1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26  * Copyright (c) 2016, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28  */
29 
30 /*
31  * DTrace - Dynamic Tracing for Solaris
32  *
33  * This is the implementation of the Solaris Dynamic Tracing framework
34  * (DTrace).  The user-visible interface to DTrace is described at length in
35  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36  * library, the in-kernel DTrace framework, and the DTrace providers are
37  * described in the block comments in the <sys/dtrace.h> header file.  The
38  * internal architecture of DTrace is described in the block comments in the
39  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40  * implementation very much assume mastery of all of these sources; if one has
41  * an unanswered question about the implementation, one should consult them
42  * first.
43  *
44  * The functions here are ordered roughly as follows:
45  *
46  *   - Probe context functions
47  *   - Probe hashing functions
48  *   - Non-probe context utility functions
49  *   - Matching functions
50  *   - Provider-to-Framework API functions
51  *   - Probe management functions
52  *   - DIF object functions
53  *   - Format functions
54  *   - Predicate functions
55  *   - ECB functions
56  *   - Buffer functions
57  *   - Enabling functions
58  *   - DOF functions
59  *   - Anonymous enabling functions
60  *   - Consumer state functions
61  *   - Helper functions
62  *   - Hook functions
63  *   - Driver cookbook functions
64  *
65  * Each group of functions begins with a block comment labelled the "DTrace
66  * [Group] Functions", allowing one to find each block by searching forward
67  * on capital-f functions.
68  */
69 #include <sys/errno.h>
70 #include <sys/param.h>
71 #include <sys/types.h>
72 #ifndef illumos
73 #include <sys/time.h>
74 #endif
75 #include <sys/stat.h>
76 #include <sys/conf.h>
77 #include <sys/systm.h>
78 #include <sys/endian.h>
79 #ifdef illumos
80 #include <sys/ddi.h>
81 #include <sys/sunddi.h>
82 #endif
83 #include <sys/cpuvar.h>
84 #include <sys/kmem.h>
85 #ifdef illumos
86 #include <sys/strsubr.h>
87 #endif
88 #include <sys/sysmacros.h>
89 #include <sys/dtrace_impl.h>
90 #include <sys/atomic.h>
91 #include <sys/cmn_err.h>
92 #ifdef illumos
93 #include <sys/mutex_impl.h>
94 #include <sys/rwlock_impl.h>
95 #endif
96 #include <sys/ctf_api.h>
97 #ifdef illumos
98 #include <sys/panic.h>
99 #include <sys/priv_impl.h>
100 #endif
101 #ifdef illumos
102 #include <sys/cred_impl.h>
103 #include <sys/procfs_isa.h>
104 #endif
105 #include <sys/taskq.h>
106 #ifdef illumos
107 #include <sys/mkdev.h>
108 #include <sys/kdi.h>
109 #endif
110 #include <sys/zone.h>
111 #include <sys/socket.h>
112 #include <netinet/in.h>
113 #include "strtolctype.h"
114 
115 /* FreeBSD includes: */
116 #ifndef illumos
117 #include <sys/callout.h>
118 #include <sys/ctype.h>
119 #include <sys/eventhandler.h>
120 #include <sys/limits.h>
121 #include <sys/linker.h>
122 #include <sys/kdb.h>
123 #include <sys/jail.h>
124 #include <sys/kernel.h>
125 #include <sys/malloc.h>
126 #include <sys/lock.h>
127 #include <sys/mutex.h>
128 #include <sys/ptrace.h>
129 #include <sys/random.h>
130 #include <sys/rwlock.h>
131 #include <sys/sx.h>
132 #include <sys/sysctl.h>
133 
134 
135 #include <sys/mount.h>
136 #undef AT_UID
137 #undef AT_GID
138 #include <sys/vnode.h>
139 #include <sys/cred.h>
140 
141 #include <sys/dtrace_bsd.h>
142 
143 #include <netinet/in.h>
144 
145 #include "dtrace_cddl.h"
146 #include "dtrace_debug.c"
147 #endif
148 
149 #include "dtrace_xoroshiro128_plus.h"
150 
151 /*
152  * DTrace Tunable Variables
153  *
154  * The following variables may be tuned by adding a line to /etc/system that
155  * includes both the name of the DTrace module ("dtrace") and the name of the
156  * variable.  For example:
157  *
158  *   set dtrace:dtrace_destructive_disallow = 1
159  *
160  * In general, the only variables that one should be tuning this way are those
161  * that affect system-wide DTrace behavior, and for which the default behavior
162  * is undesirable.  Most of these variables are tunable on a per-consumer
163  * basis using DTrace options, and need not be tuned on a system-wide basis.
164  * When tuning these variables, avoid pathological values; while some attempt
165  * is made to verify the integrity of these variables, they are not considered
166  * part of the supported interface to DTrace, and they are therefore not
167  * checked comprehensively.  Further, these variables should not be tuned
168  * dynamically via "mdb -kw" or other means; they should only be tuned via
169  * /etc/system.
170  */
171 int		dtrace_destructive_disallow = 0;
172 #ifndef illumos
173 /* Positive logic version of dtrace_destructive_disallow for loader tunable */
174 int		dtrace_allow_destructive = 1;
175 #endif
176 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
177 size_t		dtrace_difo_maxsize = (256 * 1024);
178 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
179 size_t		dtrace_statvar_maxsize = (16 * 1024);
180 size_t		dtrace_actions_max = (16 * 1024);
181 size_t		dtrace_retain_max = 1024;
182 dtrace_optval_t	dtrace_helper_actions_max = 128;
183 dtrace_optval_t	dtrace_helper_providers_max = 32;
184 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
185 size_t		dtrace_strsize_default = 256;
186 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
187 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
188 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
189 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
190 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
191 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
192 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
193 dtrace_optval_t	dtrace_nspec_default = 1;
194 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
195 dtrace_optval_t dtrace_stackframes_default = 20;
196 dtrace_optval_t dtrace_ustackframes_default = 20;
197 dtrace_optval_t dtrace_jstackframes_default = 50;
198 dtrace_optval_t dtrace_jstackstrsize_default = 512;
199 int		dtrace_msgdsize_max = 128;
200 hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
201 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
202 int		dtrace_devdepth_max = 32;
203 int		dtrace_err_verbose;
204 hrtime_t	dtrace_deadman_interval = NANOSEC;
205 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
206 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
207 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
208 #ifndef illumos
209 int		dtrace_memstr_max = 4096;
210 #endif
211 
212 /*
213  * DTrace External Variables
214  *
215  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
216  * available to DTrace consumers via the backtick (`) syntax.  One of these,
217  * dtrace_zero, is made deliberately so:  it is provided as a source of
218  * well-known, zero-filled memory.  While this variable is not documented,
219  * it is used by some translators as an implementation detail.
220  */
221 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
222 
223 /*
224  * DTrace Internal Variables
225  */
226 #ifdef illumos
227 static dev_info_t	*dtrace_devi;		/* device info */
228 #endif
229 #ifdef illumos
230 static vmem_t		*dtrace_arena;		/* probe ID arena */
231 static vmem_t		*dtrace_minor;		/* minor number arena */
232 #else
233 static taskq_t		*dtrace_taskq;		/* task queue */
234 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
235 #endif
236 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
237 static int		dtrace_nprobes;		/* number of probes */
238 static dtrace_provider_t *dtrace_provider;	/* provider list */
239 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
240 static int		dtrace_opens;		/* number of opens */
241 static int		dtrace_helpers;		/* number of helpers */
242 static int		dtrace_getf;		/* number of unpriv getf()s */
243 #ifdef illumos
244 static void		*dtrace_softstate;	/* softstate pointer */
245 #endif
246 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
247 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
248 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
249 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
250 static int		dtrace_toxranges;	/* number of toxic ranges */
251 static int		dtrace_toxranges_max;	/* size of toxic range array */
252 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
253 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
254 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
255 static kthread_t	*dtrace_panicked;	/* panicking thread */
256 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
257 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
258 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
259 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
260 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
261 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
262 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
263 #ifndef illumos
264 static struct mtx	dtrace_unr_mtx;
265 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
266 static eventhandler_tag	dtrace_kld_load_tag;
267 static eventhandler_tag	dtrace_kld_unload_try_tag;
268 #endif
269 
270 /*
271  * DTrace Locking
272  * DTrace is protected by three (relatively coarse-grained) locks:
273  *
274  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
275  *     including enabling state, probes, ECBs, consumer state, helper state,
276  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
277  *     probe context is lock-free -- synchronization is handled via the
278  *     dtrace_sync() cross call mechanism.
279  *
280  * (2) dtrace_provider_lock is required when manipulating provider state, or
281  *     when provider state must be held constant.
282  *
283  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
284  *     when meta provider state must be held constant.
285  *
286  * The lock ordering between these three locks is dtrace_meta_lock before
287  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
288  * several places where dtrace_provider_lock is held by the framework as it
289  * calls into the providers -- which then call back into the framework,
290  * grabbing dtrace_lock.)
291  *
292  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
293  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
294  * role as a coarse-grained lock; it is acquired before both of these locks.
295  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
296  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
297  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
298  * acquired _between_ dtrace_provider_lock and dtrace_lock.
299  */
300 static kmutex_t		dtrace_lock;		/* probe state lock */
301 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
302 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
303 
304 #ifndef illumos
305 /* XXX FreeBSD hacks. */
306 #define cr_suid		cr_svuid
307 #define cr_sgid		cr_svgid
308 #define	ipaddr_t	in_addr_t
309 #define mod_modname	pathname
310 #define vuprintf	vprintf
311 #ifndef crgetzoneid
312 #define crgetzoneid(_a)        0
313 #endif
314 #define ttoproc(_a)	((_a)->td_proc)
315 #define SNOCD		0
316 #define CPU_ON_INTR(_a)	0
317 
318 #define PRIV_EFFECTIVE		(1 << 0)
319 #define PRIV_DTRACE_KERNEL	(1 << 1)
320 #define PRIV_DTRACE_PROC	(1 << 2)
321 #define PRIV_DTRACE_USER	(1 << 3)
322 #define PRIV_PROC_OWNER		(1 << 4)
323 #define PRIV_PROC_ZONE		(1 << 5)
324 #define PRIV_ALL		~0
325 
326 SYSCTL_DECL(_debug_dtrace);
327 SYSCTL_DECL(_kern_dtrace);
328 #endif
329 
330 #ifdef illumos
331 #define curcpu	CPU->cpu_id
332 #endif
333 
334 
335 /*
336  * DTrace Provider Variables
337  *
338  * These are the variables relating to DTrace as a provider (that is, the
339  * provider of the BEGIN, END, and ERROR probes).
340  */
341 static dtrace_pattr_t	dtrace_provider_attr = {
342 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
344 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
346 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
347 };
348 
349 static void
350 dtrace_nullop(void)
351 {}
352 
353 static dtrace_pops_t dtrace_provider_ops = {
354 	.dtps_provide =	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
355 	.dtps_provide_module =	(void (*)(void *, modctl_t *))dtrace_nullop,
356 	.dtps_enable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
357 	.dtps_disable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
358 	.dtps_suspend =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
359 	.dtps_resume =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
360 	.dtps_getargdesc =	NULL,
361 	.dtps_getargval =	NULL,
362 	.dtps_usermode =	NULL,
363 	.dtps_destroy =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
364 };
365 
366 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
367 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
368 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
369 
370 /*
371  * DTrace Helper Tracing Variables
372  *
373  * These variables should be set dynamically to enable helper tracing.  The
374  * only variables that should be set are dtrace_helptrace_enable (which should
375  * be set to a non-zero value to allocate helper tracing buffers on the next
376  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
377  * non-zero value to deallocate helper tracing buffers on the next close of
378  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
379  * buffer size may also be set via dtrace_helptrace_bufsize.
380  */
381 int			dtrace_helptrace_enable = 0;
382 int			dtrace_helptrace_disable = 0;
383 int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
384 uint32_t		dtrace_helptrace_nlocals;
385 static dtrace_helptrace_t *dtrace_helptrace_buffer;
386 static uint32_t		dtrace_helptrace_next = 0;
387 static int		dtrace_helptrace_wrapped = 0;
388 
389 /*
390  * DTrace Error Hashing
391  *
392  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
393  * table.  This is very useful for checking coverage of tests that are
394  * expected to induce DIF or DOF processing errors, and may be useful for
395  * debugging problems in the DIF code generator or in DOF generation .  The
396  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
397  */
398 #ifdef DEBUG
399 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
400 static const char *dtrace_errlast;
401 static kthread_t *dtrace_errthread;
402 static kmutex_t dtrace_errlock;
403 #endif
404 
405 /*
406  * DTrace Macros and Constants
407  *
408  * These are various macros that are useful in various spots in the
409  * implementation, along with a few random constants that have no meaning
410  * outside of the implementation.  There is no real structure to this cpp
411  * mishmash -- but is there ever?
412  */
413 #define	DTRACE_HASHSTR(hash, probe)	\
414 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
415 
416 #define	DTRACE_HASHNEXT(hash, probe)	\
417 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
418 
419 #define	DTRACE_HASHPREV(hash, probe)	\
420 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
421 
422 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
423 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
424 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
425 
426 #define	DTRACE_AGGHASHSIZE_SLEW		17
427 
428 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
429 
430 /*
431  * The key for a thread-local variable consists of the lower 61 bits of the
432  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
433  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
434  * equal to a variable identifier.  This is necessary (but not sufficient) to
435  * assure that global associative arrays never collide with thread-local
436  * variables.  To guarantee that they cannot collide, we must also define the
437  * order for keying dynamic variables.  That order is:
438  *
439  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
440  *
441  * Because the variable-key and the tls-key are in orthogonal spaces, there is
442  * no way for a global variable key signature to match a thread-local key
443  * signature.
444  */
445 #ifdef illumos
446 #define	DTRACE_TLS_THRKEY(where) { \
447 	uint_t intr = 0; \
448 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
449 	for (; actv; actv >>= 1) \
450 		intr++; \
451 	ASSERT(intr < (1 << 3)); \
452 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
453 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
454 }
455 #else
456 #define	DTRACE_TLS_THRKEY(where) { \
457 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
458 	uint_t intr = 0; \
459 	uint_t actv = _c->cpu_intr_actv; \
460 	for (; actv; actv >>= 1) \
461 		intr++; \
462 	ASSERT(intr < (1 << 3)); \
463 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
464 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
465 }
466 #endif
467 
468 #define	DT_BSWAP_8(x)	((x) & 0xff)
469 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
470 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
471 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
472 
473 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
474 
475 #define	DTRACE_STORE(type, tomax, offset, what) \
476 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
477 
478 #ifndef __x86
479 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
480 	if (addr & (size - 1)) {					\
481 		*flags |= CPU_DTRACE_BADALIGN;				\
482 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
483 		return (0);						\
484 	}
485 #else
486 #define	DTRACE_ALIGNCHECK(addr, size, flags)
487 #endif
488 
489 /*
490  * Test whether a range of memory starting at testaddr of size testsz falls
491  * within the range of memory described by addr, sz.  We take care to avoid
492  * problems with overflow and underflow of the unsigned quantities, and
493  * disallow all negative sizes.  Ranges of size 0 are allowed.
494  */
495 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
496 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
497 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
498 	(testaddr) + (testsz) >= (testaddr))
499 
500 #define	DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz)		\
501 do {									\
502 	if ((remp) != NULL) {						\
503 		*(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr);	\
504 	}								\
505 } while (0)
506 
507 
508 /*
509  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
510  * alloc_sz on the righthand side of the comparison in order to avoid overflow
511  * or underflow in the comparison with it.  This is simpler than the INRANGE
512  * check above, because we know that the dtms_scratch_ptr is valid in the
513  * range.  Allocations of size zero are allowed.
514  */
515 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
516 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
517 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
518 
519 #define	DTRACE_LOADFUNC(bits)						\
520 /*CSTYLED*/								\
521 uint##bits##_t								\
522 dtrace_load##bits(uintptr_t addr)					\
523 {									\
524 	size_t size = bits / NBBY;					\
525 	/*CSTYLED*/							\
526 	uint##bits##_t rval;						\
527 	int i;								\
528 	volatile uint16_t *flags = (volatile uint16_t *)		\
529 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
530 									\
531 	DTRACE_ALIGNCHECK(addr, size, flags);				\
532 									\
533 	for (i = 0; i < dtrace_toxranges; i++) {			\
534 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
535 			continue;					\
536 									\
537 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
538 			continue;					\
539 									\
540 		/*							\
541 		 * This address falls within a toxic region; return 0.	\
542 		 */							\
543 		*flags |= CPU_DTRACE_BADADDR;				\
544 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
545 		return (0);						\
546 	}								\
547 									\
548 	*flags |= CPU_DTRACE_NOFAULT;					\
549 	/*CSTYLED*/							\
550 	rval = *((volatile uint##bits##_t *)addr);			\
551 	*flags &= ~CPU_DTRACE_NOFAULT;					\
552 									\
553 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
554 }
555 
556 #ifdef _LP64
557 #define	dtrace_loadptr	dtrace_load64
558 #else
559 #define	dtrace_loadptr	dtrace_load32
560 #endif
561 
562 #define	DTRACE_DYNHASH_FREE	0
563 #define	DTRACE_DYNHASH_SINK	1
564 #define	DTRACE_DYNHASH_VALID	2
565 
566 #define	DTRACE_MATCH_NEXT	0
567 #define	DTRACE_MATCH_DONE	1
568 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
569 #define	DTRACE_STATE_ALIGN	64
570 
571 #define	DTRACE_FLAGS2FLT(flags)						\
572 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
573 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
574 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
575 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
576 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
577 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
578 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
579 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
580 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
581 	DTRACEFLT_UNKNOWN)
582 
583 #define	DTRACEACT_ISSTRING(act)						\
584 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
585 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
586 
587 /* Function prototype definitions: */
588 static size_t dtrace_strlen(const char *, size_t);
589 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
590 static void dtrace_enabling_provide(dtrace_provider_t *);
591 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
592 static void dtrace_enabling_matchall(void);
593 static void dtrace_enabling_reap(void);
594 static dtrace_state_t *dtrace_anon_grab(void);
595 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
596     dtrace_state_t *, uint64_t, uint64_t);
597 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
598 static void dtrace_buffer_drop(dtrace_buffer_t *);
599 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
600 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
601     dtrace_state_t *, dtrace_mstate_t *);
602 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
603     dtrace_optval_t);
604 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
605 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
606 uint16_t dtrace_load16(uintptr_t);
607 uint32_t dtrace_load32(uintptr_t);
608 uint64_t dtrace_load64(uintptr_t);
609 uint8_t dtrace_load8(uintptr_t);
610 void dtrace_dynvar_clean(dtrace_dstate_t *);
611 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
612     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
613 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
614 static int dtrace_priv_proc(dtrace_state_t *);
615 static void dtrace_getf_barrier(void);
616 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
617     dtrace_mstate_t *, dtrace_vstate_t *);
618 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
619     dtrace_mstate_t *, dtrace_vstate_t *);
620 
621 /*
622  * DTrace Probe Context Functions
623  *
624  * These functions are called from probe context.  Because probe context is
625  * any context in which C may be called, arbitrarily locks may be held,
626  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
627  * As a result, functions called from probe context may only call other DTrace
628  * support functions -- they may not interact at all with the system at large.
629  * (Note that the ASSERT macro is made probe-context safe by redefining it in
630  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
631  * loads are to be performed from probe context, they _must_ be in terms of
632  * the safe dtrace_load*() variants.
633  *
634  * Some functions in this block are not actually called from probe context;
635  * for these functions, there will be a comment above the function reading
636  * "Note:  not called from probe context."
637  */
638 void
639 dtrace_panic(const char *format, ...)
640 {
641 	va_list alist;
642 
643 	va_start(alist, format);
644 #ifdef __FreeBSD__
645 	vpanic(format, alist);
646 #else
647 	dtrace_vpanic(format, alist);
648 #endif
649 	va_end(alist);
650 }
651 
652 int
653 dtrace_assfail(const char *a, const char *f, int l)
654 {
655 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
656 
657 	/*
658 	 * We just need something here that even the most clever compiler
659 	 * cannot optimize away.
660 	 */
661 	return (a[(uintptr_t)f]);
662 }
663 
664 /*
665  * Atomically increment a specified error counter from probe context.
666  */
667 static void
668 dtrace_error(uint32_t *counter)
669 {
670 	/*
671 	 * Most counters stored to in probe context are per-CPU counters.
672 	 * However, there are some error conditions that are sufficiently
673 	 * arcane that they don't merit per-CPU storage.  If these counters
674 	 * are incremented concurrently on different CPUs, scalability will be
675 	 * adversely affected -- but we don't expect them to be white-hot in a
676 	 * correctly constructed enabling...
677 	 */
678 	uint32_t oval, nval;
679 
680 	do {
681 		oval = *counter;
682 
683 		if ((nval = oval + 1) == 0) {
684 			/*
685 			 * If the counter would wrap, set it to 1 -- assuring
686 			 * that the counter is never zero when we have seen
687 			 * errors.  (The counter must be 32-bits because we
688 			 * aren't guaranteed a 64-bit compare&swap operation.)
689 			 * To save this code both the infamy of being fingered
690 			 * by a priggish news story and the indignity of being
691 			 * the target of a neo-puritan witch trial, we're
692 			 * carefully avoiding any colorful description of the
693 			 * likelihood of this condition -- but suffice it to
694 			 * say that it is only slightly more likely than the
695 			 * overflow of predicate cache IDs, as discussed in
696 			 * dtrace_predicate_create().
697 			 */
698 			nval = 1;
699 		}
700 	} while (dtrace_cas32(counter, oval, nval) != oval);
701 }
702 
703 /*
704  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
705  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
706  */
707 /* BEGIN CSTYLED */
708 DTRACE_LOADFUNC(8)
709 DTRACE_LOADFUNC(16)
710 DTRACE_LOADFUNC(32)
711 DTRACE_LOADFUNC(64)
712 /* END CSTYLED */
713 
714 static int
715 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
716 {
717 	if (dest < mstate->dtms_scratch_base)
718 		return (0);
719 
720 	if (dest + size < dest)
721 		return (0);
722 
723 	if (dest + size > mstate->dtms_scratch_ptr)
724 		return (0);
725 
726 	return (1);
727 }
728 
729 static int
730 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
731     dtrace_statvar_t **svars, int nsvars)
732 {
733 	int i;
734 	size_t maxglobalsize, maxlocalsize;
735 
736 	if (nsvars == 0)
737 		return (0);
738 
739 	maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
740 	maxlocalsize = maxglobalsize * NCPU;
741 
742 	for (i = 0; i < nsvars; i++) {
743 		dtrace_statvar_t *svar = svars[i];
744 		uint8_t scope;
745 		size_t size;
746 
747 		if (svar == NULL || (size = svar->dtsv_size) == 0)
748 			continue;
749 
750 		scope = svar->dtsv_var.dtdv_scope;
751 
752 		/*
753 		 * We verify that our size is valid in the spirit of providing
754 		 * defense in depth:  we want to prevent attackers from using
755 		 * DTrace to escalate an orthogonal kernel heap corruption bug
756 		 * into the ability to store to arbitrary locations in memory.
757 		 */
758 		VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
759 		    (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
760 
761 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
762 		    svar->dtsv_size)) {
763 			DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
764 			    svar->dtsv_size);
765 			return (1);
766 		}
767 	}
768 
769 	return (0);
770 }
771 
772 /*
773  * Check to see if the address is within a memory region to which a store may
774  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
775  * region.  The caller of dtrace_canstore() is responsible for performing any
776  * alignment checks that are needed before stores are actually executed.
777  */
778 static int
779 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
780     dtrace_vstate_t *vstate)
781 {
782 	return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
783 }
784 
785 /*
786  * Implementation of dtrace_canstore which communicates the upper bound of the
787  * allowed memory region.
788  */
789 static int
790 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
791     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
792 {
793 	/*
794 	 * First, check to see if the address is in scratch space...
795 	 */
796 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
797 	    mstate->dtms_scratch_size)) {
798 		DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
799 		    mstate->dtms_scratch_size);
800 		return (1);
801 	}
802 
803 	/*
804 	 * Now check to see if it's a dynamic variable.  This check will pick
805 	 * up both thread-local variables and any global dynamically-allocated
806 	 * variables.
807 	 */
808 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
809 	    vstate->dtvs_dynvars.dtds_size)) {
810 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
811 		uintptr_t base = (uintptr_t)dstate->dtds_base +
812 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
813 		uintptr_t chunkoffs;
814 		dtrace_dynvar_t *dvar;
815 
816 		/*
817 		 * Before we assume that we can store here, we need to make
818 		 * sure that it isn't in our metadata -- storing to our
819 		 * dynamic variable metadata would corrupt our state.  For
820 		 * the range to not include any dynamic variable metadata,
821 		 * it must:
822 		 *
823 		 *	(1) Start above the hash table that is at the base of
824 		 *	the dynamic variable space
825 		 *
826 		 *	(2) Have a starting chunk offset that is beyond the
827 		 *	dtrace_dynvar_t that is at the base of every chunk
828 		 *
829 		 *	(3) Not span a chunk boundary
830 		 *
831 		 *	(4) Not be in the tuple space of a dynamic variable
832 		 *
833 		 */
834 		if (addr < base)
835 			return (0);
836 
837 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
838 
839 		if (chunkoffs < sizeof (dtrace_dynvar_t))
840 			return (0);
841 
842 		if (chunkoffs + sz > dstate->dtds_chunksize)
843 			return (0);
844 
845 		dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
846 
847 		if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
848 			return (0);
849 
850 		if (chunkoffs < sizeof (dtrace_dynvar_t) +
851 		    ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
852 			return (0);
853 
854 		DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
855 		return (1);
856 	}
857 
858 	/*
859 	 * Finally, check the static local and global variables.  These checks
860 	 * take the longest, so we perform them last.
861 	 */
862 	if (dtrace_canstore_statvar(addr, sz, remain,
863 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
864 		return (1);
865 
866 	if (dtrace_canstore_statvar(addr, sz, remain,
867 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
868 		return (1);
869 
870 	return (0);
871 }
872 
873 
874 /*
875  * Convenience routine to check to see if the address is within a memory
876  * region in which a load may be issued given the user's privilege level;
877  * if not, it sets the appropriate error flags and loads 'addr' into the
878  * illegal value slot.
879  *
880  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
881  * appropriate memory access protection.
882  */
883 static int
884 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
885     dtrace_vstate_t *vstate)
886 {
887 	return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
888 }
889 
890 /*
891  * Implementation of dtrace_canload which communicates the uppoer bound of the
892  * allowed memory region.
893  */
894 static int
895 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
896     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
897 {
898 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
899 	file_t *fp;
900 
901 	/*
902 	 * If we hold the privilege to read from kernel memory, then
903 	 * everything is readable.
904 	 */
905 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
906 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
907 		return (1);
908 	}
909 
910 	/*
911 	 * You can obviously read that which you can store.
912 	 */
913 	if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
914 		return (1);
915 
916 	/*
917 	 * We're allowed to read from our own string table.
918 	 */
919 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
920 	    mstate->dtms_difo->dtdo_strlen)) {
921 		DTRACE_RANGE_REMAIN(remain, addr,
922 		    mstate->dtms_difo->dtdo_strtab,
923 		    mstate->dtms_difo->dtdo_strlen);
924 		return (1);
925 	}
926 
927 	if (vstate->dtvs_state != NULL &&
928 	    dtrace_priv_proc(vstate->dtvs_state)) {
929 		proc_t *p;
930 
931 		/*
932 		 * When we have privileges to the current process, there are
933 		 * several context-related kernel structures that are safe to
934 		 * read, even absent the privilege to read from kernel memory.
935 		 * These reads are safe because these structures contain only
936 		 * state that (1) we're permitted to read, (2) is harmless or
937 		 * (3) contains pointers to additional kernel state that we're
938 		 * not permitted to read (and as such, do not present an
939 		 * opportunity for privilege escalation).  Finally (and
940 		 * critically), because of the nature of their relation with
941 		 * the current thread context, the memory associated with these
942 		 * structures cannot change over the duration of probe context,
943 		 * and it is therefore impossible for this memory to be
944 		 * deallocated and reallocated as something else while it's
945 		 * being operated upon.
946 		 */
947 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
948 			DTRACE_RANGE_REMAIN(remain, addr, curthread,
949 			    sizeof (kthread_t));
950 			return (1);
951 		}
952 
953 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
954 		    sz, curthread->t_procp, sizeof (proc_t))) {
955 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
956 			    sizeof (proc_t));
957 			return (1);
958 		}
959 
960 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
961 		    curthread->t_cred, sizeof (cred_t))) {
962 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
963 			    sizeof (cred_t));
964 			return (1);
965 		}
966 
967 #ifdef illumos
968 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
969 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
970 			DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
971 			    sizeof (pid_t));
972 			return (1);
973 		}
974 
975 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
976 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
977 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
978 			    offsetof(cpu_t, cpu_pause_thread));
979 			return (1);
980 		}
981 #endif
982 	}
983 
984 	if ((fp = mstate->dtms_getf) != NULL) {
985 		uintptr_t psz = sizeof (void *);
986 		vnode_t *vp;
987 		vnodeops_t *op;
988 
989 		/*
990 		 * When getf() returns a file_t, the enabling is implicitly
991 		 * granted the (transient) right to read the returned file_t
992 		 * as well as the v_path and v_op->vnop_name of the underlying
993 		 * vnode.  These accesses are allowed after a successful
994 		 * getf() because the members that they refer to cannot change
995 		 * once set -- and the barrier logic in the kernel's closef()
996 		 * path assures that the file_t and its referenced vode_t
997 		 * cannot themselves be stale (that is, it impossible for
998 		 * either dtms_getf itself or its f_vnode member to reference
999 		 * freed memory).
1000 		 */
1001 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
1002 			DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
1003 			return (1);
1004 		}
1005 
1006 		if ((vp = fp->f_vnode) != NULL) {
1007 			size_t slen;
1008 #ifdef illumos
1009 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
1010 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
1011 				    psz);
1012 				return (1);
1013 			}
1014 			slen = strlen(vp->v_path) + 1;
1015 			if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
1016 				DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
1017 				    slen);
1018 				return (1);
1019 			}
1020 #endif
1021 
1022 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
1023 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
1024 				    psz);
1025 				return (1);
1026 			}
1027 
1028 #ifdef illumos
1029 			if ((op = vp->v_op) != NULL &&
1030 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
1031 				DTRACE_RANGE_REMAIN(remain, addr,
1032 				    &op->vnop_name, psz);
1033 				return (1);
1034 			}
1035 
1036 			if (op != NULL && op->vnop_name != NULL &&
1037 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
1038 			    (slen = strlen(op->vnop_name) + 1))) {
1039 				DTRACE_RANGE_REMAIN(remain, addr,
1040 				    op->vnop_name, slen);
1041 				return (1);
1042 			}
1043 #endif
1044 		}
1045 	}
1046 
1047 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1048 	*illval = addr;
1049 	return (0);
1050 }
1051 
1052 /*
1053  * Convenience routine to check to see if a given string is within a memory
1054  * region in which a load may be issued given the user's privilege level;
1055  * this exists so that we don't need to issue unnecessary dtrace_strlen()
1056  * calls in the event that the user has all privileges.
1057  */
1058 static int
1059 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
1060     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1061 {
1062 	size_t rsize;
1063 
1064 	/*
1065 	 * If we hold the privilege to read from kernel memory, then
1066 	 * everything is readable.
1067 	 */
1068 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1069 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
1070 		return (1);
1071 	}
1072 
1073 	/*
1074 	 * Even if the caller is uninterested in querying the remaining valid
1075 	 * range, it is required to ensure that the access is allowed.
1076 	 */
1077 	if (remain == NULL) {
1078 		remain = &rsize;
1079 	}
1080 	if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
1081 		size_t strsz;
1082 		/*
1083 		 * Perform the strlen after determining the length of the
1084 		 * memory region which is accessible.  This prevents timing
1085 		 * information from being used to find NULs in memory which is
1086 		 * not accessible to the caller.
1087 		 */
1088 		strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
1089 		    MIN(sz, *remain));
1090 		if (strsz <= *remain) {
1091 			return (1);
1092 		}
1093 	}
1094 
1095 	return (0);
1096 }
1097 
1098 /*
1099  * Convenience routine to check to see if a given variable is within a memory
1100  * region in which a load may be issued given the user's privilege level.
1101  */
1102 static int
1103 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
1104     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1105 {
1106 	size_t sz;
1107 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1108 
1109 	/*
1110 	 * Calculate the max size before performing any checks since even
1111 	 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1112 	 * return the max length via 'remain'.
1113 	 */
1114 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1115 		dtrace_state_t *state = vstate->dtvs_state;
1116 
1117 		if (state != NULL) {
1118 			sz = state->dts_options[DTRACEOPT_STRSIZE];
1119 		} else {
1120 			/*
1121 			 * In helper context, we have a NULL state; fall back
1122 			 * to using the system-wide default for the string size
1123 			 * in this case.
1124 			 */
1125 			sz = dtrace_strsize_default;
1126 		}
1127 	} else {
1128 		sz = type->dtdt_size;
1129 	}
1130 
1131 	/*
1132 	 * If we hold the privilege to read from kernel memory, then
1133 	 * everything is readable.
1134 	 */
1135 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1136 		DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1137 		return (1);
1138 	}
1139 
1140 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1141 		return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1142 		    vstate));
1143 	}
1144 	return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1145 	    vstate));
1146 }
1147 
1148 /*
1149  * Convert a string to a signed integer using safe loads.
1150  *
1151  * NOTE: This function uses various macros from strtolctype.h to manipulate
1152  * digit values, etc -- these have all been checked to ensure they make
1153  * no additional function calls.
1154  */
1155 static int64_t
1156 dtrace_strtoll(char *input, int base, size_t limit)
1157 {
1158 	uintptr_t pos = (uintptr_t)input;
1159 	int64_t val = 0;
1160 	int x;
1161 	boolean_t neg = B_FALSE;
1162 	char c, cc, ccc;
1163 	uintptr_t end = pos + limit;
1164 
1165 	/*
1166 	 * Consume any whitespace preceding digits.
1167 	 */
1168 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1169 		pos++;
1170 
1171 	/*
1172 	 * Handle an explicit sign if one is present.
1173 	 */
1174 	if (c == '-' || c == '+') {
1175 		if (c == '-')
1176 			neg = B_TRUE;
1177 		c = dtrace_load8(++pos);
1178 	}
1179 
1180 	/*
1181 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1182 	 * if present.
1183 	 */
1184 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1185 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1186 		pos += 2;
1187 		c = ccc;
1188 	}
1189 
1190 	/*
1191 	 * Read in contiguous digits until the first non-digit character.
1192 	 */
1193 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1194 	    c = dtrace_load8(++pos))
1195 		val = val * base + x;
1196 
1197 	return (neg ? -val : val);
1198 }
1199 
1200 /*
1201  * Compare two strings using safe loads.
1202  */
1203 static int
1204 dtrace_strncmp(char *s1, char *s2, size_t limit)
1205 {
1206 	uint8_t c1, c2;
1207 	volatile uint16_t *flags;
1208 
1209 	if (s1 == s2 || limit == 0)
1210 		return (0);
1211 
1212 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1213 
1214 	do {
1215 		if (s1 == NULL) {
1216 			c1 = '\0';
1217 		} else {
1218 			c1 = dtrace_load8((uintptr_t)s1++);
1219 		}
1220 
1221 		if (s2 == NULL) {
1222 			c2 = '\0';
1223 		} else {
1224 			c2 = dtrace_load8((uintptr_t)s2++);
1225 		}
1226 
1227 		if (c1 != c2)
1228 			return (c1 - c2);
1229 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1230 
1231 	return (0);
1232 }
1233 
1234 /*
1235  * Compute strlen(s) for a string using safe memory accesses.  The additional
1236  * len parameter is used to specify a maximum length to ensure completion.
1237  */
1238 static size_t
1239 dtrace_strlen(const char *s, size_t lim)
1240 {
1241 	uint_t len;
1242 
1243 	for (len = 0; len != lim; len++) {
1244 		if (dtrace_load8((uintptr_t)s++) == '\0')
1245 			break;
1246 	}
1247 
1248 	return (len);
1249 }
1250 
1251 /*
1252  * Check if an address falls within a toxic region.
1253  */
1254 static int
1255 dtrace_istoxic(uintptr_t kaddr, size_t size)
1256 {
1257 	uintptr_t taddr, tsize;
1258 	int i;
1259 
1260 	for (i = 0; i < dtrace_toxranges; i++) {
1261 		taddr = dtrace_toxrange[i].dtt_base;
1262 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1263 
1264 		if (kaddr - taddr < tsize) {
1265 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1266 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1267 			return (1);
1268 		}
1269 
1270 		if (taddr - kaddr < size) {
1271 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1272 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1273 			return (1);
1274 		}
1275 	}
1276 
1277 	return (0);
1278 }
1279 
1280 /*
1281  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1282  * memory specified by the DIF program.  The dst is assumed to be safe memory
1283  * that we can store to directly because it is managed by DTrace.  As with
1284  * standard bcopy, overlapping copies are handled properly.
1285  */
1286 static void
1287 dtrace_bcopy(const void *src, void *dst, size_t len)
1288 {
1289 	if (len != 0) {
1290 		uint8_t *s1 = dst;
1291 		const uint8_t *s2 = src;
1292 
1293 		if (s1 <= s2) {
1294 			do {
1295 				*s1++ = dtrace_load8((uintptr_t)s2++);
1296 			} while (--len != 0);
1297 		} else {
1298 			s2 += len;
1299 			s1 += len;
1300 
1301 			do {
1302 				*--s1 = dtrace_load8((uintptr_t)--s2);
1303 			} while (--len != 0);
1304 		}
1305 	}
1306 }
1307 
1308 /*
1309  * Copy src to dst using safe memory accesses, up to either the specified
1310  * length, or the point that a nul byte is encountered.  The src is assumed to
1311  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1312  * safe memory that we can store to directly because it is managed by DTrace.
1313  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1314  */
1315 static void
1316 dtrace_strcpy(const void *src, void *dst, size_t len)
1317 {
1318 	if (len != 0) {
1319 		uint8_t *s1 = dst, c;
1320 		const uint8_t *s2 = src;
1321 
1322 		do {
1323 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1324 		} while (--len != 0 && c != '\0');
1325 	}
1326 }
1327 
1328 /*
1329  * Copy src to dst, deriving the size and type from the specified (BYREF)
1330  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1331  * program.  The dst is assumed to be DTrace variable memory that is of the
1332  * specified type; we assume that we can store to directly.
1333  */
1334 static void
1335 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1336 {
1337 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1338 
1339 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1340 		dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1341 	} else {
1342 		dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1343 	}
1344 }
1345 
1346 /*
1347  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1348  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1349  * safe memory that we can access directly because it is managed by DTrace.
1350  */
1351 static int
1352 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1353 {
1354 	volatile uint16_t *flags;
1355 
1356 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1357 
1358 	if (s1 == s2)
1359 		return (0);
1360 
1361 	if (s1 == NULL || s2 == NULL)
1362 		return (1);
1363 
1364 	if (s1 != s2 && len != 0) {
1365 		const uint8_t *ps1 = s1;
1366 		const uint8_t *ps2 = s2;
1367 
1368 		do {
1369 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1370 				return (1);
1371 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1372 	}
1373 	return (0);
1374 }
1375 
1376 /*
1377  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1378  * is for safe DTrace-managed memory only.
1379  */
1380 static void
1381 dtrace_bzero(void *dst, size_t len)
1382 {
1383 	uchar_t *cp;
1384 
1385 	for (cp = dst; len != 0; len--)
1386 		*cp++ = 0;
1387 }
1388 
1389 static void
1390 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1391 {
1392 	uint64_t result[2];
1393 
1394 	result[0] = addend1[0] + addend2[0];
1395 	result[1] = addend1[1] + addend2[1] +
1396 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1397 
1398 	sum[0] = result[0];
1399 	sum[1] = result[1];
1400 }
1401 
1402 /*
1403  * Shift the 128-bit value in a by b. If b is positive, shift left.
1404  * If b is negative, shift right.
1405  */
1406 static void
1407 dtrace_shift_128(uint64_t *a, int b)
1408 {
1409 	uint64_t mask;
1410 
1411 	if (b == 0)
1412 		return;
1413 
1414 	if (b < 0) {
1415 		b = -b;
1416 		if (b >= 64) {
1417 			a[0] = a[1] >> (b - 64);
1418 			a[1] = 0;
1419 		} else {
1420 			a[0] >>= b;
1421 			mask = 1LL << (64 - b);
1422 			mask -= 1;
1423 			a[0] |= ((a[1] & mask) << (64 - b));
1424 			a[1] >>= b;
1425 		}
1426 	} else {
1427 		if (b >= 64) {
1428 			a[1] = a[0] << (b - 64);
1429 			a[0] = 0;
1430 		} else {
1431 			a[1] <<= b;
1432 			mask = a[0] >> (64 - b);
1433 			a[1] |= mask;
1434 			a[0] <<= b;
1435 		}
1436 	}
1437 }
1438 
1439 /*
1440  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1441  * use native multiplication on those, and then re-combine into the
1442  * resulting 128-bit value.
1443  *
1444  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1445  *     hi1 * hi2 << 64 +
1446  *     hi1 * lo2 << 32 +
1447  *     hi2 * lo1 << 32 +
1448  *     lo1 * lo2
1449  */
1450 static void
1451 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1452 {
1453 	uint64_t hi1, hi2, lo1, lo2;
1454 	uint64_t tmp[2];
1455 
1456 	hi1 = factor1 >> 32;
1457 	hi2 = factor2 >> 32;
1458 
1459 	lo1 = factor1 & DT_MASK_LO;
1460 	lo2 = factor2 & DT_MASK_LO;
1461 
1462 	product[0] = lo1 * lo2;
1463 	product[1] = hi1 * hi2;
1464 
1465 	tmp[0] = hi1 * lo2;
1466 	tmp[1] = 0;
1467 	dtrace_shift_128(tmp, 32);
1468 	dtrace_add_128(product, tmp, product);
1469 
1470 	tmp[0] = hi2 * lo1;
1471 	tmp[1] = 0;
1472 	dtrace_shift_128(tmp, 32);
1473 	dtrace_add_128(product, tmp, product);
1474 }
1475 
1476 /*
1477  * This privilege check should be used by actions and subroutines to
1478  * verify that the user credentials of the process that enabled the
1479  * invoking ECB match the target credentials
1480  */
1481 static int
1482 dtrace_priv_proc_common_user(dtrace_state_t *state)
1483 {
1484 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1485 
1486 	/*
1487 	 * We should always have a non-NULL state cred here, since if cred
1488 	 * is null (anonymous tracing), we fast-path bypass this routine.
1489 	 */
1490 	ASSERT(s_cr != NULL);
1491 
1492 	if ((cr = CRED()) != NULL &&
1493 	    s_cr->cr_uid == cr->cr_uid &&
1494 	    s_cr->cr_uid == cr->cr_ruid &&
1495 	    s_cr->cr_uid == cr->cr_suid &&
1496 	    s_cr->cr_gid == cr->cr_gid &&
1497 	    s_cr->cr_gid == cr->cr_rgid &&
1498 	    s_cr->cr_gid == cr->cr_sgid)
1499 		return (1);
1500 
1501 	return (0);
1502 }
1503 
1504 /*
1505  * This privilege check should be used by actions and subroutines to
1506  * verify that the zone of the process that enabled the invoking ECB
1507  * matches the target credentials
1508  */
1509 static int
1510 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1511 {
1512 #ifdef illumos
1513 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1514 
1515 	/*
1516 	 * We should always have a non-NULL state cred here, since if cred
1517 	 * is null (anonymous tracing), we fast-path bypass this routine.
1518 	 */
1519 	ASSERT(s_cr != NULL);
1520 
1521 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1522 		return (1);
1523 
1524 	return (0);
1525 #else
1526 	return (1);
1527 #endif
1528 }
1529 
1530 /*
1531  * This privilege check should be used by actions and subroutines to
1532  * verify that the process has not setuid or changed credentials.
1533  */
1534 static int
1535 dtrace_priv_proc_common_nocd(void)
1536 {
1537 	proc_t *proc;
1538 
1539 	if ((proc = ttoproc(curthread)) != NULL &&
1540 	    !(proc->p_flag & SNOCD))
1541 		return (1);
1542 
1543 	return (0);
1544 }
1545 
1546 static int
1547 dtrace_priv_proc_destructive(dtrace_state_t *state)
1548 {
1549 	int action = state->dts_cred.dcr_action;
1550 
1551 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1552 	    dtrace_priv_proc_common_zone(state) == 0)
1553 		goto bad;
1554 
1555 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1556 	    dtrace_priv_proc_common_user(state) == 0)
1557 		goto bad;
1558 
1559 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1560 	    dtrace_priv_proc_common_nocd() == 0)
1561 		goto bad;
1562 
1563 	return (1);
1564 
1565 bad:
1566 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1567 
1568 	return (0);
1569 }
1570 
1571 static int
1572 dtrace_priv_proc_control(dtrace_state_t *state)
1573 {
1574 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1575 		return (1);
1576 
1577 	if (dtrace_priv_proc_common_zone(state) &&
1578 	    dtrace_priv_proc_common_user(state) &&
1579 	    dtrace_priv_proc_common_nocd())
1580 		return (1);
1581 
1582 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1583 
1584 	return (0);
1585 }
1586 
1587 static int
1588 dtrace_priv_proc(dtrace_state_t *state)
1589 {
1590 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1591 		return (1);
1592 
1593 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1594 
1595 	return (0);
1596 }
1597 
1598 static int
1599 dtrace_priv_kernel(dtrace_state_t *state)
1600 {
1601 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1602 		return (1);
1603 
1604 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1605 
1606 	return (0);
1607 }
1608 
1609 static int
1610 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1611 {
1612 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1613 		return (1);
1614 
1615 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1616 
1617 	return (0);
1618 }
1619 
1620 /*
1621  * Determine if the dte_cond of the specified ECB allows for processing of
1622  * the current probe to continue.  Note that this routine may allow continued
1623  * processing, but with access(es) stripped from the mstate's dtms_access
1624  * field.
1625  */
1626 static int
1627 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1628     dtrace_ecb_t *ecb)
1629 {
1630 	dtrace_probe_t *probe = ecb->dte_probe;
1631 	dtrace_provider_t *prov = probe->dtpr_provider;
1632 	dtrace_pops_t *pops = &prov->dtpv_pops;
1633 	int mode = DTRACE_MODE_NOPRIV_DROP;
1634 
1635 	ASSERT(ecb->dte_cond);
1636 
1637 #ifdef illumos
1638 	if (pops->dtps_mode != NULL) {
1639 		mode = pops->dtps_mode(prov->dtpv_arg,
1640 		    probe->dtpr_id, probe->dtpr_arg);
1641 
1642 		ASSERT((mode & DTRACE_MODE_USER) ||
1643 		    (mode & DTRACE_MODE_KERNEL));
1644 		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1645 		    (mode & DTRACE_MODE_NOPRIV_DROP));
1646 	}
1647 
1648 	/*
1649 	 * If the dte_cond bits indicate that this consumer is only allowed to
1650 	 * see user-mode firings of this probe, call the provider's dtps_mode()
1651 	 * entry point to check that the probe was fired while in a user
1652 	 * context.  If that's not the case, use the policy specified by the
1653 	 * provider to determine if we drop the probe or merely restrict
1654 	 * operation.
1655 	 */
1656 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1657 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1658 
1659 		if (!(mode & DTRACE_MODE_USER)) {
1660 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1661 				return (0);
1662 
1663 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1664 		}
1665 	}
1666 #endif
1667 
1668 	/*
1669 	 * This is more subtle than it looks. We have to be absolutely certain
1670 	 * that CRED() isn't going to change out from under us so it's only
1671 	 * legit to examine that structure if we're in constrained situations.
1672 	 * Currently, the only times we'll this check is if a non-super-user
1673 	 * has enabled the profile or syscall providers -- providers that
1674 	 * allow visibility of all processes. For the profile case, the check
1675 	 * above will ensure that we're examining a user context.
1676 	 */
1677 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1678 		cred_t *cr;
1679 		cred_t *s_cr = state->dts_cred.dcr_cred;
1680 		proc_t *proc;
1681 
1682 		ASSERT(s_cr != NULL);
1683 
1684 		if ((cr = CRED()) == NULL ||
1685 		    s_cr->cr_uid != cr->cr_uid ||
1686 		    s_cr->cr_uid != cr->cr_ruid ||
1687 		    s_cr->cr_uid != cr->cr_suid ||
1688 		    s_cr->cr_gid != cr->cr_gid ||
1689 		    s_cr->cr_gid != cr->cr_rgid ||
1690 		    s_cr->cr_gid != cr->cr_sgid ||
1691 		    (proc = ttoproc(curthread)) == NULL ||
1692 		    (proc->p_flag & SNOCD)) {
1693 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1694 				return (0);
1695 
1696 #ifdef illumos
1697 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1698 #endif
1699 		}
1700 	}
1701 
1702 #ifdef illumos
1703 	/*
1704 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1705 	 * in our zone, check to see if our mode policy is to restrict rather
1706 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1707 	 * and DTRACE_ACCESS_ARGS
1708 	 */
1709 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1710 		cred_t *cr;
1711 		cred_t *s_cr = state->dts_cred.dcr_cred;
1712 
1713 		ASSERT(s_cr != NULL);
1714 
1715 		if ((cr = CRED()) == NULL ||
1716 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1717 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1718 				return (0);
1719 
1720 			mstate->dtms_access &=
1721 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1722 		}
1723 	}
1724 #endif
1725 
1726 	return (1);
1727 }
1728 
1729 /*
1730  * Note:  not called from probe context.  This function is called
1731  * asynchronously (and at a regular interval) from outside of probe context to
1732  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1733  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1734  */
1735 void
1736 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1737 {
1738 	dtrace_dynvar_t *dirty;
1739 	dtrace_dstate_percpu_t *dcpu;
1740 	dtrace_dynvar_t **rinsep;
1741 	int i, j, work = 0;
1742 
1743 	for (i = 0; i < NCPU; i++) {
1744 		dcpu = &dstate->dtds_percpu[i];
1745 		rinsep = &dcpu->dtdsc_rinsing;
1746 
1747 		/*
1748 		 * If the dirty list is NULL, there is no dirty work to do.
1749 		 */
1750 		if (dcpu->dtdsc_dirty == NULL)
1751 			continue;
1752 
1753 		if (dcpu->dtdsc_rinsing != NULL) {
1754 			/*
1755 			 * If the rinsing list is non-NULL, then it is because
1756 			 * this CPU was selected to accept another CPU's
1757 			 * dirty list -- and since that time, dirty buffers
1758 			 * have accumulated.  This is a highly unlikely
1759 			 * condition, but we choose to ignore the dirty
1760 			 * buffers -- they'll be picked up a future cleanse.
1761 			 */
1762 			continue;
1763 		}
1764 
1765 		if (dcpu->dtdsc_clean != NULL) {
1766 			/*
1767 			 * If the clean list is non-NULL, then we're in a
1768 			 * situation where a CPU has done deallocations (we
1769 			 * have a non-NULL dirty list) but no allocations (we
1770 			 * also have a non-NULL clean list).  We can't simply
1771 			 * move the dirty list into the clean list on this
1772 			 * CPU, yet we also don't want to allow this condition
1773 			 * to persist, lest a short clean list prevent a
1774 			 * massive dirty list from being cleaned (which in
1775 			 * turn could lead to otherwise avoidable dynamic
1776 			 * drops).  To deal with this, we look for some CPU
1777 			 * with a NULL clean list, NULL dirty list, and NULL
1778 			 * rinsing list -- and then we borrow this CPU to
1779 			 * rinse our dirty list.
1780 			 */
1781 			for (j = 0; j < NCPU; j++) {
1782 				dtrace_dstate_percpu_t *rinser;
1783 
1784 				rinser = &dstate->dtds_percpu[j];
1785 
1786 				if (rinser->dtdsc_rinsing != NULL)
1787 					continue;
1788 
1789 				if (rinser->dtdsc_dirty != NULL)
1790 					continue;
1791 
1792 				if (rinser->dtdsc_clean != NULL)
1793 					continue;
1794 
1795 				rinsep = &rinser->dtdsc_rinsing;
1796 				break;
1797 			}
1798 
1799 			if (j == NCPU) {
1800 				/*
1801 				 * We were unable to find another CPU that
1802 				 * could accept this dirty list -- we are
1803 				 * therefore unable to clean it now.
1804 				 */
1805 				dtrace_dynvar_failclean++;
1806 				continue;
1807 			}
1808 		}
1809 
1810 		work = 1;
1811 
1812 		/*
1813 		 * Atomically move the dirty list aside.
1814 		 */
1815 		do {
1816 			dirty = dcpu->dtdsc_dirty;
1817 
1818 			/*
1819 			 * Before we zap the dirty list, set the rinsing list.
1820 			 * (This allows for a potential assertion in
1821 			 * dtrace_dynvar():  if a free dynamic variable appears
1822 			 * on a hash chain, either the dirty list or the
1823 			 * rinsing list for some CPU must be non-NULL.)
1824 			 */
1825 			*rinsep = dirty;
1826 			dtrace_membar_producer();
1827 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1828 		    dirty, NULL) != dirty);
1829 	}
1830 
1831 	if (!work) {
1832 		/*
1833 		 * We have no work to do; we can simply return.
1834 		 */
1835 		return;
1836 	}
1837 
1838 	dtrace_sync();
1839 
1840 	for (i = 0; i < NCPU; i++) {
1841 		dcpu = &dstate->dtds_percpu[i];
1842 
1843 		if (dcpu->dtdsc_rinsing == NULL)
1844 			continue;
1845 
1846 		/*
1847 		 * We are now guaranteed that no hash chain contains a pointer
1848 		 * into this dirty list; we can make it clean.
1849 		 */
1850 		ASSERT(dcpu->dtdsc_clean == NULL);
1851 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1852 		dcpu->dtdsc_rinsing = NULL;
1853 	}
1854 
1855 	/*
1856 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1857 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1858 	 * This prevents a race whereby a CPU incorrectly decides that
1859 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1860 	 * after dtrace_dynvar_clean() has completed.
1861 	 */
1862 	dtrace_sync();
1863 
1864 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1865 }
1866 
1867 /*
1868  * Depending on the value of the op parameter, this function looks-up,
1869  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1870  * allocation is requested, this function will return a pointer to a
1871  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1872  * variable can be allocated.  If NULL is returned, the appropriate counter
1873  * will be incremented.
1874  */
1875 dtrace_dynvar_t *
1876 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1877     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1878     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1879 {
1880 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1881 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1882 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1883 	processorid_t me = curcpu, cpu = me;
1884 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1885 	size_t bucket, ksize;
1886 	size_t chunksize = dstate->dtds_chunksize;
1887 	uintptr_t kdata, lock, nstate;
1888 	uint_t i;
1889 
1890 	ASSERT(nkeys != 0);
1891 
1892 	/*
1893 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1894 	 * algorithm.  For the by-value portions, we perform the algorithm in
1895 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1896 	 * bit, and seems to have only a minute effect on distribution.  For
1897 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1898 	 * over each referenced byte.  It's painful to do this, but it's much
1899 	 * better than pathological hash distribution.  The efficacy of the
1900 	 * hashing algorithm (and a comparison with other algorithms) may be
1901 	 * found by running the ::dtrace_dynstat MDB dcmd.
1902 	 */
1903 	for (i = 0; i < nkeys; i++) {
1904 		if (key[i].dttk_size == 0) {
1905 			uint64_t val = key[i].dttk_value;
1906 
1907 			hashval += (val >> 48) & 0xffff;
1908 			hashval += (hashval << 10);
1909 			hashval ^= (hashval >> 6);
1910 
1911 			hashval += (val >> 32) & 0xffff;
1912 			hashval += (hashval << 10);
1913 			hashval ^= (hashval >> 6);
1914 
1915 			hashval += (val >> 16) & 0xffff;
1916 			hashval += (hashval << 10);
1917 			hashval ^= (hashval >> 6);
1918 
1919 			hashval += val & 0xffff;
1920 			hashval += (hashval << 10);
1921 			hashval ^= (hashval >> 6);
1922 		} else {
1923 			/*
1924 			 * This is incredibly painful, but it beats the hell
1925 			 * out of the alternative.
1926 			 */
1927 			uint64_t j, size = key[i].dttk_size;
1928 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1929 
1930 			if (!dtrace_canload(base, size, mstate, vstate))
1931 				break;
1932 
1933 			for (j = 0; j < size; j++) {
1934 				hashval += dtrace_load8(base + j);
1935 				hashval += (hashval << 10);
1936 				hashval ^= (hashval >> 6);
1937 			}
1938 		}
1939 	}
1940 
1941 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1942 		return (NULL);
1943 
1944 	hashval += (hashval << 3);
1945 	hashval ^= (hashval >> 11);
1946 	hashval += (hashval << 15);
1947 
1948 	/*
1949 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1950 	 * comes out to be one of our two sentinel hash values.  If this
1951 	 * actually happens, we set the hashval to be a value known to be a
1952 	 * non-sentinel value.
1953 	 */
1954 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1955 		hashval = DTRACE_DYNHASH_VALID;
1956 
1957 	/*
1958 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1959 	 * important here, tricks can be pulled to reduce it.  (However, it's
1960 	 * critical that hash collisions be kept to an absolute minimum;
1961 	 * they're much more painful than a divide.)  It's better to have a
1962 	 * solution that generates few collisions and still keeps things
1963 	 * relatively simple.
1964 	 */
1965 	bucket = hashval % dstate->dtds_hashsize;
1966 
1967 	if (op == DTRACE_DYNVAR_DEALLOC) {
1968 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1969 
1970 		for (;;) {
1971 			while ((lock = *lockp) & 1)
1972 				continue;
1973 
1974 			if (dtrace_casptr((volatile void *)lockp,
1975 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1976 				break;
1977 		}
1978 
1979 		dtrace_membar_producer();
1980 	}
1981 
1982 top:
1983 	prev = NULL;
1984 	lock = hash[bucket].dtdh_lock;
1985 
1986 	dtrace_membar_consumer();
1987 
1988 	start = hash[bucket].dtdh_chain;
1989 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1990 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1991 	    op != DTRACE_DYNVAR_DEALLOC));
1992 
1993 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1994 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1995 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1996 
1997 		if (dvar->dtdv_hashval != hashval) {
1998 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1999 				/*
2000 				 * We've reached the sink, and therefore the
2001 				 * end of the hash chain; we can kick out of
2002 				 * the loop knowing that we have seen a valid
2003 				 * snapshot of state.
2004 				 */
2005 				ASSERT(dvar->dtdv_next == NULL);
2006 				ASSERT(dvar == &dtrace_dynhash_sink);
2007 				break;
2008 			}
2009 
2010 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
2011 				/*
2012 				 * We've gone off the rails:  somewhere along
2013 				 * the line, one of the members of this hash
2014 				 * chain was deleted.  Note that we could also
2015 				 * detect this by simply letting this loop run
2016 				 * to completion, as we would eventually hit
2017 				 * the end of the dirty list.  However, we
2018 				 * want to avoid running the length of the
2019 				 * dirty list unnecessarily (it might be quite
2020 				 * long), so we catch this as early as
2021 				 * possible by detecting the hash marker.  In
2022 				 * this case, we simply set dvar to NULL and
2023 				 * break; the conditional after the loop will
2024 				 * send us back to top.
2025 				 */
2026 				dvar = NULL;
2027 				break;
2028 			}
2029 
2030 			goto next;
2031 		}
2032 
2033 		if (dtuple->dtt_nkeys != nkeys)
2034 			goto next;
2035 
2036 		for (i = 0; i < nkeys; i++, dkey++) {
2037 			if (dkey->dttk_size != key[i].dttk_size)
2038 				goto next; /* size or type mismatch */
2039 
2040 			if (dkey->dttk_size != 0) {
2041 				if (dtrace_bcmp(
2042 				    (void *)(uintptr_t)key[i].dttk_value,
2043 				    (void *)(uintptr_t)dkey->dttk_value,
2044 				    dkey->dttk_size))
2045 					goto next;
2046 			} else {
2047 				if (dkey->dttk_value != key[i].dttk_value)
2048 					goto next;
2049 			}
2050 		}
2051 
2052 		if (op != DTRACE_DYNVAR_DEALLOC)
2053 			return (dvar);
2054 
2055 		ASSERT(dvar->dtdv_next == NULL ||
2056 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
2057 
2058 		if (prev != NULL) {
2059 			ASSERT(hash[bucket].dtdh_chain != dvar);
2060 			ASSERT(start != dvar);
2061 			ASSERT(prev->dtdv_next == dvar);
2062 			prev->dtdv_next = dvar->dtdv_next;
2063 		} else {
2064 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
2065 			    start, dvar->dtdv_next) != start) {
2066 				/*
2067 				 * We have failed to atomically swing the
2068 				 * hash table head pointer, presumably because
2069 				 * of a conflicting allocation on another CPU.
2070 				 * We need to reread the hash chain and try
2071 				 * again.
2072 				 */
2073 				goto top;
2074 			}
2075 		}
2076 
2077 		dtrace_membar_producer();
2078 
2079 		/*
2080 		 * Now set the hash value to indicate that it's free.
2081 		 */
2082 		ASSERT(hash[bucket].dtdh_chain != dvar);
2083 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2084 
2085 		dtrace_membar_producer();
2086 
2087 		/*
2088 		 * Set the next pointer to point at the dirty list, and
2089 		 * atomically swing the dirty pointer to the newly freed dvar.
2090 		 */
2091 		do {
2092 			next = dcpu->dtdsc_dirty;
2093 			dvar->dtdv_next = next;
2094 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
2095 
2096 		/*
2097 		 * Finally, unlock this hash bucket.
2098 		 */
2099 		ASSERT(hash[bucket].dtdh_lock == lock);
2100 		ASSERT(lock & 1);
2101 		hash[bucket].dtdh_lock++;
2102 
2103 		return (NULL);
2104 next:
2105 		prev = dvar;
2106 		continue;
2107 	}
2108 
2109 	if (dvar == NULL) {
2110 		/*
2111 		 * If dvar is NULL, it is because we went off the rails:
2112 		 * one of the elements that we traversed in the hash chain
2113 		 * was deleted while we were traversing it.  In this case,
2114 		 * we assert that we aren't doing a dealloc (deallocs lock
2115 		 * the hash bucket to prevent themselves from racing with
2116 		 * one another), and retry the hash chain traversal.
2117 		 */
2118 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2119 		goto top;
2120 	}
2121 
2122 	if (op != DTRACE_DYNVAR_ALLOC) {
2123 		/*
2124 		 * If we are not to allocate a new variable, we want to
2125 		 * return NULL now.  Before we return, check that the value
2126 		 * of the lock word hasn't changed.  If it has, we may have
2127 		 * seen an inconsistent snapshot.
2128 		 */
2129 		if (op == DTRACE_DYNVAR_NOALLOC) {
2130 			if (hash[bucket].dtdh_lock != lock)
2131 				goto top;
2132 		} else {
2133 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2134 			ASSERT(hash[bucket].dtdh_lock == lock);
2135 			ASSERT(lock & 1);
2136 			hash[bucket].dtdh_lock++;
2137 		}
2138 
2139 		return (NULL);
2140 	}
2141 
2142 	/*
2143 	 * We need to allocate a new dynamic variable.  The size we need is the
2144 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2145 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2146 	 * the size of any referred-to data (dsize).  We then round the final
2147 	 * size up to the chunksize for allocation.
2148 	 */
2149 	for (ksize = 0, i = 0; i < nkeys; i++)
2150 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2151 
2152 	/*
2153 	 * This should be pretty much impossible, but could happen if, say,
2154 	 * strange DIF specified the tuple.  Ideally, this should be an
2155 	 * assertion and not an error condition -- but that requires that the
2156 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2157 	 * bullet-proof.  (That is, it must not be able to be fooled by
2158 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2159 	 * solving this would presumably not amount to solving the Halting
2160 	 * Problem -- but it still seems awfully hard.
2161 	 */
2162 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2163 	    ksize + dsize > chunksize) {
2164 		dcpu->dtdsc_drops++;
2165 		return (NULL);
2166 	}
2167 
2168 	nstate = DTRACE_DSTATE_EMPTY;
2169 
2170 	do {
2171 retry:
2172 		free = dcpu->dtdsc_free;
2173 
2174 		if (free == NULL) {
2175 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2176 			void *rval;
2177 
2178 			if (clean == NULL) {
2179 				/*
2180 				 * We're out of dynamic variable space on
2181 				 * this CPU.  Unless we have tried all CPUs,
2182 				 * we'll try to allocate from a different
2183 				 * CPU.
2184 				 */
2185 				switch (dstate->dtds_state) {
2186 				case DTRACE_DSTATE_CLEAN: {
2187 					void *sp = &dstate->dtds_state;
2188 
2189 					if (++cpu >= NCPU)
2190 						cpu = 0;
2191 
2192 					if (dcpu->dtdsc_dirty != NULL &&
2193 					    nstate == DTRACE_DSTATE_EMPTY)
2194 						nstate = DTRACE_DSTATE_DIRTY;
2195 
2196 					if (dcpu->dtdsc_rinsing != NULL)
2197 						nstate = DTRACE_DSTATE_RINSING;
2198 
2199 					dcpu = &dstate->dtds_percpu[cpu];
2200 
2201 					if (cpu != me)
2202 						goto retry;
2203 
2204 					(void) dtrace_cas32(sp,
2205 					    DTRACE_DSTATE_CLEAN, nstate);
2206 
2207 					/*
2208 					 * To increment the correct bean
2209 					 * counter, take another lap.
2210 					 */
2211 					goto retry;
2212 				}
2213 
2214 				case DTRACE_DSTATE_DIRTY:
2215 					dcpu->dtdsc_dirty_drops++;
2216 					break;
2217 
2218 				case DTRACE_DSTATE_RINSING:
2219 					dcpu->dtdsc_rinsing_drops++;
2220 					break;
2221 
2222 				case DTRACE_DSTATE_EMPTY:
2223 					dcpu->dtdsc_drops++;
2224 					break;
2225 				}
2226 
2227 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2228 				return (NULL);
2229 			}
2230 
2231 			/*
2232 			 * The clean list appears to be non-empty.  We want to
2233 			 * move the clean list to the free list; we start by
2234 			 * moving the clean pointer aside.
2235 			 */
2236 			if (dtrace_casptr(&dcpu->dtdsc_clean,
2237 			    clean, NULL) != clean) {
2238 				/*
2239 				 * We are in one of two situations:
2240 				 *
2241 				 *  (a)	The clean list was switched to the
2242 				 *	free list by another CPU.
2243 				 *
2244 				 *  (b)	The clean list was added to by the
2245 				 *	cleansing cyclic.
2246 				 *
2247 				 * In either of these situations, we can
2248 				 * just reattempt the free list allocation.
2249 				 */
2250 				goto retry;
2251 			}
2252 
2253 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2254 
2255 			/*
2256 			 * Now we'll move the clean list to our free list.
2257 			 * It's impossible for this to fail:  the only way
2258 			 * the free list can be updated is through this
2259 			 * code path, and only one CPU can own the clean list.
2260 			 * Thus, it would only be possible for this to fail if
2261 			 * this code were racing with dtrace_dynvar_clean().
2262 			 * (That is, if dtrace_dynvar_clean() updated the clean
2263 			 * list, and we ended up racing to update the free
2264 			 * list.)  This race is prevented by the dtrace_sync()
2265 			 * in dtrace_dynvar_clean() -- which flushes the
2266 			 * owners of the clean lists out before resetting
2267 			 * the clean lists.
2268 			 */
2269 			dcpu = &dstate->dtds_percpu[me];
2270 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2271 			ASSERT(rval == NULL);
2272 			goto retry;
2273 		}
2274 
2275 		dvar = free;
2276 		new_free = dvar->dtdv_next;
2277 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2278 
2279 	/*
2280 	 * We have now allocated a new chunk.  We copy the tuple keys into the
2281 	 * tuple array and copy any referenced key data into the data space
2282 	 * following the tuple array.  As we do this, we relocate dttk_value
2283 	 * in the final tuple to point to the key data address in the chunk.
2284 	 */
2285 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2286 	dvar->dtdv_data = (void *)(kdata + ksize);
2287 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2288 
2289 	for (i = 0; i < nkeys; i++) {
2290 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2291 		size_t kesize = key[i].dttk_size;
2292 
2293 		if (kesize != 0) {
2294 			dtrace_bcopy(
2295 			    (const void *)(uintptr_t)key[i].dttk_value,
2296 			    (void *)kdata, kesize);
2297 			dkey->dttk_value = kdata;
2298 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2299 		} else {
2300 			dkey->dttk_value = key[i].dttk_value;
2301 		}
2302 
2303 		dkey->dttk_size = kesize;
2304 	}
2305 
2306 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2307 	dvar->dtdv_hashval = hashval;
2308 	dvar->dtdv_next = start;
2309 
2310 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2311 		return (dvar);
2312 
2313 	/*
2314 	 * The cas has failed.  Either another CPU is adding an element to
2315 	 * this hash chain, or another CPU is deleting an element from this
2316 	 * hash chain.  The simplest way to deal with both of these cases
2317 	 * (though not necessarily the most efficient) is to free our
2318 	 * allocated block and re-attempt it all.  Note that the free is
2319 	 * to the dirty list and _not_ to the free list.  This is to prevent
2320 	 * races with allocators, above.
2321 	 */
2322 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2323 
2324 	dtrace_membar_producer();
2325 
2326 	do {
2327 		free = dcpu->dtdsc_dirty;
2328 		dvar->dtdv_next = free;
2329 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2330 
2331 	goto top;
2332 }
2333 
2334 /*ARGSUSED*/
2335 static void
2336 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2337 {
2338 	if ((int64_t)nval < (int64_t)*oval)
2339 		*oval = nval;
2340 }
2341 
2342 /*ARGSUSED*/
2343 static void
2344 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2345 {
2346 	if ((int64_t)nval > (int64_t)*oval)
2347 		*oval = nval;
2348 }
2349 
2350 static void
2351 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2352 {
2353 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2354 	int64_t val = (int64_t)nval;
2355 
2356 	if (val < 0) {
2357 		for (i = 0; i < zero; i++) {
2358 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2359 				quanta[i] += incr;
2360 				return;
2361 			}
2362 		}
2363 	} else {
2364 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2365 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2366 				quanta[i - 1] += incr;
2367 				return;
2368 			}
2369 		}
2370 
2371 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2372 		return;
2373 	}
2374 
2375 	ASSERT(0);
2376 }
2377 
2378 static void
2379 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2380 {
2381 	uint64_t arg = *lquanta++;
2382 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2383 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2384 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2385 	int32_t val = (int32_t)nval, level;
2386 
2387 	ASSERT(step != 0);
2388 	ASSERT(levels != 0);
2389 
2390 	if (val < base) {
2391 		/*
2392 		 * This is an underflow.
