned may be different than the
3674 	 * extra_len recorded in the structure.
3675 	 */
3676 	desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3677 
3678 	/*
3679 	 * Limit this further by the extra length reported, and the maximum
3680 	 * allowed extra length.
3681 	 */
3682 	desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3683 
3684 	/*
3685 	 * Subtract the size of the header from the descriptor length.
3686 	 * This is to ensure that we have at least the header left, so we
3687 	 * don't have to check that inside the loop.  This can wind up
3688 	 * being a negative value.
3689 	 */
3690 	desc_len -= sizeof(struct scsi_sense_desc_header);
3691 
3692 	for (cur_pos = 0; cur_pos < desc_len;) {
3693 		struct scsi_sense_desc_header *header;
3694 
3695 		header = (struct scsi_sense_desc_header *)
3696 			&sense->sense_desc[cur_pos];
3697 
3698 		/*
3699 		 * Check to make sure we have the entire descriptor.  We
3700 		 * don't call iter_func() unless we do.
3701 		 *
3702 		 * Note that although cur_pos is at the beginning of the
3703 		 * descriptor, desc_len already has the header length
3704 		 * subtracted.  So the comparison of the length in the
3705 		 * header (which does not include the header itself) to
3706 		 * desc_len - cur_pos is correct.
3707 		 */
3708 		if (header->length > (desc_len - cur_pos))
3709 			break;
3710 
3711 		if (iter_func(sense, sense_len, header, arg) != 0)
3712 			break;
3713 
3714 		cur_pos += sizeof(*header) + header->length;
3715 	}
3716 }
3717 
3718 struct scsi_find_desc_info {
3719 	uint8_t desc_type;
3720 	struct scsi_sense_desc_header *header;
3721 };
3722 
3723 static int
3724 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3725 		    struct scsi_sense_desc_header *header, void *arg)
3726 {
3727 	struct scsi_find_desc_info *desc_info;
3728 
3729 	desc_info = (struct scsi_find_desc_info *)arg;
3730 
3731 	if (header->desc_type == desc_info->desc_type) {
3732 		desc_info->header = header;
3733 
3734 		/* We found the descriptor, tell the iterator to stop. */
3735 		return (1);
3736 	} else
3737 		return (0);
3738 }
3739 
3740 /*
3741  * Given a descriptor type, return a pointer to it if it is in the sense
3742  * data and not truncated.  Avoiding truncating sense data will simplify
3743  * things significantly for the caller.
3744  */
3745 uint8_t *
3746 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3747 	       uint8_t desc_type)
3748 {
3749 	struct scsi_find_desc_info desc_info;
3750 
3751 	desc_info.desc_type = desc_type;
3752 	desc_info.header = NULL;
3753 
3754 	scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3755 
3756 	return ((uint8_t *)desc_info.header);
3757 }
3758 
3759 /*
3760  * Fill in SCSI descriptor sense data with the specified parameters.
3761  */
3762 static void
3763 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data,
3764     u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3765     int sense_key, int asc, int ascq, va_list ap)
3766 {
3767 	struct scsi_sense_data_desc *sense;
3768 	scsi_sense_elem_type elem_type;
3769 	int space, len;
3770 	uint8_t *desc, *data;
3771 
3772 	memset(sense_data, 0, sizeof(*sense_data));
3773 	sense = (struct scsi_sense_data_desc *)sense_data;
3774 	if (current_error != 0)
3775 		sense->error_code = SSD_DESC_CURRENT_ERROR;
3776 	else
3777 		sense->error_code = SSD_DESC_DEFERRED_ERROR;
3778 	sense->sense_key = sense_key;
3779 	sense->add_sense_code = asc;
3780 	sense->add_sense_code_qual = ascq;
3781 	sense->flags = 0;
3782 
3783 	desc = &sense->sense_desc[0];
3784 	space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc);
3785 	while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3786 	    SSD_ELEM_NONE) {
3787 		if (elem_type >= SSD_ELEM_MAX) {
3788 			printf("%s: invalid sense type %d\n", __func__,
3789 			       elem_type);
3790 			break;
3791 		}
3792 		len = va_arg(ap, int);
3793 		data = va_arg(ap, uint8_t *);
3794 
3795 		switch (elem_type) {
3796 		case SSD_ELEM_SKIP:
3797 			break;
3798 		case SSD_ELEM_DESC:
3799 			if (space < len) {
3800 				sense->flags |= SSDD_SDAT_OVFL;
3801 				break;
3802 			}
3803 			bcopy(data, desc, len);
3804 			desc += len;
3805 			space -= len;
3806 			break;
3807 		case SSD_ELEM_SKS: {
3808 			struct scsi_sense_sks *sks = (void *)desc;
3809 
3810 			if (len > sizeof(sks->sense_key_spec))
3811 				break;
3812 			if (space < sizeof(*sks)) {
3813 				sense->flags |= SSDD_SDAT_OVFL;
3814 				break;
3815 			}
3816 			sks->desc_type = SSD_DESC_SKS;
3817 			sks->length = sizeof(*sks) -
3818 			    (offsetof(struct scsi_sense_sks, length) + 1);
3819 			bcopy(data, &sks->sense_key_spec, len);
3820 			desc += sizeof(*sks);
3821 			space -= sizeof(*sks);
3822 			break;
3823 		}
3824 		case SSD_ELEM_COMMAND: {
3825 			struct scsi_sense_command *cmd = (void *)desc;
3826 
3827 			if (len > sizeof(cmd->command_info))
3828 				break;
3829 			if (space < sizeof(*cmd)) {
3830 				sense->flags |= SSDD_SDAT_OVFL;
3831 				break;
3832 			}
3833 			cmd->desc_type = SSD_DESC_COMMAND;
3834 			cmd->length = sizeof(*cmd) -
3835 			    (offsetof(struct scsi_sense_command, length) + 1);
3836 			bcopy(data, &cmd->command_info[
3837 			    sizeof(cmd->command_info) - len], len);
3838 			desc += sizeof(*cmd);
3839 			space -= sizeof(*cmd);
3840 			break;
3841 		}
3842 		case SSD_ELEM_INFO: {
3843 			struct scsi_sense_info *info = (void *)desc;
3844 
3845 			if (len > sizeof(info->info))
3846 				break;
3847 			if (space < sizeof(*info)) {
3848 				sense->flags |= SSDD_SDAT_OVFL;
3849 				break;
3850 			}
3851 			info->desc_type = SSD_DESC_INFO;
3852 			info->length = sizeof(*info) -
3853 			    (offsetof(struct scsi_sense_info, length) + 1);
3854 			info->byte2 = SSD_INFO_VALID;
3855 			bcopy(data, &info->info[sizeof(info->info) - len], len);
3856 			desc += sizeof(*info);
3857 			space -= sizeof(*info);
3858 			break;
3859 		}
3860 		case SSD_ELEM_FRU: {
3861 			struct scsi_sense_fru *fru = (void *)desc;
3862 
3863 			if (len > sizeof(fru->fru))
3864 				break;
3865 			if (space < sizeof(*fru)) {
3866 				sense->flags |= SSDD_SDAT_OVFL;
3867 				break;
3868 			}
3869 			fru->desc_type = SSD_DESC_FRU;
3870 			fru->length = sizeof(*fru) -
3871 			    (offsetof(struct scsi_sense_fru, length) + 1);
3872 			fru->fru = *data;
3873 			desc += sizeof(*fru);
3874 			space -= sizeof(*fru);
3875 			break;
3876 		}
3877 		case SSD_ELEM_STREAM: {
3878 			struct scsi_sense_stream *stream = (void *)desc;
3879 
3880 			if (len > sizeof(stream->byte3))
3881 				break;
3882 			if (space < sizeof(*stream)) {
3883 				sense->flags |= SSDD_SDAT_OVFL;
3884 				break;
3885 			}
3886 			stream->desc_type = SSD_DESC_STREAM;
3887 			stream->length = sizeof(*stream) -
3888 			    (offsetof(struct scsi_sense_stream, length) + 1);
3889 			stream->byte3 = *data;
3890 			desc += sizeof(*stream);
3891 			space -= sizeof(*stream);
3892 			break;
3893 		}
3894 		default:
3895 			/*
3896 			 * We shouldn't get here, but if we do, do nothing.
3897 			 * We've already consumed the arguments above.
3898 			 */
3899 			break;
3900 		}
3901 	}
3902 	sense->extra_len = desc - &sense->sense_desc[0];
3903 	*sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 +
3904 	    sense->extra_len;
3905 }
3906 
3907 /*
3908  * Fill in SCSI fixed sense data with the specified parameters.
3909  */
3910 static void
3911 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data,
3912     u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3913     int sense_key, int asc, int ascq, va_list ap)
3914 {
3915 	struct scsi_sense_data_fixed *sense;
3916 	scsi_sense_elem_type elem_type;
3917 	uint8_t *data;
3918 	int len;
3919 
3920 	memset(sense_data, 0, sizeof(*sense_data));
3921 	sense = (struct scsi_sense_data_fixed *)sense_data;
3922 	if (current_error != 0)
3923 		sense->error_code = SSD_CURRENT_ERROR;
3924 	else
3925 		sense->error_code = SSD_DEFERRED_ERROR;
3926 	sense->flags = sense_key & SSD_KEY;
3927 	sense->extra_len = 0;
3928 	if (*sense_len >= 13) {
3929 		sense->add_sense_code = asc;
3930 		sense->extra_len = MAX(sense->extra_len, 5);
3931 	} else
3932 		sense->flags |= SSD_SDAT_OVFL;
3933 	if (*sense_len >= 14) {
3934 		sense->add_sense_code_qual = ascq;
3935 		sense->extra_len = MAX(sense->extra_len, 6);
3936 	} else
3937 		sense->flags |= SSD_SDAT_OVFL;
3938 
3939 	while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3940 	    SSD_ELEM_NONE) {
3941 		if (elem_type >= SSD_ELEM_MAX) {
3942 			printf("%s: invalid sense type %d\n", __func__,
3943 			       elem_type);
3944 			break;
3945 		}
3946 		len = va_arg(ap, int);
3947 		data = va_arg(ap, uint8_t *);
3948 
3949 		switch (elem_type) {
3950 		case SSD_ELEM_SKIP:
3951 			break;
3952 		case SSD_ELEM_SKS:
3953 			if (len > sizeof(sense->sense_key_spec))
3954 				break;
3955 			if (*sense_len < 18) {
3956 				sense->flags |= SSD_SDAT_OVFL;
3957 				break;
3958 			}
3959 			bcopy(data, &sense->sense_key_spec[0], len);
3960 			sense->extra_len = MAX(sense->extra_len, 10);
3961 			break;
3962 		case SSD_ELEM_COMMAND:
3963 			if (*sense_len < 12) {
3964 				sense->flags |= SSD_SDAT_OVFL;
3965 				break;
3966 			}
3967 			if (len > sizeof(sense->cmd_spec_info)) {
3968 				data += len - sizeof(sense->cmd_spec_info);
3969 				len = sizeof(sense->cmd_spec_info);
3970 			}
3971 			bcopy(data, &sense->cmd_spec_info[
3972 			    sizeof(sense->cmd_spec_info) - len], len);
3973 			sense->extra_len = MAX(sense->extra_len, 4);
3974 			break;
3975 		case SSD_ELEM_INFO:
3976 			/* Set VALID bit only if no overflow. */
3977 			sense->error_code |= SSD_ERRCODE_VALID;
3978 			while (len > sizeof(sense->info)) {
3979 				if (data[0] != 0)
3980 					sense->error_code &= ~SSD_ERRCODE_VALID;
3981 				data ++;
3982 				len --;
3983 			}
3984 			bcopy(data, &sense->info[sizeof(sense->info) - len], len);
3985 			break;
3986 		case SSD_ELEM_FRU:
3987 			if (*sense_len < 15) {
3988 				sense->flags |= SSD_SDAT_OVFL;
3989 				break;
3990 			}
3991 			sense->fru = *data;
3992 			sense->extra_len = MAX(sense->extra_len, 7);
3993 			break;
3994 		case SSD_ELEM_STREAM:
3995 			sense->flags |= *data &
3996 			    (SSD_ILI | SSD_EOM | SSD_FILEMARK);
3997 			break;
3998 		default:
3999 
4000 			/*
4001 			 * We can't handle that in fixed format.  Skip it.
4002 			 */
4003 			break;
4004 		}
4005 	}
4006 	*sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 +
4007 	    sense->extra_len;
4008 }
4009 
4010 /*
4011  * Fill in SCSI sense data with the specified parameters.  This routine can
4012  * fill in either fixed or descriptor type sense data.
4013  */
4014 void
4015 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len,
4016 		      scsi_sense_data_type sense_format, int current_error,
4017 		      int sense_key, int asc, int ascq, va_list ap)
4018 {
4019 
4020 	if (*sense_len > SSD_FULL_SIZE)
4021 		*sense_len = SSD_FULL_SIZE;
4022 	if (sense_format == SSD_TYPE_DESC)
4023 		scsi_set_sense_data_desc_va(sense_data, sense_len,
4024 		    sense_format, current_error, sense_key, asc, ascq, ap);
4025 	else
4026 		scsi_set_sense_data_fixed_va(sense_data, sense_len,
4027 		    sense_format, current_error, sense_key, asc, ascq, ap);
4028 }
4029 
4030 void
4031 scsi_set_sense_data(struct scsi_sense_data *sense_data,
4032 		    scsi_sense_data_type sense_format, int current_error,
4033 		    int sense_key, int asc, int ascq, ...)
4034 {
4035 	va_list ap;
4036 	u_int	sense_len = SSD_FULL_SIZE;
4037 
4038 	va_start(ap, ascq);
4039 	scsi_set_sense_data_va(sense_data, &sense_len, sense_format,
4040 	    current_error, sense_key, asc, ascq, ap);
4041 	va_end(ap);
4042 }
4043 
4044 void
4045 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len,
4046 		    scsi_sense_data_type sense_format, int current_error,
4047 		    int sense_key, int asc, int ascq, ...)
4048 {
4049 	va_list ap;
4050 
4051 	va_start(ap, ascq);
4052 	scsi_set_sense_data_va(sense_data, sense_len, sense_format,
4053 	    current_error, sense_key, asc, ascq, ap);
4054 	va_end(ap);
4055 }
4056 
4057 /*
4058  * Get sense information for three similar sense data types.
4059  */
4060 int
4061 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4062 		    uint8_t info_type, uint64_t *info, int64_t *signed_info)
4063 {
4064 	scsi_sense_data_type sense_type;
4065 
4066 	if (sense_len == 0)
4067 		goto bailout;
4068 
4069 	sense_type = scsi_sense_type(sense_data);
4070 
4071 	switch (sense_type) {
4072 	case SSD_TYPE_DESC: {
4073 		struct scsi_sense_data_desc *sense;
4074 		uint8_t *desc;
4075 
4076 		sense = (struct scsi_sense_data_desc *)sense_data;
4077 
4078 		desc = scsi_find_desc(sense, sense_len, info_type);
4079 		if (desc == NULL)
4080 			goto bailout;
4081 
4082 		switch (info_type) {
4083 		case SSD_DESC_INFO: {
4084 			struct scsi_sense_info *info_desc;
4085 
4086 			info_desc = (struct scsi_sense_info *)desc;
4087 
4088 			if ((info_desc->byte2 & SSD_INFO_VALID) == 0)
4089 				goto bailout;
4090 
4091 			*info = scsi_8btou64(info_desc->info);
4092 			if (signed_info != NULL)
4093 				*signed_info = *info;
4094 			break;
4095 		}
4096 		case SSD_DESC_COMMAND: {
4097 			struct scsi_sense_command *cmd_desc;
4098 
4099 			cmd_desc = (struct scsi_sense_command *)desc;
4100 
4101 			*info = scsi_8btou64(cmd_desc->command_info);
4102 			if (signed_info != NULL)
4103 				*signed_info = *info;
4104 			break;
4105 		}
4106 		case SSD_DESC_FRU: {
4107 			struct scsi_sense_fru *fru_desc;
4108 
4109 			fru_desc = (struct scsi_sense_fru *)desc;
4110 
4111 			if (fru_desc->fru == 0)
4112 				goto bailout;
4113 
4114 			*info = fru_desc->fru;
4115 			if (signed_info != NULL)
4116 				*signed_info = (int8_t)fru_desc->fru;
4117 			break;
4118 		}
4119 		default:
4120 			goto bailout;
4121 			break;
4122 		}
4123 		break;
4124 	}
4125 	case SSD_TYPE_FIXED: {
4126 		struct scsi_sense_data_fixed *sense;
4127 
4128 		sense = (struct scsi_sense_data_fixed *)sense_data;
4129 
4130 		switch (info_type) {
4131 		case SSD_DESC_INFO: {
4132 			uint32_t info_val;
4133 
4134 			if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4135 				goto bailout;
4136 
4137 			if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4138 				goto bailout;
4139 
4140 			info_val = scsi_4btoul(sense->info);
4141 
4142 			*info = info_val;
4143 			if (signed_info != NULL)
4144 				*signed_info = (int32_t)info_val;
4145 			break;
4146 		}
4147 		case SSD_DESC_COMMAND: {
4148 			uint32_t cmd_val;
4149 
4150 			if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4151 			     cmd_spec_info) == 0)
4152 			 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4153 				goto bailout;
4154 
4155 			cmd_val = scsi_4btoul(sense->cmd_spec_info);
4156 			if (cmd_val == 0)
4157 				goto bailout;
4158 
4159 			*info = cmd_val;
4160 			if (signed_info != NULL)
4161 				*signed_info = (int32_t)cmd_val;
4162 			break;
4163 		}
4164 		case SSD_DESC_FRU:
4165 			if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4166 			 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4167 				goto bailout;
4168 
4169 			if (sense->fru == 0)
4170 				goto bailout;
4171 
4172 			*info = sense->fru;
4173 			if (signed_info != NULL)
4174 				*signed_info = (int8_t)sense->fru;
4175 			break;
4176 		default:
4177 			goto bailout;
4178 			break;
4179 		}
4180 		break;
4181 	}
4182 	default:
4183 		goto bailout;
4184 		break;
4185 	}
4186 
4187 	return (0);
4188 bailout:
4189 	return (1);
4190 }
4191 
4192 int
4193 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4194 {
4195 	scsi_sense_data_type sense_type;
4196 
4197 	if (sense_len == 0)
4198 		goto bailout;
4199 
4200 	sense_type = scsi_sense_type(sense_data);
4201 
4202 	switch (sense_type) {
4203 	case SSD_TYPE_DESC: {
4204 		struct scsi_sense_data_desc *sense;
4205 		struct scsi_sense_sks *desc;
4206 
4207 		sense = (struct scsi_sense_data_desc *)sense_data;
4208 
4209 		desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4210 							       SSD_DESC_SKS);
4211 		if (desc == NULL)
4212 			goto bailout;
4213 
4214 		if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4215 			goto bailout;
4216 
4217 		bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4218 		break;
4219 	}
4220 	case SSD_TYPE_FIXED: {
4221 		struct scsi_sense_data_fixed *sense;
4222 
4223 		sense = (struct scsi_sense_data_fixed *)sense_data;
4224 
4225 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4226 		 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4227 			goto bailout;
4228 
4229 		if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4230 			goto bailout;
4231 
4232 		bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4233 		break;
4234 	}
4235 	default:
4236 		goto bailout;
4237 		break;
4238 	}
4239 	return (0);
4240 bailout:
4241 	return (1);
4242 }
4243 
4244 /*
4245  * Provide a common interface for fixed and descriptor sense to detect
4246  * whether we have block-specific sense information.  It is clear by the
4247  * presence of the block descriptor in descriptor mode, but we have to
4248  * infer from the inquiry data and ILI bit in fixed mode.
4249  */
4250 int
4251 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4252 		    struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4253 {
4254 	scsi_sense_data_type sense_type;
4255 
4256 	if (inq_data != NULL) {
4257 		switch (SID_TYPE(inq_data)) {
4258 		case T_DIRECT:
4259 		case T_RBC:
4260 		case T_ZBC_HM:
4261 			break;
4262 		default:
4263 			goto bailout;
4264 			break;
4265 		}
4266 	}
4267 
4268 	sense_type = scsi_sense_type(sense_data);
4269 
4270 	switch (sense_type) {
4271 	case SSD_TYPE_DESC: {
4272 		struct scsi_sense_data_desc *sense;
4273 		struct scsi_sense_block *block;
4274 
4275 		sense = (struct scsi_sense_data_desc *)sense_data;
4276 
4277 		block = (struct scsi_sense_block *)scsi_find_desc(sense,
4278 		    sense_len, SSD_DESC_BLOCK);
4279 		if (block == NULL)
4280 			goto bailout;
4281 
4282 		*block_bits = block->byte3;
4283 		break;
4284 	}
4285 	case SSD_TYPE_FIXED: {
4286 		struct scsi_sense_data_fixed *sense;
4287 
4288 		sense = (struct scsi_sense_data_fixed *)sense_data;
4289 
4290 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4291 			goto bailout;
4292 
4293 		*block_bits = sense->flags & SSD_ILI;
4294 		break;
4295 	}
4296 	default:
4297 		goto bailout;
4298 		break;
4299 	}
4300 	return (0);
4301 bailout:
4302 	return (1);
4303 }
4304 
4305 int
4306 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4307 		     struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4308 {
4309 	scsi_sense_data_type sense_type;
4310 
4311 	if (inq_data != NULL) {
4312 		switch (SID_TYPE(inq_data)) {
4313 		case T_SEQUENTIAL:
4314 			break;
4315 		default:
4316 			goto bailout;
4317 			break;
4318 		}
4319 	}
4320 
4321 	sense_type = scsi_sense_type(sense_data);
4322 
4323 	switch (sense_type) {
4324 	case SSD_TYPE_DESC: {
4325 		struct scsi_sense_data_desc *sense;
4326 		struct scsi_sense_stream *stream;
4327 
4328 		sense = (struct scsi_sense_data_desc *)sense_data;
4329 
4330 		stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4331 		    sense_len, SSD_DESC_STREAM);
4332 		if (stream == NULL)
4333 			goto bailout;
4334 
4335 		*stream_bits = stream->byte3;
4336 		break;
4337 	}
4338 	case SSD_TYPE_FIXED: {
4339 		struct scsi_sense_data_fixed *sense;
4340 
4341 		sense = (struct scsi_sense_data_fixed *)sense_data;
4342 
4343 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4344 			goto bailout;
4345 
4346 		*stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4347 		break;
4348 	}
4349 	default:
4350 		goto bailout;
4351 		break;
4352 	}
4353 	return (0);
4354 bailout:
4355 	return (1);
4356 }
4357 
4358 void
4359 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4360 	       struct scsi_inquiry_data *inq_data, uint64_t info)
4361 {
4362 	sbuf_printf(sb, "Info: %#jx", info);
4363 }
4364 
4365 void
4366 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4367 		  struct scsi_inquiry_data *inq_data, uint64_t csi)
4368 {
4369 	sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4370 }
4371 
4372 void
4373 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4374 {
4375 	sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4376 		    (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4377 		    progress, SSD_SKS_PROGRESS_DENOM);
4378 }
4379 
4380 /*
4381  * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4382  */
4383 int
4384 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4385 {
4386 
4387 	switch (sense_key) {
4388 	case SSD_KEY_ILLEGAL_REQUEST: {
4389 		struct scsi_sense_sks_field *field;
4390 		int bad_command;
4391 		char tmpstr[40];
4392 
4393 		/*Field Pointer*/
4394 		field = (struct scsi_sense_sks_field *)sks;
4395 
4396 		if (field->byte0 & SSD_SKS_FIELD_CMD)
4397 			bad_command = 1;
4398 		else
4399 			bad_command = 0;
4400 
4401 		tmpstr[0] = '\0';
4402 
4403 		/* Bit pointer is valid */
4404 		if (field->byte0 & SSD_SKS_BPV)
4405 			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4406 				 field->byte0 & SSD_SKS_BIT_VALUE);
4407 
4408 		sbuf_printf(sb, "%s byte %d %sis invalid",
4409 			    bad_command ? "Command" : "Data",
4410 			    scsi_2btoul(field->field), tmpstr);
4411 		break;
4412 	}
4413 	case SSD_KEY_UNIT_ATTENTION: {
4414 		struct scsi_sense_sks_overflow *overflow;
4415 
4416 		overflow = (struct scsi_sense_sks_overflow *)sks;
4417 
4418 		/*UA Condition Queue Overflow*/
4419 		sbuf_printf(sb, "Unit Attention Condition Queue %s",
4420 			    (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4421 			    "Overflowed" : "Did Not Overflow??");
4422 		break;
4423 	}
4424 	case SSD_KEY_RECOVERED_ERROR:
4425 	case SSD_KEY_HARDWARE_ERROR:
4426 	case SSD_KEY_MEDIUM_ERROR: {
4427 		struct scsi_sense_sks_retry *retry;
4428 
4429 		/*Actual Retry Count*/
4430 		retry = (struct scsi_sense_sks_retry *)sks;
4431 
4432 		sbuf_printf(sb, "Actual Retry Count: %d",
4433 			    scsi_2btoul(retry->actual_retry_count));
4434 		break;
4435 	}
4436 	case SSD_KEY_NO_SENSE:
4437 	case SSD_KEY_NOT_READY: {
4438 		struct scsi_sense_sks_progress *progress;
4439 		int progress_val;
4440 
4441 		/*Progress Indication*/
4442 		progress = (struct scsi_sense_sks_progress *)sks;
4443 		progress_val = scsi_2btoul(progress->progress);
4444 
4445 		scsi_progress_sbuf(sb, progress_val);
4446 		break;
4447 	}
4448 	case SSD_KEY_COPY_ABORTED: {
4449 		struct scsi_sense_sks_segment *segment;
4450 		char tmpstr[40];
4451 
4452 		/*Segment Pointer*/
4453 		segment = (struct scsi_sense_sks_segment *)sks;
4454 
4455 		tmpstr[0] = '\0';
4456 
4457 		if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4458 			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4459 				 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4460 
4461 		sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4462 			    SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4463 			    scsi_2btoul(segment->field), tmpstr);
4464 		break;
4465 	}
4466 	default:
4467 		sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4468 			    scsi_2btoul(&sks[1]));
4469 		break;
4470 	}
4471 
4472 	return (0);
4473 }
4474 
4475 void
4476 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4477 {
4478 	sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4479 }
4480 
4481 void
4482 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits)
4483 {
4484 	int need_comma;
4485 
4486 	need_comma = 0;
4487 	/*
4488 	 * XXX KDM this needs more descriptive decoding.
