1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #ifndef _SYS_DTRACE_H
28 #define	_SYS_DTRACE_H
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #ifdef	__cplusplus
33 extern "C" {
34 #endif
35 
36 /*
37  * DTrace Dynamic Tracing Software: Kernel Interfaces
38  *
39  * Note: The contents of this file are private to the implementation of the
40  * Solaris system and DTrace subsystem and are subject to change at any time
41  * without notice.  Applications and drivers using these interfaces will fail
42  * to run on future releases.  These interfaces should not be used for any
43  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
44  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
45  */
46 
47 #ifndef _ASM
48 
49 #include <sys/types.h>
50 #include <sys/modctl.h>
51 #include <sys/processor.h>
52 #if defined(sun)
53 #include <sys/systm.h>
54 #else
55 #include <sys/param.h>
56 #include <sys/linker.h>
57 #include <sys/ioccom.h>
58 #include <sys/ucred.h>
59 typedef int model_t;
60 #endif
61 #include <sys/ctf_api.h>
62 #include <sys/cyclic.h>
63 #if defined(sun)
64 #include <sys/int_limits.h>
65 #else
66 #include <sys/stdint.h>
67 #endif
68 
69 /*
70  * DTrace Universal Constants and Typedefs
71  */
72 #define	DTRACE_CPUALL		-1	/* all CPUs */
73 #define	DTRACE_IDNONE		0	/* invalid probe identifier */
74 #define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
75 #define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
76 #define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
77 #define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
78 #define	DTRACE_PROVNONE		0	/* invalid provider identifier */
79 #define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
80 #define	DTRACE_ARGNONE		-1	/* invalid argument index */
81 
82 #define	DTRACE_PROVNAMELEN	64
83 #define	DTRACE_MODNAMELEN	64
84 #define	DTRACE_FUNCNAMELEN	128
85 #define	DTRACE_NAMELEN		64
86 #define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
87 				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
88 #define	DTRACE_ARGTYPELEN	128
89 
90 typedef uint32_t dtrace_id_t;		/* probe identifier */
91 typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
92 typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
93 typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
94 typedef uint16_t dtrace_actkind_t;	/* action kind */
95 typedef int64_t dtrace_optval_t;	/* option value */
96 typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
97 
98 typedef enum dtrace_probespec {
99 	DTRACE_PROBESPEC_NONE = -1,
100 	DTRACE_PROBESPEC_PROVIDER = 0,
101 	DTRACE_PROBESPEC_MOD,
102 	DTRACE_PROBESPEC_FUNC,
103 	DTRACE_PROBESPEC_NAME
104 } dtrace_probespec_t;
105 
106 /*
107  * DTrace Intermediate Format (DIF)
108  *
109  * The following definitions describe the DTrace Intermediate Format (DIF), a
110  * a RISC-like instruction set and program encoding used to represent
111  * predicates and actions that can be bound to DTrace probes.  The constants
112  * below defining the number of available registers are suggested minimums; the
113  * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
114  * registers provided by the current DTrace implementation.
115  */
116 #define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
117 #define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
118 #define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
119 #define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
120 #define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
121 
122 #define	DIF_OP_OR	1		/* or	r1, r2, rd */
123 #define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
124 #define	DIF_OP_AND	3		/* and	r1, r2, rd */
125 #define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
126 #define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
127 #define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
128 #define	DIF_OP_ADD	7		/* add	r1, r2, rd */
129 #define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
130 #define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
131 #define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
132 #define	DIF_OP_SREM	11		/* srem r1, r2, rd */
133 #define	DIF_OP_UREM	12		/* urem r1, r2, rd */
134 #define	DIF_OP_NOT	13		/* not	r1, rd */
135 #define	DIF_OP_MOV	14		/* mov	r1, rd */
136 #define	DIF_OP_CMP	15		/* cmp	r1, r2 */
137 #define	DIF_OP_TST	16		/* tst  r1 */
138 #define	DIF_OP_BA	17		/* ba	label */
139 #define	DIF_OP_BE	18		/* be	label */
140 #define	DIF_OP_BNE	19		/* bne	label */
141 #define	DIF_OP_BG	20		/* bg	label */
142 #define	DIF_OP_BGU	21		/* bgu	label */
143 #define	DIF_OP_BGE	22		/* bge	label */
144 #define	DIF_OP_BGEU	23		/* bgeu	label */
145 #define	DIF_OP_BL	24		/* bl	label */
146 #define	DIF_OP_BLU	25		/* blu	label */
147 #define	DIF_OP_BLE	26		/* ble	label */
148 #define	DIF_OP_BLEU	27		/* bleu	label */
149 #define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
150 #define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
151 #define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
152 #define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
153 #define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
154 #define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
155 #define	DIF_OP_LDX	34		/* ldx	[r1], rd */
156 #define	DIF_OP_RET	35		/* ret	rd */
157 #define	DIF_OP_NOP	36		/* nop */
158 #define	DIF_OP_SETX	37		/* setx	intindex, rd */
159 #define	DIF_OP_SETS	38		/* sets strindex, rd */
160 #define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
161 #define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
162 #define	DIF_OP_LDGS	41		/* ldgs var, rd */
163 #define	DIF_OP_STGS	42		/* stgs var, rs */
164 #define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
165 #define	DIF_OP_LDTS	44		/* ldts var, rd */
166 #define	DIF_OP_STTS	45		/* stts var, rs */
167 #define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
168 #define	DIF_OP_CALL	47		/* call	subr, rd */
169 #define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
170 #define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
171 #define	DIF_OP_POPTS	50		/* popts */
172 #define	DIF_OP_FLUSHTS	51		/* flushts */
173 #define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
174 #define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
175 #define	DIF_OP_STGAA	54		/* stgaa var, rs */
176 #define	DIF_OP_STTAA	55		/* sttaa var, rs */
177 #define	DIF_OP_LDLS	56		/* ldls	var, rd */
178 #define	DIF_OP_STLS	57		/* stls	var, rs */
179 #define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
180 #define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
181 #define	DIF_OP_STB	60		/* stb	r1, [rd] */
182 #define	DIF_OP_STH	61		/* sth	r1, [rd] */
183 #define	DIF_OP_STW	62		/* stw	r1, [rd] */
184 #define	DIF_OP_STX	63		/* stx	r1, [rd] */
185 #define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
186 #define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
187 #define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
188 #define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
189 #define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
190 #define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
191 #define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
192 #define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
193 #define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
194 #define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
195 #define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
196 #define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
197 #define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
198 #define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
199 #define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
200 #define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
201 
202 #define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
203 #define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
204 #define	DIF_REGISTER_MAX	0xff	/* highest register number */
205 #define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
206 #define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
207 
208 #define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
209 #define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
210 #define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
211 
212 #define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
213 #define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
214 #define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
215 
216 #define	DIF_VAR_ARGS		0x0000	/* arguments array */
217 #define	DIF_VAR_REGS		0x0001	/* registers array */
218 #define	DIF_VAR_UREGS		0x0002	/* user registers array */
219 #define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
220 #define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
221 #define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
222 #define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
223 #define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
224 #define	DIF_VAR_ID		0x0105	/* probe ID */
225 #define	DIF_VAR_ARG0		0x0106	/* first argument */
226 #define	DIF_VAR_ARG1		0x0107	/* second argument */
227 #define	DIF_VAR_ARG2		0x0108	/* third argument */
228 #define	DIF_VAR_ARG3		0x0109	/* fourth argument */
229 #define	DIF_VAR_ARG4		0x010a	/* fifth argument */
230 #define	DIF_VAR_ARG5		0x010b	/* sixth argument */
231 #define	DIF_VAR_ARG6		0x010c	/* seventh argument */
232 #define	DIF_VAR_ARG7		0x010d	/* eighth argument */
233 #define	DIF_VAR_ARG8		0x010e	/* ninth argument */
234 #define	DIF_VAR_ARG9		0x010f	/* tenth argument */
235 #define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
236 #define	DIF_VAR_CALLER		0x0111	/* caller */
237 #define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
238 #define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
239 #define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
240 #define	DIF_VAR_PROBENAME	0x0115	/* probe name */
241 #define	DIF_VAR_PID		0x0116	/* process ID */
242 #define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
243 #define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
244 #define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
245 #define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
246 #define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
247 #define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
248 #define	DIF_VAR_PPID		0x011d	/* parent process ID */
249 #define	DIF_VAR_UID		0x011e	/* process user ID */
250 #define	DIF_VAR_GID		0x011f	/* process group ID */
251 #define	DIF_VAR_ERRNO		0x0120	/* thread errno */
252 #define	DIF_VAR_EXECARGS	0x0121	/* process arguments */
253 
254 #define	DIF_SUBR_RAND			0
255 #define	DIF_SUBR_MUTEX_OWNED		1
256 #define	DIF_SUBR_MUTEX_OWNER		2
257 #define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
258 #define	DIF_SUBR_MUTEX_TYPE_SPIN	4
259 #define	DIF_SUBR_RW_READ_HELD		5
260 #define	DIF_SUBR_RW_WRITE_HELD		6
261 #define	DIF_SUBR_RW_ISWRITER		7
262 #define	DIF_SUBR_COPYIN			8
263 #define	DIF_SUBR_COPYINSTR		9
264 #define	DIF_SUBR_SPECULATION		10
265 #define	DIF_SUBR_PROGENYOF		11
266 #define	DIF_SUBR_STRLEN			12
267 #define	DIF_SUBR_COPYOUT		13
268 #define	DIF_SUBR_COPYOUTSTR		14
269 #define	DIF_SUBR_ALLOCA			15
270 #define	DIF_SUBR_BCOPY			16
271 #define	DIF_SUBR_COPYINTO		17
272 #define	DIF_SUBR_MSGDSIZE		18
273 #define	DIF_SUBR_MSGSIZE		19
274 #define	DIF_SUBR_GETMAJOR		20
275 #define	DIF_SUBR_GETMINOR		21
276 #define	DIF_SUBR_DDI_PATHNAME		22
277 #define	DIF_SUBR_STRJOIN		23
278 #define	DIF_SUBR_LLTOSTR		24
279 #define	DIF_SUBR_BASENAME		25
280 #define	DIF_SUBR_DIRNAME		26
281 #define	DIF_SUBR_CLEANPATH		27
282 #define	DIF_SUBR_STRCHR			28
283 #define	DIF_SUBR_STRRCHR		29
284 #define	DIF_SUBR_STRSTR			30
285 #define	DIF_SUBR_STRTOK			31
286 #define	DIF_SUBR_SUBSTR			32
287 #define	DIF_SUBR_INDEX			33
288 #define	DIF_SUBR_RINDEX			34
289 #define	DIF_SUBR_HTONS			35
290 #define	DIF_SUBR_HTONL			36
291 #define	DIF_SUBR_HTONLL			37
292 #define	DIF_SUBR_NTOHS			38
293 #define	DIF_SUBR_NTOHL			39
294 #define	DIF_SUBR_NTOHLL			40
295 #define	DIF_SUBR_INET_NTOP		41
296 #define	DIF_SUBR_INET_NTOA		42
297 #define	DIF_SUBR_INET_NTOA6		43
298 #define	DIF_SUBR_MEMREF			44
299 #define	DIF_SUBR_TYPEREF		45
300 #define	DIF_SUBR_SX_SHARED_HELD		46
301 #define	DIF_SUBR_SX_EXCLUSIVE_HELD	47
302 #define	DIF_SUBR_SX_ISEXCLUSIVE		48
303 
304 #define	DIF_SUBR_MAX			48	/* max subroutine value */
305 
306 typedef uint32_t dif_instr_t;
307 
308 #define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
309 #define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
310 #define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
311 #define	DIF_INSTR_RD(i)			((i) & 0xff)
312 #define	DIF_INSTR_RS(i)			((i) & 0xff)
313 #define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
314 #define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
315 #define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
316 #define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
317 #define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
318 #define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
319 #define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
320 
321 #define	DIF_INSTR_FMT(op, r1, r2, d) \
322 	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
323 
324 #define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
325 #define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
326 #define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
327 #define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
328 #define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
329 #define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
330 #define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
331 #define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
332 #define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
333 #define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
334 #define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
335 #define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
336 #define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
337 #define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
338 #define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
339 #define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
340 #define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
341 #define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
342 #define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
343 #define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
344 #define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
345 
346 #define	DIF_REG_R0	0		/* %r0 is always set to zero */
347 
348 /*
349  * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
350  * of variables, function and associative array arguments, and the return type
351  * for each DIF object (shown below).  It contains a description of the type,
352  * its size in bytes, and a module identifier.