2393 		 */
2394 		lquanta[0] += incr;
2395 		return;
2396 	}
2397 
2398 	level = (val - base) / step;
2399 
2400 	if (level < levels) {
2401 		lquanta[level + 1] += incr;
2402 		return;
2403 	}
2404 
2405 	/*
2406 	 * This is an overflow.
2407 	 */
2408 	lquanta[levels + 1] += incr;
2409 }
2410 
2411 static int
2412 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2413     uint16_t high, uint16_t nsteps, int64_t value)
2414 {
2415 	int64_t this = 1, last, next;
2416 	int base = 1, order;
2417 
2418 	ASSERT(factor <= nsteps);
2419 	ASSERT(nsteps % factor == 0);
2420 
2421 	for (order = 0; order < low; order++)
2422 		this *= factor;
2423 
2424 	/*
2425 	 * If our value is less than our factor taken to the power of the
2426 	 * low order of magnitude, it goes into the zeroth bucket.
2427 	 */
2428 	if (value < (last = this))
2429 		return (0);
2430 
2431 	for (this *= factor; order <= high; order++) {
2432 		int nbuckets = this > nsteps ? nsteps : this;
2433 
2434 		if ((next = this * factor) < this) {
2435 			/*
2436 			 * We should not generally get log/linear quantizations
2437 			 * with a high magnitude that allows 64-bits to
2438 			 * overflow, but we nonetheless protect against this
2439 			 * by explicitly checking for overflow, and clamping
2440 			 * our value accordingly.
2441 			 */
2442 			value = this - 1;
2443 		}
2444 
2445 		if (value < this) {
2446 			/*
2447 			 * If our value lies within this order of magnitude,
2448 			 * determine its position by taking the offset within
2449 			 * the order of magnitude, dividing by the bucket
2450 			 * width, and adding to our (accumulated) base.
2451 			 */
2452 			return (base + (value - last) / (this / nbuckets));
2453 		}
2454 
2455 		base += nbuckets - (nbuckets / factor);
2456 		last = this;
2457 		this = next;
2458 	}
2459 
2460 	/*
2461 	 * Our value is greater than or equal to our factor taken to the
2462 	 * power of one plus the high magnitude -- return the top bucket.
2463 	 */
2464 	return (base);
2465 }
2466 
2467 static void
2468 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2469 {
2470 	uint64_t arg = *llquanta++;
2471 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2472 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2473 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2474 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2475 
2476 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2477 	    low, high, nsteps, nval)] += incr;
2478 }
2479 
2480 /*ARGSUSED*/
2481 static void
2482 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2483 {
2484 	data[0]++;
2485 	data[1] += nval;
2486 }
2487 
2488 /*ARGSUSED*/
2489 static void
2490 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2491 {
2492 	int64_t snval = (int64_t)nval;
2493 	uint64_t tmp[2];
2494 
2495 	data[0]++;
2496 	data[1] += nval;
2497 
2498 	/*
2499 	 * What we want to say here is:
2500 	 *
2501 	 * data[2] += nval * nval;
2502 	 *
2503 	 * But given that nval is 64-bit, we could easily overflow, so
2504 	 * we do this as 128-bit arithmetic.
2505 	 */
2506 	if (snval < 0)
2507 		snval = -snval;
2508 
2509 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2510 	dtrace_add_128(data + 2, tmp, data + 2);
2511 }
2512 
2513 /*ARGSUSED*/
2514 static void
2515 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2516 {
2517 	*oval = *oval + 1;
2518 }
2519 
2520 /*ARGSUSED*/
2521 static void
2522 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2523 {
2524 	*oval += nval;
2525 }
2526 
2527 /*
2528  * Aggregate given the tuple in the principal data buffer, and the aggregating
2529  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2530  * buffer is specified as the buf parameter.  This routine does not return
2531  * failure; if there is no space in the aggregation buffer, the data will be
2532  * dropped, and a corresponding counter incremented.
2533  */
2534 static void
2535 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2536     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2537 {
2538 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2539 	uint32_t i, ndx, size, fsize;
2540 	uint32_t align = sizeof (uint64_t) - 1;
2541 	dtrace_aggbuffer_t *agb;
2542 	dtrace_aggkey_t *key;
2543 	uint32_t hashval = 0, limit, isstr;
2544 	caddr_t tomax, data, kdata;
2545 	dtrace_actkind_t action;
2546 	dtrace_action_t *act;
2547 	uintptr_t offs;
2548 
2549 	if (buf == NULL)
2550 		return;
2551 
2552 	if (!agg->dtag_hasarg) {
2553 		/*
2554 		 * Currently, only quantize() and lquantize() take additional
2555 		 * arguments, and they have the same semantics:  an increment
2556 		 * value that defaults to 1 when not present.  If additional
2557 		 * aggregating actions take arguments, the setting of the
2558 		 * default argument value will presumably have to become more
2559 		 * sophisticated...
2560 		 */
2561 		arg = 1;
2562 	}
2563 
2564 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2565 	size = rec->dtrd_offset - agg->dtag_base;
2566 	fsize = size + rec->dtrd_size;
2567 
2568 	ASSERT(dbuf->dtb_tomax != NULL);
2569 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2570 
2571 	if ((tomax = buf->dtb_tomax) == NULL) {
2572 		dtrace_buffer_drop(buf);
2573 		return;
2574 	}
2575 
2576 	/*
2577 	 * The metastructure is always at the bottom of the buffer.
2578 	 */
2579 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2580 	    sizeof (dtrace_aggbuffer_t));
2581 
2582 	if (buf->dtb_offset == 0) {
2583 		/*
2584 		 * We just kludge up approximately 1/8th of the size to be
2585 		 * buckets.  If this guess ends up being routinely
2586 		 * off-the-mark, we may need to dynamically readjust this
2587 		 * based on past performance.
2588 		 */
2589 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2590 
2591 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2592 		    (uintptr_t)tomax || hashsize == 0) {
2593 			/*
2594 			 * We've been given a ludicrously small buffer;
2595 			 * increment our drop count and leave.
2596 			 */
2597 			dtrace_buffer_drop(buf);
2598 			return;
2599 		}
2600 
2601 		/*
2602 		 * And now, a pathetic attempt to try to get a an odd (or
2603 		 * perchance, a prime) hash size for better hash distribution.
2604 		 */
2605 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2606 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2607 
2608 		agb->dtagb_hashsize = hashsize;
2609 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2610 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2611 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2612 
2613 		for (i = 0; i < agb->dtagb_hashsize; i++)
2614 			agb->dtagb_hash[i] = NULL;
2615 	}
2616 
2617 	ASSERT(agg->dtag_first != NULL);
2618 	ASSERT(agg->dtag_first->dta_intuple);
2619 
2620 	/*
2621 	 * Calculate the hash value based on the key.  Note that we _don't_
2622 	 * include the aggid in the hashing (but we will store it as part of
2623 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2624 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2625 	 * gets good distribution in practice.  The efficacy of the hashing
2626 	 * algorithm (and a comparison with other algorithms) may be found by
2627 	 * running the ::dtrace_aggstat MDB dcmd.
2628 	 */
2629 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2630 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2631 		limit = i + act->dta_rec.dtrd_size;
2632 		ASSERT(limit <= size);
2633 		isstr = DTRACEACT_ISSTRING(act);
2634 
2635 		for (; i < limit; i++) {
2636 			hashval += data[i];
2637 			hashval += (hashval << 10);
2638 			hashval ^= (hashval >> 6);
2639 
2640 			if (isstr && data[i] == '\0')
2641 				break;
2642 		}
2643 	}
2644 
2645 	hashval += (hashval << 3);
2646 	hashval ^= (hashval >> 11);
2647 	hashval += (hashval << 15);
2648 
2649 	/*
2650 	 * Yes, the divide here is expensive -- but it's generally the least
2651 	 * of the performance issues given the amount of data that we iterate
2652 	 * over to compute hash values, compare data, etc.
2653 	 */
2654 	ndx = hashval % agb->dtagb_hashsize;
2655 
2656 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2657 		ASSERT((caddr_t)key >= tomax);
2658 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2659 
2660 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2661 			continue;
2662 
2663 		kdata = key->dtak_data;
2664 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2665 
2666 		for (act = agg->dtag_first; act->dta_intuple;
2667 		    act = act->dta_next) {
2668 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2669 			limit = i + act->dta_rec.dtrd_size;
2670 			ASSERT(limit <= size);
2671 			isstr = DTRACEACT_ISSTRING(act);
2672 
2673 			for (; i < limit; i++) {
2674 				if (kdata[i] != data[i])
2675 					goto next;
2676 
2677 				if (isstr && data[i] == '\0')
2678 					break;
2679 			}
2680 		}
2681 
2682 		if (action != key->dtak_action) {
2683 			/*
2684 			 * We are aggregating on the same value in the same
2685 			 * aggregation with two different aggregating actions.
2686 			 * (This should have been picked up in the compiler,
2687 			 * so we may be dealing with errant or devious DIF.)
2688 			 * This is an error condition; we indicate as much,
2689 			 * and return.
2690 			 */
2691 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2692 			return;
2693 		}
2694 
2695 		/*
2696 		 * This is a hit:  we need to apply the aggregator to
2697 		 * the value at this key.
2698 		 */
2699 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2700 		return;
2701 next:
2702 		continue;
2703 	}
2704 
2705 	/*
2706 	 * We didn't find it.  We need to allocate some zero-filled space,
2707 	 * link it into the hash table appropriately, and apply the aggregator
2708 	 * to the (zero-filled) value.
2709 	 */
2710 	offs = buf->dtb_offset;
2711 	while (offs & (align - 1))
2712 		offs += sizeof (uint32_t);
2713 
2714 	/*
2715 	 * If we don't have enough room to both allocate a new key _and_
2716 	 * its associated data, increment the drop count and return.
2717 	 */
2718 	if ((uintptr_t)tomax + offs + fsize >
2719 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2720 		dtrace_buffer_drop(buf);
2721 		return;
2722 	}
2723 
2724 	/*CONSTCOND*/
2725 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2726 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2727 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2728 
2729 	key->dtak_data = kdata = tomax + offs;
2730 	buf->dtb_offset = offs + fsize;
2731 
2732 	/*
2733 	 * Now copy the data across.
2734 	 */
2735 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2736 
2737 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2738 		kdata[i] = data[i];
2739 
2740 	/*
2741 	 * Because strings are not zeroed out by default, we need to iterate
2742 	 * looking for actions that store strings, and we need to explicitly
2743 	 * pad these strings out with zeroes.
2744 	 */
2745 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2746 		int nul;
2747 
2748 		if (!DTRACEACT_ISSTRING(act))
2749 			continue;
2750 
2751 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2752 		limit = i + act->dta_rec.dtrd_size;
2753 		ASSERT(limit <= size);
2754 
2755 		for (nul = 0; i < limit; i++) {
2756 			if (nul) {
2757 				kdata[i] = '\0';
2758 				continue;
2759 			}
2760 
2761 			if (data[i] != '\0')
2762 				continue;
2763 
2764 			nul = 1;
2765 		}
2766 	}
2767 
2768 	for (i = size; i < fsize; i++)
2769 		kdata[i] = 0;
2770 
2771 	key->dtak_hashval = hashval;
2772 	key->dtak_size = size;
2773 	key->dtak_action = action;
2774 	key->dtak_next = agb->dtagb_hash[ndx];
2775 	agb->dtagb_hash[ndx] = key;
2776 
2777 	/*
2778 	 * Finally, apply the aggregator.
2779 	 */
2780 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2781 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2782 }
2783 
2784 /*
2785  * Given consumer state, this routine finds a speculation in the INACTIVE
2786  * state and transitions it into the ACTIVE state.  If there is no speculation
2787  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2788  * incremented -- it is up to the caller to take appropriate action.
2789  */
2790 static int
2791 dtrace_speculation(dtrace_state_t *state)
2792 {
2793 	int i = 0;
2794 	dtrace_speculation_state_t curstate;
2795 	uint32_t *stat = &state->dts_speculations_unavail, count;
2796 
2797 	while (i < state->dts_nspeculations) {
2798 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2799 
2800 		curstate = spec->dtsp_state;
2801 
2802 		if (curstate != DTRACESPEC_INACTIVE) {
2803 			if (curstate == DTRACESPEC_COMMITTINGMANY ||
2804 			    curstate == DTRACESPEC_COMMITTING ||
2805 			    curstate == DTRACESPEC_DISCARDING)
2806 				stat = &state->dts_speculations_busy;
2807 			i++;
2808 			continue;
2809 		}
2810 
2811 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2812 		    curstate, DTRACESPEC_ACTIVE) == curstate)
2813 			return (i + 1);
2814 	}
2815 
2816 	/*
2817 	 * We couldn't find a speculation.  If we found as much as a single
2818 	 * busy speculation buffer, we'll attribute this failure as "busy"
2819 	 * instead of "unavail".
2820 	 */
2821 	do {
2822 		count = *stat;
2823 	} while (dtrace_cas32(stat, count, count + 1) != count);
2824 
2825 	return (0);
2826 }
2827 
2828 /*
2829  * This routine commits an active speculation.  If the specified speculation
2830  * is not in a valid state to perform a commit(), this routine will silently do
2831  * nothing.  The state of the specified speculation is transitioned according
2832  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2833  */
2834 static void
2835 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2836     dtrace_specid_t which)
2837 {
2838 	dtrace_speculation_t *spec;
2839 	dtrace_buffer_t *src, *dest;
2840 	uintptr_t daddr, saddr, dlimit, slimit;
2841 	dtrace_speculation_state_t curstate, new = 0;
2842 	intptr_t offs;
2843 	uint64_t timestamp;
2844 
2845 	if (which == 0)
2846 		return;
2847 
2848 	if (which > state->dts_nspeculations) {
2849 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2850 		return;
2851 	}
2852 
2853 	spec = &state->dts_speculations[which - 1];
2854 	src = &spec->dtsp_buffer[cpu];
2855 	dest = &state->dts_buffer[cpu];
2856 
2857 	do {
2858 		curstate = spec->dtsp_state;
2859 
2860 		if (curstate == DTRACESPEC_COMMITTINGMANY)
2861 			break;
2862 
2863 		switch (curstate) {
2864 		case DTRACESPEC_INACTIVE:
2865 		case DTRACESPEC_DISCARDING:
2866 			return;
2867 
2868 		case DTRACESPEC_COMMITTING:
2869 			/*
2870 			 * This is only possible if we are (a) commit()'ing
2871 			 * without having done a prior speculate() on this CPU
2872 			 * and (b) racing with another commit() on a different
2873 			 * CPU.  There's nothing to do -- we just assert that
2874 			 * our offset is 0.
2875 			 */
2876 			ASSERT(src->dtb_offset == 0);
2877 			return;
2878 
2879 		case DTRACESPEC_ACTIVE:
2880 			new = DTRACESPEC_COMMITTING;
2881 			break;
2882 
2883 		case DTRACESPEC_ACTIVEONE:
2884 			/*
2885 			 * This speculation is active on one CPU.  If our
2886 			 * buffer offset is non-zero, we know that the one CPU
2887 			 * must be us.  Otherwise, we are committing on a
2888 			 * different CPU from the speculate(), and we must
2889 			 * rely on being asynchronously cleaned.
2890 			 */
2891 			if (src->dtb_offset != 0) {
2892 				new = DTRACESPEC_COMMITTING;
2893 				break;
2894 			}
2895 			/*FALLTHROUGH*/
2896 
2897 		case DTRACESPEC_ACTIVEMANY:
2898 			new = DTRACESPEC_COMMITTINGMANY;
2899 			break;
2900 
2901 		default:
2902 			ASSERT(0);
2903 		}
2904 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2905 	    curstate, new) != curstate);
2906 
2907 	/*
2908 	 * We have set the state to indicate that we are committing this
2909 	 * speculation.  Now reserve the necessary space in the destination
2910 	 * buffer.
2911 	 */
2912 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2913 	    sizeof (uint64_t), state, NULL)) < 0) {
2914 		dtrace_buffer_drop(dest);
2915 		goto out;
2916 	}
2917 
2918 	/*
2919 	 * We have sufficient space to copy the speculative buffer into the
2920 	 * primary buffer.  First, modify the speculative buffer, filling
2921 	 * in the timestamp of all entries with the curstate time.  The data
2922 	 * must have the commit() time rather than the time it was traced,
2923 	 * so that all entries in the primary buffer are in timestamp order.
2924 	 */
2925 	timestamp = dtrace_gethrtime();
2926 	saddr = (uintptr_t)src->dtb_tomax;
2927 	slimit = saddr + src->dtb_offset;
2928 	while (saddr < slimit) {
2929 		size_t size;
2930 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2931 
2932 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2933 			saddr += sizeof (dtrace_epid_t);
2934 			continue;
2935 		}
2936 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2937 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2938 
2939 		ASSERT3U(saddr + size, <=, slimit);
2940 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2941 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2942 
2943 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2944 
2945 		saddr += size;
2946 	}
2947 
2948 	/*
2949 	 * Copy the buffer across.  (Note that this is a
2950 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2951 	 * a serious performance issue, a high-performance DTrace-specific
2952 	 * bcopy() should obviously be invented.)
2953 	 */
2954 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2955 	dlimit = daddr + src->dtb_offset;
2956 	saddr = (uintptr_t)src->dtb_tomax;
2957 
2958 	/*
2959 	 * First, the aligned portion.
2960 	 */
2961 	while (dlimit - daddr >= sizeof (uint64_t)) {
2962 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2963 
2964 		daddr += sizeof (uint64_t);
2965 		saddr += sizeof (uint64_t);
2966 	}
2967 
2968 	/*
2969 	 * Now any left-over bit...
2970 	 */
2971 	while (dlimit - daddr)
2972 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2973 
2974 	/*
2975 	 * Finally, commit the reserved space in the destination buffer.
2976 	 */
2977 	dest->dtb_offset = offs + src->dtb_offset;
2978 
2979 out:
2980 	/*
2981 	 * If we're lucky enough to be the only active CPU on this speculation
2982 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2983 	 */
2984 	if (curstate == DTRACESPEC_ACTIVE ||
2985 	    (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2986 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2987 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2988 
2989 		ASSERT(rval == DTRACESPEC_COMMITTING);
2990 	}
2991 
2992 	src->dtb_offset = 0;
2993 	src->dtb_xamot_drops += src->dtb_drops;
2994 	src->dtb_drops = 0;
2995 }
2996 
2997 /*
2998  * This routine discards an active speculation.  If the specified speculation
2999  * is not in a valid state to perform a discard(), this routine will silently
3000  * do nothing.  The state of the specified speculation is transitioned
3001  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
3002  */
3003 static void
3004 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
3005     dtrace_specid_t which)
3006 {
3007 	dtrace_speculation_t *spec;
3008 	dtrace_speculation_state_t curstate, new = 0;
3009 	dtrace_buffer_t *buf;
3010 
3011 	if (which == 0)
3012 		return;
3013 
3014 	if (which > state->dts_nspeculations) {
3015 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3016 		return;
3017 	}
3018 
3019 	spec = &state->dts_speculations[which - 1];
3020 	buf = &spec->dtsp_buffer[cpu];
3021 
3022 	do {
3023 		curstate = spec->dtsp_state;
3024 
3025 		switch (curstate) {
3026 		case DTRACESPEC_INACTIVE:
3027 		case DTRACESPEC_COMMITTINGMANY:
3028 		case DTRACESPEC_COMMITTING:
3029 		case DTRACESPEC_DISCARDING:
3030 			return;
3031 
3032 		case DTRACESPEC_ACTIVE:
3033 		case DTRACESPEC_ACTIVEMANY:
3034 			new = DTRACESPEC_DISCARDING;
3035 			break;
3036 
3037 		case DTRACESPEC_ACTIVEONE:
3038 			if (buf->dtb_offset != 0) {
3039 				new = DTRACESPEC_INACTIVE;
3040 			} else {
3041 				new = DTRACESPEC_DISCARDING;
3042 			}
3043 			break;
3044 
3045 		default:
3046 			ASSERT(0);
3047 		}
3048 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3049 	    curstate, new) != curstate);
3050 
3051 	buf->dtb_offset = 0;
3052 	buf->dtb_drops = 0;
3053 }
3054 
3055 /*
3056  * Note:  not called from probe context.  This function is called
3057  * asynchronously from cross call context to clean any speculations that are
3058  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
3059  * transitioned back to the INACTIVE state until all CPUs have cleaned the
3060  * speculation.
3061  */
3062 static void
3063 dtrace_speculation_clean_here(dtrace_state_t *state)
3064 {
3065 	dtrace_icookie_t cookie;
3066 	processorid_t cpu = curcpu;
3067 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
3068 	dtrace_specid_t i;
3069 
3070 	cookie = dtrace_interrupt_disable();
3071 
3072 	if (dest->dtb_tomax == NULL) {
3073 		dtrace_interrupt_enable(cookie);
3074 		return;
3075 	}
3076 
3077 	for (i = 0; i < state->dts_nspeculations; i++) {
3078 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3079 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
3080 
3081 		if (src->dtb_tomax == NULL)
3082 			continue;
3083 
3084 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
3085 			src->dtb_offset = 0;
3086 			continue;
3087 		}
3088 
3089 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3090 			continue;
3091 
3092 		if (src->dtb_offset == 0)
3093 			continue;
3094 
3095 		dtrace_speculation_commit(state, cpu, i + 1);
3096 	}
3097 
3098 	dtrace_interrupt_enable(cookie);
3099 }
3100 
3101 /*
3102  * Note:  not called from probe context.  This function is called
3103  * asynchronously (and at a regular interval) to clean any speculations that
3104  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
3105  * is work to be done, it cross calls all CPUs to perform that work;
3106  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3107  * INACTIVE state until they have been cleaned by all CPUs.
3108  */
3109 static void
3110 dtrace_speculation_clean(dtrace_state_t *state)
3111 {
3112 	int work = 0, rv;
3113 	dtrace_specid_t i;
3114 
3115 	for (i = 0; i < state->dts_nspeculations; i++) {
3116 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3117 
3118 		ASSERT(!spec->dtsp_cleaning);
3119 
3120 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3121 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3122 			continue;
3123 
3124 		work++;
3125 		spec->dtsp_cleaning = 1;
3126 	}
3127 
3128 	if (!work)
3129 		return;
3130 
3131 	dtrace_xcall(DTRACE_CPUALL,
3132 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3133 
3134 	/*
3135 	 * We now know that all CPUs have committed or discarded their
3136 	 * speculation buffers, as appropriate.  We can now set the state
3137 	 * to inactive.
3138 	 */
3139 	for (i = 0; i < state->dts_nspeculations; i++) {
3140 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3141 		dtrace_speculation_state_t curstate, new;
3142 
3143 		if (!spec->dtsp_cleaning)
3144 			continue;
3145 
3146 		curstate = spec->dtsp_state;
3147 		ASSERT(curstate == DTRACESPEC_DISCARDING ||
3148 		    curstate == DTRACESPEC_COMMITTINGMANY);
3149 
3150 		new = DTRACESPEC_INACTIVE;
3151 
3152 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new);
3153 		ASSERT(rv == curstate);
3154 		spec->dtsp_cleaning = 0;
3155 	}
3156 }
3157 
3158 /*
3159  * Called as part of a speculate() to get the speculative buffer associated
3160  * with a given speculation.  Returns NULL if the specified speculation is not
3161  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3162  * the active CPU is not the specified CPU -- the speculation will be
3163  * atomically transitioned into the ACTIVEMANY state.
3164  */
3165 static dtrace_buffer_t *
3166 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3167     dtrace_specid_t which)
3168 {
3169 	dtrace_speculation_t *spec;
3170 	dtrace_speculation_state_t curstate, new = 0;
3171 	dtrace_buffer_t *buf;
3172 
3173 	if (which == 0)
3174 		return (NULL);
3175 
3176 	if (which > state->dts_nspeculations) {
3177 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3178 		return (NULL);
3179 	}
3180 
3181 	spec = &state->dts_speculations[which - 1];
3182 	buf = &spec->dtsp_buffer[cpuid];
3183 
3184 	do {
3185 		curstate = spec->dtsp_state;
3186 
3187 		switch (curstate) {
3188 		case DTRACESPEC_INACTIVE:
3189 		case DTRACESPEC_COMMITTINGMANY:
3190 		case DTRACESPEC_DISCARDING:
3191 			return (NULL);
3192 
3193 		case DTRACESPEC_COMMITTING:
3194 			ASSERT(buf->dtb_offset == 0);
3195 			return (NULL);
3196 
3197 		case DTRACESPEC_ACTIVEONE:
3198 			/*
3199 			 * This speculation is currently active on one CPU.
3200 			 * Check the offset in the buffer; if it's non-zero,
3201 			 * that CPU must be us (and we leave the state alone).
3202 			 * If it's zero, assume that we're starting on a new
3203 			 * CPU -- and change the state to indicate that the
3204 			 * speculation is active on more than one CPU.
3205 			 */
3206 			if (buf->dtb_offset != 0)
3207 				return (buf);
3208 
3209 			new = DTRACESPEC_ACTIVEMANY;
3210 			break;
3211 
3212 		case DTRACESPEC_ACTIVEMANY:
3213 			return (buf);
3214 
3215 		case DTRACESPEC_ACTIVE:
3216 			new = DTRACESPEC_ACTIVEONE;
3217 			break;
3218 
3219 		default:
3220 			ASSERT(0);
3221 		}
3222 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3223 	    curstate, new) != curstate);
3224 
3225 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3226 	return (buf);
3227 }
3228 
3229 /*
3230  * Return a string.  In the event that the user lacks the privilege to access
3231  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3232  * don't fail access checking.
3233  *
3234  * dtrace_dif_variable() uses this routine as a helper for various
3235  * builtin values such as 'execname' and 'probefunc.'
3236  */
3237 uintptr_t
3238 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3239     dtrace_mstate_t *mstate)
3240 {
3241 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3242 	uintptr_t ret;
3243 	size_t strsz;
3244 
3245 	/*
3246 	 * The easy case: this probe is allowed to read all of memory, so
3247 	 * we can just return this as a vanilla pointer.
3248 	 */
3249 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3250 		return (addr);
3251 
3252 	/*
3253 	 * This is the tougher case: we copy the string in question from
3254 	 * kernel memory into scratch memory and return it that way: this
3255 	 * ensures that we won't trip up when access checking tests the
3256 	 * BYREF return value.
3257 	 */
3258 	strsz = dtrace_strlen((char *)addr, size) + 1;
3259 
3260 	if (mstate->dtms_scratch_ptr + strsz >
3261 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3262 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3263 		return (0);
3264 	}
3265 
3266 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3267 	    strsz);
3268 	ret = mstate->dtms_scratch_ptr;
3269 	mstate->dtms_scratch_ptr += strsz;
3270 	return (ret);
3271 }
3272 
3273 /*
3274  * Return a string from a memoy address which is known to have one or
3275  * more concatenated, individually zero terminated, sub-strings.
3276  * In the event that the user lacks the privilege to access
3277  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3278  * don't fail access checking.
3279  *
3280  * dtrace_dif_variable() uses this routine as a helper for various
3281  * builtin values such as 'execargs'.
3282  */
3283 static uintptr_t
3284 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3285     dtrace_mstate_t *mstate)
3286 {
3287 	char *p;
3288 	size_t i;
3289 	uintptr_t ret;
3290 
3291 	if (mstate->dtms_scratch_ptr + strsz >
3292 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3293 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3294 		return (0);
3295 	}
3296 
3297 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3298 	    strsz);
3299 
3300 	/* Replace sub-string termination characters with a space. */
3301 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3302 	    p++, i++)
3303 		if (*p == '\0')
3304 			*p = ' ';
3305 
3306 	ret = mstate->dtms_scratch_ptr;
3307 	mstate->dtms_scratch_ptr += strsz;
3308 	return (ret);
3309 }
3310 
3311 /*
3312  * This function implements the DIF emulator's variable lookups.  The emulator
3313  * passes a reserved variable identifier and optional built-in array index.
3314  */
3315 static uint64_t
3316 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3317     uint64_t ndx)
3318 {
3319 	/*
3320 	 * If we're accessing one of the uncached arguments, we'll turn this
3321 	 * into a reference in the args array.
3322 	 */
3323 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3324 		ndx = v - DIF_VAR_ARG0;
3325 		v = DIF_VAR_ARGS;
3326 	}
3327 
3328 	switch (v) {
3329 	case DIF_VAR_ARGS:
3330 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3331 		if (ndx >= sizeof (mstate->dtms_arg) /
3332 		    sizeof (mstate->dtms_arg[0])) {
3333 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3334 			dtrace_provider_t *pv;
3335 			uint64_t val;
3336 
3337 			pv = mstate->dtms_probe->dtpr_provider;
3338 			if (pv->dtpv_pops.dtps_getargval != NULL)
3339 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3340 				    mstate->dtms_probe->dtpr_id,
3341 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3342 			else
3343 				val = dtrace_getarg(ndx, aframes);
3344 
3345 			/*
3346 			 * This is regrettably required to keep the compiler
3347 			 * from tail-optimizing the call to dtrace_getarg().
3348 			 * The condition always evaluates to true, but the
3349 			 * compiler has no way of figuring that out a priori.
3350 			 * (None of this would be necessary if the compiler
3351 			 * could be relied upon to _always_ tail-optimize
3352 			 * the call to dtrace_getarg() -- but it can't.)
3353 			 */
3354 			if (mstate->dtms_probe != NULL)
3355 				return (val);
3356 
3357 			ASSERT(0);
3358 		}
3359 
3360 		return (mstate->dtms_arg[ndx]);
3361 
3362 #ifdef illumos
3363 	case DIF_VAR_UREGS: {
3364 		klwp_t *lwp;
3365 
3366 		if (!dtrace_priv_proc(state))
3367 			return (0);
3368 
3369 		if ((lwp = curthread->t_lwp) == NULL) {
3370 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3371 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3372 			return (0);
3373 		}
3374 
3375 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3376 		return (0);
3377 	}
3378 #else
3379 	case DIF_VAR_UREGS: {
3380 		struct trapframe *tframe;
3381 
3382 		if (!dtrace_priv_proc(state))
3383 			return (0);
3384 
3385 		if ((tframe = curthread->td_frame) == NULL) {
3386 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3387 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3388 			return (0);
3389 		}
3390 
3391 		return (dtrace_getreg(tframe, ndx));
3392 	}
3393 #endif
3394 
3395 	case DIF_VAR_CURTHREAD:
3396 		if (!dtrace_priv_proc(state))
3397 			return (0);
3398 		return ((uint64_t)(uintptr_t)curthread);
3399 
3400 	case DIF_VAR_TIMESTAMP:
3401 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3402 			mstate->dtms_timestamp = dtrace_gethrtime();
3403 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3404 		}
3405 		return (mstate->dtms_timestamp);
3406 
3407 	case DIF_VAR_VTIMESTAMP:
3408 		ASSERT(dtrace_vtime_references != 0);
3409 		return (curthread->t_dtrace_vtime);
3410 
3411 	case DIF_VAR_WALLTIMESTAMP:
3412 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3413 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3414 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3415 		}
3416 		return (mstate->dtms_walltimestamp);
3417 
3418 #ifdef illumos
3419 	case DIF_VAR_IPL:
3420 		if (!dtrace_priv_kernel(state))
3421 			return (0);
3422 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3423 			mstate->dtms_ipl = dtrace_getipl();
3424 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3425 		}
3426 		return (mstate->dtms_ipl);
3427 #endif
3428 
3429 	case DIF_VAR_EPID:
3430 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3431 		return (mstate->dtms_epid);
3432 
3433 	case DIF_VAR_ID:
3434 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3435 		return (mstate->dtms_probe->dtpr_id);
3436 
3437 	case DIF_VAR_STACKDEPTH:
3438 		if (!dtrace_priv_kernel(state))
3439 			return (0);
3440 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3441 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3442 
3443 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3444 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3445 		}
3446 		return (mstate->dtms_stackdepth);
3447 
3448 	case DIF_VAR_USTACKDEPTH:
3449 		if (!dtrace_priv_proc(state))
3450 			return (0);
3451 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3452 			/*
3453 			 * See comment in DIF_VAR_PID.
3454 			 */
3455 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3456 			    CPU_ON_INTR(CPU)) {
3457 				mstate->dtms_ustackdepth = 0;
3458 			} else {
3459 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3460 				mstate->dtms_ustackdepth =
3461 				    dtrace_getustackdepth();
3462 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3463 			}
3464 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3465 		}
3466 		return (mstate->dtms_ustackdepth);
3467 
3468 	case DIF_VAR_CALLER:
3469 		if (!dtrace_priv_kernel(state))
3470 			return (0);
3471 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3472 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3473 
3474 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3475 				/*
3476 				 * If this is an unanchored probe, we are
3477 				 * required to go through the slow path:
3478 				 * dtrace_caller() only guarantees correct
3479 				 * results for anchored probes.
3480 				 */
3481 				pc_t caller[2] = {0, 0};
3482 
3483 				dtrace_getpcstack(caller, 2, aframes,
3484 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3485 				mstate->dtms_caller = caller[1];
3486 			} else if ((mstate->dtms_caller =
3487 			    dtrace_caller(aframes)) == -1) {
3488 				/*
3489 				 * We have failed to do this the quick way;
3490 				 * we must resort to the slower approach of
3491 				 * calling dtrace_getpcstack().
3492 				 */
3493 				pc_t caller = 0;
3494 
3495 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3496 				mstate->dtms_caller = caller;
3497 			}
3498 
3499 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3500 		}
3501 		return (mstate->dtms_caller);
3502 
3503 	case DIF_VAR_UCALLER:
3504 		if (!dtrace_priv_proc(state))
3505 			return (0);
3506 
3507 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3508 			uint64_t ustack[3];
3509 
3510 			/*
3511 			 * dtrace_getupcstack() fills in the first uint64_t
3512 			 * with the current PID.  The second uint64_t will
3513 			 * be the program counter at user-level.  The third
3514 			 * uint64_t will contain the caller, which is what
3515 			 * we're after.
3516 			 */
3517 			ustack[2] = 0;
3518 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3519 			dtrace_getupcstack(ustack, 3);
3520 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3521 			mstate->dtms_ucaller = ustack[2];
3522 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3523 		}
3524 
3525 		return (mstate->dtms_ucaller);
3526 
3527 	case DIF_VAR_PROBEPROV:
3528 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3529 		return (dtrace_dif_varstr(
3530 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3531 		    state, mstate));
3532 
3533 	case DIF_VAR_PROBEMOD:
3534 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3535 		return (dtrace_dif_varstr(
3536 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3537 		    state, mstate));
3538 
3539 	case DIF_VAR_PROBEFUNC:
3540 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3541 		return (dtrace_dif_varstr(
3542 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3543 		    state, mstate));
3544 
3545 	case DIF_VAR_PROBENAME:
3546 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3547 		return (dtrace_dif_varstr(
3548 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3549 		    state, mstate));
3550 
3551 	case DIF_VAR_PID:
3552 		if (!dtrace_priv_proc(state))
3553 			return (0);
3554 
3555 #ifdef illumos
3556 		/*
3557 		 * Note that we are assuming that an unanchored probe is
3558 		 * always due to a high-level interrupt.  (And we're assuming
3559 		 * that there is only a single high level interrupt.)
3560 		 */
3561 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3562 			return (pid0.pid_id);
3563 
3564 		/*
3565 		 * It is always safe to dereference one's own t_procp pointer:
3566 		 * it always points to a valid, allocated proc structure.
3567 		 * Further, it is always safe to dereference the p_pidp member
3568 		 * of one's own proc structure.  (These are truisms becuase
3569 		 * threads and processes don't clean up their own state --
3570 		 * they leave that task to whomever reaps them.)
3571 		 */
3572 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3573 #else
3574 		return ((uint64_t)curproc->p_pid);
3575 #endif
3576 
3577 	case DIF_VAR_PPID:
3578 		if (!dtrace_priv_proc(state))
3579 			return (0);
3580 
3581 #ifdef illumos
3582 		/*
3583 		 * See comment in DIF_VAR_PID.
3584 		 */
3585 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3586 			return (pid0.pid_id);
3587 
3588 		/*
3589 		 * It is always safe to dereference one's own t_procp pointer:
3590 		 * it always points to a valid, allocated proc structure.
3591 		 * (This is true because threads don't clean up their own
3592 		 * state -- they leave that task to whomever reaps them.)
3593 		 */
3594 		return ((uint64_t)curthread->t_procp->p_ppid);
3595 #else
3596 		if (curproc->p_pid == proc0.p_pid)
3597 			return (curproc->p_pid);
3598 		else
3599 			return (curproc->p_pptr->p_pid);
3600 #endif
3601 
3602 	case DIF_VAR_TID:
3603 #ifdef illumos
3604 		/*
3605 		 * See comment in DIF_VAR_PID.
3606 		 */
3607 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3608 			return (0);
3609 #endif
3610 
3611 		return ((uint64_t)curthread->t_tid);
3612 
3613 	case DIF_VAR_EXECARGS: {
3614 		struct pargs *p_args = curthread->td_proc->p_args;
3615 
3616 		if (p_args == NULL)
3617 			return(0);
3618 
3619 		return (dtrace_dif_varstrz(
3620 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3621 	}
3622 
3623 	case DIF_VAR_EXECNAME:
3624 #ifdef illumos
3625 		if (!dtrace_priv_proc(state))
3626 			return (0);
3627 
3628 		/*
3629 		 * See comment in DIF_VAR_PID.
3630 		 */
3631 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3632 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3633 
3634 		/*
3635 		 * It is always safe to dereference one's own t_procp pointer:
3636 		 * it always points to a valid, allocated proc structure.
3637 		 * (This is true because threads don't clean up their own
3638 		 * state -- they leave that task to whomever reaps them.)
3639 		 */
3640 		return (dtrace_dif_varstr(
3641 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3642 		    state, mstate));
3643 #else
3644 		return (dtrace_dif_varstr(
3645 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3646 #endif
3647 
3648 	case DIF_VAR_ZONENAME:
3649 #ifdef illumos
3650 		if (!dtrace_priv_proc(state))
3651 			return (0);
3652 
3653 		/*
3654 		 * See comment in DIF_VAR_PID.
3655 		 */
3656 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3657 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3658 
3659 		/*
3660 		 * It is always safe to dereference one's own t_procp pointer:
3661 		 * it always points to a valid, allocated proc structure.
3662 		 * (This is true because threads don't clean up their own
3663 		 * state -- they leave that task to whomever reaps them.)
3664 		 */
3665 		return (dtrace_dif_varstr(
3666 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3667 		    state, mstate));
3668 #elif defined(__FreeBSD__)
3669 	/*
3670 	 * On FreeBSD, we introduce compatibility to zonename by falling through
3671 	 * into jailname.
3672 	 */
3673 	case DIF_VAR_JAILNAME:
3674 		if (!dtrace_priv_kernel(state))
3675 			return (0);
3676 
3677 		return (dtrace_dif_varstr(
3678 		    (uintptr_t)curthread->td_ucred->cr_prison->pr_name,
3679 		    state, mstate));
3680 
3681 	case DIF_VAR_JID:
3682 		if (!dtrace_priv_kernel(state))
3683 			return (0);
3684 
3685 		return ((uint64_t)curthread->td_ucred->cr_prison->pr_id);
3686 #else
3687 		return (0);
3688 #endif
3689 
3690 	case DIF_VAR_UID:
3691 		if (!dtrace_priv_proc(state))
3692 			return (0);
3693 
3694 #ifdef illumos
3695 		/*
3696 		 * See comment in DIF_VAR_PID.
3697 		 */
3698 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3699 			return ((uint64_t)p0.p_cred->cr_uid);
3700 
3701 		/*
3702 		 * It is always safe to dereference one's own t_procp pointer:
3703 		 * it always points to a valid, allocated proc structure.
3704 		 * (This is true because threads don't clean up their own
3705 		 * state -- they leave that task to whomever reaps them.)
3706 		 *
3707 		 * Additionally, it is safe to dereference one's own process
3708 		 * credential, since this is never NULL after process birth.
3709 		 */
3710 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3711 #else
3712 		return ((uint64_t)curthread->td_ucred->cr_uid);
3713 #endif
3714 
3715 	case DIF_VAR_GID:
3716 		if (!dtrace_priv_proc(state))
3717 			return (0);
3718 
3719 #ifdef illumos
3720 		/*
3721 		 * See comment in DIF_VAR_PID.
3722 		 */
3723 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3724 			return ((uint64_t)p0.p_cred->cr_gid);
3725 
3726 		/*
3727 		 * It is always safe to dereference one's own t_procp pointer:
3728 		 * it always points to a valid, allocated proc structure.
3729 		 * (This is true because threads don't clean up their own
3730 		 * state -- they leave that task to whomever reaps them.)
3731 		 *
3732 		 * Additionally, it is safe to dereference one's own process
3733 		 * credential, since this is never NULL after process birth.
3734 		 */
3735 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3736 #else
3737 		return ((uint64_t)curthread->td_ucred->cr_gid);
3738 #endif
3739 
3740 	case DIF_VAR_ERRNO: {
3741 #ifdef illumos
3742 		klwp_t *lwp;
3743 		if (!dtrace_priv_proc(state))
3744 			return (0);
3745 
3746 		/*
3747 		 * See comment in DIF_VAR_PID.
3748 		 */
3749 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3750 			return (0);
3751 
3752 		/*
3753 		 * It is always safe to dereference one's own t_lwp pointer in
3754 		 * the event that this pointer is non-NULL.  (This is true
3755 		 * because threads and lwps don't clean up their own state --
3756 		 * they leave that task to whomever reaps them.)
3757 		 */
3758 		if ((lwp = curthread->t_lwp) == NULL)
3759 			return (0);
3760 
3761 		return ((uint64_t)lwp->lwp_errno);
3762 #else
3763 		return (curthread->td_errno);
3764 #endif
3765 	}
3766 #ifndef illumos
3767 	case DIF_VAR_CPU: {
3768 		return curcpu;
3769 	}
3770 #endif
3771 	default:
3772 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3773 		return (0);
3774 	}
3775 }
3776 
3777 
3778 typedef enum dtrace_json_state {
3779 	DTRACE_JSON_REST = 1,
3780 	DTRACE_JSON_OBJECT,
3781 	DTRACE_JSON_STRING,
3782 	DTRACE_JSON_STRING_ESCAPE,
3783 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3784 	DTRACE_JSON_COLON,
3785 	DTRACE_JSON_COMMA,
3786 	DTRACE_JSON_VALUE,
3787 	DTRACE_JSON_IDENTIFIER,
3788 	DTRACE_JSON_NUMBER,
3789 	DTRACE_JSON_NUMBER_FRAC,
3790 	DTRACE_JSON_NUMBER_EXP,
3791 	DTRACE_JSON_COLLECT_OBJECT
3792 } dtrace_json_state_t;
3793 
3794 /*
3795  * This function possesses just enough knowledge about JSON to extract a single
3796  * value from a JSON string and store it in the scratch buffer.  It is able
3797  * to extract nested object values, and members of arrays by index.
3798  *
3799  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3800  * be looked up as we descend into the object tree.  e.g.
3801  *
3802  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3803  *       with nelems = 5.
3804  *
3805  * The run time of this function must be bounded above by strsize to limit the
3806  * amount of work done in probe context.  As such, it is implemented as a
3807  * simple state machine, reading one character at a time using safe loads
3808  * until we find the requested element, hit a parsing error or run off the
3809  * end of the object or string.
3810  *
3811  * As there is no way for a subroutine to return an error without interrupting
3812  * clause execution, we simply return NULL in the event of a missing key or any
3813  * other error condition.  Each NULL return in this function is commented with
3814  * the error condition it represents -- parsing or otherwise.
3815  *
3816  * The set of states for the state machine closely matches the JSON
3817  * specification (http://json.org/).  Briefly:
3818  *
3819  *   DTRACE_JSON_REST:
3820  *     Skip whitespace until we find either a top-level Object, moving
3821  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3822  *
3823  *   DTRACE_JSON_OBJECT:
3824  *     Locate the next key String in an Object.  Sets a flag to denote
3825  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3826  *
3827  *   DTRACE_JSON_COLON:
3828  *     Skip whitespace until we find the colon that separates key Strings
3829  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3830  *
3831  *   DTRACE_JSON_VALUE:
3832  *     Detects the type of the next value (String, Number, Identifier, Object
3833  *     or Array) and routes to the states that process that type.  Here we also
3834  *     deal with the element selector list if we are requested to traverse down
3835  *     into the object tree.
3836  *
3837  *   DTRACE_JSON_COMMA:
3838  *     Skip whitespace until we find the comma that separates key-value pairs
3839  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3840  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3841  *     states return to this state at the end of their value, unless otherwise
3842  *     noted.
3843  *
3844  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3845  *     Processes a Number literal from the JSON, including any exponent
3846  *     component that may be present.  Numbers are returned as strings, which
3847  *     may be passed to strtoll() if an integer is required.
3848  *
3849  *   DTRACE_JSON_IDENTIFIER:
3850  *     Processes a "true", "false" or "null" literal in the JSON.
3851  *
3852  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3853  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3854  *     Processes a String literal from the JSON, whether the String denotes
3855  *     a key, a value or part of a larger Object.  Handles all escape sequences
3856  *     present in the specification, including four-digit unicode characters,
3857  *     but merely includes the escape sequence without converting it to the
3858  *     actual escaped character.  If the String is flagged as a key, we
3859  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3860  *
3861  *   DTRACE_JSON_COLLECT_OBJECT:
3862  *     This state collects an entire Object (or Array), correctly handling
3863  *     embedded strings.  If the full element selector list matches this nested
3864  *     object, we return the Object in full as a string.  If not, we use this
3865  *     state to skip to the next value at this level and continue processing.
3866  *
3867  * NOTE: This function uses various macros from strtolctype.h to manipulate
3868  * digit values, etc -- these have all been checked to ensure they make
3869  * no additional function calls.
3870  */
3871 static char *
3872 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3873     char *dest)
3874 {
3875 	dtrace_json_state_t state = DTRACE_JSON_REST;
3876 	int64_t array_elem = INT64_MIN;
3877 	int64_t array_pos = 0;
3878 	uint8_t escape_unicount = 0;
3879 	boolean_t string_is_key = B_FALSE;
3880 	boolean_t collect_object = B_FALSE;
3881 	boolean_t found_key = B_FALSE;
3882 	boolean_t in_array = B_FALSE;
3883 	uint32_t braces = 0, brackets = 0;
3884 	char *elem = elemlist;
3885 	char *dd = dest;
3886 	uintptr_t cur;
3887 
3888 	for (cur = json; cur < json + size; cur++) {
3889 		char cc = dtrace_load8(cur);
3890 		if (cc == '\0')
3891 			return (NULL);
3892 
3893 		switch (state) {
3894 		case DTRACE_JSON_REST:
3895 			if (isspace(cc))
3896 				break;
3897 
3898 			if (cc == '{') {
3899 				state = DTRACE_JSON_OBJECT;
3900 				break;
3901 			}
3902 
3903 			if (cc == '[') {
3904 				in_array = B_TRUE;
3905 				array_pos = 0;
3906 				array_elem = dtrace_strtoll(elem, 10, size);
3907 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3908 				state = DTRACE_JSON_VALUE;
3909 				break;
3910 			}
3911 
3912 			/*
3913 			 * ERROR: expected to find a top-level object or array.
3914 			 */
3915 			return (NULL);
3916 		case DTRACE_JSON_OBJECT:
3917 			if (isspace(cc))
3918 				break;
3919 
3920 			if (cc == '"') {
3921 				state = DTRACE_JSON_STRING;
3922 				string_is_key = B_TRUE;
3923 				break;
3924 			}
3925 
3926 			/*
3927 			 * ERROR: either the object did not start with a key
3928 			 * string, or we've run off the end of the object
3929 			 * without finding the requested key.
3930 			 */
3931 			return (NULL);
3932 		case DTRACE_JSON_STRING:
3933 			if (cc == '\\') {
3934 				*dd++ = '\\';
3935 				state = DTRACE_JSON_STRING_ESCAPE;
3936 				break;
3937 			}
3938 
3939 			if (cc == '"') {
3940 				if (collect_object) {
3941 					/*
3942 					 * We don't reset the dest here, as
3943 					 * the string is part of a larger
3944 					 * object being collected.
3945 					 */
3946 					*dd++ = cc;
3947 					collect_object = B_FALSE;
3948 					state = DTRACE_JSON_COLLECT_OBJECT;
3949 					break;
3950 				}
3951 				*dd = '\0';
3952 				dd = dest; /* reset string buffer */
3953 				if (string_is_key) {
3954 					if (dtrace_strncmp(dest, elem,
3955 					    size) == 0)
3956 						found_key = B_TRUE;
3957 				} else if (found_key) {
3958 					if (nelems > 1) {
3959 						/*
3960 						 * We expected an object, not
3961 						 * this string.
3962 						 */
3963 						return (NULL);
3964 					}
3965 					return (dest);
3966 				}
3967 				state = string_is_key ? DTRACE_JSON_COLON :
3968 				    DTRACE_JSON_COMMA;
3969 				string_is_key = B_FALSE;
3970 				break;
3971 			}
3972 
3973 			*dd++ = cc;
3974 			break;
3975 		case DTRACE_JSON_STRING_ESCAPE:
3976 			*dd++ = cc;
3977 			if (cc == 'u') {
3978 				escape_unicount = 0;
3979 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3980 			} else {
3981 				state = DTRACE_JSON_STRING;
3982 			}
3983 			break;
3984 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3985 			if (!isxdigit(cc)) {
3986 				/*
3987 				 * ERROR: invalid unicode escape, expected
3988 				 * four valid hexidecimal digits.
3989 				 */
3990 				return (NULL);
3991 			}
3992 
3993 			*dd++ = cc;
3994 			if (++escape_unicount == 4)
3995 				state = DTRACE_JSON_STRING;
3996 			break;
3997 		case DTRACE_JSON_COLON:
3998 			if (isspace(cc))
3999 				break;
4000 
4001 			if (cc == ':') {
4002 				state = DTRACE_JSON_VALUE;
4003 				break;
4004 			}
4005 
4006 			/*
4007 			 * ERROR: expected a colon.
4008 			 */
4009 			return (NULL);
4010 		case DTRACE_JSON_COMMA:
4011 			if (isspace(cc))
4012 				break;
4013 
4014 			if (cc == ',') {
4015 				if (in_array) {
4016 					state = DTRACE_JSON_VALUE;
4017 					if (++array_pos == array_elem)
4018 						found_key = B_TRUE;
4019 				} else {
4020 					state = DTRACE_JSON_OBJECT;
4021 				}
4022 				break;
4023 			}
4024 
4025 			/*
4026 			 * ERROR: either we hit an unexpected character, or
4027 			 * we reached the end of the object or array without
4028 			 * finding the requested key.
4029 			 */
4030 			return (NULL);
4031 		case DTRACE_JSON_IDENTIFIER:
4032 			if (islower(cc)) {
4033 				*dd++ = cc;
4034 				break;
4035 			}
4036 
4037 			*dd = '\0';
4038 			dd = dest; /* reset string buffer */
4039 
4040 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
4041 			    dtrace_strncmp(dest, "false", 6) == 0 ||
4042 			    dtrace_strncmp(dest, "null", 5) == 0) {
4043 				if (found_key) {
4044 					if (nelems > 1) {
4045 						/*
4046 						 * ERROR: We expected an object,
4047 						 * not this identifier.
4048 						 */
4049 						return (NULL);
4050 					}
4051 					return (dest);
4052 				} else {
4053 					cur--;
4054 					state = DTRACE_JSON_COMMA;
4055 					break;
4056 				}
4057 			}
4058 
4059 			/*
4060 			 * ERROR: we did not recognise the identifier as one
4061 			 * of those in the JSON specification.
4062 			 */
4063 			return (NULL);
4064 		case DTRACE_JSON_NUMBER:
4065 			if (cc == '.') {
4066 				*dd++ = cc;
4067 				state = DTRACE_JSON_NUMBER_FRAC;
4068 				break;
4069 			}
4070 
4071 			if (cc == 'x' || cc == 'X') {
4072 				/*
4073 				 * ERROR: specification explicitly excludes
4074 				 * hexidecimal or octal numbers.
4075 				 */
4076 				return (NULL);
4077 			}
4078 
4079 			/* FALLTHRU */
4080 		case DTRACE_JSON_NUMBER_FRAC:
4081 			if (cc == 'e' || cc == 'E') {
4082 				*dd++ = cc;
4083 				state = DTRACE_JSON_NUMBER_EXP;
4084 				break;
4085 			}
4086 
4087 			if (cc == '+' || cc == '-') {
4088 				/*
4089 				 * ERROR: expect sign as part of exponent only.
4090 				 */
4091 				return (NULL);
4092 			}
4093 			/* FALLTHRU */
4094 		case DTRACE_JSON_NUMBER_EXP:
4095 			if (isdigit(cc) || cc == '+' || cc == '-') {
4096 				*dd++ = cc;
4097 				break;
4098 			}
4099 
4100 			*dd = '\0';
4101 			dd = dest; /* reset string buffer */
4102 			if (found_key) {
4103 				if (nelems > 1) {
4104 					/*
4105 					 * ERROR: We expected an object, not
4106 					 * this number.
4107 					 */
4108 					return (NULL);
4109 				}
4110 				return (dest);
4111 			}
4112 
4113 			cur--;
4114 			state = DTRACE_JSON_COMMA;
4115 			break;
4116 		case DTRACE_JSON_VALUE:
4117 			if (isspace(cc))
4118 				break;
4119 
4120 			if (cc == '{' || cc == '[') {
4121 				if (nelems > 1 && found_key) {
4122 					in_array = cc == '[' ? B_TRUE : B_FALSE;
4123 					/*
4124 					 * If our element selector directs us
4125 					 * to descend into this nested object,
4126 					 * then move to the next selector
4127 					 * element in the list and restart the
4128 					 * state machine.
4129 					 */
4130 					while (*elem != '\0')
4131 						elem++;
4132 					elem++; /* skip the inter-element NUL */
4133 					nelems--;
4134 					dd = dest;
4135 					if (in_array) {
4136 						state = DTRACE_JSON_VALUE;
4137 						array_pos = 0;
4138 						array_elem = dtrace_strtoll(
4139 						    elem, 10, size);
4140 						found_key = array_elem == 0 ?
4141 						    B_TRUE : B_FALSE;
4142 					} else {
4143 						found_key = B_FALSE;
4144 						state = DTRACE_JSON_OBJECT;
4145 					}
4146 					break;
4147 				}
4148 
4149 				/*
4150 				 * Otherwise, we wish to either skip this
4151 				 * nested object or return it in full.
4152 				 */
4153 				if (cc == '[')
4154 					brackets = 1;
4155 				else
4156 					braces = 1;
4157 				*dd++ = cc;
4158 				state = DTRACE_JSON_COLLECT_OBJECT;
4159 				break;
4160 			}
4161 
4162 			if (cc == '"') {
4163 				state = DTRACE_JSON_STRING;
4164 				break;
4165 			}
4166 
4167 			if (islower(cc)) {
4168 				/*
4169 				 * Here we deal with true, false and null.
4170 				 */
4171 				*dd++ = cc;
4172 				state = DTRACE_JSON_IDENTIFIER;
4173 				break;
4174 			}
4175 
4176 			if (cc == '-' || isdigit(cc)) {
4177 				*dd++ = cc;
4178 				state = DTRACE_JSON_NUMBER;
4179 				break;
4180 			}
4181 
4182 			/*
4183 			 * ERROR: unexpected character at start of value.
4184 			 */
4185 			return (NULL);
4186 		case DTRACE_JSON_COLLECT_OBJECT:
4187 			if (cc == '\0')
4188 				/*
4189 				 * ERROR: unexpected end of input.
4190 				 */
4191 				return (NULL);
4192 
4193 			*dd++ = cc;
4194 			if (cc == '"') {
4195 				collect_object = B_TRUE;
4196 				state = DTRACE_JSON_STRING;
4197 				break;
4198 			}
4199 
4200 			if (cc == ']') {
4201 				if (brackets-- == 0) {
4202 					/*
4203 					 * ERROR: unbalanced brackets.
4204 					 */
4205 					return (NULL);
4206 				}
4207 			} else if (cc == '}') {
4208 				if (braces-- == 0) {
4209 					/*
4210 					 * ERROR: unbalanced braces.
4211 					 */
4212 					return (NULL);
4213 				}
4214 			} else if (cc == '{') {
4215 				braces++;
4216 			} else if (cc == '[') {
4217 				brackets++;
4218 			}
4219 
4220 			if (brackets == 0 && braces == 0) {
4221 				if (found_key) {
4222 					*dd = '\0';
4223 					return (dest);
4224 				}
4225 				dd = dest; /* reset string buffer */
4226 				state = DTRACE_JSON_COMMA;
4227 			}
4228 			break;
4229 		}
4230 	}
4231 	return (NULL);
4232 }
4233 
4234 /*
4235  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4236  * Notice that we don't bother validating the proper number of arguments or
4237  * their types in the tuple stack.  This isn't needed because all argument
4238  * interpretation is safe because of our load safety -- the worst that can
4239  * happen is that a bogus program can obtain bogus results.
4240  */
4241 static void
4242 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4243     dtrace_key_t *tupregs, int nargs,
4244     dtrace_mstate_t *mstate, dtrace_state_t *state)
4245 {
4246 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4247 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4248 	dtrace_vstate_t *vstate = &state->dts_vstate;
4249 
4250 #ifdef illumos
4251 	union {
4252 		mutex_impl_t mi;
4253 		uint64_t mx;
4254 	} m;
4255 
4256 	union {
4257 		krwlock_t ri;
4258 		uintptr_t rw;
4259 	} r;
4260 #else
4261 	struct thread *lowner;
4262 	union {
4263 		struct lock_object *li;
4264 		uintptr_t lx;
4265 	} l;
4266 #endif
4267 
4268 	switch (subr) {
4269 	case DIF_SUBR_RAND:
4270 		regs[rd] = dtrace_xoroshiro128_plus_next(
4271 		    state->dts_rstate[curcpu]);
4272 		break;
4273 
4274 #ifdef illumos
4275 	case DIF_SUBR_MUTEX_OWNED:
4276 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4277 		    mstate, vstate)) {
4278 			regs[rd] = 0;
4279 			break;
4280 		}
4281 
4282 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4283 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4284 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4285 		else
4286 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4287 		break;
4288 
4289 	case DIF_SUBR_MUTEX_OWNER:
4290 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4291 		    mstate, vstate)) {
4292 			regs[rd] = 0;
4293 			break;
4294 		}
4295 
4296 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4297 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4298 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4299 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4300 		else
4301 			regs[rd] = 0;
4302 		break;
4303 
4304 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4305 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4306 		    mstate, vstate)) {
4307 			regs[rd] = 0;
4308 			break;
4309 		}
4310 
4311 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4312 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4313 		break;
4314 
4315 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4316 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4317 		    mstate, vstate)) {
4318 			regs[rd] = 0;
4319 			break;
4320 		}
4321 
4322 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4323 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4324 		break;
4325 
4326 	case DIF_SUBR_RW_READ_HELD: {
4327 		uintptr_t tmp;
4328 
4329 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4330 		    mstate, vstate)) {
4331 			regs[rd] = 0;
4332 			break;
4333 		}
4334 
4335 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4336 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4337 		break;
4338 	}
4339 
4340 	case DIF_SUBR_RW_WRITE_HELD:
4341 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4342 		    mstate, vstate)) {
4343 			regs[rd] = 0;
4344 			break;
4345 		}
4346 
4347 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4348 		regs[rd] = _RW_WRITE_HELD(&r.ri);
4349 		break;
4350 
4351 	case DIF_SUBR_RW_ISWRITER:
4352 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4353 		    mstate, vstate)) {
4354 			regs[rd] = 0;
4355 			break;
4356 		}
4357 
4358 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4359 		regs[rd] = _RW_ISWRITER(&r.ri);
4360 		break;
4361 
4362 #else /* !illumos */
4363 	case DIF_SUBR_MUTEX_OWNED:
4364 		if (!dtrace_canload(tupregs[0].dttk_value,
4365 			sizeof (struct lock_object), mstate, vstate)) {
4366 			regs[rd] = 0;
4367 			break;
4368 		}
4369 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4370 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4371 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4372 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4373 		break;
4374 
4375 	case DIF_SUBR_MUTEX_OWNER:
4376 		if (!dtrace_canload(tupregs[0].dttk_value,
4377 			sizeof (struct lock_object), mstate, vstate)) {
4378 			regs[rd] = 0;
4379 			break;
4380 		}
4381 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4382 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4383 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4384 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4385 		regs[rd] = (uintptr_t)lowner;
4386 		break;
4387 
4388 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4389 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4390 		    mstate, vstate)) {
4391 			regs[rd] = 0;
4392 			break;
4393 		}
4394 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4395 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4396 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0;
4397 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4398 		break;
4399 
4400 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4401 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4402 		    mstate, vstate)) {
4403 			regs[rd] = 0;
4404 			break;
4405 		}
4406 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4407 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4408 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4409 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4410 		break;
4411 
4412 	case DIF_SUBR_RW_READ_HELD:
4413 	case DIF_SUBR_SX_SHARED_HELD:
4414 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4415 		    mstate, vstate)) {
4416 			regs[rd] = 0;
4417 			break;
4418 		}
4419 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4420 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4421 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4422 		    lowner == NULL;
4423 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4424 		break;
4425 
4426 	case DIF_SUBR_RW_WRITE_HELD:
4427 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4428 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4429 		    mstate, vstate)) {
4430 			regs[rd] = 0;
4431 			break;
4432 		}
4433 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4434 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4435 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4436 		    lowner != NULL;
4437 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4438 		break;
4439 
4440 	case DIF_SUBR_RW_ISWRITER:
4441 	case DIF_SUBR_SX_ISEXCLUSIVE:
4442 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4443 		    mstate, vstate)) {
4444 			regs[rd] = 0;
4445 			break;
4446 		}
4447 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4448 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4449 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4450 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4451 		regs[rd] = (lowner == curthread);
4452 		break;
4453 #endif /* illumos */
4454 
4455 	case DIF_SUBR_BCOPY: {
4456 		/*
4457 		 * We need to be sure that the destination is in the scratch
4458 		 * region -- no other region is allowed.
4459 		 */
4460 		uintptr_t src = tupregs[0].dttk_value;
4461 		uintptr_t dest = tupregs[1].dttk_value;
4462 		size_t size = tupregs[2].dttk_value;
4463 
4464 		if (!dtrace_inscratch(dest, size, mstate)) {
4465 			*flags |= CPU_DTRACE_BADADDR;
4466 			*illval = regs[rd];
4467 			break;
4468 		}
4469 
4470 		if (!dtrace_canload(src, size, mstate, vstate)) {
4471 			regs[rd] = 0;
4472 			break;
4473 		}
4474 
4475 		dtrace_bcopy((void *)src, (void *)dest, size);
4476 		break;
4477 	}
4478 
4479 	case DIF_SUBR_ALLOCA:
4480 	case DIF_SUBR_COPYIN: {
4481 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4482 		uint64_t size =
4483 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4484 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4485 
4486 		/*
4487 		 * This action doesn't require any credential checks since
4488 		 * probes will not activate in user contexts to which the
4489 		 * enabling user does not have permissions.
4490 		 */
4491 
4492 		/*
4493 		 * Rounding up the user allocation size could have overflowed
4494 		 * a large, bogus allocation (like -1ULL) to 0.
4495 		 */
4496 		if (scratch_size < size ||
4497 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4498 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4499 			regs[rd] = 0;
4500 			break;
4501 		}
4502 
4503 		if (subr == DIF_SUBR_COPYIN) {
4504 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4505 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4506 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4507 		}
4508 
4509 		mstate->dtms_scratch_ptr += scratch_size;
4510 		regs[rd] = dest;
4511 		break;
4512 	}
4513 
4514 	case DIF_SUBR_COPYINTO: {
4515 		uint64_t size = tupregs[1].dttk_value;
4516 		uintptr_t dest = tupregs[2].dttk_value;
4517 
4518 		/*
4519 		 * This action doesn't require any credential checks since
4520 		 * probes will not activate in user contexts to which the
4521 		 * enabling user does not have permissions.
4522 		 */
4523 		if (!dtrace_inscratch(dest, size, mstate)) {
4524 			*flags |= CPU_DTRACE_BADADDR;
4525 			*illval = regs[rd];
4526 			break;
4527 		}
4528 
4529 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4530 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4531 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4532 		break;
4533 	}
4534 
4535 	case DIF_SUBR_COPYINSTR: {
4536 		uintptr_t dest = mstate->dtms_scratch_ptr;
4537 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4538 
4539 		if (nargs > 1 && tupregs[1].dttk_value < size)
4540 			size = tupregs[1].dttk_value + 1;
4541 
4542 		/*
4543 		 * This action doesn't require any credential checks since
4544 		 * probes will not activate in user contexts to which the
4545 		 * enabling user does not have permissions.
4546 		 */
4547 		if (!DTRACE_INSCRATCH(mstate, size)) {
4548 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4549 			regs[rd] = 0;
4550 			break;
4551 		}
4552 
4553 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4554 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4555 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4556 
4557 		((char *)dest)[size - 1] = '\0';
4558 		mstate->dtms_scratch_ptr += size;
4559 		regs[rd] = dest;
4560 		break;
4561 	}
4562 
4563 #ifdef illumos
4564 	case DIF_SUBR_MSGSIZE:
4565 	case DIF_SUBR_MSGDSIZE: {
4566 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4567 		uintptr_t wptr, rptr;
4568 		size_t count = 0;
4569 		int cont = 0;
4570 
4571 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4572 
4573 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4574 			    vstate)) {
4575 				regs[rd] = 0;
4576 				break;
4577 			}
4578 
4579 			wptr = dtrace_loadptr(baddr +
4580 			    offsetof(mblk_t, b_wptr));
4581 
4582 			rptr = dtrace_loadptr(baddr +
4583 			    offsetof(mblk_t, b_rptr));
4584 
4585 			if (wptr < rptr) {
4586 				*flags |= CPU_DTRACE_BADADDR;
4587 				*illval = tupregs[0].dttk_value;
4588 				break;
4589 			}
4590 
4591 			daddr = dtrace_loadptr(baddr +
4592 			    offsetof(mblk_t, b_datap));
4593 
4594 			baddr = dtrace_loadptr(baddr +
4595 			    offsetof(mblk_t, b_cont));
4596 
4597 			/*
4598 			 * We want to prevent against denial-of-service here,
4599 			 * so we're only going to search the list for
4600 			 * dtrace_msgdsize_max mblks.
4601 			 */
4602 			if (cont++ > dtrace_msgdsize_max) {
4603 				*flags |= CPU_DTRACE_ILLOP;
4604 				break;
4605 			}
4606 
4607 			if (subr == DIF_SUBR_MSGDSIZE) {
4608 				if (dtrace_load8(daddr +
4609 				    offsetof(dblk_t, db_type)) != M_DATA)
4610 					continue;
4611 			}
4612 
4613 			count += wptr - rptr;
4614 		}
4615 
4616 		if (!(*flags & CPU_DTRACE_FAULT))
4617 			regs[rd] = count;
4618 
4619 		break;
4620 	}
4621 #endif
4622 
4623 	case DIF_SUBR_PROGENYOF: {
4624 		pid_t pid = tupregs[0].dttk_value;
4625 		proc_t *p;
4626 		int rval = 0;
4627 
4628 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4629 
4630 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4631 #ifdef illumos
4632 			if (p->p_pidp->pid_id == pid) {
4633 #else
4634 			if (p->p_pid == pid) {
4635 #endif
4636 				rval = 1;
4637 				break;
4638 			}
4639 		}
4640 
4641 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4642 
4643 		regs[rd] = rval;
4644 		break;
4645 	}
4646 
4647 	case DIF_SUBR_SPECULATION:
4648 		regs[rd] = dtrace_speculation(state);
4649 		break;
4650 
4651 	case DIF_SUBR_COPYOUT: {
4652 		uintptr_t kaddr = tupregs[0].dttk_value;
4653 		uintptr_t uaddr = tupregs[1].dttk_value;
4654 		uint64_t size = tupregs[2].dttk_value;
4655 
4656 		if (!dtrace_destructive_disallow &&
4657 		    dtrace_priv_proc_control(state) &&
4658 		    !dtrace_istoxic(kaddr, size) &&
4659 		    dtrace_canload(kaddr, size, mstate, vstate)) {
4660 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4661 			dtrace_copyout(kaddr, uaddr, size, flags);
4662 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4663 		}
4664 		break;
4665 	}
4666 
4667 	case DIF_SUBR_COPYOUTSTR: {
4668 		uintptr_t kaddr = tupregs[0].dttk_value;
4669 		uintptr_t uaddr = tupregs[1].dttk_value;
4670 		uint64_t size = tupregs[2].dttk_value;
4671 		size_t lim;
4672 
4673 		if (!dtrace_destructive_disallow &&
4674 		    dtrace_priv_proc_control(state) &&
4675 		    !dtrace_istoxic(kaddr, size) &&
4676 		    dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4677 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4678 			dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4679 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4680 		}
4681 		break;
4682 	}
4683 
4684 	case DIF_SUBR_STRLEN: {
4685 		size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4686 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4687 		size_t lim;
4688 
4689 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4690 			regs[rd] = 0;
4691 			break;
4692 		}
4693 
4694 		regs[rd] = dtrace_strlen((char *)addr, lim);
4695 		break;
4696 	}
4697 
4698 	case DIF_SUBR_STRCHR:
4699 	case DIF_SUBR_STRRCHR: {
4700 		/*
4701 		 * We're going to iterate over the string looking for the
4702 		 * specified character.  We will iterate until we have reached
4703 		 * the string length or we have found the character.  If this
4704 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4705 		 * of the specified character instead of the first.