4489 	 */
4490 	sbuf_printf(sb, "Stream Command Sense Data: ");
4491 	if (stream_bits & SSD_DESC_STREAM_FM) {
4492 		sbuf_printf(sb, "Filemark");
4493 		need_comma = 1;
4494 	}
4495 
4496 	if (stream_bits & SSD_DESC_STREAM_EOM) {
4497 		sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4498 		need_comma = 1;
4499 	}
4500 
4501 	if (stream_bits & SSD_DESC_STREAM_ILI)
4502 		sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4503 }
4504 
4505 void
4506 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits)
4507 {
4508 
4509 	sbuf_printf(sb, "Block Command Sense Data: ");
4510 	if (block_bits & SSD_DESC_BLOCK_ILI)
4511 		sbuf_printf(sb, "ILI");
4512 }
4513 
4514 void
4515 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4516 		     u_int sense_len, uint8_t *cdb, int cdb_len,
4517 		     struct scsi_inquiry_data *inq_data,
4518 		     struct scsi_sense_desc_header *header)
4519 {
4520 	struct scsi_sense_info *info;
4521 
4522 	info = (struct scsi_sense_info *)header;
4523 
4524 	if ((info->byte2 & SSD_INFO_VALID) == 0)
4525 		return;
4526 
4527 	scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4528 }
4529 
4530 void
4531 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4532 			u_int sense_len, uint8_t *cdb, int cdb_len,
4533 			struct scsi_inquiry_data *inq_data,
4534 			struct scsi_sense_desc_header *header)
4535 {
4536 	struct scsi_sense_command *command;
4537 
4538 	command = (struct scsi_sense_command *)header;
4539 
4540 	scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4541 			  scsi_8btou64(command->command_info));
4542 }
4543 
4544 void
4545 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4546 		    u_int sense_len, uint8_t *cdb, int cdb_len,
4547 		    struct scsi_inquiry_data *inq_data,
4548 		    struct scsi_sense_desc_header *header)
4549 {
4550 	struct scsi_sense_sks *sks;
4551 	int error_code, sense_key, asc, ascq;
4552 
4553 	sks = (struct scsi_sense_sks *)header;
4554 
4555 	if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4556 		return;
4557 
4558 	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4559 			       &asc, &ascq, /*show_errors*/ 1);
4560 
4561 	scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4562 }
4563 
4564 void
4565 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4566 		    u_int sense_len, uint8_t *cdb, int cdb_len,
4567 		    struct scsi_inquiry_data *inq_data,
4568 		    struct scsi_sense_desc_header *header)
4569 {
4570 	struct scsi_sense_fru *fru;
4571 
4572 	fru = (struct scsi_sense_fru *)header;
4573 
4574 	if (fru->fru == 0)
4575 		return;
4576 
4577 	scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4578 }
4579 
4580 void
4581 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4582 		       u_int sense_len, uint8_t *cdb, int cdb_len,
4583 		       struct scsi_inquiry_data *inq_data,
4584 		       struct scsi_sense_desc_header *header)
4585 {
4586 	struct scsi_sense_stream *stream;
4587 
4588 	stream = (struct scsi_sense_stream *)header;
4589 	scsi_stream_sbuf(sb, stream->byte3);
4590 }
4591 
4592 void
4593 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4594 		      u_int sense_len, uint8_t *cdb, int cdb_len,
4595 		      struct scsi_inquiry_data *inq_data,
4596 		      struct scsi_sense_desc_header *header)
4597 {
4598 	struct scsi_sense_block *block;
4599 
4600 	block = (struct scsi_sense_block *)header;
4601 	scsi_block_sbuf(sb, block->byte3);
4602 }
4603 
4604 void
4605 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4606 			 u_int sense_len, uint8_t *cdb, int cdb_len,
4607 			 struct scsi_inquiry_data *inq_data,
4608 			 struct scsi_sense_desc_header *header)
4609 {
4610 	struct scsi_sense_progress *progress;
4611 	const char *sense_key_desc;
4612 	const char *asc_desc;
4613 	int progress_val;
4614 
4615 	progress = (struct scsi_sense_progress *)header;
4616 
4617 	/*
4618 	 * Get descriptions for the sense key, ASC, and ASCQ in the
4619 	 * progress descriptor.  These could be different than the values
4620 	 * in the overall sense data.
4621 	 */
4622 	scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4623 			progress->add_sense_code_qual, inq_data,
4624 			&sense_key_desc, &asc_desc);
4625 
4626 	progress_val = scsi_2btoul(progress->progress);
4627 
4628 	/*
4629 	 * The progress indicator is for the operation described by the
4630 	 * sense key, ASC, and ASCQ in the descriptor.
4631 	 */
4632 	sbuf_cat(sb, sense_key_desc);
4633 	sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4634 		    progress->add_sense_code_qual, asc_desc);
4635 	scsi_progress_sbuf(sb, progress_val);
4636 }
4637 
4638 void
4639 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4640 			 u_int sense_len, uint8_t *cdb, int cdb_len,
4641 			 struct scsi_inquiry_data *inq_data,
4642 			 struct scsi_sense_desc_header *header)
4643 {
4644 	struct scsi_sense_ata_ret_desc *res;
4645 
4646 	res = (struct scsi_sense_ata_ret_desc *)header;
4647 
4648 	sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ",
4649 	    res->status,
4650 	    (res->status & 0x80) ? "BSY " : "",
4651 	    (res->status & 0x40) ? "DRDY " : "",
4652 	    (res->status & 0x20) ? "DF " : "",
4653 	    (res->status & 0x10) ? "SERV " : "",
4654 	    (res->status & 0x08) ? "DRQ " : "",
4655 	    (res->status & 0x04) ? "CORR " : "",
4656 	    (res->status & 0x02) ? "IDX " : "",
4657 	    (res->status & 0x01) ? "ERR" : "");
4658 	if (res->status & 1) {
4659 	    sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ",
4660 		res->error,
4661 		(res->error & 0x80) ? "ICRC " : "",
4662 		(res->error & 0x40) ? "UNC " : "",
4663 		(res->error & 0x20) ? "MC " : "",
4664 		(res->error & 0x10) ? "IDNF " : "",
4665 		(res->error & 0x08) ? "MCR " : "",
4666 		(res->error & 0x04) ? "ABRT " : "",
4667 		(res->error & 0x02) ? "NM " : "",
4668 		(res->error & 0x01) ? "ILI" : "");
4669 	}
4670 
4671 	if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) {
4672 		sbuf_printf(sb, "count: %02x%02x, ",
4673 		    res->count_15_8, res->count_7_0);
4674 		sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ",
4675 		    res->lba_47_40, res->lba_39_32, res->lba_31_24,
4676 		    res->lba_23_16, res->lba_15_8, res->lba_7_0);
4677 	} else {
4678 		sbuf_printf(sb, "count: %02x, ", res->count_7_0);
4679 		sbuf_printf(sb, "LBA: %02x%02x%02x, ",
4680 		    res->lba_23_16, res->lba_15_8, res->lba_7_0);
4681 	}
4682 	sbuf_printf(sb, "device: %02x, ", res->device);
4683 }
4684 
4685 void
4686 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4687 			 u_int sense_len, uint8_t *cdb, int cdb_len,
4688 			 struct scsi_inquiry_data *inq_data,
4689 			 struct scsi_sense_desc_header *header)
4690 {
4691 	struct scsi_sense_forwarded *forwarded;
4692 	const char *sense_key_desc;
4693 	const char *asc_desc;
4694 	int error_code, sense_key, asc, ascq;
4695 
4696 	forwarded = (struct scsi_sense_forwarded *)header;
4697 	scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data,
4698 	    forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1);
4699 	scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc);
4700 
4701 	sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ",
4702 	    sense_key_desc, asc, ascq, asc_desc);
4703 }
4704 
4705 /*
4706  * Generic sense descriptor printing routine.  This is used when we have
4707  * not yet implemented a specific printing routine for this descriptor.
4708  */
4709 void
4710 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4711 			u_int sense_len, uint8_t *cdb, int cdb_len,
4712 			struct scsi_inquiry_data *inq_data,
4713 			struct scsi_sense_desc_header *header)
4714 {
4715 	int i;
4716 	uint8_t *buf_ptr;
4717 
4718 	sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4719 
4720 	buf_ptr = (uint8_t *)&header[1];
4721 
4722 	for (i = 0; i < header->length; i++, buf_ptr++)
4723 		sbuf_printf(sb, " %02x", *buf_ptr);
4724 }
4725 
4726 /*
4727  * Keep this list in numeric order.  This speeds the array traversal.
4728  */
4729 struct scsi_sense_desc_printer {
4730 	uint8_t desc_type;
4731 	/*
4732 	 * The function arguments here are the superset of what is needed
4733 	 * to print out various different descriptors.  Command and
4734 	 * information descriptors need inquiry data and command type.
4735 	 * Sense key specific descriptors need the sense key.
4736 	 *
4737 	 * The sense, cdb, and inquiry data arguments may be NULL, but the
4738 	 * information printed may not be fully decoded as a result.
4739 	 */
4740 	void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4741 			   u_int sense_len, uint8_t *cdb, int cdb_len,
4742 			   struct scsi_inquiry_data *inq_data,
4743 			   struct scsi_sense_desc_header *header);
4744 } scsi_sense_printers[] = {
4745 	{SSD_DESC_INFO, scsi_sense_info_sbuf},
4746 	{SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4747 	{SSD_DESC_SKS, scsi_sense_sks_sbuf},
4748 	{SSD_DESC_FRU, scsi_sense_fru_sbuf},
4749 	{SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4750 	{SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4751 	{SSD_DESC_ATA, scsi_sense_ata_sbuf},
4752 	{SSD_DESC_PROGRESS, scsi_sense_progress_sbuf},
4753 	{SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf}
4754 };
4755 
4756 void
4757 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4758 		     u_int sense_len, uint8_t *cdb, int cdb_len,
4759 		     struct scsi_inquiry_data *inq_data,
4760 		     struct scsi_sense_desc_header *header)
4761 {
4762 	u_int i;
4763 
4764 	for (i = 0; i < nitems(scsi_sense_printers); i++) {
4765 		struct scsi_sense_desc_printer *printer;
4766 
4767 		printer = &scsi_sense_printers[i];
4768 
4769 		/*
4770 		 * The list is sorted, so quit if we've passed our
4771 		 * descriptor number.
4772 		 */
4773 		if (printer->desc_type > header->desc_type)
4774 			break;
4775 
4776 		if (printer->desc_type != header->desc_type)
4777 			continue;
4778 
4779 		printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4780 				    inq_data, header);
4781 
4782 		return;
4783 	}
4784 
4785 	/*
4786 	 * No specific printing routine, so use the generic routine.
4787 	 */
4788 	scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4789 				inq_data, header);
4790 }
4791 
4792 scsi_sense_data_type
4793 scsi_sense_type(struct scsi_sense_data *sense_data)
4794 {
4795 	switch (sense_data->error_code & SSD_ERRCODE) {
4796 	case SSD_DESC_CURRENT_ERROR:
4797 	case SSD_DESC_DEFERRED_ERROR:
4798 		return (SSD_TYPE_DESC);
4799 		break;
4800 	case SSD_CURRENT_ERROR:
4801 	case SSD_DEFERRED_ERROR:
4802 		return (SSD_TYPE_FIXED);
4803 		break;
4804 	default:
4805 		break;
4806 	}
4807 
4808 	return (SSD_TYPE_NONE);
4809 }
4810 
4811 struct scsi_print_sense_info {
4812 	struct sbuf *sb;
4813 	char *path_str;
4814 	uint8_t *cdb;
4815 	int cdb_len;
4816 	struct scsi_inquiry_data *inq_data;
4817 };
4818 
4819 static int
4820 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4821 		     struct scsi_sense_desc_header *header, void *arg)
4822 {
4823 	struct scsi_print_sense_info *print_info;
4824 
4825 	print_info = (struct scsi_print_sense_info *)arg;
4826 
4827 	switch (header->desc_type) {
4828 	case SSD_DESC_INFO:
4829 	case SSD_DESC_FRU:
4830 	case SSD_DESC_COMMAND:
4831 	case SSD_DESC_SKS:
4832 	case SSD_DESC_BLOCK:
4833 	case SSD_DESC_STREAM:
4834 		/*
4835 		 * We have already printed these descriptors, if they are
4836 		 * present.
4837 		 */
4838 		break;
4839 	default: {
4840 		sbuf_printf(print_info->sb, "%s", print_info->path_str);
4841 		scsi_sense_desc_sbuf(print_info->sb,
4842 				     (struct scsi_sense_data *)sense, sense_len,
4843 				     print_info->cdb, print_info->cdb_len,
4844 				     print_info->inq_data, header);
4845 		sbuf_printf(print_info->sb, "\n");
4846 		break;
4847 	}
4848 	}
4849 
4850 	/*
4851 	 * Tell the iterator that we want to see more descriptors if they
4852 	 * are present.
4853 	 */
4854 	return (0);
4855 }
4856 
4857 void
4858 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4859 		     struct sbuf *sb, char *path_str,
4860 		     struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4861 		     int cdb_len)
4862 {
4863 	int error_code, sense_key, asc, ascq;
4864 
4865 	sbuf_cat(sb, path_str);
4866 
4867 	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4868 			       &asc, &ascq, /*show_errors*/ 1);
4869 
4870 	sbuf_printf(sb, "SCSI sense: ");
4871 	switch (error_code) {
4872 	case SSD_DEFERRED_ERROR:
4873 	case SSD_DESC_DEFERRED_ERROR:
4874 		sbuf_printf(sb, "Deferred error: ");
4875 
4876 		/* FALLTHROUGH */
4877 	case SSD_CURRENT_ERROR:
4878 	case SSD_DESC_CURRENT_ERROR:
4879 	{
4880 		struct scsi_sense_data_desc *desc_sense;
4881 		struct scsi_print_sense_info print_info;
4882 		const char *sense_key_desc;
4883 		const char *asc_desc;
4884 		uint8_t sks[3];
4885 		uint64_t val;
4886 		uint8_t bits;
4887 
4888 		/*
4889 		 * Get descriptions for the sense key, ASC, and ASCQ.  If
4890 		 * these aren't present in the sense data (i.e. the sense
4891 		 * data isn't long enough), the -1 values that
4892 		 * scsi_extract_sense_len() returns will yield default
4893 		 * or error descriptions.
4894 		 */
4895 		scsi_sense_desc(sense_key, asc, ascq, inq_data,
4896 				&sense_key_desc, &asc_desc);
4897 
4898 		/*
4899 		 * We first print the sense key and ASC/ASCQ.
4900 		 */
4901 		sbuf_cat(sb, sense_key_desc);
4902 		sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
4903 
4904 		/*
4905 		 * Print any block or stream device-specific information.
4906 		 */
4907 		if (scsi_get_block_info(sense, sense_len, inq_data,
4908 		    &bits) == 0 && bits != 0) {
4909 			sbuf_cat(sb, path_str);
4910 			scsi_block_sbuf(sb, bits);
4911 			sbuf_printf(sb, "\n");
4912 		} else if (scsi_get_stream_info(sense, sense_len, inq_data,
4913 		    &bits) == 0 && bits != 0) {
4914 			sbuf_cat(sb, path_str);
4915 			scsi_stream_sbuf(sb, bits);
4916 			sbuf_printf(sb, "\n");
4917 		}
4918 
4919 		/*
4920 		 * Print the info field.
4921 		 */
4922 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
4923 					&val, NULL) == 0) {
4924 			sbuf_cat(sb, path_str);
4925 			scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
4926 			sbuf_printf(sb, "\n");
4927 		}
4928 
4929 		/*
4930 		 * Print the FRU.
4931 		 */
4932 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
4933 					&val, NULL) == 0) {
4934 			sbuf_cat(sb, path_str);
4935 			scsi_fru_sbuf(sb, val);
4936 			sbuf_printf(sb, "\n");
4937 		}
4938 
4939 		/*
4940 		 * Print any command-specific information.
4941 		 */
4942 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
4943 					&val, NULL) == 0) {
4944 			sbuf_cat(sb, path_str);
4945 			scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
4946 			sbuf_printf(sb, "\n");
4947 		}
4948 
4949 		/*
4950 		 * Print out any sense-key-specific information.
4951 		 */
4952 		if (scsi_get_sks(sense, sense_len, sks) == 0) {
4953 			sbuf_cat(sb, path_str);
4954 			scsi_sks_sbuf(sb, sense_key, sks);
4955 			sbuf_printf(sb, "\n");
4956 		}
4957 
4958 		/*
4959 		 * If this is fixed sense, we're done.  If we have
4960 		 * descriptor sense, we might have more information
4961 		 * available.
4962 		 */
4963 		if (scsi_sense_type(sense) != SSD_TYPE_DESC)
4964 			break;
4965 
4966 		desc_sense = (struct scsi_sense_data_desc *)sense;
4967 
4968 		print_info.sb = sb;
4969 		print_info.path_str = path_str;
4970 		print_info.cdb = cdb;
4971 		print_info.cdb_len = cdb_len;
4972 		print_info.inq_data = inq_data;
4973 
4974 		/*
4975 		 * Print any sense descriptors that we have not already printed.
4976 		 */
4977 		scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
4978 				  &print_info);
4979 		break;
4980 	}
4981 	case -1:
4982 		/*
4983 		 * scsi_extract_sense_len() sets values to -1 if the
4984 		 * show_errors flag is set and they aren't present in the
4985 		 * sense data.  This means that sense_len is 0.
4986 		 */
4987 		sbuf_printf(sb, "No sense data present\n");
4988 		break;
4989 	default: {
4990 		sbuf_printf(sb, "Error code 0x%x", error_code);
4991 		if (sense->error_code & SSD_ERRCODE_VALID) {
4992 			struct scsi_sense_data_fixed *fixed_sense;
4993 
4994 			fixed_sense = (struct scsi_sense_data_fixed *)sense;
4995 
4996 			if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
4997 				uint32_t info;
4998 
4999 				info = scsi_4btoul(fixed_sense->info);
5000 
5001 				sbuf_printf(sb, " at block no. %d (decimal)",
5002 					    info);
5003 			}
5004 		}
5005 		sbuf_printf(sb, "\n");
5006 		break;
5007 	}
5008 	}
5009 }
5010 
5011 /*
5012  * scsi_sense_sbuf() returns 0 for success and -1 for failure.
5013  */
5014 #ifdef _KERNEL
5015 int
5016 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
5017 		scsi_sense_string_flags flags)
5018 #else /* !_KERNEL */
5019 int
5020 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
5021 		struct sbuf *sb, scsi_sense_string_flags flags)
5022 #endif /* _KERNEL/!_KERNEL */
5023 {
5024 	struct	  scsi_sense_data *sense;
5025 	struct	  scsi_inquiry_data *inq_data;
5026 #ifdef _KERNEL
5027 	struct	  ccb_getdev *cgd;
5028 #endif /* _KERNEL */
5029 	char	  path_str[64];
5030 
5031 #ifndef _KERNEL
5032 	if (device == NULL)
5033 		return(-1);
5034 #endif /* !_KERNEL */
5035 	if ((csio == NULL) || (sb == NULL))
5036 		return(-1);
5037 
5038 	/*
5039 	 * If the CDB is a physical address, we can't deal with it..
5040 	 */
5041 	if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
5042 		flags &= ~SSS_FLAG_PRINT_COMMAND;
5043 
5044 #ifdef _KERNEL
5045 	xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5046 #else /* !_KERNEL */
5047 	cam_path_string(device, path_str, sizeof(path_str));
5048 #endif /* _KERNEL/!_KERNEL */
5049 
5050 #ifdef _KERNEL
5051 	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5052 		return(-1);
5053 	/*
5054 	 * Get the device information.
5055 	 */
5056 	xpt_setup_ccb(&cgd->ccb_h,
5057 		      csio->ccb_h.path,
5058 		      CAM_PRIORITY_NORMAL);
5059 	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
5060 	xpt_action((union ccb *)cgd);
5061 
5062 	/*
5063 	 * If the device is unconfigured, just pretend that it is a hard
5064 	 * drive.  scsi_op_desc() needs this.
5065 	 */
5066 	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5067 		cgd->inq_data.device = T_DIRECT;
5068 
5069 	inq_data = &cgd->inq_data;
5070 
5071 #else /* !_KERNEL */
5072 
5073 	inq_data = &device->inq_data;
5074 
5075 #endif /* _KERNEL/!_KERNEL */
5076 
5077 	sense = NULL;
5078 
5079 	if (flags & SSS_FLAG_PRINT_COMMAND) {
5080 		sbuf_cat(sb, path_str);
5081 
5082 #ifdef _KERNEL
5083 		scsi_command_string(csio, sb);
5084 #else /* !_KERNEL */
5085 		scsi_command_string(device, csio, sb);
5086 #endif /* _KERNEL/!_KERNEL */
5087 		sbuf_printf(sb, "\n");
5088 	}
5089 
5090 	/*
5091 	 * If the sense data is a physical pointer, forget it.
5092 	 */
5093 	if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5094 		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5095 #ifdef _KERNEL
5096 			xpt_free_ccb((union ccb*)cgd);
5097 #endif /* _KERNEL/!_KERNEL */
5098 			return(-1);
5099 		} else {
5100 			/*
5101 			 * bcopy the pointer to avoid unaligned access
5102 			 * errors on finicky architectures.  We don't
5103 			 * ensure that the sense data is pointer aligned.
