xref: /freebsd/sys/cddl/dev/dtrace/amd64/dtrace_subr.c (revision a3557ef0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  *
22  * $FreeBSD$
23  *
24  */
25 /*
26  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/kmem.h>
40 #include <sys/smp.h>
41 #include <sys/dtrace_impl.h>
42 #include <sys/dtrace_bsd.h>
43 #include <machine/clock.h>
44 #include <machine/cpufunc.h>
45 #include <machine/frame.h>
46 #include <machine/psl.h>
47 #include <machine/trap.h>
48 #include <vm/pmap.h>
49 
50 extern void dtrace_getnanotime(struct timespec *tsp);
51 extern int (*dtrace_invop_jump_addr)(struct trapframe *);
52 
53 int	dtrace_invop(uintptr_t, struct trapframe *, uintptr_t);
54 int	dtrace_invop_start(struct trapframe *frame);
55 void	dtrace_invop_init(void);
56 void	dtrace_invop_uninit(void);
57 
58 typedef struct dtrace_invop_hdlr {
59 	int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t);
60 	struct dtrace_invop_hdlr *dtih_next;
61 } dtrace_invop_hdlr_t;
62 
63 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
64 
65 int
66 dtrace_invop(uintptr_t addr, struct trapframe *frame, uintptr_t eax)
67 {
68 	dtrace_invop_hdlr_t *hdlr;
69 	int rval;
70 
71 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
72 		if ((rval = hdlr->dtih_func(addr, frame, eax)) != 0)
73 			return (rval);
74 
75 	return (0);
76 }
77 
78 void
79 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
80 {
81 	dtrace_invop_hdlr_t *hdlr;
82 
83 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
84 	hdlr->dtih_func = func;
85 	hdlr->dtih_next = dtrace_invop_hdlr;
86 	dtrace_invop_hdlr = hdlr;
87 }
88 
89 void
90 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
91 {
92 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
93 
94 	for (;;) {
95 		if (hdlr == NULL)
96 			panic("attempt to remove non-existent invop handler");
97 
98 		if (hdlr->dtih_func == func)
99 			break;
100 
101 		prev = hdlr;
102 		hdlr = hdlr->dtih_next;
103 	}
104 
105 	if (prev == NULL) {
106 		ASSERT(dtrace_invop_hdlr == hdlr);
107 		dtrace_invop_hdlr = hdlr->dtih_next;
108 	} else {
109 		ASSERT(dtrace_invop_hdlr != hdlr);
110 		prev->dtih_next = hdlr->dtih_next;
111 	}
112 
113 	kmem_free(hdlr, 0);
114 }
115 
116 void
117 dtrace_invop_init(void)
118 {
119 
120 	dtrace_invop_jump_addr = dtrace_invop_start;
121 }
122 
123 void
124 dtrace_invop_uninit(void)
125 {
126 
127 	dtrace_invop_jump_addr = NULL;
128 }
129 
130 /*ARGSUSED*/
131 void
132 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
133 {
134 	(*func)(0, (uintptr_t) addr_PTmap);
135 }
136 
137 void
138 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
139 {
140 	cpuset_t cpus;
141 
142 	if (cpu == DTRACE_CPUALL)
143 		cpus = all_cpus;
144 	else
145 		CPU_SETOF(cpu, &cpus);
146 
147 	smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func,
148 	    smp_no_rendezvous_barrier, arg);
149 }
150 
151 static void
152 dtrace_sync_func(void)
153 {
154 }
155 
156 void
157 dtrace_sync(void)
158 {
159         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
160 }
161 
162 #ifdef notyet
163 void
164 dtrace_safe_synchronous_signal(void)
165 {
166 	kthread_t *t = curthread;
167 	struct regs *rp = lwptoregs(ttolwp(t));
168 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
169 
170 	ASSERT(t->t_dtrace_on);
171 
172 	/*
173 	 * If we're not in the range of scratch addresses, we're not actually
174 	 * tracing user instructions so turn off the flags. If the instruction
175 	 * we copied out caused a synchonous trap, reset the pc back to its
176 	 * original value and turn off the flags.