353  */
354 typedef struct dtrace_diftype {
355 	uint8_t dtdt_kind;		/* type kind (see below) */
356 	uint8_t dtdt_ckind;		/* type kind in CTF */
357 	uint8_t dtdt_flags;		/* type flags (see below) */
358 	uint8_t dtdt_pad;		/* reserved for future use */
359 	uint32_t dtdt_size;		/* type size in bytes (unless string) */
360 } dtrace_diftype_t;
361 
362 #define	DIF_TYPE_CTF		0	/* type is a CTF type */
363 #define	DIF_TYPE_STRING		1	/* type is a D string */
364 
365 #define	DIF_TF_BYREF		0x1	/* type is passed by reference */
366 
367 /*
368  * A DTrace Intermediate Format variable record is used to describe each of the
369  * variables referenced by a given DIF object.  It contains an integer variable
370  * identifier along with variable scope and properties, as shown below.  The
371  * size of this structure must be sizeof (int) aligned.
372  */
373 typedef struct dtrace_difv {
374 	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
375 	uint32_t dtdv_id;		/* variable reference identifier */
376 	uint8_t dtdv_kind;		/* variable kind (see below) */
377 	uint8_t dtdv_scope;		/* variable scope (see below) */
378 	uint16_t dtdv_flags;		/* variable flags (see below) */
379 	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
380 } dtrace_difv_t;
381 
382 #define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
383 #define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
384 
385 #define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
386 #define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
387 #define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
388 
389 #define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
390 #define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
391 
392 /*
393  * DTrace Actions
394  *
395  * The upper byte determines the class of the action; the low bytes determines
396  * the specific action within that class.  The classes of actions are as
397  * follows:
398  *
399  *   [ no class ]                  <= May record process- or kernel-related data
400  *   DTRACEACT_PROC                <= Only records process-related data
401  *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
402  *   DTRACEACT_KERNEL              <= Only records kernel-related data
403  *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
404  *   DTRACEACT_SPECULATIVE         <= Speculation-related action
405  *   DTRACEACT_AGGREGATION         <= Aggregating action
406  */
407 #define	DTRACEACT_NONE			0	/* no action */
408 #define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
409 #define	DTRACEACT_EXIT			2	/* exit() action */
410 #define	DTRACEACT_PRINTF		3	/* printf() action */
411 #define	DTRACEACT_PRINTA		4	/* printa() action */
412 #define	DTRACEACT_LIBACT		5	/* library-controlled action */
413 #define	DTRACEACT_PRINTM		6	/* printm() action */
414 #define	DTRACEACT_PRINTT		7	/* printt() action */
415 
416 #define	DTRACEACT_PROC			0x0100
417 #define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
418 #define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
419 #define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
420 #define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
421 #define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
422 
423 #define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
424 #define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
425 #define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
426 #define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
427 #define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
428 
429 #define	DTRACEACT_PROC_CONTROL		0x0300
430 
431 #define	DTRACEACT_KERNEL		0x0400
432 #define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
433 #define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
434 #define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
435 
436 #define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
437 #define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
438 #define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
439 #define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
440 
441 #define	DTRACEACT_SPECULATIVE		0x0600
442 #define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
443 #define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
444 #define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
445 
446 #define	DTRACEACT_CLASS(x)		((x) & 0xff00)
447 
448 #define	DTRACEACT_ISDESTRUCTIVE(x)	\
449 	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
450 	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
451 
452 #define	DTRACEACT_ISSPECULATIVE(x)	\
453 	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
454 
455 #define	DTRACEACT_ISPRINTFLIKE(x)	\
456 	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
457 	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
458 
459 /*
460  * DTrace Aggregating Actions
461  *
462  * These are functions f(x) for which the following is true:
463  *
464  *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
465  *
466  * where x_n is a set of arbitrary data.  Aggregating actions are in their own
467  * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
468  * for easier processing of the aggregation argument and data payload for a few
469  * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
470  */
471 #define	DTRACEACT_AGGREGATION		0x0700
472 #define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
473 #define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
474 #define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
475 #define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
476 #define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
477 #define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
478 #define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
479 #define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
480 
481 #define	DTRACEACT_ISAGG(x)		\
482 	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
483 
484 #define	DTRACE_QUANTIZE_NBUCKETS	\
485 	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
486 
487 #define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
488 
489 #define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
490 	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
491 	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
492 	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
493 	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
494 
495 #define	DTRACE_LQUANTIZE_STEPSHIFT		48
496 #define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
497 #define	DTRACE_LQUANTIZE_LEVELSHIFT		32
498 #define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
499 #define	DTRACE_LQUANTIZE_BASESHIFT		0
500 #define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
501 
502 #define	DTRACE_LQUANTIZE_STEP(x)		\
503 	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
504 	DTRACE_LQUANTIZE_STEPSHIFT)
505 
506 #define	DTRACE_LQUANTIZE_LEVELS(x)		\
507 	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
508 	DTRACE_LQUANTIZE_LEVELSHIFT)
509 
510 #define	DTRACE_LQUANTIZE_BASE(x)		\
511 	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
512 	DTRACE_LQUANTIZE_BASESHIFT)
513 
514 #define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
515 #define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
516 #define	DTRACE_USTACK_ARG(x, y)		\
517 	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
518 
519 #ifndef _LP64
520 #if BYTE_ORDER == _BIG_ENDIAN
521 #define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
522 #else
523 #define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
524 #endif
525 #else
526 #define	DTRACE_PTR(type, name)	type *name
527 #endif
528 
529 /*
530  * DTrace Object Format (DOF)
531  *
532  * DTrace programs can be persistently encoded in the DOF format so that they
533  * may be embedded in other programs (for example, in an ELF file) or in the
534  * dtrace driver configuration file for use in anonymous tracing.  The DOF
535  * format is versioned and extensible so that it can be revised and so that
536  * internal data structures can be modified or extended compatibly.  All DOF
537  * structures use fixed-size types, so the 32-bit and 64-bit representations
538  * are identical and consumers can use either data model transparently.
539  *
540  * The file layout is structured as follows:
541  *
542  * +---------------+-------------------+----- ... ----+---- ... ------+
543  * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
544  * | (file header) | (section headers) | section data | section data  |
545  * +---------------+-------------------+----- ... ----+---- ... ------+
546  * |<------------ dof_hdr.dofh_loadsz --------------->|               |
547  * |<------------ dof_hdr.dofh_filesz ------------------------------->|
548  *
549  * The file header stores meta-data including a magic number, data model for
550  * the instrumentation, data encoding, and properties of the DIF code within.
551  * The header describes its own size and the size of the section headers.  By
552  * convention, an array of section headers follows the file header, and then
553  * the data for all loadable sections and unloadable sections.  This permits
554  * consumer code to easily download the headers and all loadable data into the
555  * DTrace driver in one contiguous chunk, omitting other extraneous sections.
556  *
557  * The section headers describe the size, offset, alignment, and section type
558  * for each section.  Sections are described using a set of #defines that tell
559  * the consumer what kind of data is expected.  Sections can contain links to
560  * other sections by storing a dof_secidx_t, an index into the section header
561  * array, inside of the section data structures.  The section header includes
562  * an entry size so that sections with data arrays can grow their structures.
563  *
564  * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
565  * are represented themselves as a collection of related DOF sections.  This
566  * permits us to change the set of sections associated with a DIFO over time,
567  * and also permits us to encode DIFOs that contain different sets of sections.
568  * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
569  * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
570  * dof_secidx_t's which in turn denote the sections associated with this DIFO.
571  *
572  * This loose coupling of the file structure (header and sections) to the
573  * structure of the DTrace program itself (ECB descriptions, action
574  * descriptions, and DIFOs) permits activities such as relocation processing
575  * to occur in a single pass without having to understand D program structure.
576  *
577  * Finally, strings are always stored in ELF-style string tables along with a
578  * string table section index and string table offset.  Therefore strings in
579  * DOF are always arbitrary-length and not bound to the current implementation.