5104 			 */
5105 			bcopy((struct scsi_sense_data **)&csio->sense_data,
5106 			    &sense, sizeof(struct scsi_sense_data *));
5107 		}
5108 	} else {
5109 		/*
5110 		 * If the physical sense flag is set, but the sense pointer
5111 		 * is not also set, we assume that the user is an idiot and
5112 		 * return.  (Well, okay, it could be that somehow, the
5113 		 * entire csio is physical, but we would have probably core
5114 		 * dumped on one of the bogus pointer deferences above
5115 		 * already.)
5116 		 */
5117 		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5118 #ifdef _KERNEL
5119 			xpt_free_ccb((union ccb*)cgd);
5120 #endif /* _KERNEL/!_KERNEL */
5121 			return(-1);
5122 		} else
5123 			sense = &csio->sense_data;
5124 	}
5125 
5126 	scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5127 	    path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len);
5128 
5129 #ifdef _KERNEL
5130 	xpt_free_ccb((union ccb*)cgd);
5131 #endif /* _KERNEL/!_KERNEL */
5132 	return(0);
5133 }
5134 
5135 #ifdef _KERNEL
5136 char *
5137 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5138 #else /* !_KERNEL */
5139 char *
5140 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5141 		  char *str, int str_len)
5142 #endif /* _KERNEL/!_KERNEL */
5143 {
5144 	struct sbuf sb;
5145 
5146 	sbuf_new(&sb, str, str_len, 0);
5147 
5148 #ifdef _KERNEL
5149 	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5150 #else /* !_KERNEL */
5151 	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5152 #endif /* _KERNEL/!_KERNEL */
5153 
5154 	sbuf_finish(&sb);
5155 
5156 	return(sbuf_data(&sb));
5157 }
5158 
5159 #ifdef _KERNEL
5160 void
5161 scsi_sense_print(struct ccb_scsiio *csio)
5162 {
5163 	struct sbuf sb;
5164 	char str[512];
5165 
5166 	sbuf_new(&sb, str, sizeof(str), 0);
5167 
5168 	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5169 
5170 	sbuf_finish(&sb);
5171 
5172 	sbuf_putbuf(&sb);
5173 }
5174 
5175 #else /* !_KERNEL */
5176 void
5177 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5178 		 FILE *ofile)
5179 {
5180 	struct sbuf sb;
5181 	char str[512];
5182 
5183 	if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5184 		return;
5185 
5186 	sbuf_new(&sb, str, sizeof(str), 0);
5187 
5188 	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5189 
5190 	sbuf_finish(&sb);
5191 
5192 	fprintf(ofile, "%s", sbuf_data(&sb));
5193 }
5194 
5195 #endif /* _KERNEL/!_KERNEL */
5196 
5197 /*
5198  * Extract basic sense information.  This is backward-compatible with the
5199  * previous implementation.  For new implementations,
5200  * scsi_extract_sense_len() is recommended.
5201  */
5202 void
5203 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5204 		   int *sense_key, int *asc, int *ascq)
5205 {
5206 	scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5207 			       sense_key, asc, ascq, /*show_errors*/ 0);
5208 }
5209 
5210 /*
5211  * Extract basic sense information from SCSI I/O CCB structure.
5212  */
5213 int
5214 scsi_extract_sense_ccb(union ccb *ccb,
5215     int *error_code, int *sense_key, int *asc, int *ascq)
5216 {
5217 	struct scsi_sense_data *sense_data;
5218 
5219 	/* Make sure there are some sense data we can access. */
5220 	if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5221 	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5222 	    (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5223 	    (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5224 	    (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5225 		return (0);
5226 
5227 	if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5228 		bcopy((struct scsi_sense_data **)&ccb->csio.sense_data,
5229 		    &sense_data, sizeof(struct scsi_sense_data *));
5230 	else
5231 		sense_data = &ccb->csio.sense_data;
5232 	scsi_extract_sense_len(sense_data,
5233 	    ccb->csio.sense_len - ccb->csio.sense_resid,
5234 	    error_code, sense_key, asc, ascq, 1);
5235 	if (*error_code == -1)
5236 		return (0);
5237 	return (1);
5238 }
5239 
5240 /*
5241  * Extract basic sense information.  If show_errors is set, sense values
5242  * will be set to -1 if they are not present.
5243  */
5244 void
5245 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5246 		       int *error_code, int *sense_key, int *asc, int *ascq,
5247 		       int show_errors)
5248 {
5249 	/*
5250 	 * If we have no length, we have no sense.
5251 	 */
5252 	if (sense_len == 0) {
5253 		if (show_errors == 0) {
5254 			*error_code = 0;
5255 			*sense_key = 0;
5256 			*asc = 0;
5257 			*ascq = 0;
5258 		} else {
5259 			*error_code = -1;
5260 			*sense_key = -1;
5261 			*asc = -1;
5262 			*ascq = -1;
5263 		}
5264 		return;
5265 	}
5266 
5267 	*error_code = sense_data->error_code & SSD_ERRCODE;
5268 
5269 	switch (*error_code) {
5270 	case SSD_DESC_CURRENT_ERROR:
5271 	case SSD_DESC_DEFERRED_ERROR: {
5272 		struct scsi_sense_data_desc *sense;
5273 
5274 		sense = (struct scsi_sense_data_desc *)sense_data;
5275 
5276 		if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5277 			*sense_key = sense->sense_key & SSD_KEY;
5278 		else
5279 			*sense_key = (show_errors) ? -1 : 0;
5280 
5281 		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5282 			*asc = sense->add_sense_code;
5283 		else
5284 			*asc = (show_errors) ? -1 : 0;
5285 
5286 		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5287 			*ascq = sense->add_sense_code_qual;
5288 		else
5289 			*ascq = (show_errors) ? -1 : 0;
5290 		break;
5291 	}
5292 	case SSD_CURRENT_ERROR:
5293 	case SSD_DEFERRED_ERROR:
5294 	default: {
5295 		struct scsi_sense_data_fixed *sense;
5296 
5297 		sense = (struct scsi_sense_data_fixed *)sense_data;
5298 
5299 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5300 			*sense_key = sense->flags & SSD_KEY;
5301 		else
5302 			*sense_key = (show_errors) ? -1 : 0;
5303 
5304 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5305 		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5306 			*asc = sense->add_sense_code;
5307 		else
5308 			*asc = (show_errors) ? -1 : 0;
5309 
5310 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5311 		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5312 			*ascq = sense->add_sense_code_qual;
5313 		else
5314 			*ascq = (show_errors) ? -1 : 0;
5315 		break;
5316 	}
5317 	}
5318 }
5319 
5320 int
5321 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5322 		   int show_errors)
5323 {
5324 	int error_code, sense_key, asc, ascq;
5325 
5326 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5327 			       &sense_key, &asc, &ascq, show_errors);
5328 
5329 	return (sense_key);
5330 }
5331 
5332 int
5333 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5334 	     int show_errors)
5335 {
5336 	int error_code, sense_key, asc, ascq;
5337 
5338 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5339 			       &sense_key, &asc, &ascq, show_errors);
5340 
5341 	return (asc);
5342 }
5343 
5344 int
5345 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5346 	      int show_errors)
5347 {
5348 	int error_code, sense_key, asc, ascq;
5349 
5350 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5351 			       &sense_key, &asc, &ascq, show_errors);
5352 
5353 	return (ascq);
5354 }
5355 
5356 /*
5357  * This function currently requires at least 36 bytes, or
5358  * SHORT_INQUIRY_LENGTH, worth of data to function properly.  If this
5359  * function needs more or less data in the future, another length should be
5360  * defined in scsi_all.h to indicate the minimum amount of data necessary
5361  * for this routine to function properly.
5362  */
5363 void
5364 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5365 {
5366 	u_int8_t type;
5367 	char *dtype, *qtype;
5368 
5369 	type = SID_TYPE(inq_data);
5370 
5371 	/*
5372 	 * Figure out basic device type and qualifier.
5373 	 */
5374 	if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5375 		qtype = " (vendor-unique qualifier)";
5376 	} else {
5377 		switch (SID_QUAL(inq_data)) {
5378 		case SID_QUAL_LU_CONNECTED:
5379 			qtype = "";
5380 			break;
5381 
5382 		case SID_QUAL_LU_OFFLINE:
5383 			qtype = " (offline)";
5384 			break;
5385 
5386 		case SID_QUAL_RSVD:
5387 			qtype = " (reserved qualifier)";
5388 			break;
5389 		default:
5390 		case SID_QUAL_BAD_LU:
5391 			qtype = " (LUN not supported)";
5392 			break;
5393 		}
5394 	}
5395 
5396 	switch (type) {
5397 	case T_DIRECT:
5398 		dtype = "Direct Access";
5399 		break;
5400 	case T_SEQUENTIAL:
5401 		dtype = "Sequential Access";
5402 		break;
5403 	case T_PRINTER:
5404 		dtype = "Printer";
5405 		break;
5406 	case T_PROCESSOR:
5407 		dtype = "Processor";
5408 		break;
5409 	case T_WORM:
5410 		dtype = "WORM";
5411 		break;
5412 	case T_CDROM:
5413 		dtype = "CD-ROM";
5414 		break;
5415 	case T_SCANNER:
5416 		dtype = "Scanner";
5417 		break;
5418 	case T_OPTICAL:
5419 		dtype = "Optical";
5420 		break;
5421 	case T_CHANGER:
5422 		dtype = "Changer";
5423 		break;
5424 	case T_COMM:
5425 		dtype = "Communication";
5426 		break;
5427 	case T_STORARRAY:
5428 		dtype = "Storage Array";
5429 		break;
5430 	case T_ENCLOSURE:
5431 		dtype = "Enclosure Services";
5432 		break;
5433 	case T_RBC:
5434 		dtype = "Simplified Direct Access";
5435 		break;
5436 	case T_OCRW:
5437 		dtype = "Optical Card Read/Write";
5438 		break;
5439 	case T_OSD:
5440 		dtype = "Object-Based Storage";
5441 		break;
5442 	case T_ADC:
5443 		dtype = "Automation/Drive Interface";
5444 		break;
5445 	case T_ZBC_HM:
5446 		dtype = "Host Managed Zoned Block";
5447 		break;
5448 	case T_NODEVICE:
5449 		dtype = "Uninstalled";
5450 		break;
5451 	default:
5452 		dtype = "unknown";
5453 		break;
5454 	}
5455 
5456 	scsi_print_inquiry_short_sbuf(sb, inq_data);
5457 
5458 	sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype);
5459 
5460 	if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5461 		sbuf_printf(sb, "SCSI ");
5462 	else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5463 		sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data));
5464 	} else {
5465 		sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2);
5466 	}
5467 	sbuf_printf(sb, "device%s\n", qtype);
5468 }
5469 
5470 void
5471 scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5472 {
5473 	struct sbuf	sb;
5474 	char		buffer[120];
5475 
5476 	sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN);
5477 	scsi_print_inquiry_sbuf(&sb, inq_data);
5478 	sbuf_finish(&sb);
5479 	sbuf_putbuf(&sb);
5480 }
5481 
5482 void
5483 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5484 {
5485 
5486 	sbuf_printf(sb, "<");
5487 	cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0);
5488 	sbuf_printf(sb, " ");
5489 	cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0);
5490 	sbuf_printf(sb, " ");
5491 	cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0);
5492 	sbuf_printf(sb, "> ");
5493 }
5494 
5495 void
5496 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5497 {
5498 	struct sbuf	sb;
5499 	char		buffer[84];
5500 
5501 	sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN);
5502 	scsi_print_inquiry_short_sbuf(&sb, inq_data);
5503 	sbuf_finish(&sb);
5504 	sbuf_putbuf(&sb);
5505 }
5506 
5507 /*
5508  * Table of syncrates that don't follow the "divisible by 4"
5509  * rule. This table will be expanded in future SCSI specs.
5510  */
5511 static struct {
5512 	u_int period_factor;
5513 	u_int period;	/* in 100ths of ns */
5514 } scsi_syncrates[] = {
5515 	{ 0x08, 625 },	/* FAST-160 */
5516 	{ 0x09, 1250 },	/* FAST-80 */
5517 	{ 0x0a, 2500 },	/* FAST-40 40MHz */
5518 	{ 0x0b, 3030 },	/* FAST-40 33MHz */
5519 	{ 0x0c, 5000 }	/* FAST-20 */
5520 };
5521 
5522 /*
5523  * Return the frequency in kHz corresponding to the given
5524  * sync period factor.
5525  */
5526 u_int
5527 scsi_calc_syncsrate(u_int period_factor)
5528 {
5529 	u_int i;
5530 	u_int num_syncrates;
5531 
5532 	/*
5533 	 * It's a bug if period is zero, but if it is anyway, don't
5534 	 * die with a divide fault- instead return something which
5535 	 * 'approximates' async
5536 	 */
5537 	if (period_factor == 0) {
5538 		return (3300);
5539 	}
5540 
5541 	num_syncrates = nitems(scsi_syncrates);
5542 	/* See if the period is in the "exception" table */
5543 	for (i = 0; i < num_syncrates; i++) {
5544 		if (period_factor == scsi_syncrates[i].period_factor) {
5545 			/* Period in kHz */
5546 			return (100000000 / scsi_syncrates[i].period);
5547 		}
5548 	}
5549 
5550 	/*
5551 	 * Wasn't in the table, so use the standard
5552 	 * 4 times conversion.
5553 	 */
5554 	return (10000000 / (period_factor * 4 * 10));
5555 }
5556 
5557 /*
5558  * Return the SCSI sync parameter that corresponds to
5559  * the passed in period in 10ths of ns.
5560  */
5561 u_int
5562 scsi_calc_syncparam(u_int period)
5563 {
5564 	u_int i;
5565 	u_int num_syncrates;
5566 
5567 	if (period == 0)
5568 		return (~0);	/* Async */
5569 
5570 	/* Adjust for exception table being in 100ths. */
5571 	period *= 10;
5572 	num_syncrates = nitems(scsi_syncrates);
5573 	/* See if the period is in the "exception" table */
5574 	for (i = 0; i < num_syncrates; i++) {
5575 		if (period <= scsi_syncrates[i].period) {
5576 			/* Period in 100ths of ns */
5577 			return (scsi_syncrates[i].period_factor);
5578 		}
5579 	}
5580 
5581 	/*
5582 	 * Wasn't in the table, so use the standard
5583 	 * 1/4 period in ns conversion.
5584 	 */
5585 	return (period/400);
5586 }
5587 
5588 int
5589 scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5590 {
5591 	struct scsi_vpd_id_descriptor *descr;
5592 	struct scsi_vpd_id_naa_basic *naa;
5593 	int n;
5594 
5595 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5596 	naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5597 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5598 		return 0;
5599 	if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5600 		return 0;
5601 	n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT;
5602 	if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG)
5603 		return 0;
5604 	return 1;
5605 }
5606 
5607 int
5608 scsi_devid_is_sas_target(uint8_t *bufp)
5609 {
5610 	struct scsi_vpd_id_descriptor *descr;
5611 
5612 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5613 	if (!scsi_devid_is_naa_ieee_reg(bufp))
5614 		return 0;
5615 	if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5616 		return 0;
5617 	if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5618 		return 0;
5619 	return 1;
5620 }
5621 
5622 int
5623 scsi_devid_is_lun_eui64(uint8_t *bufp)
5624 {
5625 	struct scsi_vpd_id_descriptor *descr;
5626 
5627 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5628 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5629 		return 0;
5630 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5631 		return 0;
5632 	return 1;
5633 }
5634 
5635 int
5636 scsi_devid_is_lun_naa(uint8_t *bufp)
5637 {
5638 	struct scsi_vpd_id_descriptor *descr;
5639 
5640 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5641 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5642 		return 0;
5643 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5644 		return 0;
5645 	return 1;
5646 }
5647 
5648 int
5649 scsi_devid_is_lun_t10(uint8_t *bufp)
5650 {
5651 	struct scsi_vpd_id_descriptor *descr;
5652 
5653 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5654 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5655 		return 0;
5656 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5657 		return 0;
5658 	return 1;
5659 }
5660 
5661 int
5662 scsi_devid_is_lun_name(uint8_t *bufp)
5663 {
5664 	struct scsi_vpd_id_descriptor *descr;
5665 
5666 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5667 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5668 		return 0;
5669 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5670 		return 0;
5671 	return 1;
5672 }
5673 
5674 int
5675 scsi_devid_is_lun_md5(uint8_t *bufp)
5676 {
5677 	struct scsi_vpd_id_descriptor *descr;
5678 
5679 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5680 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5681 		return 0;
5682 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID)
5683 		return 0;
5684 	return 1;
5685 }
5686 
5687 int
5688 scsi_devid_is_lun_uuid(uint8_t *bufp)
5689 {
5690 	struct scsi_vpd_id_descriptor *descr;
5691 
5692 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5693 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5694 		return 0;
5695 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID)
5696 		return 0;
5697 	return 1;
5698 }
5699 
5700 int
5701 scsi_devid_is_port_naa(uint8_t *bufp)
5702 {
5703 	struct scsi_vpd_id_descriptor *descr;
5704 
5705 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5706 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5707 		return 0;
5708 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5709 		return 0;
5710 	return 1;
5711 }
5712 
5713 struct scsi_vpd_id_descriptor *
5714 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5715     scsi_devid_checkfn_t ck_fn)
5716 {
5717 	uint8_t *desc_buf_end;
5718 
5719 	desc_buf_end = (uint8_t *)desc + len;
5720 
5721 	for (; desc->identifier <= desc_buf_end &&
5722 	    desc->identifier + desc->length <= desc_buf_end;
5723 	    desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5724 						    + desc->length)) {
5725 		if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5726 			return (desc);
5727 	}
5728 	return (NULL);
5729 }
5730 
5731 struct scsi_vpd_id_descriptor *
5732 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5733     scsi_devid_checkfn_t ck_fn)
5734 {
5735 	uint32_t len;
5736 
5737 	if (page_len < sizeof(*id))
5738 		return (NULL);
5739 	len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5740 	return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5741 	    id->desc_list, len, ck_fn));
5742 }
5743 
5744 int
5745 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5746 		      uint32_t valid_len)
5747 {
5748 	switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5749 	case SCSI_PROTO_FC: {
5750 		struct scsi_transportid_fcp *fcp;
5751 		uint64_t n_port_name;
5752 
5753 		fcp = (struct scsi_transportid_fcp *)hdr;
5754 
5755 		n_port_name = scsi_8btou64(fcp->n_port_name);
5756 
5757 		sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5758 		break;
5759 	}
5760 	case SCSI_PROTO_SPI: {
5761 		struct scsi_transportid_spi *spi;
5762 
5763 		spi = (struct scsi_transportid_spi *)hdr;
5764 
5765 		sbuf_printf(sb, "SPI address: %u,%u",
5766 			    scsi_2btoul(spi->scsi_addr),
5767 			    scsi_2btoul(spi->rel_trgt_port_id));
5768 		break;
5769 	}
5770 	case SCSI_PROTO_SSA:
5771 		/*
5772 		 * XXX KDM there is no transport ID defined in SPC-4 for
5773 		 * SSA.
5774 		 */
5775 		break;
5776 	case SCSI_PROTO_1394: {
5777 		struct scsi_transportid_1394 *sbp;
5778 		uint64_t eui64;
5779 
5780 		sbp = (struct scsi_transportid_1394 *)hdr;
5781 
5782 		eui64 = scsi_8btou64(sbp->eui64);
5783 		sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5784 		break;
5785 	}
5786 	case SCSI_PROTO_RDMA: {
5787 		struct scsi_transportid_rdma *rdma;
5788 		unsigned int i;
5789 
5790 		rdma = (struct scsi_transportid_rdma *)hdr;
5791 
5792 		sbuf_printf(sb, "RDMA address: 0x");
5793 		for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5794 			sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5795 		break;
5796 	}
5797 	case SCSI_PROTO_ISCSI: {
5798 		uint32_t add_len, i;
5799 		uint8_t *iscsi_name = NULL;
5800 		int nul_found = 0;
5801 
5802 		sbuf_printf(sb, "iSCSI address: ");
5803 		if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5804 		    SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5805 			struct scsi_transportid_iscsi_device *dev;
5806 
5807 			dev = (struct scsi_transportid_iscsi_device *)hdr;
5808 
5809 			/*
5810 			 * Verify how much additional data we really have.
5811 			 */
5812 			add_len = scsi_2btoul(dev->additional_length);
5813 			add_len = MIN(add_len, valid_len -
5814 				__offsetof(struct scsi_transportid_iscsi_device,
5815 					   iscsi_name));
5816 			iscsi_name = &dev->iscsi_name[0];
5817 
5818 		} else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5819 			    SCSI_TRN_ISCSI_FORMAT_PORT) {
5820 			struct scsi_transportid_iscsi_port *port;
5821 
5822 			port = (struct scsi_transportid_iscsi_port *)hdr;
5823 
5824 			add_len = scsi_2btoul(port->additional_length);
5825 			add_len = MIN(add_len, valid_len -
5826 				__offsetof(struct scsi_transportid_iscsi_port,
5827 					   iscsi_name));
5828 			iscsi_name = &port->iscsi_name[0];
5829 		} else {
5830 			sbuf_printf(sb, "unknown format %x",
5831 				    (hdr->format_protocol &
5832 				     SCSI_TRN_FORMAT_MASK) >>
5833 				     SCSI_TRN_FORMAT_SHIFT);
5834 			break;
5835 		}
5836 		if (add_len == 0) {
5837 			sbuf_printf(sb, "not enough data");
5838 			break;
5839 		}
5840 		/*
5841 		 * This is supposed to be a NUL-terminated ASCII
5842 		 * string, but you never know.  So we're going to
5843 		 * check.  We need to do this because there is no
5844 		 * sbuf equivalent of strncat().
5845 		 */
5846 		for (i = 0; i < add_len; i++) {
5847 			if (iscsi_name[i] == '\0') {
5848 				nul_found = 1;
5849 				break;
5850 			}
5851 		}
5852 		/*
5853 		 * If there is a NUL in the name, we can just use
5854 		 * sbuf_cat().  Otherwise we need to use sbuf_bcat().
5855 		 */
5856 		if (nul_found != 0)
5857 			sbuf_cat(sb, iscsi_name);
5858 		else
5859 			sbuf_bcat(sb, iscsi_name, add_len);
5860 		break;
5861 	}
5862 	case SCSI_PROTO_SAS: {
5863 		struct scsi_transportid_sas *sas;
5864 		uint64_t sas_addr;
5865 
5866 		sas = (struct scsi_transportid_sas *)hdr;
5867 
5868 		sas_addr = scsi_8btou64(sas->sas_address);
5869 		sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5870 		break;
5871 	}
5872 	case SCSI_PROTO_ADITP:
5873 	case SCSI_PROTO_ATA:
5874 	case SCSI_PROTO_UAS:
5875 		/*
5876 		 * No Transport ID format for ADI, ATA or USB is defined in
5877 		 * SPC-4.
5878 		 */
5879 		sbuf_printf(sb, "No known Transport ID format for protocol "
5880 			    "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5881 		break;
5882 	case SCSI_PROTO_SOP: {
5883 		struct scsi_transportid_sop *sop;
5884 		struct scsi_sop_routing_id_norm *rid;
5885 
5886 		sop = (struct scsi_transportid_sop *)hdr;
5887 		rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5888 
5889 		/*
5890 		 * Note that there is no alternate format specified in SPC-4
5891 		 * for the PCIe routing ID, so we don't really have a way
5892 		 * to know whether the second byte of the routing ID is
5893 		 * a device and function or just a function.  So we just
5894 		 * assume bus,device,function.