4706 		 */
4707 		uintptr_t addr = tupregs[0].dttk_value;
4708 		uintptr_t addr_limit;
4709 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4710 		size_t lim;
4711 		char c, target = (char)tupregs[1].dttk_value;
4712 
4713 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4714 			regs[rd] = 0;
4715 			break;
4716 		}
4717 		addr_limit = addr + lim;
4718 
4719 		for (regs[rd] = 0; addr < addr_limit; addr++) {
4720 			if ((c = dtrace_load8(addr)) == target) {
4721 				regs[rd] = addr;
4722 
4723 				if (subr == DIF_SUBR_STRCHR)
4724 					break;
4725 			}
4726 
4727 			if (c == '\0')
4728 				break;
4729 		}
4730 		break;
4731 	}
4732 
4733 	case DIF_SUBR_STRSTR:
4734 	case DIF_SUBR_INDEX:
4735 	case DIF_SUBR_RINDEX: {
4736 		/*
4737 		 * We're going to iterate over the string looking for the
4738 		 * specified string.  We will iterate until we have reached
4739 		 * the string length or we have found the string.  (Yes, this
4740 		 * is done in the most naive way possible -- but considering
4741 		 * that the string we're searching for is likely to be
4742 		 * relatively short, the complexity of Rabin-Karp or similar
4743 		 * hardly seems merited.)
4744 		 */
4745 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4746 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4747 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4748 		size_t len = dtrace_strlen(addr, size);
4749 		size_t sublen = dtrace_strlen(substr, size);
4750 		char *limit = addr + len, *orig = addr;
4751 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4752 		int inc = 1;
4753 
4754 		regs[rd] = notfound;
4755 
4756 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4757 			regs[rd] = 0;
4758 			break;
4759 		}
4760 
4761 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4762 		    vstate)) {
4763 			regs[rd] = 0;
4764 			break;
4765 		}
4766 
4767 		/*
4768 		 * strstr() and index()/rindex() have similar semantics if
4769 		 * both strings are the empty string: strstr() returns a
4770 		 * pointer to the (empty) string, and index() and rindex()
4771 		 * both return index 0 (regardless of any position argument).
4772 		 */
4773 		if (sublen == 0 && len == 0) {
4774 			if (subr == DIF_SUBR_STRSTR)
4775 				regs[rd] = (uintptr_t)addr;
4776 			else
4777 				regs[rd] = 0;
4778 			break;
4779 		}
4780 
4781 		if (subr != DIF_SUBR_STRSTR) {
4782 			if (subr == DIF_SUBR_RINDEX) {
4783 				limit = orig - 1;
4784 				addr += len;
4785 				inc = -1;
4786 			}
4787 
4788 			/*
4789 			 * Both index() and rindex() take an optional position
4790 			 * argument that denotes the starting position.
4791 			 */
4792 			if (nargs == 3) {
4793 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4794 
4795 				/*
4796 				 * If the position argument to index() is
4797 				 * negative, Perl implicitly clamps it at
4798 				 * zero.  This semantic is a little surprising
4799 				 * given the special meaning of negative
4800 				 * positions to similar Perl functions like
4801 				 * substr(), but it appears to reflect a
4802 				 * notion that index() can start from a
4803 				 * negative index and increment its way up to
4804 				 * the string.  Given this notion, Perl's
4805 				 * rindex() is at least self-consistent in
4806 				 * that it implicitly clamps positions greater
4807 				 * than the string length to be the string
4808 				 * length.  Where Perl completely loses
4809 				 * coherence, however, is when the specified
4810 				 * substring is the empty string ("").  In
4811 				 * this case, even if the position is
4812 				 * negative, rindex() returns 0 -- and even if
4813 				 * the position is greater than the length,
4814 				 * index() returns the string length.  These
4815 				 * semantics violate the notion that index()
4816 				 * should never return a value less than the
4817 				 * specified position and that rindex() should
4818 				 * never return a value greater than the
4819 				 * specified position.  (One assumes that
4820 				 * these semantics are artifacts of Perl's
4821 				 * implementation and not the results of
4822 				 * deliberate design -- it beggars belief that
4823 				 * even Larry Wall could desire such oddness.)
4824 				 * While in the abstract one would wish for
4825 				 * consistent position semantics across
4826 				 * substr(), index() and rindex() -- or at the
4827 				 * very least self-consistent position
4828 				 * semantics for index() and rindex() -- we
4829 				 * instead opt to keep with the extant Perl
4830 				 * semantics, in all their broken glory.  (Do
4831 				 * we have more desire to maintain Perl's
4832 				 * semantics than Perl does?  Probably.)
4833 				 */
4834 				if (subr == DIF_SUBR_RINDEX) {
4835 					if (pos < 0) {
4836 						if (sublen == 0)
4837 							regs[rd] = 0;
4838 						break;
4839 					}
4840 
4841 					if (pos > len)
4842 						pos = len;
4843 				} else {
4844 					if (pos < 0)
4845 						pos = 0;
4846 
4847 					if (pos >= len) {
4848 						if (sublen == 0)
4849 							regs[rd] = len;
4850 						break;
4851 					}
4852 				}
4853 
4854 				addr = orig + pos;
4855 			}
4856 		}
4857 
4858 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4859 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4860 				if (subr != DIF_SUBR_STRSTR) {
4861 					/*
4862 					 * As D index() and rindex() are
4863 					 * modeled on Perl (and not on awk),
4864 					 * we return a zero-based (and not a
4865 					 * one-based) index.  (For you Perl
4866 					 * weenies: no, we're not going to add
4867 					 * $[ -- and shouldn't you be at a con
4868 					 * or something?)
4869 					 */
4870 					regs[rd] = (uintptr_t)(addr - orig);
4871 					break;
4872 				}
4873 
4874 				ASSERT(subr == DIF_SUBR_STRSTR);
4875 				regs[rd] = (uintptr_t)addr;
4876 				break;
4877 			}
4878 		}
4879 
4880 		break;
4881 	}
4882 
4883 	case DIF_SUBR_STRTOK: {
4884 		uintptr_t addr = tupregs[0].dttk_value;
4885 		uintptr_t tokaddr = tupregs[1].dttk_value;
4886 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4887 		uintptr_t limit, toklimit;
4888 		size_t clim;
4889 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4890 		char *dest = (char *)mstate->dtms_scratch_ptr;
4891 		int i;
4892 
4893 		/*
4894 		 * Check both the token buffer and (later) the input buffer,
4895 		 * since both could be non-scratch addresses.
4896 		 */
4897 		if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4898 			regs[rd] = 0;
4899 			break;
4900 		}
4901 		toklimit = tokaddr + clim;
4902 
4903 		if (!DTRACE_INSCRATCH(mstate, size)) {
4904 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4905 			regs[rd] = 0;
4906 			break;
4907 		}
4908 
4909 		if (addr == 0) {
4910 			/*
4911 			 * If the address specified is NULL, we use our saved
4912 			 * strtok pointer from the mstate.  Note that this
4913 			 * means that the saved strtok pointer is _only_
4914 			 * valid within multiple enablings of the same probe --
4915 			 * it behaves like an implicit clause-local variable.
4916 			 */
4917 			addr = mstate->dtms_strtok;
4918 			limit = mstate->dtms_strtok_limit;
4919 		} else {
4920 			/*
4921 			 * If the user-specified address is non-NULL we must
4922 			 * access check it.  This is the only time we have
4923 			 * a chance to do so, since this address may reside
4924 			 * in the string table of this clause-- future calls
4925 			 * (when we fetch addr from mstate->dtms_strtok)
4926 			 * would fail this access check.
4927 			 */
4928 			if (!dtrace_strcanload(addr, size, &clim, mstate,
4929 			    vstate)) {
4930 				regs[rd] = 0;
4931 				break;
4932 			}
4933 			limit = addr + clim;
4934 		}
4935 
4936 		/*
4937 		 * First, zero the token map, and then process the token
4938 		 * string -- setting a bit in the map for every character
4939 		 * found in the token string.
4940 		 */
4941 		for (i = 0; i < sizeof (tokmap); i++)
4942 			tokmap[i] = 0;
4943 
4944 		for (; tokaddr < toklimit; tokaddr++) {
4945 			if ((c = dtrace_load8(tokaddr)) == '\0')
4946 				break;
4947 
4948 			ASSERT((c >> 3) < sizeof (tokmap));
4949 			tokmap[c >> 3] |= (1 << (c & 0x7));
4950 		}
4951 
4952 		for (; addr < limit; addr++) {
4953 			/*
4954 			 * We're looking for a character that is _not_
4955 			 * contained in the token string.
4956 			 */
4957 			if ((c = dtrace_load8(addr)) == '\0')
4958 				break;
4959 
4960 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4961 				break;
4962 		}
4963 
4964 		if (c == '\0') {
4965 			/*
4966 			 * We reached the end of the string without finding
4967 			 * any character that was not in the token string.
4968 			 * We return NULL in this case, and we set the saved
4969 			 * address to NULL as well.
4970 			 */
4971 			regs[rd] = 0;
4972 			mstate->dtms_strtok = 0;
4973 			mstate->dtms_strtok_limit = 0;
4974 			break;
4975 		}
4976 
4977 		/*
4978 		 * From here on, we're copying into the destination string.
4979 		 */
4980 		for (i = 0; addr < limit && i < size - 1; addr++) {
4981 			if ((c = dtrace_load8(addr)) == '\0')
4982 				break;
4983 
4984 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4985 				break;
4986 
4987 			ASSERT(i < size);
4988 			dest[i++] = c;
4989 		}
4990 
4991 		ASSERT(i < size);
4992 		dest[i] = '\0';
4993 		regs[rd] = (uintptr_t)dest;
4994 		mstate->dtms_scratch_ptr += size;
4995 		mstate->dtms_strtok = addr;
4996 		mstate->dtms_strtok_limit = limit;
4997 		break;
4998 	}
4999 
5000 	case DIF_SUBR_SUBSTR: {
5001 		uintptr_t s = tupregs[0].dttk_value;
5002 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5003 		char *d = (char *)mstate->dtms_scratch_ptr;
5004 		int64_t index = (int64_t)tupregs[1].dttk_value;
5005 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
5006 		size_t len = dtrace_strlen((char *)s, size);
5007 		int64_t i;
5008 
5009 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5010 			regs[rd] = 0;
5011 			break;
5012 		}
5013 
5014 		if (!DTRACE_INSCRATCH(mstate, size)) {
5015 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5016 			regs[rd] = 0;
5017 			break;
5018 		}
5019 
5020 		if (nargs <= 2)
5021 			remaining = (int64_t)size;
5022 
5023 		if (index < 0) {
5024 			index += len;
5025 
5026 			if (index < 0 && index + remaining > 0) {
5027 				remaining += index;
5028 				index = 0;
5029 			}
5030 		}
5031 
5032 		if (index >= len || index < 0) {
5033 			remaining = 0;
5034 		} else if (remaining < 0) {
5035 			remaining += len - index;
5036 		} else if (index + remaining > size) {
5037 			remaining = size - index;
5038 		}
5039 
5040 		for (i = 0; i < remaining; i++) {
5041 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
5042 				break;
5043 		}
5044 
5045 		d[i] = '\0';
5046 
5047 		mstate->dtms_scratch_ptr += size;
5048 		regs[rd] = (uintptr_t)d;
5049 		break;
5050 	}
5051 
5052 	case DIF_SUBR_JSON: {
5053 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5054 		uintptr_t json = tupregs[0].dttk_value;
5055 		size_t jsonlen = dtrace_strlen((char *)json, size);
5056 		uintptr_t elem = tupregs[1].dttk_value;
5057 		size_t elemlen = dtrace_strlen((char *)elem, size);
5058 
5059 		char *dest = (char *)mstate->dtms_scratch_ptr;
5060 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
5061 		char *ee = elemlist;
5062 		int nelems = 1;
5063 		uintptr_t cur;
5064 
5065 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
5066 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
5067 			regs[rd] = 0;
5068 			break;
5069 		}
5070 
5071 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
5072 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5073 			regs[rd] = 0;
5074 			break;
5075 		}
5076 
5077 		/*
5078 		 * Read the element selector and split it up into a packed list
5079 		 * of strings.
5080 		 */
5081 		for (cur = elem; cur < elem + elemlen; cur++) {
5082 			char cc = dtrace_load8(cur);
5083 
5084 			if (cur == elem && cc == '[') {
5085 				/*
5086 				 * If the first element selector key is
5087 				 * actually an array index then ignore the
5088 				 * bracket.
5089 				 */
5090 				continue;
5091 			}
5092 
5093 			if (cc == ']')
5094 				continue;
5095 
5096 			if (cc == '.' || cc == '[') {
5097 				nelems++;
5098 				cc = '\0';
5099 			}
5100 
5101 			*ee++ = cc;
5102 		}
5103 		*ee++ = '\0';
5104 
5105 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
5106 		    nelems, dest)) != 0)
5107 			mstate->dtms_scratch_ptr += jsonlen + 1;
5108 		break;
5109 	}
5110 
5111 	case DIF_SUBR_TOUPPER:
5112 	case DIF_SUBR_TOLOWER: {
5113 		uintptr_t s = tupregs[0].dttk_value;
5114 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5115 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5116 		size_t len = dtrace_strlen((char *)s, size);
5117 		char lower, upper, convert;
5118 		int64_t i;
5119 
5120 		if (subr == DIF_SUBR_TOUPPER) {
5121 			lower = 'a';
5122 			upper = 'z';
5123 			convert = 'A';
5124 		} else {
5125 			lower = 'A';
5126 			upper = 'Z';
5127 			convert = 'a';
5128 		}
5129 
5130 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5131 			regs[rd] = 0;
5132 			break;
5133 		}
5134 
5135 		if (!DTRACE_INSCRATCH(mstate, size)) {
5136 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5137 			regs[rd] = 0;
5138 			break;
5139 		}
5140 
5141 		for (i = 0; i < size - 1; i++) {
5142 			if ((c = dtrace_load8(s + i)) == '\0')
5143 				break;
5144 
5145 			if (c >= lower && c <= upper)
5146 				c = convert + (c - lower);
5147 
5148 			dest[i] = c;
5149 		}
5150 
5151 		ASSERT(i < size);
5152 		dest[i] = '\0';
5153 		regs[rd] = (uintptr_t)dest;
5154 		mstate->dtms_scratch_ptr += size;
5155 		break;
5156 	}
5157 
5158 #ifdef illumos
5159 	case DIF_SUBR_GETMAJOR:
5160 #ifdef _LP64
5161 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5162 #else
5163 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5164 #endif
5165 		break;
5166 
5167 	case DIF_SUBR_GETMINOR:
5168 #ifdef _LP64
5169 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5170 #else
5171 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
5172 #endif
5173 		break;
5174 
5175 	case DIF_SUBR_DDI_PATHNAME: {
5176 		/*
5177 		 * This one is a galactic mess.  We are going to roughly
5178 		 * emulate ddi_pathname(), but it's made more complicated
5179 		 * by the fact that we (a) want to include the minor name and
5180 		 * (b) must proceed iteratively instead of recursively.
5181 		 */
5182 		uintptr_t dest = mstate->dtms_scratch_ptr;
5183 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5184 		char *start = (char *)dest, *end = start + size - 1;
5185 		uintptr_t daddr = tupregs[0].dttk_value;
5186 		int64_t minor = (int64_t)tupregs[1].dttk_value;
5187 		char *s;
5188 		int i, len, depth = 0;
5189 
5190 		/*
5191 		 * Due to all the pointer jumping we do and context we must
5192 		 * rely upon, we just mandate that the user must have kernel
5193 		 * read privileges to use this routine.
5194 		 */
5195 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5196 			*flags |= CPU_DTRACE_KPRIV;
5197 			*illval = daddr;
5198 			regs[rd] = 0;
5199 		}
5200 
5201 		if (!DTRACE_INSCRATCH(mstate, size)) {
5202 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5203 			regs[rd] = 0;
5204 			break;
5205 		}
5206 
5207 		*end = '\0';
5208 
5209 		/*
5210 		 * We want to have a name for the minor.  In order to do this,
5211 		 * we need to walk the minor list from the devinfo.  We want
5212 		 * to be sure that we don't infinitely walk a circular list,
5213 		 * so we check for circularity by sending a scout pointer
5214 		 * ahead two elements for every element that we iterate over;
5215 		 * if the list is circular, these will ultimately point to the
5216 		 * same element.  You may recognize this little trick as the
5217 		 * answer to a stupid interview question -- one that always
5218 		 * seems to be asked by those who had to have it laboriously
5219 		 * explained to them, and who can't even concisely describe
5220 		 * the conditions under which one would be forced to resort to
5221 		 * this technique.  Needless to say, those conditions are
5222 		 * found here -- and probably only here.  Is this the only use
5223 		 * of this infamous trick in shipping, production code?  If it
5224 		 * isn't, it probably should be...
5225 		 */
5226 		if (minor != -1) {
5227 			uintptr_t maddr = dtrace_loadptr(daddr +
5228 			    offsetof(struct dev_info, devi_minor));
5229 
5230 			uintptr_t next = offsetof(struct ddi_minor_data, next);
5231 			uintptr_t name = offsetof(struct ddi_minor_data,
5232 			    d_minor) + offsetof(struct ddi_minor, name);
5233 			uintptr_t dev = offsetof(struct ddi_minor_data,
5234 			    d_minor) + offsetof(struct ddi_minor, dev);
5235 			uintptr_t scout;
5236 
5237 			if (maddr != NULL)
5238 				scout = dtrace_loadptr(maddr + next);
5239 
5240 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5241 				uint64_t m;
5242 #ifdef _LP64
5243 				m = dtrace_load64(maddr + dev) & MAXMIN64;
5244 #else
5245 				m = dtrace_load32(maddr + dev) & MAXMIN;
5246 #endif
5247 				if (m != minor) {
5248 					maddr = dtrace_loadptr(maddr + next);
5249 
5250 					if (scout == NULL)
5251 						continue;
5252 
5253 					scout = dtrace_loadptr(scout + next);
5254 
5255 					if (scout == NULL)
5256 						continue;
5257 
5258 					scout = dtrace_loadptr(scout + next);
5259 
5260 					if (scout == NULL)
5261 						continue;
5262 
5263 					if (scout == maddr) {
5264 						*flags |= CPU_DTRACE_ILLOP;
5265 						break;
5266 					}
5267 
5268 					continue;
5269 				}
5270 
5271 				/*
5272 				 * We have the minor data.  Now we need to
5273 				 * copy the minor's name into the end of the
5274 				 * pathname.
5275 				 */
5276 				s = (char *)dtrace_loadptr(maddr + name);
5277 				len = dtrace_strlen(s, size);
5278 
5279 				if (*flags & CPU_DTRACE_FAULT)
5280 					break;
5281 
5282 				if (len != 0) {
5283 					if ((end -= (len + 1)) < start)
5284 						break;
5285 
5286 					*end = ':';
5287 				}
5288 
5289 				for (i = 1; i <= len; i++)
5290 					end[i] = dtrace_load8((uintptr_t)s++);
5291 				break;
5292 			}
5293 		}
5294 
5295 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5296 			ddi_node_state_t devi_state;
5297 
5298 			devi_state = dtrace_load32(daddr +
5299 			    offsetof(struct dev_info, devi_node_state));
5300 
5301 			if (*flags & CPU_DTRACE_FAULT)
5302 				break;
5303 
5304 			if (devi_state >= DS_INITIALIZED) {
5305 				s = (char *)dtrace_loadptr(daddr +
5306 				    offsetof(struct dev_info, devi_addr));
5307 				len = dtrace_strlen(s, size);
5308 
5309 				if (*flags & CPU_DTRACE_FAULT)
5310 					break;
5311 
5312 				if (len != 0) {
5313 					if ((end -= (len + 1)) < start)
5314 						break;
5315 
5316 					*end = '@';
5317 				}
5318 
5319 				for (i = 1; i <= len; i++)
5320 					end[i] = dtrace_load8((uintptr_t)s++);
5321 			}
5322 
5323 			/*
5324 			 * Now for the node name...
5325 			 */
5326 			s = (char *)dtrace_loadptr(daddr +
5327 			    offsetof(struct dev_info, devi_node_name));
5328 
5329 			daddr = dtrace_loadptr(daddr +
5330 			    offsetof(struct dev_info, devi_parent));
5331 
5332 			/*
5333 			 * If our parent is NULL (that is, if we're the root
5334 			 * node), we're going to use the special path
5335 			 * "devices".
5336 			 */
5337 			if (daddr == 0)
5338 				s = "devices";
5339 
5340 			len = dtrace_strlen(s, size);
5341 			if (*flags & CPU_DTRACE_FAULT)
5342 				break;
5343 
5344 			if ((end -= (len + 1)) < start)
5345 				break;
5346 
5347 			for (i = 1; i <= len; i++)
5348 				end[i] = dtrace_load8((uintptr_t)s++);
5349 			*end = '/';
5350 
5351 			if (depth++ > dtrace_devdepth_max) {
5352 				*flags |= CPU_DTRACE_ILLOP;
5353 				break;
5354 			}
5355 		}
5356 
5357 		if (end < start)
5358 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5359 
5360 		if (daddr == 0) {
5361 			regs[rd] = (uintptr_t)end;
5362 			mstate->dtms_scratch_ptr += size;
5363 		}
5364 
5365 		break;
5366 	}
5367 #endif
5368 
5369 	case DIF_SUBR_STRJOIN: {
5370 		char *d = (char *)mstate->dtms_scratch_ptr;
5371 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5372 		uintptr_t s1 = tupregs[0].dttk_value;
5373 		uintptr_t s2 = tupregs[1].dttk_value;
5374 		int i = 0, j = 0;
5375 		size_t lim1, lim2;
5376 		char c;
5377 
5378 		if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5379 		    !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5380 			regs[rd] = 0;
5381 			break;
5382 		}
5383 
5384 		if (!DTRACE_INSCRATCH(mstate, size)) {
5385 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5386 			regs[rd] = 0;
5387 			break;
5388 		}
5389 
5390 		for (;;) {
5391 			if (i >= size) {
5392 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5393 				regs[rd] = 0;
5394 				break;
5395 			}
5396 			c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5397 			if ((d[i++] = c) == '\0') {
5398 				i--;
5399 				break;
5400 			}
5401 		}
5402 
5403 		for (;;) {
5404 			if (i >= size) {
5405 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5406 				regs[rd] = 0;
5407 				break;
5408 			}
5409 
5410 			c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5411 			if ((d[i++] = c) == '\0')
5412 				break;
5413 		}
5414 
5415 		if (i < size) {
5416 			mstate->dtms_scratch_ptr += i;
5417 			regs[rd] = (uintptr_t)d;
5418 		}
5419 
5420 		break;
5421 	}
5422 
5423 	case DIF_SUBR_STRTOLL: {
5424 		uintptr_t s = tupregs[0].dttk_value;
5425 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5426 		size_t lim;
5427 		int base = 10;
5428 
5429 		if (nargs > 1) {
5430 			if ((base = tupregs[1].dttk_value) <= 1 ||
5431 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5432 				*flags |= CPU_DTRACE_ILLOP;
5433 				break;
5434 			}
5435 		}
5436 
5437 		if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5438 			regs[rd] = INT64_MIN;
5439 			break;
5440 		}
5441 
5442 		regs[rd] = dtrace_strtoll((char *)s, base, lim);
5443 		break;
5444 	}
5445 
5446 	case DIF_SUBR_LLTOSTR: {
5447 		int64_t i = (int64_t)tupregs[0].dttk_value;
5448 		uint64_t val, digit;
5449 		uint64_t size = 65;	/* enough room for 2^64 in binary */
5450 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5451 		int base = 10;
5452 
5453 		if (nargs > 1) {
5454 			if ((base = tupregs[1].dttk_value) <= 1 ||
5455 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5456 				*flags |= CPU_DTRACE_ILLOP;
5457 				break;
5458 			}
5459 		}
5460 
5461 		val = (base == 10 && i < 0) ? i * -1 : i;
5462 
5463 		if (!DTRACE_INSCRATCH(mstate, size)) {
5464 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5465 			regs[rd] = 0;
5466 			break;
5467 		}
5468 
5469 		for (*end-- = '\0'; val; val /= base) {
5470 			if ((digit = val % base) <= '9' - '0') {
5471 				*end-- = '0' + digit;
5472 			} else {
5473 				*end-- = 'a' + (digit - ('9' - '0') - 1);
5474 			}
5475 		}
5476 
5477 		if (i == 0 && base == 16)
5478 			*end-- = '0';
5479 
5480 		if (base == 16)
5481 			*end-- = 'x';
5482 
5483 		if (i == 0 || base == 8 || base == 16)
5484 			*end-- = '0';
5485 
5486 		if (i < 0 && base == 10)
5487 			*end-- = '-';
5488 
5489 		regs[rd] = (uintptr_t)end + 1;
5490 		mstate->dtms_scratch_ptr += size;
5491 		break;
5492 	}
5493 
5494 	case DIF_SUBR_HTONS:
5495 	case DIF_SUBR_NTOHS:
5496 #if BYTE_ORDER == BIG_ENDIAN
5497 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5498 #else
5499 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5500 #endif
5501 		break;
5502 
5503 
5504 	case DIF_SUBR_HTONL:
5505 	case DIF_SUBR_NTOHL:
5506 #if BYTE_ORDER == BIG_ENDIAN
5507 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5508 #else
5509 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5510 #endif
5511 		break;
5512 
5513 
5514 	case DIF_SUBR_HTONLL:
5515 	case DIF_SUBR_NTOHLL:
5516 #if BYTE_ORDER == BIG_ENDIAN
5517 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5518 #else
5519 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5520 #endif
5521 		break;
5522 
5523 
5524 	case DIF_SUBR_DIRNAME:
5525 	case DIF_SUBR_BASENAME: {
5526 		char *dest = (char *)mstate->dtms_scratch_ptr;
5527 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5528 		uintptr_t src = tupregs[0].dttk_value;
5529 		int i, j, len = dtrace_strlen((char *)src, size);
5530 		int lastbase = -1, firstbase = -1, lastdir = -1;
5531 		int start, end;
5532 
5533 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5534 			regs[rd] = 0;
5535 			break;
5536 		}
5537 
5538 		if (!DTRACE_INSCRATCH(mstate, size)) {
5539 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5540 			regs[rd] = 0;
5541 			break;
5542 		}
5543 
5544 		/*
5545 		 * The basename and dirname for a zero-length string is
5546 		 * defined to be "."
5547 		 */
5548 		if (len == 0) {
5549 			len = 1;
5550 			src = (uintptr_t)".";
5551 		}
5552 
5553 		/*
5554 		 * Start from the back of the string, moving back toward the
5555 		 * front until we see a character that isn't a slash.  That
5556 		 * character is the last character in the basename.
5557 		 */
5558 		for (i = len - 1; i >= 0; i--) {
5559 			if (dtrace_load8(src + i) != '/')
5560 				break;
5561 		}
5562 
5563 		if (i >= 0)
5564 			lastbase = i;
5565 
5566 		/*
5567 		 * Starting from the last character in the basename, move
5568 		 * towards the front until we find a slash.  The character
5569 		 * that we processed immediately before that is the first
5570 		 * character in the basename.
5571 		 */
5572 		for (; i >= 0; i--) {
5573 			if (dtrace_load8(src + i) == '/')
5574 				break;
5575 		}
5576 
5577 		if (i >= 0)
5578 			firstbase = i + 1;
5579 
5580 		/*
5581 		 * Now keep going until we find a non-slash character.  That
5582 		 * character is the last character in the dirname.
5583 		 */
5584 		for (; i >= 0; i--) {
5585 			if (dtrace_load8(src + i) != '/')
5586 				break;
5587 		}
5588 
5589 		if (i >= 0)
5590 			lastdir = i;
5591 
5592 		ASSERT(!(lastbase == -1 && firstbase != -1));
5593 		ASSERT(!(firstbase == -1 && lastdir != -1));
5594 
5595 		if (lastbase == -1) {
5596 			/*
5597 			 * We didn't find a non-slash character.  We know that
5598 			 * the length is non-zero, so the whole string must be
5599 			 * slashes.  In either the dirname or the basename
5600 			 * case, we return '/'.
5601 			 */
5602 			ASSERT(firstbase == -1);
5603 			firstbase = lastbase = lastdir = 0;
5604 		}
5605 
5606 		if (firstbase == -1) {
5607 			/*
5608 			 * The entire string consists only of a basename
5609 			 * component.  If we're looking for dirname, we need
5610 			 * to change our string to be just "."; if we're
5611 			 * looking for a basename, we'll just set the first
5612 			 * character of the basename to be 0.
5613 			 */
5614 			if (subr == DIF_SUBR_DIRNAME) {
5615 				ASSERT(lastdir == -1);
5616 				src = (uintptr_t)".";
5617 				lastdir = 0;
5618 			} else {
5619 				firstbase = 0;
5620 			}
5621 		}
5622 
5623 		if (subr == DIF_SUBR_DIRNAME) {
5624 			if (lastdir == -1) {
5625 				/*
5626 				 * We know that we have a slash in the name --
5627 				 * or lastdir would be set to 0, above.  And
5628 				 * because lastdir is -1, we know that this
5629 				 * slash must be the first character.  (That
5630 				 * is, the full string must be of the form
5631 				 * "/basename".)  In this case, the last
5632 				 * character of the directory name is 0.
5633 				 */
5634 				lastdir = 0;
5635 			}
5636 
5637 			start = 0;
5638 			end = lastdir;
5639 		} else {
5640 			ASSERT(subr == DIF_SUBR_BASENAME);
5641 			ASSERT(firstbase != -1 && lastbase != -1);
5642 			start = firstbase;
5643 			end = lastbase;
5644 		}
5645 
5646 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5647 			dest[j] = dtrace_load8(src + i);
5648 
5649 		dest[j] = '\0';
5650 		regs[rd] = (uintptr_t)dest;
5651 		mstate->dtms_scratch_ptr += size;
5652 		break;
5653 	}
5654 
5655 	case DIF_SUBR_GETF: {
5656 		uintptr_t fd = tupregs[0].dttk_value;
5657 		struct filedesc *fdp;
5658 		file_t *fp;
5659 
5660 		if (!dtrace_priv_proc(state)) {
5661 			regs[rd] = 0;
5662 			break;
5663 		}
5664 		fdp = curproc->p_fd;
5665 		FILEDESC_SLOCK(fdp);
5666 		fp = fget_locked(fdp, fd);
5667 		mstate->dtms_getf = fp;
5668 		regs[rd] = (uintptr_t)fp;
5669 		FILEDESC_SUNLOCK(fdp);
5670 		break;
5671 	}
5672 
5673 	case DIF_SUBR_CLEANPATH: {
5674 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5675 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5676 		uintptr_t src = tupregs[0].dttk_value;
5677 		size_t lim;
5678 		int i = 0, j = 0;
5679 #ifdef illumos
5680 		zone_t *z;
5681 #endif
5682 
5683 		if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5684 			regs[rd] = 0;
5685 			break;
5686 		}
5687 
5688 		if (!DTRACE_INSCRATCH(mstate, size)) {
5689 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5690 			regs[rd] = 0;
5691 			break;
5692 		}
5693 
5694 		/*
5695 		 * Move forward, loading each character.
5696 		 */
5697 		do {
5698 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5699 next:
5700 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5701 				break;
5702 
5703 			if (c != '/') {
5704 				dest[j++] = c;
5705 				continue;
5706 			}
5707 
5708 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5709 
5710 			if (c == '/') {
5711 				/*
5712 				 * We have two slashes -- we can just advance
5713 				 * to the next character.
5714 				 */
5715 				goto next;
5716 			}
5717 
5718 			if (c != '.') {
5719 				/*
5720 				 * This is not "." and it's not ".." -- we can
5721 				 * just store the "/" and this character and
5722 				 * drive on.
5723 				 */
5724 				dest[j++] = '/';
5725 				dest[j++] = c;
5726 				continue;
5727 			}
5728 
5729 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5730 
5731 			if (c == '/') {
5732 				/*
5733 				 * This is a "/./" component.  We're not going
5734 				 * to store anything in the destination buffer;
5735 				 * we're just going to go to the next component.
5736 				 */
5737 				goto next;
5738 			}
5739 
5740 			if (c != '.') {
5741 				/*
5742 				 * This is not ".." -- we can just store the
5743 				 * "/." and this character and continue
5744 				 * processing.
5745 				 */
5746 				dest[j++] = '/';
5747 				dest[j++] = '.';
5748 				dest[j++] = c;
5749 				continue;
5750 			}
5751 
5752 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5753 
5754 			if (c != '/' && c != '\0') {
5755 				/*
5756 				 * This is not ".." -- it's "..[mumble]".
5757 				 * We'll store the "/.." and this character
5758 				 * and continue processing.
5759 				 */
5760 				dest[j++] = '/';
5761 				dest[j++] = '.';
5762 				dest[j++] = '.';
5763 				dest[j++] = c;
5764 				continue;
5765 			}
5766 
5767 			/*
5768 			 * This is "/../" or "/..\0".  We need to back up
5769 			 * our destination pointer until we find a "/".
5770 			 */
5771 			i--;
5772 			while (j != 0 && dest[--j] != '/')
5773 				continue;
5774 
5775 			if (c == '\0')
5776 				dest[++j] = '/';
5777 		} while (c != '\0');
5778 
5779 		dest[j] = '\0';
5780 
5781 #ifdef illumos
5782 		if (mstate->dtms_getf != NULL &&
5783 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5784 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5785 			/*
5786 			 * If we've done a getf() as a part of this ECB and we
5787 			 * don't have kernel access (and we're not in the global
5788 			 * zone), check if the path we cleaned up begins with
5789 			 * the zone's root path, and trim it off if so.  Note
5790 			 * that this is an output cleanliness issue, not a
5791 			 * security issue: knowing one's zone root path does
5792 			 * not enable privilege escalation.
5793 			 */
5794 			if (strstr(dest, z->zone_rootpath) == dest)
5795 				dest += strlen(z->zone_rootpath) - 1;
5796 		}
5797 #endif
5798 
5799 		regs[rd] = (uintptr_t)dest;
5800 		mstate->dtms_scratch_ptr += size;
5801 		break;
5802 	}
5803 
5804 	case DIF_SUBR_INET_NTOA:
5805 	case DIF_SUBR_INET_NTOA6:
5806 	case DIF_SUBR_INET_NTOP: {
5807 		size_t size;
5808 		int af, argi, i;
5809 		char *base, *end;
5810 
5811 		if (subr == DIF_SUBR_INET_NTOP) {
5812 			af = (int)tupregs[0].dttk_value;
5813 			argi = 1;
5814 		} else {
5815 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5816 			argi = 0;
5817 		}
5818 
5819 		if (af == AF_INET) {
5820 			ipaddr_t ip4;
5821 			uint8_t *ptr8, val;
5822 
5823 			if (!dtrace_canload(tupregs[argi].dttk_value,
5824 			    sizeof (ipaddr_t), mstate, vstate)) {
5825 				regs[rd] = 0;
5826 				break;
5827 			}
5828 
5829 			/*
5830 			 * Safely load the IPv4 address.
5831 			 */
5832 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5833 
5834 			/*
5835 			 * Check an IPv4 string will fit in scratch.
5836 			 */
5837 			size = INET_ADDRSTRLEN;
5838 			if (!DTRACE_INSCRATCH(mstate, size)) {
5839 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5840 				regs[rd] = 0;
5841 				break;
5842 			}
5843 			base = (char *)mstate->dtms_scratch_ptr;
5844 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5845 
5846 			/*
5847 			 * Stringify as a dotted decimal quad.
5848 			 */
5849 			*end-- = '\0';
5850 			ptr8 = (uint8_t *)&ip4;
5851 			for (i = 3; i >= 0; i--) {
5852 				val = ptr8[i];
5853 
5854 				if (val == 0) {
5855 					*end-- = '0';
5856 				} else {
5857 					for (; val; val /= 10) {
5858 						*end-- = '0' + (val % 10);
5859 					}
5860 				}
5861 
5862 				if (i > 0)
5863 					*end-- = '.';
5864 			}
5865 			ASSERT(end + 1 >= base);
5866 
5867 		} else if (af == AF_INET6) {
5868 			struct in6_addr ip6;
5869 			int firstzero, tryzero, numzero, v6end;
5870 			uint16_t val;
5871 			const char digits[] = "0123456789abcdef";
5872 
5873 			/*
5874 			 * Stringify using RFC 1884 convention 2 - 16 bit
5875 			 * hexadecimal values with a zero-run compression.
5876 			 * Lower case hexadecimal digits are used.
5877 			 * 	eg, fe80::214:4fff:fe0b:76c8.
5878 			 * The IPv4 embedded form is returned for inet_ntop,
5879 			 * just the IPv4 string is returned for inet_ntoa6.
5880 			 */
5881 
5882 			if (!dtrace_canload(tupregs[argi].dttk_value,
5883 			    sizeof (struct in6_addr), mstate, vstate)) {
5884 				regs[rd] = 0;
5885 				break;
5886 			}
5887 
5888 			/*
5889 			 * Safely load the IPv6 address.
5890 			 */
5891 			dtrace_bcopy(
5892 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5893 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5894 
5895 			/*
5896 			 * Check an IPv6 string will fit in scratch.
5897 			 */
5898 			size = INET6_ADDRSTRLEN;
5899 			if (!DTRACE_INSCRATCH(mstate, size)) {
5900 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5901 				regs[rd] = 0;
5902 				break;
5903 			}
5904 			base = (char *)mstate->dtms_scratch_ptr;
5905 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5906 			*end-- = '\0';
5907 
5908 			/*
5909 			 * Find the longest run of 16 bit zero values
5910 			 * for the single allowed zero compression - "::".
5911 			 */
5912 			firstzero = -1;
5913 			tryzero = -1;
5914 			numzero = 1;
5915 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5916 #ifdef illumos
5917 				if (ip6._S6_un._S6_u8[i] == 0 &&
5918 #else
5919 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5920 #endif
5921 				    tryzero == -1 && i % 2 == 0) {
5922 					tryzero = i;
5923 					continue;
5924 				}
5925 
5926 				if (tryzero != -1 &&
5927 #ifdef illumos
5928 				    (ip6._S6_un._S6_u8[i] != 0 ||
5929 #else
5930 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5931 #endif
5932 				    i == sizeof (struct in6_addr) - 1)) {
5933 
5934 					if (i - tryzero <= numzero) {
5935 						tryzero = -1;
5936 						continue;
5937 					}
5938 
5939 					firstzero = tryzero;
5940 					numzero = i - i % 2 - tryzero;
5941 					tryzero = -1;
5942 
5943 #ifdef illumos
5944 					if (ip6._S6_un._S6_u8[i] == 0 &&
5945 #else
5946 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5947 #endif
5948 					    i == sizeof (struct in6_addr) - 1)
5949 						numzero += 2;
5950 				}
5951 			}
5952 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5953 
5954 			/*
5955 			 * Check for an IPv4 embedded address.
5956 			 */
5957 			v6end = sizeof (struct in6_addr) - 2;
5958 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5959 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5960 				for (i = sizeof (struct in6_addr) - 1;
5961 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5962 					ASSERT(end >= base);
5963 
5964 #ifdef illumos
5965 					val = ip6._S6_un._S6_u8[i];
5966 #else
5967 					val = ip6.__u6_addr.__u6_addr8[i];
5968 #endif
5969 
5970 					if (val == 0) {
5971 						*end-- = '0';
5972 					} else {
5973 						for (; val; val /= 10) {
5974 							*end-- = '0' + val % 10;
5975 						}
5976 					}
5977 
5978 					if (i > DTRACE_V4MAPPED_OFFSET)
5979 						*end-- = '.';
5980 				}
5981 
5982 				if (subr == DIF_SUBR_INET_NTOA6)
5983 					goto inetout;
5984 
5985 				/*
5986 				 * Set v6end to skip the IPv4 address that
5987 				 * we have already stringified.
5988 				 */
5989 				v6end = 10;
5990 			}
5991 
5992 			/*
5993 			 * Build the IPv6 string by working through the
5994 			 * address in reverse.
5995 			 */
5996 			for (i = v6end; i >= 0; i -= 2) {
5997 				ASSERT(end >= base);
5998 
5999 				if (i == firstzero + numzero - 2) {
6000 					*end-- = ':';
6001 					*end-- = ':';
6002 					i -= numzero - 2;
6003 					continue;
6004 				}
6005 
6006 				if (i < 14 && i != firstzero - 2)
6007 					*end-- = ':';
6008 
6009 #ifdef illumos
6010 				val = (ip6._S6_un._S6_u8[i] << 8) +
6011 				    ip6._S6_un._S6_u8[i + 1];
6012 #else
6013 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
6014 				    ip6.__u6_addr.__u6_addr8[i + 1];
6015 #endif
6016 
6017 				if (val == 0) {
6018 					*end-- = '0';
6019 				} else {
6020 					for (; val; val /= 16) {
6021 						*end-- = digits[val % 16];
6022 					}
6023 				}
6024 			}
6025 			ASSERT(end + 1 >= base);
6026 
6027 		} else {
6028 			/*
6029 			 * The user didn't use AH_INET or AH_INET6.
6030 			 */
6031 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6032 			regs[rd] = 0;
6033 			break;
6034 		}
6035 
6036 inetout:	regs[rd] = (uintptr_t)end + 1;
6037 		mstate->dtms_scratch_ptr += size;
6038 		break;
6039 	}
6040 
6041 	case DIF_SUBR_MEMREF: {
6042 		uintptr_t size = 2 * sizeof(uintptr_t);
6043 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
6044 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
6045 
6046 		/* address and length */
6047 		memref[0] = tupregs[0].dttk_value;
6048 		memref[1] = tupregs[1].dttk_value;
6049 
6050 		regs[rd] = (uintptr_t) memref;
6051 		mstate->dtms_scratch_ptr += scratch_size;
6052 		break;
6053 	}
6054 
6055 #ifndef illumos
6056 	case DIF_SUBR_MEMSTR: {
6057 		char *str = (char *)mstate->dtms_scratch_ptr;
6058 		uintptr_t mem = tupregs[0].dttk_value;
6059 		char c = tupregs[1].dttk_value;
6060 		size_t size = tupregs[2].dttk_value;
6061 		uint8_t n;
6062 		int i;
6063 
6064 		regs[rd] = 0;
6065 
6066 		if (size == 0)
6067 			break;
6068 
6069 		if (!dtrace_canload(mem, size - 1, mstate, vstate))
6070 			break;
6071 
6072 		if (!DTRACE_INSCRATCH(mstate, size)) {
6073 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6074 			break;
6075 		}
6076 
6077 		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
6078 			*flags |= CPU_DTRACE_ILLOP;
6079 			break;
6080 		}
6081 
6082 		for (i = 0; i < size - 1; i++) {
6083 			n = dtrace_load8(mem++);
6084 			str[i] = (n == 0) ? c : n;
6085 		}
6086 		str[size - 1] = 0;
6087 
6088 		regs[rd] = (uintptr_t)str;
6089 		mstate->dtms_scratch_ptr += size;
6090 		break;
6091 	}
6092 #endif
6093 	}
6094 }
6095 
6096 /*
6097  * Emulate the execution of DTrace IR instructions specified by the given
6098  * DIF object.  This function is deliberately void of assertions as all of
6099  * the necessary checks are handled by a call to dtrace_difo_validate().
6100  */
6101 static uint64_t
6102 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
6103     dtrace_vstate_t *vstate, dtrace_state_t *state)
6104 {
6105 	const dif_instr_t *text = difo->dtdo_buf;
6106 	const uint_t textlen = difo->dtdo_len;
6107 	const char *strtab = difo->dtdo_strtab;
6108 	const uint64_t *inttab = difo->dtdo_inttab;
6109 
6110 	uint64_t rval = 0;
6111 	dtrace_statvar_t *svar;
6112 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
6113 	dtrace_difv_t *v;
6114 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6115 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
6116 
6117 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
6118 	uint64_t regs[DIF_DIR_NREGS];
6119 	uint64_t *tmp;
6120 
6121 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
6122 	int64_t cc_r;
6123 	uint_t pc = 0, id, opc = 0;
6124 	uint8_t ttop = 0;
6125 	dif_instr_t instr;
6126 	uint_t r1, r2, rd;
6127 
6128 	/*
6129 	 * We stash the current DIF object into the machine state: we need it
6130 	 * for subsequent access checking.
6131 	 */
6132 	mstate->dtms_difo = difo;
6133 
6134 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
6135 
6136 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6137 		opc = pc;
6138 
6139 		instr = text[pc++];
6140 		r1 = DIF_INSTR_R1(instr);
6141 		r2 = DIF_INSTR_R2(instr);
6142 		rd = DIF_INSTR_RD(instr);
6143 
6144 		switch (DIF_INSTR_OP(instr)) {
6145 		case DIF_OP_OR:
6146 			regs[rd] = regs[r1] | regs[r2];
6147 			break;
6148 		case DIF_OP_XOR:
6149 			regs[rd] = regs[r1] ^ regs[r2];
6150 			break;
6151 		case DIF_OP_AND:
6152 			regs[rd] = regs[r1] & regs[r2];
6153 			break;
6154 		case DIF_OP_SLL:
6155 			regs[rd] = regs[r1] << regs[r2];
6156 			break;
6157 		case DIF_OP_SRL:
6158 			regs[rd] = regs[r1] >> regs[r2];
6159 			break;
6160 		case DIF_OP_SUB:
6161 			regs[rd] = regs[r1] - regs[r2];
6162 			break;
6163 		case DIF_OP_ADD:
6164 			regs[rd] = regs[r1] + regs[r2];
6165 			break;
6166 		case DIF_OP_MUL:
6167 			regs[rd] = regs[r1] * regs[r2];
6168 			break;
6169 		case DIF_OP_SDIV:
6170 			if (regs[r2] == 0) {
6171 				regs[rd] = 0;
6172 				*flags |= CPU_DTRACE_DIVZERO;
6173 			} else {
6174 				regs[rd] = (int64_t)regs[r1] /
6175 				    (int64_t)regs[r2];
6176 			}
6177 			break;
6178 
6179 		case DIF_OP_UDIV:
6180 			if (regs[r2] == 0) {
6181 				regs[rd] = 0;
6182 				*flags |= CPU_DTRACE_DIVZERO;
6183 			} else {
6184 				regs[rd] = regs[r1] / regs[r2];
6185 			}
6186 			break;
6187 
6188 		case DIF_OP_SREM:
6189 			if (regs[r2] == 0) {
6190 				regs[rd] = 0;
6191 				*flags |= CPU_DTRACE_DIVZERO;
6192 			} else {
6193 				regs[rd] = (int64_t)regs[r1] %
6194 				    (int64_t)regs[r2];
6195 			}
6196 			break;
6197 
6198 		case DIF_OP_UREM:
6199 			if (regs[r2] == 0) {
6200 				regs[rd] = 0;
6201 				*flags |= CPU_DTRACE_DIVZERO;
6202 			} else {
6203 				regs[rd] = regs[r1] % regs[r2];
6204 			}
6205 			break;
6206 
6207 		case DIF_OP_NOT:
6208 			regs[rd] = ~regs[r1];
6209 			break;
6210 		case DIF_OP_MOV:
6211 			regs[rd] = regs[r1];
6212 			break;
6213 		case DIF_OP_CMP:
6214 			cc_r = regs[r1] - regs[r2];
6215 			cc_n = cc_r < 0;
6216 			cc_z = cc_r == 0;
6217 			cc_v = 0;
6218 			cc_c = regs[r1] < regs[r2];
6219 			break;
6220 		case DIF_OP_TST:
6221 			cc_n = cc_v = cc_c = 0;
6222 			cc_z = regs[r1] == 0;
6223 			break;
6224 		case DIF_OP_BA:
6225 			pc = DIF_INSTR_LABEL(instr);
6226 			break;
6227 		case DIF_OP_BE:
6228 			if (cc_z)
6229 				pc = DIF_INSTR_LABEL(instr);
6230 			break;
6231 		case DIF_OP_BNE:
6232 			if (cc_z == 0)
6233 				pc = DIF_INSTR_LABEL(instr);
6234 			break;
6235 		case DIF_OP_BG:
6236 			if ((cc_z | (cc_n ^ cc_v)) == 0)
6237 				pc = DIF_INSTR_LABEL(instr);
6238 			break;
6239 		case DIF_OP_BGU:
6240 			if ((cc_c | cc_z) == 0)
6241 				pc = DIF_INSTR_LABEL(instr);
6242 			break;
6243 		case DIF_OP_BGE:
6244 			if ((cc_n ^ cc_v) == 0)
6245 				pc = DIF_INSTR_LABEL(instr);
6246 			break;
6247 		case DIF_OP_BGEU:
6248 			if (cc_c == 0)
6249 				pc = DIF_INSTR_LABEL(instr);
6250 			break;
6251 		case DIF_OP_BL:
6252 			if (cc_n ^ cc_v)
6253 				pc = DIF_INSTR_LABEL(instr);
6254 			break;
6255 		case DIF_OP_BLU:
6256 			if (cc_c)
6257 				pc = DIF_INSTR_LABEL(instr);
6258 			break;
6259 		case DIF_OP_BLE:
6260 			if (cc_z | (cc_n ^ cc_v))
6261 				pc = DIF_INSTR_LABEL(instr);
6262 			break;
6263 		case DIF_OP_BLEU:
6264 			if (cc_c | cc_z)
6265 				pc = DIF_INSTR_LABEL(instr);
6266 			break;
6267 		case DIF_OP_RLDSB:
6268 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6269 				break;
6270 			/*FALLTHROUGH*/
6271 		case DIF_OP_LDSB:
6272 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6273 			break;
6274 		case DIF_OP_RLDSH:
6275 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6276 				break;
6277 			/*FALLTHROUGH*/
6278 		case DIF_OP_LDSH:
6279 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6280 			break;
6281 		case DIF_OP_RLDSW:
6282 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6283 				break;
6284 			/*FALLTHROUGH*/
6285 		case DIF_OP_LDSW:
6286 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6287 			break;
6288 		case DIF_OP_RLDUB:
6289 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6290 				break;
6291 			/*FALLTHROUGH*/
6292 		case DIF_OP_LDUB:
6293 			regs[rd] = dtrace_load8(regs[r1]);
6294 			break;
6295 		case DIF_OP_RLDUH:
6296 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6297 				break;
6298 			/*FALLTHROUGH*/
6299 		case DIF_OP_LDUH:
6300 			regs[rd] = dtrace_load16(regs[r1]);
6301 			break;
6302 		case DIF_OP_RLDUW:
6303 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6304 				break;
6305 			/*FALLTHROUGH*/
6306 		case DIF_OP_LDUW:
6307 			regs[rd] = dtrace_load32(regs[r1]);
6308 			break;
6309 		case DIF_OP_RLDX:
6310 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6311 				break;
6312 			/*FALLTHROUGH*/
6313 		case DIF_OP_LDX:
6314 			regs[rd] = dtrace_load64(regs[r1]);
6315 			break;
6316 		case DIF_OP_ULDSB:
6317 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6318 			regs[rd] = (int8_t)
6319 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6320 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6321 			break;
6322 		case DIF_OP_ULDSH:
6323 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6324 			regs[rd] = (int16_t)
6325 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6326 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6327 			break;
6328 		case DIF_OP_ULDSW:
6329 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6330 			regs[rd] = (int32_t)
6331 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6332 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6333 			break;
6334 		case DIF_OP_ULDUB:
6335 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6336 			regs[rd] =
6337 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6338 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6339 			break;
6340 		case DIF_OP_ULDUH:
6341 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6342 			regs[rd] =
6343 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6344 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6345 			break;
6346 		case DIF_OP_ULDUW:
6347 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6348 			regs[rd] =
6349 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6350 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6351 			break;
6352 		case DIF_OP_ULDX:
6353 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6354 			regs[rd] =
6355 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6356 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6357 			break;
6358 		case DIF_OP_RET:
6359 			rval = regs[rd];
6360 			pc = textlen;
6361 			break;
6362 		case DIF_OP_NOP:
6363 			break;
6364 		case DIF_OP_SETX:
6365 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6366 			break;
6367 		case DIF_OP_SETS:
6368 			regs[rd] = (uint64_t)(uintptr_t)
6369 			    (strtab + DIF_INSTR_STRING(instr));
6370 			break;
6371 		case DIF_OP_SCMP: {
6372 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6373 			uintptr_t s1 = regs[r1];
6374 			uintptr_t s2 = regs[r2];
6375 			size_t lim1, lim2;
6376 
6377 			if (s1 != 0 &&
6378 			    !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6379 				break;
6380 			if (s2 != 0 &&
6381 			    !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6382 				break;
6383 
6384 			cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6385 			    MIN(lim1, lim2));
6386 
6387 			cc_n = cc_r < 0;
6388 			cc_z = cc_r == 0;
6389 			cc_v = cc_c = 0;
6390 			break;
6391 		}
6392 		case DIF_OP_LDGA:
6393 			regs[rd] = dtrace_dif_variable(mstate, state,
6394 			    r1, regs[r2]);
6395 			break;
6396 		case DIF_OP_LDGS:
6397 			id = DIF_INSTR_VAR(instr);
6398 
6399 			if (id >= DIF_VAR_OTHER_UBASE) {
6400 				uintptr_t a;
6401 
6402 				id -= DIF_VAR_OTHER_UBASE;
6403 				svar = vstate->dtvs_globals[id];
6404 				ASSERT(svar != NULL);
6405 				v = &svar->dtsv_var;
6406 
6407 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6408 					regs[rd] = svar->dtsv_data;
6409 					break;
6410 				}
6411 
6412 				a = (uintptr_t)svar->dtsv_data;
6413 
6414 				if (*(uint8_t *)a == UINT8_MAX) {
6415 					/*
6416 					 * If the 0th byte is set to UINT8_MAX
6417 					 * then this is to be treated as a
6418 					 * reference to a NULL variable.
6419 					 */
6420 					regs[rd] = 0;
6421 				} else {
6422 					regs[rd] = a + sizeof (uint64_t);
6423 				}
6424 
6425 				break;
6426 			}
6427 
6428 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6429 			break;
6430 
6431 		case DIF_OP_STGS:
6432 			id = DIF_INSTR_VAR(instr);
6433 
6434 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6435 			id -= DIF_VAR_OTHER_UBASE;
6436 
6437 			VERIFY(id < vstate->dtvs_nglobals);
6438 			svar = vstate->dtvs_globals[id];
6439 			ASSERT(svar != NULL);
6440 			v = &svar->dtsv_var;
6441 
6442 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6443 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6444 				size_t lim;
6445 
6446 				ASSERT(a != 0);
6447 				ASSERT(svar->dtsv_size != 0);
6448 
6449 				if (regs[rd] == 0) {
6450 					*(uint8_t *)a = UINT8_MAX;
6451 					break;
6452 				} else {
6453 					*(uint8_t *)a = 0;
6454 					a += sizeof (uint64_t);
6455 				}
6456 				if (!dtrace_vcanload(
6457 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6458 				    &lim, mstate, vstate))
6459 					break;
6460 
6461 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6462 				    (void *)a, &v->dtdv_type, lim);
6463 				break;
6464 			}
6465 
6466 			svar->dtsv_data = regs[rd];
6467 			break;
6468 
6469 		case DIF_OP_LDTA:
6470 			/*
6471 			 * There are no DTrace built-in thread-local arrays at
6472 			 * present.  This opcode is saved for future work.
6473 			 */
6474 			*flags |= CPU_DTRACE_ILLOP;
6475 			regs[rd] = 0;
6476 			break;
6477 
6478 		case DIF_OP_LDLS:
6479 			id = DIF_INSTR_VAR(instr);
6480 
6481 			if (id < DIF_VAR_OTHER_UBASE) {
6482 				/*
6483 				 * For now, this has no meaning.
6484 				 */
6485 				regs[rd] = 0;
6486 				break;
6487 			}
6488 
6489 			id -= DIF_VAR_OTHER_UBASE;
6490 
6491 			ASSERT(id < vstate->dtvs_nlocals);
6492 			ASSERT(vstate->dtvs_locals != NULL);
6493 
6494 			svar = vstate->dtvs_locals[id];
6495 			ASSERT(svar != NULL);
6496 			v = &svar->dtsv_var;
6497 
6498 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6499 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6500 				size_t sz = v->dtdv_type.dtdt_size;
6501 				size_t lim;
6502 
6503 				sz += sizeof (uint64_t);
6504 				ASSERT(svar->dtsv_size == NCPU * sz);
6505 				a += curcpu * sz;
6506 
6507 				if (*(uint8_t *)a == UINT8_MAX) {
6508 					/*
6509 					 * If the 0th byte is set to UINT8_MAX
6510 					 * then this is to be treated as a
6511 					 * reference to a NULL variable.
6512 					 */
6513 					regs[rd] = 0;
6514 				} else {
6515 					regs[rd] = a + sizeof (uint64_t);
6516 				}
6517 
6518 				break;
6519 			}
6520 
6521 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6522 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6523 			regs[rd] = tmp[curcpu];
6524 			break;
6525 
6526 		case DIF_OP_STLS:
6527 			id = DIF_INSTR_VAR(instr);
6528 
6529 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6530 			id -= DIF_VAR_OTHER_UBASE;
6531 			VERIFY(id < vstate->dtvs_nlocals);
6532 
6533 			ASSERT(vstate->dtvs_locals != NULL);
6534 			svar = vstate->dtvs_locals[id];
6535 			ASSERT(svar != NULL);
6536 			v = &svar->dtsv_var;
6537 
6538 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6539 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6540 				size_t sz = v->dtdv_type.dtdt_size;
6541 				size_t lim;
6542 
6543 				sz += sizeof (uint64_t);
6544 				ASSERT(svar->dtsv_size == NCPU * sz);
6545 				a += curcpu * sz;
6546 
6547 				if (regs[rd] == 0) {
6548 					*(uint8_t *)a = UINT8_MAX;
6549 					break;
6550 				} else {
6551 					*(uint8_t *)a = 0;
6552 					a += sizeof (uint64_t);
6553 				}
6554 
6555 				if (!dtrace_vcanload(
6556 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6557 				    &lim, mstate, vstate))
6558 					break;
6559 
6560 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6561 				    (void *)a, &v->dtdv_type, lim);
6562 				break;
6563 			}
6564 
6565 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6566 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6567 			tmp[curcpu] = regs[rd];
6568 			break;
6569 
6570 		case DIF_OP_LDTS: {
6571 			dtrace_dynvar_t *dvar;
6572 			dtrace_key_t *key;
6573 
6574 			id = DIF_INSTR_VAR(instr);
6575 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6576 			id -= DIF_VAR_OTHER_UBASE;
6577 			v = &vstate->dtvs_tlocals[id];
6578 
6579 			key = &tupregs[DIF_DTR_NREGS];
6580 			key[0].dttk_value = (uint64_t)id;
6581 			key[0].dttk_size = 0;
6582 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6583 			key[1].dttk_size = 0;
6584 
6585 			dvar = dtrace_dynvar(dstate, 2, key,
6586 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6587 			    mstate, vstate);
6588 
6589 			if (dvar == NULL) {
6590 				regs[rd] = 0;
6591 				break;
6592 			}
6593 
6594 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6595 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6596 			} else {
6597 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6598 			}
6599 
6600 			break;
6601 		}
6602 
6603 		case DIF_OP_STTS: {
6604 			dtrace_dynvar_t *dvar;
6605 			dtrace_key_t *key;
6606 
6607 			id = DIF_INSTR_VAR(instr);
6608 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6609 			id -= DIF_VAR_OTHER_UBASE;
6610 			VERIFY(id < vstate->dtvs_ntlocals);
6611 
6612 			key = &tupregs[DIF_DTR_NREGS];
6613 			key[0].dttk_value = (uint64_t)id;
6614 			key[0].dttk_size = 0;
6615 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6616 			key[1].dttk_size = 0;
6617 			v = &vstate->dtvs_tlocals[id];
6618 
6619 			dvar = dtrace_dynvar(dstate, 2, key,
6620 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6621 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6622 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6623 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6624 
6625 			/*
6626 			 * Given that we're storing to thread-local data,
6627 			 * we need to flush our predicate cache.
6628 			 */
6629 			curthread->t_predcache = 0;
6630 
6631 			if (dvar == NULL)
6632 				break;
6633 
6634 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6635 				size_t lim;
6636 
6637 				if (!dtrace_vcanload(
6638 				    (void *)(uintptr_t)regs[rd],
6639 				    &v->dtdv_type, &lim, mstate, vstate))
6640 					break;
6641 
6642 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6643 				    dvar->dtdv_data, &v->dtdv_type, lim);
6644 			} else {
6645 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6646 			}
6647 
6648 			break;
6649 		}
6650 
6651 		case DIF_OP_SRA:
6652 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6653 			break;
6654 
6655 		case DIF_OP_CALL:
6656 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6657 			    regs, tupregs, ttop, mstate, state);
6658 			break;
6659 
6660 		case DIF_OP_PUSHTR:
6661 			if (ttop == DIF_DTR_NREGS) {
6662 				*flags |= CPU_DTRACE_TUPOFLOW;
6663 				break;
6664 			}
6665 
6666 			if (r1 == DIF_TYPE_STRING) {
6667 				/*
6668 				 * If this is a string type and the size is 0,
6669 				 * we'll use the system-wide default string
6670 				 * size.  Note that we are _not_ looking at
6671 				 * the value of the DTRACEOPT_STRSIZE option;
6672 				 * had this been set, we would expect to have
6673 				 * a non-zero size value in the "pushtr".
6674 				 */
6675 				tupregs[ttop].dttk_size =
6676 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6677 				    regs[r2] ? regs[r2] :
6678 				    dtrace_strsize_default) + 1;
6679 			} else {
6680 				if (regs[r2] > LONG_MAX) {
6681 					*flags |= CPU_DTRACE_ILLOP;
6682 					break;
6683 				}
6684 
6685 				tupregs[ttop].dttk_size = regs[r2];
6686 			}
6687 
6688 			tupregs[ttop++].dttk_value = regs[rd];
6689 			break;
6690 
6691 		case DIF_OP_PUSHTV:
6692 			if (ttop == DIF_DTR_NREGS) {
6693 				*flags |= CPU_DTRACE_TUPOFLOW;
6694 				break;
6695 			}
6696 
6697 			tupregs[ttop].dttk_value = regs[rd];
6698 			tupregs[ttop++].dttk_size = 0;
6699 			break;
6700 
6701 		case DIF_OP_POPTS:
6702 			if (ttop != 0)
6703 				ttop--;
6704 			break;
6705 
6706 		case DIF_OP_FLUSHTS:
6707 			ttop = 0;
6708 			break;
6709 
6710 		case DIF_OP_LDGAA:
6711 		case DIF_OP_LDTAA: {
6712 			dtrace_dynvar_t *dvar;
6713 			dtrace_key_t *key = tupregs;
6714 			uint_t nkeys = ttop;
6715 
6716 			id = DIF_INSTR_VAR(instr);
6717 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6718 			id -= DIF_VAR_OTHER_UBASE;
6719 
6720 			key[nkeys].dttk_value = (uint64_t)id;
6721 			key[nkeys++].dttk_size = 0;
6722 
6723 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6724 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6725 				key[nkeys++].dttk_size = 0;
6726 				VERIFY(id < vstate->dtvs_ntlocals);
6727 				v = &vstate->dtvs_tlocals[id];
6728 			} else {
6729 				VERIFY(id < vstate->dtvs_nglobals);
6730 				v = &vstate->dtvs_globals[id]->dtsv_var;
6731 			}
6732 
6733 			dvar = dtrace_dynvar(dstate, nkeys, key,
6734 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6735 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6736 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6737 
6738 			if (dvar == NULL) {
6739 				regs[rd] = 0;
6740 				break;
6741 			}
6742 
6743 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6744 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6745 			} else {
6746 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6747 			}
6748 
6749 			break;
6750 		}
6751 
6752 		case DIF_OP_STGAA:
6753 		case DIF_OP_STTAA: {
6754 			dtrace_dynvar_t *dvar;
6755 			dtrace_key_t *key = tupregs;
6756 			uint_t nkeys = ttop;
6757 
6758 			id = DIF_INSTR_VAR(instr);
6759 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6760 			id -= DIF_VAR_OTHER_UBASE;
6761 
6762 			key[nkeys].dttk_value = (uint64_t)id;
6763 			key[nkeys++].dttk_size = 0;
6764 
6765 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6766 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6767 				key[nkeys++].dttk_size = 0;
6768 				VERIFY(id < vstate->dtvs_ntlocals);
6769 				v = &vstate->dtvs_tlocals[id];
6770 			} else {
6771 				VERIFY(id < vstate->dtvs_nglobals);
6772 				v = &vstate->dtvs_globals[id]->dtsv_var;
6773 			}
6774 
6775 			dvar = dtrace_dynvar(dstate, nkeys, key,
6776 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6777 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6778 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6779 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6780 
6781 			if (dvar == NULL)
6782 				break;
6783 
6784 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6785 				size_t lim;
6786 
6787 				if (!dtrace_vcanload(
6788 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6789 				    &lim, mstate, vstate))
6790 					break;
6791 
6792 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6793 				    dvar->dtdv_data, &v->dtdv_type, lim);
6794 			} else {
6795 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6796 			}
6797 
6798 			break;
6799 		}
6800 
6801 		case DIF_OP_ALLOCS: {
6802 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6803 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6804 
6805 			/*
6806 			 * Rounding up the user allocation size could have
6807 			 * overflowed large, bogus allocations (like -1ULL) to
6808 			 * 0.
6809 			 */
6810 			if (size < regs[r1] ||
6811 			    !DTRACE_INSCRATCH(mstate, size)) {
6812 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6813 				regs[rd] = 0;
6814 				break;
6815 			}
6816 
6817 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6818 			mstate->dtms_scratch_ptr += size;
6819 			regs[rd] = ptr;
6820 			break;
6821 		}
6822 
6823 		case DIF_OP_COPYS:
6824 			if (!dtrace_canstore(regs[rd], regs[r2],
6825 			    mstate, vstate)) {
6826 				*flags |= CPU_DTRACE_BADADDR;
6827 				*illval = regs[rd];
6828 				break;
6829 			}
6830 
6831 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6832 				break;
6833 
6834 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6835 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6836 			break;
6837 
6838 		case DIF_OP_STB:
6839 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6840 				*flags |= CPU_DTRACE_BADADDR;
6841 				*illval = regs[rd];
6842 				break;
6843 			}
6844 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6845 			break;
6846 
6847 		case DIF_OP_STH:
6848 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6849 				*flags |= CPU_DTRACE_BADADDR;
6850 				*illval = regs[rd];
6851 				break;
6852 			}
6853 			if (regs[rd] & 1) {
6854 				*flags |= CPU_DTRACE_BADALIGN;
6855 				*illval = regs[rd];
6856 				break;
6857 			}
6858 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6859 			break;
6860 
6861 		case DIF_OP_STW:
6862 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6863 				*flags |= CPU_DTRACE_BADADDR;
6864 				*illval = regs[rd];
6865 				break;
6866 			}
6867 			if (regs[rd] & 3) {
6868 				*flags |= CPU_DTRACE_BADALIGN;
6869 				*illval = regs[rd];
6870 				break;
6871 			}
6872 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6873 			break;
6874 
6875 		case DIF_OP_STX:
6876 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6877 				*flags |= CPU_DTRACE_BADADDR;
6878 				*illval = regs[rd];
6879 				break;
6880 			}
6881 			if (regs[rd] & 7) {
6882 				*flags |= CPU_DTRACE_BADALIGN;
6883 				*illval = regs[rd];
6884 				break;
6885 			}
6886 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6887 			break;
6888 		}
6889 	}
6890 
6891 	if (!(*flags & CPU_DTRACE_FAULT))
6892 		return (rval);
6893 
6894 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6895 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6896 
6897 	return (0);
6898 }
6899 
6900 static void
6901 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6902 {
6903 	dtrace_probe_t *probe = ecb->dte_probe;
6904 	dtrace_provider_t *prov = probe->dtpr_provider;
6905 	char c[DTRACE_FULLNAMELEN + 80], *str;
6906 	char *msg = "dtrace: breakpoint action at probe ";
6907 	char *ecbmsg = " (ecb ";
6908 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6909 	uintptr_t val = (uintptr_t)ecb;
6910 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6911 
6912 	if (dtrace_destructive_disallow)
6913 		return;
6914 
6915 	/*
6916 	 * It's impossible to be taking action on the NULL probe.
6917 	 */
6918 	ASSERT(probe != NULL);
6919 
6920 	/*
6921 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6922 	 * print the provider name, module name, function name and name of
6923 	 * the probe, along with the hex address of the ECB with the breakpoint
6924 	 * action -- all of which we must place in the character buffer by
6925 	 * hand.
6926 	 */
6927 	while (*msg != '\0')
6928 		c[i++] = *msg++;
6929 
6930 	for (str = prov->dtpv_name; *str != '\0'; str++)
6931 		c[i++] = *str;
6932 	c[i++] = ':';
6933 
6934 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6935 		c[i++] = *str;
6936 	c[i++] = ':';
6937 
6938 	for (str = probe->dtpr_func; *str != '\0'; str++)
6939 		c[i++] = *str;
6940 	c[i++] = ':';
6941 
6942 	for (str = probe->dtpr_name; *str != '\0'; str++)
6943 		c[i++] = *str;
6944 
6945 	while (*ecbmsg != '\0')
6946 		c[i++] = *ecbmsg++;
6947 
6948 	while (shift >= 0) {
6949 		mask = (uintptr_t)0xf << shift;
6950 
6951 		if (val >= ((uintptr_t)1 << shift))
6952 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6953 		shift -= 4;
6954 	}
6955 
6956 	c[i++] = ')';
6957 	c[i] = '\0';
6958 
6959 #ifdef illumos
6960 	debug_enter(c);
6961 #else
6962 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6963 #endif
6964 }
6965 
6966 static void
6967 dtrace_action_panic(dtrace_ecb_t *ecb)
6968 {
6969 	dtrace_probe_t *probe = ecb->dte_probe;
6970 
6971 	/*
6972 	 * It's impossible to be taking action on the NULL probe.
6973 	 */
6974 	ASSERT(probe != NULL);
6975 
6976 	if (dtrace_destructive_disallow)
6977 		return;
6978 
6979 	if (dtrace_panicked != NULL)
6980 		return;
6981 
6982 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6983 		return;
6984 
6985 	/*
6986 	 * We won the right to panic.  (We want to be sure that only one
6987 	 * thread calls panic() from dtrace_probe(), and that panic() is
6988 	 * called exactly once.)
6989 	 */
6990 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6991 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6992 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6993 }
6994 
6995 static void
6996 dtrace_action_raise(uint64_t sig)
6997 {
6998 	if (dtrace_destructive_disallow)
6999 		return;
7000 
7001 	if (sig >= NSIG) {
7002 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
7003 		return;
7004 	}
7005 
7006 #ifdef illumos
7007 	/*
7008 	 * raise() has a queue depth of 1 -- we ignore all subsequent
7009 	 * invocations of the raise() action.