580  */
581 
582 #define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
583 
584 typedef struct dof_hdr {
585 	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
586 	uint32_t dofh_flags;		/* file attribute flags (if any) */
587 	uint32_t dofh_hdrsize;		/* size of file header in bytes */
588 	uint32_t dofh_secsize;		/* size of section header in bytes */
589 	uint32_t dofh_secnum;		/* number of section headers */
590 	uint64_t dofh_secoff;		/* file offset of section headers */
591 	uint64_t dofh_loadsz;		/* file size of loadable portion */
592 	uint64_t dofh_filesz;		/* file size of entire DOF file */
593 	uint64_t dofh_pad;		/* reserved for future use */
594 } dof_hdr_t;
595 
596 #define	DOF_ID_MAG0	0	/* first byte of magic number */
597 #define	DOF_ID_MAG1	1	/* second byte of magic number */
598 #define	DOF_ID_MAG2	2	/* third byte of magic number */
599 #define	DOF_ID_MAG3	3	/* fourth byte of magic number */
600 #define	DOF_ID_MODEL	4	/* DOF data model (see below) */
601 #define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
602 #define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
603 #define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
604 #define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
605 #define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
606 #define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
607 
608 #define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
609 #define	DOF_MAG_MAG1	'D'
610 #define	DOF_MAG_MAG2	'O'
611 #define	DOF_MAG_MAG3	'F'
612 
613 #define	DOF_MAG_STRING	"\177DOF"
614 #define	DOF_MAG_STRLEN	4
615 
616 #define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
617 #define	DOF_MODEL_ILP32	1
618 #define	DOF_MODEL_LP64	2
619 
620 #ifdef _LP64
621 #define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
622 #else
623 #define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
624 #endif
625 
626 #define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
627 #define	DOF_ENCODE_LSB	1
628 #define	DOF_ENCODE_MSB	2
629 
630 #if BYTE_ORDER == _BIG_ENDIAN
631 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
632 #else
633 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
634 #endif
635 
636 #define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
637 #define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
638 #define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
639 
640 #define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
641 
642 typedef uint32_t dof_secidx_t;	/* section header table index type */
643 typedef uint32_t dof_stridx_t;	/* string table index type */
644 
645 #define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
646 #define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
647 
648 typedef struct dof_sec {
649 	uint32_t dofs_type;	/* section type (see below) */
650 	uint32_t dofs_align;	/* section data memory alignment */
651 	uint32_t dofs_flags;	/* section flags (if any) */
652 	uint32_t dofs_entsize;	/* size of section entry (if table) */
653 	uint64_t dofs_offset;	/* offset of section data within file */
654 	uint64_t dofs_size;	/* size of section data in bytes */
655 } dof_sec_t;
656 
657 #define	DOF_SECT_NONE		0	/* null section */
658 #define	DOF_SECT_COMMENTS	1	/* compiler comments */
659 #define	DOF_SECT_SOURCE		2	/* D program source code */
660 #define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
661 #define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
662 #define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
663 #define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
664 #define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
665 #define	DOF_SECT_STRTAB		8	/* string table */
666 #define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
667 #define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
668 #define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
669 #define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
670 #define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
671 #define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
672 #define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
673 #define	DOF_SECT_PROBES		16	/* dof_probe_t array */
674 #define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
675 #define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
676 #define	DOF_SECT_INTTAB		19	/* uint64_t array */
677 #define	DOF_SECT_UTSNAME	20	/* struct utsname */
678 #define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
679 #define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
680 #define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
681 #define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
682 #define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
683 #define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
684 
685 #define	DOF_SECF_LOAD		1	/* section should be loaded */
686 
687 typedef struct dof_ecbdesc {
688 	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
689 	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
690 	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
691 	uint32_t dofe_pad;		/* reserved for future use */
692 	uint64_t dofe_uarg;		/* user-supplied library argument */
693 } dof_ecbdesc_t;
694 
695 typedef struct dof_probedesc {
696 	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
697 	dof_stridx_t dofp_provider;	/* provider string */
698 	dof_stridx_t dofp_mod;		/* module string */
699 	dof_stridx_t dofp_func;		/* function string */
700 	dof_stridx_t dofp_name;		/* name string */
701 	uint32_t dofp_id;		/* probe identifier (or zero) */
702 } dof_probedesc_t;
703 
704 typedef struct dof_actdesc {
705 	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
706 	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
707 	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
708 	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
709 	uint64_t dofa_arg;		/* kind-specific argument */
710 	uint64_t dofa_uarg;		/* user-supplied argument */
711 } dof_actdesc_t;
712 
713 typedef struct dof_difohdr {
714 	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
715 	dof_secidx_t dofd_links[1];	/* variable length array of indices */
716 } dof_difohdr_t;
717 
718 typedef struct dof_relohdr {
719 	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
720 	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
721 	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
722 } dof_relohdr_t;
723 
724 typedef struct dof_relodesc {
725 	dof_stridx_t dofr_name;		/* string name of relocation symbol */
726 	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
727 	uint64_t dofr_offset;		/* byte offset for relocation */
728 	uint64_t dofr_data;		/* additional type-specific data */
729 } dof_relodesc_t;
730 
731 #define	DOF_RELO_NONE	0		/* empty relocation entry */
732 #define	DOF_RELO_SETX	1		/* relocate setx value */
733 
734 typedef struct dof_optdesc {
735 	uint32_t dofo_option;		/* option identifier */
736 	dof_secidx_t dofo_strtab;	/* string table, if string option */
737 	uint64_t dofo_value;		/* option value or string index */
738 } dof_optdesc_t;
739 
740 typedef uint32_t dof_attr_t;		/* encoded stability attributes */
741 
742 #define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
743 #define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
744 #define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
745 #define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
746 
747 typedef struct dof_provider {
748 	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
749 	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
750 	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
751 	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
752 	dof_stridx_t dofpv_name;	/* provider name string */
753 	dof_attr_t dofpv_provattr;	/* provider attributes */
754 	dof_attr_t dofpv_modattr;	/* module attributes */
755 	dof_attr_t dofpv_funcattr;	/* function attributes */
756 	dof_attr_t dofpv_nameattr;	/* name attributes */
757 	dof_attr_t dofpv_argsattr;	/* args attributes */
758 	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
759 } dof_provider_t;
760 
761 typedef struct dof_probe {
762 	uint64_t dofpr_addr;		/* probe base address or offset */
763 	dof_stridx_t dofpr_func;	/* probe function string */
764 	dof_stridx_t dofpr_name;	/* probe name string */
765 	dof_stridx_t dofpr_nargv;	/* native argument type strings */
766 	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
767 	uint32_t dofpr_argidx;		/* index of first argument mapping */
768 	uint32_t dofpr_offidx;		/* index of first offset entry */
769 	uint8_t dofpr_nargc;		/* native argument count */
770 	uint8_t dofpr_xargc;		/* translated argument count */
771 	uint16_t dofpr_noffs;		/* number of offset entries for probe */
772 	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
773 	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
774 	uint16_t dofpr_pad1;		/* reserved for future use */
775 	uint32_t dofpr_pad2;		/* reserved for future use */
776 } dof_probe_t;
777 
778 typedef struct dof_xlator {
779 	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
780 	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
781 	dof_stridx_t dofxl_argv;	/* input parameter type strings */
782 	uint32_t dofxl_argc;		/* input parameter list length */
783 	dof_stridx_t dofxl_type;	/* output type string name */
784 	dof_attr_t dofxl_attr;		/* output stability attributes */
785 } dof_xlator_t;
786 
787 typedef struct dof_xlmember {
788 	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
789 	dof_stridx_t dofxm_name;	/* member name */
790 	dtrace_diftype_t dofxm_type;	/* member type */
791 } dof_xlmember_t;
792 
793 typedef struct dof_xlref {
794 	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
795 	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
796 	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
797 } dof_xlref_t;
798 
799 /*
800  * DTrace Intermediate Format Object (DIFO)
801  *
802  * A DIFO is used to store the compiled DIF for a D expression, its return
803  * type, and its string and variable tables.  The string table is a single
804  * buffer of character data into which sets instructions and variable
805  * references can reference strings using a byte offset.  The variable table
806  * is an array of dtrace_difv_t structures that describe the name and type of
807  * each variable and the id used in the DIF code.  This structure is described
808  * above in the DIF section of this header file.  The DIFO is used at both
809  * user-level (in the library) and in the kernel, but the structure is never
810  * passed between the two: the DOF structures form the only interface.  As a
811  * result, the definition can change depending on the presence of _KERNEL.
812  */
813 typedef struct dtrace_difo {
814 	dif_instr_t *dtdo_buf;		/* instruction buffer */
815 	uint64_t *dtdo_inttab;		/* integer table (optional) */
816 	char *dtdo_strtab;		/* string table (optional) */
817 	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
818 	uint_t dtdo_len;		/* length of instruction buffer */
819 	uint_t dtdo_intlen;		/* length of integer table */
820 	uint_t dtdo_strlen;		/* length of string table */
821 	uint_t dtdo_varlen;		/* length of variable table */
822 	dtrace_diftype_t dtdo_rtype;	/* return type */
823 	uint_t dtdo_refcnt;		/* owner reference count */
824 	uint_t dtdo_destructive;	/* invokes destructive subroutines */
825 #ifndef _KERNEL
826 	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
827 	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
828 	struct dt_node **dtdo_xlmtab;	/* translator references */
829 	uint_t dtdo_krelen;		/* length of krelo table */
830 	uint_t dtdo_urelen;		/* length of urelo table */
831 	uint_t dtdo_xlmlen;		/* length of translator table */
832 #endif
833 } dtrace_difo_t;
834 
835 /*
836  * DTrace Enabling Description Structures
837  *
838  * When DTrace is tracking the description of a DTrace enabling entity (probe,
839  * predicate, action, ECB, record, etc.), it does so in a description
840  * structure.  These structures all end in "desc", and are used at both
841  * user-level and in the kernel -- but (with the exception of
842  * dtrace_probedesc_t) they are never passed between them.  Typically,
843  * user-level will use the description structures when assembling an enabling.
844  * It will then distill those description structures into a DOF object (see
845  * above), and send it into the kernel.  The kernel will again use the
846  * description structures to create a description of the enabling as it reads
847  * the DOF.  When the description is complete, the enabling will be actually
848  * created -- turning it into the structures that represent the enabling
849  * instead of merely describing it.  Not surprisingly, the description
850  * structures bear a strong resemblance to the DOF structures that act as their
851  * conduit.