5895 		 */
5896 		sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
5897 			    rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
5898 			    rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
5899 		break;
5900 	}
5901 	case SCSI_PROTO_NONE:
5902 	default:
5903 		sbuf_printf(sb, "Unknown protocol %#x",
5904 			    hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5905 		break;
5906 	}
5907 
5908 	return (0);
5909 }
5910 
5911 struct scsi_nv scsi_proto_map[] = {
5912 	{ "fcp", SCSI_PROTO_FC },
5913 	{ "spi", SCSI_PROTO_SPI },
5914 	{ "ssa", SCSI_PROTO_SSA },
5915 	{ "sbp", SCSI_PROTO_1394 },
5916 	{ "1394", SCSI_PROTO_1394 },
5917 	{ "srp", SCSI_PROTO_RDMA },
5918 	{ "rdma", SCSI_PROTO_RDMA },
5919 	{ "iscsi", SCSI_PROTO_ISCSI },
5920 	{ "iqn", SCSI_PROTO_ISCSI },
5921 	{ "sas", SCSI_PROTO_SAS },
5922 	{ "aditp", SCSI_PROTO_ADITP },
5923 	{ "ata", SCSI_PROTO_ATA },
5924 	{ "uas", SCSI_PROTO_UAS },
5925 	{ "usb", SCSI_PROTO_UAS },
5926 	{ "sop", SCSI_PROTO_SOP }
5927 };
5928 
5929 const char *
5930 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
5931 {
5932 	int i;
5933 
5934 	for (i = 0; i < num_table_entries; i++) {
5935 		if (table[i].value == value)
5936 			return (table[i].name);
5937 	}
5938 
5939 	return (NULL);
5940 }
5941 
5942 /*
5943  * Given a name/value table, find a value matching the given name.
5944  * Return values:
5945  *	SCSI_NV_FOUND - match found
5946  *	SCSI_NV_AMBIGUOUS - more than one match, none of them exact
5947  *	SCSI_NV_NOT_FOUND - no match found
5948  */
5949 scsi_nv_status
5950 scsi_get_nv(struct scsi_nv *table, int num_table_entries,
5951 	    char *name, int *table_entry, scsi_nv_flags flags)
5952 {
5953 	int i, num_matches = 0;
5954 
5955 	for (i = 0; i < num_table_entries; i++) {
5956 		size_t table_len, name_len;
5957 
5958 		table_len = strlen(table[i].name);
5959 		name_len = strlen(name);
5960 
5961 		if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
5962 		  && (strncasecmp(table[i].name, name, name_len) == 0))
5963 		|| (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
5964 		 && (strncmp(table[i].name, name, name_len) == 0))) {
5965 			*table_entry = i;
5966 
5967 			/*
5968 			 * Check for an exact match.  If we have the same
5969 			 * number of characters in the table as the argument,
5970 			 * and we already know they're the same, we have
5971 			 * an exact match.
5972 		 	 */
5973 			if (table_len == name_len)
5974 				return (SCSI_NV_FOUND);
5975 
5976 			/*
5977 			 * Otherwise, bump up the number of matches.  We'll
5978 			 * see later how many we have.
5979 			 */
5980 			num_matches++;
5981 		}
5982 	}
5983 
5984 	if (num_matches > 1)
5985 		return (SCSI_NV_AMBIGUOUS);
5986 	else if (num_matches == 1)
5987 		return (SCSI_NV_FOUND);
5988 	else
5989 		return (SCSI_NV_NOT_FOUND);
5990 }
5991 
5992 /*
5993  * Parse transport IDs for Fibre Channel, 1394 and SAS.  Since these are
5994  * all 64-bit numbers, the code is similar.
5995  */
5996 int
5997 scsi_parse_transportid_64bit(int proto_id, char *id_str,
5998 			     struct scsi_transportid_header **hdr,
5999 			     unsigned int *alloc_len,
6000 #ifdef _KERNEL
6001 			     struct malloc_type *type, int flags,
6002 #endif
6003 			     char *error_str, int error_str_len)
6004 {
6005 	uint64_t value;
6006 	char *endptr;
6007 	int retval;
6008 	size_t alloc_size;
6009 
6010 	retval = 0;
6011 
6012 	value = strtouq(id_str, &endptr, 0);
6013 	if (*endptr != '\0') {
6014 		if (error_str != NULL) {
6015 			snprintf(error_str, error_str_len, "%s: error "
6016 				 "parsing ID %s, 64-bit number required",
6017 				 __func__, id_str);
6018 		}
6019 		retval = 1;
6020 		goto bailout;
6021 	}
6022 
6023 	switch (proto_id) {
6024 	case SCSI_PROTO_FC:
6025 		alloc_size = sizeof(struct scsi_transportid_fcp);
6026 		break;
6027 	case SCSI_PROTO_1394:
6028 		alloc_size = sizeof(struct scsi_transportid_1394);
6029 		break;
6030 	case SCSI_PROTO_SAS:
6031 		alloc_size = sizeof(struct scsi_transportid_sas);
6032 		break;
6033 	default:
6034 		if (error_str != NULL) {
6035 			snprintf(error_str, error_str_len, "%s: unsupported "
6036 				 "protocol %d", __func__, proto_id);
6037 		}
6038 		retval = 1;
6039 		goto bailout;
6040 		break; /* NOTREACHED */
6041 	}
6042 #ifdef _KERNEL
6043 	*hdr = malloc(alloc_size, type, flags);
6044 #else /* _KERNEL */
6045 	*hdr = malloc(alloc_size);
6046 #endif /*_KERNEL */
6047 	if (*hdr == NULL) {
6048 		if (error_str != NULL) {
6049 			snprintf(error_str, error_str_len, "%s: unable to "
6050 				 "allocate %zu bytes", __func__, alloc_size);
6051 		}
6052 		retval = 1;
6053 		goto bailout;
6054 	}
6055 
6056 	*alloc_len = alloc_size;
6057 
6058 	bzero(*hdr, alloc_size);
6059 
6060 	switch (proto_id) {
6061 	case SCSI_PROTO_FC: {
6062 		struct scsi_transportid_fcp *fcp;
6063 
6064 		fcp = (struct scsi_transportid_fcp *)(*hdr);
6065 		fcp->format_protocol = SCSI_PROTO_FC |
6066 				       SCSI_TRN_FCP_FORMAT_DEFAULT;
6067 		scsi_u64to8b(value, fcp->n_port_name);
6068 		break;
6069 	}
6070 	case SCSI_PROTO_1394: {
6071 		struct scsi_transportid_1394 *sbp;
6072 
6073 		sbp = (struct scsi_transportid_1394 *)(*hdr);
6074 		sbp->format_protocol = SCSI_PROTO_1394 |
6075 				       SCSI_TRN_1394_FORMAT_DEFAULT;
6076 		scsi_u64to8b(value, sbp->eui64);
6077 		break;
6078 	}
6079 	case SCSI_PROTO_SAS: {
6080 		struct scsi_transportid_sas *sas;
6081 
6082 		sas = (struct scsi_transportid_sas *)(*hdr);
6083 		sas->format_protocol = SCSI_PROTO_SAS |
6084 				       SCSI_TRN_SAS_FORMAT_DEFAULT;
6085 		scsi_u64to8b(value, sas->sas_address);
6086 		break;
6087 	}
6088 	default:
6089 		break;
6090 	}
6091 bailout:
6092 	return (retval);
6093 }
6094 
6095 /*
6096  * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6097  */
6098 int
6099 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6100 			   unsigned int *alloc_len,
6101 #ifdef _KERNEL
6102 			   struct malloc_type *type, int flags,
6103 #endif
6104 			   char *error_str, int error_str_len)
6105 {
6106 	unsigned long scsi_addr, target_port;
6107 	struct scsi_transportid_spi *spi;
6108 	char *tmpstr, *endptr;
6109 	int retval;
6110 
6111 	retval = 0;
6112 
6113 	tmpstr = strsep(&id_str, ",");
6114 	if (tmpstr == NULL) {
6115 		if (error_str != NULL) {
6116 			snprintf(error_str, error_str_len,
6117 				 "%s: no ID found", __func__);
6118 		}
6119 		retval = 1;
6120 		goto bailout;
6121 	}
6122 	scsi_addr = strtoul(tmpstr, &endptr, 0);
6123 	if (*endptr != '\0') {
6124 		if (error_str != NULL) {
6125 			snprintf(error_str, error_str_len, "%s: error "
6126 				 "parsing SCSI ID %s, number required",
6127 				 __func__, tmpstr);
6128 		}
6129 		retval = 1;
6130 		goto bailout;
6131 	}
6132 
6133 	if (id_str == NULL) {
6134 		if (error_str != NULL) {
6135 			snprintf(error_str, error_str_len, "%s: no relative "
6136 				 "target port found", __func__);
6137 		}
6138 		retval = 1;
6139 		goto bailout;
6140 	}
6141 
6142 	target_port = strtoul(id_str, &endptr, 0);
6143 	if (*endptr != '\0') {
6144 		if (error_str != NULL) {
6145 			snprintf(error_str, error_str_len, "%s: error "
6146 				 "parsing relative target port %s, number "
6147 				 "required", __func__, id_str);
6148 		}
6149 		retval = 1;
6150 		goto bailout;
6151 	}
6152 #ifdef _KERNEL
6153 	spi = malloc(sizeof(*spi), type, flags);
6154 #else
6155 	spi = malloc(sizeof(*spi));
6156 #endif
6157 	if (spi == NULL) {
6158 		if (error_str != NULL) {
6159 			snprintf(error_str, error_str_len, "%s: unable to "
6160 				 "allocate %zu bytes", __func__,
6161 				 sizeof(*spi));
6162 		}
6163 		retval = 1;
6164 		goto bailout;
6165 	}
6166 	*alloc_len = sizeof(*spi);
6167 	bzero(spi, sizeof(*spi));
6168 
6169 	spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6170 	scsi_ulto2b(scsi_addr, spi->scsi_addr);
6171 	scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6172 
6173 	*hdr = (struct scsi_transportid_header *)spi;
6174 bailout:
6175 	return (retval);
6176 }
6177 
6178 /*
6179  * Parse an RDMA/SRP Initiator Port ID string.  This is 32 hexadecimal digits,
6180  * optionally prefixed by "0x" or "0X".
6181  */
6182 int
6183 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6184 			    unsigned int *alloc_len,
6185 #ifdef _KERNEL
6186 			    struct malloc_type *type, int flags,
6187 #endif
6188 			    char *error_str, int error_str_len)
6189 {
6190 	struct scsi_transportid_rdma *rdma;
6191 	int retval;
6192 	size_t id_len, rdma_id_size;
6193 	uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6194 	char *tmpstr;
6195 	unsigned int i, j;
6196 
6197 	retval = 0;
6198 	id_len = strlen(id_str);
6199 	rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6200 
6201 	/*
6202 	 * Check the size.  It needs to be either 32 or 34 characters long.
6203 	 */
6204 	if ((id_len != (rdma_id_size * 2))
6205 	 && (id_len != ((rdma_id_size * 2) + 2))) {
6206 		if (error_str != NULL) {
6207 			snprintf(error_str, error_str_len, "%s: RDMA ID "
6208 				 "must be 32 hex digits (0x prefix "
6209 				 "optional), only %zu seen", __func__, id_len);
6210 		}
6211 		retval = 1;
6212 		goto bailout;
6213 	}
6214 
6215 	tmpstr = id_str;
6216 	/*
6217 	 * If the user gave us 34 characters, the string needs to start
6218 	 * with '0x'.
6219 	 */
6220 	if (id_len == ((rdma_id_size * 2) + 2)) {
6221 	 	if ((tmpstr[0] == '0')
6222 		 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6223 			tmpstr += 2;
6224 		} else {
6225 			if (error_str != NULL) {
6226 				snprintf(error_str, error_str_len, "%s: RDMA "
6227 					 "ID prefix, if used, must be \"0x\", "
6228 					 "got %s", __func__, tmpstr);
6229 			}
6230 			retval = 1;
6231 			goto bailout;
6232 		}
6233 	}
6234 	bzero(rdma_id, sizeof(rdma_id));
6235 
6236 	/*
6237 	 * Convert ASCII hex into binary bytes.  There is no standard
6238 	 * 128-bit integer type, and so no strtou128t() routine to convert
6239 	 * from hex into a large integer.  In the end, we're not going to
6240 	 * an integer, but rather to a byte array, so that and the fact
6241 	 * that we require the user to give us 32 hex digits simplifies the
6242 	 * logic.
6243 	 */
6244 	for (i = 0; i < (rdma_id_size * 2); i++) {
6245 		int cur_shift;
6246 		unsigned char c;
6247 
6248 		/* Increment the byte array one for every 2 hex digits */
6249 		j = i >> 1;
6250 
6251 		/*
6252 		 * The first digit in every pair is the most significant
6253 		 * 4 bits.  The second is the least significant 4 bits.
6254 		 */
6255 		if ((i % 2) == 0)
6256 			cur_shift = 4;
6257 		else
6258 			cur_shift = 0;
6259 
6260 		c = tmpstr[i];
6261 		/* Convert the ASCII hex character into a number */
6262 		if (isdigit(c))
6263 			c -= '0';
6264 		else if (isalpha(c))
6265 			c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6266 		else {
6267 			if (error_str != NULL) {
6268 				snprintf(error_str, error_str_len, "%s: "
6269 					 "RDMA ID must be hex digits, got "
6270 					 "invalid character %c", __func__,
6271 					 tmpstr[i]);
6272 			}
6273 			retval = 1;
6274 			goto bailout;
6275 		}
6276 		/*
6277 		 * The converted number can't be less than 0; the type is
6278 		 * unsigned, and the subtraction logic will not give us
6279 		 * a negative number.  So we only need to make sure that
6280 		 * the value is not greater than 0xf.  (i.e. make sure the
6281 		 * user didn't give us a value like "0x12jklmno").
6282 		 */
6283 		if (c > 0xf) {
6284 			if (error_str != NULL) {
6285 				snprintf(error_str, error_str_len, "%s: "
6286 					 "RDMA ID must be hex digits, got "
6287 					 "invalid character %c", __func__,
6288 					 tmpstr[i]);
6289 			}
6290 			retval = 1;
6291 			goto bailout;
6292 		}
6293 
6294 		rdma_id[j] |= c << cur_shift;
6295 	}
6296 
6297 #ifdef _KERNEL
6298 	rdma = malloc(sizeof(*rdma), type, flags);
6299 #else
6300 	rdma = malloc(sizeof(*rdma));
6301 #endif
6302 	if (rdma == NULL) {
6303 		if (error_str != NULL) {
6304 			snprintf(error_str, error_str_len, "%s: unable to "
6305 				 "allocate %zu bytes", __func__,
6306 				 sizeof(*rdma));
6307 		}
6308 		retval = 1;
6309 		goto bailout;
6310 	}
6311 	*alloc_len = sizeof(*rdma);
6312 	bzero(rdma, *alloc_len);
6313 
6314 	rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6315 	bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6316 
6317 	*hdr = (struct scsi_transportid_header *)rdma;
6318 
6319 bailout:
6320 	return (retval);
6321 }
6322 
6323 /*
6324  * Parse an iSCSI name.  The format is either just the name:
6325  *
6326  *	iqn.2012-06.com.example:target0
6327  * or the name, separator and initiator session ID:
6328  *
6329  *	iqn.2012-06.com.example:target0,i,0x123
6330  *
6331  * The separator format is exact.
6332  */
6333 int
6334 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6335 			     unsigned int *alloc_len,
6336 #ifdef _KERNEL
6337 			     struct malloc_type *type, int flags,
6338 #endif
6339 			     char *error_str, int error_str_len)
6340 {
6341 	size_t id_len, sep_len, id_size, name_len;
6342 	int retval;
6343 	unsigned int i, sep_pos, sep_found;
6344 	const char *sep_template = ",i,0x";
6345 	const char *iqn_prefix = "iqn.";
6346 	struct scsi_transportid_iscsi_device *iscsi;
6347 
6348 	retval = 0;
6349 	sep_found = 0;
6350 
6351 	id_len = strlen(id_str);
6352 	sep_len = strlen(sep_template);
6353 
6354 	/*
6355 	 * The separator is defined as exactly ',i,0x'.  Any other commas,
6356 	 * or any other form, is an error.  So look for a comma, and once
6357 	 * we find that, the next few characters must match the separator
6358 	 * exactly.  Once we get through the separator, there should be at
6359 	 * least one character.
6360 	 */
6361 	for (i = 0, sep_pos = 0; i < id_len; i++) {
6362 		if (sep_pos == 0) {
6363 		 	if (id_str[i] == sep_template[sep_pos])
6364 				sep_pos++;
6365 
6366 			continue;
6367 		}
6368 		if (sep_pos < sep_len) {
6369 			if (id_str[i] == sep_template[sep_pos]) {
6370 				sep_pos++;
6371 				continue;
6372 			}
6373 			if (error_str != NULL) {
6374 				snprintf(error_str, error_str_len, "%s: "
6375 					 "invalid separator in iSCSI name "
6376 					 "\"%s\"",
6377 					 __func__, id_str);
6378 			}
6379 			retval = 1;
6380 			goto bailout;
6381 		} else {
6382 			sep_found = 1;
6383 			break;
6384 		}
6385 	}
6386 
6387 	/*
6388 	 * Check to see whether we have a separator but no digits after it.
6389 	 */
6390 	if ((sep_pos != 0)
6391 	 && (sep_found == 0)) {
6392 		if (error_str != NULL) {
6393 			snprintf(error_str, error_str_len, "%s: no digits "
6394 				 "found after separator in iSCSI name \"%s\"",
6395 				 __func__, id_str);
6396 		}
6397 		retval = 1;
6398 		goto bailout;
6399 	}
6400 
6401 	/*
6402 	 * The incoming ID string has the "iqn." prefix stripped off.  We
6403 	 * need enough space for the base structure (the structures are the
6404 	 * same for the two iSCSI forms), the prefix, the ID string and a
6405 	 * terminating NUL.
6406 	 */
6407 	id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6408 
6409 #ifdef _KERNEL
6410 	iscsi = malloc(id_size, type, flags);
6411 #else
6412 	iscsi = malloc(id_size);
6413 #endif
6414 	if (iscsi == NULL) {
6415 		if (error_str != NULL) {
6416 			snprintf(error_str, error_str_len, "%s: unable to "
6417 				 "allocate %zu bytes", __func__, id_size);
6418 		}
6419 		retval = 1;
6420 		goto bailout;
6421 	}
6422 	*alloc_len = id_size;
6423 	bzero(iscsi, id_size);
6424 
6425 	iscsi->format_protocol = SCSI_PROTO_ISCSI;
6426 	if (sep_found == 0)
6427 		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6428 	else
6429 		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6430 	name_len = id_size - sizeof(*iscsi);
6431 	scsi_ulto2b(name_len, iscsi->additional_length);
6432 	snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6433 
6434 	*hdr = (struct scsi_transportid_header *)iscsi;
6435 
6436 bailout:
6437 	return (retval);
6438 }
6439 
6440 /*
6441  * Parse a SCSI over PCIe (SOP) identifier.  The Routing ID can either be
6442  * of the form 'bus,device,function' or 'bus,function'.
6443  */
6444 int
6445 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6446 			   unsigned int *alloc_len,
6447 #ifdef _KERNEL
6448 			   struct malloc_type *type, int flags,
6449 #endif
6450 			   char *error_str, int error_str_len)
6451 {
6452 	struct scsi_transportid_sop *sop;
6453 	unsigned long bus, device, function;
6454 	char *tmpstr, *endptr;
6455 	int retval, device_spec;
6456 
6457 	retval = 0;
6458 	device_spec = 0;
6459 	device = 0;
6460 
6461 	tmpstr = strsep(&id_str, ",");
6462 	if ((tmpstr == NULL)
6463 	 || (*tmpstr == '\0')) {
6464 		if (error_str != NULL) {
6465 			snprintf(error_str, error_str_len, "%s: no ID found",
6466 				 __func__);
6467 		}
6468 		retval = 1;
6469 		goto bailout;
6470 	}
6471 	bus = strtoul(tmpstr, &endptr, 0);
6472 	if (*endptr != '\0') {
6473 		if (error_str != NULL) {
6474 			snprintf(error_str, error_str_len, "%s: error "
6475 				 "parsing PCIe bus %s, number required",
6476 				 __func__, tmpstr);
6477 		}
6478 		retval = 1;
6479 		goto bailout;
6480 	}
6481 	if ((id_str == NULL)
6482 	 || (*id_str == '\0')) {
6483 		if (error_str != NULL) {
6484 			snprintf(error_str, error_str_len, "%s: no PCIe "
6485 				 "device or function found", __func__);
6486 		}
6487 		retval = 1;
6488 		goto bailout;
6489 	}
6490 	tmpstr = strsep(&id_str, ",");
6491 	function = strtoul(tmpstr, &endptr, 0);
6492 	if (*endptr != '\0') {
6493 		if (error_str != NULL) {
6494 			snprintf(error_str, error_str_len, "%s: error "
6495 				 "parsing PCIe device/function %s, number "
6496 				 "required", __func__, tmpstr);
6497 		}
6498 		retval = 1;
6499 		goto bailout;
6500 	}
6501 	/*
6502 	 * Check to see whether the user specified a third value.  If so,
6503 	 * the second is the device.
6504 	 */
6505 	if (id_str != NULL) {
6506 		if (*id_str == '\0') {
6507 			if (error_str != NULL) {
6508 				snprintf(error_str, error_str_len, "%s: "
6509 					 "no PCIe function found", __func__);
6510 			}
6511 			retval = 1;
6512 			goto bailout;
6513 		}
6514 		device = function;
6515 		device_spec = 1;
6516 		function = strtoul(id_str, &endptr, 0);
6517 		if (*endptr != '\0') {
6518 			if (error_str != NULL) {
6519 				snprintf(error_str, error_str_len, "%s: "
6520 					 "error parsing PCIe function %s, "
6521 					 "number required", __func__, id_str);
6522 			}
6523 			retval = 1;
6524 			goto bailout;
6525 		}
6526 	}
6527 	if (bus > SCSI_TRN_SOP_BUS_MAX) {
6528 		if (error_str != NULL) {
6529 			snprintf(error_str, error_str_len, "%s: bus value "
6530 				 "%lu greater than maximum %u", __func__,
6531 				 bus, SCSI_TRN_SOP_BUS_MAX);
6532 		}
6533 		retval = 1;
6534 		goto bailout;
6535 	}
6536 
6537 	if ((device_spec != 0)
6538 	 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6539 		if (error_str != NULL) {
6540 			snprintf(error_str, error_str_len, "%s: device value "
6541 				 "%lu greater than maximum %u", __func__,
6542 				 device, SCSI_TRN_SOP_DEV_MAX);
6543 		}
6544 		retval = 1;
6545 		goto bailout;
6546 	}
6547 
6548 	if (((device_spec != 0)
6549 	  && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6550 	 || ((device_spec == 0)
6551 	  && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6552 		if (error_str != NULL) {
6553 			snprintf(error_str, error_str_len, "%s: function value "
6554 				 "%lu greater than maximum %u", __func__,
6555 				 function, (device_spec == 0) ?
6556 				 SCSI_TRN_SOP_FUNC_ALT_MAX :
6557 				 SCSI_TRN_SOP_FUNC_NORM_MAX);
6558 		}
6559 		retval = 1;
6560 		goto bailout;
6561 	}
6562 
6563 #ifdef _KERNEL
6564 	sop = malloc(sizeof(*sop), type, flags);
6565 #else
6566 	sop = malloc(sizeof(*sop));
6567 #endif
6568 	if (sop == NULL) {
6569 		if (error_str != NULL) {
6570 			snprintf(error_str, error_str_len, "%s: unable to "
6571 				 "allocate %zu bytes", __func__, sizeof(*sop));
6572 		}
6573 		retval = 1;
6574 		goto bailout;
6575 	}
6576 	*alloc_len = sizeof(*sop);
6577 	bzero(sop, sizeof(*sop));
6578 	sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6579 	if (device_spec != 0) {
6580 		struct scsi_sop_routing_id_norm rid;
6581 
6582 		rid.bus = bus;
6583 		rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6584 		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6585 		      sizeof(sop->routing_id)));
6586 	} else {
6587 		struct scsi_sop_routing_id_alt rid;
6588 
6589 		rid.bus = bus;
6590 		rid.function = function;
6591 		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6592 		      sizeof(sop->routing_id)));
6593 	}
6594 
6595 	*hdr = (struct scsi_transportid_header *)sop;
6596 bailout:
6597 	return (retval);
6598 }
6599 
6600 /*
6601  * transportid_str: NUL-terminated string with format: protcol,id
6602  *		    The ID is protocol specific.