7010 	 */
7011 	if (curthread->t_dtrace_sig == 0)
7012 		curthread->t_dtrace_sig = (uint8_t)sig;
7013 
7014 	curthread->t_sig_check = 1;
7015 	aston(curthread);
7016 #else
7017 	struct proc *p = curproc;
7018 	PROC_LOCK(p);
7019 	kern_psignal(p, sig);
7020 	PROC_UNLOCK(p);
7021 #endif
7022 }
7023 
7024 static void
7025 dtrace_action_stop(void)
7026 {
7027 	if (dtrace_destructive_disallow)
7028 		return;
7029 
7030 #ifdef illumos
7031 	if (!curthread->t_dtrace_stop) {
7032 		curthread->t_dtrace_stop = 1;
7033 		curthread->t_sig_check = 1;
7034 		aston(curthread);
7035 	}
7036 #else
7037 	struct proc *p = curproc;
7038 	PROC_LOCK(p);
7039 	kern_psignal(p, SIGSTOP);
7040 	PROC_UNLOCK(p);
7041 #endif
7042 }
7043 
7044 static void
7045 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
7046 {
7047 	hrtime_t now;
7048 	volatile uint16_t *flags;
7049 #ifdef illumos
7050 	cpu_t *cpu = CPU;
7051 #else
7052 	cpu_t *cpu = &solaris_cpu[curcpu];
7053 #endif
7054 
7055 	if (dtrace_destructive_disallow)
7056 		return;
7057 
7058 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7059 
7060 	now = dtrace_gethrtime();
7061 
7062 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
7063 		/*
7064 		 * We need to advance the mark to the current time.
7065 		 */
7066 		cpu->cpu_dtrace_chillmark = now;
7067 		cpu->cpu_dtrace_chilled = 0;
7068 	}
7069 
7070 	/*
7071 	 * Now check to see if the requested chill time would take us over
7072 	 * the maximum amount of time allowed in the chill interval.  (Or
7073 	 * worse, if the calculation itself induces overflow.)
7074 	 */
7075 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
7076 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
7077 		*flags |= CPU_DTRACE_ILLOP;
7078 		return;
7079 	}
7080 
7081 	while (dtrace_gethrtime() - now < val)
7082 		continue;
7083 
7084 	/*
7085 	 * Normally, we assure that the value of the variable "timestamp" does
7086 	 * not change within an ECB.  The presence of chill() represents an
7087 	 * exception to this rule, however.
7088 	 */
7089 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
7090 	cpu->cpu_dtrace_chilled += val;
7091 }
7092 
7093 static void
7094 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
7095     uint64_t *buf, uint64_t arg)
7096 {
7097 	int nframes = DTRACE_USTACK_NFRAMES(arg);
7098 	int strsize = DTRACE_USTACK_STRSIZE(arg);
7099 	uint64_t *pcs = &buf[1], *fps;
7100 	char *str = (char *)&pcs[nframes];
7101 	int size, offs = 0, i, j;
7102 	size_t rem;
7103 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
7104 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
7105 	char *sym;
7106 
7107 	/*
7108 	 * Should be taking a faster path if string space has not been
7109 	 * allocated.
7110 	 */
7111 	ASSERT(strsize != 0);
7112 
7113 	/*
7114 	 * We will first allocate some temporary space for the frame pointers.
7115 	 */
7116 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
7117 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
7118 	    (nframes * sizeof (uint64_t));
7119 
7120 	if (!DTRACE_INSCRATCH(mstate, size)) {
7121 		/*
7122 		 * Not enough room for our frame pointers -- need to indicate
7123 		 * that we ran out of scratch space.
7124 		 */
7125 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
7126 		return;
7127 	}
7128 
7129 	mstate->dtms_scratch_ptr += size;
7130 	saved = mstate->dtms_scratch_ptr;
7131 
7132 	/*
7133 	 * Now get a stack with both program counters and frame pointers.
7134 	 */
7135 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7136 	dtrace_getufpstack(buf, fps, nframes + 1);
7137 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7138 
7139 	/*
7140 	 * If that faulted, we're cooked.
7141 	 */
7142 	if (*flags & CPU_DTRACE_FAULT)
7143 		goto out;
7144 
7145 	/*
7146 	 * Now we want to walk up the stack, calling the USTACK helper.  For
7147 	 * each iteration, we restore the scratch pointer.
7148 	 */
7149 	for (i = 0; i < nframes; i++) {
7150 		mstate->dtms_scratch_ptr = saved;
7151 
7152 		if (offs >= strsize)
7153 			break;
7154 
7155 		sym = (char *)(uintptr_t)dtrace_helper(
7156 		    DTRACE_HELPER_ACTION_USTACK,
7157 		    mstate, state, pcs[i], fps[i]);
7158 
7159 		/*
7160 		 * If we faulted while running the helper, we're going to
7161 		 * clear the fault and null out the corresponding string.
7162 		 */
7163 		if (*flags & CPU_DTRACE_FAULT) {
7164 			*flags &= ~CPU_DTRACE_FAULT;
7165 			str[offs++] = '\0';
7166 			continue;
7167 		}
7168 
7169 		if (sym == NULL) {
7170 			str[offs++] = '\0';
7171 			continue;
7172 		}
7173 
7174 		if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
7175 		    &(state->dts_vstate))) {
7176 			str[offs++] = '\0';
7177 			continue;
7178 		}
7179 
7180 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7181 
7182 		/*
7183 		 * Now copy in the string that the helper returned to us.
7184 		 */
7185 		for (j = 0; offs + j < strsize && j < rem; j++) {
7186 			if ((str[offs + j] = sym[j]) == '\0')
7187 				break;
7188 		}
7189 
7190 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7191 
7192 		offs += j + 1;
7193 	}
7194 
7195 	if (offs >= strsize) {
7196 		/*
7197 		 * If we didn't have room for all of the strings, we don't
7198 		 * abort processing -- this needn't be a fatal error -- but we
7199 		 * still want to increment a counter (dts_stkstroverflows) to
7200 		 * allow this condition to be warned about.  (If this is from
7201 		 * a jstack() action, it is easily tuned via jstackstrsize.)
7202 		 */
7203 		dtrace_error(&state->dts_stkstroverflows);
7204 	}
7205 
7206 	while (offs < strsize)
7207 		str[offs++] = '\0';
7208 
7209 out:
7210 	mstate->dtms_scratch_ptr = old;
7211 }
7212 
7213 static void
7214 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7215     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7216 {
7217 	volatile uint16_t *flags;
7218 	uint64_t val = *valp;
7219 	size_t valoffs = *valoffsp;
7220 
7221 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7222 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7223 
7224 	/*
7225 	 * If this is a string, we're going to only load until we find the zero
7226 	 * byte -- after which we'll store zero bytes.
7227 	 */
7228 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7229 		char c = '\0' + 1;
7230 		size_t s;
7231 
7232 		for (s = 0; s < size; s++) {
7233 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
7234 				c = dtrace_load8(val++);
7235 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7236 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7237 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7238 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7239 				if (*flags & CPU_DTRACE_FAULT)
7240 					break;
7241 			}
7242 
7243 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7244 
7245 			if (c == '\0' && intuple)
7246 				break;
7247 		}
7248 	} else {
7249 		uint8_t c;
7250 		while (valoffs < end) {
7251 			if (dtkind == DIF_TF_BYREF) {
7252 				c = dtrace_load8(val++);
7253 			} else if (dtkind == DIF_TF_BYUREF) {
7254 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7255 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7256 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7257 				if (*flags & CPU_DTRACE_FAULT)
7258 					break;
7259 			}
7260 
7261 			DTRACE_STORE(uint8_t, tomax,
7262 			    valoffs++, c);
7263 		}
7264 	}
7265 
7266 	*valp = val;
7267 	*valoffsp = valoffs;
7268 }
7269 
7270 /*
7271  * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is
7272  * defined, we also assert that we are not recursing unless the probe ID is an
7273  * error probe.
7274  */
7275 static dtrace_icookie_t
7276 dtrace_probe_enter(dtrace_id_t id)
7277 {
7278 	dtrace_icookie_t cookie;
7279 
7280 	cookie = dtrace_interrupt_disable();
7281 
7282 	/*
7283 	 * Unless this is an ERROR probe, we are not allowed to recurse in
7284 	 * dtrace_probe(). Recursing into DTrace probe usually means that a
7285 	 * function is instrumented that should not have been instrumented or
7286 	 * that the ordering guarantee of the records will be violated,
7287 	 * resulting in unexpected output. If there is an exception to this
7288 	 * assertion, a new case should be added.
7289 	 */
7290 	ASSERT(curthread->t_dtrace_inprobe == 0 ||
7291 	    id == dtrace_probeid_error);
7292 	curthread->t_dtrace_inprobe = 1;
7293 
7294 	return (cookie);
7295 }
7296 
7297 /*
7298  * Clears the per-thread inprobe flag and enables interrupts.
7299  */
7300 static void
7301 dtrace_probe_exit(dtrace_icookie_t cookie)
7302 {
7303 
7304 	curthread->t_dtrace_inprobe = 0;
7305 	dtrace_interrupt_enable(cookie);
7306 }
7307 
7308 /*
7309  * If you're looking for the epicenter of DTrace, you just found it.  This
7310  * is the function called by the provider to fire a probe -- from which all
7311  * subsequent probe-context DTrace activity emanates.
7312  */
7313 void
7314 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7315     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7316 {
7317 	processorid_t cpuid;
7318 	dtrace_icookie_t cookie;
7319 	dtrace_probe_t *probe;
7320 	dtrace_mstate_t mstate;
7321 	dtrace_ecb_t *ecb;
7322 	dtrace_action_t *act;
7323 	intptr_t offs;
7324 	size_t size;
7325 	int vtime, onintr;
7326 	volatile uint16_t *flags;
7327 	hrtime_t now;
7328 
7329 	if (panicstr != NULL)
7330 		return;
7331 
7332 #ifdef illumos
7333 	/*
7334 	 * Kick out immediately if this CPU is still being born (in which case
7335 	 * curthread will be set to -1) or the current thread can't allow
7336 	 * probes in its current context.
7337 	 */
7338 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7339 		return;
7340 #endif
7341 
7342 	cookie = dtrace_probe_enter(id);
7343 	probe = dtrace_probes[id - 1];
7344 	cpuid = curcpu;
7345 	onintr = CPU_ON_INTR(CPU);
7346 
7347 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7348 	    probe->dtpr_predcache == curthread->t_predcache) {
7349 		/*
7350 		 * We have hit in the predicate cache; we know that
7351 		 * this predicate would evaluate to be false.
7352 		 */
7353 		dtrace_probe_exit(cookie);
7354 		return;
7355 	}
7356 
7357 #ifdef illumos
7358 	if (panic_quiesce) {
7359 #else
7360 	if (panicstr != NULL) {
7361 #endif
7362 		/*
7363 		 * We don't trace anything if we're panicking.
7364 		 */
7365 		dtrace_probe_exit(cookie);
7366 		return;
7367 	}
7368 
7369 	now = mstate.dtms_timestamp = dtrace_gethrtime();
7370 	mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP;
7371 	vtime = dtrace_vtime_references != 0;
7372 
7373 	if (vtime && curthread->t_dtrace_start)
7374 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7375 
7376 	mstate.dtms_difo = NULL;
7377 	mstate.dtms_probe = probe;
7378 	mstate.dtms_strtok = 0;
7379 	mstate.dtms_arg[0] = arg0;
7380 	mstate.dtms_arg[1] = arg1;
7381 	mstate.dtms_arg[2] = arg2;
7382 	mstate.dtms_arg[3] = arg3;
7383 	mstate.dtms_arg[4] = arg4;
7384 
7385 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7386 
7387 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7388 		dtrace_predicate_t *pred = ecb->dte_predicate;
7389 		dtrace_state_t *state = ecb->dte_state;
7390 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7391 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7392 		dtrace_vstate_t *vstate = &state->dts_vstate;
7393 		dtrace_provider_t *prov = probe->dtpr_provider;
7394 		uint64_t tracememsize = 0;
7395 		int committed = 0;
7396 		caddr_t tomax;
7397 
7398 		/*
7399 		 * A little subtlety with the following (seemingly innocuous)
7400 		 * declaration of the automatic 'val':  by looking at the
7401 		 * code, you might think that it could be declared in the
7402 		 * action processing loop, below.  (That is, it's only used in
7403 		 * the action processing loop.)  However, it must be declared
7404 		 * out of that scope because in the case of DIF expression
7405 		 * arguments to aggregating actions, one iteration of the
7406 		 * action loop will use the last iteration's value.
7407 		 */
7408 		uint64_t val = 0;
7409 
7410 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7411 		mstate.dtms_getf = NULL;
7412 
7413 		*flags &= ~CPU_DTRACE_ERROR;
7414 
7415 		if (prov == dtrace_provider) {
7416 			/*
7417 			 * If dtrace itself is the provider of this probe,
7418 			 * we're only going to continue processing the ECB if
7419 			 * arg0 (the dtrace_state_t) is equal to the ECB's
7420 			 * creating state.  (This prevents disjoint consumers
7421 			 * from seeing one another's metaprobes.)
7422 			 */
7423 			if (arg0 != (uint64_t)(uintptr_t)state)
7424 				continue;
7425 		}
7426 
7427 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7428 			/*
7429 			 * We're not currently active.  If our provider isn't
7430 			 * the dtrace pseudo provider, we're not interested.
7431 			 */
7432 			if (prov != dtrace_provider)
7433 				continue;
7434 
7435 			/*
7436 			 * Now we must further check if we are in the BEGIN
7437 			 * probe.  If we are, we will only continue processing
7438 			 * if we're still in WARMUP -- if one BEGIN enabling
7439 			 * has invoked the exit() action, we don't want to
7440 			 * evaluate subsequent BEGIN enablings.
7441 			 */
7442 			if (probe->dtpr_id == dtrace_probeid_begin &&
7443 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7444 				ASSERT(state->dts_activity ==
7445 				    DTRACE_ACTIVITY_DRAINING);
7446 				continue;
7447 			}
7448 		}
7449 
7450 		if (ecb->dte_cond) {
7451 			/*
7452 			 * If the dte_cond bits indicate that this
7453 			 * consumer is only allowed to see user-mode firings
7454 			 * of this probe, call the provider's dtps_usermode()
7455 			 * entry point to check that the probe was fired
7456 			 * while in a user context. Skip this ECB if that's
7457 			 * not the case.
7458 			 */
7459 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7460 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7461 			    probe->dtpr_id, probe->dtpr_arg) == 0)
7462 				continue;
7463 
7464 #ifdef illumos
7465 			/*
7466 			 * This is more subtle than it looks. We have to be
7467 			 * absolutely certain that CRED() isn't going to
7468 			 * change out from under us so it's only legit to
7469 			 * examine that structure if we're in constrained
7470 			 * situations. Currently, the only times we'll this
7471 			 * check is if a non-super-user has enabled the
7472 			 * profile or syscall providers -- providers that
7473 			 * allow visibility of all processes. For the
7474 			 * profile case, the check above will ensure that
7475 			 * we're examining a user context.
7476 			 */
7477 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7478 				cred_t *cr;
7479 				cred_t *s_cr =
7480 				    ecb->dte_state->dts_cred.dcr_cred;
7481 				proc_t *proc;
7482 
7483 				ASSERT(s_cr != NULL);
7484 
7485 				if ((cr = CRED()) == NULL ||
7486 				    s_cr->cr_uid != cr->cr_uid ||
7487 				    s_cr->cr_uid != cr->cr_ruid ||
7488 				    s_cr->cr_uid != cr->cr_suid ||
7489 				    s_cr->cr_gid != cr->cr_gid ||
7490 				    s_cr->cr_gid != cr->cr_rgid ||
7491 				    s_cr->cr_gid != cr->cr_sgid ||
7492 				    (proc = ttoproc(curthread)) == NULL ||
7493 				    (proc->p_flag & SNOCD))
7494 					continue;
7495 			}
7496 
7497 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7498 				cred_t *cr;
7499 				cred_t *s_cr =
7500 				    ecb->dte_state->dts_cred.dcr_cred;
7501 
7502 				ASSERT(s_cr != NULL);
7503 
7504 				if ((cr = CRED()) == NULL ||
7505 				    s_cr->cr_zone->zone_id !=
7506 				    cr->cr_zone->zone_id)
7507 					continue;
7508 			}
7509 #endif
7510 		}
7511 
7512 		if (now - state->dts_alive > dtrace_deadman_timeout) {
7513 			/*
7514 			 * We seem to be dead.  Unless we (a) have kernel
7515 			 * destructive permissions (b) have explicitly enabled
7516 			 * destructive actions and (c) destructive actions have
7517 			 * not been disabled, we're going to transition into
7518 			 * the KILLED state, from which no further processing
7519 			 * on this state will be performed.
7520 			 */
7521 			if (!dtrace_priv_kernel_destructive(state) ||
7522 			    !state->dts_cred.dcr_destructive ||
7523 			    dtrace_destructive_disallow) {
7524 				void *activity = &state->dts_activity;
7525 				dtrace_activity_t curstate;
7526 
7527 				do {
7528 					curstate = state->dts_activity;
7529 				} while (dtrace_cas32(activity, curstate,
7530 				    DTRACE_ACTIVITY_KILLED) != curstate);
7531 
7532 				continue;
7533 			}
7534 		}
7535 
7536 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7537 		    ecb->dte_alignment, state, &mstate)) < 0)
7538 			continue;
7539 
7540 		tomax = buf->dtb_tomax;
7541 		ASSERT(tomax != NULL);
7542 
7543 		if (ecb->dte_size != 0) {
7544 			dtrace_rechdr_t dtrh;
7545 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7546 				mstate.dtms_timestamp = dtrace_gethrtime();
7547 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7548 			}
7549 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7550 			dtrh.dtrh_epid = ecb->dte_epid;
7551 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7552 			    mstate.dtms_timestamp);
7553 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7554 		}
7555 
7556 		mstate.dtms_epid = ecb->dte_epid;
7557 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7558 
7559 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7560 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7561 		else
7562 			mstate.dtms_access = 0;
7563 
7564 		if (pred != NULL) {
7565 			dtrace_difo_t *dp = pred->dtp_difo;
7566 			uint64_t rval;
7567 
7568 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7569 
7570 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7571 				dtrace_cacheid_t cid = probe->dtpr_predcache;
7572 
7573 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7574 					/*
7575 					 * Update the predicate cache...
7576 					 */
7577 					ASSERT(cid == pred->dtp_cacheid);
7578 					curthread->t_predcache = cid;
7579 				}
7580 
7581 				continue;
7582 			}
7583 		}
7584 
7585 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7586 		    act != NULL; act = act->dta_next) {
7587 			size_t valoffs;
7588 			dtrace_difo_t *dp;
7589 			dtrace_recdesc_t *rec = &act->dta_rec;
7590 
7591 			size = rec->dtrd_size;
7592 			valoffs = offs + rec->dtrd_offset;
7593 
7594 			if (DTRACEACT_ISAGG(act->dta_kind)) {
7595 				uint64_t v = 0xbad;
7596 				dtrace_aggregation_t *agg;
7597 
7598 				agg = (dtrace_aggregation_t *)act;
7599 
7600 				if ((dp = act->dta_difo) != NULL)
7601 					v = dtrace_dif_emulate(dp,
7602 					    &mstate, vstate, state);
7603 
7604 				if (*flags & CPU_DTRACE_ERROR)
7605 					continue;
7606 
7607 				/*
7608 				 * Note that we always pass the expression
7609 				 * value from the previous iteration of the
7610 				 * action loop.  This value will only be used
7611 				 * if there is an expression argument to the
7612 				 * aggregating action, denoted by the
7613 				 * dtag_hasarg field.
7614 				 */
7615 				dtrace_aggregate(agg, buf,
7616 				    offs, aggbuf, v, val);
7617 				continue;
7618 			}
7619 
7620 			switch (act->dta_kind) {
7621 			case DTRACEACT_STOP:
7622 				if (dtrace_priv_proc_destructive(state))
7623 					dtrace_action_stop();
7624 				continue;
7625 
7626 			case DTRACEACT_BREAKPOINT:
7627 				if (dtrace_priv_kernel_destructive(state))
7628 					dtrace_action_breakpoint(ecb);
7629 				continue;
7630 
7631 			case DTRACEACT_PANIC:
7632 				if (dtrace_priv_kernel_destructive(state))
7633 					dtrace_action_panic(ecb);
7634 				continue;
7635 
7636 			case DTRACEACT_STACK:
7637 				if (!dtrace_priv_kernel(state))
7638 					continue;
7639 
7640 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7641 				    size / sizeof (pc_t), probe->dtpr_aframes,
7642 				    DTRACE_ANCHORED(probe) ? NULL :
7643 				    (uint32_t *)arg0);
7644 				continue;
7645 
7646 			case DTRACEACT_JSTACK:
7647 			case DTRACEACT_USTACK:
7648 				if (!dtrace_priv_proc(state))
7649 					continue;
7650 
7651 				/*
7652 				 * See comment in DIF_VAR_PID.
7653 				 */
7654 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7655 				    CPU_ON_INTR(CPU)) {
7656 					int depth = DTRACE_USTACK_NFRAMES(
7657 					    rec->dtrd_arg) + 1;
7658 
7659 					dtrace_bzero((void *)(tomax + valoffs),
7660 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7661 					    + depth * sizeof (uint64_t));
7662 
7663 					continue;
7664 				}
7665 
7666 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7667 				    curproc->p_dtrace_helpers != NULL) {
7668 					/*
7669 					 * This is the slow path -- we have
7670 					 * allocated string space, and we're
7671 					 * getting the stack of a process that
7672 					 * has helpers.  Call into a separate
7673 					 * routine to perform this processing.
7674 					 */
7675 					dtrace_action_ustack(&mstate, state,
7676 					    (uint64_t *)(tomax + valoffs),
7677 					    rec->dtrd_arg);
7678 					continue;
7679 				}
7680 
7681 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7682 				dtrace_getupcstack((uint64_t *)
7683 				    (tomax + valoffs),
7684 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7685 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7686 				continue;
7687 
7688 			default:
7689 				break;
7690 			}
7691 
7692 			dp = act->dta_difo;
7693 			ASSERT(dp != NULL);
7694 
7695 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7696 
7697 			if (*flags & CPU_DTRACE_ERROR)
7698 				continue;
7699 
7700 			switch (act->dta_kind) {
7701 			case DTRACEACT_SPECULATE: {
7702 				dtrace_rechdr_t *dtrh;
7703 
7704 				ASSERT(buf == &state->dts_buffer[cpuid]);
7705 				buf = dtrace_speculation_buffer(state,
7706 				    cpuid, val);
7707 
7708 				if (buf == NULL) {
7709 					*flags |= CPU_DTRACE_DROP;
7710 					continue;
7711 				}
7712 
7713 				offs = dtrace_buffer_reserve(buf,
7714 				    ecb->dte_needed, ecb->dte_alignment,
7715 				    state, NULL);
7716 
7717 				if (offs < 0) {
7718 					*flags |= CPU_DTRACE_DROP;
7719 					continue;
7720 				}
7721 
7722 				tomax = buf->dtb_tomax;
7723 				ASSERT(tomax != NULL);
7724 
7725 				if (ecb->dte_size == 0)
7726 					continue;
7727 
7728 				ASSERT3U(ecb->dte_size, >=,
7729 				    sizeof (dtrace_rechdr_t));
7730 				dtrh = ((void *)(tomax + offs));
7731 				dtrh->dtrh_epid = ecb->dte_epid;
7732 				/*
7733 				 * When the speculation is committed, all of
7734 				 * the records in the speculative buffer will
7735 				 * have their timestamps set to the commit
7736 				 * time.  Until then, it is set to a sentinel
7737 				 * value, for debugability.
7738 				 */
7739 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7740 				continue;
7741 			}
7742 
7743 			case DTRACEACT_PRINTM: {
7744 				/* The DIF returns a 'memref'. */
7745 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7746 
7747 				/* Get the size from the memref. */
7748 				size = memref[1];
7749 
7750 				/*
7751 				 * Check if the size exceeds the allocated
7752 				 * buffer size.
7753 				 */
7754 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7755 					/* Flag a drop! */
7756 					*flags |= CPU_DTRACE_DROP;
7757 					continue;
7758 				}
7759 
7760 				/* Store the size in the buffer first. */
7761 				DTRACE_STORE(uintptr_t, tomax,
7762 				    valoffs, size);
7763 
7764 				/*
7765 				 * Offset the buffer address to the start
7766 				 * of the data.
7767 				 */
7768 				valoffs += sizeof(uintptr_t);
7769 
7770 				/*
7771 				 * Reset to the memory address rather than
7772 				 * the memref array, then let the BYREF
7773 				 * code below do the work to store the
7774 				 * memory data in the buffer.
7775 				 */
7776 				val = memref[0];
7777 				break;
7778 			}
7779 
7780 			case DTRACEACT_CHILL:
7781 				if (dtrace_priv_kernel_destructive(state))
7782 					dtrace_action_chill(&mstate, val);
7783 				continue;
7784 
7785 			case DTRACEACT_RAISE:
7786 				if (dtrace_priv_proc_destructive(state))
7787 					dtrace_action_raise(val);
7788 				continue;
7789 
7790 			case DTRACEACT_COMMIT:
7791 				ASSERT(!committed);
7792 
7793 				/*
7794 				 * We need to commit our buffer state.
7795 				 */
7796 				if (ecb->dte_size)
7797 					buf->dtb_offset = offs + ecb->dte_size;
7798 				buf = &state->dts_buffer[cpuid];
7799 				dtrace_speculation_commit(state, cpuid, val);
7800 				committed = 1;
7801 				continue;
7802 
7803 			case DTRACEACT_DISCARD:
7804 				dtrace_speculation_discard(state, cpuid, val);
7805 				continue;
7806 
7807 			case DTRACEACT_DIFEXPR:
7808 			case DTRACEACT_LIBACT:
7809 			case DTRACEACT_PRINTF:
7810 			case DTRACEACT_PRINTA:
7811 			case DTRACEACT_SYSTEM:
7812 			case DTRACEACT_FREOPEN:
7813 			case DTRACEACT_TRACEMEM:
7814 				break;
7815 
7816 			case DTRACEACT_TRACEMEM_DYNSIZE:
7817 				tracememsize = val;
7818 				break;
7819 
7820 			case DTRACEACT_SYM:
7821 			case DTRACEACT_MOD:
7822 				if (!dtrace_priv_kernel(state))
7823 					continue;
7824 				break;
7825 
7826 			case DTRACEACT_USYM:
7827 			case DTRACEACT_UMOD:
7828 			case DTRACEACT_UADDR: {
7829 #ifdef illumos
7830 				struct pid *pid = curthread->t_procp->p_pidp;
7831 #endif
7832 
7833 				if (!dtrace_priv_proc(state))
7834 					continue;
7835 
7836 				DTRACE_STORE(uint64_t, tomax,
7837 #ifdef illumos
7838 				    valoffs, (uint64_t)pid->pid_id);
7839 #else
7840 				    valoffs, (uint64_t) curproc->p_pid);
7841 #endif
7842 				DTRACE_STORE(uint64_t, tomax,
7843 				    valoffs + sizeof (uint64_t), val);
7844 
7845 				continue;
7846 			}
7847 
7848 			case DTRACEACT_EXIT: {
7849 				/*
7850 				 * For the exit action, we are going to attempt
7851 				 * to atomically set our activity to be
7852 				 * draining.  If this fails (either because
7853 				 * another CPU has beat us to the exit action,
7854 				 * or because our current activity is something
7855 				 * other than ACTIVE or WARMUP), we will
7856 				 * continue.  This assures that the exit action
7857 				 * can be successfully recorded at most once
7858 				 * when we're in the ACTIVE state.  If we're
7859 				 * encountering the exit() action while in
7860 				 * COOLDOWN, however, we want to honor the new
7861 				 * status code.  (We know that we're the only
7862 				 * thread in COOLDOWN, so there is no race.)
7863 				 */
7864 				void *activity = &state->dts_activity;
7865 				dtrace_activity_t curstate = state->dts_activity;
7866 
7867 				if (curstate == DTRACE_ACTIVITY_COOLDOWN)
7868 					break;
7869 
7870 				if (curstate != DTRACE_ACTIVITY_WARMUP)
7871 					curstate = DTRACE_ACTIVITY_ACTIVE;
7872 
7873 				if (dtrace_cas32(activity, curstate,
7874 				    DTRACE_ACTIVITY_DRAINING) != curstate) {
7875 					*flags |= CPU_DTRACE_DROP;
7876 					continue;
7877 				}
7878 
7879 				break;
7880 			}
7881 
7882 			default:
7883 				ASSERT(0);
7884 			}
7885 
7886 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7887 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7888 				uintptr_t end = valoffs + size;
7889 
7890 				if (tracememsize != 0 &&
7891 				    valoffs + tracememsize < end) {
7892 					end = valoffs + tracememsize;
7893 					tracememsize = 0;
7894 				}
7895 
7896 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7897 				    !dtrace_vcanload((void *)(uintptr_t)val,
7898 				    &dp->dtdo_rtype, NULL, &mstate, vstate))
7899 					continue;
7900 
7901 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7902 				    &val, end, act->dta_intuple,
7903 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7904 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7905 				continue;
7906 			}
7907 
7908 			switch (size) {
7909 			case 0:
7910 				break;
7911 
7912 			case sizeof (uint8_t):
7913 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7914 				break;
7915 			case sizeof (uint16_t):
7916 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7917 				break;
7918 			case sizeof (uint32_t):
7919 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7920 				break;
7921 			case sizeof (uint64_t):
7922 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7923 				break;
7924 			default:
7925 				/*
7926 				 * Any other size should have been returned by
7927 				 * reference, not by value.
7928 				 */
7929 				ASSERT(0);
7930 				break;
7931 			}
7932 		}
7933 
7934 		if (*flags & CPU_DTRACE_DROP)
7935 			continue;
7936 
7937 		if (*flags & CPU_DTRACE_FAULT) {
7938 			int ndx;
7939 			dtrace_action_t *err;
7940 
7941 			buf->dtb_errors++;
7942 
7943 			if (probe->dtpr_id == dtrace_probeid_error) {
7944 				/*
7945 				 * There's nothing we can do -- we had an
7946 				 * error on the error probe.  We bump an
7947 				 * error counter to at least indicate that
7948 				 * this condition happened.
7949 				 */
7950 				dtrace_error(&state->dts_dblerrors);
7951 				continue;
7952 			}
7953 
7954 			if (vtime) {
7955 				/*
7956 				 * Before recursing on dtrace_probe(), we
7957 				 * need to explicitly clear out our start
7958 				 * time to prevent it from being accumulated
7959 				 * into t_dtrace_vtime.
7960 				 */
7961 				curthread->t_dtrace_start = 0;
7962 			}
7963 
7964 			/*
7965 			 * Iterate over the actions to figure out which action
7966 			 * we were processing when we experienced the error.
7967 			 * Note that act points _past_ the faulting action; if
7968 			 * act is ecb->dte_action, the fault was in the
7969 			 * predicate, if it's ecb->dte_action->dta_next it's
7970 			 * in action #1, and so on.
7971 			 */
7972 			for (err = ecb->dte_action, ndx = 0;
7973 			    err != act; err = err->dta_next, ndx++)
7974 				continue;
7975 
7976 			dtrace_probe_error(state, ecb->dte_epid, ndx,
7977 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7978 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7979 			    cpu_core[cpuid].cpuc_dtrace_illval);
7980 
7981 			continue;
7982 		}
7983 
7984 		if (!committed)
7985 			buf->dtb_offset = offs + ecb->dte_size;
7986 	}
7987 
7988 	if (vtime)
7989 		curthread->t_dtrace_start = dtrace_gethrtime();
7990 
7991 	dtrace_probe_exit(cookie);
7992 }
7993 
7994 /*
7995  * DTrace Probe Hashing Functions
7996  *
7997  * The functions in this section (and indeed, the functions in remaining
7998  * sections) are not _called_ from probe context.  (Any exceptions to this are
7999  * marked with a "Note:".)  Rather, they are called from elsewhere in the
8000  * DTrace framework to look-up probes in, add probes to and remove probes from
8001  * the DTrace probe hashes.  (Each probe is hashed by each element of the
8002  * probe tuple -- allowing for fast lookups, regardless of what was
8003  * specified.)
8004  */
8005 static uint_t
8006 dtrace_hash_str(const char *p)
8007 {
8008 	unsigned int g;
8009 	uint_t hval = 0;
8010 
8011 	while (*p) {
8012 		hval = (hval << 4) + *p++;
8013 		if ((g = (hval & 0xf0000000)) != 0)
8014 			hval ^= g >> 24;
8015 		hval &= ~g;
8016 	}
8017 	return (hval);
8018 }
8019 
8020 static dtrace_hash_t *
8021 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
8022 {
8023 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
8024 
8025 	hash->dth_stroffs = stroffs;
8026 	hash->dth_nextoffs = nextoffs;
8027 	hash->dth_prevoffs = prevoffs;
8028 
8029 	hash->dth_size = 1;
8030 	hash->dth_mask = hash->dth_size - 1;
8031 
8032 	hash->dth_tab = kmem_zalloc(hash->dth_size *
8033 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
8034 
8035 	return (hash);
8036 }
8037 
8038 static void
8039 dtrace_hash_destroy(dtrace_hash_t *hash)
8040 {
8041 #ifdef DEBUG
8042 	int i;
8043 
8044 	for (i = 0; i < hash->dth_size; i++)
8045 		ASSERT(hash->dth_tab[i] == NULL);
8046 #endif
8047 
8048 	kmem_free(hash->dth_tab,
8049 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
8050 	kmem_free(hash, sizeof (dtrace_hash_t));
8051 }
8052 
8053 static void
8054 dtrace_hash_resize(dtrace_hash_t *hash)
8055 {
8056 	int size = hash->dth_size, i, ndx;
8057 	int new_size = hash->dth_size << 1;
8058 	int new_mask = new_size - 1;
8059 	dtrace_hashbucket_t **new_tab, *bucket, *next;
8060 
8061 	ASSERT((new_size & new_mask) == 0);
8062 
8063 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
8064 
8065 	for (i = 0; i < size; i++) {
8066 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
8067 			dtrace_probe_t *probe = bucket->dthb_chain;
8068 
8069 			ASSERT(probe != NULL);
8070 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
8071 
8072 			next = bucket->dthb_next;
8073 			bucket->dthb_next = new_tab[ndx];
8074 			new_tab[ndx] = bucket;
8075 		}
8076 	}
8077 
8078 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
8079 	hash->dth_tab = new_tab;
8080 	hash->dth_size = new_size;
8081 	hash->dth_mask = new_mask;
8082 }
8083 
8084 static void
8085 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
8086 {
8087 	int hashval = DTRACE_HASHSTR(hash, new);
8088 	int ndx = hashval & hash->dth_mask;
8089 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8090 	dtrace_probe_t **nextp, **prevp;
8091 
8092 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8093 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8094 			goto add;
8095 	}
8096 
8097 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8098 		dtrace_hash_resize(hash);
8099 		dtrace_hash_add(hash, new);
8100 		return;
8101 	}
8102 
8103 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8104 	bucket->dthb_next = hash->dth_tab[ndx];
8105 	hash->dth_tab[ndx] = bucket;
8106 	hash->dth_nbuckets++;
8107 
8108 add:
8109 	nextp = DTRACE_HASHNEXT(hash, new);
8110 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8111 	*nextp = bucket->dthb_chain;
8112 
8113 	if (bucket->dthb_chain != NULL) {
8114 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8115 		ASSERT(*prevp == NULL);
8116 		*prevp = new;
8117 	}
8118 
8119 	bucket->dthb_chain = new;
8120 	bucket->dthb_len++;
8121 }
8122 
8123 static dtrace_probe_t *
8124 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8125 {
8126 	int hashval = DTRACE_HASHSTR(hash, template);
8127 	int ndx = hashval & hash->dth_mask;
8128 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8129 
8130 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8131 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8132 			return (bucket->dthb_chain);
8133 	}
8134 
8135 	return (NULL);
8136 }
8137 
8138 static int
8139 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8140 {
8141 	int hashval = DTRACE_HASHSTR(hash, template);
8142 	int ndx = hashval & hash->dth_mask;
8143 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8144 
8145 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8146 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8147 			return (bucket->dthb_len);
8148 	}
8149 
8150 	return (0);
8151 }
8152 
8153 static void
8154 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8155 {
8156 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8157 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8158 
8159 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8160 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8161 
8162 	/*
8163 	 * Find the bucket that we're removing this probe from.
8164 	 */
8165 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8166 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8167 			break;
8168 	}
8169 
8170 	ASSERT(bucket != NULL);
8171 
8172 	if (*prevp == NULL) {
8173 		if (*nextp == NULL) {
8174 			/*
8175 			 * The removed probe was the only probe on this
8176 			 * bucket; we need to remove the bucket.
8177 			 */
8178 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8179 
8180 			ASSERT(bucket->dthb_chain == probe);
8181 			ASSERT(b != NULL);
8182 
8183 			if (b == bucket) {
8184 				hash->dth_tab[ndx] = bucket->dthb_next;
8185 			} else {
8186 				while (b->dthb_next != bucket)
8187 					b = b->dthb_next;
8188 				b->dthb_next = bucket->dthb_next;
8189 			}
8190 
8191 			ASSERT(hash->dth_nbuckets > 0);
8192 			hash->dth_nbuckets--;
8193 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8194 			return;
8195 		}
8196 
8197 		bucket->dthb_chain = *nextp;
8198 	} else {
8199 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8200 	}
8201 
8202 	if (*nextp != NULL)
8203 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8204 }
8205 
8206 /*
8207  * DTrace Utility Functions
8208  *
8209  * These are random utility functions that are _not_ called from probe context.
8210  */
8211 static int
8212 dtrace_badattr(const dtrace_attribute_t *a)
8213 {
8214 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
8215 	    a->dtat_data > DTRACE_STABILITY_MAX ||
8216 	    a->dtat_class > DTRACE_CLASS_MAX);
8217 }
8218 
8219 /*
8220  * Return a duplicate copy of a string.  If the specified string is NULL,
8221  * this function returns a zero-length string.
8222  */
8223 static char *
8224 dtrace_strdup(const char *str)
8225 {
8226 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8227 
8228 	if (str != NULL)
8229 		(void) strcpy(new, str);
8230 
8231 	return (new);
8232 }
8233 
8234 #define	DTRACE_ISALPHA(c)	\
8235 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8236 
8237 static int
8238 dtrace_badname(const char *s)
8239 {
8240 	char c;
8241 
8242 	if (s == NULL || (c = *s++) == '\0')
8243 		return (0);
8244 
8245 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8246 		return (1);
8247 
8248 	while ((c = *s++) != '\0') {
8249 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8250 		    c != '-' && c != '_' && c != '.' && c != '`')
8251 			return (1);
8252 	}
8253 
8254 	return (0);
8255 }
8256 
8257 static void
8258 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8259 {
8260 	uint32_t priv;
8261 
8262 #ifdef illumos
8263 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8264 		/*
8265 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8266 		 */
8267 		priv = DTRACE_PRIV_ALL;
8268 	} else {
8269 		*uidp = crgetuid(cr);
8270 		*zoneidp = crgetzoneid(cr);
8271 
8272 		priv = 0;
8273 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8274 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8275 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8276 			priv |= DTRACE_PRIV_USER;
8277 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8278 			priv |= DTRACE_PRIV_PROC;
8279 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8280 			priv |= DTRACE_PRIV_OWNER;
8281 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8282 			priv |= DTRACE_PRIV_ZONEOWNER;
8283 	}
8284 #else
8285 	priv = DTRACE_PRIV_ALL;
8286 #endif
8287 
8288 	*privp = priv;
8289 }
8290 
8291 #ifdef DTRACE_ERRDEBUG
8292 static void
8293 dtrace_errdebug(const char *str)
8294 {
8295 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8296 	int occupied = 0;
8297 
8298 	mutex_enter(&dtrace_errlock);
8299 	dtrace_errlast = str;
8300 	dtrace_errthread = curthread;
8301 
8302 	while (occupied++ < DTRACE_ERRHASHSZ) {
8303 		if (dtrace_errhash[hval].dter_msg == str) {
8304 			dtrace_errhash[hval].dter_count++;
8305 			goto out;
8306 		}
8307 
8308 		if (dtrace_errhash[hval].dter_msg != NULL) {
8309 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8310 			continue;
8311 		}
8312 
8313 		dtrace_errhash[hval].dter_msg = str;
8314 		dtrace_errhash[hval].dter_count = 1;
8315 		goto out;
8316 	}
8317 
8318 	panic("dtrace: undersized error hash");
8319 out:
8320 	mutex_exit(&dtrace_errlock);
8321 }
8322 #endif
8323 
8324 /*
8325  * DTrace Matching Functions
8326  *
8327  * These functions are used to match groups of probes, given some elements of
8328  * a probe tuple, or some globbed expressions for elements of a probe tuple.
8329  */
8330 static int
8331 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8332     zoneid_t zoneid)
8333 {
8334 	if (priv != DTRACE_PRIV_ALL) {
8335 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8336 		uint32_t match = priv & ppriv;
8337 
8338 		/*
8339 		 * No PRIV_DTRACE_* privileges...
8340 		 */
8341 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8342 		    DTRACE_PRIV_KERNEL)) == 0)
8343 			return (0);
8344 
8345 		/*
8346 		 * No matching bits, but there were bits to match...
8347 		 */
8348 		if (match == 0 && ppriv != 0)
8349 			return (0);
8350 
8351 		/*
8352 		 * Need to have permissions to the process, but don't...
8353 		 */
8354 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8355 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8356 			return (0);
8357 		}
8358 
8359 		/*
8360 		 * Need to be in the same zone unless we possess the
8361 		 * privilege to examine all zones.
8362 		 */
8363 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8364 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8365 			return (0);
8366 		}
8367 	}
8368 
8369 	return (1);
8370 }
8371 
8372 /*
8373  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8374  * consists of input pattern strings and an ops-vector to evaluate them.
8375  * This function returns >0 for match, 0 for no match, and <0 for error.
8376  */
8377 static int
8378 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8379     uint32_t priv, uid_t uid, zoneid_t zoneid)
8380 {
8381 	dtrace_provider_t *pvp = prp->dtpr_provider;
8382 	int rv;
8383 
8384 	if (pvp->dtpv_defunct)
8385 		return (0);
8386 
8387 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8388 		return (rv);
8389 
8390 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8391 		return (rv);
8392 
8393 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8394 		return (rv);
8395 
8396 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8397 		return (rv);
8398 
8399 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8400 		return (0);
8401 
8402 	return (rv);
8403 }
8404 
8405 /*
8406  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8407  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8408  * libc's version, the kernel version only applies to 8-bit ASCII strings.
8409  * In addition, all of the recursion cases except for '*' matching have been
8410  * unwound.  For '*', we still implement recursive evaluation, but a depth
8411  * counter is maintained and matching is aborted if we recurse too deep.
8412  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8413  */
8414 static int
8415 dtrace_match_glob(const char *s, const char *p, int depth)
8416 {
8417 	const char *olds;
8418 	char s1, c;
8419 	int gs;
8420 
8421 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8422 		return (-1);
8423 
8424 	if (s == NULL)
8425 		s = ""; /* treat NULL as empty string */
8426 
8427 top:
8428 	olds = s;
8429 	s1 = *s++;
8430 
8431 	if (p == NULL)
8432 		return (0);
8433 
8434 	if ((c = *p++) == '\0')
8435 		return (s1 == '\0');
8436 
8437 	switch (c) {
8438 	case '[': {
8439 		int ok = 0, notflag = 0;
8440 		char lc = '\0';
8441 
8442 		if (s1 == '\0')
8443 			return (0);
8444 
8445 		if (*p == '!') {
8446 			notflag = 1;
8447 			p++;
8448 		}
8449 
8450 		if ((c = *p++) == '\0')
8451 			return (0);
8452 
8453 		do {
8454 			if (c == '-' && lc != '\0' && *p != ']') {
8455 				if ((c = *p++) == '\0')
8456 					return (0);
8457 				if (c == '\\' && (c = *p++) == '\0')
8458 					return (0);
8459 
8460 				if (notflag) {
8461 					if (s1 < lc || s1 > c)
8462 						ok++;
8463 					else
8464 						return (0);
8465 				} else if (lc <= s1 && s1 <= c)
8466 					ok++;
8467 
8468 			} else if (c == '\\' && (c = *p++) == '\0')
8469 				return (0);
8470 
8471 			lc = c; /* save left-hand 'c' for next iteration */
8472 
8473 			if (notflag) {
8474 				if (s1 != c)
8475 					ok++;
8476 				else
8477 					return (0);
8478 			} else if (s1 == c)
8479 				ok++;
8480 
8481 			if ((c = *p++) == '\0')
8482 				return (0);
8483 
8484 		} while (c != ']');
8485 
8486 		if (ok)
8487 			goto top;
8488 
8489 		return (0);
8490 	}
8491 
8492 	case '\\':
8493 		if ((c = *p++) == '\0')
8494 			return (0);
8495 		/*FALLTHRU*/
8496 
8497 	default:
8498 		if (c != s1)
8499 			return (0);
8500 		/*FALLTHRU*/
8501 
8502 	case '?':
8503 		if (s1 != '\0')
8504 			goto top;
8505 		return (0);
8506 
8507 	case '*':
8508 		while (*p == '*')
8509 			p++; /* consecutive *'s are identical to a single one */
8510 
8511 		if (*p == '\0')
8512 			return (1);
8513 
8514 		for (s = olds; *s != '\0'; s++) {
8515 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8516 				return (gs);
8517 		}
8518 
8519 		return (0);
8520 	}
8521 }
8522 
8523 /*ARGSUSED*/
8524 static int
8525 dtrace_match_string(const char *s, const char *p, int depth)
8526 {
8527 	return (s != NULL && strcmp(s, p) == 0);
8528 }
8529 
8530 /*ARGSUSED*/
8531 static int
8532 dtrace_match_nul(const char *s, const char *p, int depth)
8533 {
8534 	return (1); /* always match the empty pattern */
8535 }
8536 
8537 /*ARGSUSED*/
8538 static int
8539 dtrace_match_nonzero(const char *s, const char *p, int depth)
8540 {
8541 	return (s != NULL && s[0] != '\0');
8542 }
8543 
8544 static int
8545 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8546     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8547 {
8548 	dtrace_probe_t template, *probe;
8549 	dtrace_hash_t *hash = NULL;
8550 	int len, best = INT_MAX, nmatched = 0;
8551 	dtrace_id_t i;
8552 
8553 	ASSERT(MUTEX_HELD(&dtrace_lock));
8554 
8555 	/*
8556 	 * If the probe ID is specified in the key, just lookup by ID and
8557 	 * invoke the match callback once if a matching probe is found.
8558 	 */
8559 	if (pkp->dtpk_id != DTRACE_IDNONE) {
8560 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8561 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8562 			(void) (*matched)(probe, arg);
8563 			nmatched++;
8564 		}
8565 		return (nmatched);
8566 	}
8567 
8568 	template.dtpr_mod = (char *)pkp->dtpk_mod;
8569 	template.dtpr_func = (char *)pkp->dtpk_func;
8570 	template.dtpr_name = (char *)pkp->dtpk_name;
8571 
8572 	/*
8573 	 * We want to find the most distinct of the module name, function
8574 	 * name, and name.  So for each one that is not a glob pattern or
8575 	 * empty string, we perform a lookup in the corresponding hash and
8576 	 * use the hash table with the fewest collisions to do our search.
8577 	 */
8578 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8579 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8580 		best = len;
8581 		hash = dtrace_bymod;
8582 	}
8583 
8584 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8585 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8586 		best = len;
8587 		hash = dtrace_byfunc;
8588 	}
8589 
8590 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8591 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8592 		best = len;
8593 		hash = dtrace_byname;
8594 	}
8595 
8596 	/*
8597 	 * If we did not select a hash table, iterate over every probe and
8598 	 * invoke our callback for each one that matches our input probe key.
8599 	 */
8600 	if (hash == NULL) {
8601 		for (i = 0; i < dtrace_nprobes; i++) {
8602 			if ((probe = dtrace_probes[i]) == NULL ||
8603 			    dtrace_match_probe(probe, pkp, priv, uid,
8604 			    zoneid) <= 0)
8605 				continue;
8606 
8607 			nmatched++;
8608 
8609 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8610 				break;
8611 		}
8612 
8613 		return (nmatched);
8614 	}
8615 
8616 	/*
8617 	 * If we selected a hash table, iterate over each probe of the same key
8618 	 * name and invoke the callback for every probe that matches the other
8619 	 * attributes of our input probe key.
8620 	 */
8621 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8622 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8623 
8624 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8625 			continue;
8626 
8627 		nmatched++;
8628 
8629 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8630 			break;
8631 	}
8632 
8633 	return (nmatched);
8634 }
8635 
8636 /*
8637  * Return the function pointer dtrace_probecmp() should use to compare the
8638  * specified pattern with a string.  For NULL or empty patterns, we select
8639  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8640  * For non-empty non-glob strings, we use dtrace_match_string().
8641  */
8642 static dtrace_probekey_f *
8643 dtrace_probekey_func(const char *p)
8644 {
8645 	char c;
8646 
8647 	if (p == NULL || *p == '\0')
8648 		return (&dtrace_match_nul);
8649 
8650 	while ((c = *p++) != '\0') {
8651 		if (c == '[' || c == '?' || c == '*' || c == '\\')
8652 			return (&dtrace_match_glob);
8653 	}
8654 
8655 	return (&dtrace_match_string);
8656 }
8657 
8658 /*
8659  * Build a probe comparison key for use with dtrace_match_probe() from the
8660  * given probe description.  By convention, a null key only matches anchored
8661  * probes: if each field is the empty string, reset dtpk_fmatch to
8662  * dtrace_match_nonzero().
8663  */
8664 static void
8665 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8666 {
8667 	pkp->dtpk_prov = pdp->dtpd_provider;
8668 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8669 
8670 	pkp->dtpk_mod = pdp->dtpd_mod;
8671 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8672 
8673 	pkp->dtpk_func = pdp->dtpd_func;
8674 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8675 
8676 	pkp->dtpk_name = pdp->dtpd_name;
8677 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8678 
8679 	pkp->dtpk_id = pdp->dtpd_id;
8680 
8681 	if (pkp->dtpk_id == DTRACE_IDNONE &&
8682 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8683 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8684 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8685 	    pkp->dtpk_nmatch == &dtrace_match_nul)
8686 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8687 }
8688 
8689 /*
8690  * DTrace Provider-to-Framework API Functions
8691  *
8692  * These functions implement much of the Provider-to-Framework API, as
8693  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8694  * the functions in the API for probe management (found below), and
8695  * dtrace_probe() itself (found above).
8696  */
8697 
8698 /*
8699  * Register the calling provider with the DTrace framework.  This should
8700  * generally be called by DTrace providers in their attach(9E) entry point.
8701  */
8702 int
8703 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8704     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8705 {
8706 	dtrace_provider_t *provider;
8707 
8708 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8709 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8710 		    "arguments", name ? name : "<NULL>");
8711 		return (EINVAL);
8712 	}
8713 
8714 	if (name[0] == '\0' || dtrace_badname(name)) {
8715 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8716 		    "provider name", name);
8717 		return (EINVAL);
8718 	}
8719 
8720 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8721 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8722 	    pops->dtps_destroy == NULL ||
8723 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8724 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8725 		    "provider ops", name);
8726 		return (EINVAL);
8727 	}
8728 
8729 	if (dtrace_badattr(&pap->dtpa_provider) ||
8730 	    dtrace_badattr(&pap->dtpa_mod) ||
8731 	    dtrace_badattr(&pap->dtpa_func) ||
8732 	    dtrace_badattr(&pap->dtpa_name) ||
8733 	    dtrace_badattr(&pap->dtpa_args)) {
8734 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8735 		    "provider attributes", name);
8736 		return (EINVAL);
8737 	}
8738 
8739 	if (priv & ~DTRACE_PRIV_ALL) {
8740 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8741 		    "privilege attributes", name);
8742 		return (EINVAL);
8743 	}
8744 
8745 	if ((priv & DTRACE_PRIV_KERNEL) &&
8746 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8747 	    pops->dtps_usermode == NULL) {
8748 		cmn_err(CE_WARN, "failed to register provider '%s': need "
8749 		    "dtps_usermode() op for given privilege attributes", name);
8750 		return (EINVAL);
8751 	}
8752 
8753 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8754 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8755 	(void) strcpy(provider->dtpv_name, name);
8756 
8757 	provider->dtpv_attr = *pap;
8758 	provider->dtpv_priv.dtpp_flags = priv;
8759 	if (cr != NULL) {
8760 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8761 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8762 	}
8763 	provider->dtpv_pops = *pops;
8764 
8765 	if (pops->dtps_provide == NULL) {
8766 		ASSERT(pops->dtps_provide_module != NULL);
8767 		provider->dtpv_pops.dtps_provide =
8768 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8769 	}
8770 
8771 	if (pops->dtps_provide_module == NULL) {
8772 		ASSERT(pops->dtps_provide != NULL);
8773 		provider->dtpv_pops.dtps_provide_module =
8774 		    (void (*)(void *, modctl_t *))dtrace_nullop;
8775 	}
8776 
8777 	if (pops->dtps_suspend == NULL) {
8778 		ASSERT(pops->dtps_resume == NULL);
8779 		provider->dtpv_pops.dtps_suspend =
8780 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8781 		provider->dtpv_pops.dtps_resume =
8782 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8783 	}
8784 
8785 	provider->dtpv_arg = arg;
8786 	*idp = (dtrace_provider_id_t)provider;
8787 
8788 	if (pops == &dtrace_provider_ops) {
8789 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8790 		ASSERT(MUTEX_HELD(&dtrace_lock));
8791 		ASSERT(dtrace_anon.dta_enabling == NULL);
8792 
8793 		/*
8794 		 * We make sure that the DTrace provider is at the head of
8795 		 * the provider chain.
8796 		 */
8797 		provider->dtpv_next = dtrace_provider;
8798 		dtrace_provider = provider;
8799 		return (0);
8800 	}
8801 
8802 	mutex_enter(&dtrace_provider_lock);
8803 	mutex_enter(&dtrace_lock);
8804 
8805 	/*
8806 	 * If there is at least one provider registered, we'll add this
8807 	 * provider after the first provider.
8808 	 */
8809 	if (dtrace_provider != NULL) {
8810 		provider->dtpv_next = dtrace_provider->dtpv_next;
8811 		dtrace_provider->dtpv_next = provider;
8812 	} else {
8813 		dtrace_provider = provider;
8814 	}
8815 
8816 	if (dtrace_retained != NULL) {
8817 		dtrace_enabling_provide(provider);
8818 
8819 		/*
8820 		 * Now we need to call dtrace_enabling_matchall() -- which
8821 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8822 		 * to drop all of our locks before calling into it...
8823 		 */
8824 		mutex_exit(&dtrace_lock);
8825 		mutex_exit(&dtrace_provider_lock);
8826 		dtrace_enabling_matchall();
8827 
8828 		return (0);
8829 	}
8830 
8831 	mutex_exit(&dtrace_lock);
8832 	mutex_exit(&dtrace_provider_lock);
8833 
8834 	return (0);
8835 }
8836 
8837 /*
8838  * Unregister the specified provider from the DTrace framework.  This should
8839  * generally be called by DTrace providers in their detach(9E) entry point.
8840  */
8841 int
8842 dtrace_unregister(dtrace_provider_id_t id)
8843 {
8844 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8845 	dtrace_provider_t *prev = NULL;
8846 	int i, self = 0, noreap = 0;
8847 	dtrace_probe_t *probe, *first = NULL;
8848 
8849 	if (old->dtpv_pops.dtps_enable ==
8850 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8851 		/*
8852 		 * If DTrace itself is the provider, we're called with locks
8853 		 * already held.
8854 		 */
8855 		ASSERT(old == dtrace_provider);
8856 #ifdef illumos
8857 		ASSERT(dtrace_devi != NULL);
8858 #endif
8859 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8860 		ASSERT(MUTEX_HELD(&dtrace_lock));
8861 		self = 1;
8862 
8863 		if (dtrace_provider->dtpv_next != NULL) {
8864 			/*
8865 			 * There's another provider here; return failure.
8866 			 */
8867 			return (EBUSY);
8868 		}
8869 	} else {
8870 		mutex_enter(&dtrace_provider_lock);
8871 #ifdef illumos
8872 		mutex_enter(&mod_lock);
8873 #endif
8874 		mutex_enter(&dtrace_lock);
8875 	}
8876 
8877 	/*
8878 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8879 	 * probes, we refuse to let providers slither away, unless this
8880 	 * provider has already been explicitly invalidated.
8881 	 */
8882 	if (!old->dtpv_defunct &&
8883 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8884 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8885 		if (!self) {
8886 			mutex_exit(&dtrace_lock);
8887 #ifdef illumos
8888 			mutex_exit(&mod_lock);
8889 #endif
8890 			mutex_exit(&dtrace_provider_lock);
8891 		}
8892 		return (EBUSY);
8893 	}
8894 
8895 	/*
8896 	 * Attempt to destroy the probes associated with this provider.
8897 	 */
8898 	for (i = 0; i < dtrace_nprobes; i++) {
8899 		if ((probe = dtrace_probes[i]) == NULL)
8900 			continue;
8901 
8902 		if (probe->dtpr_provider != old)
8903 			continue;
8904 
8905 		if (probe->dtpr_ecb == NULL)
8906 			continue;
8907 
8908 		/*
8909 		 * If we are trying to unregister a defunct provider, and the
8910 		 * provider was made defunct within the interval dictated by
8911 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8912 		 * attempt to reap our enablings.  To denote that the provider
8913 		 * should reattempt to unregister itself at some point in the
8914 		 * future, we will return a differentiable error code (EAGAIN
8915 		 * instead of EBUSY) in this case.
8916 		 */
8917 		if (dtrace_gethrtime() - old->dtpv_defunct >
8918 		    dtrace_unregister_defunct_reap)
8919 			noreap = 1;
8920 
8921 		if (!self) {
8922 			mutex_exit(&dtrace_lock);
8923 #ifdef illumos
8924 			mutex_exit(&mod_lock);
8925 #endif
8926 			mutex_exit(&dtrace_provider_lock);
8927 		}
8928 
8929 		if (noreap)
8930 			return (EBUSY);
8931 
8932 		(void) taskq_dispatch(dtrace_taskq,
8933 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8934 
8935 		return (EAGAIN);
8936 	}
8937 
8938 	/*
8939 	 * All of the probes for this provider are disabled; we can safely
8940 	 * remove all of them from their hash chains and from the probe array.
8941 	 */
8942 	for (i = 0; i < dtrace_nprobes; i++) {
8943 		if ((probe = dtrace_probes[i]) == NULL)
8944 			continue;
8945 
8946 		if (probe->dtpr_provider != old)
8947 			continue;
8948 
8949 		dtrace_probes[i] = NULL;
8950 
8951 		dtrace_hash_remove(dtrace_bymod, probe);
8952 		dtrace_hash_remove(dtrace_byfunc, probe);
8953 		dtrace_hash_remove(dtrace_byname, probe);
8954 
8955 		if (first == NULL) {
8956 			first = probe;
8957 			probe->dtpr_nextmod = NULL;
8958 		} else {
8959 			probe->dtpr_nextmod = first;
8960 			first = probe;
8961 		}
8962 	}
8963 
8964 	/*
8965 	 * The provider's probes have been removed from the hash chains and
8966 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8967 	 * everyone has cleared out from any probe array processing.
8968 	 */
8969 	dtrace_sync();
8970 
8971 	for (probe = first; probe != NULL; probe = first) {
8972 		first = probe->dtpr_nextmod;
8973 
8974 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8975 		    probe->dtpr_arg);
8976 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8977 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8978 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8979 #ifdef illumos
8980 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8981 #else
8982 		free_unr(dtrace_arena, probe->dtpr_id);
8983 #endif
8984 		kmem_free(probe, sizeof (dtrace_probe_t));
8985 	}
8986 
8987 	if ((prev = dtrace_provider) == old) {
8988 #ifdef illumos
8989 		ASSERT(self || dtrace_devi == NULL);
8990 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8991 #endif
8992 		dtrace_provider = old->dtpv_next;
8993 	} else {
8994 		while (prev != NULL && prev->dtpv_next != old)
8995 			prev = prev->dtpv_next;
8996 
8997 		if (prev == NULL) {
8998 			panic("attempt to unregister non-existent "
8999 			    "dtrace provider %p\n", (void *)id);
9000 		}
9001 
9002 		prev->dtpv_next = old->dtpv_next;
9003 	}
9004 
9005 	if (!self) {
9006 		mutex_exit(&dtrace_lock);
9007 #ifdef illumos
9008 		mutex_exit(&mod_lock);
9009 #endif
9010 		mutex_exit(&dtrace_provider_lock);
9011 	}
9012 
9013 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
9014 	kmem_free(old, sizeof (dtrace_provider_t));
9015 
9016 	return (0);
9017 }
9018 
9019 /*
9020  * Invalidate the specified provider.  All subsequent probe lookups for the
9021  * specified provider will fail, but its probes will not be removed.
9022  */
9023 void
9024 dtrace_invalidate(dtrace_provider_id_t id)
9025 {
9026 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
9027 
9028 	ASSERT(pvp->dtpv_pops.dtps_enable !=
9029 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9030 
9031 	mutex_enter(&dtrace_provider_lock);
9032 	mutex_enter(&dtrace_lock);
9033 
9034 	pvp->dtpv_defunct = dtrace_gethrtime();
9035 
9036 	mutex_exit(&dtrace_lock);
9037 	mutex_exit(&dtrace_provider_lock);
9038 }
9039 
9040 /*
9041  * Indicate whether or not DTrace has attached.
9042  */
9043 int
9044 dtrace_attached(void)
9045 {
9046 	/*
9047 	 * dtrace_provider will be non-NULL iff the DTrace driver has
9048 	 * attached.  (It's non-NULL because DTrace is always itself a
9049 	 * provider.)
9050 	 */
9051 	return (dtrace_provider != NULL);
9052 }
9053 
9054 /*
9055  * Remove all the unenabled probes for the given provider.  This function is
9056  * not unlike dtrace_unregister(), except that it doesn't remove the provider
9057  * -- just as many of its associated probes as it can.
9058  */
9059 int
9060 dtrace_condense(dtrace_provider_id_t id)
9061 {
9062 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
9063 	int i;
9064 	dtrace_probe_t *probe;
9065 
9066 	/*
9067 	 * Make sure this isn't the dtrace provider itself.
9068 	 */
9069 	ASSERT(prov->dtpv_pops.dtps_enable !=
9070 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9071 
9072 	mutex_enter(&dtrace_provider_lock);
9073 	mutex_enter(&dtrace_lock);
9074 
9075 	/*
9076 	 * Attempt to destroy the probes associated with this provider.
9077 	 */
9078 	for (i = 0; i < dtrace_nprobes; i++) {
9079 		if ((probe = dtrace_probes[i]) == NULL)
9080 			continue;
9081 
9082 		if (probe->dtpr_provider != prov)
9083 			continue;
9084 
9085 		if (probe->dtpr_ecb != NULL)
9086 			continue;
9087 
9088 		dtrace_probes[i] = NULL;
9089 
9090 		dtrace_hash_remove(dtrace_bymod, probe);
9091 		dtrace_hash_remove(dtrace_byfunc, probe);
9092 		dtrace_hash_remove(dtrace_byname, probe);
9093 
9094 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9095 		    probe->dtpr_arg);
9096 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9097 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9098 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9099 		kmem_free(probe, sizeof (dtrace_probe_t));
9100 #ifdef illumos
9101 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9102 #else
9103 		free_unr(dtrace_arena, i + 1);
9104 #endif
9105 	}
9106 
9107 	mutex_exit(&dtrace_lock);
9108 	mutex_exit(&dtrace_provider_lock);
9109 
9110 	return (0);
9111 }
9112 
9113 /*
9114  * DTrace Probe Management Functions
9115  *
9116  * The functions in this section perform the DTrace probe management,
9117  * including functions to create probes, look-up probes, and call into the
9118  * providers to request that probes be provided.  Some of these functions are
9119  * in the Provider-to-Framework API; these functions can be identified by the
9120  * fact that they are not declared "static".
9121  */
9122 
9123 /*
9124  * Create a probe with the specified module name, function name, and name.
9125  */
9126 dtrace_id_t
9127 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9128     const char *func, const char *name, int aframes, void *arg)
9129 {
9130 	dtrace_probe_t *probe, **probes;
9131 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9132 	dtrace_id_t id;
9133 
9134 	if (provider == dtrace_provider) {
9135 		ASSERT(MUTEX_HELD(&dtrace_lock));
9136 	} else {
9137 		mutex_enter(&dtrace_lock);
9138 	}
9139 
9140 #ifdef illumos
9141 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9142 	    VM_BESTFIT | VM_SLEEP);
9143 #else
9144 	id = alloc_unr(dtrace_arena);
9145 #endif
9146 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9147 
9148 	probe->dtpr_id = id;
9149 	probe->dtpr_gen = dtrace_probegen++;
9150 	probe->dtpr_mod = dtrace_strdup(mod);
9151 	probe->dtpr_func = dtrace_strdup(func);
9152 	probe->dtpr_name = dtrace_strdup(name);
9153 	probe->dtpr_arg = arg;
9154 	probe->dtpr_aframes = aframes;
9155 	probe->dtpr_provider = provider;
9156 
9157 	dtrace_hash_add(dtrace_bymod, probe);
9158 	dtrace_hash_add(dtrace_byfunc, probe);
9159 	dtrace_hash_add(dtrace_byname, probe);
9160 
9161 	if (id - 1 >= dtrace_nprobes) {
9162 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9163 		size_t nsize = osize << 1;
9164 
9165 		if (nsize == 0) {
9166 			ASSERT(osize == 0);
9167 			ASSERT(dtrace_probes == NULL);
9168 			nsize = sizeof (dtrace_probe_t *);
9169 		}
9170 
9171 		probes = kmem_zalloc(nsize, KM_SLEEP);
9172 
9173 		if (dtrace_probes == NULL) {
9174 			ASSERT(osize == 0);
9175 			dtrace_probes = probes;
9176 			dtrace_nprobes = 1;
9177 		} else {
9178 			dtrace_probe_t **oprobes = dtrace_probes;
9179 
9180 			bcopy(oprobes, probes, osize);
9181 			dtrace_membar_producer();
9182 			dtrace_probes = probes;
9183 
9184 			dtrace_sync();
9185 
9186 			/*
9187 			 * All CPUs are now seeing the new probes array; we can
9188 			 * safely free the old array.
9189 			 */
9190 			kmem_free(oprobes, osize);
9191 			dtrace_nprobes <<= 1;
9192 		}
9193 
9194 		ASSERT(id - 1 < dtrace_nprobes);
9195 	}
9196 
9197 	ASSERT(dtrace_probes[id - 1] == NULL);
9198 	dtrace_probes[id - 1] = probe;
9199 
9200 	if (provider != dtrace_provider)
9201 		mutex_exit(&dtrace_lock);
9202 
9203 	return (id);
9204 }
9205 
9206 static dtrace_probe_t *
9207 dtrace_probe_lookup_id(dtrace_id_t id)
9208 {
9209 	ASSERT(MUTEX_HELD(&dtrace_lock));
9210 
9211 	if (id == 0 || id > dtrace_nprobes)
9212 		return (NULL);
9213 
9214 	return (dtrace_probes[id - 1]);
9215 }
9216 
9217 static int
9218 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9219 {
9220 	*((dtrace_id_t *)arg) = probe->dtpr_id;
9221 
9222 	return (DTRACE_MATCH_DONE);
9223 }
9224 
9225 /*
9226  * Look up a probe based on provider and one or more of module name, function
9227  * name and probe name.
9228  */
9229 dtrace_id_t
9230 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9231     char *func, char *name)
9232 {
9233 	dtrace_probekey_t pkey;
9234 	dtrace_id_t id;
9235 	int match;
9236 
9237 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9238 	pkey.dtpk_pmatch = &dtrace_match_string;
9239 	pkey.dtpk_mod = mod;
9240 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9241 	pkey.dtpk_func = func;
9242 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9243 	pkey.dtpk_name = name;
9244 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9245 	pkey.dtpk_id = DTRACE_IDNONE;
9246 
9247 	mutex_enter(&dtrace_lock);
9248 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9249 	    dtrace_probe_lookup_match, &id);
9250 	mutex_exit(&dtrace_lock);
9251 
9252 	ASSERT(match == 1 || match == 0);
9253 	return (match ? id : 0);
9254 }
9255 
9256 /*
9257  * Returns the probe argument associated with the specified probe.
9258  */
9259 void *
9260 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9261 {
9262 	dtrace_probe_t *probe;
9263 	void *rval = NULL;
9264 
9265 	mutex_enter(&dtrace_lock);
9266 
9267 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9268 	    probe->dtpr_provider == (dtrace_provider_t *)id)
9269 		rval = probe->dtpr_arg;
9270 
9271 	mutex_exit(&dtrace_lock);
9272 
9273 	return (rval);
9274 }
9275 
9276 /*
9277  * Copy a probe into a probe description.
9278  */
9279 static void
9280 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9281 {
9282 	bzero(pdp, sizeof (dtrace_probedesc_t));
9283 	pdp->dtpd_id = prp->dtpr_id;
9284 
9285 	(void) strncpy(pdp->dtpd_provider,
9286 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9287 
9288 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9289 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9290 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9291 }
9292 
9293 /*
9294  * Called to indicate that a probe -- or probes -- should be provided by a
9295  * specfied provider.  If the specified description is NULL, the provider will
9296  * be told to provide all of its probes.  (This is done whenever a new
9297  * consumer comes along, or whenever a retained enabling is to be matched.) If
9298  * the specified description is non-NULL, the provider is given the
9299  * opportunity to dynamically provide the specified probe, allowing providers
9300  * to support the creation of probes on-the-fly.  (So-called _autocreated_
9301  * probes.)  If the provider is NULL, the operations will be applied to all
9302  * providers; if the provider is non-NULL the operations will only be applied
9303  * to the specified provider.  The dtrace_provider_lock must be held, and the
9304  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9305  * will need to grab the dtrace_lock when it reenters the framework through
9306  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9307  */
9308 static void
9309 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9310 {
9311 #ifdef illumos
9312 	modctl_t *ctl;
9313 #endif
9314 	int all = 0;
9315 
9316 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9317 
9318 	if (prv == NULL) {
9319 		all = 1;
9320 		prv = dtrace_provider;
9321 	}
9322 
9323 	do {
9324 		/*
9325 		 * First, call the blanket provide operation.