177 	 */
178 	if (rp->r_pc < t->t_dtrace_scrpc ||
179 	    rp->r_pc > t->t_dtrace_astpc + isz) {
180 		t->t_dtrace_ft = 0;
181 	} else if (rp->r_pc == t->t_dtrace_scrpc ||
182 	    rp->r_pc == t->t_dtrace_astpc) {
183 		rp->r_pc = t->t_dtrace_pc;
184 		t->t_dtrace_ft = 0;
185 	}
186 }
187 
188 int
189 dtrace_safe_defer_signal(void)
190 {
191 	kthread_t *t = curthread;
192 	struct regs *rp = lwptoregs(ttolwp(t));
193 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
194 
195 	ASSERT(t->t_dtrace_on);
196 
197 	/*
198 	 * If we're not in the range of scratch addresses, we're not actually
199 	 * tracing user instructions so turn off the flags.
200 	 */
201 	if (rp->r_pc < t->t_dtrace_scrpc ||
202 	    rp->r_pc > t->t_dtrace_astpc + isz) {
203 		t->t_dtrace_ft = 0;
204 		return (0);
205 	}
206 
207 	/*
208 	 * If we have executed the original instruction, but we have performed
209 	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
210 	 * registers used to emulate %rip-relative instructions in 64-bit mode,
211 	 * we'll save ourselves some effort by doing that here and taking the
212 	 * signal right away.  We detect this condition by seeing if the program
213 	 * counter is the range [scrpc + isz, astpc).
214 	 */
215 	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
216 	    rp->r_pc < t->t_dtrace_astpc) {
217 #ifdef __amd64
218 		/*
219 		 * If there is a scratch register and we're on the
220 		 * instruction immediately after the modified instruction,
221 		 * restore the value of that scratch register.
222 		 */
223 		if (t->t_dtrace_reg != 0 &&
224 		    rp->r_pc == t->t_dtrace_scrpc + isz) {
225 			switch (t->t_dtrace_reg) {
226 			case REG_RAX:
227 				rp->r_rax = t->t_dtrace_regv;
228 				break;
229 			case REG_RCX:
230 				rp->r_rcx = t->t_dtrace_regv;
231 				break;
232 			case REG_R8:
233 				rp->r_r8 = t->t_dtrace_regv;
234 				break;
235 			case REG_R9:
236 				rp->r_r9 = t->t_dtrace_regv;
237 				break;
238 			}
239 		}
240 #endif
241 		rp->r_pc = t->t_dtrace_npc;
242 		t->t_dtrace_ft = 0;
243 		return (0);
244 	}
245 
246 	/*
247 	 * Otherwise, make sure we'll return to the kernel after executing
248 	 * the copied out instruction and defer the signal.
249 	 */
250 	if (!t->t_dtrace_step) {
251 		ASSERT(rp->r_pc < t->t_dtrace_astpc);
252 		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
253 		t->t_dtrace_step = 1;
254 	}
255 
256 	t->t_dtrace_ast = 1;
257 
258 	return (1);
259 }
260 #endif
261 
262 static int64_t	tgt_cpu_tsc;
263 static int64_t	hst_cpu_tsc;
264 static int64_t	tsc_skew[MAXCPU];
265 static uint64_t	nsec_scale;
266 
267 /* See below for the explanation of this macro. */
268 #define SCALE_SHIFT	28
269 
270 static void
271 dtrace_gethrtime_init_cpu(void *arg)
272 {
273 	uintptr_t cpu = (uintptr_t) arg;
274 
275 	if (cpu == curcpu)
276 		tgt_cpu_tsc = rdtsc();
277 	else
278 		hst_cpu_tsc = rdtsc();
279 }
280 
281 #ifdef EARLY_AP_STARTUP
282 static void
283 dtrace_gethrtime_init(void *arg)
284 {
285 	struct pcpu *pc;
286 	uint64_t tsc_f;
287 	cpuset_t map;
288 	int i;
289 #else
290 /*
291  * Get the frequency and scale factor as early as possible so that they can be
292  * used for boot-time tracing.
293  */
294 static void
295 dtrace_gethrtime_init_early(void *arg)
296 {
297 	uint64_t tsc_f;
298 #endif
299 
300 	/*
301 	 * Get TSC frequency known at this moment.
302 	 * This should be constant if TSC is invariant.
303 	 * Otherwise tick->time conversion will be inaccurate, but
304 	 * will preserve monotonic property of TSC.
305 	 */
306 	tsc_f = atomic_load_acq_64(&tsc_freq);
307 
308 	/*
309 	 * The following line checks that nsec_scale calculated below
310 	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
311 	 * another 32-bit integer without overflowing 64-bit.
312 	 * Thus minimum supported TSC frequency is 62.5MHz.
313 	 */
314 	KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)),
315 	    ("TSC frequency is too low"));
316 
317 	/*
318 	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
319 	 * as possible.