6603  * hdr:		    Storage will be allocated for the transport ID.
6604  * alloc_len:	    The amount of memory allocated is returned here.
6605  * type:	    Malloc bucket (kernel only).
6606  * flags:	    Malloc flags (kernel only).
6607  * error_str:	    If non-NULL, it will contain error information (without
6608  * 		    a terminating newline) if an error is returned.
6609  * error_str_len:   Allocated length of the error string.
6610  *
6611  * Returns 0 for success, non-zero for failure.
6612  */
6613 int
6614 scsi_parse_transportid(char *transportid_str,
6615 		       struct scsi_transportid_header **hdr,
6616 		       unsigned int *alloc_len,
6617 #ifdef _KERNEL
6618 		       struct malloc_type *type, int flags,
6619 #endif
6620 		       char *error_str, int error_str_len)
6621 {
6622 	char *tmpstr;
6623 	scsi_nv_status status;
6624 	u_int num_proto_entries;
6625 	int retval, table_entry;
6626 
6627 	retval = 0;
6628 	table_entry = 0;
6629 
6630 	/*
6631 	 * We do allow a period as well as a comma to separate the protocol
6632 	 * from the ID string.  This is to accommodate iSCSI names, which
6633 	 * start with "iqn.".
6634 	 */
6635 	tmpstr = strsep(&transportid_str, ",.");
6636 	if (tmpstr == NULL) {
6637 		if (error_str != NULL) {
6638 			snprintf(error_str, error_str_len,
6639 				 "%s: transportid_str is NULL", __func__);
6640 		}
6641 		retval = 1;
6642 		goto bailout;
6643 	}
6644 
6645 	num_proto_entries = nitems(scsi_proto_map);
6646 	status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6647 			     &table_entry, SCSI_NV_FLAG_IG_CASE);
6648 	if (status != SCSI_NV_FOUND) {
6649 		if (error_str != NULL) {
6650 			snprintf(error_str, error_str_len, "%s: %s protocol "
6651 				 "name %s", __func__,
6652 				 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6653 				 "invalid", tmpstr);
6654 		}
6655 		retval = 1;
6656 		goto bailout;
6657 	}
6658 	switch (scsi_proto_map[table_entry].value) {
6659 	case SCSI_PROTO_FC:
6660 	case SCSI_PROTO_1394:
6661 	case SCSI_PROTO_SAS:
6662 		retval = scsi_parse_transportid_64bit(
6663 		    scsi_proto_map[table_entry].value, transportid_str, hdr,
6664 		    alloc_len,
6665 #ifdef _KERNEL
6666 		    type, flags,
6667 #endif
6668 		    error_str, error_str_len);
6669 		break;
6670 	case SCSI_PROTO_SPI:
6671 		retval = scsi_parse_transportid_spi(transportid_str, hdr,
6672 		    alloc_len,
6673 #ifdef _KERNEL
6674 		    type, flags,
6675 #endif
6676 		    error_str, error_str_len);
6677 		break;
6678 	case SCSI_PROTO_RDMA:
6679 		retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6680 		    alloc_len,
6681 #ifdef _KERNEL
6682 		    type, flags,
6683 #endif
6684 		    error_str, error_str_len);
6685 		break;
6686 	case SCSI_PROTO_ISCSI:
6687 		retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6688 		    alloc_len,
6689 #ifdef _KERNEL
6690 		    type, flags,
6691 #endif
6692 		    error_str, error_str_len);
6693 		break;
6694 	case SCSI_PROTO_SOP:
6695 		retval = scsi_parse_transportid_sop(transportid_str, hdr,
6696 		    alloc_len,
6697 #ifdef _KERNEL
6698 		    type, flags,
6699 #endif
6700 		    error_str, error_str_len);
6701 		break;
6702 	case SCSI_PROTO_SSA:
6703 	case SCSI_PROTO_ADITP:
6704 	case SCSI_PROTO_ATA:
6705 	case SCSI_PROTO_UAS:
6706 	case SCSI_PROTO_NONE:
6707 	default:
6708 		/*
6709 		 * There is no format defined for a Transport ID for these
6710 		 * protocols.  So even if the user gives us something, we
6711 		 * have no way to turn it into a standard SCSI Transport ID.
6712 		 */
6713 		retval = 1;
6714 		if (error_str != NULL) {
6715 			snprintf(error_str, error_str_len, "%s: no Transport "
6716 				 "ID format exists for protocol %s",
6717 				 __func__, tmpstr);
6718 		}
6719 		goto bailout;
6720 		break;	/* NOTREACHED */
6721 	}
6722 bailout:
6723 	return (retval);
6724 }
6725 
6726 struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6727 	{ SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6728 	  "Remaining Capacity in Partition",
6729 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6730 	{ SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6731 	  "Maximum Capacity in Partition",
6732 	  /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6733 	{ SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6734 	  "TapeAlert Flags",
6735 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6736 	{ SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6737 	  "Load Count",
6738 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6739 	{ SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6740 	  "MAM Space Remaining",
6741 	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6742 	  /*parse_str*/ NULL },
6743 	{ SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6744 	  "Assigning Organization",
6745 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6746 	  /*parse_str*/ NULL },
6747 	{ SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6748 	  "Format Density Code",
6749 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6750 	{ SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6751 	  "Initialization Count",
6752 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6753 	{ SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6754 	  "Volume Identifier",
6755 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6756 	  /*parse_str*/ NULL },
6757 	{ SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6758 	  "Volume Change Reference",
6759 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6760 	  /*parse_str*/ NULL },
6761 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6762 	  "Device Vendor/Serial at Last Load",
6763 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6764 	  /*parse_str*/ NULL },
6765 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6766 	  "Device Vendor/Serial at Last Load - 1",
6767 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6768 	  /*parse_str*/ NULL },
6769 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6770 	  "Device Vendor/Serial at Last Load - 2",
6771 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6772 	  /*parse_str*/ NULL },
6773 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6774 	  "Device Vendor/Serial at Last Load - 3",
6775 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6776 	  /*parse_str*/ NULL },
6777 	{ SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6778 	  "Total MB Written in Medium Life",
6779 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6780 	  /*parse_str*/ NULL },
6781 	{ SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6782 	  "Total MB Read in Medium Life",
6783 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6784 	  /*parse_str*/ NULL },
6785 	{ SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6786 	  "Total MB Written in Current/Last Load",
6787 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6788 	  /*parse_str*/ NULL },
6789 	{ SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6790 	  "Total MB Read in Current/Last Load",
6791 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6792 	  /*parse_str*/ NULL },
6793 	{ SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6794 	  "Logical Position of First Encrypted Block",
6795 	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6796 	  /*parse_str*/ NULL },
6797 	{ SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6798 	  "Logical Position of First Unencrypted Block after First "
6799 	  "Encrypted Block",
6800 	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6801 	  /*parse_str*/ NULL },
6802 	{ SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6803 	  "Medium Usage History",
6804 	  /*suffix*/ NULL, /*to_str*/ NULL,
6805 	  /*parse_str*/ NULL },
6806 	{ SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6807 	  "Partition Usage History",
6808 	  /*suffix*/ NULL, /*to_str*/ NULL,
6809 	  /*parse_str*/ NULL },
6810 	{ SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6811 	  "Medium Manufacturer",
6812 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6813 	  /*parse_str*/ NULL },
6814 	{ SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6815 	  "Medium Serial Number",
6816 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6817 	  /*parse_str*/ NULL },
6818 	{ SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6819 	  "Medium Length",
6820 	  /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6821 	  /*parse_str*/ NULL },
6822 	{ SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6823 	  SCSI_ATTR_FLAG_FP_1DIGIT,
6824 	  "Medium Width",
6825 	  /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6826 	  /*parse_str*/ NULL },
6827 	{ SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6828 	  "Assigning Organization",
6829 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6830 	  /*parse_str*/ NULL },
6831 	{ SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6832 	  "Medium Density Code",
6833 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6834 	  /*parse_str*/ NULL },
6835 	{ SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6836 	  "Medium Manufacture Date",
6837 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6838 	  /*parse_str*/ NULL },
6839 	{ SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6840 	  "MAM Capacity",
6841 	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6842 	  /*parse_str*/ NULL },
6843 	{ SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6844 	  "Medium Type",
6845 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6846 	  /*parse_str*/ NULL },
6847 	{ SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6848 	  "Medium Type Information",
6849 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6850 	  /*parse_str*/ NULL },
6851 	{ SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6852 	  "Medium Serial Number",
6853 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6854 	  /*parse_str*/ NULL },
6855 	{ SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6856 	  "Application Vendor",
6857 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6858 	  /*parse_str*/ NULL },
6859 	{ SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6860 	  "Application Name",
6861 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6862 	  /*parse_str*/ NULL },
6863 	{ SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6864 	  "Application Version",
6865 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6866 	  /*parse_str*/ NULL },
6867 	{ SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6868 	  "User Medium Text Label",
6869 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6870 	  /*parse_str*/ NULL },
6871 	{ SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6872 	  "Date and Time Last Written",
6873 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6874 	  /*parse_str*/ NULL },
6875 	{ SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6876 	  "Text Localization Identifier",
6877 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6878 	  /*parse_str*/ NULL },
6879 	{ SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6880 	  "Barcode",
6881 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6882 	  /*parse_str*/ NULL },
6883 	{ SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6884 	  "Owning Host Textual Name",
6885 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6886 	  /*parse_str*/ NULL },
6887 	{ SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6888 	  "Media Pool",
6889 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6890 	  /*parse_str*/ NULL },
6891 	{ SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
6892 	  "Partition User Text Label",
6893 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6894 	  /*parse_str*/ NULL },
6895 	{ SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
6896 	  "Load/Unload at Partition",
6897 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6898 	  /*parse_str*/ NULL },
6899 	{ SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
6900 	  "Application Format Version",
6901 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6902 	  /*parse_str*/ NULL },
6903 	{ SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
6904 	  "Volume Coherency Information",
6905 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
6906 	  /*parse_str*/ NULL },
6907 	{ 0x0ff1, SCSI_ATTR_FLAG_NONE,
6908 	  "Spectra MLM Creation",
6909 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6910 	  /*parse_str*/ NULL },
6911 	{ 0x0ff2, SCSI_ATTR_FLAG_NONE,
6912 	  "Spectra MLM C3",
6913 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6914 	  /*parse_str*/ NULL },
6915 	{ 0x0ff3, SCSI_ATTR_FLAG_NONE,
6916 	  "Spectra MLM RW",
6917 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6918 	  /*parse_str*/ NULL },
6919 	{ 0x0ff4, SCSI_ATTR_FLAG_NONE,
6920 	  "Spectra MLM SDC List",
6921 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6922 	  /*parse_str*/ NULL },
6923 	{ 0x0ff7, SCSI_ATTR_FLAG_NONE,
6924 	  "Spectra MLM Post Scan",
6925 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6926 	  /*parse_str*/ NULL },
6927 	{ 0x0ffe, SCSI_ATTR_FLAG_NONE,
6928 	  "Spectra MLM Checksum",
6929 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6930 	  /*parse_str*/ NULL },
6931 	{ 0x17f1, SCSI_ATTR_FLAG_NONE,
6932 	  "Spectra MLM Creation",
6933 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6934 	  /*parse_str*/ NULL },
6935 	{ 0x17f2, SCSI_ATTR_FLAG_NONE,
6936 	  "Spectra MLM C3",
6937 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6938 	  /*parse_str*/ NULL },
6939 	{ 0x17f3, SCSI_ATTR_FLAG_NONE,
6940 	  "Spectra MLM RW",
6941 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6942 	  /*parse_str*/ NULL },
6943 	{ 0x17f4, SCSI_ATTR_FLAG_NONE,
6944 	  "Spectra MLM SDC List",
6945 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6946 	  /*parse_str*/ NULL },
6947 	{ 0x17f7, SCSI_ATTR_FLAG_NONE,
6948 	  "Spectra MLM Post Scan",
6949 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6950 	  /*parse_str*/ NULL },
6951 	{ 0x17ff, SCSI_ATTR_FLAG_NONE,
6952 	  "Spectra MLM Checksum",
6953 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6954 	  /*parse_str*/ NULL },
6955 };
6956 
6957 /*
6958  * Print out Volume Coherency Information (Attribute 0x080c).
6959  * This field has two variable length members, including one at the
6960  * beginning, so it isn't practical to have a fixed structure definition.
6961  * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
6962  * 2013.
6963  */
6964 int
6965 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6966 			 uint32_t valid_len, uint32_t flags,
6967 			 uint32_t output_flags, char *error_str,
6968 			 int error_str_len)
6969 {
6970 	size_t avail_len;
6971 	uint32_t field_size;
6972 	uint64_t tmp_val;
6973 	uint8_t *cur_ptr;
6974 	int retval;
6975 	int vcr_len, as_len;
6976 
6977 	retval = 0;
6978 	tmp_val = 0;
6979 
6980 	field_size = scsi_2btoul(hdr->length);
6981 	avail_len = valid_len - sizeof(*hdr);
6982 	if (field_size > avail_len) {
6983 		if (error_str != NULL) {
6984 			snprintf(error_str, error_str_len, "Available "
6985 				 "length of attribute ID 0x%.4x %zu < field "
6986 				 "length %u", scsi_2btoul(hdr->id), avail_len,
6987 				 field_size);
6988 		}
6989 		retval = 1;
6990 		goto bailout;
6991 	} else if (field_size == 0) {
6992 		/*
6993 		 * It isn't clear from the spec whether a field length of
6994 		 * 0 is invalid here.  It probably is, but be lenient here
6995 		 * to avoid inconveniencing the user.
6996 		 */
6997 		goto bailout;
6998 	}
6999 	cur_ptr = hdr->attribute;
7000 	vcr_len = *cur_ptr;
7001 	cur_ptr++;
7002 
7003 	sbuf_printf(sb, "\n\tVolume Change Reference Value:");
7004 
7005 	switch (vcr_len) {
7006 	case 0:
7007 		if (error_str != NULL) {
7008 			snprintf(error_str, error_str_len, "Volume Change "
7009 				 "Reference value has length of 0");
7010 		}
7011 		retval = 1;
7012 		goto bailout;
7013 		break; /*NOTREACHED*/
7014 	case 1:
7015 		tmp_val = *cur_ptr;
7016 		break;
7017 	case 2:
7018 		tmp_val = scsi_2btoul(cur_ptr);
7019 		break;
7020 	case 3:
7021 		tmp_val = scsi_3btoul(cur_ptr);
7022 		break;
7023 	case 4:
7024 		tmp_val = scsi_4btoul(cur_ptr);
7025 		break;
7026 	case 8:
7027 		tmp_val = scsi_8btou64(cur_ptr);
7028 		break;
7029 	default:
7030 		sbuf_printf(sb, "\n");
7031 		sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
7032 		break;
7033 	}
7034 	if (vcr_len <= 8)
7035 		sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
7036 
7037 	cur_ptr += vcr_len;
7038 	tmp_val = scsi_8btou64(cur_ptr);
7039 	sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
7040 
7041 	cur_ptr += sizeof(tmp_val);
7042 	tmp_val = scsi_8btou64(cur_ptr);
7043 	sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
7044 		    (uintmax_t)tmp_val);
7045 
7046 	/*
7047 	 * Figure out how long the Application Client Specific Information
7048 	 * is and produce a hexdump.
7049 	 */
7050 	cur_ptr += sizeof(tmp_val);
7051 	as_len = scsi_2btoul(cur_ptr);
7052 	cur_ptr += sizeof(uint16_t);
7053 	sbuf_printf(sb, "\tApplication Client Specific Information: ");
7054 	if (((as_len == SCSI_LTFS_VER0_LEN)
7055 	  || (as_len == SCSI_LTFS_VER1_LEN))
7056 	 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
7057 		sbuf_printf(sb, "LTFS\n");
7058 		cur_ptr += SCSI_LTFS_STR_LEN + 1;
7059 		if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
7060 			cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
7061 		sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
7062 		cur_ptr += SCSI_LTFS_UUID_LEN + 1;
7063 		/* XXX KDM check the length */
7064 		sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
7065 	} else {
7066 		sbuf_printf(sb, "Unknown\n");
7067 		sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
7068 	}
7069 
7070 bailout:
7071 	return (retval);
7072 }
7073 
7074 int
7075 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7076 			 uint32_t valid_len, uint32_t flags,
7077 			 uint32_t output_flags, char *error_str,
7078 			 int error_str_len)
7079 {
7080 	size_t avail_len;
7081 	uint32_t field_size;
7082 	struct scsi_attrib_vendser *vendser;
7083 	cam_strvis_flags strvis_flags;
7084 	int retval = 0;
7085 
7086 	field_size = scsi_2btoul(hdr->length);
7087 	avail_len = valid_len - sizeof(*hdr);
7088 	if (field_size > avail_len) {
7089 		if (error_str != NULL) {
7090 			snprintf(error_str, error_str_len, "Available "
7091 				 "length of attribute ID 0x%.4x %zu < field "
7092 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7093 				 field_size);
7094 		}
7095 		retval = 1;
7096 		goto bailout;
7097 	} else if (field_size == 0) {
7098 		/*
7099 		 * A field size of 0 doesn't make sense here.  The device
7100 		 * can at least give you the vendor ID, even if it can't
7101 		 * give you the serial number.
7102 		 */
7103 		if (error_str != NULL) {
7104 			snprintf(error_str, error_str_len, "The length of "
7105 				 "attribute ID 0x%.4x is 0",
7106 				 scsi_2btoul(hdr->id));
7107 		}
7108 		retval = 1;
7109 		goto bailout;
7110 	}
7111 	vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7112 
7113 	switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7114 	case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7115 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7116 		break;
7117 	case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7118 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7119 		break;
7120 	case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7121 	default:
7122 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7123 		break;
7124 	}
7125 	cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7126 	    strvis_flags);
7127 	sbuf_putc(sb, ' ');
7128 	cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7129 	    strvis_flags);
7130 bailout:
7131 	return (retval);
7132 }
7133 
7134 int
7135 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7136 			 uint32_t valid_len, uint32_t flags,
7137 			 uint32_t output_flags, char *error_str,
7138 			 int error_str_len)
7139 {
7140 	uint32_t field_size;
7141 	ssize_t avail_len;
7142 	uint32_t print_len;
7143 	uint8_t *num_ptr;
7144 	int retval = 0;
7145 
7146 	field_size = scsi_2btoul(hdr->length);
7147 	avail_len = valid_len - sizeof(*hdr);
7148 	print_len = MIN(avail_len, field_size);
7149 	num_ptr = hdr->attribute;
7150 
7151 	if (print_len > 0) {
7152 		sbuf_printf(sb, "\n");
7153 		sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7154 	}
7155 
7156 	return (retval);
7157 }
7158 
7159 int
7160 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7161 		     uint32_t valid_len, uint32_t flags,
7162 		     uint32_t output_flags, char *error_str,
7163 		     int error_str_len)
7164 {
7165 	uint64_t print_number;
7166 	size_t avail_len;
7167 	uint32_t number_size;
7168 	int retval = 0;
7169 
7170 	number_size = scsi_2btoul(hdr->length);
7171 
7172 	avail_len = valid_len - sizeof(*hdr);
7173 	if (avail_len < number_size) {
7174 		if (error_str != NULL) {
7175 			snprintf(error_str, error_str_len, "Available "
7176 				 "length of attribute ID 0x%.4x %zu < field "
7177 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7178 				 number_size);
7179 		}
7180 		retval = 1;
7181 		goto bailout;
7182 	}
7183 
7184 	switch (number_size) {
7185 	case 0:
7186 		/*
7187 		 * We don't treat this as an error, since there may be
7188 		 * scenarios where a device reports a field but then gives
7189 		 * a length of 0.  See the note in scsi_attrib_ascii_sbuf().
7190 		 */
7191 		goto bailout;
7192 		break; /*NOTREACHED*/
7193 	case 1:
7194 		print_number = hdr->attribute[0];
7195 		break;
7196 	case 2:
7197 		print_number = scsi_2btoul(hdr->attribute);
7198 		break;
7199 	case 3:
7200 		print_number = scsi_3btoul(hdr->attribute);
7201 		break;
7202 	case 4:
7203 		print_number = scsi_4btoul(hdr->attribute);
7204 		break;
7205 	case 8:
7206 		print_number = scsi_8btou64(hdr->attribute);
7207 		break;
7208 	default:
7209 		/*
7210 		 * If we wind up here, the number is too big to print
7211 		 * normally, so just do a hexdump.
7212 		 */
7213 		retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7214 						  flags, output_flags,
7215 						  error_str, error_str_len);
7216 		goto bailout;
7217 		break;
7218 	}
7219 
7220 	if (flags & SCSI_ATTR_FLAG_FP) {
7221 #ifndef _KERNEL
7222 		long double num_float;
7223 
7224 		num_float = (long double)print_number;
7225 
7226 		if (flags & SCSI_ATTR_FLAG_DIV_10)
7227 			num_float /= 10;
7228 
7229 		sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7230 			    1 : 0, num_float);
7231 #else /* _KERNEL */
7232 		sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7233 			    (print_number / 10) : print_number);
7234 #endif /* _KERNEL */
7235 	} else if (flags & SCSI_ATTR_FLAG_HEX) {
7236 		sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7237 	} else
7238 		sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7239 
7240 bailout:
7241 	return (retval);
7242 }
7243 
7244 int
7245 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7246 		       uint32_t valid_len, uint32_t flags,
7247 		       uint32_t output_flags, char *error_str,
7248 		       int error_str_len)
7249 {
7250 	size_t avail_len;
7251 	uint32_t field_size, print_size;
7252 	int retval = 0;
7253 
7254 	avail_len = valid_len - sizeof(*hdr);
7255 	field_size = scsi_2btoul(hdr->length);
7256 	print_size = MIN(avail_len, field_size);
7257 
7258 	if (print_size > 0) {
7259 		cam_strvis_flags strvis_flags;
7260 
7261 		switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7262 		case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7263 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7264 			break;
7265 		case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7266 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7267 			break;
7268 		case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7269 		default:
7270 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7271 			break;
7272 		}
7273 		cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7274 	} else if (avail_len < field_size) {
7275 		/*
7276 		 * We only report an error if the user didn't allocate
7277 		 * enough space to hold the full value of this field.  If
7278 		 * the field length is 0, that is allowed by the spec.
7279 		 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7280 		 * "This attribute indicates the current volume identifier
7281 		 * (see SMC-3) of the medium. If the device server supports
7282 		 * this attribute but does not have access to the volume
7283 		 * identifier, the device server shall report this attribute
7284 		 * with an attribute length value of zero."