9326 		 */
9327 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9328 
9329 #ifdef illumos
9330 		/*
9331 		 * Now call the per-module provide operation.  We will grab
9332 		 * mod_lock to prevent the list from being modified.  Note
9333 		 * that this also prevents the mod_busy bits from changing.
9334 		 * (mod_busy can only be changed with mod_lock held.)
9335 		 */
9336 		mutex_enter(&mod_lock);
9337 
9338 		ctl = &modules;
9339 		do {
9340 			if (ctl->mod_busy || ctl->mod_mp == NULL)
9341 				continue;
9342 
9343 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9344 
9345 		} while ((ctl = ctl->mod_next) != &modules);
9346 
9347 		mutex_exit(&mod_lock);
9348 #endif
9349 	} while (all && (prv = prv->dtpv_next) != NULL);
9350 }
9351 
9352 #ifdef illumos
9353 /*
9354  * Iterate over each probe, and call the Framework-to-Provider API function
9355  * denoted by offs.
9356  */
9357 static void
9358 dtrace_probe_foreach(uintptr_t offs)
9359 {
9360 	dtrace_provider_t *prov;
9361 	void (*func)(void *, dtrace_id_t, void *);
9362 	dtrace_probe_t *probe;
9363 	dtrace_icookie_t cookie;
9364 	int i;
9365 
9366 	/*
9367 	 * We disable interrupts to walk through the probe array.  This is
9368 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9369 	 * won't see stale data.
9370 	 */
9371 	cookie = dtrace_interrupt_disable();
9372 
9373 	for (i = 0; i < dtrace_nprobes; i++) {
9374 		if ((probe = dtrace_probes[i]) == NULL)
9375 			continue;
9376 
9377 		if (probe->dtpr_ecb == NULL) {
9378 			/*
9379 			 * This probe isn't enabled -- don't call the function.
9380 			 */
9381 			continue;
9382 		}
9383 
9384 		prov = probe->dtpr_provider;
9385 		func = *((void(**)(void *, dtrace_id_t, void *))
9386 		    ((uintptr_t)&prov->dtpv_pops + offs));
9387 
9388 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9389 	}
9390 
9391 	dtrace_interrupt_enable(cookie);
9392 }
9393 #endif
9394 
9395 static int
9396 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9397 {
9398 	dtrace_probekey_t pkey;
9399 	uint32_t priv;
9400 	uid_t uid;
9401 	zoneid_t zoneid;
9402 
9403 	ASSERT(MUTEX_HELD(&dtrace_lock));
9404 	dtrace_ecb_create_cache = NULL;
9405 
9406 	if (desc == NULL) {
9407 		/*
9408 		 * If we're passed a NULL description, we're being asked to
9409 		 * create an ECB with a NULL probe.
9410 		 */
9411 		(void) dtrace_ecb_create_enable(NULL, enab);
9412 		return (0);
9413 	}
9414 
9415 	dtrace_probekey(desc, &pkey);
9416 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9417 	    &priv, &uid, &zoneid);
9418 
9419 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9420 	    enab));
9421 }
9422 
9423 /*
9424  * DTrace Helper Provider Functions
9425  */
9426 static void
9427 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9428 {
9429 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9430 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9431 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9432 }
9433 
9434 static void
9435 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9436     const dof_provider_t *dofprov, char *strtab)
9437 {
9438 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9439 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9440 	    dofprov->dofpv_provattr);
9441 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9442 	    dofprov->dofpv_modattr);
9443 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9444 	    dofprov->dofpv_funcattr);
9445 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9446 	    dofprov->dofpv_nameattr);
9447 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9448 	    dofprov->dofpv_argsattr);
9449 }
9450 
9451 static void
9452 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9453 {
9454 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9455 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9456 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9457 	dof_provider_t *provider;
9458 	dof_probe_t *probe;
9459 	uint32_t *off, *enoff;
9460 	uint8_t *arg;
9461 	char *strtab;
9462 	uint_t i, nprobes;
9463 	dtrace_helper_provdesc_t dhpv;
9464 	dtrace_helper_probedesc_t dhpb;
9465 	dtrace_meta_t *meta = dtrace_meta_pid;
9466 	dtrace_mops_t *mops = &meta->dtm_mops;
9467 	void *parg;
9468 
9469 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9470 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9471 	    provider->dofpv_strtab * dof->dofh_secsize);
9472 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9473 	    provider->dofpv_probes * dof->dofh_secsize);
9474 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9475 	    provider->dofpv_prargs * dof->dofh_secsize);
9476 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9477 	    provider->dofpv_proffs * dof->dofh_secsize);
9478 
9479 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9480 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9481 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9482 	enoff = NULL;
9483 
9484 	/*
9485 	 * See dtrace_helper_provider_validate().
9486 	 */
9487 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9488 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9489 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9490 		    provider->dofpv_prenoffs * dof->dofh_secsize);
9491 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9492 	}
9493 
9494 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9495 
9496 	/*
9497 	 * Create the provider.
9498 	 */
9499 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9500 
9501 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9502 		return;
9503 
9504 	meta->dtm_count++;
9505 
9506 	/*
9507 	 * Create the probes.
9508 	 */
9509 	for (i = 0; i < nprobes; i++) {
9510 		probe = (dof_probe_t *)(uintptr_t)(daddr +
9511 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9512 
9513 		/* See the check in dtrace_helper_provider_validate(). */
9514 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9515 			continue;
9516 
9517 		dhpb.dthpb_mod = dhp->dofhp_mod;
9518 		dhpb.dthpb_func = strtab + probe->dofpr_func;
9519 		dhpb.dthpb_name = strtab + probe->dofpr_name;
9520 		dhpb.dthpb_base = probe->dofpr_addr;
9521 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9522 		dhpb.dthpb_noffs = probe->dofpr_noffs;
9523 		if (enoff != NULL) {
9524 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9525 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9526 		} else {
9527 			dhpb.dthpb_enoffs = NULL;
9528 			dhpb.dthpb_nenoffs = 0;
9529 		}
9530 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9531 		dhpb.dthpb_nargc = probe->dofpr_nargc;
9532 		dhpb.dthpb_xargc = probe->dofpr_xargc;
9533 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9534 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9535 
9536 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9537 	}
9538 }
9539 
9540 static void
9541 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9542 {
9543 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9544 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9545 	int i;
9546 
9547 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9548 
9549 	for (i = 0; i < dof->dofh_secnum; i++) {
9550 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9551 		    dof->dofh_secoff + i * dof->dofh_secsize);
9552 
9553 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9554 			continue;
9555 
9556 		dtrace_helper_provide_one(dhp, sec, pid);
9557 	}
9558 
9559 	/*
9560 	 * We may have just created probes, so we must now rematch against
9561 	 * any retained enablings.  Note that this call will acquire both
9562 	 * cpu_lock and dtrace_lock; the fact that we are holding
9563 	 * dtrace_meta_lock now is what defines the ordering with respect to
9564 	 * these three locks.
9565 	 */
9566 	dtrace_enabling_matchall();
9567 }
9568 
9569 static void
9570 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9571 {
9572 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9573 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9574 	dof_sec_t *str_sec;
9575 	dof_provider_t *provider;
9576 	char *strtab;
9577 	dtrace_helper_provdesc_t dhpv;
9578 	dtrace_meta_t *meta = dtrace_meta_pid;
9579 	dtrace_mops_t *mops = &meta->dtm_mops;
9580 
9581 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9582 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9583 	    provider->dofpv_strtab * dof->dofh_secsize);
9584 
9585 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9586 
9587 	/*
9588 	 * Create the provider.
9589 	 */
9590 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9591 
9592 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9593 
9594 	meta->dtm_count--;
9595 }
9596 
9597 static void
9598 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9599 {
9600 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9601 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9602 	int i;
9603 
9604 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9605 
9606 	for (i = 0; i < dof->dofh_secnum; i++) {
9607 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9608 		    dof->dofh_secoff + i * dof->dofh_secsize);
9609 
9610 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9611 			continue;
9612 
9613 		dtrace_helper_provider_remove_one(dhp, sec, pid);
9614 	}
9615 }
9616 
9617 /*
9618  * DTrace Meta Provider-to-Framework API Functions
9619  *
9620  * These functions implement the Meta Provider-to-Framework API, as described
9621  * in <sys/dtrace.h>.
9622  */
9623 int
9624 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9625     dtrace_meta_provider_id_t *idp)
9626 {
9627 	dtrace_meta_t *meta;
9628 	dtrace_helpers_t *help, *next;
9629 	int i;
9630 
9631 	*idp = DTRACE_METAPROVNONE;
9632 
9633 	/*
9634 	 * We strictly don't need the name, but we hold onto it for
9635 	 * debuggability. All hail error queues!
9636 	 */
9637 	if (name == NULL) {
9638 		cmn_err(CE_WARN, "failed to register meta-provider: "
9639 		    "invalid name");
9640 		return (EINVAL);
9641 	}
9642 
9643 	if (mops == NULL ||
9644 	    mops->dtms_create_probe == NULL ||
9645 	    mops->dtms_provide_pid == NULL ||
9646 	    mops->dtms_remove_pid == NULL) {
9647 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9648 		    "invalid ops", name);
9649 		return (EINVAL);
9650 	}
9651 
9652 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9653 	meta->dtm_mops = *mops;
9654 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9655 	(void) strcpy(meta->dtm_name, name);
9656 	meta->dtm_arg = arg;
9657 
9658 	mutex_enter(&dtrace_meta_lock);
9659 	mutex_enter(&dtrace_lock);
9660 
9661 	if (dtrace_meta_pid != NULL) {
9662 		mutex_exit(&dtrace_lock);
9663 		mutex_exit(&dtrace_meta_lock);
9664 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9665 		    "user-land meta-provider exists", name);
9666 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9667 		kmem_free(meta, sizeof (dtrace_meta_t));
9668 		return (EINVAL);
9669 	}
9670 
9671 	dtrace_meta_pid = meta;
9672 	*idp = (dtrace_meta_provider_id_t)meta;
9673 
9674 	/*
9675 	 * If there are providers and probes ready to go, pass them
9676 	 * off to the new meta provider now.
9677 	 */
9678 
9679 	help = dtrace_deferred_pid;
9680 	dtrace_deferred_pid = NULL;
9681 
9682 	mutex_exit(&dtrace_lock);
9683 
9684 	while (help != NULL) {
9685 		for (i = 0; i < help->dthps_nprovs; i++) {
9686 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9687 			    help->dthps_pid);
9688 		}
9689 
9690 		next = help->dthps_next;
9691 		help->dthps_next = NULL;
9692 		help->dthps_prev = NULL;
9693 		help->dthps_deferred = 0;
9694 		help = next;
9695 	}
9696 
9697 	mutex_exit(&dtrace_meta_lock);
9698 
9699 	return (0);
9700 }
9701 
9702 int
9703 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9704 {
9705 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9706 
9707 	mutex_enter(&dtrace_meta_lock);
9708 	mutex_enter(&dtrace_lock);
9709 
9710 	if (old == dtrace_meta_pid) {
9711 		pp = &dtrace_meta_pid;
9712 	} else {
9713 		panic("attempt to unregister non-existent "
9714 		    "dtrace meta-provider %p\n", (void *)old);
9715 	}
9716 
9717 	if (old->dtm_count != 0) {
9718 		mutex_exit(&dtrace_lock);
9719 		mutex_exit(&dtrace_meta_lock);
9720 		return (EBUSY);
9721 	}
9722 
9723 	*pp = NULL;
9724 
9725 	mutex_exit(&dtrace_lock);
9726 	mutex_exit(&dtrace_meta_lock);
9727 
9728 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9729 	kmem_free(old, sizeof (dtrace_meta_t));
9730 
9731 	return (0);
9732 }
9733 
9734 
9735 /*
9736  * DTrace DIF Object Functions
9737  */
9738 static int
9739 dtrace_difo_err(uint_t pc, const char *format, ...)
9740 {
9741 	if (dtrace_err_verbose) {
9742 		va_list alist;
9743 
9744 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9745 		va_start(alist, format);
9746 		(void) vuprintf(format, alist);
9747 		va_end(alist);
9748 	}
9749 
9750 #ifdef DTRACE_ERRDEBUG
9751 	dtrace_errdebug(format);
9752 #endif
9753 	return (1);
9754 }
9755 
9756 /*
9757  * Validate a DTrace DIF object by checking the IR instructions.  The following
9758  * rules are currently enforced by dtrace_difo_validate():
9759  *
9760  * 1. Each instruction must have a valid opcode
9761  * 2. Each register, string, variable, or subroutine reference must be valid
9762  * 3. No instruction can modify register %r0 (must be zero)
9763  * 4. All instruction reserved bits must be set to zero
9764  * 5. The last instruction must be a "ret" instruction
9765  * 6. All branch targets must reference a valid instruction _after_ the branch
9766  */
9767 static int
9768 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9769     cred_t *cr)
9770 {
9771 	int err = 0, i;
9772 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9773 	int kcheckload;
9774 	uint_t pc;
9775 	int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9776 
9777 	kcheckload = cr == NULL ||
9778 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9779 
9780 	dp->dtdo_destructive = 0;
9781 
9782 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9783 		dif_instr_t instr = dp->dtdo_buf[pc];
9784 
9785 		uint_t r1 = DIF_INSTR_R1(instr);
9786 		uint_t r2 = DIF_INSTR_R2(instr);
9787 		uint_t rd = DIF_INSTR_RD(instr);
9788 		uint_t rs = DIF_INSTR_RS(instr);
9789 		uint_t label = DIF_INSTR_LABEL(instr);
9790 		uint_t v = DIF_INSTR_VAR(instr);
9791 		uint_t subr = DIF_INSTR_SUBR(instr);
9792 		uint_t type = DIF_INSTR_TYPE(instr);
9793 		uint_t op = DIF_INSTR_OP(instr);
9794 
9795 		switch (op) {
9796 		case DIF_OP_OR:
9797 		case DIF_OP_XOR:
9798 		case DIF_OP_AND:
9799 		case DIF_OP_SLL:
9800 		case DIF_OP_SRL:
9801 		case DIF_OP_SRA:
9802 		case DIF_OP_SUB:
9803 		case DIF_OP_ADD:
9804 		case DIF_OP_MUL:
9805 		case DIF_OP_SDIV:
9806 		case DIF_OP_UDIV:
9807 		case DIF_OP_SREM:
9808 		case DIF_OP_UREM:
9809 		case DIF_OP_COPYS:
9810 			if (r1 >= nregs)
9811 				err += efunc(pc, "invalid register %u\n", r1);
9812 			if (r2 >= nregs)
9813 				err += efunc(pc, "invalid register %u\n", r2);
9814 			if (rd >= nregs)
9815 				err += efunc(pc, "invalid register %u\n", rd);
9816 			if (rd == 0)
9817 				err += efunc(pc, "cannot write to %r0\n");
9818 			break;
9819 		case DIF_OP_NOT:
9820 		case DIF_OP_MOV:
9821 		case DIF_OP_ALLOCS:
9822 			if (r1 >= nregs)
9823 				err += efunc(pc, "invalid register %u\n", r1);
9824 			if (r2 != 0)
9825 				err += efunc(pc, "non-zero reserved bits\n");
9826 			if (rd >= nregs)
9827 				err += efunc(pc, "invalid register %u\n", rd);
9828 			if (rd == 0)
9829 				err += efunc(pc, "cannot write to %r0\n");
9830 			break;
9831 		case DIF_OP_LDSB:
9832 		case DIF_OP_LDSH:
9833 		case DIF_OP_LDSW:
9834 		case DIF_OP_LDUB:
9835 		case DIF_OP_LDUH:
9836 		case DIF_OP_LDUW:
9837 		case DIF_OP_LDX:
9838 			if (r1 >= nregs)
9839 				err += efunc(pc, "invalid register %u\n", r1);
9840 			if (r2 != 0)
9841 				err += efunc(pc, "non-zero reserved bits\n");
9842 			if (rd >= nregs)
9843 				err += efunc(pc, "invalid register %u\n", rd);
9844 			if (rd == 0)
9845 				err += efunc(pc, "cannot write to %r0\n");
9846 			if (kcheckload)
9847 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9848 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9849 			break;
9850 		case DIF_OP_RLDSB:
9851 		case DIF_OP_RLDSH:
9852 		case DIF_OP_RLDSW:
9853 		case DIF_OP_RLDUB:
9854 		case DIF_OP_RLDUH:
9855 		case DIF_OP_RLDUW:
9856 		case DIF_OP_RLDX:
9857 			if (r1 >= nregs)
9858 				err += efunc(pc, "invalid register %u\n", r1);
9859 			if (r2 != 0)
9860 				err += efunc(pc, "non-zero reserved bits\n");
9861 			if (rd >= nregs)
9862 				err += efunc(pc, "invalid register %u\n", rd);
9863 			if (rd == 0)
9864 				err += efunc(pc, "cannot write to %r0\n");
9865 			break;
9866 		case DIF_OP_ULDSB:
9867 		case DIF_OP_ULDSH:
9868 		case DIF_OP_ULDSW:
9869 		case DIF_OP_ULDUB:
9870 		case DIF_OP_ULDUH:
9871 		case DIF_OP_ULDUW:
9872 		case DIF_OP_ULDX:
9873 			if (r1 >= nregs)
9874 				err += efunc(pc, "invalid register %u\n", r1);
9875 			if (r2 != 0)
9876 				err += efunc(pc, "non-zero reserved bits\n");
9877 			if (rd >= nregs)
9878 				err += efunc(pc, "invalid register %u\n", rd);
9879 			if (rd == 0)
9880 				err += efunc(pc, "cannot write to %r0\n");
9881 			break;
9882 		case DIF_OP_STB:
9883 		case DIF_OP_STH:
9884 		case DIF_OP_STW:
9885 		case DIF_OP_STX:
9886 			if (r1 >= nregs)
9887 				err += efunc(pc, "invalid register %u\n", r1);
9888 			if (r2 != 0)
9889 				err += efunc(pc, "non-zero reserved bits\n");
9890 			if (rd >= nregs)
9891 				err += efunc(pc, "invalid register %u\n", rd);
9892 			if (rd == 0)
9893 				err += efunc(pc, "cannot write to 0 address\n");
9894 			break;
9895 		case DIF_OP_CMP:
9896 		case DIF_OP_SCMP:
9897 			if (r1 >= nregs)
9898 				err += efunc(pc, "invalid register %u\n", r1);
9899 			if (r2 >= nregs)
9900 				err += efunc(pc, "invalid register %u\n", r2);
9901 			if (rd != 0)
9902 				err += efunc(pc, "non-zero reserved bits\n");
9903 			break;
9904 		case DIF_OP_TST:
9905 			if (r1 >= nregs)
9906 				err += efunc(pc, "invalid register %u\n", r1);
9907 			if (r2 != 0 || rd != 0)
9908 				err += efunc(pc, "non-zero reserved bits\n");
9909 			break;
9910 		case DIF_OP_BA:
9911 		case DIF_OP_BE:
9912 		case DIF_OP_BNE:
9913 		case DIF_OP_BG:
9914 		case DIF_OP_BGU:
9915 		case DIF_OP_BGE:
9916 		case DIF_OP_BGEU:
9917 		case DIF_OP_BL:
9918 		case DIF_OP_BLU:
9919 		case DIF_OP_BLE:
9920 		case DIF_OP_BLEU:
9921 			if (label >= dp->dtdo_len) {
9922 				err += efunc(pc, "invalid branch target %u\n",
9923 				    label);
9924 			}
9925 			if (label <= pc) {
9926 				err += efunc(pc, "backward branch to %u\n",
9927 				    label);
9928 			}
9929 			break;
9930 		case DIF_OP_RET:
9931 			if (r1 != 0 || r2 != 0)
9932 				err += efunc(pc, "non-zero reserved bits\n");
9933 			if (rd >= nregs)
9934 				err += efunc(pc, "invalid register %u\n", rd);
9935 			break;
9936 		case DIF_OP_NOP:
9937 		case DIF_OP_POPTS:
9938 		case DIF_OP_FLUSHTS:
9939 			if (r1 != 0 || r2 != 0 || rd != 0)
9940 				err += efunc(pc, "non-zero reserved bits\n");
9941 			break;
9942 		case DIF_OP_SETX:
9943 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9944 				err += efunc(pc, "invalid integer ref %u\n",
9945 				    DIF_INSTR_INTEGER(instr));
9946 			}
9947 			if (rd >= nregs)
9948 				err += efunc(pc, "invalid register %u\n", rd);
9949 			if (rd == 0)
9950 				err += efunc(pc, "cannot write to %r0\n");
9951 			break;
9952 		case DIF_OP_SETS:
9953 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9954 				err += efunc(pc, "invalid string ref %u\n",
9955 				    DIF_INSTR_STRING(instr));
9956 			}
9957 			if (rd >= nregs)
9958 				err += efunc(pc, "invalid register %u\n", rd);
9959 			if (rd == 0)
9960 				err += efunc(pc, "cannot write to %r0\n");
9961 			break;
9962 		case DIF_OP_LDGA:
9963 		case DIF_OP_LDTA:
9964 			if (r1 > DIF_VAR_ARRAY_MAX)
9965 				err += efunc(pc, "invalid array %u\n", r1);
9966 			if (r2 >= nregs)
9967 				err += efunc(pc, "invalid register %u\n", r2);
9968 			if (rd >= nregs)
9969 				err += efunc(pc, "invalid register %u\n", rd);
9970 			if (rd == 0)
9971 				err += efunc(pc, "cannot write to %r0\n");
9972 			break;
9973 		case DIF_OP_LDGS:
9974 		case DIF_OP_LDTS:
9975 		case DIF_OP_LDLS:
9976 		case DIF_OP_LDGAA:
9977 		case DIF_OP_LDTAA:
9978 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9979 				err += efunc(pc, "invalid variable %u\n", v);
9980 			if (rd >= nregs)
9981 				err += efunc(pc, "invalid register %u\n", rd);
9982 			if (rd == 0)
9983 				err += efunc(pc, "cannot write to %r0\n");
9984 			break;
9985 		case DIF_OP_STGS:
9986 		case DIF_OP_STTS:
9987 		case DIF_OP_STLS:
9988 		case DIF_OP_STGAA:
9989 		case DIF_OP_STTAA:
9990 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9991 				err += efunc(pc, "invalid variable %u\n", v);
9992 			if (rs >= nregs)
9993 				err += efunc(pc, "invalid register %u\n", rd);
9994 			break;
9995 		case DIF_OP_CALL:
9996 			if (subr > DIF_SUBR_MAX)
9997 				err += efunc(pc, "invalid subr %u\n", subr);
9998 			if (rd >= nregs)
9999 				err += efunc(pc, "invalid register %u\n", rd);
10000 			if (rd == 0)
10001 				err += efunc(pc, "cannot write to %r0\n");
10002 
10003 			if (subr == DIF_SUBR_COPYOUT ||
10004 			    subr == DIF_SUBR_COPYOUTSTR) {
10005 				dp->dtdo_destructive = 1;
10006 			}
10007 
10008 			if (subr == DIF_SUBR_GETF) {
10009 				/*
10010 				 * If we have a getf() we need to record that
10011 				 * in our state.  Note that our state can be
10012 				 * NULL if this is a helper -- but in that
10013 				 * case, the call to getf() is itself illegal,
10014 				 * and will be caught (slightly later) when
10015 				 * the helper is validated.
10016 				 */
10017 				if (vstate->dtvs_state != NULL)
10018 					vstate->dtvs_state->dts_getf++;
10019 			}
10020 
10021 			break;
10022 		case DIF_OP_PUSHTR:
10023 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
10024 				err += efunc(pc, "invalid ref type %u\n", type);
10025 			if (r2 >= nregs)
10026 				err += efunc(pc, "invalid register %u\n", r2);
10027 			if (rs >= nregs)
10028 				err += efunc(pc, "invalid register %u\n", rs);
10029 			break;
10030 		case DIF_OP_PUSHTV:
10031 			if (type != DIF_TYPE_CTF)
10032 				err += efunc(pc, "invalid val type %u\n", type);
10033 			if (r2 >= nregs)
10034 				err += efunc(pc, "invalid register %u\n", r2);
10035 			if (rs >= nregs)
10036 				err += efunc(pc, "invalid register %u\n", rs);
10037 			break;
10038 		default:
10039 			err += efunc(pc, "invalid opcode %u\n",
10040 			    DIF_INSTR_OP(instr));
10041 		}
10042 	}
10043 
10044 	if (dp->dtdo_len != 0 &&
10045 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
10046 		err += efunc(dp->dtdo_len - 1,
10047 		    "expected 'ret' as last DIF instruction\n");
10048 	}
10049 
10050 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
10051 		/*
10052 		 * If we're not returning by reference, the size must be either
10053 		 * 0 or the size of one of the base types.
10054 		 */
10055 		switch (dp->dtdo_rtype.dtdt_size) {
10056 		case 0:
10057 		case sizeof (uint8_t):
10058 		case sizeof (uint16_t):
10059 		case sizeof (uint32_t):
10060 		case sizeof (uint64_t):
10061 			break;
10062 
10063 		default:
10064 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
10065 		}
10066 	}
10067 
10068 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
10069 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
10070 		dtrace_diftype_t *vt, *et;
10071 		uint_t id, ndx;
10072 
10073 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
10074 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
10075 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
10076 			err += efunc(i, "unrecognized variable scope %d\n",
10077 			    v->dtdv_scope);
10078 			break;
10079 		}
10080 
10081 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
10082 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
10083 			err += efunc(i, "unrecognized variable type %d\n",
10084 			    v->dtdv_kind);
10085 			break;
10086 		}
10087 
10088 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
10089 			err += efunc(i, "%d exceeds variable id limit\n", id);
10090 			break;
10091 		}
10092 
10093 		if (id < DIF_VAR_OTHER_UBASE)
10094 			continue;
10095 
10096 		/*
10097 		 * For user-defined variables, we need to check that this
10098 		 * definition is identical to any previous definition that we
10099 		 * encountered.
10100 		 */
10101 		ndx = id - DIF_VAR_OTHER_UBASE;
10102 
10103 		switch (v->dtdv_scope) {
10104 		case DIFV_SCOPE_GLOBAL:
10105 			if (maxglobal == -1 || ndx > maxglobal)
10106 				maxglobal = ndx;
10107 
10108 			if (ndx < vstate->dtvs_nglobals) {
10109 				dtrace_statvar_t *svar;
10110 
10111 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10112 					existing = &svar->dtsv_var;
10113 			}
10114 
10115 			break;
10116 
10117 		case DIFV_SCOPE_THREAD:
10118 			if (maxtlocal == -1 || ndx > maxtlocal)
10119 				maxtlocal = ndx;
10120 
10121 			if (ndx < vstate->dtvs_ntlocals)
10122 				existing = &vstate->dtvs_tlocals[ndx];
10123 			break;
10124 
10125 		case DIFV_SCOPE_LOCAL:
10126 			if (maxlocal == -1 || ndx > maxlocal)
10127 				maxlocal = ndx;
10128 
10129 			if (ndx < vstate->dtvs_nlocals) {
10130 				dtrace_statvar_t *svar;
10131 
10132 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10133 					existing = &svar->dtsv_var;
10134 			}
10135 
10136 			break;
10137 		}
10138 
10139 		vt = &v->dtdv_type;
10140 
10141 		if (vt->dtdt_flags & DIF_TF_BYREF) {
10142 			if (vt->dtdt_size == 0) {
10143 				err += efunc(i, "zero-sized variable\n");
10144 				break;
10145 			}
10146 
10147 			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10148 			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10149 			    vt->dtdt_size > dtrace_statvar_maxsize) {
10150 				err += efunc(i, "oversized by-ref static\n");
10151 				break;
10152 			}
10153 		}
10154 
10155 		if (existing == NULL || existing->dtdv_id == 0)
10156 			continue;
10157 
10158 		ASSERT(existing->dtdv_id == v->dtdv_id);
10159 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
10160 
10161 		if (existing->dtdv_kind != v->dtdv_kind)
10162 			err += efunc(i, "%d changed variable kind\n", id);
10163 
10164 		et = &existing->dtdv_type;
10165 
10166 		if (vt->dtdt_flags != et->dtdt_flags) {
10167 			err += efunc(i, "%d changed variable type flags\n", id);
10168 			break;
10169 		}
10170 
10171 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10172 			err += efunc(i, "%d changed variable type size\n", id);
10173 			break;
10174 		}
10175 	}
10176 
10177 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10178 		dif_instr_t instr = dp->dtdo_buf[pc];
10179 
10180 		uint_t v = DIF_INSTR_VAR(instr);
10181 		uint_t op = DIF_INSTR_OP(instr);
10182 
10183 		switch (op) {
10184 		case DIF_OP_LDGS:
10185 		case DIF_OP_LDGAA:
10186 		case DIF_OP_STGS:
10187 		case DIF_OP_STGAA:
10188 			if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10189 				err += efunc(pc, "invalid variable %u\n", v);
10190 			break;
10191 		case DIF_OP_LDTS:
10192 		case DIF_OP_LDTAA:
10193 		case DIF_OP_STTS:
10194 		case DIF_OP_STTAA:
10195 			if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10196 				err += efunc(pc, "invalid variable %u\n", v);
10197 			break;
10198 		case DIF_OP_LDLS:
10199 		case DIF_OP_STLS:
10200 			if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10201 				err += efunc(pc, "invalid variable %u\n", v);
10202 			break;
10203 		default:
10204 			break;
10205 		}
10206 	}
10207 
10208 	return (err);
10209 }
10210 
10211 /*
10212  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
10213  * are much more constrained than normal DIFOs.  Specifically, they may
10214  * not:
10215  *
10216  * 1. Make calls to subroutines other than copyin(), copyinstr() or
10217  *    miscellaneous string routines
10218  * 2. Access DTrace variables other than the args[] array, and the
10219  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10220  * 3. Have thread-local variables.
10221  * 4. Have dynamic variables.
10222  */
10223 static int
10224 dtrace_difo_validate_helper(dtrace_difo_t *dp)
10225 {
10226 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10227 	int err = 0;
10228 	uint_t pc;
10229 
10230 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10231 		dif_instr_t instr = dp->dtdo_buf[pc];
10232 
10233 		uint_t v = DIF_INSTR_VAR(instr);
10234 		uint_t subr = DIF_INSTR_SUBR(instr);
10235 		uint_t op = DIF_INSTR_OP(instr);
10236 
10237 		switch (op) {
10238 		case DIF_OP_OR:
10239 		case DIF_OP_XOR:
10240 		case DIF_OP_AND:
10241 		case DIF_OP_SLL:
10242 		case DIF_OP_SRL:
10243 		case DIF_OP_SRA:
10244 		case DIF_OP_SUB:
10245 		case DIF_OP_ADD:
10246 		case DIF_OP_MUL:
10247 		case DIF_OP_SDIV:
10248 		case DIF_OP_UDIV:
10249 		case DIF_OP_SREM:
10250 		case DIF_OP_UREM:
10251 		case DIF_OP_COPYS:
10252 		case DIF_OP_NOT:
10253 		case DIF_OP_MOV:
10254 		case DIF_OP_RLDSB:
10255 		case DIF_OP_RLDSH:
10256 		case DIF_OP_RLDSW:
10257 		case DIF_OP_RLDUB:
10258 		case DIF_OP_RLDUH:
10259 		case DIF_OP_RLDUW:
10260 		case DIF_OP_RLDX:
10261 		case DIF_OP_ULDSB:
10262 		case DIF_OP_ULDSH:
10263 		case DIF_OP_ULDSW:
10264 		case DIF_OP_ULDUB:
10265 		case DIF_OP_ULDUH:
10266 		case DIF_OP_ULDUW:
10267 		case DIF_OP_ULDX:
10268 		case DIF_OP_STB:
10269 		case DIF_OP_STH:
10270 		case DIF_OP_STW:
10271 		case DIF_OP_STX:
10272 		case DIF_OP_ALLOCS:
10273 		case DIF_OP_CMP:
10274 		case DIF_OP_SCMP:
10275 		case DIF_OP_TST:
10276 		case DIF_OP_BA:
10277 		case DIF_OP_BE:
10278 		case DIF_OP_BNE:
10279 		case DIF_OP_BG:
10280 		case DIF_OP_BGU:
10281 		case DIF_OP_BGE:
10282 		case DIF_OP_BGEU:
10283 		case DIF_OP_BL:
10284 		case DIF_OP_BLU:
10285 		case DIF_OP_BLE:
10286 		case DIF_OP_BLEU:
10287 		case DIF_OP_RET:
10288 		case DIF_OP_NOP:
10289 		case DIF_OP_POPTS:
10290 		case DIF_OP_FLUSHTS:
10291 		case DIF_OP_SETX:
10292 		case DIF_OP_SETS:
10293 		case DIF_OP_LDGA:
10294 		case DIF_OP_LDLS:
10295 		case DIF_OP_STGS:
10296 		case DIF_OP_STLS:
10297 		case DIF_OP_PUSHTR:
10298 		case DIF_OP_PUSHTV:
10299 			break;
10300 
10301 		case DIF_OP_LDGS:
10302 			if (v >= DIF_VAR_OTHER_UBASE)
10303 				break;
10304 
10305 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10306 				break;
10307 
10308 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10309 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10310 			    v == DIF_VAR_EXECARGS ||
10311 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10312 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10313 				break;
10314 
10315 			err += efunc(pc, "illegal variable %u\n", v);
10316 			break;
10317 
10318 		case DIF_OP_LDTA:
10319 		case DIF_OP_LDTS:
10320 		case DIF_OP_LDGAA:
10321 		case DIF_OP_LDTAA:
10322 			err += efunc(pc, "illegal dynamic variable load\n");
10323 			break;
10324 
10325 		case DIF_OP_STTS:
10326 		case DIF_OP_STGAA:
10327 		case DIF_OP_STTAA:
10328 			err += efunc(pc, "illegal dynamic variable store\n");
10329 			break;
10330 
10331 		case DIF_OP_CALL:
10332 			if (subr == DIF_SUBR_ALLOCA ||
10333 			    subr == DIF_SUBR_BCOPY ||
10334 			    subr == DIF_SUBR_COPYIN ||
10335 			    subr == DIF_SUBR_COPYINTO ||
10336 			    subr == DIF_SUBR_COPYINSTR ||
10337 			    subr == DIF_SUBR_INDEX ||
10338 			    subr == DIF_SUBR_INET_NTOA ||
10339 			    subr == DIF_SUBR_INET_NTOA6 ||
10340 			    subr == DIF_SUBR_INET_NTOP ||
10341 			    subr == DIF_SUBR_JSON ||
10342 			    subr == DIF_SUBR_LLTOSTR ||
10343 			    subr == DIF_SUBR_STRTOLL ||
10344 			    subr == DIF_SUBR_RINDEX ||
10345 			    subr == DIF_SUBR_STRCHR ||
10346 			    subr == DIF_SUBR_STRJOIN ||
10347 			    subr == DIF_SUBR_STRRCHR ||
10348 			    subr == DIF_SUBR_STRSTR ||
10349 			    subr == DIF_SUBR_HTONS ||
10350 			    subr == DIF_SUBR_HTONL ||
10351 			    subr == DIF_SUBR_HTONLL ||
10352 			    subr == DIF_SUBR_NTOHS ||
10353 			    subr == DIF_SUBR_NTOHL ||
10354 			    subr == DIF_SUBR_NTOHLL ||
10355 			    subr == DIF_SUBR_MEMREF)
10356 				break;
10357 #ifdef __FreeBSD__
10358 			if (subr == DIF_SUBR_MEMSTR)
10359 				break;
10360 #endif
10361 
10362 			err += efunc(pc, "invalid subr %u\n", subr);
10363 			break;
10364 
10365 		default:
10366 			err += efunc(pc, "invalid opcode %u\n",
10367 			    DIF_INSTR_OP(instr));
10368 		}
10369 	}
10370 
10371 	return (err);
10372 }
10373 
10374 /*
10375  * Returns 1 if the expression in the DIF object can be cached on a per-thread
10376  * basis; 0 if not.
10377  */
10378 static int
10379 dtrace_difo_cacheable(dtrace_difo_t *dp)
10380 {
10381 	int i;
10382 
10383 	if (dp == NULL)
10384 		return (0);
10385 
10386 	for (i = 0; i < dp->dtdo_varlen; i++) {
10387 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10388 
10389 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10390 			continue;
10391 
10392 		switch (v->dtdv_id) {
10393 		case DIF_VAR_CURTHREAD:
10394 		case DIF_VAR_PID:
10395 		case DIF_VAR_TID:
10396 		case DIF_VAR_EXECARGS:
10397 		case DIF_VAR_EXECNAME:
10398 		case DIF_VAR_ZONENAME:
10399 			break;
10400 
10401 		default:
10402 			return (0);
10403 		}
10404 	}
10405 
10406 	/*
10407 	 * This DIF object may be cacheable.  Now we need to look for any
10408 	 * array loading instructions, any memory loading instructions, or
10409 	 * any stores to thread-local variables.
10410 	 */
10411 	for (i = 0; i < dp->dtdo_len; i++) {
10412 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10413 
10414 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10415 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10416 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10417 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10418 			return (0);
10419 	}
10420 
10421 	return (1);
10422 }
10423 
10424 static void
10425 dtrace_difo_hold(dtrace_difo_t *dp)
10426 {
10427 	int i;
10428 
10429 	ASSERT(MUTEX_HELD(&dtrace_lock));
10430 
10431 	dp->dtdo_refcnt++;
10432 	ASSERT(dp->dtdo_refcnt != 0);
10433 
10434 	/*
10435 	 * We need to check this DIF object for references to the variable
10436 	 * DIF_VAR_VTIMESTAMP.
10437 	 */
10438 	for (i = 0; i < dp->dtdo_varlen; i++) {
10439 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10440 
10441 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10442 			continue;
10443 
10444 		if (dtrace_vtime_references++ == 0)
10445 			dtrace_vtime_enable();
10446 	}
10447 }
10448 
10449 /*
10450  * This routine calculates the dynamic variable chunksize for a given DIF
10451  * object.  The calculation is not fool-proof, and can probably be tricked by
10452  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10453  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10454  * if a dynamic variable size exceeds the chunksize.
10455  */
10456 static void
10457 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10458 {
10459 	uint64_t sval = 0;
10460 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10461 	const dif_instr_t *text = dp->dtdo_buf;
10462 	uint_t pc, srd = 0;
10463 	uint_t ttop = 0;
10464 	size_t size, ksize;
10465 	uint_t id, i;
10466 
10467 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10468 		dif_instr_t instr = text[pc];
10469 		uint_t op = DIF_INSTR_OP(instr);
10470 		uint_t rd = DIF_INSTR_RD(instr);
10471 		uint_t r1 = DIF_INSTR_R1(instr);
10472 		uint_t nkeys = 0;
10473 		uchar_t scope = 0;
10474 
10475 		dtrace_key_t *key = tupregs;
10476 
10477 		switch (op) {
10478 		case DIF_OP_SETX:
10479 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10480 			srd = rd;
10481 			continue;
10482 
10483 		case DIF_OP_STTS:
10484 			key = &tupregs[DIF_DTR_NREGS];
10485 			key[0].dttk_size = 0;
10486 			key[1].dttk_size = 0;
10487 			nkeys = 2;
10488 			scope = DIFV_SCOPE_THREAD;
10489 			break;
10490 
10491 		case DIF_OP_STGAA:
10492 		case DIF_OP_STTAA:
10493 			nkeys = ttop;
10494 
10495 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10496 				key[nkeys++].dttk_size = 0;
10497 
10498 			key[nkeys++].dttk_size = 0;
10499 
10500 			if (op == DIF_OP_STTAA) {
10501 				scope = DIFV_SCOPE_THREAD;
10502 			} else {
10503 				scope = DIFV_SCOPE_GLOBAL;
10504 			}
10505 
10506 			break;
10507 
10508 		case DIF_OP_PUSHTR:
10509 			if (ttop == DIF_DTR_NREGS)
10510 				return;
10511 
10512 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10513 				/*
10514 				 * If the register for the size of the "pushtr"
10515 				 * is %r0 (or the value is 0) and the type is
10516 				 * a string, we'll use the system-wide default
10517 				 * string size.
10518 				 */
10519 				tupregs[ttop++].dttk_size =
10520 				    dtrace_strsize_default;
10521 			} else {
10522 				if (srd == 0)
10523 					return;
10524 
10525 				if (sval > LONG_MAX)
10526 					return;
10527 
10528 				tupregs[ttop++].dttk_size = sval;
10529 			}
10530 
10531 			break;
10532 
10533 		case DIF_OP_PUSHTV:
10534 			if (ttop == DIF_DTR_NREGS)
10535 				return;
10536 
10537 			tupregs[ttop++].dttk_size = 0;
10538 			break;
10539 
10540 		case DIF_OP_FLUSHTS:
10541 			ttop = 0;
10542 			break;
10543 
10544 		case DIF_OP_POPTS:
10545 			if (ttop != 0)
10546 				ttop--;
10547 			break;
10548 		}
10549 
10550 		sval = 0;
10551 		srd = 0;
10552 
10553 		if (nkeys == 0)
10554 			continue;
10555 
10556 		/*
10557 		 * We have a dynamic variable allocation; calculate its size.
10558 		 */
10559 		for (ksize = 0, i = 0; i < nkeys; i++)
10560 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10561 
10562 		size = sizeof (dtrace_dynvar_t);
10563 		size += sizeof (dtrace_key_t) * (nkeys - 1);
10564 		size += ksize;
10565 
10566 		/*
10567 		 * Now we need to determine the size of the stored data.
10568 		 */
10569 		id = DIF_INSTR_VAR(instr);
10570 
10571 		for (i = 0; i < dp->dtdo_varlen; i++) {
10572 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10573 
10574 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10575 				size += v->dtdv_type.dtdt_size;
10576 				break;
10577 			}
10578 		}
10579 
10580 		if (i == dp->dtdo_varlen)
10581 			return;
10582 
10583 		/*
10584 		 * We have the size.  If this is larger than the chunk size
10585 		 * for our dynamic variable state, reset the chunk size.
10586 		 */
10587 		size = P2ROUNDUP(size, sizeof (uint64_t));
10588 
10589 		/*
10590 		 * Before setting the chunk size, check that we're not going
10591 		 * to set it to a negative value...
10592 		 */
10593 		if (size > LONG_MAX)
10594 			return;
10595 
10596 		/*
10597 		 * ...and make certain that we didn't badly overflow.
10598 		 */
10599 		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10600 			return;
10601 
10602 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10603 			vstate->dtvs_dynvars.dtds_chunksize = size;
10604 	}
10605 }
10606 
10607 static void
10608 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10609 {
10610 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10611 	uint_t id;
10612 
10613 	ASSERT(MUTEX_HELD(&dtrace_lock));
10614 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10615 
10616 	for (i = 0; i < dp->dtdo_varlen; i++) {
10617 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10618 		dtrace_statvar_t *svar, ***svarp = NULL;
10619 		size_t dsize = 0;
10620 		uint8_t scope = v->dtdv_scope;
10621 		int *np = NULL;
10622 
10623 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10624 			continue;
10625 
10626 		id -= DIF_VAR_OTHER_UBASE;
10627 
10628 		switch (scope) {
10629 		case DIFV_SCOPE_THREAD:
10630 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10631 				dtrace_difv_t *tlocals;
10632 
10633 				if ((ntlocals = (otlocals << 1)) == 0)
10634 					ntlocals = 1;
10635 
10636 				osz = otlocals * sizeof (dtrace_difv_t);
10637 				nsz = ntlocals * sizeof (dtrace_difv_t);
10638 
10639 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10640 
10641 				if (osz != 0) {
10642 					bcopy(vstate->dtvs_tlocals,
10643 					    tlocals, osz);
10644 					kmem_free(vstate->dtvs_tlocals, osz);
10645 				}
10646 
10647 				vstate->dtvs_tlocals = tlocals;
10648 				vstate->dtvs_ntlocals = ntlocals;
10649 			}
10650 
10651 			vstate->dtvs_tlocals[id] = *v;
10652 			continue;
10653 
10654 		case DIFV_SCOPE_LOCAL:
10655 			np = &vstate->dtvs_nlocals;
10656 			svarp = &vstate->dtvs_locals;
10657 
10658 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10659 				dsize = NCPU * (v->dtdv_type.dtdt_size +
10660 				    sizeof (uint64_t));
10661 			else
10662 				dsize = NCPU * sizeof (uint64_t);
10663 
10664 			break;
10665 
10666 		case DIFV_SCOPE_GLOBAL:
10667 			np = &vstate->dtvs_nglobals;
10668 			svarp = &vstate->dtvs_globals;
10669 
10670 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10671 				dsize = v->dtdv_type.dtdt_size +
10672 				    sizeof (uint64_t);
10673 
10674 			break;
10675 
10676 		default:
10677 			ASSERT(0);
10678 		}
10679 
10680 		while (id >= (oldsvars = *np)) {
10681 			dtrace_statvar_t **statics;
10682 			int newsvars, oldsize, newsize;
10683 
10684 			if ((newsvars = (oldsvars << 1)) == 0)
10685 				newsvars = 1;
10686 
10687 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10688 			newsize = newsvars * sizeof (dtrace_statvar_t *);
10689 
10690 			statics = kmem_zalloc(newsize, KM_SLEEP);
10691 
10692 			if (oldsize != 0) {
10693 				bcopy(*svarp, statics, oldsize);
10694 				kmem_free(*svarp, oldsize);
10695 			}
10696 
10697 			*svarp = statics;
10698 			*np = newsvars;
10699 		}
10700 
10701 		if ((svar = (*svarp)[id]) == NULL) {
10702 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10703 			svar->dtsv_var = *v;
10704 
10705 			if ((svar->dtsv_size = dsize) != 0) {
10706 				svar->dtsv_data = (uint64_t)(uintptr_t)
10707 				    kmem_zalloc(dsize, KM_SLEEP);
10708 			}
10709 
10710 			(*svarp)[id] = svar;
10711 		}
10712 
10713 		svar->dtsv_refcnt++;
10714 	}
10715 
10716 	dtrace_difo_chunksize(dp, vstate);
10717 	dtrace_difo_hold(dp);
10718 }
10719 
10720 static dtrace_difo_t *
10721 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10722 {
10723 	dtrace_difo_t *new;
10724 	size_t sz;
10725 
10726 	ASSERT(dp->dtdo_buf != NULL);
10727 	ASSERT(dp->dtdo_refcnt != 0);
10728 
10729 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10730 
10731 	ASSERT(dp->dtdo_buf != NULL);
10732 	sz = dp->dtdo_len * sizeof (dif_instr_t);
10733 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10734 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10735 	new->dtdo_len = dp->dtdo_len;
10736 
10737 	if (dp->dtdo_strtab != NULL) {
10738 		ASSERT(dp->dtdo_strlen != 0);
10739 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10740 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10741 		new->dtdo_strlen = dp->dtdo_strlen;
10742 	}
10743 
10744 	if (dp->dtdo_inttab != NULL) {
10745 		ASSERT(dp->dtdo_intlen != 0);
10746 		sz = dp->dtdo_intlen * sizeof (uint64_t);
10747 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10748 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10749 		new->dtdo_intlen = dp->dtdo_intlen;
10750 	}
10751 
10752 	if (dp->dtdo_vartab != NULL) {
10753 		ASSERT(dp->dtdo_varlen != 0);
10754 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10755 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10756 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10757 		new->dtdo_varlen = dp->dtdo_varlen;
10758 	}
10759 
10760 	dtrace_difo_init(new, vstate);
10761 	return (new);
10762 }
10763 
10764 static void
10765 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10766 {
10767 	int i;
10768 
10769 	ASSERT(dp->dtdo_refcnt == 0);
10770 
10771 	for (i = 0; i < dp->dtdo_varlen; i++) {
10772 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10773 		dtrace_statvar_t *svar, **svarp = NULL;
10774 		uint_t id;
10775 		uint8_t scope = v->dtdv_scope;
10776 		int *np = NULL;
10777 
10778 		switch (scope) {
10779 		case DIFV_SCOPE_THREAD:
10780 			continue;
10781 
10782 		case DIFV_SCOPE_LOCAL:
10783 			np = &vstate->dtvs_nlocals;
10784 			svarp = vstate->dtvs_locals;
10785 			break;
10786 
10787 		case DIFV_SCOPE_GLOBAL:
10788 			np = &vstate->dtvs_nglobals;
10789 			svarp = vstate->dtvs_globals;
10790 			break;
10791 
10792 		default:
10793 			ASSERT(0);
10794 		}
10795 
10796 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10797 			continue;
10798 
10799 		id -= DIF_VAR_OTHER_UBASE;
10800 		ASSERT(id < *np);
10801 
10802 		svar = svarp[id];
10803 		ASSERT(svar != NULL);
10804 		ASSERT(svar->dtsv_refcnt > 0);
10805 
10806 		if (--svar->dtsv_refcnt > 0)
10807 			continue;
10808 
10809 		if (svar->dtsv_size != 0) {
10810 			ASSERT(svar->dtsv_data != 0);
10811 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10812 			    svar->dtsv_size);
10813 		}
10814 
10815 		kmem_free(svar, sizeof (dtrace_statvar_t));
10816 		svarp[id] = NULL;
10817 	}
10818 
10819 	if (dp->dtdo_buf != NULL)
10820 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10821 	if (dp->dtdo_inttab != NULL)
10822 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10823 	if (dp->dtdo_strtab != NULL)
10824 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10825 	if (dp->dtdo_vartab != NULL)
10826 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10827 
10828 	kmem_free(dp, sizeof (dtrace_difo_t));
10829 }
10830 
10831 static void
10832 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10833 {
10834 	int i;
10835 
10836 	ASSERT(MUTEX_HELD(&dtrace_lock));
10837 	ASSERT(dp->dtdo_refcnt != 0);
10838 
10839 	for (i = 0; i < dp->dtdo_varlen; i++) {
10840 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10841 
10842 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10843 			continue;
10844 
10845 		ASSERT(dtrace_vtime_references > 0);
10846 		if (--dtrace_vtime_references == 0)
10847 			dtrace_vtime_disable();
10848 	}
10849 
10850 	if (--dp->dtdo_refcnt == 0)
10851 		dtrace_difo_destroy(dp, vstate);
10852 }
10853 
10854 /*
10855  * DTrace Format Functions
10856  */
10857 static uint16_t
10858 dtrace_format_add(dtrace_state_t *state, char *str)
10859 {
10860 	char *fmt, **new;
10861 	uint16_t ndx, len = strlen(str) + 1;
10862 
10863 	fmt = kmem_zalloc(len, KM_SLEEP);
10864 	bcopy(str, fmt, len);
10865 
10866 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10867 		if (state->dts_formats[ndx] == NULL) {
10868 			state->dts_formats[ndx] = fmt;
10869 			return (ndx + 1);
10870 		}
10871 	}
10872 
10873 	if (state->dts_nformats == USHRT_MAX) {
10874 		/*
10875 		 * This is only likely if a denial-of-service attack is being
10876 		 * attempted.  As such, it's okay to fail silently here.
10877 		 */
10878 		kmem_free(fmt, len);
10879 		return (0);
10880 	}
10881 
10882 	/*
10883 	 * For simplicity, we always resize the formats array to be exactly the
10884 	 * number of formats.
10885 	 */
10886 	ndx = state->dts_nformats++;
10887 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10888 
10889 	if (state->dts_formats != NULL) {
10890 		ASSERT(ndx != 0);
10891 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10892 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10893 	}
10894 
10895 	state->dts_formats = new;
10896 	state->dts_formats[ndx] = fmt;
10897 
10898 	return (ndx + 1);
10899 }
10900 
10901 static void
10902 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10903 {
10904 	char *fmt;
10905 
10906 	ASSERT(state->dts_formats != NULL);
10907 	ASSERT(format <= state->dts_nformats);
10908 	ASSERT(state->dts_formats[format - 1] != NULL);
10909 
10910 	fmt = state->dts_formats[format - 1];
10911 	kmem_free(fmt, strlen(fmt) + 1);
10912 	state->dts_formats[format - 1] = NULL;
10913 }
10914 
10915 static void
10916 dtrace_format_destroy(dtrace_state_t *state)
10917 {
10918 	int i;
10919 
10920 	if (state->dts_nformats == 0) {
10921 		ASSERT(state->dts_formats == NULL);
10922 		return;
10923 	}
10924 
10925 	ASSERT(state->dts_formats != NULL);
10926 
10927 	for (i = 0; i < state->dts_nformats; i++) {
10928 		char *fmt = state->dts_formats[i];
10929 
10930 		if (fmt == NULL)
10931 			continue;
10932 
10933 		kmem_free(fmt, strlen(fmt) + 1);
10934 	}
10935 
10936 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10937 	state->dts_nformats = 0;
10938 	state->dts_formats = NULL;
10939 }
10940 
10941 /*
10942  * DTrace Predicate Functions
10943  */
10944 static dtrace_predicate_t *
10945 dtrace_predicate_create(dtrace_difo_t *dp)
10946 {
10947 	dtrace_predicate_t *pred;
10948 
10949 	ASSERT(MUTEX_HELD(&dtrace_lock));
10950 	ASSERT(dp->dtdo_refcnt != 0);
10951 
10952 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10953 	pred->dtp_difo = dp;
10954 	pred->dtp_refcnt = 1;
10955 
10956 	if (!dtrace_difo_cacheable(dp))
10957 		return (pred);
10958 
10959 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10960 		/*
10961 		 * This is only theoretically possible -- we have had 2^32
10962 		 * cacheable predicates on this machine.  We cannot allow any
10963 		 * more predicates to become cacheable:  as unlikely as it is,
10964 		 * there may be a thread caching a (now stale) predicate cache
10965 		 * ID. (N.B.: the temptation is being successfully resisted to
10966 		 * have this cmn_err() "Holy shit -- we executed this code!")
10967 		 */
10968 		return (pred);
10969 	}
10970 
10971 	pred->dtp_cacheid = dtrace_predcache_id++;
10972 
10973 	return (pred);
10974 }
10975 
10976 static void
10977 dtrace_predicate_hold(dtrace_predicate_t *pred)
10978 {
10979 	ASSERT(MUTEX_HELD(&dtrace_lock));
10980 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10981 	ASSERT(pred->dtp_refcnt > 0);
10982 
10983 	pred->dtp_refcnt++;
10984 }
10985 
10986 static void
10987 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10988 {
10989 	dtrace_difo_t *dp = pred->dtp_difo;
10990 
10991 	ASSERT(MUTEX_HELD(&dtrace_lock));
10992 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10993 	ASSERT(pred->dtp_refcnt > 0);
10994 
10995 	if (--pred->dtp_refcnt == 0) {
10996 		dtrace_difo_release(pred->dtp_difo, vstate);
10997 		kmem_free(pred, sizeof (dtrace_predicate_t));
10998 	}
10999 }
11000 
11001 /*
11002  * DTrace Action Description Functions
11003  */
11004 static dtrace_actdesc_t *
11005 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
11006     uint64_t uarg, uint64_t arg)
11007 {
11008 	dtrace_actdesc_t *act;
11009 
11010 #ifdef illumos
11011 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
11012 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
11013 #endif
11014 
11015 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
11016 	act->dtad_kind = kind;
11017 	act->dtad_ntuple = ntuple;
11018 	act->dtad_uarg = uarg;
11019 	act->dtad_arg = arg;
11020 	act->dtad_refcnt = 1;
11021 
11022 	return (act);
11023 }
11024 
11025 static void
11026 dtrace_actdesc_hold(dtrace_actdesc_t *act)
11027 {
11028 	ASSERT(act->dtad_refcnt >= 1);
11029 	act->dtad_refcnt++;
11030 }
11031 
11032 static void
11033 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
11034 {
11035 	dtrace_actkind_t kind = act->dtad_kind;
11036 	dtrace_difo_t *dp;
11037 
11038 	ASSERT(act->dtad_refcnt >= 1);
11039 
11040 	if (--act->dtad_refcnt != 0)
11041 		return;
11042 
11043 	if ((dp = act->dtad_difo) != NULL)
11044 		dtrace_difo_release(dp, vstate);
11045 
11046 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
11047 		char *str = (char *)(uintptr_t)act->dtad_arg;
11048 
11049 #ifdef illumos
11050 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
11051 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
11052 #endif
11053 
11054 		if (str != NULL)
11055 			kmem_free(str, strlen(str) + 1);
11056 	}
11057 
11058 	kmem_free(act, sizeof (dtrace_actdesc_t));
11059 }
11060 
11061 /*
11062  * DTrace ECB Functions
11063  */
11064 static dtrace_ecb_t *
11065 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
11066 {
11067 	dtrace_ecb_t *ecb;
11068 	dtrace_epid_t epid;
11069 
11070 	ASSERT(MUTEX_HELD(&dtrace_lock));
11071 
11072 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
11073 	ecb->dte_predicate = NULL;
11074 	ecb->dte_probe = probe;
11075 
11076 	/*
11077 	 * The default size is the size of the default action: recording
11078 	 * the header.
11079 	 */
11080 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
11081 	ecb->dte_alignment = sizeof (dtrace_epid_t);
11082 
11083 	epid = state->dts_epid++;
11084 
11085 	if (epid - 1 >= state->dts_necbs) {
11086 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
11087 		int necbs = state->dts_necbs << 1;
11088 
11089 		ASSERT(epid == state->dts_necbs + 1);
11090 
11091 		if (necbs == 0) {
11092 			ASSERT(oecbs == NULL);
11093 			necbs = 1;
11094 		}
11095 
11096 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11097 
11098 		if (oecbs != NULL)
11099 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11100 
11101 		dtrace_membar_producer();
11102 		state->dts_ecbs = ecbs;
11103 
11104 		if (oecbs != NULL) {
11105 			/*
11106 			 * If this state is active, we must dtrace_sync()
11107 			 * before we can free the old dts_ecbs array:  we're
11108 			 * coming in hot, and there may be active ring
11109 			 * buffer processing (which indexes into the dts_ecbs
11110 			 * array) on another CPU.
11111 			 */
11112 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11113 				dtrace_sync();
11114 
11115 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11116 		}
11117 
11118 		dtrace_membar_producer();
11119 		state->dts_necbs = necbs;
11120 	}
11121 
11122 	ecb->dte_state = state;
11123 
11124 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
11125 	dtrace_membar_producer();
11126 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11127 
11128 	return (ecb);
11129 }
11130 
11131 static void
11132 dtrace_ecb_enable(dtrace_ecb_t *ecb)
11133 {
11134 	dtrace_probe_t *probe = ecb->dte_probe;
11135 
11136 	ASSERT(MUTEX_HELD(&cpu_lock));
11137 	ASSERT(MUTEX_HELD(&dtrace_lock));
11138 	ASSERT(ecb->dte_next == NULL);
11139 
11140 	if (probe == NULL) {
11141 		/*
11142 		 * This is the NULL probe -- there's nothing to do.
11143 		 */
11144 		return;
11145 	}
11146 
11147 	if (probe->dtpr_ecb == NULL) {
11148 		dtrace_provider_t *prov = probe->dtpr_provider;
11149 
11150 		/*
11151 		 * We're the first ECB on this probe.
11152 		 */
11153 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11154 
11155 		if (ecb->dte_predicate != NULL)
11156 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11157 
11158 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11159 		    probe->dtpr_id, probe->dtpr_arg);
11160 	} else {
11161 		/*
11162 		 * This probe is already active.  Swing the last pointer to
11163 		 * point to the new ECB, and issue a dtrace_sync() to assure
11164 		 * that all CPUs have seen the change.
11165 		 */
11166 		ASSERT(probe->dtpr_ecb_last != NULL);
11167 		probe->dtpr_ecb_last->dte_next = ecb;
11168 		probe->dtpr_ecb_last = ecb;
11169 		probe->dtpr_predcache = 0;
11170 
11171 		dtrace_sync();
11172 	}
11173 }
11174 
11175 static int
11176 dtrace_ecb_resize(dtrace_ecb_t *ecb)
11177 {
11178 	dtrace_action_t *act;
11179 	uint32_t curneeded = UINT32_MAX;
11180 	uint32_t aggbase = UINT32_MAX;
11181 
11182 	/*
11183 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
11184 	 * we always record it first.)
11185 	 */
11186 	ecb->dte_size = sizeof (dtrace_rechdr_t);
11187 	ecb->dte_alignment = sizeof (dtrace_epid_t);
11188 
11189 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11190 		dtrace_recdesc_t *rec = &act->dta_rec;
11191 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11192 
11193 		ecb->dte_alignment = MAX(ecb->dte_alignment,
11194 		    rec->dtrd_alignment);
11195 
11196 		if (DTRACEACT_ISAGG(act->dta_kind)) {
11197 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11198 
11199 			ASSERT(rec->dtrd_size != 0);
11200 			ASSERT(agg->dtag_first != NULL);
11201 			ASSERT(act->dta_prev->dta_intuple);
11202 			ASSERT(aggbase != UINT32_MAX);
11203 			ASSERT(curneeded != UINT32_MAX);
11204 
11205 			agg->dtag_base = aggbase;
11206 
11207 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11208 			rec->dtrd_offset = curneeded;
11209 			if (curneeded + rec->dtrd_size < curneeded)
11210 				return (EINVAL);
11211 			curneeded += rec->dtrd_size;
11212 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11213 
11214 			aggbase = UINT32_MAX;
11215 			curneeded = UINT32_MAX;
11216 		} else if (act->dta_intuple) {
11217 			if (curneeded == UINT32_MAX) {
11218 				/*
11219 				 * This is the first record in a tuple.  Align
11220 				 * curneeded to be at offset 4 in an 8-byte
11221 				 * aligned block.
11222 				 */
11223 				ASSERT(act->dta_prev == NULL ||
11224 				    !act->dta_prev->dta_intuple);
11225 				ASSERT3U(aggbase, ==, UINT32_MAX);
11226 				curneeded = P2PHASEUP(ecb->dte_size,
11227 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
11228 
11229 				aggbase = curneeded - sizeof (dtrace_aggid_t);
11230 				ASSERT(IS_P2ALIGNED(aggbase,
11231 				    sizeof (uint64_t)));
11232 			}
11233 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11234 			rec->dtrd_offset = curneeded;
11235 			if (curneeded + rec->dtrd_size < curneeded)
11236 				return (EINVAL);
11237 			curneeded += rec->dtrd_size;
11238 		} else {
11239 			/* tuples must be followed by an aggregation */
11240 			ASSERT(act->dta_prev == NULL ||
11241 			    !act->dta_prev->dta_intuple);
11242 
11243 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11244 			    rec->dtrd_alignment);
11245 			rec->dtrd_offset = ecb->dte_size;
11246 			if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
11247 				return (EINVAL);
11248 			ecb->dte_size += rec->dtrd_size;
11249 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11250 		}
11251 	}
11252 
11253 	if ((act = ecb->dte_action) != NULL &&
11254 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11255 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11256 		/*
11257 		 * If the size is still sizeof (dtrace_rechdr_t), then all
11258 		 * actions store no data; set the size to 0.
11259 		 */
11260 		ecb->dte_size = 0;
11261 	}
11262 
11263 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11264 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11265 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11266 	    ecb->dte_needed);
11267 	return (0);
11268 }
11269 
11270 static dtrace_action_t *
11271 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11272 {
11273 	dtrace_aggregation_t *agg;
11274 	size_t size = sizeof (uint64_t);
11275 	int ntuple = desc->dtad_ntuple;
11276 	dtrace_action_t *act;
11277 	dtrace_recdesc_t *frec;
11278 	dtrace_aggid_t aggid;
11279 	dtrace_state_t *state = ecb->dte_state;
11280 
11281 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11282 	agg->dtag_ecb = ecb;
11283 
11284 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11285 
11286 	switch (desc->dtad_kind) {
11287 	case DTRACEAGG_MIN:
11288 		agg->dtag_initial = INT64_MAX;
11289 		agg->dtag_aggregate = dtrace_aggregate_min;
11290 		break;
11291 
11292 	case DTRACEAGG_MAX:
11293 		agg->dtag_initial = INT64_MIN;
11294 		agg->dtag_aggregate = dtrace_aggregate_max;
11295 		break;
11296 
11297 	case DTRACEAGG_COUNT:
11298 		agg->dtag_aggregate = dtrace_aggregate_count;
11299 		break;
11300 
11301 	case DTRACEAGG_QUANTIZE:
11302 		agg->dtag_aggregate = dtrace_aggregate_quantize;
11303 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11304 		    sizeof (uint64_t);
11305 		break;
11306 
11307 	case DTRACEAGG_LQUANTIZE: {
11308 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11309 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11310 
11311 		agg->dtag_initial = desc->dtad_arg;
11312 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11313 
11314 		if (step == 0 || levels == 0)
11315 			goto err;
11316 
11317 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11318 		break;
11319 	}
11320 
11321 	case DTRACEAGG_LLQUANTIZE: {
11322 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11323 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11324 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11325 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11326 		int64_t v;
11327 
11328 		agg->dtag_initial = desc->dtad_arg;
11329 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11330 
11331 		if (factor < 2 || low >= high || nsteps < factor)
11332 			goto err;
11333 
11334 		/*
11335 		 * Now check that the number of steps evenly divides a power
11336 		 * of the factor.  (This assures both integer bucket size and
11337 		 * linearity within each magnitude.)
11338 		 */
11339 		for (v = factor; v < nsteps; v *= factor)
11340 			continue;
11341 
11342 		if ((v % nsteps) || (nsteps % factor))
11343 			goto err;
11344 
11345 		size = (dtrace_aggregate_llquantize_bucket(factor,
11346 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11347 		break;
11348 	}
11349 
11350 	case DTRACEAGG_AVG:
11351 		agg->dtag_aggregate = dtrace_aggregate_avg;
11352 		size = sizeof (uint64_t) * 2;
11353 		break;
11354 
11355 	case DTRACEAGG_STDDEV:
11356 		agg->dtag_aggregate = dtrace_aggregate_stddev;
11357 		size = sizeof (uint64_t) * 4;
11358 		break;
11359 
11360 	case DTRACEAGG_SUM:
11361 		agg->dtag_aggregate = dtrace_aggregate_sum;
11362 		break;
11363 
11364 	default:
11365 		goto err;
11366 	}
11367 
11368 	agg->dtag_action.dta_rec.dtrd_size = size;
11369 
11370 	if (ntuple == 0)
11371 		goto err;
11372 
11373 	/*
11374 	 * We must make sure that we have enough actions for the n-tuple.
11375 	 */
11376 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11377 		if (DTRACEACT_ISAGG(act->dta_kind))
11378 			break;
11379 
11380 		if (--ntuple == 0) {
11381 			/*
11382 			 * This is the action with which our n-tuple begins.
11383 			 */
11384 			agg->dtag_first = act;
11385 			goto success;
11386 		}
11387 	}
11388 
11389 	/*
11390 	 * This n-tuple is short by ntuple elements.  Return failure.
11391 	 */
11392 	ASSERT(ntuple != 0);
11393 err:
11394 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11395 	return (NULL);
11396 
11397 success:
11398 	/*
11399 	 * If the last action in the tuple has a size of zero, it's actually
11400 	 * an expression argument for the aggregating action.
11401 	 */
11402 	ASSERT(ecb->dte_action_last != NULL);
11403 	act = ecb->dte_action_last;
11404 
11405 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11406 		ASSERT(act->dta_difo != NULL);
11407 
11408 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11409 			agg->dtag_hasarg = 1;
11410 	}
11411 
11412 	/*
11413 	 * We need to allocate an id for this aggregation.
11414 	 */
11415 #ifdef illumos
11416 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11417 	    VM_BESTFIT | VM_SLEEP);
11418 #else
11419 	aggid = alloc_unr(state->dts_aggid_arena);
11420 #endif
11421 
11422 	if (aggid - 1 >= state->dts_naggregations) {
11423 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11424 		dtrace_aggregation_t **aggs;
11425 		int naggs = state->dts_naggregations << 1;
11426 		int onaggs = state->dts_naggregations;
11427 
11428 		ASSERT(aggid == state->dts_naggregations + 1);
11429 
11430 		if (naggs == 0) {
11431 			ASSERT(oaggs == NULL);
11432 			naggs = 1;
11433 		}
11434 
11435 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11436 
11437 		if (oaggs != NULL) {
11438 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11439 			kmem_free(oaggs, onaggs * sizeof (*aggs));
11440 		}
11441 
11442 		state->dts_aggregations = aggs;
11443 		state->dts_naggregations = naggs;
11444 	}
11445 
11446 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11447 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11448 
11449 	frec = &agg->dtag_first->dta_rec;
11450 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11451 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11452 
11453 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11454 		ASSERT(!act->dta_intuple);
11455 		act->dta_intuple = 1;
11456 	}
11457 
11458 	return (&agg->dtag_action);
11459 }
11460 
11461 static void
11462 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11463 {
11464 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11465 	dtrace_state_t *state = ecb->dte_state;
11466 	dtrace_aggid_t aggid = agg->dtag_id;
11467 
11468 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11469 #ifdef illumos
11470 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11471 #else
11472 	free_unr(state->dts_aggid_arena, aggid);
11473 #endif
11474 
11475 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11476 	state->dts_aggregations[aggid - 1] = NULL;
11477 
11478 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11479 }
11480 
11481 static int
11482 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11483 {
11484 	dtrace_action_t *action, *last;
11485 	dtrace_difo_t *dp = desc->dtad_difo;
11486 	uint32_t size = 0, align = sizeof (uint8_t), mask;
11487 	uint16_t format = 0;
11488 	dtrace_recdesc_t *rec;
11489 	dtrace_state_t *state = ecb->dte_state;
11490 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11491 	uint64_t arg = desc->dtad_arg;
11492 
11493 	ASSERT(MUTEX_HELD(&dtrace_lock));
11494 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11495 
11496 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11497 		/*
11498 		 * If this is an aggregating action, there must be neither
11499 		 * a speculate nor a commit on the action chain.
11500 		 */
11501 		dtrace_action_t *act;
11502 
11503 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11504 			if (act->dta_kind == DTRACEACT_COMMIT)
11505 				return (EINVAL);
11506 
11507 			if (act->dta_kind == DTRACEACT_SPECULATE)
11508 				return (EINVAL);
11509 		}
11510 
11511 		action = dtrace_ecb_aggregation_create(ecb, desc);
11512 
11513 		if (action == NULL)
11514 			return (EINVAL);
11515 	} else {
11516 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11517 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11518 		    dp != NULL && dp->dtdo_destructive)) {
11519 			state->dts_destructive = 1;
11520 		}
11521 
11522 		switch (desc->dtad_kind) {
11523 		case DTRACEACT_PRINTF:
11524 		case DTRACEACT_PRINTA:
11525 		case DTRACEACT_SYSTEM:
11526 		case DTRACEACT_FREOPEN:
11527 		case DTRACEACT_DIFEXPR:
11528 			/*
11529 			 * We know that our arg is a string -- turn it into a
11530 			 * format.