852  */
853 struct dtrace_predicate;
854 
855 typedef struct dtrace_probedesc {
856 	dtrace_id_t dtpd_id;			/* probe identifier */
857 	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
858 	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
859 	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
860 	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
861 } dtrace_probedesc_t;
862 
863 typedef struct dtrace_repldesc {
864 	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
865 	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
866 } dtrace_repldesc_t;
867 
868 typedef struct dtrace_preddesc {
869 	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
870 	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
871 } dtrace_preddesc_t;
872 
873 typedef struct dtrace_actdesc {
874 	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
875 	struct dtrace_actdesc *dtad_next;	/* next action */
876 	dtrace_actkind_t dtad_kind;		/* kind of action */
877 	uint32_t dtad_ntuple;			/* number in tuple */
878 	uint64_t dtad_arg;			/* action argument */
879 	uint64_t dtad_uarg;			/* user argument */
880 	int dtad_refcnt;			/* reference count */
881 } dtrace_actdesc_t;
882 
883 typedef struct dtrace_ecbdesc {
884 	dtrace_actdesc_t *dted_action;		/* action description(s) */
885 	dtrace_preddesc_t dted_pred;		/* predicate description */
886 	dtrace_probedesc_t dted_probe;		/* probe description */
887 	uint64_t dted_uarg;			/* library argument */
888 	int dted_refcnt;			/* reference count */
889 } dtrace_ecbdesc_t;
890 
891 /*
892  * DTrace Metadata Description Structures
893  *
894  * DTrace separates the trace data stream from the metadata stream.  The only
895  * metadata tokens placed in the data stream are enabled probe identifiers
896  * (EPIDs) or (in the case of aggregations) aggregation identifiers.  In order
897  * to determine the structure of the data, DTrace consumers pass the token to
898  * the kernel, and receive in return a corresponding description of the enabled
899  * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
900  * dtrace_aggdesc structure).  Both of these structures are expressed in terms
901  * of record descriptions (via the dtrace_recdesc structure) that describe the
902  * exact structure of the data.  Some record descriptions may also contain a
903  * format identifier; this additional bit of metadata can be retrieved from the
904  * kernel, for which a format description is returned via the dtrace_fmtdesc
905  * structure.  Note that all four of these structures must be bitness-neutral
906  * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
907  */
908 typedef struct dtrace_recdesc {
909 	dtrace_actkind_t dtrd_action;		/* kind of action */
910 	uint32_t dtrd_size;			/* size of record */
911 	uint32_t dtrd_offset;			/* offset in ECB's data */
912 	uint16_t dtrd_alignment;		/* required alignment */
913 	uint16_t dtrd_format;			/* format, if any */
914 	uint64_t dtrd_arg;			/* action argument */
915 	uint64_t dtrd_uarg;			/* user argument */
916 } dtrace_recdesc_t;
917 
918 typedef struct dtrace_eprobedesc {
919 	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
920 	dtrace_id_t dtepd_probeid;		/* probe ID */
921 	uint64_t dtepd_uarg;			/* library argument */
922 	uint32_t dtepd_size;			/* total size */
923 	int dtepd_nrecs;			/* number of records */
924 	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
925 } dtrace_eprobedesc_t;
926 
927 typedef struct dtrace_aggdesc {
928 	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
929 	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
930 	int dtagd_flags;			/* not filled in by kernel */
931 	dtrace_aggid_t dtagd_id;		/* aggregation ID */
932 	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
933 	uint32_t dtagd_size;			/* size in bytes */
934 	int dtagd_nrecs;			/* number of records */
935 	uint32_t dtagd_pad;			/* explicit padding */
936 	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
937 } dtrace_aggdesc_t;
938 
939 typedef struct dtrace_fmtdesc {
940 	DTRACE_PTR(char, dtfd_string);		/* format string */
941 	int dtfd_length;			/* length of format string */
942 	uint16_t dtfd_format;			/* format identifier */
943 } dtrace_fmtdesc_t;
944 
945 #define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
946 	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
947 	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
948 
949 #define	DTRACE_SIZEOF_AGGDESC(desc)				\
950 	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
951 	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
952 
953 /*
954  * DTrace Option Interface
955  *
956  * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
957  * in a DOF image.  The dof_optdesc structure contains an option identifier and
958  * an option value.  The valid option identifiers are found below; the mapping
959  * between option identifiers and option identifying strings is maintained at
960  * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
961  * following are potentially valid option values:  all positive integers, zero
962  * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
963  * predefined tokens as their values; these are defined with
964  * DTRACEOPT_{option}_{token}.
965  */
966 #define	DTRACEOPT_BUFSIZE	0	/* buffer size */
967 #define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
968 #define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
969 #define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
970 #define	DTRACEOPT_SPECSIZE	4	/* speculation size */
971 #define	DTRACEOPT_NSPEC		5	/* number of speculations */
972 #define	DTRACEOPT_STRSIZE	6	/* string size */
973 #define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
974 #define	DTRACEOPT_CPU		8	/* CPU to trace */
975 #define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
976 #define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
977 #define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
978 #define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
979 #define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
980 #define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
981 #define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
982 #define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
983 #define	DTRACEOPT_STATUSRATE	17	/* status rate */
984 #define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
985 #define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
986 #define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
987 #define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
988 #define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
989 #define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
990 #define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
991 #define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
992 #define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
993 #define	DTRACEOPT_MAX		27	/* number of options */
994 
995 #define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
996 
997 #define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
998 #define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
999 #define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
1000 
1001 #define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
1002 #define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
1003 
1004 /*
1005  * DTrace Buffer Interface
1006  *
1007  * In order to get a snapshot of the principal or aggregation buffer,
1008  * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1009  * structure.  This describes which CPU user-level is interested in, and
1010  * where user-level wishes the kernel to snapshot the buffer to (the
1011  * dtbd_data field).  The kernel uses the same structure to pass back some
1012  * information regarding the buffer:  the size of data actually copied out, the
1013  * number of drops, the number of errors, and the offset of the oldest record.
1014  * If the buffer policy is a "switch" policy, taking a snapshot of the
1015  * principal buffer has the additional effect of switching the active and
1016  * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
1017  * the additional effect of switching the active and inactive buffers.
1018  */
1019 typedef struct dtrace_bufdesc {
1020 	uint64_t dtbd_size;			/* size of buffer */
1021 	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1022 	uint32_t dtbd_errors;			/* number of errors */
1023 	uint64_t dtbd_drops;			/* number of drops */
1024 	DTRACE_PTR(char, dtbd_data);		/* data */
1025 	uint64_t dtbd_oldest;			/* offset of oldest record */
1026 } dtrace_bufdesc_t;
1027 
1028 /*
1029  * DTrace Status
1030  *
1031  * The status of DTrace is relayed via the dtrace_status structure.  This
1032  * structure contains members to count drops other than the capacity drops
1033  * available via the buffer interface (see above).  This consists of dynamic
1034  * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1035  * speculative drops (including capacity speculative drops, drops due to busy
1036  * speculative buffers and drops due to unavailable speculative buffers).
1037  * Additionally, the status structure contains a field to indicate the number
1038  * of "fill"-policy buffers have been filled and a boolean field to indicate
1039  * that exit() has been called.  If the dtst_exiting field is non-zero, no
1040  * further data will be generated until tracing is stopped (at which time any
1041  * enablings of the END action will be processed); if user-level sees that
1042  * this field is non-zero, tracing should be stopped as soon as possible.
1043  */
1044 typedef struct dtrace_status {
1045 	uint64_t dtst_dyndrops;			/* dynamic drops */
1046 	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1047 	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1048 	uint64_t dtst_specdrops;		/* speculative drops */
1049 	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1050 	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1051 	uint64_t dtst_errors;			/* total errors */
1052 	uint64_t dtst_filled;			/* number of filled bufs */
1053 	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1054 	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1055 	char dtst_killed;			/* non-zero if killed */
1056 	char dtst_exiting;			/* non-zero if exit() called */
1057 	char dtst_pad[6];			/* pad out to 64-bit align */
1058 } dtrace_status_t;
1059 
1060 /*
1061  * DTrace Configuration
1062  *
1063  * User-level may need to understand some elements of the kernel DTrace
1064  * configuration in order to generate correct DIF.  This information is
1065  * conveyed via the dtrace_conf structure.
1066  */
1067 typedef struct dtrace_conf {
1068 	uint_t dtc_difversion;			/* supported DIF version */
1069 	uint_t dtc_difintregs;			/* # of DIF integer registers */
1070 	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1071 	uint_t dtc_ctfmodel;			/* CTF data model */
1072 	uint_t dtc_pad[8];			/* reserved for future use */
1073 } dtrace_conf_t;
1074 
1075 /*
1076  * DTrace Faults
1077  *
1078  * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1079  * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1080  * postprocessing at user-level.  Probe processing faults induce an ERROR
1081  * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1082  * the error condition using thse symbolic labels.
1083  */
1084 #define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1085 #define	DTRACEFLT_BADADDR		1	/* Bad address */
1086 #define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1087 #define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1088 #define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1089 #define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1090 #define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1091 #define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1092 #define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1093 #define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1094 
1095 #define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1096 
1097 /*
1098  * DTrace Argument Types
1099  *
1100  * Because it would waste both space and time, argument types do not reside
1101  * with the probe.  In order to determine argument types for args[X]
1102  * variables, the D compiler queries for argument types on a probe-by-probe
1103  * basis.  (This optimizes for the common case that arguments are either not
1104  * used or used in an untyped fashion.)  Typed arguments are specified with a
1105  * string of the type name in the dtragd_native member of the argument
1106  * description structure.  Typed arguments may be further translated to types
1107  * of greater stability; the provider indicates such a translated argument by
1108  * filling in the dtargd_xlate member with the string of the translated type.
1109  * Finally, the provider may indicate which argument value a given argument
1110  * maps to by setting the dtargd_mapping member -- allowing a single argument
1111  * to map to multiple args[X] variables.
1112  */
1113 typedef struct dtrace_argdesc {
1114 	dtrace_id_t dtargd_id;			/* probe identifier */
1115 	int dtargd_ndx;				/* arg number (-1 iff none) */
1116 	int dtargd_mapping;			/* value mapping */
1117 	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1118 	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1119 } dtrace_argdesc_t;
1120 
1121 /*
1122  * DTrace Stability Attributes
1123  *
1124  * Each DTrace provider advertises the name and data stability of each of its
1125  * probe description components, as well as its architectural dependencies.
1126  * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1127  * order to compute the properties of an input program and report them.
1128  */
1129 typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1130 typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1131 
1132 #define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1133 #define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1134 #define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1135 #define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1136 #define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1137 #define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1138 #define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1139 #define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1140 #define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1141 
1142 #define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1143 #define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1144 #define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1145 #define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1146 #define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1147 #define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1148 #define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1149 
1150 #define	DTRACE_PRIV_NONE	0x0000
1151 #define	DTRACE_PRIV_KERNEL	0x0001
1152 #define	DTRACE_PRIV_USER	0x0002
1153 #define	DTRACE_PRIV_PROC	0x0004
1154 #define	DTRACE_PRIV_OWNER	0x0008
1155 #define	DTRACE_PRIV_ZONEOWNER	0x0010
1156 
1157 #define	DTRACE_PRIV_ALL	\
1158 	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1159 	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1160 
1161 typedef struct dtrace_ppriv {
1162 	uint32_t dtpp_flags;			/* privilege flags */
1163 	uid_t dtpp_uid;				/* user ID */
1164 	zoneid_t dtpp_zoneid;			/* zone ID */
1165 } dtrace_ppriv_t;
1166 
1167 typedef struct dtrace_attribute {
1168 	dtrace_stability_t dtat_name;		/* entity name stability */
1169 	dtrace_stability_t dtat_data;		/* entity data stability */
1170 	dtrace_class_t dtat_class;		/* entity data dependency */
1171 } dtrace_attribute_t;
1172 
1173 typedef struct dtrace_pattr {
1174 	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1175 	dtrace_attribute_t dtpa_mod;		/* module attributes */
1176 	dtrace_attribute_t dtpa_func;		/* function attributes */
1177 	dtrace_attribute_t dtpa_name;		/* name attributes */
1178 	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1179 } dtrace_pattr_t;
1180 
1181 typedef struct dtrace_providerdesc {
1182 	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1183 	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1184 	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1185 } dtrace_providerdesc_t;
1186 
1187 /*
1188  * DTrace Pseudodevice Interface
1189  *
1190  * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1191  * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1192  * DTrace.