7285 		 */
7286 		if (error_str != NULL) {
7287 			snprintf(error_str, error_str_len, "Available "
7288 				 "length of attribute ID 0x%.4x %zu < field "
7289 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7290 				 field_size);
7291 		}
7292 		retval = 1;
7293 	}
7294 
7295 	return (retval);
7296 }
7297 
7298 int
7299 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7300 		      uint32_t valid_len, uint32_t flags,
7301 		      uint32_t output_flags, char *error_str,
7302 		      int error_str_len)
7303 {
7304 	size_t avail_len;
7305 	uint32_t field_size, print_size;
7306 	int retval = 0;
7307 	int esc_text = 1;
7308 
7309 	avail_len = valid_len - sizeof(*hdr);
7310 	field_size = scsi_2btoul(hdr->length);
7311 	print_size = MIN(avail_len, field_size);
7312 
7313 	if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7314 	     SCSI_ATTR_OUTPUT_TEXT_RAW)
7315 		esc_text = 0;
7316 
7317 	if (print_size > 0) {
7318 		uint32_t i;
7319 
7320 		for (i = 0; i < print_size; i++) {
7321 			if (hdr->attribute[i] == '\0')
7322 				continue;
7323 			else if (((unsigned char)hdr->attribute[i] < 0x80)
7324 			      || (esc_text == 0))
7325 				sbuf_putc(sb, hdr->attribute[i]);
7326 			else
7327 				sbuf_printf(sb, "%%%02x",
7328 				    (unsigned char)hdr->attribute[i]);
7329 		}
7330 	} else if (avail_len < field_size) {
7331 		/*
7332 		 * We only report an error if the user didn't allocate
7333 		 * enough space to hold the full value of this field.
7334 		 */
7335 		if (error_str != NULL) {
7336 			snprintf(error_str, error_str_len, "Available "
7337 				 "length of attribute ID 0x%.4x %zu < field "
7338 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7339 				 field_size);
7340 		}
7341 		retval = 1;
7342 	}
7343 
7344 	return (retval);
7345 }
7346 
7347 struct scsi_attrib_table_entry *
7348 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7349 		       size_t num_table_entries, uint32_t id)
7350 {
7351 	uint32_t i;
7352 
7353 	for (i = 0; i < num_table_entries; i++) {
7354 		if (table[i].id == id)
7355 			return (&table[i]);
7356 	}
7357 
7358 	return (NULL);
7359 }
7360 
7361 struct scsi_attrib_table_entry *
7362 scsi_get_attrib_entry(uint32_t id)
7363 {
7364 	return (scsi_find_attrib_entry(scsi_mam_attr_table,
7365 	    nitems(scsi_mam_attr_table), id));
7366 }
7367 
7368 int
7369 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7370    struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7371    char *error_str, size_t error_str_len)
7372 {
7373 	int retval;
7374 
7375 	switch (hdr->byte2 & SMA_FORMAT_MASK) {
7376 	case SMA_FORMAT_ASCII:
7377 		retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7378 		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7379 		break;
7380 	case SMA_FORMAT_BINARY:
7381 		if (scsi_2btoul(hdr->length) <= 8)
7382 			retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7383 			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7384 			    error_str_len);
7385 		else
7386 			retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7387 			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7388 			    error_str_len);
7389 		break;
7390 	case SMA_FORMAT_TEXT:
7391 		retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7392 		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7393 		    error_str_len);
7394 		break;
7395 	default:
7396 		if (error_str != NULL) {
7397 			snprintf(error_str, error_str_len, "Unknown attribute "
7398 			    "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7399 		}
7400 		retval = 1;
7401 		goto bailout;
7402 		break; /*NOTREACHED*/
7403 	}
7404 
7405 	sbuf_trim(sb);
7406 
7407 bailout:
7408 
7409 	return (retval);
7410 }
7411 
7412 void
7413 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7414 			struct scsi_mam_attribute_header *hdr,
7415 			uint32_t valid_len, const char *desc)
7416 {
7417 	int need_space = 0;
7418 	uint32_t len;
7419 	uint32_t id;
7420 
7421 	/*
7422 	 * We can't do anything if we don't have enough valid data for the
7423 	 * header.
7424 	 */
7425 	if (valid_len < sizeof(*hdr))
7426 		return;
7427 
7428 	id = scsi_2btoul(hdr->id);
7429 	/*
7430 	 * Note that we print out the value of the attribute listed in the
7431 	 * header, regardless of whether we actually got that many bytes
7432 	 * back from the device through the controller.  A truncated result
7433 	 * could be the result of a failure to ask for enough data; the
7434 	 * header indicates how many bytes are allocated for this attribute
7435 	 * in the MAM.
7436 	 */
7437 	len = scsi_2btoul(hdr->length);
7438 
7439 	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7440 	    SCSI_ATTR_OUTPUT_FIELD_NONE)
7441 		return;
7442 
7443 	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7444 	 && (desc != NULL)) {
7445 		sbuf_printf(sb, "%s", desc);
7446 		need_space = 1;
7447 	}
7448 
7449 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7450 		sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7451 		need_space = 0;
7452 	}
7453 
7454 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7455 		sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7456 		need_space = 0;
7457 	}
7458 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7459 		sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7460 			    (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7461 	}
7462 	sbuf_printf(sb, ": ");
7463 }
7464 
7465 int
7466 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7467 		 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7468 		 size_t num_user_entries, int prefer_user_table,
7469 		 uint32_t output_flags, char *error_str, int error_str_len)
7470 {
7471 	int retval;
7472 	struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7473 	struct scsi_attrib_table_entry *entry = NULL;
7474 	size_t table1_size = 0, table2_size = 0;
7475 	uint32_t id;
7476 
7477 	retval = 0;
7478 
7479 	if (valid_len < sizeof(*hdr)) {
7480 		retval = 1;
7481 		goto bailout;
7482 	}
7483 
7484 	id = scsi_2btoul(hdr->id);
7485 
7486 	if (user_table != NULL) {
7487 		if (prefer_user_table != 0) {
7488 			table1 = user_table;
7489 			table1_size = num_user_entries;
7490 			table2 = scsi_mam_attr_table;
7491 			table2_size = nitems(scsi_mam_attr_table);
7492 		} else {
7493 			table1 = scsi_mam_attr_table;
7494 			table1_size = nitems(scsi_mam_attr_table);
7495 			table2 = user_table;
7496 			table2_size = num_user_entries;
7497 		}
7498 	} else {
7499 		table1 = scsi_mam_attr_table;
7500 		table1_size = nitems(scsi_mam_attr_table);
7501 	}
7502 
7503 	entry = scsi_find_attrib_entry(table1, table1_size, id);
7504 	if (entry != NULL) {
7505 		scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7506 					entry->desc);
7507 		if (entry->to_str == NULL)
7508 			goto print_default;
7509 		retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7510 				       output_flags, error_str, error_str_len);
7511 		goto bailout;
7512 	}
7513 	if (table2 != NULL) {
7514 		entry = scsi_find_attrib_entry(table2, table2_size, id);
7515 		if (entry != NULL) {
7516 			if (entry->to_str == NULL)
7517 				goto print_default;
7518 
7519 			scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7520 						valid_len, entry->desc);
7521 			retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7522 					       output_flags, error_str,
7523 					       error_str_len);
7524 			goto bailout;
7525 		}
7526 	}
7527 
7528 	scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7529 
7530 print_default:
7531 	retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7532 	    error_str, error_str_len);
7533 bailout:
7534 	if (retval == 0) {
7535 	 	if ((entry != NULL)
7536 		 && (entry->suffix != NULL))
7537 			sbuf_printf(sb, " %s", entry->suffix);
7538 
7539 		sbuf_trim(sb);
7540 		sbuf_printf(sb, "\n");
7541 	}
7542 
7543 	return (retval);
7544 }
7545 
7546 void
7547 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries,
7548 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7549 		     u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout)
7550 {
7551 	struct scsi_test_unit_ready *scsi_cmd;
7552 
7553 	cam_fill_csio(csio,
7554 		      retries,
7555 		      cbfcnp,
7556 		      CAM_DIR_NONE,
7557 		      tag_action,
7558 		      /*data_ptr*/NULL,
7559 		      /*dxfer_len*/0,
7560 		      sense_len,
7561 		      sizeof(*scsi_cmd),
7562 		      timeout);
7563 
7564 	scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7565 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7566 	scsi_cmd->opcode = TEST_UNIT_READY;
7567 }
7568 
7569 void
7570 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries,
7571 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7572 		   void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action,
7573 		   u_int8_t sense_len, u_int32_t timeout)
7574 {
7575 	struct scsi_request_sense *scsi_cmd;
7576 
7577 	cam_fill_csio(csio,
7578 		      retries,
7579 		      cbfcnp,
7580 		      CAM_DIR_IN,
7581 		      tag_action,
7582 		      data_ptr,
7583 		      dxfer_len,
7584 		      sense_len,
7585 		      sizeof(*scsi_cmd),
7586 		      timeout);
7587 
7588 	scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7589 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7590 	scsi_cmd->opcode = REQUEST_SENSE;
7591 	scsi_cmd->length = dxfer_len;
7592 }
7593 
7594 void
7595 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries,
7596 	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7597 	     u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len,
7598 	     int evpd, u_int8_t page_code, u_int8_t sense_len,
7599 	     u_int32_t timeout)
7600 {
7601 	struct scsi_inquiry *scsi_cmd;
7602 
7603 	cam_fill_csio(csio,
7604 		      retries,
7605 		      cbfcnp,
7606 		      /*flags*/CAM_DIR_IN,
7607 		      tag_action,
7608 		      /*data_ptr*/inq_buf,
7609 		      /*dxfer_len*/inq_len,
7610 		      sense_len,
7611 		      sizeof(*scsi_cmd),
7612 		      timeout);
7613 
7614 	scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7615 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7616 	scsi_cmd->opcode = INQUIRY;
7617 	if (evpd) {
7618 		scsi_cmd->byte2 |= SI_EVPD;
7619 		scsi_cmd->page_code = page_code;
7620 	}
7621 	scsi_ulto2b(inq_len, scsi_cmd->length);
7622 }
7623 
7624 void
7625 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries,
7626     void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7627     int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7628     uint8_t sense_len, uint32_t timeout)
7629 {
7630 
7631 	scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7632 	    pc, page, 0, param_buf, param_len, 0, sense_len, timeout);
7633 }
7634 
7635 void
7636 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries,
7637     void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7638     int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7639     int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
7640 {
7641 
7642 	scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7643 	    pc, page, 0, param_buf, param_len, minimum_cmd_size,
7644 	    sense_len, timeout);
7645 }
7646 
7647 void
7648 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries,
7649     void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7650     int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf,
7651     uint32_t param_len, int minimum_cmd_size, uint8_t sense_len,
7652     uint32_t timeout)
7653 {
7654 	u_int8_t cdb_len;
7655 
7656 	/*
7657 	 * Use the smallest possible command to perform the operation.
7658 	 */
7659 	if ((param_len < 256)
7660 	 && (minimum_cmd_size < 10)) {
7661 		/*
7662 		 * We can fit in a 6 byte cdb.
7663 		 */
7664 		struct scsi_mode_sense_6 *scsi_cmd;
7665 
7666 		scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7667 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7668 		scsi_cmd->opcode = MODE_SENSE_6;
7669 		if (dbd != 0)
7670 			scsi_cmd->byte2 |= SMS_DBD;
7671 		scsi_cmd->page = pc | page;
7672 		scsi_cmd->subpage = subpage;
7673 		scsi_cmd->length = param_len;
7674 		cdb_len = sizeof(*scsi_cmd);
7675 	} else {
7676 		/*
7677 		 * Need a 10 byte cdb.
7678 		 */
7679 		struct scsi_mode_sense_10 *scsi_cmd;
7680 
7681 		scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7682 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7683 		scsi_cmd->opcode = MODE_SENSE_10;
7684 		if (dbd != 0)
7685 			scsi_cmd->byte2 |= SMS_DBD;
7686 		scsi_cmd->page = pc | page;
7687 		scsi_cmd->subpage = subpage;
7688 		scsi_ulto2b(param_len, scsi_cmd->length);
7689 		cdb_len = sizeof(*scsi_cmd);
7690 	}
7691 	cam_fill_csio(csio,
7692 		      retries,
7693 		      cbfcnp,
7694 		      CAM_DIR_IN,
7695 		      tag_action,
7696 		      param_buf,
7697 		      param_len,
7698 		      sense_len,
7699 		      cdb_len,
7700 		      timeout);
7701 }
7702 
7703 void
7704 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries,
7705 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7706 		 u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7707 		 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7708 		 u_int32_t timeout)
7709 {
7710 	scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7711 			     scsi_page_fmt, save_pages, param_buf,
7712 			     param_len, 0, sense_len, timeout);
7713 }
7714 
7715 void
7716 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries,
7717 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7718 		     u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7719 		     u_int8_t *param_buf, u_int32_t param_len,
7720 		     int minimum_cmd_size, u_int8_t sense_len,
7721 		     u_int32_t timeout)
7722 {
7723 	u_int8_t cdb_len;
7724 
7725 	/*
7726 	 * Use the smallest possible command to perform the operation.
7727 	 */
7728 	if ((param_len < 256)
7729 	 && (minimum_cmd_size < 10)) {
7730 		/*
7731 		 * We can fit in a 6 byte cdb.
7732 		 */
7733 		struct scsi_mode_select_6 *scsi_cmd;
7734 
7735 		scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7736 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7737 		scsi_cmd->opcode = MODE_SELECT_6;
7738 		if (scsi_page_fmt != 0)
7739 			scsi_cmd->byte2 |= SMS_PF;
7740 		if (save_pages != 0)
7741 			scsi_cmd->byte2 |= SMS_SP;
7742 		scsi_cmd->length = param_len;
7743 		cdb_len = sizeof(*scsi_cmd);
7744 	} else {
7745 		/*
7746 		 * Need a 10 byte cdb.
7747 		 */
7748 		struct scsi_mode_select_10 *scsi_cmd;
7749 
7750 		scsi_cmd =
7751 		    (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7752 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7753 		scsi_cmd->opcode = MODE_SELECT_10;
7754 		if (scsi_page_fmt != 0)
7755 			scsi_cmd->byte2 |= SMS_PF;
7756 		if (save_pages != 0)
7757 			scsi_cmd->byte2 |= SMS_SP;
7758 		scsi_ulto2b(param_len, scsi_cmd->length);
7759 		cdb_len = sizeof(*scsi_cmd);
7760 	}
7761 	cam_fill_csio(csio,
7762 		      retries,
7763 		      cbfcnp,
7764 		      CAM_DIR_OUT,
7765 		      tag_action,
7766 		      param_buf,
7767 		      param_len,
7768 		      sense_len,
7769 		      cdb_len,
7770 		      timeout);
7771 }
7772 
7773 void
7774 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries,
7775 	       void (*cbfcnp)(struct cam_periph *, union ccb *),
7776 	       u_int8_t tag_action, u_int8_t page_code, u_int8_t page,
7777 	       int save_pages, int ppc, u_int32_t paramptr,
7778 	       u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7779 	       u_int32_t timeout)
7780 {
7781 	struct scsi_log_sense *scsi_cmd;
7782 	u_int8_t cdb_len;
7783 
7784 	scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7785 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7786 	scsi_cmd->opcode = LOG_SENSE;
7787 	scsi_cmd->page = page_code | page;
7788 	if (save_pages != 0)
7789 		scsi_cmd->byte2 |= SLS_SP;
7790 	if (ppc != 0)
7791 		scsi_cmd->byte2 |= SLS_PPC;
7792 	scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7793 	scsi_ulto2b(param_len, scsi_cmd->length);
7794 	cdb_len = sizeof(*scsi_cmd);
7795 
7796 	cam_fill_csio(csio,
7797 		      retries,
7798 		      cbfcnp,
7799 		      /*flags*/CAM_DIR_IN,
7800 		      tag_action,
7801 		      /*data_ptr*/param_buf,
7802 		      /*dxfer_len*/param_len,
7803 		      sense_len,
7804 		      cdb_len,
7805 		      timeout);
7806 }
7807 
7808 void
7809 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries,
7810 		void (*cbfcnp)(struct cam_periph *, union ccb *),
7811 		u_int8_t tag_action, u_int8_t page_code, int save_pages,
7812 		int pc_reset, u_int8_t *param_buf, u_int32_t param_len,
7813 		u_int8_t sense_len, u_int32_t timeout)
7814 {
7815 	struct scsi_log_select *scsi_cmd;
7816 	u_int8_t cdb_len;
7817 
7818 	scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7819 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7820 	scsi_cmd->opcode = LOG_SELECT;
7821 	scsi_cmd->page = page_code & SLS_PAGE_CODE;
7822 	if (save_pages != 0)
7823 		scsi_cmd->byte2 |= SLS_SP;
7824 	if (pc_reset != 0)
7825 		scsi_cmd->byte2 |= SLS_PCR;
7826 	scsi_ulto2b(param_len, scsi_cmd->length);
7827 	cdb_len = sizeof(*scsi_cmd);
7828 
7829 	cam_fill_csio(csio,
7830 		      retries,
7831 		      cbfcnp,
7832 		      /*flags*/CAM_DIR_OUT,
7833 		      tag_action,
7834 		      /*data_ptr*/param_buf,
7835 		      /*dxfer_len*/param_len,
7836 		      sense_len,
7837 		      cdb_len,
7838 		      timeout);
7839 }
7840 
7841 /*
7842  * Prevent or allow the user to remove the media
7843  */
7844 void
7845 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries,
7846 	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7847 	     u_int8_t tag_action, u_int8_t action,
7848 	     u_int8_t sense_len, u_int32_t timeout)
7849 {
7850 	struct scsi_prevent *scsi_cmd;
7851 
7852 	cam_fill_csio(csio,
7853 		      retries,
7854 		      cbfcnp,
7855 		      /*flags*/CAM_DIR_NONE,
7856 		      tag_action,
7857 		      /*data_ptr*/NULL,
7858 		      /*dxfer_len*/0,
7859 		      sense_len,
7860 		      sizeof(*scsi_cmd),
7861 		      timeout);
7862 
7863 	scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7864 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7865 	scsi_cmd->opcode = PREVENT_ALLOW;
7866 	scsi_cmd->how = action;
7867 }
7868 
7869 /* XXX allow specification of address and PMI bit and LBA */
7870 void
7871 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries,
7872 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7873 		   u_int8_t tag_action,
7874 		   struct scsi_read_capacity_data *rcap_buf,
7875 		   u_int8_t sense_len, u_int32_t timeout)
7876 {
7877 	struct scsi_read_capacity *scsi_cmd;
7878 
7879 	cam_fill_csio(csio,
7880 		      retries,
7881 		      cbfcnp,
7882 		      /*flags*/CAM_DIR_IN,
7883 		      tag_action,
7884 		      /*data_ptr*/(u_int8_t *)rcap_buf,
7885 		      /*dxfer_len*/sizeof(*rcap_buf),
7886 		      sense_len,
7887 		      sizeof(*scsi_cmd),
7888 		      timeout);
7889 
7890 	scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7891 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7892 	scsi_cmd->opcode = READ_CAPACITY;
7893 }
7894 
7895 void
7896 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
7897 		      void (*cbfcnp)(struct cam_periph *, union ccb *),
7898 		      uint8_t tag_action, uint64_t lba, int reladr, int pmi,
7899 		      uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
7900 		      uint32_t timeout)
7901 {
7902 	struct scsi_read_capacity_16 *scsi_cmd;
7903 
7904 	cam_fill_csio(csio,
7905 		      retries,
7906 		      cbfcnp,
7907 		      /*flags*/CAM_DIR_IN,
7908 		      tag_action,
7909 		      /*data_ptr*/(u_int8_t *)rcap_buf,
7910 		      /*dxfer_len*/rcap_buf_len,
7911 		      sense_len,
7912 		      sizeof(*scsi_cmd),
7913 		      timeout);
7914 	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
7915 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7916 	scsi_cmd->opcode = SERVICE_ACTION_IN;
7917 	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
7918 	scsi_u64to8b(lba, scsi_cmd->addr);
7919 	scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
7920 	if (pmi)
7921 		reladr |= SRC16_PMI;
7922 	if (reladr)
7923 		reladr |= SRC16_RELADR;
7924 }
7925 
7926 void
7927 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries,
7928 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7929 		 u_int8_t tag_action, u_int8_t select_report,
7930 		 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len,
7931 		 u_int8_t sense_len, u_int32_t timeout)
7932 {
7933 	struct scsi_report_luns *scsi_cmd;
7934 
7935 	cam_fill_csio(csio,
7936 		      retries,
7937 		      cbfcnp,
7938 		      /*flags*/CAM_DIR_IN,
7939 		      tag_action,
7940 		      /*data_ptr*/(u_int8_t *)rpl_buf,
7941 		      /*dxfer_len*/alloc_len,
7942 		      sense_len,
7943 		      sizeof(*scsi_cmd),
7944 		      timeout);
7945 	scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
7946 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7947 	scsi_cmd->opcode = REPORT_LUNS;
7948 	scsi_cmd->select_report = select_report;
7949 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7950 }
7951 
7952 void
7953 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7954 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7955 		 u_int8_t tag_action, u_int8_t pdf,
7956 		 void *buf, u_int32_t alloc_len,
7957 		 u_int8_t sense_len, u_int32_t timeout)
7958 {
7959 	struct scsi_target_group *scsi_cmd;
7960 
7961 	cam_fill_csio(csio,
7962 		      retries,
7963 		      cbfcnp,
7964 		      /*flags*/CAM_DIR_IN,
7965 		      tag_action,
7966 		      /*data_ptr*/(u_int8_t *)buf,
7967 		      /*dxfer_len*/alloc_len,
7968 		      sense_len,
7969 		      sizeof(*scsi_cmd),
7970 		      timeout);
7971 	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7972 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7973 	scsi_cmd->opcode = MAINTENANCE_IN;
7974 	scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
7975 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7976 }
7977 
7978 void
7979 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries,
7980 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7981 		 u_int8_t tag_action, u_int8_t pdf,
7982 		 void *buf, u_int32_t alloc_len,
7983 		 u_int8_t sense_len, u_int32_t timeout)
7984 {
7985 	struct scsi_timestamp *scsi_cmd;
7986 
7987 	cam_fill_csio(csio,
7988 		      retries,
7989 		      cbfcnp,
7990 		      /*flags*/CAM_DIR_IN,
7991 		      tag_action,
7992 		      /*data_ptr*/(u_int8_t *)buf,
7993 		      /*dxfer_len*/alloc_len,
7994 		      sense_len,
7995 		      sizeof(*scsi_cmd),
7996 		      timeout);
7997 	scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
7998 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7999 	scsi_cmd->opcode = MAINTENANCE_IN;
8000 	scsi_cmd->service_action = REPORT_TIMESTAMP | pdf;
8001 	scsi_ulto4b(alloc_len, scsi_cmd->length);
8002 }
8003 
8004 void
8005 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries,
8006 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8007 		 u_int8_t tag_action, void *buf, u_int32_t alloc_len,
8008 		 u_int8_t sense_len, u_int32_t timeout)
8009 {
8010 	struct scsi_target_group *scsi_cmd;
8011 
8012 	cam_fill_csio(csio,
8013 		      retries,
8014 		      cbfcnp,
8015 		      /*flags*/CAM_DIR_OUT,
8016 		      tag_action,
8017 		      /*data_ptr*/(u_int8_t *)buf,
8018 		      /*dxfer_len*/alloc_len,
8019 		      sense_len,
8020 		      sizeof(*scsi_cmd),
8021 		      timeout);
8022 	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8023 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8024 	scsi_cmd->opcode = MAINTENANCE_OUT;
8025 	scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
8026 	scsi_ulto4b(alloc_len, scsi_cmd->length);
8027 }
8028 
8029 void
8030 scsi_create_timestamp(uint8_t *timestamp_6b_buf,
8031 		      uint64_t timestamp)
8032 {
8033 	uint8_t buf[8];
8034 	scsi_u64to8b(timestamp, buf);
8035 	/*
8036 	 * Using memcopy starting at buf[2] because the set timestamp parameters
8037 	 * only has six bytes for the timestamp to fit into, and we don't have a
8038 	 * scsi_u64to6b function.