11531 			 */
11532 			if (arg == 0) {
11533 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11534 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11535 				format = 0;
11536 			} else {
11537 				ASSERT(arg != 0);
11538 #ifdef illumos
11539 				ASSERT(arg > KERNELBASE);
11540 #endif
11541 				format = dtrace_format_add(state,
11542 				    (char *)(uintptr_t)arg);
11543 			}
11544 
11545 			/*FALLTHROUGH*/
11546 		case DTRACEACT_LIBACT:
11547 		case DTRACEACT_TRACEMEM:
11548 		case DTRACEACT_TRACEMEM_DYNSIZE:
11549 			if (dp == NULL)
11550 				return (EINVAL);
11551 
11552 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11553 				break;
11554 
11555 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11556 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11557 					return (EINVAL);
11558 
11559 				size = opt[DTRACEOPT_STRSIZE];
11560 			}
11561 
11562 			break;
11563 
11564 		case DTRACEACT_STACK:
11565 			if ((nframes = arg) == 0) {
11566 				nframes = opt[DTRACEOPT_STACKFRAMES];
11567 				ASSERT(nframes > 0);
11568 				arg = nframes;
11569 			}
11570 
11571 			size = nframes * sizeof (pc_t);
11572 			break;
11573 
11574 		case DTRACEACT_JSTACK:
11575 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11576 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11577 
11578 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11579 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11580 
11581 			arg = DTRACE_USTACK_ARG(nframes, strsize);
11582 
11583 			/*FALLTHROUGH*/
11584 		case DTRACEACT_USTACK:
11585 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11586 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11587 				strsize = DTRACE_USTACK_STRSIZE(arg);
11588 				nframes = opt[DTRACEOPT_USTACKFRAMES];
11589 				ASSERT(nframes > 0);
11590 				arg = DTRACE_USTACK_ARG(nframes, strsize);
11591 			}
11592 
11593 			/*
11594 			 * Save a slot for the pid.
11595 			 */
11596 			size = (nframes + 1) * sizeof (uint64_t);
11597 			size += DTRACE_USTACK_STRSIZE(arg);
11598 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11599 
11600 			break;
11601 
11602 		case DTRACEACT_SYM:
11603 		case DTRACEACT_MOD:
11604 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11605 			    sizeof (uint64_t)) ||
11606 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11607 				return (EINVAL);
11608 			break;
11609 
11610 		case DTRACEACT_USYM:
11611 		case DTRACEACT_UMOD:
11612 		case DTRACEACT_UADDR:
11613 			if (dp == NULL ||
11614 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11615 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11616 				return (EINVAL);
11617 
11618 			/*
11619 			 * We have a slot for the pid, plus a slot for the
11620 			 * argument.  To keep things simple (aligned with
11621 			 * bitness-neutral sizing), we store each as a 64-bit
11622 			 * quantity.
11623 			 */
11624 			size = 2 * sizeof (uint64_t);
11625 			break;
11626 
11627 		case DTRACEACT_STOP:
11628 		case DTRACEACT_BREAKPOINT:
11629 		case DTRACEACT_PANIC:
11630 			break;
11631 
11632 		case DTRACEACT_CHILL:
11633 		case DTRACEACT_DISCARD:
11634 		case DTRACEACT_RAISE:
11635 			if (dp == NULL)
11636 				return (EINVAL);
11637 			break;
11638 
11639 		case DTRACEACT_EXIT:
11640 			if (dp == NULL ||
11641 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11642 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11643 				return (EINVAL);
11644 			break;
11645 
11646 		case DTRACEACT_SPECULATE:
11647 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11648 				return (EINVAL);
11649 
11650 			if (dp == NULL)
11651 				return (EINVAL);
11652 
11653 			state->dts_speculates = 1;
11654 			break;
11655 
11656 		case DTRACEACT_PRINTM:
11657 		    	size = dp->dtdo_rtype.dtdt_size;
11658 			break;
11659 
11660 		case DTRACEACT_COMMIT: {
11661 			dtrace_action_t *act = ecb->dte_action;
11662 
11663 			for (; act != NULL; act = act->dta_next) {
11664 				if (act->dta_kind == DTRACEACT_COMMIT)
11665 					return (EINVAL);
11666 			}
11667 
11668 			if (dp == NULL)
11669 				return (EINVAL);
11670 			break;
11671 		}
11672 
11673 		default:
11674 			return (EINVAL);
11675 		}
11676 
11677 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11678 			/*
11679 			 * If this is a data-storing action or a speculate,
11680 			 * we must be sure that there isn't a commit on the
11681 			 * action chain.
11682 			 */
11683 			dtrace_action_t *act = ecb->dte_action;
11684 
11685 			for (; act != NULL; act = act->dta_next) {
11686 				if (act->dta_kind == DTRACEACT_COMMIT)
11687 					return (EINVAL);
11688 			}
11689 		}
11690 
11691 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11692 		action->dta_rec.dtrd_size = size;
11693 	}
11694 
11695 	action->dta_refcnt = 1;
11696 	rec = &action->dta_rec;
11697 	size = rec->dtrd_size;
11698 
11699 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11700 		if (!(size & mask)) {
11701 			align = mask + 1;
11702 			break;
11703 		}
11704 	}
11705 
11706 	action->dta_kind = desc->dtad_kind;
11707 
11708 	if ((action->dta_difo = dp) != NULL)
11709 		dtrace_difo_hold(dp);
11710 
11711 	rec->dtrd_action = action->dta_kind;
11712 	rec->dtrd_arg = arg;
11713 	rec->dtrd_uarg = desc->dtad_uarg;
11714 	rec->dtrd_alignment = (uint16_t)align;
11715 	rec->dtrd_format = format;
11716 
11717 	if ((last = ecb->dte_action_last) != NULL) {
11718 		ASSERT(ecb->dte_action != NULL);
11719 		action->dta_prev = last;
11720 		last->dta_next = action;
11721 	} else {
11722 		ASSERT(ecb->dte_action == NULL);
11723 		ecb->dte_action = action;
11724 	}
11725 
11726 	ecb->dte_action_last = action;
11727 
11728 	return (0);
11729 }
11730 
11731 static void
11732 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11733 {
11734 	dtrace_action_t *act = ecb->dte_action, *next;
11735 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11736 	dtrace_difo_t *dp;
11737 	uint16_t format;
11738 
11739 	if (act != NULL && act->dta_refcnt > 1) {
11740 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11741 		act->dta_refcnt--;
11742 	} else {
11743 		for (; act != NULL; act = next) {
11744 			next = act->dta_next;
11745 			ASSERT(next != NULL || act == ecb->dte_action_last);
11746 			ASSERT(act->dta_refcnt == 1);
11747 
11748 			if ((format = act->dta_rec.dtrd_format) != 0)
11749 				dtrace_format_remove(ecb->dte_state, format);
11750 
11751 			if ((dp = act->dta_difo) != NULL)
11752 				dtrace_difo_release(dp, vstate);
11753 
11754 			if (DTRACEACT_ISAGG(act->dta_kind)) {
11755 				dtrace_ecb_aggregation_destroy(ecb, act);
11756 			} else {
11757 				kmem_free(act, sizeof (dtrace_action_t));
11758 			}
11759 		}
11760 	}
11761 
11762 	ecb->dte_action = NULL;
11763 	ecb->dte_action_last = NULL;
11764 	ecb->dte_size = 0;
11765 }
11766 
11767 static void
11768 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11769 {
11770 	/*
11771 	 * We disable the ECB by removing it from its probe.
11772 	 */
11773 	dtrace_ecb_t *pecb, *prev = NULL;
11774 	dtrace_probe_t *probe = ecb->dte_probe;
11775 
11776 	ASSERT(MUTEX_HELD(&dtrace_lock));
11777 
11778 	if (probe == NULL) {
11779 		/*
11780 		 * This is the NULL probe; there is nothing to disable.
11781 		 */
11782 		return;
11783 	}
11784 
11785 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11786 		if (pecb == ecb)
11787 			break;
11788 		prev = pecb;
11789 	}
11790 
11791 	ASSERT(pecb != NULL);
11792 
11793 	if (prev == NULL) {
11794 		probe->dtpr_ecb = ecb->dte_next;
11795 	} else {
11796 		prev->dte_next = ecb->dte_next;
11797 	}
11798 
11799 	if (ecb == probe->dtpr_ecb_last) {
11800 		ASSERT(ecb->dte_next == NULL);
11801 		probe->dtpr_ecb_last = prev;
11802 	}
11803 
11804 	/*
11805 	 * The ECB has been disconnected from the probe; now sync to assure
11806 	 * that all CPUs have seen the change before returning.
11807 	 */
11808 	dtrace_sync();
11809 
11810 	if (probe->dtpr_ecb == NULL) {
11811 		/*
11812 		 * That was the last ECB on the probe; clear the predicate
11813 		 * cache ID for the probe, disable it and sync one more time
11814 		 * to assure that we'll never hit it again.
11815 		 */
11816 		dtrace_provider_t *prov = probe->dtpr_provider;
11817 
11818 		ASSERT(ecb->dte_next == NULL);
11819 		ASSERT(probe->dtpr_ecb_last == NULL);
11820 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11821 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11822 		    probe->dtpr_id, probe->dtpr_arg);
11823 		dtrace_sync();
11824 	} else {
11825 		/*
11826 		 * There is at least one ECB remaining on the probe.  If there
11827 		 * is _exactly_ one, set the probe's predicate cache ID to be
11828 		 * the predicate cache ID of the remaining ECB.
11829 		 */
11830 		ASSERT(probe->dtpr_ecb_last != NULL);
11831 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11832 
11833 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11834 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11835 
11836 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11837 
11838 			if (p != NULL)
11839 				probe->dtpr_predcache = p->dtp_cacheid;
11840 		}
11841 
11842 		ecb->dte_next = NULL;
11843 	}
11844 }
11845 
11846 static void
11847 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11848 {
11849 	dtrace_state_t *state = ecb->dte_state;
11850 	dtrace_vstate_t *vstate = &state->dts_vstate;
11851 	dtrace_predicate_t *pred;
11852 	dtrace_epid_t epid = ecb->dte_epid;
11853 
11854 	ASSERT(MUTEX_HELD(&dtrace_lock));
11855 	ASSERT(ecb->dte_next == NULL);
11856 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11857 
11858 	if ((pred = ecb->dte_predicate) != NULL)
11859 		dtrace_predicate_release(pred, vstate);
11860 
11861 	dtrace_ecb_action_remove(ecb);
11862 
11863 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11864 	state->dts_ecbs[epid - 1] = NULL;
11865 
11866 	kmem_free(ecb, sizeof (dtrace_ecb_t));
11867 }
11868 
11869 static dtrace_ecb_t *
11870 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11871     dtrace_enabling_t *enab)
11872 {
11873 	dtrace_ecb_t *ecb;
11874 	dtrace_predicate_t *pred;
11875 	dtrace_actdesc_t *act;
11876 	dtrace_provider_t *prov;
11877 	dtrace_ecbdesc_t *desc = enab->dten_current;
11878 
11879 	ASSERT(MUTEX_HELD(&dtrace_lock));
11880 	ASSERT(state != NULL);
11881 
11882 	ecb = dtrace_ecb_add(state, probe);
11883 	ecb->dte_uarg = desc->dted_uarg;
11884 
11885 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11886 		dtrace_predicate_hold(pred);
11887 		ecb->dte_predicate = pred;
11888 	}
11889 
11890 	if (probe != NULL) {
11891 		/*
11892 		 * If the provider shows more leg than the consumer is old
11893 		 * enough to see, we need to enable the appropriate implicit
11894 		 * predicate bits to prevent the ecb from activating at
11895 		 * revealing times.
11896 		 *
11897 		 * Providers specifying DTRACE_PRIV_USER at register time
11898 		 * are stating that they need the /proc-style privilege
11899 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11900 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11901 		 */
11902 		prov = probe->dtpr_provider;
11903 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11904 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11905 			ecb->dte_cond |= DTRACE_COND_OWNER;
11906 
11907 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11908 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11909 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11910 
11911 		/*
11912 		 * If the provider shows us kernel innards and the user
11913 		 * is lacking sufficient privilege, enable the
11914 		 * DTRACE_COND_USERMODE implicit predicate.
11915 		 */
11916 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11917 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11918 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11919 	}
11920 
11921 	if (dtrace_ecb_create_cache != NULL) {
11922 		/*
11923 		 * If we have a cached ecb, we'll use its action list instead
11924 		 * of creating our own (saving both time and space).
11925 		 */
11926 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11927 		dtrace_action_t *act = cached->dte_action;
11928 
11929 		if (act != NULL) {
11930 			ASSERT(act->dta_refcnt > 0);
11931 			act->dta_refcnt++;
11932 			ecb->dte_action = act;
11933 			ecb->dte_action_last = cached->dte_action_last;
11934 			ecb->dte_needed = cached->dte_needed;
11935 			ecb->dte_size = cached->dte_size;
11936 			ecb->dte_alignment = cached->dte_alignment;
11937 		}
11938 
11939 		return (ecb);
11940 	}
11941 
11942 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11943 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11944 			dtrace_ecb_destroy(ecb);
11945 			return (NULL);
11946 		}
11947 	}
11948 
11949 	if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11950 		dtrace_ecb_destroy(ecb);
11951 		return (NULL);
11952 	}
11953 
11954 	return (dtrace_ecb_create_cache = ecb);
11955 }
11956 
11957 static int
11958 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11959 {
11960 	dtrace_ecb_t *ecb;
11961 	dtrace_enabling_t *enab = arg;
11962 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11963 
11964 	ASSERT(state != NULL);
11965 
11966 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11967 		/*
11968 		 * This probe was created in a generation for which this
11969 		 * enabling has previously created ECBs; we don't want to
11970 		 * enable it again, so just kick out.
11971 		 */
11972 		return (DTRACE_MATCH_NEXT);
11973 	}
11974 
11975 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11976 		return (DTRACE_MATCH_DONE);
11977 
11978 	dtrace_ecb_enable(ecb);
11979 	return (DTRACE_MATCH_NEXT);
11980 }
11981 
11982 static dtrace_ecb_t *
11983 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11984 {
11985 	dtrace_ecb_t *ecb;
11986 
11987 	ASSERT(MUTEX_HELD(&dtrace_lock));
11988 
11989 	if (id == 0 || id > state->dts_necbs)
11990 		return (NULL);
11991 
11992 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11993 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11994 
11995 	return (state->dts_ecbs[id - 1]);
11996 }
11997 
11998 static dtrace_aggregation_t *
11999 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
12000 {
12001 	dtrace_aggregation_t *agg;
12002 
12003 	ASSERT(MUTEX_HELD(&dtrace_lock));
12004 
12005 	if (id == 0 || id > state->dts_naggregations)
12006 		return (NULL);
12007 
12008 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
12009 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
12010 	    agg->dtag_id == id);
12011 
12012 	return (state->dts_aggregations[id - 1]);
12013 }
12014 
12015 /*
12016  * DTrace Buffer Functions
12017  *
12018  * The following functions manipulate DTrace buffers.  Most of these functions
12019  * are called in the context of establishing or processing consumer state;
12020  * exceptions are explicitly noted.
12021  */
12022 
12023 /*
12024  * Note:  called from cross call context.  This function switches the two
12025  * buffers on a given CPU.  The atomicity of this operation is assured by
12026  * disabling interrupts while the actual switch takes place; the disabling of
12027  * interrupts serializes the execution with any execution of dtrace_probe() on
12028  * the same CPU.
12029  */
12030 static void
12031 dtrace_buffer_switch(dtrace_buffer_t *buf)
12032 {
12033 	caddr_t tomax = buf->dtb_tomax;
12034 	caddr_t xamot = buf->dtb_xamot;
12035 	dtrace_icookie_t cookie;
12036 	hrtime_t now;
12037 
12038 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12039 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
12040 
12041 	cookie = dtrace_interrupt_disable();
12042 	now = dtrace_gethrtime();
12043 	buf->dtb_tomax = xamot;
12044 	buf->dtb_xamot = tomax;
12045 	buf->dtb_xamot_drops = buf->dtb_drops;
12046 	buf->dtb_xamot_offset = buf->dtb_offset;
12047 	buf->dtb_xamot_errors = buf->dtb_errors;
12048 	buf->dtb_xamot_flags = buf->dtb_flags;
12049 	buf->dtb_offset = 0;
12050 	buf->dtb_drops = 0;
12051 	buf->dtb_errors = 0;
12052 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
12053 	buf->dtb_interval = now - buf->dtb_switched;
12054 	buf->dtb_switched = now;
12055 	dtrace_interrupt_enable(cookie);
12056 }
12057 
12058 /*
12059  * Note:  called from cross call context.  This function activates a buffer
12060  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
12061  * is guaranteed by the disabling of interrupts.
12062  */
12063 static void
12064 dtrace_buffer_activate(dtrace_state_t *state)
12065 {
12066 	dtrace_buffer_t *buf;
12067 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
12068 
12069 	buf = &state->dts_buffer[curcpu];
12070 
12071 	if (buf->dtb_tomax != NULL) {
12072 		/*
12073 		 * We might like to assert that the buffer is marked inactive,
12074 		 * but this isn't necessarily true:  the buffer for the CPU
12075 		 * that processes the BEGIN probe has its buffer activated
12076 		 * manually.  In this case, we take the (harmless) action
12077 		 * re-clearing the bit INACTIVE bit.
12078 		 */
12079 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
12080 	}
12081 
12082 	dtrace_interrupt_enable(cookie);
12083 }
12084 
12085 #ifdef __FreeBSD__
12086 /*
12087  * Activate the specified per-CPU buffer.  This is used instead of
12088  * dtrace_buffer_activate() when APs have not yet started, i.e. when
12089  * activating anonymous state.
12090  */
12091 static void
12092 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
12093 {
12094 
12095 	if (state->dts_buffer[cpu].dtb_tomax != NULL)
12096 		state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12097 }
12098 #endif
12099 
12100 static int
12101 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12102     processorid_t cpu, int *factor)
12103 {
12104 #ifdef illumos
12105 	cpu_t *cp;
12106 #endif
12107 	dtrace_buffer_t *buf;
12108 	int allocated = 0, desired = 0;
12109 
12110 #ifdef illumos
12111 	ASSERT(MUTEX_HELD(&cpu_lock));
12112 	ASSERT(MUTEX_HELD(&dtrace_lock));
12113 
12114 	*factor = 1;
12115 
12116 	if (size > dtrace_nonroot_maxsize &&
12117 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12118 		return (EFBIG);
12119 
12120 	cp = cpu_list;
12121 
12122 	do {
12123 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12124 			continue;
12125 
12126 		buf = &bufs[cp->cpu_id];
12127 
12128 		/*
12129 		 * If there is already a buffer allocated for this CPU, it
12130 		 * is only possible that this is a DR event.  In this case,
12131 		 */
12132 		if (buf->dtb_tomax != NULL) {
12133 			ASSERT(buf->dtb_size == size);
12134 			continue;
12135 		}
12136 
12137 		ASSERT(buf->dtb_xamot == NULL);
12138 
12139 		if ((buf->dtb_tomax = kmem_zalloc(size,
12140 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12141 			goto err;
12142 
12143 		buf->dtb_size = size;
12144 		buf->dtb_flags = flags;
12145 		buf->dtb_offset = 0;
12146 		buf->dtb_drops = 0;
12147 
12148 		if (flags & DTRACEBUF_NOSWITCH)
12149 			continue;
12150 
12151 		if ((buf->dtb_xamot = kmem_zalloc(size,
12152 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12153 			goto err;
12154 	} while ((cp = cp->cpu_next) != cpu_list);
12155 
12156 	return (0);
12157 
12158 err:
12159 	cp = cpu_list;
12160 
12161 	do {
12162 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12163 			continue;
12164 
12165 		buf = &bufs[cp->cpu_id];
12166 		desired += 2;
12167 
12168 		if (buf->dtb_xamot != NULL) {
12169 			ASSERT(buf->dtb_tomax != NULL);
12170 			ASSERT(buf->dtb_size == size);
12171 			kmem_free(buf->dtb_xamot, size);
12172 			allocated++;
12173 		}
12174 
12175 		if (buf->dtb_tomax != NULL) {
12176 			ASSERT(buf->dtb_size == size);
12177 			kmem_free(buf->dtb_tomax, size);
12178 			allocated++;
12179 		}
12180 
12181 		buf->dtb_tomax = NULL;
12182 		buf->dtb_xamot = NULL;
12183 		buf->dtb_size = 0;
12184 	} while ((cp = cp->cpu_next) != cpu_list);
12185 #else
12186 	int i;
12187 
12188 	*factor = 1;
12189 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12190     defined(__mips__) || defined(__powerpc__) || defined(__riscv)
12191 	/*
12192 	 * FreeBSD isn't good at limiting the amount of memory we
12193 	 * ask to malloc, so let's place a limit here before trying
12194 	 * to do something that might well end in tears at bedtime.
12195 	 */
12196 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
12197 		return (ENOMEM);
12198 #endif
12199 
12200 	ASSERT(MUTEX_HELD(&dtrace_lock));
12201 	CPU_FOREACH(i) {
12202 		if (cpu != DTRACE_CPUALL && cpu != i)
12203 			continue;
12204 
12205 		buf = &bufs[i];
12206 
12207 		/*
12208 		 * If there is already a buffer allocated for this CPU, it
12209 		 * is only possible that this is a DR event.  In this case,
12210 		 * the buffer size must match our specified size.
12211 		 */
12212 		if (buf->dtb_tomax != NULL) {
12213 			ASSERT(buf->dtb_size == size);
12214 			continue;
12215 		}
12216 
12217 		ASSERT(buf->dtb_xamot == NULL);
12218 
12219 		if ((buf->dtb_tomax = kmem_zalloc(size,
12220 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12221 			goto err;
12222 
12223 		buf->dtb_size = size;
12224 		buf->dtb_flags = flags;
12225 		buf->dtb_offset = 0;
12226 		buf->dtb_drops = 0;
12227 
12228 		if (flags & DTRACEBUF_NOSWITCH)
12229 			continue;
12230 
12231 		if ((buf->dtb_xamot = kmem_zalloc(size,
12232 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12233 			goto err;
12234 	}
12235 
12236 	return (0);
12237 
12238 err:
12239 	/*
12240 	 * Error allocating memory, so free the buffers that were
12241 	 * allocated before the failed allocation.
12242 	 */
12243 	CPU_FOREACH(i) {
12244 		if (cpu != DTRACE_CPUALL && cpu != i)
12245 			continue;
12246 
12247 		buf = &bufs[i];
12248 		desired += 2;
12249 
12250 		if (buf->dtb_xamot != NULL) {
12251 			ASSERT(buf->dtb_tomax != NULL);
12252 			ASSERT(buf->dtb_size == size);
12253 			kmem_free(buf->dtb_xamot, size);
12254 			allocated++;
12255 		}
12256 
12257 		if (buf->dtb_tomax != NULL) {
12258 			ASSERT(buf->dtb_size == size);
12259 			kmem_free(buf->dtb_tomax, size);
12260 			allocated++;
12261 		}
12262 
12263 		buf->dtb_tomax = NULL;
12264 		buf->dtb_xamot = NULL;
12265 		buf->dtb_size = 0;
12266 
12267 	}
12268 #endif
12269 	*factor = desired / (allocated > 0 ? allocated : 1);
12270 
12271 	return (ENOMEM);
12272 }
12273 
12274 /*
12275  * Note:  called from probe context.  This function just increments the drop
12276  * count on a buffer.  It has been made a function to allow for the
12277  * possibility of understanding the source of mysterious drop counts.  (A
12278  * problem for which one may be particularly disappointed that DTrace cannot
12279  * be used to understand DTrace.)
12280  */
12281 static void
12282 dtrace_buffer_drop(dtrace_buffer_t *buf)
12283 {
12284 	buf->dtb_drops++;
12285 }
12286 
12287 /*
12288  * Note:  called from probe context.  This function is called to reserve space
12289  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
12290  * mstate.  Returns the new offset in the buffer, or a negative value if an
12291  * error has occurred.
12292  */
12293 static intptr_t
12294 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12295     dtrace_state_t *state, dtrace_mstate_t *mstate)
12296 {
12297 	intptr_t offs = buf->dtb_offset, soffs;
12298 	intptr_t woffs;
12299 	caddr_t tomax;
12300 	size_t total;
12301 
12302 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12303 		return (-1);
12304 
12305 	if ((tomax = buf->dtb_tomax) == NULL) {
12306 		dtrace_buffer_drop(buf);
12307 		return (-1);
12308 	}
12309 
12310 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12311 		while (offs & (align - 1)) {
12312 			/*
12313 			 * Assert that our alignment is off by a number which
12314 			 * is itself sizeof (uint32_t) aligned.
12315 			 */
12316 			ASSERT(!((align - (offs & (align - 1))) &
12317 			    (sizeof (uint32_t) - 1)));
12318 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12319 			offs += sizeof (uint32_t);
12320 		}
12321 
12322 		if ((soffs = offs + needed) > buf->dtb_size) {
12323 			dtrace_buffer_drop(buf);
12324 			return (-1);
12325 		}
12326 
12327 		if (mstate == NULL)
12328 			return (offs);
12329 
12330 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12331 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12332 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12333 
12334 		return (offs);
12335 	}
12336 
12337 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12338 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12339 		    (buf->dtb_flags & DTRACEBUF_FULL))
12340 			return (-1);
12341 		goto out;
12342 	}
12343 
12344 	total = needed + (offs & (align - 1));
12345 
12346 	/*
12347 	 * For a ring buffer, life is quite a bit more complicated.  Before
12348 	 * we can store any padding, we need to adjust our wrapping offset.
12349 	 * (If we've never before wrapped or we're not about to, no adjustment
12350 	 * is required.)
12351 	 */
12352 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12353 	    offs + total > buf->dtb_size) {
12354 		woffs = buf->dtb_xamot_offset;
12355 
12356 		if (offs + total > buf->dtb_size) {
12357 			/*
12358 			 * We can't fit in the end of the buffer.  First, a
12359 			 * sanity check that we can fit in the buffer at all.
12360 			 */
12361 			if (total > buf->dtb_size) {
12362 				dtrace_buffer_drop(buf);
12363 				return (-1);
12364 			}
12365 
12366 			/*
12367 			 * We're going to be storing at the top of the buffer,
12368 			 * so now we need to deal with the wrapped offset.  We
12369 			 * only reset our wrapped offset to 0 if it is
12370 			 * currently greater than the current offset.  If it
12371 			 * is less than the current offset, it is because a
12372 			 * previous allocation induced a wrap -- but the
12373 			 * allocation didn't subsequently take the space due
12374 			 * to an error or false predicate evaluation.  In this
12375 			 * case, we'll just leave the wrapped offset alone: if
12376 			 * the wrapped offset hasn't been advanced far enough
12377 			 * for this allocation, it will be adjusted in the
12378 			 * lower loop.
12379 			 */
12380 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12381 				if (woffs >= offs)
12382 					woffs = 0;
12383 			} else {
12384 				woffs = 0;
12385 			}
12386 
12387 			/*
12388 			 * Now we know that we're going to be storing to the
12389 			 * top of the buffer and that there is room for us
12390 			 * there.  We need to clear the buffer from the current
12391 			 * offset to the end (there may be old gunk there).
12392 			 */
12393 			while (offs < buf->dtb_size)
12394 				tomax[offs++] = 0;
12395 
12396 			/*
12397 			 * We need to set our offset to zero.  And because we
12398 			 * are wrapping, we need to set the bit indicating as
12399 			 * much.  We can also adjust our needed space back
12400 			 * down to the space required by the ECB -- we know
12401 			 * that the top of the buffer is aligned.
12402 			 */
12403 			offs = 0;
12404 			total = needed;
12405 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12406 		} else {
12407 			/*
12408 			 * There is room for us in the buffer, so we simply
12409 			 * need to check the wrapped offset.
12410 			 */
12411 			if (woffs < offs) {
12412 				/*
12413 				 * The wrapped offset is less than the offset.
12414 				 * This can happen if we allocated buffer space
12415 				 * that induced a wrap, but then we didn't
12416 				 * subsequently take the space due to an error
12417 				 * or false predicate evaluation.  This is
12418 				 * okay; we know that _this_ allocation isn't
12419 				 * going to induce a wrap.  We still can't
12420 				 * reset the wrapped offset to be zero,
12421 				 * however: the space may have been trashed in
12422 				 * the previous failed probe attempt.  But at
12423 				 * least the wrapped offset doesn't need to
12424 				 * be adjusted at all...
12425 				 */
12426 				goto out;
12427 			}
12428 		}
12429 
12430 		while (offs + total > woffs) {
12431 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12432 			size_t size;
12433 
12434 			if (epid == DTRACE_EPIDNONE) {
12435 				size = sizeof (uint32_t);
12436 			} else {
12437 				ASSERT3U(epid, <=, state->dts_necbs);
12438 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12439 
12440 				size = state->dts_ecbs[epid - 1]->dte_size;
12441 			}
12442 
12443 			ASSERT(woffs + size <= buf->dtb_size);
12444 			ASSERT(size != 0);
12445 
12446 			if (woffs + size == buf->dtb_size) {
12447 				/*
12448 				 * We've reached the end of the buffer; we want
12449 				 * to set the wrapped offset to 0 and break
12450 				 * out.  However, if the offs is 0, then we're
12451 				 * in a strange edge-condition:  the amount of
12452 				 * space that we want to reserve plus the size
12453 				 * of the record that we're overwriting is
12454 				 * greater than the size of the buffer.  This
12455 				 * is problematic because if we reserve the
12456 				 * space but subsequently don't consume it (due
12457 				 * to a failed predicate or error) the wrapped
12458 				 * offset will be 0 -- yet the EPID at offset 0
12459 				 * will not be committed.  This situation is
12460 				 * relatively easy to deal with:  if we're in
12461 				 * this case, the buffer is indistinguishable
12462 				 * from one that hasn't wrapped; we need only
12463 				 * finish the job by clearing the wrapped bit,
12464 				 * explicitly setting the offset to be 0, and
12465 				 * zero'ing out the old data in the buffer.
12466 				 */
12467 				if (offs == 0) {
12468 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12469 					buf->dtb_offset = 0;
12470 					woffs = total;
12471 
12472 					while (woffs < buf->dtb_size)
12473 						tomax[woffs++] = 0;
12474 				}
12475 
12476 				woffs = 0;
12477 				break;
12478 			}
12479 
12480 			woffs += size;
12481 		}
12482 
12483 		/*
12484 		 * We have a wrapped offset.  It may be that the wrapped offset
12485 		 * has become zero -- that's okay.
12486 		 */
12487 		buf->dtb_xamot_offset = woffs;
12488 	}
12489 
12490 out:
12491 	/*
12492 	 * Now we can plow the buffer with any necessary padding.
12493 	 */
12494 	while (offs & (align - 1)) {
12495 		/*
12496 		 * Assert that our alignment is off by a number which
12497 		 * is itself sizeof (uint32_t) aligned.
12498 		 */
12499 		ASSERT(!((align - (offs & (align - 1))) &
12500 		    (sizeof (uint32_t) - 1)));
12501 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12502 		offs += sizeof (uint32_t);
12503 	}
12504 
12505 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12506 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12507 			buf->dtb_flags |= DTRACEBUF_FULL;
12508 			return (-1);
12509 		}
12510 	}
12511 
12512 	if (mstate == NULL)
12513 		return (offs);
12514 
12515 	/*
12516 	 * For ring buffers and fill buffers, the scratch space is always
12517 	 * the inactive buffer.
12518 	 */
12519 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12520 	mstate->dtms_scratch_size = buf->dtb_size;
12521 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12522 
12523 	return (offs);
12524 }
12525 
12526 static void
12527 dtrace_buffer_polish(dtrace_buffer_t *buf)
12528 {
12529 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12530 	ASSERT(MUTEX_HELD(&dtrace_lock));
12531 
12532 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12533 		return;
12534 
12535 	/*
12536 	 * We need to polish the ring buffer.  There are three cases:
12537 	 *
12538 	 * - The first (and presumably most common) is that there is no gap
12539 	 *   between the buffer offset and the wrapped offset.  In this case,
12540 	 *   there is nothing in the buffer that isn't valid data; we can
12541 	 *   mark the buffer as polished and return.
12542 	 *
12543 	 * - The second (less common than the first but still more common
12544 	 *   than the third) is that there is a gap between the buffer offset
12545 	 *   and the wrapped offset, and the wrapped offset is larger than the
12546 	 *   buffer offset.  This can happen because of an alignment issue, or
12547 	 *   can happen because of a call to dtrace_buffer_reserve() that
12548 	 *   didn't subsequently consume the buffer space.  In this case,
12549 	 *   we need to zero the data from the buffer offset to the wrapped
12550 	 *   offset.
12551 	 *
12552 	 * - The third (and least common) is that there is a gap between the
12553 	 *   buffer offset and the wrapped offset, but the wrapped offset is
12554 	 *   _less_ than the buffer offset.  This can only happen because a
12555 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12556 	 *   was not subsequently consumed.  In this case, we need to zero the
12557 	 *   space from the offset to the end of the buffer _and_ from the
12558 	 *   top of the buffer to the wrapped offset.
12559 	 */
12560 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12561 		bzero(buf->dtb_tomax + buf->dtb_offset,
12562 		    buf->dtb_xamot_offset - buf->dtb_offset);
12563 	}
12564 
12565 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12566 		bzero(buf->dtb_tomax + buf->dtb_offset,
12567 		    buf->dtb_size - buf->dtb_offset);
12568 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12569 	}
12570 }
12571 
12572 /*
12573  * This routine determines if data generated at the specified time has likely
12574  * been entirely consumed at user-level.  This routine is called to determine
12575  * if an ECB on a defunct probe (but for an active enabling) can be safely
12576  * disabled and destroyed.
12577  */
12578 static int
12579 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12580 {
12581 	int i;
12582 
12583 	for (i = 0; i < NCPU; i++) {
12584 		dtrace_buffer_t *buf = &bufs[i];
12585 
12586 		if (buf->dtb_size == 0)
12587 			continue;
12588 
12589 		if (buf->dtb_flags & DTRACEBUF_RING)
12590 			return (0);
12591 
12592 		if (!buf->dtb_switched && buf->dtb_offset != 0)
12593 			return (0);
12594 
12595 		if (buf->dtb_switched - buf->dtb_interval < when)
12596 			return (0);
12597 	}
12598 
12599 	return (1);
12600 }
12601 
12602 static void
12603 dtrace_buffer_free(dtrace_buffer_t *bufs)
12604 {
12605 	int i;
12606 
12607 	for (i = 0; i < NCPU; i++) {
12608 		dtrace_buffer_t *buf = &bufs[i];
12609 
12610 		if (buf->dtb_tomax == NULL) {
12611 			ASSERT(buf->dtb_xamot == NULL);
12612 			ASSERT(buf->dtb_size == 0);
12613 			continue;
12614 		}
12615 
12616 		if (buf->dtb_xamot != NULL) {
12617 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12618 			kmem_free(buf->dtb_xamot, buf->dtb_size);
12619 		}
12620 
12621 		kmem_free(buf->dtb_tomax, buf->dtb_size);
12622 		buf->dtb_size = 0;
12623 		buf->dtb_tomax = NULL;
12624 		buf->dtb_xamot = NULL;
12625 	}
12626 }
12627 
12628 /*
12629  * DTrace Enabling Functions
12630  */
12631 static dtrace_enabling_t *
12632 dtrace_enabling_create(dtrace_vstate_t *vstate)
12633 {
12634 	dtrace_enabling_t *enab;
12635 
12636 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12637 	enab->dten_vstate = vstate;
12638 
12639 	return (enab);
12640 }
12641 
12642 static void
12643 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12644 {
12645 	dtrace_ecbdesc_t **ndesc;
12646 	size_t osize, nsize;
12647 
12648 	/*
12649 	 * We can't add to enablings after we've enabled them, or after we've
12650 	 * retained them.
12651 	 */
12652 	ASSERT(enab->dten_probegen == 0);
12653 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12654 
12655 	if (enab->dten_ndesc < enab->dten_maxdesc) {
12656 		enab->dten_desc[enab->dten_ndesc++] = ecb;
12657 		return;
12658 	}
12659 
12660 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12661 
12662 	if (enab->dten_maxdesc == 0) {
12663 		enab->dten_maxdesc = 1;
12664 	} else {
12665 		enab->dten_maxdesc <<= 1;
12666 	}
12667 
12668 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12669 
12670 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12671 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12672 	bcopy(enab->dten_desc, ndesc, osize);
12673 	if (enab->dten_desc != NULL)
12674 		kmem_free(enab->dten_desc, osize);
12675 
12676 	enab->dten_desc = ndesc;
12677 	enab->dten_desc[enab->dten_ndesc++] = ecb;
12678 }
12679 
12680 static void
12681 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12682     dtrace_probedesc_t *pd)
12683 {
12684 	dtrace_ecbdesc_t *new;
12685 	dtrace_predicate_t *pred;
12686 	dtrace_actdesc_t *act;
12687 
12688 	/*
12689 	 * We're going to create a new ECB description that matches the
12690 	 * specified ECB in every way, but has the specified probe description.
12691 	 */
12692 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12693 
12694 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12695 		dtrace_predicate_hold(pred);
12696 
12697 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12698 		dtrace_actdesc_hold(act);
12699 
12700 	new->dted_action = ecb->dted_action;
12701 	new->dted_pred = ecb->dted_pred;
12702 	new->dted_probe = *pd;
12703 	new->dted_uarg = ecb->dted_uarg;
12704 
12705 	dtrace_enabling_add(enab, new);
12706 }
12707 
12708 static void
12709 dtrace_enabling_dump(dtrace_enabling_t *enab)
12710 {
12711 	int i;
12712 
12713 	for (i = 0; i < enab->dten_ndesc; i++) {
12714 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12715 
12716 #ifdef __FreeBSD__
12717 		printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12718 		    desc->dtpd_provider, desc->dtpd_mod,
12719 		    desc->dtpd_func, desc->dtpd_name);
12720 #else
12721 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12722 		    desc->dtpd_provider, desc->dtpd_mod,
12723 		    desc->dtpd_func, desc->dtpd_name);
12724 #endif
12725 	}
12726 }
12727 
12728 static void
12729 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12730 {
12731 	int i;
12732 	dtrace_ecbdesc_t *ep;
12733 	dtrace_vstate_t *vstate = enab->dten_vstate;
12734 
12735 	ASSERT(MUTEX_HELD(&dtrace_lock));
12736 
12737 	for (i = 0; i < enab->dten_ndesc; i++) {
12738 		dtrace_actdesc_t *act, *next;
12739 		dtrace_predicate_t *pred;
12740 
12741 		ep = enab->dten_desc[i];
12742 
12743 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12744 			dtrace_predicate_release(pred, vstate);
12745 
12746 		for (act = ep->dted_action; act != NULL; act = next) {
12747 			next = act->dtad_next;
12748 			dtrace_actdesc_release(act, vstate);
12749 		}
12750 
12751 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12752 	}
12753 
12754 	if (enab->dten_desc != NULL)
12755 		kmem_free(enab->dten_desc,
12756 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12757 
12758 	/*
12759 	 * If this was a retained enabling, decrement the dts_nretained count
12760 	 * and take it off of the dtrace_retained list.
12761 	 */
12762 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12763 	    dtrace_retained == enab) {
12764 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12765 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12766 		enab->dten_vstate->dtvs_state->dts_nretained--;
12767 		dtrace_retained_gen++;
12768 	}
12769 
12770 	if (enab->dten_prev == NULL) {
12771 		if (dtrace_retained == enab) {
12772 			dtrace_retained = enab->dten_next;
12773 
12774 			if (dtrace_retained != NULL)
12775 				dtrace_retained->dten_prev = NULL;
12776 		}
12777 	} else {
12778 		ASSERT(enab != dtrace_retained);
12779 		ASSERT(dtrace_retained != NULL);
12780 		enab->dten_prev->dten_next = enab->dten_next;
12781 	}
12782 
12783 	if (enab->dten_next != NULL) {
12784 		ASSERT(dtrace_retained != NULL);
12785 		enab->dten_next->dten_prev = enab->dten_prev;
12786 	}
12787 
12788 	kmem_free(enab, sizeof (dtrace_enabling_t));
12789 }
12790 
12791 static int
12792 dtrace_enabling_retain(dtrace_enabling_t *enab)
12793 {
12794 	dtrace_state_t *state;
12795 
12796 	ASSERT(MUTEX_HELD(&dtrace_lock));
12797 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12798 	ASSERT(enab->dten_vstate != NULL);
12799 
12800 	state = enab->dten_vstate->dtvs_state;
12801 	ASSERT(state != NULL);
12802 
12803 	/*
12804 	 * We only allow each state to retain dtrace_retain_max enablings.
12805 	 */
12806 	if (state->dts_nretained >= dtrace_retain_max)
12807 		return (ENOSPC);
12808 
12809 	state->dts_nretained++;
12810 	dtrace_retained_gen++;
12811 
12812 	if (dtrace_retained == NULL) {
12813 		dtrace_retained = enab;
12814 		return (0);
12815 	}
12816 
12817 	enab->dten_next = dtrace_retained;
12818 	dtrace_retained->dten_prev = enab;
12819 	dtrace_retained = enab;
12820 
12821 	return (0);
12822 }
12823 
12824 static int
12825 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12826     dtrace_probedesc_t *create)
12827 {
12828 	dtrace_enabling_t *new, *enab;
12829 	int found = 0, err = ENOENT;
12830 
12831 	ASSERT(MUTEX_HELD(&dtrace_lock));
12832 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12833 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12834 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12835 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12836 
12837 	new = dtrace_enabling_create(&state->dts_vstate);
12838 
12839 	/*
12840 	 * Iterate over all retained enablings, looking for enablings that
12841 	 * match the specified state.
12842 	 */
12843 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12844 		int i;
12845 
12846 		/*
12847 		 * dtvs_state can only be NULL for helper enablings -- and
12848 		 * helper enablings can't be retained.
12849 		 */
12850 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12851 
12852 		if (enab->dten_vstate->dtvs_state != state)
12853 			continue;
12854 
12855 		/*
12856 		 * Now iterate over each probe description; we're looking for
12857 		 * an exact match to the specified probe description.
12858 		 */
12859 		for (i = 0; i < enab->dten_ndesc; i++) {
12860 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12861 			dtrace_probedesc_t *pd = &ep->dted_probe;
12862 
12863 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12864 				continue;
12865 
12866 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12867 				continue;
12868 
12869 			if (strcmp(pd->dtpd_func, match->dtpd_func))
12870 				continue;
12871 
12872 			if (strcmp(pd->dtpd_name, match->dtpd_name))
12873 				continue;
12874 
12875 			/*
12876 			 * We have a winning probe!  Add it to our growing
12877 			 * enabling.
12878 			 */
12879 			found = 1;
12880 			dtrace_enabling_addlike(new, ep, create);
12881 		}
12882 	}
12883 
12884 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12885 		dtrace_enabling_destroy(new);
12886 		return (err);
12887 	}
12888 
12889 	return (0);
12890 }
12891 
12892 static void
12893 dtrace_enabling_retract(dtrace_state_t *state)
12894 {
12895 	dtrace_enabling_t *enab, *next;
12896 
12897 	ASSERT(MUTEX_HELD(&dtrace_lock));
12898 
12899 	/*
12900 	 * Iterate over all retained enablings, destroy the enablings retained
12901 	 * for the specified state.
12902 	 */
12903 	for (enab = dtrace_retained; enab != NULL; enab = next) {
12904 		next = enab->dten_next;
12905 
12906 		/*
12907 		 * dtvs_state can only be NULL for helper enablings -- and
12908 		 * helper enablings can't be retained.
12909 		 */
12910 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12911 
12912 		if (enab->dten_vstate->dtvs_state == state) {
12913 			ASSERT(state->dts_nretained > 0);
12914 			dtrace_enabling_destroy(enab);
12915 		}
12916 	}
12917 
12918 	ASSERT(state->dts_nretained == 0);
12919 }
12920 
12921 static int
12922 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12923 {
12924 	int i = 0;
12925 	int matched = 0;
12926 
12927 	ASSERT(MUTEX_HELD(&cpu_lock));
12928 	ASSERT(MUTEX_HELD(&dtrace_lock));
12929 
12930 	for (i = 0; i < enab->dten_ndesc; i++) {
12931 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12932 
12933 		enab->dten_current = ep;
12934 		enab->dten_error = 0;
12935 
12936 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12937 
12938 		if (enab->dten_error != 0) {
12939 			/*
12940 			 * If we get an error half-way through enabling the
12941 			 * probes, we kick out -- perhaps with some number of
12942 			 * them enabled.  Leaving enabled probes enabled may
12943 			 * be slightly confusing for user-level, but we expect
12944 			 * that no one will attempt to actually drive on in
12945 			 * the face of such errors.  If this is an anonymous
12946 			 * enabling (indicated with a NULL nmatched pointer),
12947 			 * we cmn_err() a message.  We aren't expecting to
12948 			 * get such an error -- such as it can exist at all,
12949 			 * it would be a result of corrupted DOF in the driver
12950 			 * properties.
12951 			 */
12952 			if (nmatched == NULL) {
12953 				cmn_err(CE_WARN, "dtrace_enabling_match() "
12954 				    "error on %p: %d", (void *)ep,
12955 				    enab->dten_error);
12956 			}
12957 
12958 			return (enab->dten_error);
12959 		}
12960 	}
12961 
12962 	enab->dten_probegen = dtrace_probegen;
12963 	if (nmatched != NULL)
12964 		*nmatched = matched;
12965 
12966 	return (0);
12967 }
12968 
12969 static void
12970 dtrace_enabling_matchall(void)
12971 {
12972 	dtrace_enabling_t *enab;
12973 
12974 	mutex_enter(&cpu_lock);
12975 	mutex_enter(&dtrace_lock);
12976 
12977 	/*
12978 	 * Iterate over all retained enablings to see if any probes match
12979 	 * against them.  We only perform this operation on enablings for which
12980 	 * we have sufficient permissions by virtue of being in the global zone
12981 	 * or in the same zone as the DTrace client.  Because we can be called
12982 	 * after dtrace_detach() has been called, we cannot assert that there
12983 	 * are retained enablings.  We can safely load from dtrace_retained,
12984 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12985 	 * block pending our completion.
12986 	 */
12987 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12988 #ifdef illumos
12989 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12990 
12991 		if (INGLOBALZONE(curproc) ||
12992 		    cr != NULL && getzoneid() == crgetzoneid(cr))
12993 #endif
12994 			(void) dtrace_enabling_match(enab, NULL);
12995 	}
12996 
12997 	mutex_exit(&dtrace_lock);
12998 	mutex_exit(&cpu_lock);
12999 }
13000 
13001 /*
13002  * If an enabling is to be enabled without having matched probes (that is, if
13003  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
13004  * enabling must be _primed_ by creating an ECB for every ECB description.
13005  * This must be done to assure that we know the number of speculations, the
13006  * number of aggregations, the minimum buffer size needed, etc. before we
13007  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
13008  * enabling any probes, we create ECBs for every ECB decription, but with a
13009  * NULL probe -- which is exactly what this function does.
13010  */
13011 static void
13012 dtrace_enabling_prime(dtrace_state_t *state)
13013 {
13014 	dtrace_enabling_t *enab;
13015 	int i;
13016 
13017 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13018 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
13019 
13020 		if (enab->dten_vstate->dtvs_state != state)
13021 			continue;
13022 
13023 		/*
13024 		 * We don't want to prime an enabling more than once, lest
13025 		 * we allow a malicious user to induce resource exhaustion.
13026 		 * (The ECBs that result from priming an enabling aren't
13027 		 * leaked -- but they also aren't deallocated until the
13028 		 * consumer state is destroyed.)
13029 		 */
13030 		if (enab->dten_primed)
13031 			continue;
13032 
13033 		for (i = 0; i < enab->dten_ndesc; i++) {
13034 			enab->dten_current = enab->dten_desc[i];
13035 			(void) dtrace_probe_enable(NULL, enab);
13036 		}
13037 
13038 		enab->dten_primed = 1;
13039 	}
13040 }
13041 
13042 /*
13043  * Called to indicate that probes should be provided due to retained
13044  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
13045  * must take an initial lap through the enabling calling the dtps_provide()
13046  * entry point explicitly to allow for autocreated probes.
13047  */
13048 static void
13049 dtrace_enabling_provide(dtrace_provider_t *prv)
13050 {
13051 	int i, all = 0;
13052 	dtrace_probedesc_t desc;
13053 	dtrace_genid_t gen;
13054 
13055 	ASSERT(MUTEX_HELD(&dtrace_lock));
13056 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
13057 
13058 	if (prv == NULL) {
13059 		all = 1;
13060 		prv = dtrace_provider;
13061 	}
13062 
13063 	do {
13064 		dtrace_enabling_t *enab;
13065 		void *parg = prv->dtpv_arg;
13066 
13067 retry:
13068 		gen = dtrace_retained_gen;
13069 		for (enab = dtrace_retained; enab != NULL;
13070 		    enab = enab->dten_next) {
13071 			for (i = 0; i < enab->dten_ndesc; i++) {
13072 				desc = enab->dten_desc[i]->dted_probe;
13073 				mutex_exit(&dtrace_lock);
13074 				prv->dtpv_pops.dtps_provide(parg, &desc);
13075 				mutex_enter(&dtrace_lock);
13076 				/*
13077 				 * Process the retained enablings again if
13078 				 * they have changed while we weren't holding
13079 				 * dtrace_lock.
13080 				 */
13081 				if (gen != dtrace_retained_gen)
13082 					goto retry;
13083 			}
13084 		}
13085 	} while (all && (prv = prv->dtpv_next) != NULL);
13086 
13087 	mutex_exit(&dtrace_lock);
13088 	dtrace_probe_provide(NULL, all ? NULL : prv);
13089 	mutex_enter(&dtrace_lock);
13090 }
13091 
13092 /*
13093  * Called to reap ECBs that are attached to probes from defunct providers.
13094  */
13095 static void
13096 dtrace_enabling_reap(void)
13097 {
13098 	dtrace_provider_t *prov;
13099 	dtrace_probe_t *probe;
13100 	dtrace_ecb_t *ecb;
13101 	hrtime_t when;
13102 	int i;
13103 
13104 	mutex_enter(&cpu_lock);
13105 	mutex_enter(&dtrace_lock);
13106 
13107 	for (i = 0; i < dtrace_nprobes; i++) {
13108 		if ((probe = dtrace_probes[i]) == NULL)
13109 			continue;
13110 
13111 		if (probe->dtpr_ecb == NULL)
13112 			continue;
13113 
13114 		prov = probe->dtpr_provider;
13115 
13116 		if ((when = prov->dtpv_defunct) == 0)
13117 			continue;
13118 
13119 		/*
13120 		 * We have ECBs on a defunct provider:  we want to reap these
13121 		 * ECBs to allow the provider to unregister.  The destruction
13122 		 * of these ECBs must be done carefully:  if we destroy the ECB
13123 		 * and the consumer later wishes to consume an EPID that
13124 		 * corresponds to the destroyed ECB (and if the EPID metadata
13125 		 * has not been previously consumed), the consumer will abort
13126 		 * processing on the unknown EPID.  To reduce (but not, sadly,
13127 		 * eliminate) the possibility of this, we will only destroy an
13128 		 * ECB for a defunct provider if, for the state that
13129 		 * corresponds to the ECB:
13130 		 *
13131 		 *  (a)	There is no speculative tracing (which can effectively
13132 		 *	cache an EPID for an arbitrary amount of time).
13133 		 *
13134 		 *  (b)	The principal buffers have been switched twice since the
13135 		 *	provider became defunct.
13136 		 *
13137 		 *  (c)	The aggregation buffers are of zero size or have been
13138 		 *	switched twice since the provider became defunct.
13139 		 *
13140 		 * We use dts_speculates to determine (a) and call a function
13141 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
13142 		 * that as soon as we've been unable to destroy one of the ECBs
13143 		 * associated with the probe, we quit trying -- reaping is only
13144 		 * fruitful in as much as we can destroy all ECBs associated
13145 		 * with the defunct provider's probes.
13146 		 */
13147 		while ((ecb = probe->dtpr_ecb) != NULL) {
13148 			dtrace_state_t *state = ecb->dte_state;
13149 			dtrace_buffer_t *buf = state->dts_buffer;
13150 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13151 
13152 			if (state->dts_speculates)
13153 				break;
13154 
13155 			if (!dtrace_buffer_consumed(buf, when))
13156 				break;
13157 
13158 			if (!dtrace_buffer_consumed(aggbuf, when))
13159 				break;
13160 
13161 			dtrace_ecb_disable(ecb);
13162 			ASSERT(probe->dtpr_ecb != ecb);
13163 			dtrace_ecb_destroy(ecb);
13164 		}
13165 	}
13166 
13167 	mutex_exit(&dtrace_lock);
13168 	mutex_exit(&cpu_lock);
13169 }
13170 
13171 /*
13172  * DTrace DOF Functions
13173  */
13174 /*ARGSUSED*/
13175 static void
13176 dtrace_dof_error(dof_hdr_t *dof, const char *str)
13177 {
13178 	if (dtrace_err_verbose)
13179 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
13180 
13181 #ifdef DTRACE_ERRDEBUG
13182 	dtrace_errdebug(str);
13183 #endif
13184 }
13185 
13186 /*
13187  * Create DOF out of a currently enabled state.  Right now, we only create
13188  * DOF containing the run-time options -- but this could be expanded to create
13189  * complete DOF representing the enabled state.
13190  */
13191 static dof_hdr_t *
13192 dtrace_dof_create(dtrace_state_t *state)
13193 {
13194 	dof_hdr_t *dof;
13195 	dof_sec_t *sec;
13196 	dof_optdesc_t *opt;
13197 	int i, len = sizeof (dof_hdr_t) +
13198 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13199 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13200 
13201 	ASSERT(MUTEX_HELD(&dtrace_lock));
13202 
13203 	dof = kmem_zalloc(len, KM_SLEEP);
13204 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13205 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13206 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13207 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13208 
13209 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13210 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13211 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13212 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13213 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13214 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13215 
13216 	dof->dofh_flags = 0;
13217 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
13218 	dof->dofh_secsize = sizeof (dof_sec_t);
13219 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
13220 	dof->dofh_secoff = sizeof (dof_hdr_t);
13221 	dof->dofh_loadsz = len;
13222 	dof->dofh_filesz = len;
13223 	dof->dofh_pad = 0;
13224 
13225 	/*
13226 	 * Fill in the option section header...
13227 	 */
13228 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13229 	sec->dofs_type = DOF_SECT_OPTDESC;
13230 	sec->dofs_align = sizeof (uint64_t);
13231 	sec->dofs_flags = DOF_SECF_LOAD;
13232 	sec->dofs_entsize = sizeof (dof_optdesc_t);
13233 
13234 	opt = (dof_optdesc_t *)((uintptr_t)sec +
13235 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13236 
13237 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13238 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13239 
13240 	for (i = 0; i < DTRACEOPT_MAX; i++) {
13241 		opt[i].dofo_option = i;
13242 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
13243 		opt[i].dofo_value = state->dts_options[i];
13244 	}
13245 
13246 	return (dof);
13247 }
13248 
13249 static dof_hdr_t *
13250 dtrace_dof_copyin(uintptr_t uarg, int *errp)
13251 {
13252 	dof_hdr_t hdr, *dof;
13253 
13254 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13255 
13256 	/*
13257 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13258 	 */
13259 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13260 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13261 		*errp = EFAULT;
13262 		return (NULL);
13263 	}
13264 
13265 	/*
13266 	 * Now we'll allocate the entire DOF and copy it in -- provided
13267 	 * that the length isn't outrageous.
13268 	 */
13269 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13270 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13271 		*errp = E2BIG;
13272 		return (NULL);
13273 	}
13274 
13275 	if (hdr.dofh_loadsz < sizeof (hdr)) {
13276 		dtrace_dof_error(&hdr, "invalid load size");
13277 		*errp = EINVAL;
13278 		return (NULL);
13279 	}
13280 
13281 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13282 
13283 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13284 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
13285 		kmem_free(dof, hdr.dofh_loadsz);
13286 		*errp = EFAULT;
13287 		return (NULL);
13288 	}
13289 
13290 	return (dof);
13291 }
13292 
13293 #ifdef __FreeBSD__
13294 static dof_hdr_t *
13295 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13296 {
13297 	dof_hdr_t hdr, *dof;
13298 	struct thread *td;
13299 	size_t loadsz;
13300 
13301 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13302 
13303 	td = curthread;
13304 
13305 	/*
13306 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13307 	 */
13308 	if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13309 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13310 		*errp = EFAULT;
13311 		return (NULL);
13312 	}
13313 
13314 	/*
13315 	 * Now we'll allocate the entire DOF and copy it in -- provided
13316 	 * that the length isn't outrageous.
13317 	 */
13318 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13319 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13320 		*errp = E2BIG;
13321 		return (NULL);
13322 	}
13323 	loadsz = (size_t)hdr.dofh_loadsz;
13324 
13325 	if (loadsz < sizeof (hdr)) {
13326 		dtrace_dof_error(&hdr, "invalid load size");
13327 		*errp = EINVAL;
13328 		return (NULL);
13329 	}
13330 
13331 	dof = kmem_alloc(loadsz, KM_SLEEP);
13332 
13333 	if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13334 	    dof->dofh_loadsz != loadsz) {
13335 		kmem_free(dof, hdr.dofh_loadsz);
13336 		*errp = EFAULT;
13337 		return (NULL);
13338 	}
13339 
13340 	return (dof);
13341 }
13342 
13343 static __inline uchar_t
13344 dtrace_dof_char(char c)
13345 {
13346 
13347 	switch (c) {
13348 	case '0':
13349 	case '1':
13350 	case '2':
13351 	case '3':
13352 	case '4':
13353 	case '5':
13354 	case '6':
13355 	case '7':
13356 	case '8':
13357 	case '9':
13358 		return (c - '0');
13359 	case 'A':
13360 	case 'B':
13361 	case 'C':
13362 	case 'D':
13363 	case 'E':
13364 	case 'F':
13365 		return (c - 'A' + 10);
13366 	case 'a':
13367 	case 'b':
13368 	case 'c':
13369 	case 'd':
13370 	case 'e':
13371 	case 'f':
13372 		return (c - 'a' + 10);
13373 	}
13374 	/* Should not reach here. */
13375 	return (UCHAR_MAX);
13376 }
13377 #endif /* __FreeBSD__ */
13378 
13379 static dof_hdr_t *
13380 dtrace_dof_property(const char *name)
13381 {
13382 #ifdef __FreeBSD__
13383 	uint8_t *dofbuf;
13384 	u_char *data, *eol;
13385 	caddr_t doffile;
13386 	size_t bytes, len, i;
13387 	dof_hdr_t *dof;
13388 	u_char c1, c2;
13389 
13390 	dof = NULL;
13391 
13392 	doffile = preload_search_by_type("dtrace_dof");
13393 	if (doffile == NULL)
13394 		return (NULL);
13395 
13396 	data = preload_fetch_addr(doffile);
13397 	len = preload_fetch_size(doffile);
13398 	for (;;) {
13399 		/* Look for the end of the line. All lines end in a newline. */
13400 		eol = memchr(data, '\n', len);
13401 		if (eol == NULL)
13402 			return (NULL);
13403 
13404 		if (strncmp(name, data, strlen(name)) == 0)
13405 			break;
13406 
13407 		eol++; /* skip past the newline */
13408 		len -= eol - data;
13409 		data = eol;
13410 	}
13411 
13412 	/* We've found the data corresponding to the specified key. */
13413 
13414 	data += strlen(name) + 1; /* skip past the '=' */
13415 	len = eol - data;
13416 	if (len % 2 != 0) {
13417 		dtrace_dof_error(NULL, "invalid DOF encoding length");
13418 		goto doferr;
13419 	}
13420 	bytes = len / 2;
13421 	if (bytes < sizeof(dof_hdr_t)) {
13422 		dtrace_dof_error(NULL, "truncated header");
13423 		goto doferr;
13424 	}
13425 
13426 	/*
13427 	 * Each byte is represented by the two ASCII characters in its hex
13428 	 * representation.
13429 	 */
13430 	dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13431 	for (i = 0; i < bytes; i++) {
13432 		c1 = dtrace_dof_char(data[i * 2]);
13433 		c2 = dtrace_dof_char(data[i * 2 + 1]);
13434 		if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13435 			dtrace_dof_error(NULL, "invalid hex char in DOF");
13436 			goto doferr;
13437 		}
13438 		dofbuf[i] = c1 * 16 + c2;
13439 	}
13440 
13441 	dof = (dof_hdr_t *)dofbuf;
13442 	if (bytes < dof->dofh_loadsz) {
13443 		dtrace_dof_error(NULL, "truncated DOF");
13444 		goto doferr;
13445 	}
13446 
13447 	if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13448 		dtrace_dof_error(NULL, "oversized DOF");
13449 		goto doferr;
13450 	}
13451 
13452 	return (dof);
13453 
13454 doferr:
13455 	free(dof, M_SOLARIS);
13456 	return (NULL);
13457 #else /* __FreeBSD__ */
13458 	uchar_t *buf;
13459 	uint64_t loadsz;
13460 	unsigned int len, i;
13461 	dof_hdr_t *dof;
13462 
13463 	/*
13464 	 * Unfortunately, array of values in .conf files are always (and
13465 	 * only) interpreted to be integer arrays.  We must read our DOF
13466 	 * as an integer array, and then squeeze it into a byte array.
13467 	 */
13468 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13469 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13470 		return (NULL);
13471 
13472 	for (i = 0; i < len; i++)
13473 		buf[i] = (uchar_t)(((int *)buf)[i]);
13474 
13475 	if (len < sizeof (dof_hdr_t)) {
13476 		ddi_prop_free(buf);
13477 		dtrace_dof_error(NULL, "truncated header");
13478 		return (NULL);
13479 	}
13480 
13481 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13482 		ddi_prop_free(buf);
13483 		dtrace_dof_error(NULL, "truncated DOF");
13484 		return (NULL);
13485 	}
13486 
13487 	if (loadsz >= dtrace_dof_maxsize) {
13488 		ddi_prop_free(buf);
13489 		dtrace_dof_error(NULL, "oversized DOF");
13490 		return (NULL);
13491 	}
13492 
13493 	dof = kmem_alloc(loadsz, KM_SLEEP);
13494 	bcopy(buf, dof, loadsz);
13495 	ddi_prop_free(buf);
13496 
13497 	return (dof);
13498 #endif /* !__FreeBSD__ */
13499 }
13500 
13501 static void
13502 dtrace_dof_destroy(dof_hdr_t *dof)
13503 {
13504 	kmem_free(dof, dof->dofh_loadsz);
13505 }
13506 
13507 /*
13508  * Return the dof_sec_t pointer corresponding to a given section index.  If the
13509  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13510  * a type other than DOF_SECT_NONE is specified, the header is checked against
13511  * this type and NULL is returned if the types do not match.
13512  */
13513 static dof_sec_t *
13514 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13515 {
13516 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13517 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13518 
13519 	if (i >= dof->dofh_secnum) {
13520 		dtrace_dof_error(dof, "referenced section index is invalid");
13521 		return (NULL);
13522 	}
13523 
13524 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13525 		dtrace_dof_error(dof, "referenced section is not loadable");
13526 		return (NULL);
13527 	}
13528 
13529 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13530 		dtrace_dof_error(dof, "referenced section is the wrong type");
13531 		return (NULL);
13532 	}
13533 
13534 	return (sec);
13535 }
13536 
13537 static dtrace_probedesc_t *
13538 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13539 {
13540 	dof_probedesc_t *probe;
13541 	dof_sec_t *strtab;
13542 	uintptr_t daddr = (uintptr_t)dof;
13543 	uintptr_t str;
13544 	size_t size;
13545 
13546 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13547 		dtrace_dof_error(dof, "invalid probe section");
13548 		return (NULL);
13549 	}
13550 
13551 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13552 		dtrace_dof_error(dof, "bad alignment in probe description");
13553 		return (NULL);
13554 	}
13555 
13556 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13557 		dtrace_dof_error(dof, "truncated probe description");
13558 		return (NULL);
13559 	}
13560 
13561 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13562 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13563 
13564 	if (strtab == NULL)
13565 		return (NULL);
13566 
13567 	str = daddr + strtab->dofs_offset;
13568 	size = strtab->dofs_size;
13569 
13570 	if (probe->dofp_provider >= strtab->dofs_size) {
13571 		dtrace_dof_error(dof, "corrupt probe provider");
13572 		return (NULL);
13573 	}
13574 
13575 	(void) strncpy(desc->dtpd_provider,
13576 	    (char *)(str + probe->dofp_provider),
13577 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13578 
13579 	if (probe->dofp_mod >= strtab->dofs_size) {
13580 		dtrace_dof_error(dof, "corrupt probe module");
13581 		return (NULL);
13582 	}
13583 
13584 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13585 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13586 
13587 	if (probe->dofp_func >= strtab->dofs_size) {
13588 		dtrace_dof_error(dof, "corrupt probe function");
13589 		return (NULL);
13590 	}
13591 
13592 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13593 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13594 
13595 	if (probe->dofp_name >= strtab->dofs_size) {
13596 		dtrace_dof_error(dof, "corrupt probe name");
13597 		return (NULL);
13598 	}
13599 
13600 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13601 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13602 
13603 	return (desc);
13604 }
13605 
13606 static dtrace_difo_t *
13607 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13608     cred_t *cr)
13609 {
13610 	dtrace_difo_t *dp;
13611 	size_t ttl = 0;
13612 	dof_difohdr_t *dofd;
13613 	uintptr_t daddr = (uintptr_t)dof;
13614 	size_t max = dtrace_difo_maxsize;
13615 	int i, l, n;
13616 
13617 	static const struct {
13618 		int section;
13619 		int bufoffs;
13620 		int lenoffs;
13621 		int entsize;
13622 		int align;
13623 		const char *msg;
13624 	} difo[] = {
13625 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13626 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13627 		sizeof (dif_instr_t), "multiple DIF sections" },
13628 
13629 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13630 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13631 		sizeof (uint64_t), "multiple integer tables" },
13632 
13633 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13634 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13635 		sizeof (char), "multiple string tables" },
13636 
13637 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13638 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13639 		sizeof (uint_t), "multiple variable tables" },
13640 
13641 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13642 	};
13643 
13644 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13645 		dtrace_dof_error(dof, "invalid DIFO header section");
13646 		return (NULL);
13647 	}
13648 
13649 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13650 		dtrace_dof_error(dof, "bad alignment in DIFO header");
13651 		return (NULL);
13652 	}
13653 
13654 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13655 	    sec->dofs_size % sizeof (dof_secidx_t)) {
13656 		dtrace_dof_error(dof, "bad size in DIFO header");
13657 		return (NULL);
13658 	}
13659 
13660 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13661 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13662 
13663 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13664 	dp->dtdo_rtype = dofd->dofd_rtype;
13665 
13666 	for (l = 0; l < n; l++) {
13667 		dof_sec_t *subsec;
13668 		void **bufp;
13669 		uint32_t *lenp;
13670 
13671 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13672 		    dofd->dofd_links[l])) == NULL)
13673 			goto err; /* invalid section link */
13674 
13675 		if (ttl + subsec->dofs_size > max) {
13676 			dtrace_dof_error(dof, "exceeds maximum size");
13677 			goto err;
13678 		}
13679 
13680 		ttl += subsec->dofs_size;
13681 
13682 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13683 			if (subsec->dofs_type != difo[i].section)
13684 				continue;
13685 
13686 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13687 				dtrace_dof_error(dof, "section not loaded");
13688 				goto err;
13689 			}
13690 
13691 			if (subsec->dofs_align != difo[i].align) {
13692 				dtrace_dof_error(dof, "bad alignment");
13693 				goto err;
13694 			}
13695 
13696 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13697 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13698 
13699 			if (*bufp != NULL) {
13700 				dtrace_dof_error(dof, difo[i].msg);
13701 				goto err;
13702 			}
13703 
13704 			if (difo[i].entsize != subsec->dofs_entsize) {
13705 				dtrace_dof_error(dof, "entry size mismatch");
13706 				goto err;
13707 			}
13708 
13709 			if (subsec->dofs_entsize != 0 &&
13710 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13711 				dtrace_dof_error(dof, "corrupt entry size");
13712 				goto err;
13713 			}
13714 
13715 			*lenp = subsec->dofs_size;
13716 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13717 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13718 			    *bufp, subsec->dofs_size);
13719 
13720 			if (subsec->dofs_entsize != 0)
13721 				*lenp /= subsec->dofs_entsize;
13722 
13723 			break;
13724 		}
13725 
13726 		/*
13727 		 * If we encounter a loadable DIFO sub-section that is not
13728 		 * known to us, assume this is a broken program and fail.
13729 		 */
13730 		if (difo[i].section == DOF_SECT_NONE &&
13731 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13732 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13733 			goto err;
13734 		}
13735 	}
13736 
13737 	if (dp->dtdo_buf == NULL) {
13738 		/*
13739 		 * We can't have a DIF object without DIF text.
13740 		 */
13741 		dtrace_dof_error(dof, "missing DIF text");
13742 		goto err;
13743 	}
13744 
13745 	/*
13746 	 * Before we validate the DIF object, run through the variable table
13747 	 * looking for the strings -- if any of their size are under, we'll set
13748 	 * their size to be the system-wide default string size.  Note that
13749 	 * this should _not_ happen if the "strsize" option has been set --
13750 	 * in this case, the compiler should have set the size to reflect the
13751 	 * setting of the option.