1193  */
1194 #if defined(sun)
1195 #define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1196 #define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1197 #define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1198 #define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1199 #define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1200 #define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1201 #define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1202 #define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1203 #define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1204 #define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1205 #define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1206 #define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1207 #define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1208 #define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1209 #define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1210 #define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1211 #define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1212 #else
1213 #define	DTRACEIOC_PROVIDER	_IOWR('x',1,dtrace_providerdesc_t)
1214 							/* provider query */
1215 #define	DTRACEIOC_PROBES	_IOWR('x',2,dtrace_probedesc_t)
1216 							/* probe query */
1217 #define	DTRACEIOC_BUFSNAP	_IOW('x',4,dtrace_bufdesc_t *)
1218 							/* snapshot buffer */
1219 #define	DTRACEIOC_PROBEMATCH	_IOWR('x',5,dtrace_probedesc_t)
1220 							/* match probes */
1221 typedef struct {
1222 	void	*dof;		/* DOF userland address written to driver. */
1223 	int	n_matched;	/* # matches returned by driver. */
1224 } dtrace_enable_io_t;
1225 #define	DTRACEIOC_ENABLE	_IOWR('x',6,dtrace_enable_io_t)
1226 							/* enable probes */
1227 #define	DTRACEIOC_AGGSNAP	_IOW('x',7,dtrace_bufdesc_t *)
1228 							/* snapshot agg. */
1229 #define	DTRACEIOC_EPROBE	_IOW('x',8,dtrace_eprobedesc_t)
1230 							/* get eprobe desc. */
1231 #define	DTRACEIOC_PROBEARG	_IOWR('x',9,dtrace_argdesc_t)
1232 							/* get probe arg */
1233 #define	DTRACEIOC_CONF		_IOR('x',10,dtrace_conf_t)
1234 							/* get config. */
1235 #define	DTRACEIOC_STATUS	_IOR('x',11,dtrace_status_t)
1236 							/* get status */
1237 #define	DTRACEIOC_GO		_IOR('x',12,processorid_t)
1238 							/* start tracing */
1239 #define	DTRACEIOC_STOP		_IOWR('x',13,processorid_t)
1240 							/* stop tracing */
1241 #define	DTRACEIOC_AGGDESC	_IOW('x',15,dtrace_aggdesc_t *)
1242 							/* get agg. desc. */
1243 #define	DTRACEIOC_FORMAT	_IOWR('x',16,dtrace_fmtdesc_t)
1244 							/* get format str */
1245 #define	DTRACEIOC_DOFGET	_IOW('x',17,dof_hdr_t *)
1246 							/* get DOF */
1247 #define	DTRACEIOC_REPLICATE	_IOW('x',18,dtrace_repldesc_t)
1248 							/* replicate enab */
1249 #endif
1250 
1251 /*
1252  * DTrace Helpers
1253  *
1254  * In general, DTrace establishes probes in processes and takes actions on
1255  * processes without knowing their specific user-level structures.  Instead of
1256  * existing in the framework, process-specific knowledge is contained by the
1257  * enabling D program -- which can apply process-specific knowledge by making
1258  * appropriate use of DTrace primitives like copyin() and copyinstr() to
1259  * operate on user-level data.  However, there may exist some specific probes
1260  * of particular semantic relevance that the application developer may wish to
1261  * explicitly export.  For example, an application may wish to export a probe
1262  * at the point that it begins and ends certain well-defined transactions.  In
1263  * addition to providing probes, programs may wish to offer assistance for
1264  * certain actions.  For example, in highly dynamic environments (e.g., Java),
1265  * it may be difficult to obtain a stack trace in terms of meaningful symbol
1266  * names (the translation from instruction addresses to corresponding symbol
1267  * names may only be possible in situ); these environments may wish to define
1268  * a series of actions to be applied in situ to obtain a meaningful stack
1269  * trace.
1270  *
1271  * These two mechanisms -- user-level statically defined tracing and assisting
1272  * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1273  * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1274  * providers, probes and their arguments.  If a helper wishes to provide
1275  * action assistance, probe descriptions and corresponding DIF actions may be
1276  * specified in the helper DOF.  For such helper actions, however, the probe
1277  * description describes the specific helper:  all DTrace helpers have the
1278  * provider name "dtrace" and the module name "helper", and the name of the
1279  * helper is contained in the function name (for example, the ustack() helper
1280  * is named "ustack").  Any helper-specific name may be contained in the name
1281  * (for example, if a helper were to have a constructor, it might be named
1282  * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1283  * action that they are helping is taken.  Helper actions may only return DIF
1284  * expressions, and may only call the following subroutines:
1285  *
1286  *    alloca()      <= Allocates memory out of the consumer's scratch space
1287  *    bcopy()       <= Copies memory to scratch space
1288  *    copyin()      <= Copies memory from user-level into consumer's scratch
1289  *    copyinto()    <= Copies memory into a specific location in scratch
1290  *    copyinstr()   <= Copies a string into a specific location in scratch
1291  *
1292  * Helper actions may only access the following built-in variables:
1293  *
1294  *    curthread     <= Current kthread_t pointer
1295  *    tid           <= Current thread identifier
1296  *    pid           <= Current process identifier
1297  *    ppid          <= Parent process identifier
1298  *    uid           <= Current user ID
1299  *    gid           <= Current group ID
1300  *    execname      <= Current executable name
1301  *    zonename      <= Current zone name
1302  *
1303  * Helper actions may not manipulate or allocate dynamic variables, but they
1304  * may have clause-local and statically-allocated global variables.  The
1305  * helper action variable state is specific to the helper action -- variables
1306  * used by the helper action may not be accessed outside of the helper
1307  * action, and the helper action may not access variables that like outside
1308  * of it.  Helper actions may not load from kernel memory at-large; they are
1309  * restricting to loading current user state (via copyin() and variants) and
1310  * scratch space.  As with probe enablings, helper actions are executed in
1311  * program order.  The result of the helper action is the result of the last
1312  * executing helper expression.
1313  *
1314  * Helpers -- composed of either providers/probes or probes/actions (or both)
1315  * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1316  * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1317  * encapsulates the name and base address of the user-level library or
1318  * executable publishing the helpers and probes as well as the DOF that
1319  * contains the definitions of those helpers and probes.
1320  *
1321  * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1322  * helpers and should no longer be used.  No other ioctls are valid on the
1323  * helper minor node.
1324  */
1325 #if defined(sun)
1326 #define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1327 #define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1328 #define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1329 #define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1330 #else
1331 #define	DTRACEHIOC_ADD		_IOWR('z', 1, dof_hdr_t)/* add helper */
1332 #define	DTRACEHIOC_REMOVE	_IOW('z', 2, int)	/* remove helper */
1333 #define	DTRACEHIOC_ADDDOF	_IOWR('z', 3, dof_helper_t)/* add helper DOF */
1334 #endif
1335 
1336 typedef struct dof_helper {
1337 	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1338 	uint64_t dofhp_addr;			/* base address of object */
1339 	uint64_t dofhp_dof;			/* address of helper DOF */
1340 #if !defined(sun)
1341 	int gen;
1342 #endif
1343 } dof_helper_t;
1344 
1345 #define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1346 #define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1347 #define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1348 #define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1349 #define	DTRACEMNRN_CLONE	2		/* first clone minor */
1350 
1351 #ifdef _KERNEL
1352 
1353 /*
1354  * DTrace Provider API
1355  *
1356  * The following functions are implemented by the DTrace framework and are
1357  * used to implement separate in-kernel DTrace providers.  Common functions
1358  * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1359  * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1360  *
1361  * The provider API has two halves:  the API that the providers consume from
1362  * DTrace, and the API that providers make available to DTrace.
1363  *
1364  * 1 Framework-to-Provider API
1365  *
1366  * 1.1  Overview
1367  *
1368  * The Framework-to-Provider API is represented by the dtrace_pops structure
1369  * that the provider passes to the framework when registering itself.  This
1370  * structure consists of the following members:
1371  *
1372  *   dtps_provide()          <-- Provide all probes, all modules
1373  *   dtps_provide_module()   <-- Provide all probes in specified module
1374  *   dtps_enable()           <-- Enable specified probe
1375  *   dtps_disable()          <-- Disable specified probe
1376  *   dtps_suspend()          <-- Suspend specified probe
1377  *   dtps_resume()           <-- Resume specified probe
1378  *   dtps_getargdesc()       <-- Get the argument description for args[X]
1379  *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1380  *   dtps_usermode()         <-- Find out if the probe was fired in user mode
1381  *   dtps_destroy()          <-- Destroy all state associated with this probe
1382  *
1383  * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1384  *
1385  * 1.2.1  Overview
1386  *
1387  *   Called to indicate that the provider should provide all probes.  If the
1388  *   specified description is non-NULL, dtps_provide() is being called because
1389  *   no probe matched a specified probe -- if the provider has the ability to
1390  *   create custom probes, it may wish to create a probe that matches the
1391  *   specified description.
1392  *
1393  * 1.2.2  Arguments and notes
1394  *
1395  *   The first argument is the cookie as passed to dtrace_register().  The
1396  *   second argument is a pointer to a probe description that the provider may
1397  *   wish to consider when creating custom probes.  The provider is expected to
1398  *   call back into the DTrace framework via dtrace_probe_create() to create
1399  *   any necessary probes.  dtps_provide() may be called even if the provider
1400  *   has made available all probes; the provider should check the return value
1401  *   of dtrace_probe_create() to handle this case.  Note that the provider need
1402  *   not implement both dtps_provide() and dtps_provide_module(); see
1403  *   "Arguments and Notes" for dtrace_register(), below.
1404  *
1405  * 1.2.3  Return value
1406  *
1407  *   None.
1408  *
1409  * 1.2.4  Caller's context
1410  *
1411  *   dtps_provide() is typically called from open() or ioctl() context, but may
1412  *   be called from other contexts as well.  The DTrace framework is locked in
1413  *   such a way that providers may not register or unregister.  This means that
1414  *   the provider may not call any DTrace API that affects its registration with
1415  *   the framework, including dtrace_register(), dtrace_unregister(),
1416  *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1417  *   that the provider may (and indeed, is expected to) call probe-related
1418  *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1419  *   and dtrace_probe_arg().
1420  *
1421  * 1.3  void dtps_provide_module(void *arg, modctl_t *mp)
1422  *
1423  * 1.3.1  Overview
1424  *
1425  *   Called to indicate that the provider should provide all probes in the
1426  *   specified module.
1427  *
1428  * 1.3.2  Arguments and notes
1429  *
1430  *   The first argument is the cookie as passed to dtrace_register().  The
1431  *   second argument is a pointer to a modctl structure that indicates the
1432  *   module for which probes should be created.
1433  *
1434  * 1.3.3  Return value
1435  *
1436  *   None.
1437  *
1438  * 1.3.4  Caller's context
1439  *
1440  *   dtps_provide_module() may be called from open() or ioctl() context, but
1441  *   may also be called from a module loading context.  mod_lock is held, and
1442  *   the DTrace framework is locked in such a way that providers may not
1443  *   register or unregister.  This means that the provider may not call any
1444  *   DTrace API that affects its registration with the framework, including
1445  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1446  *   dtrace_condense().  However, the context is such that the provider may (and
1447  *   indeed, is expected to) call probe-related DTrace routines, including
1448  *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1449  *   that the provider need not implement both dtps_provide() and
1450  *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1451  *   below.