320 	 * 2^28 factor was chosen quite arbitrarily from practical
321 	 * considerations:
322 	 * - it supports TSC frequencies as low as 62.5MHz (see above);
323 	 * - it provides quite good precision (e < 0.01%) up to THz
324 	 *   (terahertz) values;
325 	 */
326 	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
327 #ifndef EARLY_AP_STARTUP
328 }
329 SYSINIT(dtrace_gethrtime_init_early, SI_SUB_CPU, SI_ORDER_ANY,
330     dtrace_gethrtime_init_early, NULL);
331 
332 static void
333 dtrace_gethrtime_init(void *arg)
334 {
335 	struct pcpu *pc;
336 	cpuset_t map;
337 	int i;
338 #endif
339 
340 	if (vm_guest != VM_GUEST_NO)
341 		return;
342 
343 	/* The current CPU is the reference one. */
344 	sched_pin();
345 	tsc_skew[curcpu] = 0;
346 	CPU_FOREACH(i) {
347 		if (i == curcpu)
348 			continue;
349 
350 		pc = pcpu_find(i);
351 		CPU_SETOF(PCPU_GET(cpuid), &map);
352 		CPU_SET(pc->pc_cpuid, &map);
353 
354 		smp_rendezvous_cpus(map, NULL,
355 		    dtrace_gethrtime_init_cpu,
356 		    smp_no_rendezvous_barrier, (void *)(uintptr_t) i);
357 
358 		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
359 	}
360 	sched_unpin();
361 }
362 #ifdef EARLY_AP_STARTUP
363 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY,
364     dtrace_gethrtime_init, NULL);
365 #else
366 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init,
367     NULL);
368 #endif
369 
370 /*
371  * DTrace needs a high resolution time function which can
372  * be called from a probe context and guaranteed not to have
373  * instrumented with probes itself.
374  *
375  * Returns nanoseconds since boot.
376  */
377 uint64_t
378 dtrace_gethrtime(void)
379 {
380 	uint64_t tsc;
381 	uint32_t lo, hi;
382 	register_t rflags;
383 
384 	/*
385 	 * We split TSC value into lower and higher 32-bit halves and separately
386 	 * scale them with nsec_scale, then we scale them down by 2^28
387 	 * (see nsec_scale calculations) taking into account 32-bit shift of
388 	 * the higher half and finally add.
389 	 */
390 	rflags = intr_disable();
391 	tsc = rdtsc() - tsc_skew[curcpu];
392 	intr_restore(rflags);
393 
394 	lo = tsc;
395 	hi = tsc >> 32;
396 	return (((lo * nsec_scale) >> SCALE_SHIFT) +
397 	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
398 }
399 
400 uint64_t
401 dtrace_gethrestime(void)
402 {
403 	struct timespec current_time;
404 
405 	dtrace_getnanotime(&current_time);
406 
407 	return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
408 }
409 
410 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */
411 int
412 dtrace_trap(struct trapframe *frame, u_int type)
413 {
414 	uint16_t nofault;
415 
416 	/*
417 	 * A trap can occur while DTrace executes a probe. Before
418 	 * executing the probe, DTrace blocks re-scheduling and sets
419 	 * a flag in its per-cpu flags to indicate that it doesn't
420 	 * want to fault. On returning from the probe, the no-fault
421 	 * flag is cleared and finally re-scheduling is enabled.
422 	 *
423 	 * Check if DTrace has enabled 'no-fault' mode:
424 	 */
425 	sched_pin();
426 	nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT;
427 	sched_unpin();
428 	if (nofault) {
429 		KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
430 
431 		/*
432 		 * There are only a couple of trap types that are expected.
433 		 * All the rest will be handled in the usual way.
434 		 */
435 		switch (type) {
436 		/* General protection fault. */
437 		case T_PROTFLT:
438 			/* Flag an illegal operation. */
439 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
440 
441 			/*
442 			 * Offset the instruction pointer to the instruction
443 			 * following the one causing the fault.
444 			 */
445 			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
446 			return (1);
447 		/* Page fault. */
448 		case T_PAGEFLT:
449 			/* Flag a bad address. */
450 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
451 			cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr;
452 
453 			/*
454 			 * Offset the instruction pointer to the instruction
455 			 * following the one causing the fault.
456 			 */
457 			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
458 			return (1);
459 		default:
460 			/* Handle all other traps in the usual way. */
461 			break;
462 		}
463 	}
464 
465 	/* Handle the trap in the usual way. */
466 	return (0);
467 }
468