13752 	 */
13753 	for (i = 0; i < dp->dtdo_varlen; i++) {
13754 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13755 		dtrace_diftype_t *t = &v->dtdv_type;
13756 
13757 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13758 			continue;
13759 
13760 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13761 			t->dtdt_size = dtrace_strsize_default;
13762 	}
13763 
13764 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13765 		goto err;
13766 
13767 	dtrace_difo_init(dp, vstate);
13768 	return (dp);
13769 
13770 err:
13771 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13772 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13773 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13774 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13775 
13776 	kmem_free(dp, sizeof (dtrace_difo_t));
13777 	return (NULL);
13778 }
13779 
13780 static dtrace_predicate_t *
13781 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13782     cred_t *cr)
13783 {
13784 	dtrace_difo_t *dp;
13785 
13786 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13787 		return (NULL);
13788 
13789 	return (dtrace_predicate_create(dp));
13790 }
13791 
13792 static dtrace_actdesc_t *
13793 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13794     cred_t *cr)
13795 {
13796 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13797 	dof_actdesc_t *desc;
13798 	dof_sec_t *difosec;
13799 	size_t offs;
13800 	uintptr_t daddr = (uintptr_t)dof;
13801 	uint64_t arg;
13802 	dtrace_actkind_t kind;
13803 
13804 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13805 		dtrace_dof_error(dof, "invalid action section");
13806 		return (NULL);
13807 	}
13808 
13809 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13810 		dtrace_dof_error(dof, "truncated action description");
13811 		return (NULL);
13812 	}
13813 
13814 	if (sec->dofs_align != sizeof (uint64_t)) {
13815 		dtrace_dof_error(dof, "bad alignment in action description");
13816 		return (NULL);
13817 	}
13818 
13819 	if (sec->dofs_size < sec->dofs_entsize) {
13820 		dtrace_dof_error(dof, "section entry size exceeds total size");
13821 		return (NULL);
13822 	}
13823 
13824 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13825 		dtrace_dof_error(dof, "bad entry size in action description");
13826 		return (NULL);
13827 	}
13828 
13829 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13830 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13831 		return (NULL);
13832 	}
13833 
13834 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13835 		desc = (dof_actdesc_t *)(daddr +
13836 		    (uintptr_t)sec->dofs_offset + offs);
13837 		kind = (dtrace_actkind_t)desc->dofa_kind;
13838 
13839 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13840 		    (kind != DTRACEACT_PRINTA ||
13841 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13842 		    (kind == DTRACEACT_DIFEXPR &&
13843 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13844 			dof_sec_t *strtab;
13845 			char *str, *fmt;
13846 			uint64_t i;
13847 
13848 			/*
13849 			 * The argument to these actions is an index into the
13850 			 * DOF string table.  For printf()-like actions, this
13851 			 * is the format string.  For print(), this is the
13852 			 * CTF type of the expression result.
13853 			 */
13854 			if ((strtab = dtrace_dof_sect(dof,
13855 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13856 				goto err;
13857 
13858 			str = (char *)((uintptr_t)dof +
13859 			    (uintptr_t)strtab->dofs_offset);
13860 
13861 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13862 				if (str[i] == '\0')
13863 					break;
13864 			}
13865 
13866 			if (i >= strtab->dofs_size) {
13867 				dtrace_dof_error(dof, "bogus format string");
13868 				goto err;
13869 			}
13870 
13871 			if (i == desc->dofa_arg) {
13872 				dtrace_dof_error(dof, "empty format string");
13873 				goto err;
13874 			}
13875 
13876 			i -= desc->dofa_arg;
13877 			fmt = kmem_alloc(i + 1, KM_SLEEP);
13878 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13879 			arg = (uint64_t)(uintptr_t)fmt;
13880 		} else {
13881 			if (kind == DTRACEACT_PRINTA) {
13882 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13883 				arg = 0;
13884 			} else {
13885 				arg = desc->dofa_arg;
13886 			}
13887 		}
13888 
13889 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13890 		    desc->dofa_uarg, arg);
13891 
13892 		if (last != NULL) {
13893 			last->dtad_next = act;
13894 		} else {
13895 			first = act;
13896 		}
13897 
13898 		last = act;
13899 
13900 		if (desc->dofa_difo == DOF_SECIDX_NONE)
13901 			continue;
13902 
13903 		if ((difosec = dtrace_dof_sect(dof,
13904 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13905 			goto err;
13906 
13907 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13908 
13909 		if (act->dtad_difo == NULL)
13910 			goto err;
13911 	}
13912 
13913 	ASSERT(first != NULL);
13914 	return (first);
13915 
13916 err:
13917 	for (act = first; act != NULL; act = next) {
13918 		next = act->dtad_next;
13919 		dtrace_actdesc_release(act, vstate);
13920 	}
13921 
13922 	return (NULL);
13923 }
13924 
13925 static dtrace_ecbdesc_t *
13926 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13927     cred_t *cr)
13928 {
13929 	dtrace_ecbdesc_t *ep;
13930 	dof_ecbdesc_t *ecb;
13931 	dtrace_probedesc_t *desc;
13932 	dtrace_predicate_t *pred = NULL;
13933 
13934 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13935 		dtrace_dof_error(dof, "truncated ECB description");
13936 		return (NULL);
13937 	}
13938 
13939 	if (sec->dofs_align != sizeof (uint64_t)) {
13940 		dtrace_dof_error(dof, "bad alignment in ECB description");
13941 		return (NULL);
13942 	}
13943 
13944 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13945 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13946 
13947 	if (sec == NULL)
13948 		return (NULL);
13949 
13950 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13951 	ep->dted_uarg = ecb->dofe_uarg;
13952 	desc = &ep->dted_probe;
13953 
13954 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13955 		goto err;
13956 
13957 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13958 		if ((sec = dtrace_dof_sect(dof,
13959 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13960 			goto err;
13961 
13962 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13963 			goto err;
13964 
13965 		ep->dted_pred.dtpdd_predicate = pred;
13966 	}
13967 
13968 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13969 		if ((sec = dtrace_dof_sect(dof,
13970 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13971 			goto err;
13972 
13973 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13974 
13975 		if (ep->dted_action == NULL)
13976 			goto err;
13977 	}
13978 
13979 	return (ep);
13980 
13981 err:
13982 	if (pred != NULL)
13983 		dtrace_predicate_release(pred, vstate);
13984 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13985 	return (NULL);
13986 }
13987 
13988 /*
13989  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13990  * specified DOF.  SETX relocations are computed using 'ubase', the base load
13991  * address of the object containing the DOF, and DOFREL relocations are relative
13992  * to the relocation offset within the DOF.
13993  */
13994 static int
13995 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase,
13996     uint64_t udaddr)
13997 {
13998 	uintptr_t daddr = (uintptr_t)dof;
13999 	uintptr_t ts_end;
14000 	dof_relohdr_t *dofr =
14001 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
14002 	dof_sec_t *ss, *rs, *ts;
14003 	dof_relodesc_t *r;
14004 	uint_t i, n;
14005 
14006 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
14007 	    sec->dofs_align != sizeof (dof_secidx_t)) {
14008 		dtrace_dof_error(dof, "invalid relocation header");
14009 		return (-1);
14010 	}
14011 
14012 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
14013 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
14014 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
14015 	ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
14016 
14017 	if (ss == NULL || rs == NULL || ts == NULL)
14018 		return (-1); /* dtrace_dof_error() has been called already */
14019 
14020 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
14021 	    rs->dofs_align != sizeof (uint64_t)) {
14022 		dtrace_dof_error(dof, "invalid relocation section");
14023 		return (-1);
14024 	}
14025 
14026 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
14027 	n = rs->dofs_size / rs->dofs_entsize;
14028 
14029 	for (i = 0; i < n; i++) {
14030 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
14031 
14032 		switch (r->dofr_type) {
14033 		case DOF_RELO_NONE:
14034 			break;
14035 		case DOF_RELO_SETX:
14036 		case DOF_RELO_DOFREL:
14037 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
14038 			    sizeof (uint64_t) > ts->dofs_size) {
14039 				dtrace_dof_error(dof, "bad relocation offset");
14040 				return (-1);
14041 			}
14042 
14043 			if (taddr >= (uintptr_t)ts && taddr < ts_end) {
14044 				dtrace_dof_error(dof, "bad relocation offset");
14045 				return (-1);
14046 			}
14047 
14048 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
14049 				dtrace_dof_error(dof, "misaligned setx relo");
14050 				return (-1);
14051 			}
14052 
14053 			if (r->dofr_type == DOF_RELO_SETX)
14054 				*(uint64_t *)taddr += ubase;
14055 			else
14056 				*(uint64_t *)taddr +=
14057 				    udaddr + ts->dofs_offset + r->dofr_offset;
14058 			break;
14059 		default:
14060 			dtrace_dof_error(dof, "invalid relocation type");
14061 			return (-1);
14062 		}
14063 
14064 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
14065 	}
14066 
14067 	return (0);
14068 }
14069 
14070 /*
14071  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
14072  * header:  it should be at the front of a memory region that is at least
14073  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
14074  * size.  It need not be validated in any other way.
14075  */
14076 static int
14077 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
14078     dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes)
14079 {
14080 	uint64_t len = dof->dofh_loadsz, seclen;
14081 	uintptr_t daddr = (uintptr_t)dof;
14082 	dtrace_ecbdesc_t *ep;
14083 	dtrace_enabling_t *enab;
14084 	uint_t i;
14085 
14086 	ASSERT(MUTEX_HELD(&dtrace_lock));
14087 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
14088 
14089 	/*
14090 	 * Check the DOF header identification bytes.  In addition to checking
14091 	 * valid settings, we also verify that unused bits/bytes are zeroed so
14092 	 * we can use them later without fear of regressing existing binaries.
14093 	 */
14094 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
14095 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
14096 		dtrace_dof_error(dof, "DOF magic string mismatch");
14097 		return (-1);
14098 	}
14099 
14100 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14101 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14102 		dtrace_dof_error(dof, "DOF has invalid data model");
14103 		return (-1);
14104 	}
14105 
14106 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14107 		dtrace_dof_error(dof, "DOF encoding mismatch");
14108 		return (-1);
14109 	}
14110 
14111 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14112 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14113 		dtrace_dof_error(dof, "DOF version mismatch");
14114 		return (-1);
14115 	}
14116 
14117 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14118 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14119 		return (-1);
14120 	}
14121 
14122 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14123 		dtrace_dof_error(dof, "DOF uses too many integer registers");
14124 		return (-1);
14125 	}
14126 
14127 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14128 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
14129 		return (-1);
14130 	}
14131 
14132 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14133 		if (dof->dofh_ident[i] != 0) {
14134 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
14135 			return (-1);
14136 		}
14137 	}
14138 
14139 	if (dof->dofh_flags & ~DOF_FL_VALID) {
14140 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
14141 		return (-1);
14142 	}
14143 
14144 	if (dof->dofh_secsize == 0) {
14145 		dtrace_dof_error(dof, "zero section header size");
14146 		return (-1);
14147 	}
14148 
14149 	/*
14150 	 * Check that the section headers don't exceed the amount of DOF
14151 	 * data.  Note that we cast the section size and number of sections
14152 	 * to uint64_t's to prevent possible overflow in the multiplication.
14153 	 */
14154 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14155 
14156 	if (dof->dofh_secoff > len || seclen > len ||
14157 	    dof->dofh_secoff + seclen > len) {
14158 		dtrace_dof_error(dof, "truncated section headers");
14159 		return (-1);
14160 	}
14161 
14162 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14163 		dtrace_dof_error(dof, "misaligned section headers");
14164 		return (-1);
14165 	}
14166 
14167 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14168 		dtrace_dof_error(dof, "misaligned section size");
14169 		return (-1);
14170 	}
14171 
14172 	/*
14173 	 * Take an initial pass through the section headers to be sure that
14174 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
14175 	 * set, do not permit sections relating to providers, probes, or args.
14176 	 */
14177 	for (i = 0; i < dof->dofh_secnum; i++) {
14178 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14179 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14180 
14181 		if (noprobes) {
14182 			switch (sec->dofs_type) {
14183 			case DOF_SECT_PROVIDER:
14184 			case DOF_SECT_PROBES:
14185 			case DOF_SECT_PRARGS:
14186 			case DOF_SECT_PROFFS:
14187 				dtrace_dof_error(dof, "illegal sections "
14188 				    "for enabling");
14189 				return (-1);
14190 			}
14191 		}
14192 
14193 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14194 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
14195 			dtrace_dof_error(dof, "loadable section with load "
14196 			    "flag unset");
14197 			return (-1);
14198 		}
14199 
14200 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14201 			continue; /* just ignore non-loadable sections */
14202 
14203 		if (!ISP2(sec->dofs_align)) {
14204 			dtrace_dof_error(dof, "bad section alignment");
14205 			return (-1);
14206 		}
14207 
14208 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
14209 			dtrace_dof_error(dof, "misaligned section");
14210 			return (-1);
14211 		}
14212 
14213 		if (sec->dofs_offset > len || sec->dofs_size > len ||
14214 		    sec->dofs_offset + sec->dofs_size > len) {
14215 			dtrace_dof_error(dof, "corrupt section header");
14216 			return (-1);
14217 		}
14218 
14219 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14220 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14221 			dtrace_dof_error(dof, "non-terminating string table");
14222 			return (-1);
14223 		}
14224 	}
14225 
14226 	/*
14227 	 * Take a second pass through the sections and locate and perform any
14228 	 * relocations that are present.  We do this after the first pass to
14229 	 * be sure that all sections have had their headers validated.
14230 	 */
14231 	for (i = 0; i < dof->dofh_secnum; i++) {
14232 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14233 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14234 
14235 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14236 			continue; /* skip sections that are not loadable */
14237 
14238 		switch (sec->dofs_type) {
14239 		case DOF_SECT_URELHDR:
14240 			if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0)
14241 				return (-1);
14242 			break;
14243 		}
14244 	}
14245 
14246 	if ((enab = *enabp) == NULL)
14247 		enab = *enabp = dtrace_enabling_create(vstate);
14248 
14249 	for (i = 0; i < dof->dofh_secnum; i++) {
14250 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14251 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14252 
14253 		if (sec->dofs_type != DOF_SECT_ECBDESC)
14254 			continue;
14255 
14256 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14257 			dtrace_enabling_destroy(enab);
14258 			*enabp = NULL;
14259 			return (-1);
14260 		}
14261 
14262 		dtrace_enabling_add(enab, ep);
14263 	}
14264 
14265 	return (0);
14266 }
14267 
14268 /*
14269  * Process DOF for any options.  This routine assumes that the DOF has been
14270  * at least processed by dtrace_dof_slurp().
14271  */
14272 static int
14273 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14274 {
14275 	int i, rval;
14276 	uint32_t entsize;
14277 	size_t offs;
14278 	dof_optdesc_t *desc;
14279 
14280 	for (i = 0; i < dof->dofh_secnum; i++) {
14281 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14282 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14283 
14284 		if (sec->dofs_type != DOF_SECT_OPTDESC)
14285 			continue;
14286 
14287 		if (sec->dofs_align != sizeof (uint64_t)) {
14288 			dtrace_dof_error(dof, "bad alignment in "
14289 			    "option description");
14290 			return (EINVAL);
14291 		}
14292 
14293 		if ((entsize = sec->dofs_entsize) == 0) {
14294 			dtrace_dof_error(dof, "zeroed option entry size");
14295 			return (EINVAL);
14296 		}
14297 
14298 		if (entsize < sizeof (dof_optdesc_t)) {
14299 			dtrace_dof_error(dof, "bad option entry size");
14300 			return (EINVAL);
14301 		}
14302 
14303 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14304 			desc = (dof_optdesc_t *)((uintptr_t)dof +
14305 			    (uintptr_t)sec->dofs_offset + offs);
14306 
14307 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14308 				dtrace_dof_error(dof, "non-zero option string");
14309 				return (EINVAL);
14310 			}
14311 
14312 			if (desc->dofo_value == DTRACEOPT_UNSET) {
14313 				dtrace_dof_error(dof, "unset option");
14314 				return (EINVAL);
14315 			}
14316 
14317 			if ((rval = dtrace_state_option(state,
14318 			    desc->dofo_option, desc->dofo_value)) != 0) {
14319 				dtrace_dof_error(dof, "rejected option");
14320 				return (rval);
14321 			}
14322 		}
14323 	}
14324 
14325 	return (0);
14326 }
14327 
14328 /*
14329  * DTrace Consumer State Functions
14330  */
14331 static int
14332 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14333 {
14334 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14335 	void *base;
14336 	uintptr_t limit;
14337 	dtrace_dynvar_t *dvar, *next, *start;
14338 	int i;
14339 
14340 	ASSERT(MUTEX_HELD(&dtrace_lock));
14341 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14342 
14343 	bzero(dstate, sizeof (dtrace_dstate_t));
14344 
14345 	if ((dstate->dtds_chunksize = chunksize) == 0)
14346 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14347 
14348 	VERIFY(dstate->dtds_chunksize < LONG_MAX);
14349 
14350 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14351 		size = min;
14352 
14353 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14354 		return (ENOMEM);
14355 
14356 	dstate->dtds_size = size;
14357 	dstate->dtds_base = base;
14358 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14359 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
14360 
14361 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14362 
14363 	if (hashsize != 1 && (hashsize & 1))
14364 		hashsize--;
14365 
14366 	dstate->dtds_hashsize = hashsize;
14367 	dstate->dtds_hash = dstate->dtds_base;
14368 
14369 	/*
14370 	 * Set all of our hash buckets to point to the single sink, and (if
14371 	 * it hasn't already been set), set the sink's hash value to be the
14372 	 * sink sentinel value.  The sink is needed for dynamic variable
14373 	 * lookups to know that they have iterated over an entire, valid hash
14374 	 * chain.
14375 	 */
14376 	for (i = 0; i < hashsize; i++)
14377 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14378 
14379 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14380 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14381 
14382 	/*
14383 	 * Determine number of active CPUs.  Divide free list evenly among
14384 	 * active CPUs.
14385 	 */
14386 	start = (dtrace_dynvar_t *)
14387 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14388 	limit = (uintptr_t)base + size;
14389 
14390 	VERIFY((uintptr_t)start < limit);
14391 	VERIFY((uintptr_t)start >= (uintptr_t)base);
14392 
14393 	maxper = (limit - (uintptr_t)start) / NCPU;
14394 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14395 
14396 #ifndef illumos
14397 	CPU_FOREACH(i) {
14398 #else
14399 	for (i = 0; i < NCPU; i++) {
14400 #endif
14401 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14402 
14403 		/*
14404 		 * If we don't even have enough chunks to make it once through
14405 		 * NCPUs, we're just going to allocate everything to the first
14406 		 * CPU.  And if we're on the last CPU, we're going to allocate
14407 		 * whatever is left over.  In either case, we set the limit to
14408 		 * be the limit of the dynamic variable space.
14409 		 */
14410 		if (maxper == 0 || i == NCPU - 1) {
14411 			limit = (uintptr_t)base + size;
14412 			start = NULL;
14413 		} else {
14414 			limit = (uintptr_t)start + maxper;
14415 			start = (dtrace_dynvar_t *)limit;
14416 		}
14417 
14418 		VERIFY(limit <= (uintptr_t)base + size);
14419 
14420 		for (;;) {
14421 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14422 			    dstate->dtds_chunksize);
14423 
14424 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14425 				break;
14426 
14427 			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14428 			    (uintptr_t)dvar <= (uintptr_t)base + size);
14429 			dvar->dtdv_next = next;
14430 			dvar = next;
14431 		}
14432 
14433 		if (maxper == 0)
14434 			break;
14435 	}
14436 
14437 	return (0);
14438 }
14439 
14440 static void
14441 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14442 {
14443 	ASSERT(MUTEX_HELD(&cpu_lock));
14444 
14445 	if (dstate->dtds_base == NULL)
14446 		return;
14447 
14448 	kmem_free(dstate->dtds_base, dstate->dtds_size);
14449 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14450 }
14451 
14452 static void
14453 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14454 {
14455 	/*
14456 	 * Logical XOR, where are you?
14457 	 */
14458 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14459 
14460 	if (vstate->dtvs_nglobals > 0) {
14461 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14462 		    sizeof (dtrace_statvar_t *));
14463 	}
14464 
14465 	if (vstate->dtvs_ntlocals > 0) {
14466 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14467 		    sizeof (dtrace_difv_t));
14468 	}
14469 
14470 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14471 
14472 	if (vstate->dtvs_nlocals > 0) {
14473 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14474 		    sizeof (dtrace_statvar_t *));
14475 	}
14476 }
14477 
14478 #ifdef illumos
14479 static void
14480 dtrace_state_clean(dtrace_state_t *state)
14481 {
14482 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14483 		return;
14484 
14485 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14486 	dtrace_speculation_clean(state);
14487 }
14488 
14489 static void
14490 dtrace_state_deadman(dtrace_state_t *state)
14491 {
14492 	hrtime_t now;
14493 
14494 	dtrace_sync();
14495 
14496 	now = dtrace_gethrtime();
14497 
14498 	if (state != dtrace_anon.dta_state &&
14499 	    now - state->dts_laststatus >= dtrace_deadman_user)
14500 		return;
14501 
14502 	/*
14503 	 * We must be sure that dts_alive never appears to be less than the
14504 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14505 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14506 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14507 	 * the new value.  This assures that dts_alive never appears to be
14508 	 * less than its true value, regardless of the order in which the
14509 	 * stores to the underlying storage are issued.
14510 	 */
14511 	state->dts_alive = INT64_MAX;
14512 	dtrace_membar_producer();
14513 	state->dts_alive = now;
14514 }
14515 #else	/* !illumos */
14516 static void
14517 dtrace_state_clean(void *arg)
14518 {
14519 	dtrace_state_t *state = arg;
14520 	dtrace_optval_t *opt = state->dts_options;
14521 
14522 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14523 		return;
14524 
14525 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14526 	dtrace_speculation_clean(state);
14527 
14528 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14529 	    dtrace_state_clean, state);
14530 }
14531 
14532 static void
14533 dtrace_state_deadman(void *arg)
14534 {
14535 	dtrace_state_t *state = arg;
14536 	hrtime_t now;
14537 
14538 	dtrace_sync();
14539 
14540 	dtrace_debug_output();
14541 
14542 	now = dtrace_gethrtime();
14543 
14544 	if (state != dtrace_anon.dta_state &&
14545 	    now - state->dts_laststatus >= dtrace_deadman_user)
14546 		return;
14547 
14548 	/*
14549 	 * We must be sure that dts_alive never appears to be less than the
14550 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14551 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14552 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14553 	 * the new value.  This assures that dts_alive never appears to be
14554 	 * less than its true value, regardless of the order in which the
14555 	 * stores to the underlying storage are issued.
14556 	 */
14557 	state->dts_alive = INT64_MAX;
14558 	dtrace_membar_producer();
14559 	state->dts_alive = now;
14560 
14561 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14562 	    dtrace_state_deadman, state);
14563 }
14564 #endif	/* illumos */
14565 
14566 static dtrace_state_t *
14567 #ifdef illumos
14568 dtrace_state_create(dev_t *devp, cred_t *cr)
14569 #else
14570 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14571 #endif
14572 {
14573 #ifdef illumos
14574 	minor_t minor;
14575 	major_t major;
14576 #else
14577 	cred_t *cr = NULL;
14578 	int m = 0;
14579 #endif
14580 	char c[30];
14581 	dtrace_state_t *state;
14582 	dtrace_optval_t *opt;
14583 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14584 	int cpu_it;
14585 
14586 	ASSERT(MUTEX_HELD(&dtrace_lock));
14587 	ASSERT(MUTEX_HELD(&cpu_lock));
14588 
14589 #ifdef illumos
14590 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14591 	    VM_BESTFIT | VM_SLEEP);
14592 
14593 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14594 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14595 		return (NULL);
14596 	}
14597 
14598 	state = ddi_get_soft_state(dtrace_softstate, minor);
14599 #else
14600 	if (dev != NULL) {
14601 		cr = dev->si_cred;
14602 		m = dev2unit(dev);
14603 	}
14604 
14605 	/* Allocate memory for the state. */
14606 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14607 #endif
14608 
14609 	state->dts_epid = DTRACE_EPIDNONE + 1;
14610 
14611 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14612 #ifdef illumos
14613 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14614 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14615 
14616 	if (devp != NULL) {
14617 		major = getemajor(*devp);
14618 	} else {
14619 		major = ddi_driver_major(dtrace_devi);
14620 	}
14621 
14622 	state->dts_dev = makedevice(major, minor);
14623 
14624 	if (devp != NULL)
14625 		*devp = state->dts_dev;
14626 #else
14627 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14628 	state->dts_dev = dev;
14629 #endif
14630 
14631 	/*
14632 	 * We allocate NCPU buffers.  On the one hand, this can be quite
14633 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14634 	 * other hand, it saves an additional memory reference in the probe
14635 	 * path.
14636 	 */
14637 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14638 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14639 
14640 	/*
14641          * Allocate and initialise the per-process per-CPU random state.
14642 	 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is
14643          * assumed to be seeded at this point (if from Fortuna seed file).
14644 	 */
14645 	arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t));
14646 	for (cpu_it = 1; cpu_it < NCPU; cpu_it++) {
14647 		/*
14648 		 * Each CPU is assigned a 2^64 period, non-overlapping
14649 		 * subsequence.
14650 		 */
14651 		dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1],
14652 		    state->dts_rstate[cpu_it]);
14653 	}
14654 
14655 #ifdef illumos
14656 	state->dts_cleaner = CYCLIC_NONE;
14657 	state->dts_deadman = CYCLIC_NONE;
14658 #else
14659 	callout_init(&state->dts_cleaner, 1);
14660 	callout_init(&state->dts_deadman, 1);
14661 #endif
14662 	state->dts_vstate.dtvs_state = state;
14663 
14664 	for (i = 0; i < DTRACEOPT_MAX; i++)
14665 		state->dts_options[i] = DTRACEOPT_UNSET;
14666 
14667 	/*
14668 	 * Set the default options.
14669 	 */
14670 	opt = state->dts_options;
14671 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14672 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14673 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14674 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14675 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14676 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14677 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14678 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14679 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14680 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14681 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14682 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14683 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14684 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14685 
14686 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14687 
14688 	/*
14689 	 * Depending on the user credentials, we set flag bits which alter probe
14690 	 * visibility or the amount of destructiveness allowed.  In the case of
14691 	 * actual anonymous tracing, or the possession of all privileges, all of
14692 	 * the normal checks are bypassed.
14693 	 */
14694 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14695 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14696 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14697 	} else {
14698 		/*
14699 		 * Set up the credentials for this instantiation.  We take a
14700 		 * hold on the credential to prevent it from disappearing on
14701 		 * us; this in turn prevents the zone_t referenced by this
14702 		 * credential from disappearing.  This means that we can
14703 		 * examine the credential and the zone from probe context.
14704 		 */
14705 		crhold(cr);
14706 		state->dts_cred.dcr_cred = cr;
14707 
14708 		/*
14709 		 * CRA_PROC means "we have *some* privilege for dtrace" and
14710 		 * unlocks the use of variables like pid, zonename, etc.
14711 		 */
14712 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14713 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14714 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14715 		}
14716 
14717 		/*
14718 		 * dtrace_user allows use of syscall and profile providers.
14719 		 * If the user also has proc_owner and/or proc_zone, we
14720 		 * extend the scope to include additional visibility and
14721 		 * destructive power.
14722 		 */
14723 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14724 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14725 				state->dts_cred.dcr_visible |=
14726 				    DTRACE_CRV_ALLPROC;
14727 
14728 				state->dts_cred.dcr_action |=
14729 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14730 			}
14731 
14732 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14733 				state->dts_cred.dcr_visible |=
14734 				    DTRACE_CRV_ALLZONE;
14735 
14736 				state->dts_cred.dcr_action |=
14737 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14738 			}
14739 
14740 			/*
14741 			 * If we have all privs in whatever zone this is,
14742 			 * we can do destructive things to processes which
14743 			 * have altered credentials.
14744 			 */
14745 #ifdef illumos
14746 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14747 			    cr->cr_zone->zone_privset)) {
14748 				state->dts_cred.dcr_action |=
14749 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14750 			}
14751 #endif
14752 		}
14753 
14754 		/*
14755 		 * Holding the dtrace_kernel privilege also implies that
14756 		 * the user has the dtrace_user privilege from a visibility
14757 		 * perspective.  But without further privileges, some
14758 		 * destructive actions are not available.
14759 		 */
14760 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14761 			/*
14762 			 * Make all probes in all zones visible.  However,
14763 			 * this doesn't mean that all actions become available
14764 			 * to all zones.
14765 			 */
14766 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14767 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14768 
14769 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14770 			    DTRACE_CRA_PROC;
14771 			/*
14772 			 * Holding proc_owner means that destructive actions
14773 			 * for *this* zone are allowed.
14774 			 */
14775 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14776 				state->dts_cred.dcr_action |=
14777 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14778 
14779 			/*
14780 			 * Holding proc_zone means that destructive actions
14781 			 * for this user/group ID in all zones is allowed.
14782 			 */
14783 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14784 				state->dts_cred.dcr_action |=
14785 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14786 
14787 #ifdef illumos
14788 			/*
14789 			 * If we have all privs in whatever zone this is,
14790 			 * we can do destructive things to processes which
14791 			 * have altered credentials.
14792 			 */
14793 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14794 			    cr->cr_zone->zone_privset)) {
14795 				state->dts_cred.dcr_action |=
14796 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14797 			}
14798 #endif
14799 		}
14800 
14801 		/*
14802 		 * Holding the dtrace_proc privilege gives control over fasttrap
14803 		 * and pid providers.  We need to grant wider destructive
14804 		 * privileges in the event that the user has proc_owner and/or
14805 		 * proc_zone.
14806 		 */
14807 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14808 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14809 				state->dts_cred.dcr_action |=
14810 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14811 
14812 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14813 				state->dts_cred.dcr_action |=
14814 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14815 		}
14816 	}
14817 
14818 	return (state);
14819 }
14820 
14821 static int
14822 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14823 {
14824 	dtrace_optval_t *opt = state->dts_options, size;
14825 	processorid_t cpu = 0;;
14826 	int flags = 0, rval, factor, divisor = 1;
14827 
14828 	ASSERT(MUTEX_HELD(&dtrace_lock));
14829 	ASSERT(MUTEX_HELD(&cpu_lock));
14830 	ASSERT(which < DTRACEOPT_MAX);
14831 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14832 	    (state == dtrace_anon.dta_state &&
14833 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14834 
14835 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14836 		return (0);
14837 
14838 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14839 		cpu = opt[DTRACEOPT_CPU];
14840 
14841 	if (which == DTRACEOPT_SPECSIZE)
14842 		flags |= DTRACEBUF_NOSWITCH;
14843 
14844 	if (which == DTRACEOPT_BUFSIZE) {
14845 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14846 			flags |= DTRACEBUF_RING;
14847 
14848 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14849 			flags |= DTRACEBUF_FILL;
14850 
14851 		if (state != dtrace_anon.dta_state ||
14852 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14853 			flags |= DTRACEBUF_INACTIVE;
14854 	}
14855 
14856 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14857 		/*
14858 		 * The size must be 8-byte aligned.  If the size is not 8-byte
14859 		 * aligned, drop it down by the difference.
14860 		 */
14861 		if (size & (sizeof (uint64_t) - 1))
14862 			size -= size & (sizeof (uint64_t) - 1);
14863 
14864 		if (size < state->dts_reserve) {
14865 			/*
14866 			 * Buffers always must be large enough to accommodate
14867 			 * their prereserved space.  We return E2BIG instead
14868 			 * of ENOMEM in this case to allow for user-level
14869 			 * software to differentiate the cases.
14870 			 */
14871 			return (E2BIG);
14872 		}
14873 
14874 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14875 
14876 		if (rval != ENOMEM) {
14877 			opt[which] = size;
14878 			return (rval);
14879 		}
14880 
14881 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14882 			return (rval);
14883 
14884 		for (divisor = 2; divisor < factor; divisor <<= 1)
14885 			continue;
14886 	}
14887 
14888 	return (ENOMEM);
14889 }
14890 
14891 static int
14892 dtrace_state_buffers(dtrace_state_t *state)
14893 {
14894 	dtrace_speculation_t *spec = state->dts_speculations;
14895 	int rval, i;
14896 
14897 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14898 	    DTRACEOPT_BUFSIZE)) != 0)
14899 		return (rval);
14900 
14901 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14902 	    DTRACEOPT_AGGSIZE)) != 0)
14903 		return (rval);
14904 
14905 	for (i = 0; i < state->dts_nspeculations; i++) {
14906 		if ((rval = dtrace_state_buffer(state,
14907 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14908 			return (rval);
14909 	}
14910 
14911 	return (0);
14912 }
14913 
14914 static void
14915 dtrace_state_prereserve(dtrace_state_t *state)
14916 {
14917 	dtrace_ecb_t *ecb;
14918 	dtrace_probe_t *probe;
14919 
14920 	state->dts_reserve = 0;
14921 
14922 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14923 		return;
14924 
14925 	/*
14926 	 * If our buffer policy is a "fill" buffer policy, we need to set the
14927 	 * prereserved space to be the space required by the END probes.
14928 	 */
14929 	probe = dtrace_probes[dtrace_probeid_end - 1];
14930 	ASSERT(probe != NULL);
14931 
14932 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14933 		if (ecb->dte_state != state)
14934 			continue;
14935 
14936 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14937 	}
14938 }
14939 
14940 static int
14941 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14942 {
14943 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14944 	dtrace_speculation_t *spec;
14945 	dtrace_buffer_t *buf;
14946 #ifdef illumos
14947 	cyc_handler_t hdlr;
14948 	cyc_time_t when;
14949 #endif
14950 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14951 	dtrace_icookie_t cookie;
14952 
14953 	mutex_enter(&cpu_lock);
14954 	mutex_enter(&dtrace_lock);
14955 
14956 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14957 		rval = EBUSY;
14958 		goto out;
14959 	}
14960 
14961 	/*
14962 	 * Before we can perform any checks, we must prime all of the
14963 	 * retained enablings that correspond to this state.
14964 	 */
14965 	dtrace_enabling_prime(state);
14966 
14967 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14968 		rval = EACCES;
14969 		goto out;
14970 	}
14971 
14972 	dtrace_state_prereserve(state);
14973 
14974 	/*
14975 	 * Now we want to do is try to allocate our speculations.
14976 	 * We do not automatically resize the number of speculations; if
14977 	 * this fails, we will fail the operation.
14978 	 */
14979 	nspec = opt[DTRACEOPT_NSPEC];
14980 	ASSERT(nspec != DTRACEOPT_UNSET);
14981 
14982 	if (nspec > INT_MAX) {
14983 		rval = ENOMEM;
14984 		goto out;
14985 	}
14986 
14987 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14988 	    KM_NOSLEEP | KM_NORMALPRI);
14989 
14990 	if (spec == NULL) {
14991 		rval = ENOMEM;
14992 		goto out;
14993 	}
14994 
14995 	state->dts_speculations = spec;
14996 	state->dts_nspeculations = (int)nspec;
14997 
14998 	for (i = 0; i < nspec; i++) {
14999 		if ((buf = kmem_zalloc(bufsize,
15000 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
15001 			rval = ENOMEM;
15002 			goto err;
15003 		}
15004 
15005 		spec[i].dtsp_buffer = buf;
15006 	}
15007 
15008 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
15009 		if (dtrace_anon.dta_state == NULL) {
15010 			rval = ENOENT;
15011 			goto out;
15012 		}
15013 
15014 		if (state->dts_necbs != 0) {
15015 			rval = EALREADY;
15016 			goto out;
15017 		}
15018 
15019 		state->dts_anon = dtrace_anon_grab();
15020 		ASSERT(state->dts_anon != NULL);
15021 		state = state->dts_anon;
15022 
15023 		/*
15024 		 * We want "grabanon" to be set in the grabbed state, so we'll
15025 		 * copy that option value from the grabbing state into the
15026 		 * grabbed state.
15027 		 */
15028 		state->dts_options[DTRACEOPT_GRABANON] =
15029 		    opt[DTRACEOPT_GRABANON];
15030 
15031 		*cpu = dtrace_anon.dta_beganon;
15032 
15033 		/*
15034 		 * If the anonymous state is active (as it almost certainly
15035 		 * is if the anonymous enabling ultimately matched anything),
15036 		 * we don't allow any further option processing -- but we
15037 		 * don't return failure.
15038 		 */
15039 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15040 			goto out;
15041 	}
15042 
15043 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
15044 	    opt[DTRACEOPT_AGGSIZE] != 0) {
15045 		if (state->dts_aggregations == NULL) {
15046 			/*
15047 			 * We're not going to create an aggregation buffer
15048 			 * because we don't have any ECBs that contain
15049 			 * aggregations -- set this option to 0.
15050 			 */
15051 			opt[DTRACEOPT_AGGSIZE] = 0;
15052 		} else {
15053 			/*
15054 			 * If we have an aggregation buffer, we must also have
15055 			 * a buffer to use as scratch.
15056 			 */
15057 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
15058 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
15059 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
15060 			}
15061 		}
15062 	}
15063 
15064 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
15065 	    opt[DTRACEOPT_SPECSIZE] != 0) {
15066 		if (!state->dts_speculates) {
15067 			/*
15068 			 * We're not going to create speculation buffers
15069 			 * because we don't have any ECBs that actually
15070 			 * speculate -- set the speculation size to 0.
15071 			 */
15072 			opt[DTRACEOPT_SPECSIZE] = 0;
15073 		}
15074 	}
15075 
15076 	/*
15077 	 * The bare minimum size for any buffer that we're actually going to
15078 	 * do anything to is sizeof (uint64_t).
15079 	 */
15080 	sz = sizeof (uint64_t);
15081 
15082 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
15083 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
15084 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
15085 		/*
15086 		 * A buffer size has been explicitly set to 0 (or to a size
15087 		 * that will be adjusted to 0) and we need the space -- we
15088 		 * need to return failure.  We return ENOSPC to differentiate
15089 		 * it from failing to allocate a buffer due to failure to meet
15090 		 * the reserve (for which we return E2BIG).
15091 		 */
15092 		rval = ENOSPC;
15093 		goto out;
15094 	}
15095 
15096 	if ((rval = dtrace_state_buffers(state)) != 0)
15097 		goto err;
15098 
15099 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
15100 		sz = dtrace_dstate_defsize;
15101 
15102 	do {
15103 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15104 
15105 		if (rval == 0)
15106 			break;
15107 
15108 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15109 			goto err;
15110 	} while (sz >>= 1);
15111 
15112 	opt[DTRACEOPT_DYNVARSIZE] = sz;
15113 
15114 	if (rval != 0)
15115 		goto err;
15116 
15117 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15118 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15119 
15120 	if (opt[DTRACEOPT_CLEANRATE] == 0)
15121 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15122 
15123 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15124 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15125 
15126 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15127 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15128 
15129 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15130 #ifdef illumos
15131 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15132 	hdlr.cyh_arg = state;
15133 	hdlr.cyh_level = CY_LOW_LEVEL;
15134 
15135 	when.cyt_when = 0;
15136 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15137 
15138 	state->dts_cleaner = cyclic_add(&hdlr, &when);
15139 
15140 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15141 	hdlr.cyh_arg = state;
15142 	hdlr.cyh_level = CY_LOW_LEVEL;
15143 
15144 	when.cyt_when = 0;
15145 	when.cyt_interval = dtrace_deadman_interval;
15146 
15147 	state->dts_deadman = cyclic_add(&hdlr, &when);
15148 #else
15149 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15150 	    dtrace_state_clean, state);
15151 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15152 	    dtrace_state_deadman, state);
15153 #endif
15154 
15155 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15156 
15157 #ifdef illumos
15158 	if (state->dts_getf != 0 &&
15159 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15160 		/*
15161 		 * We don't have kernel privs but we have at least one call
15162 		 * to getf(); we need to bump our zone's count, and (if
15163 		 * this is the first enabling to have an unprivileged call
15164 		 * to getf()) we need to hook into closef().
15165 		 */
15166 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15167 
15168 		if (dtrace_getf++ == 0) {
15169 			ASSERT(dtrace_closef == NULL);
15170 			dtrace_closef = dtrace_getf_barrier;
15171 		}
15172 	}
15173 #endif
15174 
15175 	/*
15176 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
15177 	 * interrupts here both to record the CPU on which we fired the BEGIN
15178 	 * probe (the data from this CPU will be processed first at user
15179 	 * level) and to manually activate the buffer for this CPU.
15180 	 */
15181 	cookie = dtrace_interrupt_disable();
15182 	*cpu = curcpu;
15183 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15184 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15185 
15186 	dtrace_probe(dtrace_probeid_begin,
15187 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15188 	dtrace_interrupt_enable(cookie);
15189 	/*
15190 	 * We may have had an exit action from a BEGIN probe; only change our
15191 	 * state to ACTIVE if we're still in WARMUP.
15192 	 */
15193 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15194 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15195 
15196 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15197 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15198 
15199 #ifdef __FreeBSD__
15200 	/*
15201 	 * We enable anonymous tracing before APs are started, so we must
15202 	 * activate buffers using the current CPU.
15203 	 */
15204 	if (state == dtrace_anon.dta_state)
15205 		for (int i = 0; i < NCPU; i++)
15206 			dtrace_buffer_activate_cpu(state, i);
15207 	else
15208 		dtrace_xcall(DTRACE_CPUALL,
15209 		    (dtrace_xcall_t)dtrace_buffer_activate, state);
15210 #else
15211 	/*
15212 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15213 	 * want each CPU to transition its principal buffer out of the
15214 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
15215 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15216 	 * atomically transition from processing none of a state's ECBs to
15217 	 * processing all of them.
15218 	 */
15219 	dtrace_xcall(DTRACE_CPUALL,
15220 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
15221 #endif
15222 	goto out;
15223 
15224 err:
15225 	dtrace_buffer_free(state->dts_buffer);
15226 	dtrace_buffer_free(state->dts_aggbuffer);
15227 
15228 	if ((nspec = state->dts_nspeculations) == 0) {
15229 		ASSERT(state->dts_speculations == NULL);
15230 		goto out;
15231 	}
15232 
15233 	spec = state->dts_speculations;
15234 	ASSERT(spec != NULL);
15235 
15236 	for (i = 0; i < state->dts_nspeculations; i++) {
15237 		if ((buf = spec[i].dtsp_buffer) == NULL)
15238 			break;
15239 
15240 		dtrace_buffer_free(buf);
15241 		kmem_free(buf, bufsize);
15242 	}
15243 
15244 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15245 	state->dts_nspeculations = 0;
15246 	state->dts_speculations = NULL;
15247 
15248 out:
15249 	mutex_exit(&dtrace_lock);
15250 	mutex_exit(&cpu_lock);
15251 
15252 	return (rval);
15253 }
15254 
15255 static int
15256 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15257 {
15258 	dtrace_icookie_t cookie;
15259 
15260 	ASSERT(MUTEX_HELD(&dtrace_lock));
15261 
15262 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15263 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15264 		return (EINVAL);
15265 
15266 	/*
15267 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15268 	 * to be sure that every CPU has seen it.  See below for the details
15269 	 * on why this is done.
15270 	 */
15271 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15272 	dtrace_sync();
15273 
15274 	/*
15275 	 * By this point, it is impossible for any CPU to be still processing
15276 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
15277 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15278 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
15279 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15280 	 * iff we're in the END probe.
15281 	 */
15282 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15283 	dtrace_sync();
15284 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15285 
15286 	/*
15287 	 * Finally, we can release the reserve and call the END probe.  We
15288 	 * disable interrupts across calling the END probe to allow us to
15289 	 * return the CPU on which we actually called the END probe.  This
15290 	 * allows user-land to be sure that this CPU's principal buffer is
15291 	 * processed last.
15292 	 */
15293 	state->dts_reserve = 0;
15294 
15295 	cookie = dtrace_interrupt_disable();
15296 	*cpu = curcpu;
15297 	dtrace_probe(dtrace_probeid_end,
15298 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15299 	dtrace_interrupt_enable(cookie);
15300 
15301 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15302 	dtrace_sync();
15303 
15304 #ifdef illumos
15305 	if (state->dts_getf != 0 &&
15306 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15307 		/*
15308 		 * We don't have kernel privs but we have at least one call
15309 		 * to getf(); we need to lower our zone's count, and (if
15310 		 * this is the last enabling to have an unprivileged call
15311 		 * to getf()) we need to clear the closef() hook.
15312 		 */
15313 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15314 		ASSERT(dtrace_closef == dtrace_getf_barrier);
15315 		ASSERT(dtrace_getf > 0);
15316 
15317 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15318 
15319 		if (--dtrace_getf == 0)
15320 			dtrace_closef = NULL;
15321 	}
15322 #endif
15323 
15324 	return (0);
15325 }
15326 
15327 static int
15328 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15329     dtrace_optval_t val)
15330 {
15331 	ASSERT(MUTEX_HELD(&dtrace_lock));
15332 
15333 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15334 		return (EBUSY);
15335 
15336 	if (option >= DTRACEOPT_MAX)
15337 		return (EINVAL);
15338 
15339 	if (option != DTRACEOPT_CPU && val < 0)
15340 		return (EINVAL);
15341 
15342 	switch (option) {
15343 	case DTRACEOPT_DESTRUCTIVE:
15344 		if (dtrace_destructive_disallow)
15345 			return (EACCES);
15346 
15347 		state->dts_cred.dcr_destructive = 1;
15348 		break;
15349 
15350 	case DTRACEOPT_BUFSIZE:
15351 	case DTRACEOPT_DYNVARSIZE:
15352 	case DTRACEOPT_AGGSIZE:
15353 	case DTRACEOPT_SPECSIZE:
15354 	case DTRACEOPT_STRSIZE:
15355 		if (val < 0)
15356 			return (EINVAL);
15357 
15358 		if (val >= LONG_MAX) {
15359 			/*
15360 			 * If this is an otherwise negative value, set it to
15361 			 * the highest multiple of 128m less than LONG_MAX.
15362 			 * Technically, we're adjusting the size without
15363 			 * regard to the buffer resizing policy, but in fact,
15364 			 * this has no effect -- if we set the buffer size to
15365 			 * ~LONG_MAX and the buffer policy is ultimately set to
15366 			 * be "manual", the buffer allocation is guaranteed to
15367 			 * fail, if only because the allocation requires two
15368 			 * buffers.  (We set the the size to the highest
15369 			 * multiple of 128m because it ensures that the size
15370 			 * will remain a multiple of a megabyte when
15371 			 * repeatedly halved -- all the way down to 15m.)
15372 			 */
15373 			val = LONG_MAX - (1 << 27) + 1;
15374 		}
15375 	}
15376 
15377 	state->dts_options[option] = val;
15378 
15379 	return (0);
15380 }
15381 
15382 static void
15383 dtrace_state_destroy(dtrace_state_t *state)
15384 {
15385 	dtrace_ecb_t *ecb;
15386 	dtrace_vstate_t *vstate = &state->dts_vstate;
15387 #ifdef illumos
15388 	minor_t minor = getminor(state->dts_dev);
15389 #endif
15390 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
15391 	dtrace_speculation_t *spec = state->dts_speculations;
15392 	int nspec = state->dts_nspeculations;
15393 	uint32_t match;
15394 
15395 	ASSERT(MUTEX_HELD(&dtrace_lock));
15396 	ASSERT(MUTEX_HELD(&cpu_lock));
15397 
15398 	/*
15399 	 * First, retract any retained enablings for this state.
15400 	 */
15401 	dtrace_enabling_retract(state);
15402 	ASSERT(state->dts_nretained == 0);
15403 
15404 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15405 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15406 		/*
15407 		 * We have managed to come into dtrace_state_destroy() on a
15408 		 * hot enabling -- almost certainly because of a disorderly
15409 		 * shutdown of a consumer.  (That is, a consumer that is
15410 		 * exiting without having called dtrace_stop().) In this case,
15411 		 * we're going to set our activity to be KILLED, and then
15412 		 * issue a sync to be sure that everyone is out of probe
15413 		 * context before we start blowing away ECBs.
15414 		 */
15415 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
15416 		dtrace_sync();
15417 	}
15418 
15419 	/*
15420 	 * Release the credential hold we took in dtrace_state_create().
15421 	 */
15422 	if (state->dts_cred.dcr_cred != NULL)
15423 		crfree(state->dts_cred.dcr_cred);
15424 
15425 	/*
15426 	 * Now we can safely disable and destroy any enabled probes.  Because
15427 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15428 	 * (especially if they're all enabled), we take two passes through the
15429 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15430 	 * in the second we disable whatever is left over.
15431 	 */
15432 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15433 		for (i = 0; i < state->dts_necbs; i++) {
15434 			if ((ecb = state->dts_ecbs[i]) == NULL)
15435 				continue;
15436 
15437 			if (match && ecb->dte_probe != NULL) {
15438 				dtrace_probe_t *probe = ecb->dte_probe;
15439 				dtrace_provider_t *prov = probe->dtpr_provider;
15440 
15441 				if (!(prov->dtpv_priv.dtpp_flags & match))
15442 					continue;
15443 			}
15444 
15445 			dtrace_ecb_disable(ecb);
15446 			dtrace_ecb_destroy(ecb);
15447 		}
15448 
15449 		if (!match)
15450 			break;
15451 	}
15452 
15453 	/*
15454 	 * Before we free the buffers, perform one more sync to assure that
15455 	 * every CPU is out of probe context.
15456 	 */
15457 	dtrace_sync();
15458 
15459 	dtrace_buffer_free(state->dts_buffer);
15460 	dtrace_buffer_free(state->dts_aggbuffer);
15461 
15462 	for (i = 0; i < nspec; i++)
15463 		dtrace_buffer_free(spec[i].dtsp_buffer);
15464 
15465 #ifdef illumos
15466 	if (state->dts_cleaner != CYCLIC_NONE)
15467 		cyclic_remove(state->dts_cleaner);
15468 
15469 	if (state->dts_deadman != CYCLIC_NONE)
15470 		cyclic_remove(state->dts_deadman);
15471 #else
15472 	callout_stop(&state->dts_cleaner);
15473 	callout_drain(&state->dts_cleaner);
15474 	callout_stop(&state->dts_deadman);
15475 	callout_drain(&state->dts_deadman);
15476 #endif
15477 
15478 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15479 	dtrace_vstate_fini(vstate);
15480 	if (state->dts_ecbs != NULL)
15481 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15482 
15483 	if (state->dts_aggregations != NULL) {
15484 #ifdef DEBUG
15485 		for (i = 0; i < state->dts_naggregations; i++)
15486 			ASSERT(state->dts_aggregations[i] == NULL);
15487 #endif
15488 		ASSERT(state->dts_naggregations > 0);
15489 		kmem_free(state->dts_aggregations,
15490 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15491 	}
15492 
15493 	kmem_free(state->dts_buffer, bufsize);
15494 	kmem_free(state->dts_aggbuffer, bufsize);
15495 
15496 	for (i = 0; i < nspec; i++)
15497 		kmem_free(spec[i].dtsp_buffer, bufsize);
15498 
15499 	if (spec != NULL)
15500 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15501 
15502 	dtrace_format_destroy(state);
15503 
15504 	if (state->dts_aggid_arena != NULL) {
15505 #ifdef illumos
15506 		vmem_destroy(state->dts_aggid_arena);
15507 #else
15508 		delete_unrhdr(state->dts_aggid_arena);
15509 #endif
15510 		state->dts_aggid_arena = NULL;
15511 	}
15512 #ifdef illumos
15513 	ddi_soft_state_free(dtrace_softstate, minor);
15514 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15515 #endif
15516 }
15517 
15518 /*
15519  * DTrace Anonymous Enabling Functions
15520  */
15521 static dtrace_state_t *
15522 dtrace_anon_grab(void)
15523 {
15524 	dtrace_state_t *state;
15525 
15526 	ASSERT(MUTEX_HELD(&dtrace_lock));
15527 
15528 	if ((state = dtrace_anon.dta_state) == NULL) {
15529 		ASSERT(dtrace_anon.dta_enabling == NULL);
15530 		return (NULL);
15531 	}
15532 
15533 	ASSERT(dtrace_anon.dta_enabling != NULL);
15534 	ASSERT(dtrace_retained != NULL);
15535 
15536 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15537 	dtrace_anon.dta_enabling = NULL;
15538 	dtrace_anon.dta_state = NULL;
15539 
15540 	return (state);
15541 }
15542 
15543 static void
15544 dtrace_anon_property(void)
15545 {
15546 	int i, rv;
15547 	dtrace_state_t *state;
15548 	dof_hdr_t *dof;
15549 	char c[32];		/* enough for "dof-data-" + digits */
15550 
15551 	ASSERT(MUTEX_HELD(&dtrace_lock));
15552 	ASSERT(MUTEX_HELD(&cpu_lock));
15553 
15554 	for (i = 0; ; i++) {
15555 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15556 
15557 		dtrace_err_verbose = 1;
15558 
15559 		if ((dof = dtrace_dof_property(c)) == NULL) {
15560 			dtrace_err_verbose = 0;
15561 			break;
15562 		}
15563 
15564 #ifdef illumos
15565 		/*
15566 		 * We want to create anonymous state, so we need to transition
15567 		 * the kernel debugger to indicate that DTrace is active.  If
15568 		 * this fails (e.g. because the debugger has modified text in
15569 		 * some way), we won't continue with the processing.
15570 		 */
15571 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15572 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15573 			    "enabling ignored.");
15574 			dtrace_dof_destroy(dof);
15575 			break;
15576 		}
15577 #endif
15578 
15579 		/*
15580 		 * If we haven't allocated an anonymous state, we'll do so now.
15581 		 */
15582 		if ((state = dtrace_anon.dta_state) == NULL) {
15583 			state = dtrace_state_create(NULL, NULL);
15584 			dtrace_anon.dta_state = state;
15585 
15586 			if (state == NULL) {
15587 				/*
15588 				 * This basically shouldn't happen:  the only
15589 				 * failure mode from dtrace_state_create() is a
15590 				 * failure of ddi_soft_state_zalloc() that
15591 				 * itself should never happen.  Still, the
15592 				 * interface allows for a failure mode, and
15593 				 * we want to fail as gracefully as possible:
15594 				 * we'll emit an error message and cease
15595 				 * processing anonymous state in this case.
15596 				 */
15597 				cmn_err(CE_WARN, "failed to create "
15598 				    "anonymous state");
15599 				dtrace_dof_destroy(dof);
15600 				break;
15601 			}
15602 		}
15603 
15604 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15605 		    &dtrace_anon.dta_enabling, 0, 0, B_TRUE);
15606 
15607 		if (rv == 0)
15608 			rv = dtrace_dof_options(dof, state);
15609 
15610 		dtrace_err_verbose = 0;
15611 		dtrace_dof_destroy(dof);
15612 
15613 		if (rv != 0) {
15614 			/*
15615 			 * This is malformed DOF; chuck any anonymous state
15616 			 * that we created.
15617 			 */
15618 			ASSERT(dtrace_anon.dta_enabling == NULL);
15619 			dtrace_state_destroy(state);
15620 			dtrace_anon.dta_state = NULL;
15621 			break;
15622 		}
15623 
15624 		ASSERT(dtrace_anon.dta_enabling != NULL);
15625 	}
15626 
15627 	if (dtrace_anon.dta_enabling != NULL) {
15628 		int rval;
15629 
15630 		/*
15631 		 * dtrace_enabling_retain() can only fail because we are
15632 		 * trying to retain more enablings than are allowed -- but
15633 		 * we only have one anonymous enabling, and we are guaranteed
15634 		 * to be allowed at least one retained enabling; we assert
15635 		 * that dtrace_enabling_retain() returns success.
15636 		 */
15637 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15638 		ASSERT(rval == 0);
15639 
15640 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15641 	}
15642 }
15643 
15644 /*
15645  * DTrace Helper Functions
15646  */
15647 static void
15648 dtrace_helper_trace(dtrace_helper_action_t *helper,
15649     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15650 {
15651 	uint32_t size, next, nnext, i;
15652 	dtrace_helptrace_t *ent, *buffer;
15653 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15654 
15655 	if ((buffer = dtrace_helptrace_buffer) == NULL)
15656 		return;
15657 
15658 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15659 
15660 	/*
15661 	 * What would a tracing framework be without its own tracing
15662 	 * framework?  (Well, a hell of a lot simpler, for starters...)
15663 	 */
15664 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15665 	    sizeof (uint64_t) - sizeof (uint64_t);
15666 
15667 	/*
15668 	 * Iterate until we can allocate a slot in the trace buffer.
15669 	 */
15670 	do {
15671 		next = dtrace_helptrace_next;
15672 
15673 		if (next + size < dtrace_helptrace_bufsize) {
15674 			nnext = next + size;
15675 		} else {
15676 			nnext = size;
15677 		}
15678 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15679 
15680 	/*
15681 	 * We have our slot; fill it in.
15682 	 */
15683 	if (nnext == size) {
15684 		dtrace_helptrace_wrapped++;
15685 		next = 0;
15686 	}
15687 
15688 	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15689 	ent->dtht_helper = helper;
15690 	ent->dtht_where = where;
15691 	ent->dtht_nlocals = vstate->dtvs_nlocals;
15692 
15693 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15694 	    mstate->dtms_fltoffs : -1;
15695 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15696 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15697 
15698 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15699 		dtrace_statvar_t *svar;
15700 
15701 		if ((svar = vstate->dtvs_locals[i]) == NULL)
15702 			continue;
15703 
15704 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15705 		ent->dtht_locals[i] =
15706 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15707 	}
15708 }
15709 
15710 static uint64_t
15711 dtrace_helper(int which, dtrace_mstate_t *mstate,
15712     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15713 {
15714 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15715 	uint64_t sarg0 = mstate->dtms_arg[0];
15716 	uint64_t sarg1 = mstate->dtms_arg[1];
15717 	uint64_t rval = 0;
15718 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15719 	dtrace_helper_action_t *helper;
15720 	dtrace_vstate_t *vstate;
15721 	dtrace_difo_t *pred;
15722 	int i, trace = dtrace_helptrace_buffer != NULL;
15723 
15724 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15725 
15726 	if (helpers == NULL)
15727 		return (0);
15728 
15729 	if ((helper = helpers->dthps_actions[which]) == NULL)
15730 		return (0);
15731 
15732 	vstate = &helpers->dthps_vstate;
15733 	mstate->dtms_arg[0] = arg0;
15734 	mstate->dtms_arg[1] = arg1;
15735 
15736 	/*
15737 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15738 	 * we'll call the corresponding actions.  Note that the below calls
15739 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15740 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15741 	 * the stored DIF offset with its own (which is the desired behavior).
15742 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15743 	 * from machine state; this is okay, too.
15744 	 */
15745 	for (; helper != NULL; helper = helper->dtha_next) {
15746 		if ((pred = helper->dtha_predicate) != NULL) {
15747 			if (trace)
15748 				dtrace_helper_trace(helper, mstate, vstate, 0);
15749 
15750 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15751 				goto next;
15752 
15753 			if (*flags & CPU_DTRACE_FAULT)
15754 				goto err;
15755 		}
15756 
15757 		for (i = 0; i < helper->dtha_nactions; i++) {
15758 			if (trace)
15759 				dtrace_helper_trace(helper,
15760 				    mstate, vstate, i + 1);
15761 
15762 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15763 			    mstate, vstate, state);
15764 
15765 			if (*flags & CPU_DTRACE_FAULT)
15766 				goto err;
15767 		}
15768 
15769 next:
15770 		if (trace)
15771 			dtrace_helper_trace(helper, mstate, vstate,
15772 			    DTRACE_HELPTRACE_NEXT);
15773 	}
15774 
15775 	if (trace)
15776 		dtrace_helper_trace(helper, mstate, vstate,
15777 		    DTRACE_HELPTRACE_DONE);
15778 
15779 	/*
15780 	 * Restore the arg0 that we saved upon entry.
15781 	 */
15782 	mstate->dtms_arg[0] = sarg0;
15783 	mstate->dtms_arg[1] = sarg1;
15784 
15785 	return (rval);
15786 
15787 err:
15788 	if (trace)
15789 		dtrace_helper_trace(helper, mstate, vstate,
15790 		    DTRACE_HELPTRACE_ERR);
15791 
15792 	/*
15793 	 * Restore the arg0 that we saved upon entry.
15794 	 */
15795 	mstate->dtms_arg[0] = sarg0;
15796 	mstate->dtms_arg[1] = sarg1;
15797 
15798 	return (0);
15799 }
15800 
15801 static void
15802 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15803     dtrace_vstate_t *vstate)
15804 {
15805 	int i;
15806 
15807 	if (helper->dtha_predicate != NULL)
15808 		dtrace_difo_release(helper->dtha_predicate, vstate);
15809 
15810 	for (i = 0; i < helper->dtha_nactions; i++) {
15811 		ASSERT(helper->dtha_actions[i] != NULL);
15812 		dtrace_difo_release(helper->dtha_actions[i], vstate);
15813 	}
15814 
15815 	kmem_free(helper->dtha_actions,
15816 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15817 	kmem_free(helper, sizeof (dtrace_helper_action_t));
15818 }
15819 
15820 static int
15821 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15822 {
15823 	proc_t *p = curproc;
15824 	dtrace_vstate_t *vstate;
15825 	int i;
15826 
15827 	if (help == NULL)
15828 		help = p->p_dtrace_helpers;
15829 
15830 	ASSERT(MUTEX_HELD(&dtrace_lock));
15831 
15832 	if (help == NULL || gen > help->dthps_generation)
15833 		return (EINVAL);
15834 
15835 	vstate = &help->dthps_vstate;
15836 
15837 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15838 		dtrace_helper_action_t *last = NULL, *h, *next;
15839 
15840 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15841 			next = h->dtha_next;
15842 
15843 			if (h->dtha_generation == gen) {
15844 				if (last != NULL) {
15845 					last->dtha_next = next;
15846 				} else {
15847 					help->dthps_actions[i] = next;
15848 				}
15849 
15850 				dtrace_helper_action_destroy(h, vstate);
15851 			} else {
15852 				last = h;
15853 			}
15854 		}
15855 	}
15856 
15857 	/*
15858 	 * Interate until we've cleared out all helper providers with the
15859 	 * given generation number.
15860 	 */
15861 	for (;;) {
15862 		dtrace_helper_provider_t *prov;
15863 
15864 		/*
15865 		 * Look for a helper provider with the right generation. We
15866 		 * have to start back at the beginning of the list each time
15867 		 * because we drop dtrace_lock. It's unlikely that we'll make
15868 		 * more than two passes.
15869 		 */
15870 		for (i = 0; i < help->dthps_nprovs; i++) {
15871 			prov = help->dthps_provs[i];
15872 
15873 			if (prov->dthp_generation == gen)
15874 				break;
15875 		}
15876 
15877 		/*
15878 		 * If there were no matches, we're done.
15879 		 */
15880 		if (i == help->dthps_nprovs)
15881 			break;
15882 
15883 		/*
15884 		 * Move the last helper provider into this slot.
15885 		 */
15886 		help->dthps_nprovs--;
15887 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15888 		help->dthps_provs[help->dthps_nprovs] = NULL;
15889 
15890 		mutex_exit(&dtrace_lock);
15891 
15892 		/*
15893 		 * If we have a meta provider, remove this helper provider.
15894 		 */
15895 		mutex_enter(&dtrace_meta_lock);
15896 		if (dtrace_meta_pid != NULL) {
15897 			ASSERT(dtrace_deferred_pid == NULL);
15898 			dtrace_helper_provider_remove(&prov->dthp_prov,
15899 			    p->p_pid);
15900 		}
15901 		mutex_exit(&dtrace_meta_lock);
15902 
15903 		dtrace_helper_provider_destroy(prov);
15904 
15905 		mutex_enter(&dtrace_lock);
15906 	}
15907 
15908 	return (0);
15909 }
15910 
15911 static int
15912 dtrace_helper_validate(dtrace_helper_action_t *helper)
15913 {
15914 	int err = 0, i;
15915 	dtrace_difo_t *dp;
15916 
15917 	if ((dp = helper->dtha_predicate) != NULL)
15918 		err += dtrace_difo_validate_helper(dp);
15919 
15920 	for (i = 0; i < helper->dtha_nactions; i++)
15921 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15922 
15923 	return (err == 0);
15924 }
15925 
15926 static int
15927 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15928     dtrace_helpers_t *help)
15929 {
15930 	dtrace_helper_action_t *helper, *last;
15931 	dtrace_actdesc_t *act;
15932 	dtrace_vstate_t *vstate;
15933 	dtrace_predicate_t *pred;
15934 	int count = 0, nactions = 0, i;
15935 
15936 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15937 		return (EINVAL);
15938 
15939 	last = help->dthps_actions[which];
15940 	vstate = &help->dthps_vstate;
15941 
15942 	for (count = 0; last != NULL; last = last->dtha_next) {
15943 		count++;
15944 		if (last->dtha_next == NULL)
15945 			break;
15946 	}
15947 
15948 	/*
15949 	 * If we already have dtrace_helper_actions_max helper actions for this
15950 	 * helper action type, we'll refuse to add a new one.
15951 	 */
15952 	if (count >= dtrace_helper_actions_max)
15953 		return (ENOSPC);
15954 
15955 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15956 	helper->dtha_generation = help->dthps_generation;
15957 
15958 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15959 		ASSERT(pred->dtp_difo != NULL);
15960 		dtrace_difo_hold(pred->dtp_difo);
15961 		helper->dtha_predicate = pred->dtp_difo;
15962 	}
15963 
15964 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15965 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15966 			goto err;
15967 
15968 		if (act->dtad_difo == NULL)
15969 			goto err;
15970 
15971 		nactions++;
15972 	}
15973 
15974 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15975 	    (helper->dtha_nactions = nactions), KM_SLEEP);
15976 
15977 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15978 		dtrace_difo_hold(act->dtad_difo);
15979 		helper->dtha_actions[i++] = act->dtad_difo;
15980 	}
15981 
15982 	if (!dtrace_helper_validate(helper))
15983 		goto err;
15984 
15985 	if (last == NULL) {
15986 		help->dthps_actions[which] = helper;
15987 	} else {
15988 		last->dtha_next = helper;
15989 	}
15990 
15991 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15992 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15993 		dtrace_helptrace_next = 0;
15994 	}
15995 
15996 	return (0);
15997 err:
15998 	dtrace_helper_action_destroy(helper, vstate);
15999 	return (EINVAL);
16000 }
16001 
16002 static void
16003 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
16004     dof_helper_t *dofhp)
16005 {
16006 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
16007 
16008 	mutex_enter(&dtrace_meta_lock);
16009 	mutex_enter(&dtrace_lock);
16010 
16011 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
16012 		/*
16013 		 * If the dtrace module is loaded but not attached, or if
16014 		 * there aren't isn't a meta provider registered to deal with
16015 		 * these provider descriptions, we need to postpone creating
16016 		 * the actual providers until later.
16017 		 */
16018 
16019 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
16020 		    dtrace_deferred_pid != help) {
16021 			help->dthps_deferred = 1;
16022 			help->dthps_pid = p->p_pid;
16023 			help->dthps_next = dtrace_deferred_pid;
16024 			help->dthps_prev = NULL;
16025 			if (dtrace_deferred_pid != NULL)
16026 				dtrace_deferred_pid->dthps_prev = help;
16027 			dtrace_deferred_pid = help;
16028 		}
16029 
16030 		mutex_exit(&dtrace_lock);
16031 
16032 	} else if (dofhp != NULL) {
16033 		/*
16034 		 * If the dtrace module is loaded and we have a particular
16035 		 * helper provider description, pass that off to the
16036 		 * meta provider.
16037 		 */
16038 
16039 		mutex_exit(&dtrace_lock);
16040 
16041 		dtrace_helper_provide(dofhp, p->p_pid);
16042 
16043 	} else {
16044 		/*
16045 		 * Otherwise, just pass all the helper provider descriptions
16046 		 * off to the meta provider.
16047 		 */
16048 
16049 		int i;
16050 		mutex_exit(&dtrace_lock);
16051 
16052 		for (i = 0; i < help->dthps_nprovs; i++) {
16053 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
16054 			    p->p_pid);
16055 		}
16056 	}
16057 
16058 	mutex_exit(&dtrace_meta_lock);
16059 }
16060 
16061 static int
16062 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
16063 {
16064 	dtrace_helper_provider_t *hprov, **tmp_provs;
16065 	uint_t tmp_maxprovs, i;
16066 
16067 	ASSERT(MUTEX_HELD(&dtrace_lock));
16068 	ASSERT(help != NULL);
16069 
16070 	/*
16071 	 * If we already have dtrace_helper_providers_max helper providers,
16072 	 * we're refuse to add a new one.
16073 	 */
16074 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
16075 		return (ENOSPC);
16076 
16077 	/*
16078 	 * Check to make sure this isn't a duplicate.
16079 	 */
16080 	for (i = 0; i < help->dthps_nprovs; i++) {
16081 		if (dofhp->dofhp_addr ==
16082 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
16083 			return (EALREADY);
16084 	}
16085 
16086 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
16087 	hprov->dthp_prov = *dofhp;
16088 	hprov->dthp_ref = 1;
16089 	hprov->dthp_generation = gen;
16090 
16091 	/*
16092 	 * Allocate a bigger table for helper providers if it's already full.
16093 	 */
16094 	if (help->dthps_maxprovs == help->dthps_nprovs) {
16095 		tmp_maxprovs = help->dthps_maxprovs;
16096 		tmp_provs = help->dthps_provs;
16097 
16098 		if (help->dthps_maxprovs == 0)
16099 			help->dthps_maxprovs = 2;
16100 		else
16101 			help->dthps_maxprovs *= 2;
16102 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
16103 			help->dthps_maxprovs = dtrace_helper_providers_max;
16104 
16105 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16106 
16107 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16108 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16109 
16110 		if (tmp_provs != NULL) {
16111 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16112 			    sizeof (dtrace_helper_provider_t *));
16113 			kmem_free(tmp_provs, tmp_maxprovs *
16114 			    sizeof (dtrace_helper_provider_t *));
16115 		}
16116 	}
16117 
16118 	help->dthps_provs[help->dthps_nprovs] = hprov;
16119 	help->dthps_nprovs++;
16120 
16121 	return (0);
16122 }
16123 
16124 static void
16125 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16126 {
16127 	mutex_enter(&dtrace_lock);
16128 
16129 	if (--hprov->dthp_ref == 0) {
16130 		dof_hdr_t *dof;
16131 		mutex_exit(&dtrace_lock);
16132 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16133 		dtrace_dof_destroy(dof);
16134 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16135 	} else {
16136 		mutex_exit(&dtrace_lock);
16137 	}
16138 }
16139 
16140 static int
16141 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16142 {
16143 	uintptr_t daddr = (uintptr_t)dof;
16144 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16145 	dof_provider_t *provider;
16146 	dof_probe_t *probe;
16147 	uint8_t *arg;
16148 	char *strtab, *typestr;
16149 	dof_stridx_t typeidx;
16150 	size_t typesz;
16151 	uint_t nprobes, j, k;
16152 
16153 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16154 
16155 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16156 		dtrace_dof_error(dof, "misaligned section offset");
16157 		return (-1);
16158 	}
16159 
16160 	/*
16161 	 * The section needs to be large enough to contain the DOF provider
16162 	 * structure appropriate for the given version.