1452  *
1453  * 1.4  void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1454  *
1455  * 1.4.1  Overview
1456  *
1457  *   Called to enable the specified probe.
1458  *
1459  * 1.4.2  Arguments and notes
1460  *
1461  *   The first argument is the cookie as passed to dtrace_register().  The
1462  *   second argument is the identifier of the probe to be enabled.  The third
1463  *   argument is the probe argument as passed to dtrace_probe_create().
1464  *   dtps_enable() will be called when a probe transitions from not being
1465  *   enabled at all to having one or more ECB.  The number of ECBs associated
1466  *   with the probe may change without subsequent calls into the provider.
1467  *   When the number of ECBs drops to zero, the provider will be explicitly
1468  *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1469  *   be called for a probe identifier that hasn't been explicitly enabled via
1470  *   dtps_enable().
1471  *
1472  * 1.4.3  Return value
1473  *
1474  *   None.
1475  *
1476  * 1.4.4  Caller's context
1477  *
1478  *   The DTrace framework is locked in such a way that it may not be called
1479  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1480  *   be acquired.
1481  *
1482  * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1483  *
1484  * 1.5.1  Overview
1485  *
1486  *   Called to disable the specified probe.
1487  *
1488  * 1.5.2  Arguments and notes
1489  *
1490  *   The first argument is the cookie as passed to dtrace_register().  The
1491  *   second argument is the identifier of the probe to be disabled.  The third
1492  *   argument is the probe argument as passed to dtrace_probe_create().
1493  *   dtps_disable() will be called when a probe transitions from being enabled
1494  *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1495  *   identifier that has been explicitly enabled via dtps_disable().
1496  *
1497  * 1.5.3  Return value
1498  *
1499  *   None.
1500  *
1501  * 1.5.4  Caller's context
1502  *
1503  *   The DTrace framework is locked in such a way that it may not be called
1504  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1505  *   be acquired.
1506  *
1507  * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1508  *
1509  * 1.6.1  Overview
1510  *
1511  *   Called to suspend the specified enabled probe.  This entry point is for
1512  *   providers that may need to suspend some or all of their probes when CPUs
1513  *   are being powered on or when the boot monitor is being entered for a
1514  *   prolonged period of time.
1515  *
1516  * 1.6.2  Arguments and notes
1517  *
1518  *   The first argument is the cookie as passed to dtrace_register().  The
1519  *   second argument is the identifier of the probe to be suspended.  The
1520  *   third argument is the probe argument as passed to dtrace_probe_create().
1521  *   dtps_suspend will only be called on an enabled probe.  Providers that
1522  *   provide a dtps_suspend entry point will want to take roughly the action
1523  *   that it takes for dtps_disable.
1524  *
1525  * 1.6.3  Return value
1526  *
1527  *   None.
1528  *
1529  * 1.6.4  Caller's context
1530  *
1531  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1532  *   specified probe cannot be disabled or destroyed for the duration of
1533  *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1534  *   little latitude; the provider is expected to do no more than a store to
1535  *   memory.
1536  *
1537  * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1538  *
1539  * 1.7.1  Overview
1540  *
1541  *   Called to resume the specified enabled probe.  This entry point is for
1542  *   providers that may need to resume some or all of their probes after the
1543  *   completion of an event that induced a call to dtps_suspend().
1544  *
1545  * 1.7.2  Arguments and notes
1546  *
1547  *   The first argument is the cookie as passed to dtrace_register().  The
1548  *   second argument is the identifier of the probe to be resumed.  The
1549  *   third argument is the probe argument as passed to dtrace_probe_create().
1550  *   dtps_resume will only be called on an enabled probe.  Providers that
1551  *   provide a dtps_resume entry point will want to take roughly the action
1552  *   that it takes for dtps_enable.
1553  *
1554  * 1.7.3  Return value
1555  *
1556  *   None.
1557  *
1558  * 1.7.4  Caller's context
1559  *
1560  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1561  *   specified probe cannot be disabled or destroyed for the duration of
1562  *   dtps_resume().  As interrupts are disabled, the provider is afforded
1563  *   little latitude; the provider is expected to do no more than a store to
1564  *   memory.
1565  *
1566  * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1567  *           dtrace_argdesc_t *desc)
1568  *
1569  * 1.8.1  Overview
1570  *
1571  *   Called to retrieve the argument description for an args[X] variable.
1572  *
1573  * 1.8.2  Arguments and notes
1574  *
1575  *   The first argument is the cookie as passed to dtrace_register(). The
1576  *   second argument is the identifier of the current probe. The third
1577  *   argument is the probe argument as passed to dtrace_probe_create(). The
1578  *   fourth argument is a pointer to the argument description.  This
1579  *   description is both an input and output parameter:  it contains the
1580  *   index of the desired argument in the dtargd_ndx field, and expects
1581  *   the other fields to be filled in upon return.  If there is no argument
1582  *   corresponding to the specified index, the dtargd_ndx field should be set
1583  *   to DTRACE_ARGNONE.
1584  *
1585  * 1.8.3  Return value
1586  *
1587  *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1588  *   members of the dtrace_argdesc_t structure are all output values.
1589  *
1590  * 1.8.4  Caller's context
1591  *
1592  *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1593  *   the DTrace framework is locked in such a way that providers may not
1594  *   register or unregister.  This means that the provider may not call any
1595  *   DTrace API that affects its registration with the framework, including
1596  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1597  *   dtrace_condense().
1598  *
1599  * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1600  *               int argno, int aframes)
1601  *
1602  * 1.9.1  Overview
1603  *
1604  *   Called to retrieve a value for an argX or args[X] variable.
1605  *
1606  * 1.9.2  Arguments and notes
1607  *
1608  *   The first argument is the cookie as passed to dtrace_register(). The
1609  *   second argument is the identifier of the current probe. The third
1610  *   argument is the probe argument as passed to dtrace_probe_create(). The
1611  *   fourth argument is the number of the argument (the X in the example in
1612  *   1.9.1). The fifth argument is the number of stack frames that were used
1613  *   to get from the actual place in the code that fired the probe to
1614  *   dtrace_probe() itself, the so-called artificial frames. This argument may
1615  *   be used to descend an appropriate number of frames to find the correct
1616  *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1617  *   function is used.
1618  *
1619  * 1.9.3  Return value
1620  *
1621  *   The value of the argument.
1622  *
1623  * 1.9.4  Caller's context
1624  *
1625  *   This is called from within dtrace_probe() meaning that interrupts
1626  *   are disabled. No locks should be taken within this entry point.
1627  *
1628  * 1.10  int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1629  *
1630  * 1.10.1  Overview
1631  *
1632  *   Called to determine if the probe was fired in a user context.
1633  *
1634  * 1.10.2  Arguments and notes
1635  *
1636  *   The first argument is the cookie as passed to dtrace_register(). The
1637  *   second argument is the identifier of the current probe. The third
1638  *   argument is the probe argument as passed to dtrace_probe_create().  This
1639  *   entry point must not be left NULL for providers whose probes allow for
1640  *   mixed mode tracing, that is to say those probes that can fire during
1641  *   kernel- _or_ user-mode execution
1642  *
1643  * 1.10.3  Return value
1644  *
1645  *   A boolean value.
1646  *
1647  * 1.10.4  Caller's context
1648  *
1649  *   This is called from within dtrace_probe() meaning that interrupts
1650  *   are disabled. No locks should be taken within this entry point.
1651  *
1652  * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1653  *
1654  * 1.11.1 Overview
1655  *
1656  *   Called to destroy the specified probe.
1657  *
1658  * 1.11.2 Arguments and notes
1659  *
1660  *   The first argument is the cookie as passed to dtrace_register().  The
1661  *   second argument is the identifier of the probe to be destroyed.  The third
1662  *   argument is the probe argument as passed to dtrace_probe_create().  The
1663  *   provider should free all state associated with the probe.  The framework
1664  *   guarantees that dtps_destroy() is only called for probes that have either
1665  *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1666  *   Once dtps_disable() has been called for a probe, no further call will be
1667  *   made specifying the probe.
1668  *
1669  * 1.11.3 Return value
1670  *
1671  *   None.
1672  *
1673  * 1.11.4 Caller's context
1674  *
1675  *   The DTrace framework is locked in such a way that it may not be called
1676  *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1677  *   acquired.
1678  *
1679  *
1680  * 2 Provider-to-Framework API
1681  *
1682  * 2.1  Overview
1683  *
1684  * The Provider-to-Framework API provides the mechanism for the provider to
1685  * register itself with the DTrace framework, to create probes, to lookup
1686  * probes and (most importantly) to fire probes.  The Provider-to-Framework
1687  * consists of:
1688  *
1689  *   dtrace_register()       <-- Register a provider with the DTrace framework
1690  *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1691  *   dtrace_invalidate()     <-- Invalidate the specified provider
1692  *   dtrace_condense()       <-- Remove a provider's unenabled probes
1693  *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1694  *   dtrace_probe_create()   <-- Create a DTrace probe
1695  *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1696  *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1697  *   dtrace_probe()          <-- Fire the specified probe
1698  *
1699  * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1700  *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1701  *          dtrace_provider_id_t *idp)
1702  *
1703  * 2.2.1  Overview
1704  *
1705  *   dtrace_register() registers the calling provider with the DTrace
1706  *   framework.  It should generally be called by DTrace providers in their
1707  *   attach(9E) entry point.
1708  *
1709  * 2.2.2  Arguments and Notes
1710  *
1711  *   The first argument is the name of the provider.  The second argument is a
1712  *   pointer to the stability attributes for the provider.  The third argument
1713  *   is the privilege flags for the provider, and must be some combination of:
1714  *
1715  *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1716  *
1717  *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1718  *                             enable probes from this provider
1719  *
1720  *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1721  *                             enable probes from this provider
1722  *
1723  *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1724  *                             may enable probes from this provider
1725  *
1726  *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1727  *                             the privilege requirements above. These probes
1728  *                             require either (a) a user ID matching the user
1729  *                             ID of the cred passed in the fourth argument
1730  *                             or (b) the PRIV_PROC_OWNER privilege.
1731  *
1732  *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1733  *                             the privilege requirements above. These probes
1734  *                             require either (a) a zone ID matching the zone
1735  *                             ID of the cred passed in the fourth argument
1736  *                             or (b) the PRIV_PROC_ZONE privilege.
1737  *
1738  *   Note that these flags designate the _visibility_ of the probes, not
1739  *   the conditions under which they may or may not fire.
1740  *
1741  *   The fourth argument is the credential that is associated with the
1742  *   provider.  This argument should be NULL if the privilege flags don't
1743  *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1744  *   framework stashes the uid and zoneid represented by this credential
1745  *   for use at probe-time, in implicit predicates.  These limit visibility
1746  *   of the probes to users and/or zones which have sufficient privilege to
1747  *   access them.