8039 	 */
8040 	memcpy(timestamp_6b_buf, &buf[2], 6);
8041 }
8042 
8043 void
8044 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries,
8045 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
8046 		   u_int8_t tag_action, void *buf, u_int32_t alloc_len,
8047 		   u_int8_t sense_len, u_int32_t timeout)
8048 {
8049 	struct scsi_timestamp *scsi_cmd;
8050 
8051 	cam_fill_csio(csio,
8052 		      retries,
8053 		      cbfcnp,
8054 		      /*flags*/CAM_DIR_OUT,
8055 		      tag_action,
8056 		      /*data_ptr*/(u_int8_t *) buf,
8057 		      /*dxfer_len*/alloc_len,
8058 		      sense_len,
8059 		      sizeof(*scsi_cmd),
8060 		      timeout);
8061 	scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8062 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8063 	scsi_cmd->opcode = MAINTENANCE_OUT;
8064 	scsi_cmd->service_action = SET_TIMESTAMP;
8065 	scsi_ulto4b(alloc_len, scsi_cmd->length);
8066 }
8067 
8068 /*
8069  * Syncronize the media to the contents of the cache for
8070  * the given lba/count pair.  Specifying 0/0 means sync
8071  * the whole cache.
8072  */
8073 void
8074 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries,
8075 		       void (*cbfcnp)(struct cam_periph *, union ccb *),
8076 		       u_int8_t tag_action, u_int32_t begin_lba,
8077 		       u_int16_t lb_count, u_int8_t sense_len,
8078 		       u_int32_t timeout)
8079 {
8080 	struct scsi_sync_cache *scsi_cmd;
8081 
8082 	cam_fill_csio(csio,
8083 		      retries,
8084 		      cbfcnp,
8085 		      /*flags*/CAM_DIR_NONE,
8086 		      tag_action,
8087 		      /*data_ptr*/NULL,
8088 		      /*dxfer_len*/0,
8089 		      sense_len,
8090 		      sizeof(*scsi_cmd),
8091 		      timeout);
8092 
8093 	scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
8094 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8095 	scsi_cmd->opcode = SYNCHRONIZE_CACHE;
8096 	scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
8097 	scsi_ulto2b(lb_count, scsi_cmd->lb_count);
8098 }
8099 
8100 void
8101 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries,
8102 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8103 		u_int8_t tag_action, int readop, u_int8_t byte2,
8104 		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8105 		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8106 		u_int32_t timeout)
8107 {
8108 	int read;
8109 	u_int8_t cdb_len;
8110 
8111 	read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
8112 
8113 	/*
8114 	 * Use the smallest possible command to perform the operation
8115 	 * as some legacy hardware does not support the 10 byte commands.
8116 	 * If any of the bits in byte2 is set, we have to go with a larger
8117 	 * command.
8118 	 */
8119 	if ((minimum_cmd_size < 10)
8120 	 && ((lba & 0x1fffff) == lba)
8121 	 && ((block_count & 0xff) == block_count)
8122 	 && (byte2 == 0)) {
8123 		/*
8124 		 * We can fit in a 6 byte cdb.
8125 		 */
8126 		struct scsi_rw_6 *scsi_cmd;
8127 
8128 		scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
8129 		scsi_cmd->opcode = read ? READ_6 : WRITE_6;
8130 		scsi_ulto3b(lba, scsi_cmd->addr);
8131 		scsi_cmd->length = block_count & 0xff;
8132 		scsi_cmd->control = 0;
8133 		cdb_len = sizeof(*scsi_cmd);
8134 
8135 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8136 			  ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
8137 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8138 			   scsi_cmd->length, dxfer_len));
8139 	} else if ((minimum_cmd_size < 12)
8140 		&& ((block_count & 0xffff) == block_count)
8141 		&& ((lba & 0xffffffff) == lba)) {
8142 		/*
8143 		 * Need a 10 byte cdb.
8144 		 */
8145 		struct scsi_rw_10 *scsi_cmd;
8146 
8147 		scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
8148 		scsi_cmd->opcode = read ? READ_10 : WRITE_10;
8149 		scsi_cmd->byte2 = byte2;
8150 		scsi_ulto4b(lba, scsi_cmd->addr);
8151 		scsi_cmd->reserved = 0;
8152 		scsi_ulto2b(block_count, scsi_cmd->length);
8153 		scsi_cmd->control = 0;
8154 		cdb_len = sizeof(*scsi_cmd);
8155 
8156 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8157 			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8158 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8159 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8160 			   scsi_cmd->length[1], dxfer_len));
8161 	} else if ((minimum_cmd_size < 16)
8162 		&& ((block_count & 0xffffffff) == block_count)
8163 		&& ((lba & 0xffffffff) == lba)) {
8164 		/*
8165 		 * The block count is too big for a 10 byte CDB, use a 12
8166 		 * byte CDB.
8167 		 */
8168 		struct scsi_rw_12 *scsi_cmd;
8169 
8170 		scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8171 		scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8172 		scsi_cmd->byte2 = byte2;
8173 		scsi_ulto4b(lba, scsi_cmd->addr);
8174 		scsi_cmd->reserved = 0;
8175 		scsi_ulto4b(block_count, scsi_cmd->length);
8176 		scsi_cmd->control = 0;
8177 		cdb_len = sizeof(*scsi_cmd);
8178 
8179 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8180 			  ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8181 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8182 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8183 			   scsi_cmd->length[1], scsi_cmd->length[2],
8184 			   scsi_cmd->length[3], dxfer_len));
8185 	} else {
8186 		/*
8187 		 * 16 byte CDB.  We'll only get here if the LBA is larger
8188 		 * than 2^32, or if the user asks for a 16 byte command.
8189 		 */
8190 		struct scsi_rw_16 *scsi_cmd;
8191 
8192 		scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8193 		scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8194 		scsi_cmd->byte2 = byte2;
8195 		scsi_u64to8b(lba, scsi_cmd->addr);
8196 		scsi_cmd->reserved = 0;
8197 		scsi_ulto4b(block_count, scsi_cmd->length);
8198 		scsi_cmd->control = 0;
8199 		cdb_len = sizeof(*scsi_cmd);
8200 	}
8201 	cam_fill_csio(csio,
8202 		      retries,
8203 		      cbfcnp,
8204 		      (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8205 		      ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8206 		      tag_action,
8207 		      data_ptr,
8208 		      dxfer_len,
8209 		      sense_len,
8210 		      cdb_len,
8211 		      timeout);
8212 }
8213 
8214 void
8215 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries,
8216 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8217 		u_int8_t tag_action, u_int8_t byte2,
8218 		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8219 		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8220 		u_int32_t timeout)
8221 {
8222 	u_int8_t cdb_len;
8223 	if ((minimum_cmd_size < 16) &&
8224 	    ((block_count & 0xffff) == block_count) &&
8225 	    ((lba & 0xffffffff) == lba)) {
8226 		/*
8227 		 * Need a 10 byte cdb.
8228 		 */
8229 		struct scsi_write_same_10 *scsi_cmd;
8230 
8231 		scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8232 		scsi_cmd->opcode = WRITE_SAME_10;
8233 		scsi_cmd->byte2 = byte2;
8234 		scsi_ulto4b(lba, scsi_cmd->addr);
8235 		scsi_cmd->group = 0;
8236 		scsi_ulto2b(block_count, scsi_cmd->length);
8237 		scsi_cmd->control = 0;
8238 		cdb_len = sizeof(*scsi_cmd);
8239 
8240 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8241 			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8242 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8243 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8244 			   scsi_cmd->length[1], dxfer_len));
8245 	} else {
8246 		/*
8247 		 * 16 byte CDB.  We'll only get here if the LBA is larger
8248 		 * than 2^32, or if the user asks for a 16 byte command.
8249 		 */
8250 		struct scsi_write_same_16 *scsi_cmd;
8251 
8252 		scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8253 		scsi_cmd->opcode = WRITE_SAME_16;
8254 		scsi_cmd->byte2 = byte2;
8255 		scsi_u64to8b(lba, scsi_cmd->addr);
8256 		scsi_ulto4b(block_count, scsi_cmd->length);
8257 		scsi_cmd->group = 0;
8258 		scsi_cmd->control = 0;
8259 		cdb_len = sizeof(*scsi_cmd);
8260 
8261 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8262 			  ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8263 			   scsi_cmd->addr[0], scsi_cmd->addr[1],
8264 			   scsi_cmd->addr[2], scsi_cmd->addr[3],
8265 			   scsi_cmd->addr[4], scsi_cmd->addr[5],
8266 			   scsi_cmd->addr[6], scsi_cmd->addr[7],
8267 			   scsi_cmd->length[0], scsi_cmd->length[1],
8268 			   scsi_cmd->length[2], scsi_cmd->length[3],
8269 			   dxfer_len));
8270 	}
8271 	cam_fill_csio(csio,
8272 		      retries,
8273 		      cbfcnp,
8274 		      /*flags*/CAM_DIR_OUT,
8275 		      tag_action,
8276 		      data_ptr,
8277 		      dxfer_len,
8278 		      sense_len,
8279 		      cdb_len,
8280 		      timeout);
8281 }
8282 
8283 void
8284 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries,
8285 		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8286 		  u_int8_t tag_action, u_int8_t *data_ptr,
8287 		  u_int16_t dxfer_len, u_int8_t sense_len,
8288 		  u_int32_t timeout)
8289 {
8290 	scsi_ata_pass(csio,
8291 		      retries,
8292 		      cbfcnp,
8293 		      /*flags*/CAM_DIR_IN,
8294 		      tag_action,
8295 		      /*protocol*/AP_PROTO_PIO_IN,
8296 		      /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8297 				   AP_FLAG_BYT_BLOK_BLOCKS |
8298 				   AP_FLAG_TLEN_SECT_CNT,
8299 		      /*features*/0,
8300 		      /*sector_count*/dxfer_len / 512,
8301 		      /*lba*/0,
8302 		      /*command*/ATA_ATA_IDENTIFY,
8303 		      /*device*/ 0,
8304 		      /*icc*/ 0,
8305 		      /*auxiliary*/ 0,
8306 		      /*control*/0,
8307 		      data_ptr,
8308 		      dxfer_len,
8309 		      /*cdb_storage*/ NULL,
8310 		      /*cdb_storage_len*/ 0,
8311 		      /*minimum_cmd_size*/ 0,
8312 		      sense_len,
8313 		      timeout);
8314 }
8315 
8316 void
8317 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries,
8318 	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8319 	      u_int8_t tag_action, u_int16_t block_count,
8320 	      u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8321 	      u_int32_t timeout)
8322 {
8323 	scsi_ata_pass_16(csio,
8324 			 retries,
8325 			 cbfcnp,
8326 			 /*flags*/CAM_DIR_OUT,
8327 			 tag_action,
8328 			 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8329 			 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8330 			 /*features*/ATA_DSM_TRIM,
8331 			 /*sector_count*/block_count,
8332 			 /*lba*/0,
8333 			 /*command*/ATA_DATA_SET_MANAGEMENT,
8334 			 /*control*/0,
8335 			 data_ptr,
8336 			 dxfer_len,
8337 			 sense_len,
8338 			 timeout);
8339 }
8340 
8341 int
8342 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries,
8343 		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8344 		  uint8_t tag_action, uint32_t log_address,
8345 		  uint32_t page_number, uint16_t block_count,
8346 		  uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
8347 		  uint8_t sense_len, uint32_t timeout)
8348 {
8349 	uint8_t command, protocol_out;
8350 	uint16_t count_out;
8351 	uint64_t lba;
8352 	int retval;
8353 
8354 	retval = 0;
8355 
8356 	switch (protocol) {
8357 	case AP_PROTO_DMA:
8358 		count_out = block_count;
8359 		command = ATA_READ_LOG_DMA_EXT;
8360 		protocol_out = AP_PROTO_DMA;
8361 		break;
8362 	case AP_PROTO_PIO_IN:
8363 	default:
8364 		count_out = block_count;
8365 		command = ATA_READ_LOG_EXT;
8366 		protocol_out = AP_PROTO_PIO_IN;
8367 		break;
8368 	}
8369 
8370 	lba = (((uint64_t)page_number & 0xff00) << 32) |
8371 	      ((page_number & 0x00ff) << 8) |
8372 	      (log_address & 0xff);
8373 
8374 	protocol_out |= AP_EXTEND;
8375 
8376 	retval = scsi_ata_pass(csio,
8377 			       retries,
8378 			       cbfcnp,
8379 			       /*flags*/CAM_DIR_IN,
8380 			       tag_action,
8381 			       /*protocol*/ protocol_out,
8382 			       /*ata_flags*/AP_FLAG_TLEN_SECT_CNT |
8383 					    AP_FLAG_BYT_BLOK_BLOCKS |
8384 					    AP_FLAG_TDIR_FROM_DEV,
8385 			       /*feature*/ 0,
8386 			       /*sector_count*/ count_out,
8387 			       /*lba*/ lba,
8388 			       /*command*/ command,
8389 			       /*device*/ 0,
8390 			       /*icc*/ 0,
8391 			       /*auxiliary*/ 0,
8392 			       /*control*/0,
8393 			       data_ptr,
8394 			       dxfer_len,
8395 			       /*cdb_storage*/ NULL,
8396 			       /*cdb_storage_len*/ 0,
8397 			       /*minimum_cmd_size*/ 0,
8398 			       sense_len,
8399 			       timeout);
8400 
8401 	return (retval);
8402 }
8403 
8404 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries,
8405 			 void (*cbfcnp)(struct cam_periph *, union ccb *),
8406 			 uint8_t tag_action, uint8_t feature,
8407 			 uint64_t lba, uint32_t count,
8408 			 uint8_t sense_len, uint32_t timeout)
8409 {
8410 	return (scsi_ata_pass(csio,
8411 		retries,
8412 		cbfcnp,
8413 		/*flags*/CAM_DIR_NONE,
8414 		tag_action,
8415 		/*protocol*/AP_PROTO_PIO_IN,
8416 		/*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8417 			     AP_FLAG_BYT_BLOK_BYTES |
8418 			     AP_FLAG_TLEN_SECT_CNT,
8419 		/*features*/feature,
8420 		/*sector_count*/count,
8421 		/*lba*/lba,
8422 		/*command*/ATA_SETFEATURES,
8423 		/*device*/ 0,
8424 		/*icc*/ 0,
8425 		/*auxiliary*/0,
8426 		/*control*/0,
8427 		/*data_ptr*/NULL,
8428 		/*dxfer_len*/0,
8429 		/*cdb_storage*/NULL,
8430 		/*cdb_storage_len*/0,
8431 		/*minimum_cmd_size*/0,
8432 		sense_len,
8433 		timeout));
8434 }
8435 
8436 /*
8437  * Note! This is an unusual CDB building function because it can return
8438  * an error in the event that the command in question requires a variable
8439  * length CDB, but the caller has not given storage space for one or has not
8440  * given enough storage space.  If there is enough space available in the
8441  * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage.
8442  */
8443 int
8444 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries,
8445 	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8446 	      uint32_t flags, uint8_t tag_action,
8447 	      uint8_t protocol, uint8_t ata_flags, uint16_t features,
8448 	      uint16_t sector_count, uint64_t lba, uint8_t command,
8449 	      uint8_t device, uint8_t icc, uint32_t auxiliary,
8450 	      uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len,
8451 	      uint8_t *cdb_storage, size_t cdb_storage_len,
8452 	      int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout)
8453 {
8454 	uint32_t cam_flags;
8455 	uint8_t *cdb_ptr;
8456 	int cmd_size;
8457 	int retval;
8458 	uint8_t cdb_len;
8459 
8460 	retval = 0;
8461 	cam_flags = flags;
8462 
8463 	/*
8464 	 * Round the user's request to the nearest command size that is at
8465 	 * least as big as what he requested.
8466 	 */
8467 	if (minimum_cmd_size <= 12)
8468 		cmd_size = 12;
8469 	else if (minimum_cmd_size > 16)
8470 		cmd_size = 32;
8471 	else
8472 		cmd_size = 16;
8473 
8474 	/*
8475 	 * If we have parameters that require a 48-bit ATA command, we have to
8476 	 * use the 16 byte ATA PASS-THROUGH command at least.
8477 	 */
8478 	if (((lba > ATA_MAX_28BIT_LBA)
8479 	  || (sector_count > 255)
8480 	  || (features > 255)
8481 	  || (protocol & AP_EXTEND))
8482 	 && ((cmd_size < 16)
8483 	  || ((protocol & AP_EXTEND) == 0))) {
8484 		if (cmd_size < 16)
8485 			cmd_size = 16;
8486 		protocol |= AP_EXTEND;
8487 	}
8488 
8489 	/*
8490 	 * The icc and auxiliary ATA registers are only supported in the
8491 	 * 32-byte version of the ATA PASS-THROUGH command.
8492 	 */
8493 	if ((icc != 0)
8494 	 || (auxiliary != 0)) {
8495 		cmd_size = 32;
8496 		protocol |= AP_EXTEND;
8497 	}
8498 
8499 	if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes))
8500 	 && ((cdb_storage == NULL)
8501 	  || (cdb_storage_len < cmd_size))) {
8502 		retval = 1;
8503 		goto bailout;
8504 	}
8505 
8506 	/*
8507 	 * At this point we know we have enough space to store the command
8508 	 * in one place or another.  We prefer the built-in array, but used
8509 	 * the passed in storage if necessary.
8510 	 */
8511 	if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes))
8512 		cdb_ptr = csio->cdb_io.cdb_bytes;
8513 	else {
8514 		cdb_ptr = cdb_storage;
8515 		cam_flags |= CAM_CDB_POINTER;
8516 	}
8517 
8518 	if (cmd_size <= 12) {
8519 		struct ata_pass_12 *cdb;
8520 
8521 		cdb = (struct ata_pass_12 *)cdb_ptr;
8522 		cdb_len = sizeof(*cdb);
8523 		bzero(cdb, cdb_len);
8524 
8525 		cdb->opcode = ATA_PASS_12;
8526 		cdb->protocol = protocol;
8527 		cdb->flags = ata_flags;
8528 		cdb->features = features;
8529 		cdb->sector_count = sector_count;
8530 		cdb->lba_low = lba & 0xff;
8531 		cdb->lba_mid = (lba >> 8) & 0xff;
8532 		cdb->lba_high = (lba >> 16) & 0xff;
8533 		cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8534 		cdb->command = command;
8535 		cdb->control = control;
8536 	} else if (cmd_size <= 16) {
8537 		struct ata_pass_16 *cdb;
8538 
8539 		cdb = (struct ata_pass_16 *)cdb_ptr;
8540 		cdb_len = sizeof(*cdb);
8541 		bzero(cdb, cdb_len);
8542 
8543 		cdb->opcode = ATA_PASS_16;
8544 		cdb->protocol = protocol;
8545 		cdb->flags = ata_flags;
8546 		cdb->features = features & 0xff;
8547 		cdb->sector_count = sector_count & 0xff;
8548 		cdb->lba_low = lba & 0xff;
8549 		cdb->lba_mid = (lba >> 8) & 0xff;
8550 		cdb->lba_high = (lba >> 16) & 0xff;
8551 		/*
8552 		 * If AP_EXTEND is set, we're sending a 48-bit command.
8553 		 * Otherwise it's a 28-bit command.
8554 		 */
8555 		if (protocol & AP_EXTEND) {
8556 			cdb->lba_low_ext = (lba >> 24) & 0xff;
8557 			cdb->lba_mid_ext = (lba >> 32) & 0xff;
8558 			cdb->lba_high_ext = (lba >> 40) & 0xff;
8559 			cdb->features_ext = (features >> 8) & 0xff;
8560 			cdb->sector_count_ext = (sector_count >> 8) & 0xff;
8561 			cdb->device = device | ATA_DEV_LBA;
8562 		} else {
8563 			cdb->lba_low_ext = (lba >> 24) & 0xf;
8564 			cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8565 		}
8566 		cdb->command = command;
8567 		cdb->control = control;
8568 	} else {
8569 		struct ata_pass_32 *cdb;
8570 		uint8_t tmp_lba[8];
8571 
8572 		cdb = (struct ata_pass_32 *)cdb_ptr;
8573 		cdb_len = sizeof(*cdb);
8574 		bzero(cdb, cdb_len);
8575 		cdb->opcode = VARIABLE_LEN_CDB;
8576 		cdb->control = control;
8577 		cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32,
8578 							service_action);
8579 		scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action);
8580 		cdb->protocol = protocol;
8581 		cdb->flags = ata_flags;
8582 
8583 		if ((protocol & AP_EXTEND) == 0) {
8584 			lba &= 0x0fffffff;
8585 			cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8586 			features &= 0xff;
8587 			sector_count &= 0xff;
8588 		} else {
8589 			cdb->device = device | ATA_DEV_LBA;
8590 		}
8591 		scsi_u64to8b(lba, tmp_lba);
8592 		bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba));
8593 		scsi_ulto2b(features, cdb->features);
8594 		scsi_ulto2b(sector_count, cdb->count);
8595 		cdb->command = command;
8596 		cdb->icc = icc;
8597 		scsi_ulto4b(auxiliary, cdb->auxiliary);
8598 	}
8599 
8600 	cam_fill_csio(csio,
8601 		      retries,
8602 		      cbfcnp,
8603 		      cam_flags,
8604 		      tag_action,
8605 		      data_ptr,
8606 		      dxfer_len,
8607 		      sense_len,
8608 		      cmd_size,
8609 		      timeout);
8610 bailout:
8611 	return (retval);
8612 }
8613 
8614 void
8615 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries,
8616 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8617 		 u_int32_t flags, u_int8_t tag_action,
8618 		 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features,
8619 		 u_int16_t sector_count, uint64_t lba, u_int8_t command,
8620 		 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len,
8621 		 u_int8_t sense_len, u_int32_t timeout)
8622 {
8623 	struct ata_pass_16 *ata_cmd;
8624 
8625 	ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8626 	ata_cmd->opcode = ATA_PASS_16;
8627 	ata_cmd->protocol = protocol;
8628 	ata_cmd->flags = ata_flags;
8629 	ata_cmd->features_ext = features >> 8;
8630 	ata_cmd->features = features;
8631 	ata_cmd->sector_count_ext = sector_count >> 8;
8632 	ata_cmd->sector_count = sector_count;
8633 	ata_cmd->lba_low = lba;
8634 	ata_cmd->lba_mid = lba >> 8;
8635 	ata_cmd->lba_high = lba >> 16;
8636 	ata_cmd->device = ATA_DEV_LBA;
8637 	if (protocol & AP_EXTEND) {
8638 		ata_cmd->lba_low_ext = lba >> 24;
8639 		ata_cmd->lba_mid_ext = lba >> 32;
8640 		ata_cmd->lba_high_ext = lba >> 40;
8641 	} else
8642 		ata_cmd->device |= (lba >> 24) & 0x0f;
8643 	ata_cmd->command = command;
8644 	ata_cmd->control = control;
8645 
8646 	cam_fill_csio(csio,
8647 		      retries,
8648 		      cbfcnp,
8649 		      flags,
8650 		      tag_action,
8651 		      data_ptr,
8652 		      dxfer_len,
8653 		      sense_len,
8654 		      sizeof(*ata_cmd),
8655 		      timeout);
8656 }
8657 
8658 void
8659 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries,
8660 	   void (*cbfcnp)(struct cam_periph *, union ccb *),
8661 	   u_int8_t tag_action, u_int8_t byte2,
8662 	   u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8663 	   u_int32_t timeout)
8664 {
8665 	struct scsi_unmap *scsi_cmd;
8666 
8667 	scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8668 	scsi_cmd->opcode = UNMAP;
8669 	scsi_cmd->byte2 = byte2;
8670 	scsi_ulto4b(0, scsi_cmd->reserved);
8671 	scsi_cmd->group = 0;
8672 	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8673 	scsi_cmd->control = 0;
8674 
8675 	cam_fill_csio(csio,
8676 		      retries,
8677 		      cbfcnp,
8678 		      /*flags*/CAM_DIR_OUT,
8679 		      tag_action,
8680 		      data_ptr,
8681 		      dxfer_len,
8682 		      sense_len,
8683 		      sizeof(*scsi_cmd),
8684 		      timeout);
8685 }
8686 
8687 void
8688 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries,
8689 				void (*cbfcnp)(struct cam_periph *, union ccb*),
8690 				uint8_t tag_action, int pcv, uint8_t page_code,
8691 				uint8_t *data_ptr, uint16_t allocation_length,
8692 				uint8_t sense_len, uint32_t timeout)
8693 {
8694 	struct scsi_receive_diag *scsi_cmd;
8695 
8696 	scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8697 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8698 	scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8699 	if (pcv) {
8700 		scsi_cmd->byte2 |= SRD_PCV;
8701 		scsi_cmd->page_code = page_code;
8702 	}
8703 	scsi_ulto2b(allocation_length, scsi_cmd->length);
8704 
8705 	cam_fill_csio(csio,
8706 		      retries,
8707 		      cbfcnp,
8708 		      /*flags*/CAM_DIR_IN,
8709 		      tag_action,
8710 		      data_ptr,
8711 		      allocation_length,
8712 		      sense_len,
8713 		      sizeof(*scsi_cmd),
8714 		      timeout);
8715 }
8716 
8717 void
8718 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries,
8719 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
8720 		     uint8_t tag_action, int unit_offline, int device_offline,
8721 		     int self_test, int page_format, int self_test_code,
8722 		     uint8_t *data_ptr, uint16_t param_list_length,
8723 		     uint8_t sense_len, uint32_t timeout)
8724 {
8725 	struct scsi_send_diag *scsi_cmd;
8726 
8727 	scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8728 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8729 	scsi_cmd->opcode = SEND_DIAGNOSTIC;
8730 
8731 	/*
8732 	 * The default self-test mode control and specific test
8733 	 * control are mutually exclusive.