16163 	 */
16164 	if (sec->dofs_size <
16165 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16166 	    offsetof(dof_provider_t, dofpv_prenoffs) :
16167 	    sizeof (dof_provider_t))) {
16168 		dtrace_dof_error(dof, "provider section too small");
16169 		return (-1);
16170 	}
16171 
16172 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16173 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16174 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16175 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16176 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16177 
16178 	if (str_sec == NULL || prb_sec == NULL ||
16179 	    arg_sec == NULL || off_sec == NULL)
16180 		return (-1);
16181 
16182 	enoff_sec = NULL;
16183 
16184 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16185 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
16186 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16187 	    provider->dofpv_prenoffs)) == NULL)
16188 		return (-1);
16189 
16190 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16191 
16192 	if (provider->dofpv_name >= str_sec->dofs_size ||
16193 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16194 		dtrace_dof_error(dof, "invalid provider name");
16195 		return (-1);
16196 	}
16197 
16198 	if (prb_sec->dofs_entsize == 0 ||
16199 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
16200 		dtrace_dof_error(dof, "invalid entry size");
16201 		return (-1);
16202 	}
16203 
16204 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16205 		dtrace_dof_error(dof, "misaligned entry size");
16206 		return (-1);
16207 	}
16208 
16209 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16210 		dtrace_dof_error(dof, "invalid entry size");
16211 		return (-1);
16212 	}
16213 
16214 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16215 		dtrace_dof_error(dof, "misaligned section offset");
16216 		return (-1);
16217 	}
16218 
16219 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16220 		dtrace_dof_error(dof, "invalid entry size");
16221 		return (-1);
16222 	}
16223 
16224 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16225 
16226 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16227 
16228 	/*
16229 	 * Take a pass through the probes to check for errors.
16230 	 */
16231 	for (j = 0; j < nprobes; j++) {
16232 		probe = (dof_probe_t *)(uintptr_t)(daddr +
16233 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16234 
16235 		if (probe->dofpr_func >= str_sec->dofs_size) {
16236 			dtrace_dof_error(dof, "invalid function name");
16237 			return (-1);
16238 		}
16239 
16240 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16241 			dtrace_dof_error(dof, "function name too long");
16242 			/*
16243 			 * Keep going if the function name is too long.
16244 			 * Unlike provider and probe names, we cannot reasonably
16245 			 * impose restrictions on function names, since they're
16246 			 * a property of the code being instrumented. We will
16247 			 * skip this probe in dtrace_helper_provide_one().
16248 			 */
16249 		}
16250 
16251 		if (probe->dofpr_name >= str_sec->dofs_size ||
16252 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16253 			dtrace_dof_error(dof, "invalid probe name");
16254 			return (-1);
16255 		}
16256 
16257 		/*
16258 		 * The offset count must not wrap the index, and the offsets
16259 		 * must also not overflow the section's data.
16260 		 */
16261 		if (probe->dofpr_offidx + probe->dofpr_noffs <
16262 		    probe->dofpr_offidx ||
16263 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
16264 		    off_sec->dofs_entsize > off_sec->dofs_size) {
16265 			dtrace_dof_error(dof, "invalid probe offset");
16266 			return (-1);
16267 		}
16268 
16269 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16270 			/*
16271 			 * If there's no is-enabled offset section, make sure
16272 			 * there aren't any is-enabled offsets. Otherwise
16273 			 * perform the same checks as for probe offsets
16274 			 * (immediately above).
16275 			 */
16276 			if (enoff_sec == NULL) {
16277 				if (probe->dofpr_enoffidx != 0 ||
16278 				    probe->dofpr_nenoffs != 0) {
16279 					dtrace_dof_error(dof, "is-enabled "
16280 					    "offsets with null section");
16281 					return (-1);
16282 				}
16283 			} else if (probe->dofpr_enoffidx +
16284 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16285 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16286 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16287 				dtrace_dof_error(dof, "invalid is-enabled "
16288 				    "offset");
16289 				return (-1);
16290 			}
16291 
16292 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16293 				dtrace_dof_error(dof, "zero probe and "
16294 				    "is-enabled offsets");
16295 				return (-1);
16296 			}
16297 		} else if (probe->dofpr_noffs == 0) {
16298 			dtrace_dof_error(dof, "zero probe offsets");
16299 			return (-1);
16300 		}
16301 
16302 		if (probe->dofpr_argidx + probe->dofpr_xargc <
16303 		    probe->dofpr_argidx ||
16304 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
16305 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
16306 			dtrace_dof_error(dof, "invalid args");
16307 			return (-1);
16308 		}
16309 
16310 		typeidx = probe->dofpr_nargv;
16311 		typestr = strtab + probe->dofpr_nargv;
16312 		for (k = 0; k < probe->dofpr_nargc; k++) {
16313 			if (typeidx >= str_sec->dofs_size) {
16314 				dtrace_dof_error(dof, "bad "
16315 				    "native argument type");
16316 				return (-1);
16317 			}
16318 
16319 			typesz = strlen(typestr) + 1;
16320 			if (typesz > DTRACE_ARGTYPELEN) {
16321 				dtrace_dof_error(dof, "native "
16322 				    "argument type too long");
16323 				return (-1);
16324 			}
16325 			typeidx += typesz;
16326 			typestr += typesz;
16327 		}
16328 
16329 		typeidx = probe->dofpr_xargv;
16330 		typestr = strtab + probe->dofpr_xargv;
16331 		for (k = 0; k < probe->dofpr_xargc; k++) {
16332 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16333 				dtrace_dof_error(dof, "bad "
16334 				    "native argument index");
16335 				return (-1);
16336 			}
16337 
16338 			if (typeidx >= str_sec->dofs_size) {
16339 				dtrace_dof_error(dof, "bad "
16340 				    "translated argument type");
16341 				return (-1);
16342 			}
16343 
16344 			typesz = strlen(typestr) + 1;
16345 			if (typesz > DTRACE_ARGTYPELEN) {
16346 				dtrace_dof_error(dof, "translated argument "
16347 				    "type too long");
16348 				return (-1);
16349 			}
16350 
16351 			typeidx += typesz;
16352 			typestr += typesz;
16353 		}
16354 	}
16355 
16356 	return (0);
16357 }
16358 
16359 static int
16360 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16361 {
16362 	dtrace_helpers_t *help;
16363 	dtrace_vstate_t *vstate;
16364 	dtrace_enabling_t *enab = NULL;
16365 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16366 	uintptr_t daddr = (uintptr_t)dof;
16367 
16368 	ASSERT(MUTEX_HELD(&dtrace_lock));
16369 
16370 	if ((help = p->p_dtrace_helpers) == NULL)
16371 		help = dtrace_helpers_create(p);
16372 
16373 	vstate = &help->dthps_vstate;
16374 
16375 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr,
16376 	    dhp->dofhp_dof, B_FALSE)) != 0) {
16377 		dtrace_dof_destroy(dof);
16378 		return (rv);
16379 	}
16380 
16381 	/*
16382 	 * Look for helper providers and validate their descriptions.
16383 	 */
16384 	for (i = 0; i < dof->dofh_secnum; i++) {
16385 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16386 		    dof->dofh_secoff + i * dof->dofh_secsize);
16387 
16388 		if (sec->dofs_type != DOF_SECT_PROVIDER)
16389 			continue;
16390 
16391 		if (dtrace_helper_provider_validate(dof, sec) != 0) {
16392 			dtrace_enabling_destroy(enab);
16393 			dtrace_dof_destroy(dof);
16394 			return (-1);
16395 		}
16396 
16397 		nprovs++;
16398 	}
16399 
16400 	/*
16401 	 * Now we need to walk through the ECB descriptions in the enabling.
16402 	 */
16403 	for (i = 0; i < enab->dten_ndesc; i++) {
16404 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16405 		dtrace_probedesc_t *desc = &ep->dted_probe;
16406 
16407 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16408 			continue;
16409 
16410 		if (strcmp(desc->dtpd_mod, "helper") != 0)
16411 			continue;
16412 
16413 		if (strcmp(desc->dtpd_func, "ustack") != 0)
16414 			continue;
16415 
16416 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16417 		    ep, help)) != 0) {
16418 			/*
16419 			 * Adding this helper action failed -- we are now going
16420 			 * to rip out the entire generation and return failure.
16421 			 */
16422 			(void) dtrace_helper_destroygen(help,
16423 			    help->dthps_generation);
16424 			dtrace_enabling_destroy(enab);
16425 			dtrace_dof_destroy(dof);
16426 			return (-1);
16427 		}
16428 
16429 		nhelpers++;
16430 	}
16431 
16432 	if (nhelpers < enab->dten_ndesc)
16433 		dtrace_dof_error(dof, "unmatched helpers");
16434 
16435 	gen = help->dthps_generation++;
16436 	dtrace_enabling_destroy(enab);
16437 
16438 	if (nprovs > 0) {
16439 		/*
16440 		 * Now that this is in-kernel, we change the sense of the
16441 		 * members:  dofhp_dof denotes the in-kernel copy of the DOF
16442 		 * and dofhp_addr denotes the address at user-level.
16443 		 */
16444 		dhp->dofhp_addr = dhp->dofhp_dof;
16445 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16446 
16447 		if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16448 			mutex_exit(&dtrace_lock);
16449 			dtrace_helper_provider_register(p, help, dhp);
16450 			mutex_enter(&dtrace_lock);
16451 
16452 			destroy = 0;
16453 		}
16454 	}
16455 
16456 	if (destroy)
16457 		dtrace_dof_destroy(dof);
16458 
16459 	return (gen);
16460 }
16461 
16462 static dtrace_helpers_t *
16463 dtrace_helpers_create(proc_t *p)
16464 {
16465 	dtrace_helpers_t *help;
16466 
16467 	ASSERT(MUTEX_HELD(&dtrace_lock));
16468 	ASSERT(p->p_dtrace_helpers == NULL);
16469 
16470 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16471 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16472 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16473 
16474 	p->p_dtrace_helpers = help;
16475 	dtrace_helpers++;
16476 
16477 	return (help);
16478 }
16479 
16480 #ifdef illumos
16481 static
16482 #endif
16483 void
16484 dtrace_helpers_destroy(proc_t *p)
16485 {
16486 	dtrace_helpers_t *help;
16487 	dtrace_vstate_t *vstate;
16488 #ifdef illumos
16489 	proc_t *p = curproc;
16490 #endif
16491 	int i;
16492 
16493 	mutex_enter(&dtrace_lock);
16494 
16495 	ASSERT(p->p_dtrace_helpers != NULL);
16496 	ASSERT(dtrace_helpers > 0);
16497 
16498 	help = p->p_dtrace_helpers;
16499 	vstate = &help->dthps_vstate;
16500 
16501 	/*
16502 	 * We're now going to lose the help from this process.
16503 	 */
16504 	p->p_dtrace_helpers = NULL;
16505 	dtrace_sync();
16506 
16507 	/*
16508 	 * Destory the helper actions.
16509 	 */
16510 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16511 		dtrace_helper_action_t *h, *next;
16512 
16513 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16514 			next = h->dtha_next;
16515 			dtrace_helper_action_destroy(h, vstate);
16516 			h = next;
16517 		}
16518 	}
16519 
16520 	mutex_exit(&dtrace_lock);
16521 
16522 	/*
16523 	 * Destroy the helper providers.
16524 	 */
16525 	if (help->dthps_maxprovs > 0) {
16526 		mutex_enter(&dtrace_meta_lock);
16527 		if (dtrace_meta_pid != NULL) {
16528 			ASSERT(dtrace_deferred_pid == NULL);
16529 
16530 			for (i = 0; i < help->dthps_nprovs; i++) {
16531 				dtrace_helper_provider_remove(
16532 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16533 			}
16534 		} else {
16535 			mutex_enter(&dtrace_lock);
16536 			ASSERT(help->dthps_deferred == 0 ||
16537 			    help->dthps_next != NULL ||
16538 			    help->dthps_prev != NULL ||
16539 			    help == dtrace_deferred_pid);
16540 
16541 			/*
16542 			 * Remove the helper from the deferred list.
16543 			 */
16544 			if (help->dthps_next != NULL)
16545 				help->dthps_next->dthps_prev = help->dthps_prev;
16546 			if (help->dthps_prev != NULL)
16547 				help->dthps_prev->dthps_next = help->dthps_next;
16548 			if (dtrace_deferred_pid == help) {
16549 				dtrace_deferred_pid = help->dthps_next;
16550 				ASSERT(help->dthps_prev == NULL);
16551 			}
16552 
16553 			mutex_exit(&dtrace_lock);
16554 		}
16555 
16556 		mutex_exit(&dtrace_meta_lock);
16557 
16558 		for (i = 0; i < help->dthps_nprovs; i++) {
16559 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16560 		}
16561 
16562 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16563 		    sizeof (dtrace_helper_provider_t *));
16564 	}
16565 
16566 	mutex_enter(&dtrace_lock);
16567 
16568 	dtrace_vstate_fini(&help->dthps_vstate);
16569 	kmem_free(help->dthps_actions,
16570 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16571 	kmem_free(help, sizeof (dtrace_helpers_t));
16572 
16573 	--dtrace_helpers;
16574 	mutex_exit(&dtrace_lock);
16575 }
16576 
16577 #ifdef illumos
16578 static
16579 #endif
16580 void
16581 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16582 {
16583 	dtrace_helpers_t *help, *newhelp;
16584 	dtrace_helper_action_t *helper, *new, *last;
16585 	dtrace_difo_t *dp;
16586 	dtrace_vstate_t *vstate;
16587 	int i, j, sz, hasprovs = 0;
16588 
16589 	mutex_enter(&dtrace_lock);
16590 	ASSERT(from->p_dtrace_helpers != NULL);
16591 	ASSERT(dtrace_helpers > 0);
16592 
16593 	help = from->p_dtrace_helpers;
16594 	newhelp = dtrace_helpers_create(to);
16595 	ASSERT(to->p_dtrace_helpers != NULL);
16596 
16597 	newhelp->dthps_generation = help->dthps_generation;
16598 	vstate = &newhelp->dthps_vstate;
16599 
16600 	/*
16601 	 * Duplicate the helper actions.
16602 	 */
16603 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16604 		if ((helper = help->dthps_actions[i]) == NULL)
16605 			continue;
16606 
16607 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16608 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16609 			    KM_SLEEP);
16610 			new->dtha_generation = helper->dtha_generation;
16611 
16612 			if ((dp = helper->dtha_predicate) != NULL) {
16613 				dp = dtrace_difo_duplicate(dp, vstate);
16614 				new->dtha_predicate = dp;
16615 			}
16616 
16617 			new->dtha_nactions = helper->dtha_nactions;
16618 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16619 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16620 
16621 			for (j = 0; j < new->dtha_nactions; j++) {
16622 				dtrace_difo_t *dp = helper->dtha_actions[j];
16623 
16624 				ASSERT(dp != NULL);
16625 				dp = dtrace_difo_duplicate(dp, vstate);
16626 				new->dtha_actions[j] = dp;
16627 			}
16628 
16629 			if (last != NULL) {
16630 				last->dtha_next = new;
16631 			} else {
16632 				newhelp->dthps_actions[i] = new;
16633 			}
16634 
16635 			last = new;
16636 		}
16637 	}
16638 
16639 	/*
16640 	 * Duplicate the helper providers and register them with the
16641 	 * DTrace framework.
16642 	 */
16643 	if (help->dthps_nprovs > 0) {
16644 		newhelp->dthps_nprovs = help->dthps_nprovs;
16645 		newhelp->dthps_maxprovs = help->dthps_nprovs;
16646 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16647 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16648 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16649 			newhelp->dthps_provs[i] = help->dthps_provs[i];
16650 			newhelp->dthps_provs[i]->dthp_ref++;
16651 		}
16652 
16653 		hasprovs = 1;
16654 	}
16655 
16656 	mutex_exit(&dtrace_lock);
16657 
16658 	if (hasprovs)
16659 		dtrace_helper_provider_register(to, newhelp, NULL);
16660 }
16661 
16662 /*
16663  * DTrace Hook Functions
16664  */
16665 static void
16666 dtrace_module_loaded(modctl_t *ctl)
16667 {
16668 	dtrace_provider_t *prv;
16669 
16670 	mutex_enter(&dtrace_provider_lock);
16671 #ifdef illumos
16672 	mutex_enter(&mod_lock);
16673 #endif
16674 
16675 #ifdef illumos
16676 	ASSERT(ctl->mod_busy);
16677 #endif
16678 
16679 	/*
16680 	 * We're going to call each providers per-module provide operation
16681 	 * specifying only this module.
16682 	 */
16683 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16684 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16685 
16686 #ifdef illumos
16687 	mutex_exit(&mod_lock);
16688 #endif
16689 	mutex_exit(&dtrace_provider_lock);
16690 
16691 	/*
16692 	 * If we have any retained enablings, we need to match against them.
16693 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16694 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16695 	 * module.  (In particular, this happens when loading scheduling
16696 	 * classes.)  So if we have any retained enablings, we need to dispatch
16697 	 * our task queue to do the match for us.
16698 	 */
16699 	mutex_enter(&dtrace_lock);
16700 
16701 	if (dtrace_retained == NULL) {
16702 		mutex_exit(&dtrace_lock);
16703 		return;
16704 	}
16705 
16706 	(void) taskq_dispatch(dtrace_taskq,
16707 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16708 
16709 	mutex_exit(&dtrace_lock);
16710 
16711 	/*
16712 	 * And now, for a little heuristic sleaze:  in general, we want to
16713 	 * match modules as soon as they load.  However, we cannot guarantee
16714 	 * this, because it would lead us to the lock ordering violation
16715 	 * outlined above.  The common case, of course, is that cpu_lock is
16716 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16717 	 * long enough for the task queue to do its work.  If it's not, it's
16718 	 * not a serious problem -- it just means that the module that we
16719 	 * just loaded may not be immediately instrumentable.
16720 	 */
16721 	delay(1);
16722 }
16723 
16724 static void
16725 #ifdef illumos
16726 dtrace_module_unloaded(modctl_t *ctl)
16727 #else
16728 dtrace_module_unloaded(modctl_t *ctl, int *error)
16729 #endif
16730 {
16731 	dtrace_probe_t template, *probe, *first, *next;
16732 	dtrace_provider_t *prov;
16733 #ifndef illumos
16734 	char modname[DTRACE_MODNAMELEN];
16735 	size_t len;
16736 #endif
16737 
16738 #ifdef illumos
16739 	template.dtpr_mod = ctl->mod_modname;
16740 #else
16741 	/* Handle the fact that ctl->filename may end in ".ko". */
16742 	strlcpy(modname, ctl->filename, sizeof(modname));
16743 	len = strlen(ctl->filename);
16744 	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16745 		modname[len - 3] = '\0';
16746 	template.dtpr_mod = modname;
16747 #endif
16748 
16749 	mutex_enter(&dtrace_provider_lock);
16750 #ifdef illumos
16751 	mutex_enter(&mod_lock);
16752 #endif
16753 	mutex_enter(&dtrace_lock);
16754 
16755 #ifndef illumos
16756 	if (ctl->nenabled > 0) {
16757 		/* Don't allow unloads if a probe is enabled. */
16758 		mutex_exit(&dtrace_provider_lock);
16759 		mutex_exit(&dtrace_lock);
16760 		*error = -1;
16761 		printf(
16762 	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16763 		return;
16764 	}
16765 #endif
16766 
16767 	if (dtrace_bymod == NULL) {
16768 		/*
16769 		 * The DTrace module is loaded (obviously) but not attached;
16770 		 * we don't have any work to do.
16771 		 */
16772 		mutex_exit(&dtrace_provider_lock);
16773 #ifdef illumos
16774 		mutex_exit(&mod_lock);
16775 #endif
16776 		mutex_exit(&dtrace_lock);
16777 		return;
16778 	}
16779 
16780 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16781 	    probe != NULL; probe = probe->dtpr_nextmod) {
16782 		if (probe->dtpr_ecb != NULL) {
16783 			mutex_exit(&dtrace_provider_lock);
16784 #ifdef illumos
16785 			mutex_exit(&mod_lock);
16786 #endif
16787 			mutex_exit(&dtrace_lock);
16788 
16789 			/*
16790 			 * This shouldn't _actually_ be possible -- we're
16791 			 * unloading a module that has an enabled probe in it.
16792 			 * (It's normally up to the provider to make sure that
16793 			 * this can't happen.)  However, because dtps_enable()
16794 			 * doesn't have a failure mode, there can be an
16795 			 * enable/unload race.  Upshot:  we don't want to
16796 			 * assert, but we're not going to disable the
16797 			 * probe, either.
16798 			 */
16799 			if (dtrace_err_verbose) {
16800 #ifdef illumos
16801 				cmn_err(CE_WARN, "unloaded module '%s' had "
16802 				    "enabled probes", ctl->mod_modname);
16803 #else
16804 				cmn_err(CE_WARN, "unloaded module '%s' had "
16805 				    "enabled probes", modname);
16806 #endif
16807 			}
16808 
16809 			return;
16810 		}
16811 	}
16812 
16813 	probe = first;
16814 
16815 	for (first = NULL; probe != NULL; probe = next) {
16816 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16817 
16818 		dtrace_probes[probe->dtpr_id - 1] = NULL;
16819 
16820 		next = probe->dtpr_nextmod;
16821 		dtrace_hash_remove(dtrace_bymod, probe);
16822 		dtrace_hash_remove(dtrace_byfunc, probe);
16823 		dtrace_hash_remove(dtrace_byname, probe);
16824 
16825 		if (first == NULL) {
16826 			first = probe;
16827 			probe->dtpr_nextmod = NULL;
16828 		} else {
16829 			probe->dtpr_nextmod = first;
16830 			first = probe;
16831 		}
16832 	}
16833 
16834 	/*
16835 	 * We've removed all of the module's probes from the hash chains and
16836 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16837 	 * everyone has cleared out from any probe array processing.
16838 	 */
16839 	dtrace_sync();
16840 
16841 	for (probe = first; probe != NULL; probe = first) {
16842 		first = probe->dtpr_nextmod;
16843 		prov = probe->dtpr_provider;
16844 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16845 		    probe->dtpr_arg);
16846 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16847 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16848 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16849 #ifdef illumos
16850 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16851 #else
16852 		free_unr(dtrace_arena, probe->dtpr_id);
16853 #endif
16854 		kmem_free(probe, sizeof (dtrace_probe_t));
16855 	}
16856 
16857 	mutex_exit(&dtrace_lock);
16858 #ifdef illumos
16859 	mutex_exit(&mod_lock);
16860 #endif
16861 	mutex_exit(&dtrace_provider_lock);
16862 }
16863 
16864 #ifndef illumos
16865 static void
16866 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16867 {
16868 
16869 	dtrace_module_loaded(lf);
16870 }
16871 
16872 static void
16873 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16874 {
16875 
16876 	if (*error != 0)
16877 		/* We already have an error, so don't do anything. */
16878 		return;
16879 	dtrace_module_unloaded(lf, error);
16880 }
16881 #endif
16882 
16883 #ifdef illumos
16884 static void
16885 dtrace_suspend(void)
16886 {
16887 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16888 }
16889 
16890 static void
16891 dtrace_resume(void)
16892 {
16893 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16894 }
16895 #endif
16896 
16897 static int
16898 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16899 {
16900 	ASSERT(MUTEX_HELD(&cpu_lock));
16901 	mutex_enter(&dtrace_lock);
16902 
16903 	switch (what) {
16904 	case CPU_CONFIG: {
16905 		dtrace_state_t *state;
16906 		dtrace_optval_t *opt, rs, c;
16907 
16908 		/*
16909 		 * For now, we only allocate a new buffer for anonymous state.
16910 		 */
16911 		if ((state = dtrace_anon.dta_state) == NULL)
16912 			break;
16913 
16914 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16915 			break;
16916 
16917 		opt = state->dts_options;
16918 		c = opt[DTRACEOPT_CPU];
16919 
16920 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16921 			break;
16922 
16923 		/*
16924 		 * Regardless of what the actual policy is, we're going to
16925 		 * temporarily set our resize policy to be manual.  We're
16926 		 * also going to temporarily set our CPU option to denote
16927 		 * the newly configured CPU.
16928 		 */
16929 		rs = opt[DTRACEOPT_BUFRESIZE];
16930 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16931 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16932 
16933 		(void) dtrace_state_buffers(state);
16934 
16935 		opt[DTRACEOPT_BUFRESIZE] = rs;
16936 		opt[DTRACEOPT_CPU] = c;
16937 
16938 		break;
16939 	}
16940 
16941 	case CPU_UNCONFIG:
16942 		/*
16943 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16944 		 * buffer will be freed when the consumer exits.)
16945 		 */
16946 		break;
16947 
16948 	default:
16949 		break;
16950 	}
16951 
16952 	mutex_exit(&dtrace_lock);
16953 	return (0);
16954 }
16955 
16956 #ifdef illumos
16957 static void
16958 dtrace_cpu_setup_initial(processorid_t cpu)
16959 {
16960 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16961 }
16962 #endif
16963 
16964 static void
16965 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16966 {
16967 	if (dtrace_toxranges >= dtrace_toxranges_max) {
16968 		int osize, nsize;
16969 		dtrace_toxrange_t *range;
16970 
16971 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16972 
16973 		if (osize == 0) {
16974 			ASSERT(dtrace_toxrange == NULL);
16975 			ASSERT(dtrace_toxranges_max == 0);
16976 			dtrace_toxranges_max = 1;
16977 		} else {
16978 			dtrace_toxranges_max <<= 1;
16979 		}
16980 
16981 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16982 		range = kmem_zalloc(nsize, KM_SLEEP);
16983 
16984 		if (dtrace_toxrange != NULL) {
16985 			ASSERT(osize != 0);
16986 			bcopy(dtrace_toxrange, range, osize);
16987 			kmem_free(dtrace_toxrange, osize);
16988 		}
16989 
16990 		dtrace_toxrange = range;
16991 	}
16992 
16993 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16994 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16995 
16996 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16997 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16998 	dtrace_toxranges++;
16999 }
17000 
17001 static void
17002 dtrace_getf_barrier()
17003 {
17004 #ifdef illumos
17005 	/*
17006 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
17007 	 * that contain calls to getf(), this routine will be called on every
17008 	 * closef() before either the underlying vnode is released or the
17009 	 * file_t itself is freed.  By the time we are here, it is essential
17010 	 * that the file_t can no longer be accessed from a call to getf()
17011 	 * in probe context -- that assures that a dtrace_sync() can be used
17012 	 * to clear out any enablings referring to the old structures.
17013 	 */
17014 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
17015 	    kcred->cr_zone->zone_dtrace_getf != 0)
17016 		dtrace_sync();
17017 #endif
17018 }
17019 
17020 /*
17021  * DTrace Driver Cookbook Functions
17022  */
17023 #ifdef illumos
17024 /*ARGSUSED*/
17025 static int
17026 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
17027 {
17028 	dtrace_provider_id_t id;
17029 	dtrace_state_t *state = NULL;
17030 	dtrace_enabling_t *enab;
17031 
17032 	mutex_enter(&cpu_lock);
17033 	mutex_enter(&dtrace_provider_lock);
17034 	mutex_enter(&dtrace_lock);
17035 
17036 	if (ddi_soft_state_init(&dtrace_softstate,
17037 	    sizeof (dtrace_state_t), 0) != 0) {
17038 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
17039 		mutex_exit(&cpu_lock);
17040 		mutex_exit(&dtrace_provider_lock);
17041 		mutex_exit(&dtrace_lock);
17042 		return (DDI_FAILURE);
17043 	}
17044 
17045 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
17046 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
17047 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
17048 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
17049 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
17050 		ddi_remove_minor_node(devi, NULL);
17051 		ddi_soft_state_fini(&dtrace_softstate);
17052 		mutex_exit(&cpu_lock);
17053 		mutex_exit(&dtrace_provider_lock);
17054 		mutex_exit(&dtrace_lock);
17055 		return (DDI_FAILURE);
17056 	}
17057 
17058 	ddi_report_dev(devi);
17059 	dtrace_devi = devi;
17060 
17061 	dtrace_modload = dtrace_module_loaded;
17062 	dtrace_modunload = dtrace_module_unloaded;
17063 	dtrace_cpu_init = dtrace_cpu_setup_initial;
17064 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
17065 	dtrace_helpers_fork = dtrace_helpers_duplicate;
17066 	dtrace_cpustart_init = dtrace_suspend;
17067 	dtrace_cpustart_fini = dtrace_resume;
17068 	dtrace_debugger_init = dtrace_suspend;
17069 	dtrace_debugger_fini = dtrace_resume;
17070 
17071 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17072 
17073 	ASSERT(MUTEX_HELD(&cpu_lock));
17074 
17075 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
17076 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
17077 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
17078 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
17079 	    VM_SLEEP | VMC_IDENTIFIER);
17080 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
17081 	    1, INT_MAX, 0);
17082 
17083 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
17084 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
17085 	    NULL, NULL, NULL, NULL, NULL, 0);
17086 
17087 	ASSERT(MUTEX_HELD(&cpu_lock));
17088 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
17089 	    offsetof(dtrace_probe_t, dtpr_nextmod),
17090 	    offsetof(dtrace_probe_t, dtpr_prevmod));
17091 
17092 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
17093 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
17094 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
17095 
17096 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
17097 	    offsetof(dtrace_probe_t, dtpr_nextname),
17098 	    offsetof(dtrace_probe_t, dtpr_prevname));
17099 
17100 	if (dtrace_retain_max < 1) {
17101 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
17102 		    "setting to 1", dtrace_retain_max);
17103 		dtrace_retain_max = 1;
17104 	}
17105 
17106 	/*
17107 	 * Now discover our toxic ranges.
17108 	 */
17109 	dtrace_toxic_ranges(dtrace_toxrange_add);
17110 
17111 	/*
17112 	 * Before we register ourselves as a provider to our own framework,
17113 	 * we would like to assert that dtrace_provider is NULL -- but that's
17114 	 * not true if we were loaded as a dependency of a DTrace provider.
17115 	 * Once we've registered, we can assert that dtrace_provider is our
17116 	 * pseudo provider.
17117 	 */
17118 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
17119 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17120 
17121 	ASSERT(dtrace_provider != NULL);
17122 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17123 
17124 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17125 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17126 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17127 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
17128 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17129 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17130 
17131 	dtrace_anon_property();
17132 	mutex_exit(&cpu_lock);
17133 
17134 	/*
17135 	 * If there are already providers, we must ask them to provide their
17136 	 * probes, and then match any anonymous enabling against them.  Note
17137 	 * that there should be no other retained enablings at this time:
17138 	 * the only retained enablings at this time should be the anonymous
17139 	 * enabling.
17140 	 */
17141 	if (dtrace_anon.dta_enabling != NULL) {
17142 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17143 
17144 		dtrace_enabling_provide(NULL);
17145 		state = dtrace_anon.dta_state;
17146 
17147 		/*
17148 		 * We couldn't hold cpu_lock across the above call to
17149 		 * dtrace_enabling_provide(), but we must hold it to actually
17150 		 * enable the probes.  We have to drop all of our locks, pick
17151 		 * up cpu_lock, and regain our locks before matching the
17152 		 * retained anonymous enabling.
17153 		 */
17154 		mutex_exit(&dtrace_lock);
17155 		mutex_exit(&dtrace_provider_lock);
17156 
17157 		mutex_enter(&cpu_lock);
17158 		mutex_enter(&dtrace_provider_lock);
17159 		mutex_enter(&dtrace_lock);
17160 
17161 		if ((enab = dtrace_anon.dta_enabling) != NULL)
17162 			(void) dtrace_enabling_match(enab, NULL);
17163 
17164 		mutex_exit(&cpu_lock);
17165 	}
17166 
17167 	mutex_exit(&dtrace_lock);
17168 	mutex_exit(&dtrace_provider_lock);
17169 
17170 	if (state != NULL) {
17171 		/*
17172 		 * If we created any anonymous state, set it going now.
17173 		 */
17174 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17175 	}
17176 
17177 	return (DDI_SUCCESS);
17178 }
17179 #endif	/* illumos */
17180 
17181 #ifndef illumos
17182 static void dtrace_dtr(void *);
17183 #endif
17184 
17185 /*ARGSUSED*/
17186 static int
17187 #ifdef illumos
17188 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17189 #else
17190 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17191 #endif
17192 {
17193 	dtrace_state_t *state;
17194 	uint32_t priv;
17195 	uid_t uid;
17196 	zoneid_t zoneid;
17197 
17198 #ifdef illumos
17199 	if (getminor(*devp) == DTRACEMNRN_HELPER)
17200 		return (0);
17201 
17202 	/*
17203 	 * If this wasn't an open with the "helper" minor, then it must be
17204 	 * the "dtrace" minor.
17205 	 */
17206 	if (getminor(*devp) == DTRACEMNRN_DTRACE)
17207 		return (ENXIO);
17208 #else
17209 	cred_t *cred_p = NULL;
17210 	cred_p = dev->si_cred;
17211 
17212 	/*
17213 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
17214 	 * caller lacks sufficient permission to do anything with DTrace.
17215 	 */
17216 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17217 	if (priv == DTRACE_PRIV_NONE) {
17218 #endif
17219 
17220 		return (EACCES);
17221 	}
17222 
17223 	/*
17224 	 * Ask all providers to provide all their probes.
17225 	 */
17226 	mutex_enter(&dtrace_provider_lock);
17227 	dtrace_probe_provide(NULL, NULL);
17228 	mutex_exit(&dtrace_provider_lock);
17229 
17230 	mutex_enter(&cpu_lock);
17231 	mutex_enter(&dtrace_lock);
17232 	dtrace_opens++;
17233 	dtrace_membar_producer();
17234 
17235 #ifdef illumos
17236 	/*
17237 	 * If the kernel debugger is active (that is, if the kernel debugger
17238 	 * modified text in some way), we won't allow the open.
17239 	 */
17240 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17241 		dtrace_opens--;
17242 		mutex_exit(&cpu_lock);
17243 		mutex_exit(&dtrace_lock);
17244 		return (EBUSY);
17245 	}
17246 
17247 	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17248 		/*
17249 		 * If DTrace helper tracing is enabled, we need to allocate the
17250 		 * trace buffer and initialize the values.
17251 		 */
17252 		dtrace_helptrace_buffer =
17253 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17254 		dtrace_helptrace_next = 0;
17255 		dtrace_helptrace_wrapped = 0;
17256 		dtrace_helptrace_enable = 0;
17257 	}
17258 
17259 	state = dtrace_state_create(devp, cred_p);
17260 #else
17261 	state = dtrace_state_create(dev, NULL);
17262 	devfs_set_cdevpriv(state, dtrace_dtr);
17263 #endif
17264 
17265 	mutex_exit(&cpu_lock);
17266 
17267 	if (state == NULL) {
17268 #ifdef illumos
17269 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17270 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17271 #else
17272 		--dtrace_opens;
17273 #endif
17274 		mutex_exit(&dtrace_lock);
17275 		return (EAGAIN);
17276 	}
17277 
17278 	mutex_exit(&dtrace_lock);
17279 
17280 	return (0);
17281 }
17282 
17283 /*ARGSUSED*/
17284 #ifdef illumos
17285 static int
17286 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17287 #else
17288 static void
17289 dtrace_dtr(void *data)
17290 #endif
17291 {
17292 #ifdef illumos
17293 	minor_t minor = getminor(dev);
17294 	dtrace_state_t *state;
17295 #endif
17296 	dtrace_helptrace_t *buf = NULL;
17297 
17298 #ifdef illumos
17299 	if (minor == DTRACEMNRN_HELPER)
17300 		return (0);
17301 
17302 	state = ddi_get_soft_state(dtrace_softstate, minor);
17303 #else
17304 	dtrace_state_t *state = data;
17305 #endif
17306 
17307 	mutex_enter(&cpu_lock);
17308 	mutex_enter(&dtrace_lock);
17309 
17310 #ifdef illumos
17311 	if (state->dts_anon)
17312 #else
17313 	if (state != NULL && state->dts_anon)
17314 #endif
17315 	{
17316 		/*
17317 		 * There is anonymous state. Destroy that first.
17318 		 */
17319 		ASSERT(dtrace_anon.dta_state == NULL);
17320 		dtrace_state_destroy(state->dts_anon);
17321 	}
17322 
17323 	if (dtrace_helptrace_disable) {
17324 		/*
17325 		 * If we have been told to disable helper tracing, set the
17326 		 * buffer to NULL before calling into dtrace_state_destroy();
17327 		 * we take advantage of its dtrace_sync() to know that no
17328 		 * CPU is in probe context with enabled helper tracing
17329 		 * after it returns.
17330 		 */
17331 		buf = dtrace_helptrace_buffer;
17332 		dtrace_helptrace_buffer = NULL;
17333 	}
17334 
17335 #ifdef illumos
17336 	dtrace_state_destroy(state);
17337 #else
17338 	if (state != NULL) {
17339 		dtrace_state_destroy(state);
17340 		kmem_free(state, 0);
17341 	}
17342 #endif
17343 	ASSERT(dtrace_opens > 0);
17344 
17345 #ifdef illumos
17346 	/*
17347 	 * Only relinquish control of the kernel debugger interface when there
17348 	 * are no consumers and no anonymous enablings.
17349 	 */
17350 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17351 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17352 #else
17353 	--dtrace_opens;
17354 #endif
17355 
17356 	if (buf != NULL) {
17357 		kmem_free(buf, dtrace_helptrace_bufsize);
17358 		dtrace_helptrace_disable = 0;
17359 	}
17360 
17361 	mutex_exit(&dtrace_lock);
17362 	mutex_exit(&cpu_lock);
17363 
17364 #ifdef illumos
17365 	return (0);
17366 #endif
17367 }
17368 
17369 #ifdef illumos
17370 /*ARGSUSED*/
17371 static int
17372 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17373 {
17374 	int rval;
17375 	dof_helper_t help, *dhp = NULL;
17376 
17377 	switch (cmd) {
17378 	case DTRACEHIOC_ADDDOF:
17379 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17380 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
17381 			return (EFAULT);
17382 		}
17383 
17384 		dhp = &help;
17385 		arg = (intptr_t)help.dofhp_dof;
17386 		/*FALLTHROUGH*/
17387 
17388 	case DTRACEHIOC_ADD: {
17389 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17390 
17391 		if (dof == NULL)
17392 			return (rval);
17393 
17394 		mutex_enter(&dtrace_lock);
17395 
17396 		/*
17397 		 * dtrace_helper_slurp() takes responsibility for the dof --
17398 		 * it may free it now or it may save it and free it later.
17399 		 */
17400 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17401 			*rv = rval;
17402 			rval = 0;
17403 		} else {
17404 			rval = EINVAL;
17405 		}
17406 
17407 		mutex_exit(&dtrace_lock);
17408 		return (rval);
17409 	}
17410 
17411 	case DTRACEHIOC_REMOVE: {
17412 		mutex_enter(&dtrace_lock);
17413 		rval = dtrace_helper_destroygen(NULL, arg);
17414 		mutex_exit(&dtrace_lock);
17415 
17416 		return (rval);
17417 	}
17418 
17419 	default:
17420 		break;
17421 	}
17422 
17423 	return (ENOTTY);
17424 }
17425 
17426 /*ARGSUSED*/
17427 static int
17428 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17429 {
17430 	minor_t minor = getminor(dev);
17431 	dtrace_state_t *state;
17432 	int rval;
17433 
17434 	if (minor == DTRACEMNRN_HELPER)
17435 		return (dtrace_ioctl_helper(cmd, arg, rv));
17436 
17437 	state = ddi_get_soft_state(dtrace_softstate, minor);
17438 
17439 	if (state->dts_anon) {
17440 		ASSERT(dtrace_anon.dta_state == NULL);
17441 		state = state->dts_anon;
17442 	}
17443 
17444 	switch (cmd) {
17445 	case DTRACEIOC_PROVIDER: {
17446 		dtrace_providerdesc_t pvd;
17447 		dtrace_provider_t *pvp;
17448 
17449 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17450 			return (EFAULT);
17451 
17452 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17453 		mutex_enter(&dtrace_provider_lock);
17454 
17455 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17456 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17457 				break;
17458 		}
17459 
17460 		mutex_exit(&dtrace_provider_lock);
17461 
17462 		if (pvp == NULL)
17463 			return (ESRCH);
17464 
17465 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17466 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17467 
17468 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17469 			return (EFAULT);
17470 
17471 		return (0);
17472 	}
17473 
17474 	case DTRACEIOC_EPROBE: {
17475 		dtrace_eprobedesc_t epdesc;
17476 		dtrace_ecb_t *ecb;
17477 		dtrace_action_t *act;
17478 		void *buf;
17479 		size_t size;
17480 		uintptr_t dest;
17481 		int nrecs;
17482 
17483 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17484 			return (EFAULT);
17485 
17486 		mutex_enter(&dtrace_lock);
17487 
17488 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17489 			mutex_exit(&dtrace_lock);
17490 			return (EINVAL);
17491 		}
17492 
17493 		if (ecb->dte_probe == NULL) {
17494 			mutex_exit(&dtrace_lock);
17495 			return (EINVAL);
17496 		}
17497 
17498 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17499 		epdesc.dtepd_uarg = ecb->dte_uarg;
17500 		epdesc.dtepd_size = ecb->dte_size;
17501 
17502 		nrecs = epdesc.dtepd_nrecs;
17503 		epdesc.dtepd_nrecs = 0;
17504 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17505 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17506 				continue;
17507 
17508 			epdesc.dtepd_nrecs++;
17509 		}
17510 
17511 		/*
17512 		 * Now that we have the size, we need to allocate a temporary
17513 		 * buffer in which to store the complete description.  We need
17514 		 * the temporary buffer to be able to drop dtrace_lock()
17515 		 * across the copyout(), below.
17516 		 */
17517 		size = sizeof (dtrace_eprobedesc_t) +
17518 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17519 
17520 		buf = kmem_alloc(size, KM_SLEEP);
17521 		dest = (uintptr_t)buf;
17522 
17523 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17524 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17525 
17526 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17527 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17528 				continue;
17529 
17530 			if (nrecs-- == 0)
17531 				break;
17532 
17533 			bcopy(&act->dta_rec, (void *)dest,
17534 			    sizeof (dtrace_recdesc_t));
17535 			dest += sizeof (dtrace_recdesc_t);
17536 		}
17537 
17538 		mutex_exit(&dtrace_lock);
17539 
17540 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17541 			kmem_free(buf, size);
17542 			return (EFAULT);
17543 		}
17544 
17545 		kmem_free(buf, size);
17546 		return (0);
17547 	}
17548 
17549 	case DTRACEIOC_AGGDESC: {
17550 		dtrace_aggdesc_t aggdesc;
17551 		dtrace_action_t *act;
17552 		dtrace_aggregation_t *agg;
17553 		int nrecs;
17554 		uint32_t offs;
17555 		dtrace_recdesc_t *lrec;
17556 		void *buf;
17557 		size_t size;
17558 		uintptr_t dest;
17559 
17560 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17561 			return (EFAULT);
17562 
17563 		mutex_enter(&dtrace_lock);
17564 
17565 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17566 			mutex_exit(&dtrace_lock);
17567 			return (EINVAL);
17568 		}
17569 
17570 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17571 
17572 		nrecs = aggdesc.dtagd_nrecs;
17573 		aggdesc.dtagd_nrecs = 0;
17574 
17575 		offs = agg->dtag_base;
17576 		lrec = &agg->dtag_action.dta_rec;
17577 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17578 
17579 		for (act = agg->dtag_first; ; act = act->dta_next) {
17580 			ASSERT(act->dta_intuple ||
17581 			    DTRACEACT_ISAGG(act->dta_kind));
17582 
17583 			/*
17584 			 * If this action has a record size of zero, it
17585 			 * denotes an argument to the aggregating action.
17586 			 * Because the presence of this record doesn't (or
17587 			 * shouldn't) affect the way the data is interpreted,
17588 			 * we don't copy it out to save user-level the
17589 			 * confusion of dealing with a zero-length record.
17590 			 */
17591 			if (act->dta_rec.dtrd_size == 0) {
17592 				ASSERT(agg->dtag_hasarg);
17593 				continue;
17594 			}
17595 
17596 			aggdesc.dtagd_nrecs++;
17597 
17598 			if (act == &agg->dtag_action)
17599 				break;
17600 		}
17601 
17602 		/*
17603 		 * Now that we have the size, we need to allocate a temporary
17604 		 * buffer in which to store the complete description.  We need
17605 		 * the temporary buffer to be able to drop dtrace_lock()
17606 		 * across the copyout(), below.
17607 		 */
17608 		size = sizeof (dtrace_aggdesc_t) +
17609 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17610 
17611 		buf = kmem_alloc(size, KM_SLEEP);
17612 		dest = (uintptr_t)buf;
17613 
17614 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17615 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17616 
17617 		for (act = agg->dtag_first; ; act = act->dta_next) {
17618 			dtrace_recdesc_t rec = act->dta_rec;
17619 
17620 			/*
17621 			 * See the comment in the above loop for why we pass
17622 			 * over zero-length records.
17623 			 */
17624 			if (rec.dtrd_size == 0) {
17625 				ASSERT(agg->dtag_hasarg);
17626 				continue;
17627 			}
17628 
17629 			if (nrecs-- == 0)
17630 				break;
17631 
17632 			rec.dtrd_offset -= offs;
17633 			bcopy(&rec, (void *)dest, sizeof (rec));
17634 			dest += sizeof (dtrace_recdesc_t);
17635 
17636 			if (act == &agg->dtag_action)
17637 				break;
17638 		}
17639 
17640 		mutex_exit(&dtrace_lock);
17641 
17642 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17643 			kmem_free(buf, size);
17644 			return (EFAULT);
17645 		}
17646 
17647 		kmem_free(buf, size);
17648 		return (0);
17649 	}
17650 
17651 	case DTRACEIOC_ENABLE: {
17652 		dof_hdr_t *dof;
17653 		dtrace_enabling_t *enab = NULL;
17654 		dtrace_vstate_t *vstate;
17655 		int err = 0;
17656 
17657 		*rv = 0;
17658 
17659 		/*
17660 		 * If a NULL argument has been passed, we take this as our
17661 		 * cue to reevaluate our enablings.
17662 		 */
17663 		if (arg == NULL) {
17664 			dtrace_enabling_matchall();
17665 
17666 			return (0);
17667 		}
17668 
17669 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17670 			return (rval);
17671 
17672 		mutex_enter(&cpu_lock);
17673 		mutex_enter(&dtrace_lock);
17674 		vstate = &state->dts_vstate;
17675 
17676 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17677 			mutex_exit(&dtrace_lock);
17678 			mutex_exit(&cpu_lock);
17679 			dtrace_dof_destroy(dof);
17680 			return (EBUSY);
17681 		}
17682 
17683 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17684 			mutex_exit(&dtrace_lock);
17685 			mutex_exit(&cpu_lock);
17686 			dtrace_dof_destroy(dof);
17687 			return (EINVAL);
17688 		}
17689 
17690 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17691 			dtrace_enabling_destroy(enab);
17692 			mutex_exit(&dtrace_lock);
17693 			mutex_exit(&cpu_lock);
17694 			dtrace_dof_destroy(dof);
17695 			return (rval);
17696 		}
17697 
17698 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17699 			err = dtrace_enabling_retain(enab);
17700 		} else {
17701 			dtrace_enabling_destroy(enab);
17702 		}
17703 
17704 		mutex_exit(&cpu_lock);
17705 		mutex_exit(&dtrace_lock);
17706 		dtrace_dof_destroy(dof);
17707 
17708 		return (err);
17709 	}
17710 
17711 	case DTRACEIOC_REPLICATE: {
17712 		dtrace_repldesc_t desc;
17713 		dtrace_probedesc_t *match = &desc.dtrpd_match;
17714 		dtrace_probedesc_t *create = &desc.dtrpd_create;
17715 		int err;
17716 
17717 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17718 			return (EFAULT);
17719 
17720 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17721 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17722 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17723 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17724 
17725 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17726 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17727 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17728 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17729 
17730 		mutex_enter(&dtrace_lock);
17731 		err = dtrace_enabling_replicate(state, match, create);
17732 		mutex_exit(&dtrace_lock);
17733 
17734 		return (err);
17735 	}
17736 
17737 	case DTRACEIOC_PROBEMATCH:
17738 	case DTRACEIOC_PROBES: {
17739 		dtrace_probe_t *probe = NULL;
17740 		dtrace_probedesc_t desc;
17741 		dtrace_probekey_t pkey;
17742 		dtrace_id_t i;
17743 		int m = 0;
17744 		uint32_t priv;
17745 		uid_t uid;
17746 		zoneid_t zoneid;
17747 
17748 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17749 			return (EFAULT);
17750 
17751 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17752 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17753 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17754 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17755 
17756 		/*
17757 		 * Before we attempt to match this probe, we want to give
17758 		 * all providers the opportunity to provide it.
17759 		 */
17760 		if (desc.dtpd_id == DTRACE_IDNONE) {
17761 			mutex_enter(&dtrace_provider_lock);
17762 			dtrace_probe_provide(&desc, NULL);
17763 			mutex_exit(&dtrace_provider_lock);
17764 			desc.dtpd_id++;
17765 		}
17766 
17767 		if (cmd == DTRACEIOC_PROBEMATCH)  {
17768 			dtrace_probekey(&desc, &pkey);
17769 			pkey.dtpk_id = DTRACE_IDNONE;
17770 		}
17771 
17772 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17773 
17774 		mutex_enter(&dtrace_lock);
17775 
17776 		if (cmd == DTRACEIOC_PROBEMATCH) {
17777 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17778 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17779 				    (m = dtrace_match_probe(probe, &pkey,
17780 				    priv, uid, zoneid)) != 0)
17781 					break;
17782 			}
17783 
17784 			if (m < 0) {
17785 				mutex_exit(&dtrace_lock);
17786 				return (EINVAL);
17787 			}
17788 
17789 		} else {
17790 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17791 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17792 				    dtrace_match_priv(probe, priv, uid, zoneid))
17793 					break;
17794 			}
17795 		}
17796 
17797 		if (probe == NULL) {
17798 			mutex_exit(&dtrace_lock);
17799 			return (ESRCH);
17800 		}
17801 
17802 		dtrace_probe_description(probe, &desc);
17803 		mutex_exit(&dtrace_lock);
17804 
17805 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17806 			return (EFAULT);
17807 
17808 		return (0);
17809 	}
17810 
17811 	case DTRACEIOC_PROBEARG: {
17812 		dtrace_argdesc_t desc;
17813 		dtrace_probe_t *probe;
17814 		dtrace_provider_t *prov;
17815 
17816 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17817 			return (EFAULT);
17818 
17819 		if (desc.dtargd_id == DTRACE_IDNONE)
17820 			return (EINVAL);
17821 
17822 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17823 			return (EINVAL);
17824 
17825 		mutex_enter(&dtrace_provider_lock);
17826 		mutex_enter(&mod_lock);
17827 		mutex_enter(&dtrace_lock);
17828 
17829 		if (desc.dtargd_id > dtrace_nprobes) {
17830 			mutex_exit(&dtrace_lock);
17831 			mutex_exit(&mod_lock);
17832 			mutex_exit(&dtrace_provider_lock);
17833 			return (EINVAL);
17834 		}
17835 
17836 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17837 			mutex_exit(&dtrace_lock);
17838 			mutex_exit(&mod_lock);
17839 			mutex_exit(&dtrace_provider_lock);
17840 			return (EINVAL);
17841 		}
17842 
17843 		mutex_exit(&dtrace_lock);
17844 
17845 		prov = probe->dtpr_provider;
17846 
17847 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17848 			/*
17849 			 * There isn't any typed information for this probe.
17850 			 * Set the argument number to DTRACE_ARGNONE.
17851 			 */
17852 			desc.dtargd_ndx = DTRACE_ARGNONE;
17853 		} else {
17854 			desc.dtargd_native[0] = '\0';
17855 			desc.dtargd_xlate[0] = '\0';
17856 			desc.dtargd_mapping = desc.dtargd_ndx;
17857 
17858 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17859 			    probe->dtpr_id, probe->dtpr_arg, &desc);
17860 		}
17861 
17862 		mutex_exit(&mod_lock);
17863 		mutex_exit(&dtrace_provider_lock);
17864 
17865 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17866 			return (EFAULT);
17867 
17868 		return (0);
17869 	}
17870 
17871 	case DTRACEIOC_GO: {
17872 		processorid_t cpuid;
17873 		rval = dtrace_state_go(state, &cpuid);
17874 
17875 		if (rval != 0)
17876 			return (rval);
17877 
17878 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17879 			return (EFAULT);
17880 
17881 		return (0);
17882 	}
17883 
17884 	case DTRACEIOC_STOP: {
17885 		processorid_t cpuid;
17886 
17887 		mutex_enter(&dtrace_lock);
17888 		rval = dtrace_state_stop(state, &cpuid);
17889 		mutex_exit(&dtrace_lock);
17890 
17891 		if (rval != 0)
17892 			return (rval);
17893 
17894 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17895 			return (EFAULT);
17896 
17897 		return (0);
17898 	}
17899 
17900 	case DTRACEIOC_DOFGET: {
17901 		dof_hdr_t hdr, *dof;
17902 		uint64_t len;
17903 
17904 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17905 			return (EFAULT);
17906 
17907 		mutex_enter(&dtrace_lock);
17908 		dof = dtrace_dof_create(state);
17909 		mutex_exit(&dtrace_lock);
17910 
17911 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17912 		rval = copyout(dof, (void *)arg, len);
17913 		dtrace_dof_destroy(dof);
17914 
17915 		return (rval == 0 ? 0 : EFAULT);
17916 	}
17917 
17918 	case DTRACEIOC_AGGSNAP:
17919 	case DTRACEIOC_BUFSNAP: {
17920 		dtrace_bufdesc_t desc;
17921 		caddr_t cached;
17922 		dtrace_buffer_t *buf;
17923 
17924 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17925 			return (EFAULT);
17926 
17927 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17928 			return (EINVAL);
17929 
17930 		mutex_enter(&dtrace_lock);
17931 
17932 		if (cmd == DTRACEIOC_BUFSNAP) {
17933 			buf = &state->dts_buffer[desc.dtbd_cpu];
17934 		} else {
17935 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17936 		}
17937 
17938 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17939 			size_t sz = buf->dtb_offset;
17940 
17941 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17942 				mutex_exit(&dtrace_lock);
17943 				return (EBUSY);
17944 			}
17945 
17946 			/*
17947 			 * If this buffer has already been consumed, we're
17948 			 * going to indicate that there's nothing left here
17949 			 * to consume.
17950 			 */
17951 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17952 				mutex_exit(&dtrace_lock);
17953 
17954 				desc.dtbd_size = 0;
17955 				desc.dtbd_drops = 0;
17956 				desc.dtbd_errors = 0;
17957 				desc.dtbd_oldest = 0;
17958 				sz = sizeof (desc);
17959 
17960 				if (copyout(&desc, (void *)arg, sz) != 0)
17961 					return (EFAULT);
17962 
17963 				return (0);
17964 			}
17965 
17966 			/*
17967 			 * If this is a ring buffer that has wrapped, we want
17968 			 * to copy the whole thing out.
17969 			 */
17970 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17971 				dtrace_buffer_polish(buf);
17972 				sz = buf->dtb_size;
17973 			}
17974 
17975 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17976 				mutex_exit(&dtrace_lock);
17977 				return (EFAULT);
17978 			}
17979 
17980 			desc.dtbd_size = sz;
17981 			desc.dtbd_drops = buf->dtb_drops;
17982 			desc.dtbd_errors = buf->dtb_errors;
17983 			desc.dtbd_oldest = buf->dtb_xamot_offset;
17984 			desc.dtbd_timestamp = dtrace_gethrtime();
17985 
17986 			mutex_exit(&dtrace_lock);
17987 
17988 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17989 				return (EFAULT);
17990 
17991 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17992 
17993 			return (0);
17994 		}
17995 
17996 		if (buf->dtb_tomax == NULL) {
17997 			ASSERT(buf->dtb_xamot == NULL);
17998 			mutex_exit(&dtrace_lock);
17999 			return (ENOENT);
18000 		}
18001 
18002 		cached = buf->dtb_tomax;
18003 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
18004 
18005 		dtrace_xcall(desc.dtbd_cpu,
18006 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
18007 
18008 		state->dts_errors += buf->dtb_xamot_errors;
18009 
18010 		/*
18011 		 * If the buffers did not actually switch, then the cross call
18012 		 * did not take place -- presumably because the given CPU is
18013 		 * not in the ready set.  If this is the case, we'll return
18014 		 * ENOENT.
18015 		 */
18016 		if (buf->dtb_tomax == cached) {
18017 			ASSERT(buf->dtb_xamot != cached);
18018 			mutex_exit(&dtrace_lock);
18019 			return (ENOENT);
18020 		}
18021 
18022 		ASSERT(cached == buf->dtb_xamot);
18023 
18024 		/*
18025 		 * We have our snapshot; now copy it out.
18026 		 */
18027 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
18028 		    buf->dtb_xamot_offset) != 0) {
18029 			mutex_exit(&dtrace_lock);
18030 			return (EFAULT);
18031 		}
18032 
18033 		desc.dtbd_size = buf->dtb_xamot_offset;
18034 		desc.dtbd_drops = buf->dtb_xamot_drops;
18035 		desc.dtbd_errors = buf->dtb_xamot_errors;
18036 		desc.dtbd_oldest = 0;
18037 		desc.dtbd_timestamp = buf->dtb_switched;
18038 
18039 		mutex_exit(&dtrace_lock);
18040 
18041 		/*
18042 		 * Finally, copy out the buffer description.
18043 		 */
18044 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18045 			return (EFAULT);
18046 
18047 		return (0);
18048 	}
18049 
18050 	case DTRACEIOC_CONF: {
18051 		dtrace_conf_t conf;
18052 
18053 		bzero(&conf, sizeof (conf));
18054 		conf.dtc_difversion = DIF_VERSION;
18055 		conf.dtc_difintregs = DIF_DIR_NREGS;
18056 		conf.dtc_diftupregs = DIF_DTR_NREGS;
18057 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
18058 
18059 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
18060 			return (EFAULT);
18061 
18062 		return (0);
18063 	}
18064 
18065 	case DTRACEIOC_STATUS: {
18066 		dtrace_status_t stat;
18067 		dtrace_dstate_t *dstate;
18068 		int i, j;
18069 		uint64_t nerrs;
18070 
18071 		/*
18072 		 * See the comment in dtrace_state_deadman() for the reason
18073 		 * for setting dts_laststatus to INT64_MAX before setting
18074 		 * it to the correct value.
18075 		 */
18076 		state->dts_laststatus = INT64_MAX;
18077 		dtrace_membar_producer();
18078 		state->dts_laststatus = dtrace_gethrtime();
18079 
18080 		bzero(&stat, sizeof (stat));
18081 
18082 		mutex_enter(&dtrace_lock);
18083 
18084 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
18085 			mutex_exit(&dtrace_lock);
18086 			return (ENOENT);
18087 		}
18088 
18089 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
18090 			stat.dtst_exiting = 1;
18091 
18092 		nerrs = state->dts_errors;
18093 		dstate = &state->dts_vstate.dtvs_dynvars;
18094 
18095 		for (i = 0; i < NCPU; i++) {
18096 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
18097 
18098 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
18099 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
18100 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18101 
18102 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18103 				stat.dtst_filled++;
18104 
18105 			nerrs += state->dts_buffer[i].dtb_errors;
18106 
18107 			for (j = 0; j < state->dts_nspeculations; j++) {
18108 				dtrace_speculation_t *spec;
18109 				dtrace_buffer_t *buf;
18110 
18111 				spec = &state->dts_speculations[j];
18112 				buf = &spec->dtsp_buffer[i];
18113 				stat.dtst_specdrops += buf->dtb_xamot_drops;
18114 			}
18115 		}
18116 
18117 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
18118 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18119 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18120 		stat.dtst_dblerrors = state->dts_dblerrors;
18121 		stat.dtst_killed =
18122 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18123 		stat.dtst_errors = nerrs;
18124 
18125 		mutex_exit(&dtrace_lock);
18126 
18127 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18128 			return (EFAULT);
18129 
18130 		return (0);
18131 	}
18132 
18133 	case DTRACEIOC_FORMAT: {
18134 		dtrace_fmtdesc_t fmt;
18135 		char *str;
18136 		int len;
18137 
18138 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18139 			return (EFAULT);
18140 
18141 		mutex_enter(&dtrace_lock);
18142 
18143 		if (fmt.dtfd_format == 0 ||
18144 		    fmt.dtfd_format > state->dts_nformats) {
18145 			mutex_exit(&dtrace_lock);
18146 			return (EINVAL);
18147 		}
18148 
18149 		/*
18150 		 * Format strings are allocated contiguously and they are
18151 		 * never freed; if a format index is less than the number
18152 		 * of formats, we can assert that the format map is non-NULL
18153 		 * and that the format for the specified index is non-NULL.
18154 		 */
18155 		ASSERT(state->dts_formats != NULL);
18156 		str = state->dts_formats[fmt.dtfd_format - 1];
18157 		ASSERT(str != NULL);
18158 
18159 		len = strlen(str) + 1;
18160 
18161 		if (len > fmt.dtfd_length) {
18162 			fmt.dtfd_length = len;
18163 
18164 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18165 				mutex_exit(&dtrace_lock);
18166 				return (EINVAL);
18167 			}
18168 		} else {
18169 			if (copyout(str, fmt.dtfd_string, len) != 0) {
18170 				mutex_exit(&dtrace_lock);
18171 				return (EINVAL);
18172 			}
18173 		}
18174 
18175 		mutex_exit(&dtrace_lock);
18176 		return (0);
18177 	}
18178 
18179 	default:
18180 		break;
18181 	}
18182 
18183 	return (ENOTTY);
18184 }
18185 
18186 /*ARGSUSED*/
18187 static int
18188 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18189 {
18190 	dtrace_state_t *state;
18191 
18192 	switch (cmd) {
18193 	case DDI_DETACH:
18194 		break;
18195 
18196 	case DDI_SUSPEND:
18197 		return (DDI_SUCCESS);
18198 
18199 	default:
18200 		return (DDI_FAILURE);
18201 	}
18202 
18203 	mutex_enter(&cpu_lock);
18204 	mutex_enter(&dtrace_provider_lock);
18205 	mutex_enter(&dtrace_lock);
18206 
18207 	ASSERT(dtrace_opens == 0);
18208 
18209 	if (dtrace_helpers > 0) {
18210 		mutex_exit(&dtrace_provider_lock);
18211 		mutex_exit(&dtrace_lock);
18212 		mutex_exit(&cpu_lock);
18213 		return (DDI_FAILURE);
18214 	}
18215 
18216 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18217 		mutex_exit(&dtrace_provider_lock);
18218 		mutex_exit(&dtrace_lock);
18219 		mutex_exit(&cpu_lock);
18220 		return (DDI_FAILURE);
18221 	}
18222 
18223 	dtrace_provider = NULL;
18224 
18225 	if ((state = dtrace_anon_grab()) != NULL) {
18226 		/*
18227 		 * If there were ECBs on this state, the provider should
18228 		 * have not been allowed to detach; assert that there is
18229 		 * none.
18230 		 */
18231 		ASSERT(state->dts_necbs == 0);
18232 		dtrace_state_destroy(state);
18233 
18234 		/*
18235 		 * If we're being detached with anonymous state, we need to
18236 		 * indicate to the kernel debugger that DTrace is now inactive.
18237 		 */
18238 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18239 	}
18240 
18241 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18242 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18243 	dtrace_cpu_init = NULL;
18244 	dtrace_helpers_cleanup = NULL;
18245 	dtrace_helpers_fork = NULL;
18246 	dtrace_cpustart_init = NULL;
18247 	dtrace_cpustart_fini = NULL;
18248 	dtrace_debugger_init = NULL;
18249 	dtrace_debugger_fini = NULL;
18250 	dtrace_modload = NULL;
18251 	dtrace_modunload = NULL;
18252 
18253 	ASSERT(dtrace_getf == 0);
18254 	ASSERT(dtrace_closef == NULL);
18255 
18256 	mutex_exit(&cpu_lock);
18257 
18258 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18259 	dtrace_probes = NULL;
18260 	dtrace_nprobes = 0;
18261 
18262 	dtrace_hash_destroy(dtrace_bymod);
18263 	dtrace_hash_destroy(dtrace_byfunc);
18264 	dtrace_hash_destroy(dtrace_byname);
18265 	dtrace_bymod = NULL;
18266 	dtrace_byfunc = NULL;
18267 	dtrace_byname = NULL;
18268 
18269 	kmem_cache_destroy(dtrace_state_cache);
18270 	vmem_destroy(dtrace_minor);
18271 	vmem_destroy(dtrace_arena);
18272 
18273 	if (dtrace_toxrange != NULL) {
18274 		kmem_free(dtrace_toxrange,
18275 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18276 		dtrace_toxrange = NULL;
18277 		dtrace_toxranges = 0;
18278 		dtrace_toxranges_max = 0;
18279 	}
18280 
18281 	ddi_remove_minor_node(dtrace_devi, NULL);
18282 	dtrace_devi = NULL;
18283 
18284 	ddi_soft_state_fini(&dtrace_softstate);
18285 
18286 	ASSERT(dtrace_vtime_references == 0);
18287 	ASSERT(dtrace_opens == 0);
18288 	ASSERT(dtrace_retained == NULL);
18289 
18290 	mutex_exit(&dtrace_lock);
18291 	mutex_exit(&dtrace_provider_lock);
18292 
18293 	/*
18294 	 * We don't destroy the task queue until after we have dropped our
18295 	 * locks (taskq_destroy() may block on running tasks).  To prevent
18296 	 * attempting to do work after we have effectively detached but before
18297 	 * the task queue has been destroyed, all tasks dispatched via the
18298 	 * task queue must check that DTrace is still attached before
18299 	 * performing any operation.
18300 	 */
18301 	taskq_destroy(dtrace_taskq);
18302 	dtrace_taskq = NULL;
18303 
18304 	return (DDI_SUCCESS);
18305 }
18306 #endif
18307 
18308 #ifdef illumos
18309 /*ARGSUSED*/
18310 static int
18311 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18312 {
18313 	int error;
18314 
18315 	switch (infocmd) {
18316 	case DDI_INFO_DEVT2DEVINFO:
18317 		*result = (void *)dtrace_devi;
18318 		error = DDI_SUCCESS;
18319 		break;
18320 	case DDI_INFO_DEVT2INSTANCE:
18321 		*result = (void *)0;
18322 		error = DDI_SUCCESS;
18323 		break;
18324 	default:
18325 		error = DDI_FAILURE;
18326 	}
18327 	return (error);
18328 }
18329 #endif
18330 
18331 #ifdef illumos
18332 static struct cb_ops dtrace_cb_ops = {
18333 	dtrace_open,		/* open */
18334 	dtrace_close,		/* close */
18335 	nulldev,		/* strategy */
18336 	nulldev,		/* print */
18337 	nodev,			/* dump */
18338 	nodev,			/* read */
18339 	nodev,			/* write */
18340 	dtrace_ioctl,		/* ioctl */
18341 	nodev,			/* devmap */
18342 	nodev,			/* mmap */
18343 	nodev,			/* segmap */
18344 	nochpoll,		/* poll */
18345 	ddi_prop_op,		/* cb_prop_op */
18346 	0,			/* streamtab  */
18347 	D_NEW | D_MP		/* Driver compatibility flag */
18348 };
18349 
18350 static struct dev_ops dtrace_ops = {
18351 	DEVO_REV,		/* devo_rev */
18352 	0,			/* refcnt */
18353 	dtrace_info,		/* get_dev_info */
18354 	nulldev,		/* identify */
18355 	nulldev,		/* probe */
18356 	dtrace_attach,		/* attach */
18357 	dtrace_detach,		/* detach */
18358 	nodev,			/* reset */
18359 	&dtrace_cb_ops,		/* driver operations */
18360 	NULL,			/* bus operations */
18361 	nodev			/* dev power */
18362 };
18363 
18364 static struct modldrv modldrv = {
18365 	&mod_driverops,		/* module type (this is a pseudo driver) */
18366 	"Dynamic Tracing",	/* name of module */
18367 	&dtrace_ops,		/* driver ops */
18368 };
18369 
18370 static struct modlinkage modlinkage = {
18371 	MODREV_1,
18372 	(void *)&modldrv,
18373 	NULL
18374 };
18375 
18376 int
18377 _init(void)
18378 {
18379 	return (mod_install(&modlinkage));
18380 }
18381 
18382 int
18383 _info(struct modinfo *modinfop)
18384 {
18385 	return (mod_info(&modlinkage, modinfop));
18386 }
18387 
18388 int
18389 _fini(void)
18390 {
18391 	return (mod_remove(&modlinkage));
18392 }
18393 #else
18394 
18395 static d_ioctl_t	dtrace_ioctl;
18396 static d_ioctl_t	dtrace_ioctl_helper;
18397 static void		dtrace_load(void *);
18398 static int		dtrace_unload(void);
18399 static struct cdev	*dtrace_dev;
18400 static struct cdev	*helper_dev;
18401 
18402 void dtrace_invop_init(void);
18403 void dtrace_invop_uninit(void);
18404 
18405 static struct cdevsw dtrace_cdevsw = {
18406 	.d_version	= D_VERSION,
18407 	.d_ioctl	= dtrace_ioctl,
18408 	.d_open		= dtrace_open,
18409 	.d_name		= "dtrace",
18410 };
18411 
18412 static struct cdevsw helper_cdevsw = {
18413 	.d_version	= D_VERSION,
18414 	.d_ioctl	= dtrace_ioctl_helper,
18415 	.d_name		= "helper",
18416 };
18417 
18418 #include <dtrace_anon.c>
18419 #include <dtrace_ioctl.c>
18420 #include <dtrace_load.c>
18421 #include <dtrace_modevent.c>
18422 #include <dtrace_sysctl.c>
18423 #include <dtrace_unload.c>
18424 #include <dtrace_vtime.c>
18425 #include <dtrace_hacks.c>
18426 #include <dtrace_isa.c>
18427 
18428 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18429 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18430 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18431 
18432 DEV_MODULE(dtrace, dtrace_modevent, NULL);
18433 MODULE_VERSION(dtrace, 1);
18434 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18435 #endif
18436