1748  *
1749  *   The fifth argument is a DTrace provider operations vector, which provides
1750  *   the implementation for the Framework-to-Provider API.  (See Section 1,
1751  *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1752  *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1753  *   members (if the provider so desires, _one_ of these members may be left
1754  *   NULL -- denoting that the provider only implements the other) and (2)
1755  *   the dtps_suspend() and dtps_resume() members, which must either both be
1756  *   NULL or both be non-NULL.
1757  *
1758  *   The sixth argument is a cookie to be specified as the first argument for
1759  *   each function in the Framework-to-Provider API.  This argument may have
1760  *   any value.
1761  *
1762  *   The final argument is a pointer to dtrace_provider_id_t.  If
1763  *   dtrace_register() successfully completes, the provider identifier will be
1764  *   stored in the memory pointed to be this argument.  This argument must be
1765  *   non-NULL.
1766  *
1767  * 2.2.3  Return value
1768  *
1769  *   On success, dtrace_register() returns 0 and stores the new provider's
1770  *   identifier into the memory pointed to by the idp argument.  On failure,
1771  *   dtrace_register() returns an errno:
1772  *
1773  *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1774  *              This may because a parameter that must be non-NULL was NULL,
1775  *              because the name was invalid (either empty or an illegal
1776  *              provider name) or because the attributes were invalid.
1777  *
1778  *   No other failure code is returned.
1779  *
1780  * 2.2.4  Caller's context
1781  *
1782  *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1783  *   hold no locks across dtrace_register() that may also be acquired by
1784  *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1785  *
1786  * 2.3  int dtrace_unregister(dtrace_provider_t id)
1787  *
1788  * 2.3.1  Overview
1789  *
1790  *   Unregisters the specified provider from the DTrace framework.  It should
1791  *   generally be called by DTrace providers in their detach(9E) entry point.
1792  *
1793  * 2.3.2  Arguments and Notes
1794  *
1795  *   The only argument is the provider identifier, as returned from a
1796  *   successful call to dtrace_register().  As a result of calling
1797  *   dtrace_unregister(), the DTrace framework will call back into the provider
1798  *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1799  *   completes, however, the DTrace framework will no longer make calls through
1800  *   the Framework-to-Provider API.
1801  *
1802  * 2.3.3  Return value
1803  *
1804  *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1805  *   returns an errno:
1806  *
1807  *     EBUSY    There are currently processes that have the DTrace pseudodevice
1808  *              open, or there exists an anonymous enabling that hasn't yet
1809  *              been claimed.
1810  *
1811  *   No other failure code is returned.
1812  *
1813  * 2.3.4  Caller's context
1814  *
1815  *   Because a call to dtrace_unregister() may induce calls through the
1816  *   Framework-to-Provider API, the caller may not hold any lock across
1817  *   dtrace_register() that is also acquired in any of the Framework-to-
1818  *   Provider API functions.  Additionally, mod_lock may not be held.
1819  *
1820  * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1821  *
1822  * 2.4.1  Overview
1823  *
1824  *   Invalidates the specified provider.  All subsequent probe lookups for the
1825  *   specified provider will fail, but its probes will not be removed.
1826  *
1827  * 2.4.2  Arguments and note
1828  *
1829  *   The only argument is the provider identifier, as returned from a
1830  *   successful call to dtrace_register().  In general, a provider's probes
1831  *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1832  *   an entire provider, regardless of whether or not probes are enabled or
1833  *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1834  *   probes from firing -- it will merely prevent any new enablings of the
1835  *   provider's probes.
1836  *
1837  * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1838  *
1839  * 2.5.1  Overview
1840  *
1841  *   Removes all the unenabled probes for the given provider. This function is
1842  *   not unlike dtrace_unregister(), except that it doesn't remove the
1843  *   provider just as many of its associated probes as it can.
1844  *
1845  * 2.5.2  Arguments and Notes
1846  *
1847  *   As with dtrace_unregister(), the sole argument is the provider identifier
1848  *   as returned from a successful call to dtrace_register().  As a result of
1849  *   calling dtrace_condense(), the DTrace framework will call back into the
1850  *   given provider's dtps_destroy() entry point for each of the provider's
1851  *   unenabled probes.
1852  *
1853  * 2.5.3  Return value
1854  *
1855  *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1856  *   function should check the return value as appropriate; its behavior may
1857  *   change in the future.
1858  *
1859  * 2.5.4  Caller's context
1860  *
1861  *   As with dtrace_unregister(), the caller may not hold any lock across
1862  *   dtrace_condense() that is also acquired in the provider's entry points.
1863  *   Also, mod_lock may not be held.
1864  *
1865  * 2.6 int dtrace_attached()
1866  *
1867  * 2.6.1  Overview
1868  *
1869  *   Indicates whether or not DTrace has attached.
1870  *
1871  * 2.6.2  Arguments and Notes
1872  *
1873  *   For most providers, DTrace makes initial contact beyond registration.
1874  *   That is, once a provider has registered with DTrace, it waits to hear
1875  *   from DTrace to create probes.  However, some providers may wish to
1876  *   proactively create probes without first being told by DTrace to do so.
1877  *   If providers wish to do this, they must first call dtrace_attached() to
1878  *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1879  *   the provider must not make any other Provider-to-Framework API call.
1880  *
1881  * 2.6.3  Return value
1882  *
1883  *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1884  *
1885  * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1886  *	    const char *func, const char *name, int aframes, void *arg)
1887  *
1888  * 2.7.1  Overview
1889  *
1890  *   Creates a probe with specified module name, function name, and name.
1891  *
1892  * 2.7.2  Arguments and Notes
1893  *
1894  *   The first argument is the provider identifier, as returned from a
1895  *   successful call to dtrace_register().  The second, third, and fourth
1896  *   arguments are the module name, function name, and probe name,
1897  *   respectively.  Of these, module name and function name may both be NULL
1898  *   (in which case the probe is considered to be unanchored), or they may both
1899  *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
1900  *   string.
1901  *
1902  *   The fifth argument is the number of artificial stack frames that will be
1903  *   found on the stack when dtrace_probe() is called for the new probe.  These
1904  *   artificial frames will be automatically be pruned should the stack() or
1905  *   stackdepth() functions be called as part of one of the probe's ECBs.  If
1906  *   the parameter doesn't add an artificial frame, this parameter should be
1907  *   zero.
1908  *
1909  *   The final argument is a probe argument that will be passed back to the
1910  *   provider when a probe-specific operation is called.  (e.g., via
1911  *   dtps_enable(), dtps_disable(), etc.)
1912  *
1913  *   Note that it is up to the provider to be sure that the probe that it
1914  *   creates does not already exist -- if the provider is unsure of the probe's
1915  *   existence, it should assure its absence with dtrace_probe_lookup() before
1916  *   calling dtrace_probe_create().
1917  *
1918  * 2.7.3  Return value
1919  *
1920  *   dtrace_probe_create() always succeeds, and always returns the identifier
1921  *   of the newly-created probe.
1922  *
1923  * 2.7.4  Caller's context
1924  *
1925  *   While dtrace_probe_create() is generally expected to be called from
1926  *   dtps_provide() and/or dtps_provide_module(), it may be called from other
1927  *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1928  *
1929  * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1930  *	    const char *func, const char *name)
1931  *
1932  * 2.8.1  Overview
1933  *
1934  *   Looks up a probe based on provdider and one or more of module name,
1935  *   function name and probe name.
1936  *
1937  * 2.8.2  Arguments and Notes
1938  *
1939  *   The first argument is the provider identifier, as returned from a
1940  *   successful call to dtrace_register().  The second, third, and fourth
1941  *   arguments are the module name, function name, and probe name,
1942  *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
1943  *   the identifier of the first probe that is provided by the specified
1944  *   provider and matches all of the non-NULL matching criteria.
1945  *   dtrace_probe_lookup() is generally used by a provider to be check the
1946  *   existence of a probe before creating it with dtrace_probe_create().
1947  *
1948  * 2.8.3  Return value
1949  *
1950  *   If the probe exists, returns its identifier.  If the probe does not exist,
1951  *   return DTRACE_IDNONE.
1952  *
1953  * 2.8.4  Caller's context
1954  *
1955  *   While dtrace_probe_lookup() is generally expected to be called from
1956  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1957  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1958  *
1959  * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1960  *
1961  * 2.9.1  Overview
1962  *
1963  *   Returns the probe argument associated with the specified probe.
1964  *
1965  * 2.9.2  Arguments and Notes
1966  *
1967  *   The first argument is the provider identifier, as returned from a
1968  *   successful call to dtrace_register().  The second argument is a probe
1969  *   identifier, as returned from dtrace_probe_lookup() or
1970  *   dtrace_probe_create().  This is useful if a probe has multiple
1971  *   provider-specific components to it:  the provider can create the probe
1972  *   once with provider-specific state, and then add to the state by looking
1973  *   up the probe based on probe identifier.
1974  *
1975  * 2.9.3  Return value
1976  *
1977  *   Returns the argument associated with the specified probe.  If the
1978  *   specified probe does not exist, or if the specified probe is not provided
1979  *   by the specified provider, NULL is returned.
1980  *
1981  * 2.9.4  Caller's context
1982  *
1983  *   While dtrace_probe_arg() is generally expected to be called from
1984  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1985  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1986  *
1987  * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
1988  *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
1989  *
1990  * 2.10.1  Overview
1991  *
1992  *   The epicenter of DTrace:  fires the specified probes with the specified
1993  *   arguments.
1994  *
1995  * 2.10.2  Arguments and Notes
1996  *
1997  *   The first argument is a probe identifier as returned by
1998  *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
1999  *   arguments are the values to which the D variables "arg0" through "arg4"
2000  *   will be mapped.
2001  *
2002  *   dtrace_probe() should be called whenever the specified probe has fired --
2003  *   however the provider defines it.
2004  *
2005  * 2.10.3  Return value
2006  *
2007  *   None.
2008  *
2009  * 2.10.4  Caller's context
2010  *
2011  *   dtrace_probe() may be called in virtually any context:  kernel, user,
2012  *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2013  *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
2014  *   that must be afforded to DTrace is the ability to make calls within
2015  *   itself (and to its in-kernel subroutines) and the ability to access
2016  *   arbitrary (but mapped) memory.  On some platforms, this constrains
2017  *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
2018  *   from any context in which TL is greater than zero.  dtrace_probe() may
2019  *   also not be called from any routine which may be called by dtrace_probe()
2020  *   -- which includes functions in the DTrace framework and some in-kernel
2021  *   DTrace subroutines.  All such functions "dtrace_"; providers that
2022  *   instrument the kernel arbitrarily should be sure to not instrument these
2023  *   routines.