8734 	 */
8735 	if (self_test)
8736 		self_test_code = SSD_SELF_TEST_CODE_NONE;
8737 
8738 	scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8739 			 & SSD_SELF_TEST_CODE_MASK)
8740 			| (unit_offline   ? SSD_UNITOFFL : 0)
8741 			| (device_offline ? SSD_DEVOFFL  : 0)
8742 			| (self_test      ? SSD_SELFTEST : 0)
8743 			| (page_format    ? SSD_PF       : 0);
8744 	scsi_ulto2b(param_list_length, scsi_cmd->length);
8745 
8746 	cam_fill_csio(csio,
8747 		      retries,
8748 		      cbfcnp,
8749 		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8750 		      tag_action,
8751 		      data_ptr,
8752 		      param_list_length,
8753 		      sense_len,
8754 		      sizeof(*scsi_cmd),
8755 		      timeout);
8756 }
8757 
8758 void
8759 scsi_get_physical_element_status(struct ccb_scsiio *csio, u_int32_t retries,
8760 				 void (*cbfcnp)(struct cam_periph *, union ccb *),
8761 				 uint8_t tag_action, uint8_t *data_ptr,
8762 				 uint16_t allocation_length, uint8_t report_type,
8763 				 uint32_t starting_element,
8764 				 uint8_t sense_len, uint32_t timeout)
8765 {
8766 	struct scsi_get_physical_element_status *scsi_cmd;
8767 
8768 	scsi_cmd = (struct scsi_get_physical_element_status *)&csio->cdb_io.cdb_bytes;
8769 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8770 	scsi_cmd->opcode = SERVICE_ACTION_IN;
8771 	scsi_cmd->service_action = GET_PHYSICAL_ELEMENT_STATUS;
8772 	scsi_ulto4b(starting_element, scsi_cmd->starting_element);
8773 	scsi_ulto4b(allocation_length, scsi_cmd->allocation_length);
8774 
8775 	cam_fill_csio(csio,
8776 		      retries,
8777 		      cbfcnp,
8778 		      /*flags*/ CAM_DIR_IN,
8779 		      tag_action,
8780 		      data_ptr,
8781 		      allocation_length,
8782 		      sense_len,
8783 		      sizeof(*scsi_cmd),
8784 		      timeout);
8785 }
8786 
8787 void
8788 scsi_remove_element_and_truncate(struct ccb_scsiio *csio, u_int32_t retries,
8789 				 void (*cbfcnp)(struct cam_periph *, union ccb *),
8790 				 uint8_t tag_action,
8791 				 uint64_t requested_capacity, uint32_t element_id,
8792 				 uint8_t sense_len, uint32_t timeout)
8793 {
8794 	struct scsi_remove_element_and_truncate *scsi_cmd;
8795 
8796 	scsi_cmd = (struct scsi_remove_element_and_truncate *)&csio->cdb_io.cdb_bytes;
8797 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8798 	scsi_cmd->opcode = SERVICE_ACTION_IN;
8799 	scsi_cmd->service_action = REMOVE_ELEMENT_AND_TRUNCATE;
8800 	scsi_u64to8b(requested_capacity, scsi_cmd->requested_capacity);
8801 	scsi_ulto4b(element_id, scsi_cmd->element_identifier);
8802 
8803 	cam_fill_csio(csio,
8804 		      retries,
8805 		      cbfcnp,
8806 		      /*flags*/ CAM_DIR_OUT,
8807 		      tag_action,
8808 		      NULL,
8809 		      0,
8810 		      sense_len,
8811 		      sizeof(*scsi_cmd),
8812 		      timeout);
8813 }
8814 
8815 void
8816 scsi_restore_elements_and_rebuild(struct ccb_scsiio *csio, u_int32_t retries,
8817 				  void (*cbfcnp)(struct cam_periph *, union ccb *),
8818 				  uint8_t tag_action,
8819 				  uint8_t sense_len, uint32_t timeout)
8820 {
8821 	struct scsi_service_action_in *scsi_cmd;
8822 
8823 	scsi_cmd = (struct scsi_service_action_in *)&csio->cdb_io.cdb_bytes;
8824 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8825 	scsi_cmd->opcode = SERVICE_ACTION_IN;
8826 	scsi_cmd->service_action = RESTORE_ELEMENTS_AND_REBUILD;
8827 
8828 	cam_fill_csio(csio,
8829 		      retries,
8830 		      cbfcnp,
8831 		      /*flags*/ CAM_DIR_OUT,
8832 		      tag_action,
8833 		      NULL,
8834 		      0,
8835 		      sense_len,
8836 		      sizeof(*scsi_cmd),
8837 		      timeout);
8838 }
8839 
8840 void
8841 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8842 			void (*cbfcnp)(struct cam_periph *, union ccb*),
8843 			uint8_t tag_action, int mode,
8844 			uint8_t buffer_id, u_int32_t offset,
8845 			uint8_t *data_ptr, uint32_t allocation_length,
8846 			uint8_t sense_len, uint32_t timeout)
8847 {
8848 	struct scsi_read_buffer *scsi_cmd;
8849 
8850 	scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8851 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8852 	scsi_cmd->opcode = READ_BUFFER;
8853 	scsi_cmd->byte2 = mode;
8854 	scsi_cmd->buffer_id = buffer_id;
8855 	scsi_ulto3b(offset, scsi_cmd->offset);
8856 	scsi_ulto3b(allocation_length, scsi_cmd->length);
8857 
8858 	cam_fill_csio(csio,
8859 		      retries,
8860 		      cbfcnp,
8861 		      /*flags*/CAM_DIR_IN,
8862 		      tag_action,
8863 		      data_ptr,
8864 		      allocation_length,
8865 		      sense_len,
8866 		      sizeof(*scsi_cmd),
8867 		      timeout);
8868 }
8869 
8870 void
8871 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8872 			void (*cbfcnp)(struct cam_periph *, union ccb *),
8873 			uint8_t tag_action, int mode,
8874 			uint8_t buffer_id, u_int32_t offset,
8875 			uint8_t *data_ptr, uint32_t param_list_length,
8876 			uint8_t sense_len, uint32_t timeout)
8877 {
8878 	struct scsi_write_buffer *scsi_cmd;
8879 
8880 	scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8881 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8882 	scsi_cmd->opcode = WRITE_BUFFER;
8883 	scsi_cmd->byte2 = mode;
8884 	scsi_cmd->buffer_id = buffer_id;
8885 	scsi_ulto3b(offset, scsi_cmd->offset);
8886 	scsi_ulto3b(param_list_length, scsi_cmd->length);
8887 
8888 	cam_fill_csio(csio,
8889 		      retries,
8890 		      cbfcnp,
8891 		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8892 		      tag_action,
8893 		      data_ptr,
8894 		      param_list_length,
8895 		      sense_len,
8896 		      sizeof(*scsi_cmd),
8897 		      timeout);
8898 }
8899 
8900 void
8901 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries,
8902 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8903 		u_int8_t tag_action, int start, int load_eject,
8904 		int immediate, u_int8_t sense_len, u_int32_t timeout)
8905 {
8906 	struct scsi_start_stop_unit *scsi_cmd;
8907 	int extra_flags = 0;
8908 
8909 	scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
8910 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8911 	scsi_cmd->opcode = START_STOP_UNIT;
8912 	if (start != 0) {
8913 		scsi_cmd->how |= SSS_START;
8914 		/* it takes a lot of power to start a drive */
8915 		extra_flags |= CAM_HIGH_POWER;
8916 	}
8917 	if (load_eject != 0)
8918 		scsi_cmd->how |= SSS_LOEJ;
8919 	if (immediate != 0)
8920 		scsi_cmd->byte2 |= SSS_IMMED;
8921 
8922 	cam_fill_csio(csio,
8923 		      retries,
8924 		      cbfcnp,
8925 		      /*flags*/CAM_DIR_NONE | extra_flags,
8926 		      tag_action,
8927 		      /*data_ptr*/NULL,
8928 		      /*dxfer_len*/0,
8929 		      sense_len,
8930 		      sizeof(*scsi_cmd),
8931 		      timeout);
8932 }
8933 
8934 void
8935 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8936 		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8937 		    u_int8_t tag_action, u_int8_t service_action,
8938 		    uint32_t element, u_int8_t elem_type, int logical_volume,
8939 		    int partition, u_int32_t first_attribute, int cache,
8940 		    u_int8_t *data_ptr, u_int32_t length, int sense_len,
8941 		    u_int32_t timeout)
8942 {
8943 	struct scsi_read_attribute *scsi_cmd;
8944 
8945 	scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
8946 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8947 
8948 	scsi_cmd->opcode = READ_ATTRIBUTE;
8949 	scsi_cmd->service_action = service_action;
8950 	scsi_ulto2b(element, scsi_cmd->element);
8951 	scsi_cmd->elem_type = elem_type;
8952 	scsi_cmd->logical_volume = logical_volume;
8953 	scsi_cmd->partition = partition;
8954 	scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
8955 	scsi_ulto4b(length, scsi_cmd->length);
8956 	if (cache != 0)
8957 		scsi_cmd->cache |= SRA_CACHE;
8958 
8959 	cam_fill_csio(csio,
8960 		      retries,
8961 		      cbfcnp,
8962 		      /*flags*/CAM_DIR_IN,
8963 		      tag_action,
8964 		      /*data_ptr*/data_ptr,
8965 		      /*dxfer_len*/length,
8966 		      sense_len,
8967 		      sizeof(*scsi_cmd),
8968 		      timeout);
8969 }
8970 
8971 void
8972 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8973 		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8974 		    u_int8_t tag_action, uint32_t element, int logical_volume,
8975 		    int partition, int wtc, u_int8_t *data_ptr,
8976 		    u_int32_t length, int sense_len, u_int32_t timeout)
8977 {
8978 	struct scsi_write_attribute *scsi_cmd;
8979 
8980 	scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
8981 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8982 
8983 	scsi_cmd->opcode = WRITE_ATTRIBUTE;
8984 	if (wtc != 0)
8985 		scsi_cmd->byte2 = SWA_WTC;
8986 	scsi_ulto3b(element, scsi_cmd->element);
8987 	scsi_cmd->logical_volume = logical_volume;
8988 	scsi_cmd->partition = partition;
8989 	scsi_ulto4b(length, scsi_cmd->length);
8990 
8991 	cam_fill_csio(csio,
8992 		      retries,
8993 		      cbfcnp,
8994 		      /*flags*/CAM_DIR_OUT,
8995 		      tag_action,
8996 		      /*data_ptr*/data_ptr,
8997 		      /*dxfer_len*/length,
8998 		      sense_len,
8999 		      sizeof(*scsi_cmd),
9000 		      timeout);
9001 }
9002 
9003 void
9004 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
9005 			   void (*cbfcnp)(struct cam_periph *, union ccb *),
9006 			   uint8_t tag_action, int service_action,
9007 			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9008 			   int timeout)
9009 {
9010 	struct scsi_per_res_in *scsi_cmd;
9011 
9012 	scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
9013 	bzero(scsi_cmd, sizeof(*scsi_cmd));
9014 
9015 	scsi_cmd->opcode = PERSISTENT_RES_IN;
9016 	scsi_cmd->action = service_action;
9017 	scsi_ulto2b(dxfer_len, scsi_cmd->length);
9018 
9019 	cam_fill_csio(csio,
9020 		      retries,
9021 		      cbfcnp,
9022 		      /*flags*/CAM_DIR_IN,
9023 		      tag_action,
9024 		      data_ptr,
9025 		      dxfer_len,
9026 		      sense_len,
9027 		      sizeof(*scsi_cmd),
9028 		      timeout);
9029 }
9030 
9031 void
9032 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
9033 			    void (*cbfcnp)(struct cam_periph *, union ccb *),
9034 			    uint8_t tag_action, int service_action,
9035 			    int scope, int res_type, uint8_t *data_ptr,
9036 			    uint32_t dxfer_len, int sense_len, int timeout)
9037 {
9038 	struct scsi_per_res_out *scsi_cmd;
9039 
9040 	scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
9041 	bzero(scsi_cmd, sizeof(*scsi_cmd));
9042 
9043 	scsi_cmd->opcode = PERSISTENT_RES_OUT;
9044 	scsi_cmd->action = service_action;
9045 	scsi_cmd->scope_type = scope | res_type;
9046 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
9047 
9048 	cam_fill_csio(csio,
9049 		      retries,
9050 		      cbfcnp,
9051 		      /*flags*/CAM_DIR_OUT,
9052 		      tag_action,
9053 		      /*data_ptr*/data_ptr,
9054 		      /*dxfer_len*/dxfer_len,
9055 		      sense_len,
9056 		      sizeof(*scsi_cmd),
9057 		      timeout);
9058 }
9059 
9060 void
9061 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
9062 			  void (*cbfcnp)(struct cam_periph *, union ccb *),
9063 			  uint8_t tag_action, uint32_t security_protocol,
9064 			  uint32_t security_protocol_specific, int byte4,
9065 			  uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9066 			  int timeout)
9067 {
9068 	struct scsi_security_protocol_in *scsi_cmd;
9069 
9070 	scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
9071 	bzero(scsi_cmd, sizeof(*scsi_cmd));
9072 
9073 	scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
9074 
9075 	scsi_cmd->security_protocol = security_protocol;
9076 	scsi_ulto2b(security_protocol_specific,
9077 		    scsi_cmd->security_protocol_specific);
9078 	scsi_cmd->byte4 = byte4;
9079 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
9080 
9081 	cam_fill_csio(csio,
9082 		      retries,
9083 		      cbfcnp,
9084 		      /*flags*/CAM_DIR_IN,
9085 		      tag_action,
9086 		      data_ptr,
9087 		      dxfer_len,
9088 		      sense_len,
9089 		      sizeof(*scsi_cmd),
9090 		      timeout);
9091 }
9092 
9093 void
9094 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
9095 			   void (*cbfcnp)(struct cam_periph *, union ccb *),
9096 			   uint8_t tag_action, uint32_t security_protocol,
9097 			   uint32_t security_protocol_specific, int byte4,
9098 			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9099 			   int timeout)
9100 {
9101 	struct scsi_security_protocol_out *scsi_cmd;
9102 
9103 	scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
9104 	bzero(scsi_cmd, sizeof(*scsi_cmd));
9105 
9106 	scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
9107 
9108 	scsi_cmd->security_protocol = security_protocol;
9109 	scsi_ulto2b(security_protocol_specific,
9110 		    scsi_cmd->security_protocol_specific);
9111 	scsi_cmd->byte4 = byte4;
9112 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
9113 
9114 	cam_fill_csio(csio,
9115 		      retries,
9116 		      cbfcnp,
9117 		      /*flags*/CAM_DIR_OUT,
9118 		      tag_action,
9119 		      data_ptr,
9120 		      dxfer_len,
9121 		      sense_len,
9122 		      sizeof(*scsi_cmd),
9123 		      timeout);
9124 }
9125 
9126 void
9127 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
9128 			      void (*cbfcnp)(struct cam_periph *, union ccb *),
9129 			      uint8_t tag_action, int options, int req_opcode,
9130 			      int req_service_action, uint8_t *data_ptr,
9131 			      uint32_t dxfer_len, int sense_len, int timeout)
9132 {
9133 	struct scsi_report_supported_opcodes *scsi_cmd;
9134 
9135 	scsi_cmd = (struct scsi_report_supported_opcodes *)
9136 	    &csio->cdb_io.cdb_bytes;
9137 	bzero(scsi_cmd, sizeof(*scsi_cmd));
9138 
9139 	scsi_cmd->opcode = MAINTENANCE_IN;
9140 	scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
9141 	scsi_cmd->options = options;
9142 	scsi_cmd->requested_opcode = req_opcode;
9143 	scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
9144 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
9145 
9146 	cam_fill_csio(csio,
9147 		      retries,
9148 		      cbfcnp,
9149 		      /*flags*/CAM_DIR_IN,
9150 		      tag_action,
9151 		      data_ptr,
9152 		      dxfer_len,
9153 		      sense_len,
9154 		      sizeof(*scsi_cmd),
9155 		      timeout);
9156 }
9157 
9158 /*
9159  * Try make as good a match as possible with
9160  * available sub drivers
9161  */
9162 int
9163 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9164 {
9165 	struct scsi_inquiry_pattern *entry;
9166 	struct scsi_inquiry_data *inq;
9167 
9168 	entry = (struct scsi_inquiry_pattern *)table_entry;
9169 	inq = (struct scsi_inquiry_data *)inqbuffer;
9170 
9171 	if (((SID_TYPE(inq) == entry->type)
9172 	  || (entry->type == T_ANY))
9173 	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9174 				   : entry->media_type & SIP_MEDIA_FIXED)
9175 	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9176 	 && (cam_strmatch(inq->product, entry->product,
9177 			  sizeof(inq->product)) == 0)
9178 	 && (cam_strmatch(inq->revision, entry->revision,
9179 			  sizeof(inq->revision)) == 0)) {
9180 		return (0);
9181 	}
9182         return (-1);
9183 }
9184 
9185 /*
9186  * Try make as good a match as possible with
9187  * available sub drivers
9188  */
9189 int
9190 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9191 {
9192 	struct scsi_static_inquiry_pattern *entry;
9193 	struct scsi_inquiry_data *inq;
9194 
9195 	entry = (struct scsi_static_inquiry_pattern *)table_entry;
9196 	inq = (struct scsi_inquiry_data *)inqbuffer;
9197 
9198 	if (((SID_TYPE(inq) == entry->type)
9199 	  || (entry->type == T_ANY))
9200 	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9201 				   : entry->media_type & SIP_MEDIA_FIXED)
9202 	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9203 	 && (cam_strmatch(inq->product, entry->product,
9204 			  sizeof(inq->product)) == 0)
9205 	 && (cam_strmatch(inq->revision, entry->revision,
9206 			  sizeof(inq->revision)) == 0)) {
9207 		return (0);
9208 	}
9209         return (-1);
9210 }
9211 
9212 /**
9213  * Compare two buffers of vpd device descriptors for a match.
9214  *
9215  * \param lhs      Pointer to first buffer of descriptors to compare.
9216  * \param lhs_len  The length of the first buffer.
9217  * \param rhs	   Pointer to second buffer of descriptors to compare.
9218  * \param rhs_len  The length of the second buffer.
9219  *
9220  * \return  0 on a match, -1 otherwise.
9221  *
9222  * Treat rhs and lhs as arrays of vpd device id descriptors.  Walk lhs matching
9223  * against each element in rhs until all data are exhausted or we have found
9224  * a match.
9225  */
9226 int
9227 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
9228 {
9229 	struct scsi_vpd_id_descriptor *lhs_id;
9230 	struct scsi_vpd_id_descriptor *lhs_last;
9231 	struct scsi_vpd_id_descriptor *rhs_last;
9232 	uint8_t *lhs_end;
9233 	uint8_t *rhs_end;
9234 
9235 	lhs_end = lhs + lhs_len;
9236 	rhs_end = rhs + rhs_len;
9237 
9238 	/*
9239 	 * rhs_last and lhs_last are the last possible position of a valid
9240 	 * descriptor assuming it had a zero length identifier.  We use
9241 	 * these variables to insure we can safely dereference the length
9242 	 * field in our loop termination tests.
9243 	 */
9244 	lhs_last = (struct scsi_vpd_id_descriptor *)
9245 	    (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9246 	rhs_last = (struct scsi_vpd_id_descriptor *)
9247 	    (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9248 
9249 	lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
9250 	while (lhs_id <= lhs_last
9251 	    && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
9252 		struct scsi_vpd_id_descriptor *rhs_id;
9253 
9254 		rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
9255 		while (rhs_id <= rhs_last
9256 		    && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
9257 			if ((rhs_id->id_type &
9258 			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
9259 			    (lhs_id->id_type &
9260 			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
9261 			 && rhs_id->length == lhs_id->length
9262 			 && memcmp(rhs_id->identifier, lhs_id->identifier,
9263 				   rhs_id->length) == 0)
9264 				return (0);
9265 
9266 			rhs_id = (struct scsi_vpd_id_descriptor *)
9267 			   (rhs_id->identifier + rhs_id->length);
9268 		}
9269 		lhs_id = (struct scsi_vpd_id_descriptor *)
9270 		   (lhs_id->identifier + lhs_id->length);
9271 	}
9272 	return (-1);
9273 }
9274 
9275 #ifdef _KERNEL
9276 int
9277 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
9278 {
9279 	struct cam_ed *device;
9280 	struct scsi_vpd_supported_pages *vpds;
9281 	int i, num_pages;
9282 
9283 	device = periph->path->device;
9284 	vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
9285 
9286 	if (vpds != NULL) {
9287 		num_pages = device->supported_vpds_len -
9288 		    SVPD_SUPPORTED_PAGES_HDR_LEN;
9289 		for (i = 0; i < num_pages; i++) {
9290 			if (vpds->page_list[i] == page_id)
9291 				return (1);
9292 		}
9293 	}
9294 
9295 	return (0);
9296 }
9297 
9298 static void
9299 init_scsi_delay(void)
9300 {
9301 	int delay;
9302 
9303 	delay = SCSI_DELAY;
9304 	TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
9305 
9306 	if (set_scsi_delay(delay) != 0) {
9307 		printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
9308 		set_scsi_delay(SCSI_DELAY);
9309 	}
9310 }
9311 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
9312 
9313 static int
9314 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
9315 {
9316 	int error, delay;
9317 
9318 	delay = scsi_delay;
9319 	error = sysctl_handle_int(oidp, &delay, 0, req);
9320 	if (error != 0 || req->newptr == NULL)
9321 		return (error);
9322 	return (set_scsi_delay(delay));
9323 }
9324 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay,
9325     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_scsi_delay, "I",
9326     "Delay to allow devices to settle after a SCSI bus reset (ms)");
9327 
9328 static int
9329 set_scsi_delay(int delay)
9330 {
9331 	/*
9332          * If someone sets this to 0, we assume that they want the
9333          * minimum allowable bus settle delay.
9334 	 */
9335 	if (delay == 0) {
9336 		printf("cam: using minimum scsi_delay (%dms)\n",
9337 		    SCSI_MIN_DELAY);
9338 		delay = SCSI_MIN_DELAY;
9339 	}
9340 	if (delay < SCSI_MIN_DELAY)
9341 		return (EINVAL);
9342 	scsi_delay = delay;
9343 	return (0);
9344 }
9345 #endif /* _KERNEL */
9346