2024  */
2025 typedef struct dtrace_pops {
2026 	void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec);
2027 	void (*dtps_provide_module)(void *arg, modctl_t *mp);
2028 	void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2029 	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2030 	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2031 	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2032 	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2033 	    dtrace_argdesc_t *desc);
2034 	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2035 	    int argno, int aframes);
2036 	int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2037 	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2038 } dtrace_pops_t;
2039 
2040 typedef uintptr_t	dtrace_provider_id_t;
2041 
2042 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2043     cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2044 extern int dtrace_unregister(dtrace_provider_id_t);
2045 extern int dtrace_condense(dtrace_provider_id_t);
2046 extern void dtrace_invalidate(dtrace_provider_id_t);
2047 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *,
2048     char *, char *);
2049 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2050     const char *, const char *, int, void *);
2051 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2052 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2053     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2054 
2055 /*
2056  * DTrace Meta Provider API
2057  *
2058  * The following functions are implemented by the DTrace framework and are
2059  * used to implement meta providers. Meta providers plug into the DTrace
2060  * framework and are used to instantiate new providers on the fly. At
2061  * present, there is only one type of meta provider and only one meta
2062  * provider may be registered with the DTrace framework at a time. The
2063  * sole meta provider type provides user-land static tracing facilities
2064  * by taking meta probe descriptions and adding a corresponding provider
2065  * into the DTrace framework.
2066  *
2067  * 1 Framework-to-Provider
2068  *
2069  * 1.1 Overview
2070  *
2071  * The Framework-to-Provider API is represented by the dtrace_mops structure
2072  * that the meta provider passes to the framework when registering itself as
2073  * a meta provider. This structure consists of the following members:
2074  *
2075  *   dtms_create_probe()	<-- Add a new probe to a created provider
2076  *   dtms_provide_pid()		<-- Create a new provider for a given process
2077  *   dtms_remove_pid()		<-- Remove a previously created provider
2078  *
2079  * 1.2  void dtms_create_probe(void *arg, void *parg,
2080  *           dtrace_helper_probedesc_t *probedesc);
2081  *
2082  * 1.2.1  Overview
2083  *
2084  *   Called by the DTrace framework to create a new probe in a provider
2085  *   created by this meta provider.
2086  *
2087  * 1.2.2  Arguments and notes
2088  *
2089  *   The first argument is the cookie as passed to dtrace_meta_register().
2090  *   The second argument is the provider cookie for the associated provider;
2091  *   this is obtained from the return value of dtms_provide_pid(). The third
2092  *   argument is the helper probe description.
2093  *
2094  * 1.2.3  Return value
2095  *
2096  *   None
2097  *
2098  * 1.2.4  Caller's context
2099  *
2100  *   dtms_create_probe() is called from either ioctl() or module load context.
2101  *   The DTrace framework is locked in such a way that meta providers may not
2102  *   register or unregister. This means that the meta provider cannot call
2103  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2104  *   such that the provider may (and is expected to) call provider-related
2105  *   DTrace provider APIs including dtrace_probe_create().
2106  *
2107  * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2108  *	      pid_t pid)
2109  *
2110  * 1.3.1  Overview
2111  *
2112  *   Called by the DTrace framework to instantiate a new provider given the
2113  *   description of the provider and probes in the mprov argument. The
2114  *   meta provider should call dtrace_register() to insert the new provider
2115  *   into the DTrace framework.
2116  *
2117  * 1.3.2  Arguments and notes
2118  *
2119  *   The first argument is the cookie as passed to dtrace_meta_register().
2120  *   The second argument is a pointer to a structure describing the new
2121  *   helper provider. The third argument is the process identifier for
2122  *   process associated with this new provider. Note that the name of the
2123  *   provider as passed to dtrace_register() should be the contatenation of
2124  *   the dtmpb_provname member of the mprov argument and the processs
2125  *   identifier as a string.
2126  *
2127  * 1.3.3  Return value
2128  *
2129  *   The cookie for the provider that the meta provider creates. This is
2130  *   the same value that it passed to dtrace_register().
2131  *
2132  * 1.3.4  Caller's context
2133  *
2134  *   dtms_provide_pid() is called from either ioctl() or module load context.
2135  *   The DTrace framework is locked in such a way that meta providers may not
2136  *   register or unregister. This means that the meta provider cannot call
2137  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2138  *   is such that the provider may -- and is expected to --  call
2139  *   provider-related DTrace provider APIs including dtrace_register().
2140  *
2141  * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2142  *	     pid_t pid)
2143  *
2144  * 1.4.1  Overview
2145  *
2146  *   Called by the DTrace framework to remove a provider that had previously
2147  *   been instantiated via the dtms_provide_pid() entry point. The meta
2148  *   provider need not remove the provider immediately, but this entry
2149  *   point indicates that the provider should be removed as soon as possible
2150  *   using the dtrace_unregister() API.
2151  *
2152  * 1.4.2  Arguments and notes
2153  *
2154  *   The first argument is the cookie as passed to dtrace_meta_register().
2155  *   The second argument is a pointer to a structure describing the helper
2156  *   provider. The third argument is the process identifier for process
2157  *   associated with this new provider.
2158  *
2159  * 1.4.3  Return value
2160  *
2161  *   None
2162  *
2163  * 1.4.4  Caller's context
2164  *
2165  *   dtms_remove_pid() is called from either ioctl() or exit() context.
2166  *   The DTrace framework is locked in such a way that meta providers may not
2167  *   register or unregister. This means that the meta provider cannot call
2168  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2169  *   is such that the provider may -- and is expected to -- call
2170  *   provider-related DTrace provider APIs including dtrace_unregister().
2171  */
2172 typedef struct dtrace_helper_probedesc {
2173 	char *dthpb_mod;			/* probe module */
2174 	char *dthpb_func; 			/* probe function */
2175 	char *dthpb_name; 			/* probe name */
2176 	uint64_t dthpb_base;			/* base address */
2177 	uint32_t *dthpb_offs;			/* offsets array */
2178 	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2179 	uint32_t dthpb_noffs;			/* offsets count */
2180 	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2181 	uint8_t *dthpb_args;			/* argument mapping array */
2182 	uint8_t dthpb_xargc;			/* translated argument count */
2183 	uint8_t dthpb_nargc;			/* native argument count */
2184 	char *dthpb_xtypes;			/* translated types strings */
2185 	char *dthpb_ntypes;			/* native types strings */
2186 } dtrace_helper_probedesc_t;
2187 
2188 typedef struct dtrace_helper_provdesc {
2189 	char *dthpv_provname;			/* provider name */
2190 	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2191 } dtrace_helper_provdesc_t;
2192 
2193 typedef struct dtrace_mops {
2194 	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2195 	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2196 	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2197 } dtrace_mops_t;
2198 
2199 typedef uintptr_t	dtrace_meta_provider_id_t;
2200 
2201 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2202     dtrace_meta_provider_id_t *);
2203 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2204 
2205 /*
2206  * DTrace Kernel Hooks
2207  *
2208  * The following functions are implemented by the base kernel and form a set of
2209  * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2210  * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2211  * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2212  */
2213 
2214 typedef enum dtrace_vtime_state {
2215 	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2216 	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2217 	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2218 	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2219 } dtrace_vtime_state_t;
2220 
2221 #if defined(sun)
2222 extern dtrace_vtime_state_t dtrace_vtime_active;
2223 #endif
2224 extern void dtrace_vtime_switch(kthread_t *next);
2225 extern void dtrace_vtime_enable_tnf(void);
2226 extern void dtrace_vtime_disable_tnf(void);
2227 extern void dtrace_vtime_enable(void);
2228 extern void dtrace_vtime_disable(void);
2229 
2230 struct regs;
2231 struct reg;
2232 
2233 #if defined(sun)
2234 extern int (*dtrace_pid_probe_ptr)(struct reg *);
2235 extern int (*dtrace_return_probe_ptr)(struct reg *);
2236 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2237 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2238 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2239 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2240 #endif
2241 
2242 typedef uintptr_t dtrace_icookie_t;
2243 typedef void (*dtrace_xcall_t)(void *);
2244 
2245 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2246 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2247 
2248 extern void dtrace_membar_producer(void);
2249 extern void dtrace_membar_consumer(void);
2250 
2251 extern void (*dtrace_cpu_init)(processorid_t);
2252 extern void (*dtrace_modload)(modctl_t *);
2253 extern void (*dtrace_modunload)(modctl_t *);
2254 extern void (*dtrace_helpers_cleanup)(void);
2255 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2256 extern void (*dtrace_cpustart_init)(void);
2257 extern void (*dtrace_cpustart_fini)(void);
2258 
2259 extern void (*dtrace_debugger_init)(void);
2260 extern void (*dtrace_debugger_fini)(void);
2261 extern dtrace_cacheid_t dtrace_predcache_id;
2262 
2263 #if defined(sun)
2264 extern hrtime_t dtrace_gethrtime(void);
2265 #else
2266 void dtrace_debug_printf(const char *, ...) __printflike(1, 2);
2267 #endif
2268 extern void dtrace_sync(void);
2269 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2270 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2271 extern void dtrace_vpanic(const char *, __va_list);
2272 extern void dtrace_panic(const char *, ...);
2273 
2274 extern int dtrace_safe_defer_signal(void);
2275 extern void dtrace_safe_synchronous_signal(void);
2276 
2277 extern int dtrace_mach_aframes(void);
2278 
2279 #if defined(__i386) || defined(__amd64)
2280 extern int dtrace_instr_size(uchar_t *instr);
2281 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2282 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2283 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2284 extern void dtrace_invop_callsite(void);
2285 #endif
2286 
2287 #ifdef __sparc
2288 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2289 extern void dtrace_getfsr(uint64_t *);
2290 #endif
2291 
2292 #if !defined(sun)
2293 extern void dtrace_helpers_duplicate(proc_t *, proc_t *);
2294 extern void dtrace_helpers_destroy(proc_t *);
2295 #endif
2296 
2297 #define	DTRACE_CPUFLAG_ISSET(flag) \
2298 	(cpu_core[curcpu].cpuc_dtrace_flags & (flag))
2299 
2300 #define	DTRACE_CPUFLAG_SET(flag) \
2301 	(cpu_core[curcpu].cpuc_dtrace_flags |= (flag))
2302 
2303 #define	DTRACE_CPUFLAG_CLEAR(flag) \
2304 	(cpu_core[curcpu].cpuc_dtrace_flags &= ~(flag))
2305 
2306 #endif /* _KERNEL */
2307 
2308 #endif	/* _ASM */
2309 
2310 #if defined(__i386) || defined(__amd64)
2311 
2312 #define	DTRACE_INVOP_PUSHL_EBP		1
2313 #define	DTRACE_INVOP_POPL_EBP		2
2314 #define	DTRACE_INVOP_LEAVE		3
2315 #define	DTRACE_INVOP_NOP		4
2316 #define	DTRACE_INVOP_RET		5
2317 
2318 #endif
2319 
2320 #ifdef	__cplusplus
2321 }
2322 #endif
2323 
2324 #endif	/* _SYS_DTRACE_H */
2325