1 /*-
2  * Copyright (c) 2002 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_compat.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #define __ELF_WORD_SIZE 32
35 
36 #include <sys/param.h>
37 #include <sys/bus.h>
38 #include <sys/capsicum.h>
39 #include <sys/clock.h>
40 #include <sys/exec.h>
41 #include <sys/fcntl.h>
42 #include <sys/filedesc.h>
43 #include <sys/imgact.h>
44 #include <sys/jail.h>
45 #include <sys/kernel.h>
46 #include <sys/limits.h>
47 #include <sys/linker.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/file.h>		/* Must come after sys/malloc.h */
51 #include <sys/imgact.h>
52 #include <sys/mbuf.h>
53 #include <sys/mman.h>
54 #include <sys/module.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/namei.h>
58 #include <sys/proc.h>
59 #include <sys/procctl.h>
60 #include <sys/reboot.h>
61 #include <sys/resource.h>
62 #include <sys/resourcevar.h>
63 #include <sys/selinfo.h>
64 #include <sys/eventvar.h>	/* Must come after sys/selinfo.h */
65 #include <sys/pipe.h>		/* Must come after sys/selinfo.h */
66 #include <sys/signal.h>
67 #include <sys/signalvar.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/stat.h>
71 #include <sys/syscall.h>
72 #include <sys/syscallsubr.h>
73 #include <sys/sysctl.h>
74 #include <sys/sysent.h>
75 #include <sys/sysproto.h>
76 #include <sys/systm.h>
77 #include <sys/thr.h>
78 #include <sys/unistd.h>
79 #include <sys/ucontext.h>
80 #include <sys/vnode.h>
81 #include <sys/wait.h>
82 #include <sys/ipc.h>
83 #include <sys/msg.h>
84 #include <sys/sem.h>
85 #include <sys/shm.h>
86 
87 #ifdef INET
88 #include <netinet/in.h>
89 #endif
90 
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_extern.h>
97 
98 #include <machine/cpu.h>
99 #include <machine/elf.h>
100 
101 #include <security/audit/audit.h>
102 
103 #include <compat/freebsd32/freebsd32_util.h>
104 #include <compat/freebsd32/freebsd32.h>
105 #include <compat/freebsd32/freebsd32_ipc.h>
106 #include <compat/freebsd32/freebsd32_misc.h>
107 #include <compat/freebsd32/freebsd32_signal.h>
108 #include <compat/freebsd32/freebsd32_proto.h>
109 
110 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD");
111 
112 #ifdef __amd64__
113 CTASSERT(sizeof(struct timeval32) == 8);
114 CTASSERT(sizeof(struct timespec32) == 8);
115 CTASSERT(sizeof(struct itimerval32) == 16);
116 #endif
117 CTASSERT(sizeof(struct statfs32) == 256);
118 #ifdef __amd64__
119 CTASSERT(sizeof(struct rusage32) == 72);
120 #endif
121 CTASSERT(sizeof(struct sigaltstack32) == 12);
122 #ifdef __amd64__
123 CTASSERT(sizeof(struct kevent32) == 56);
124 #else
125 CTASSERT(sizeof(struct kevent32) == 64);
126 #endif
127 CTASSERT(sizeof(struct iovec32) == 8);
128 CTASSERT(sizeof(struct msghdr32) == 28);
129 #ifdef __amd64__
130 CTASSERT(sizeof(struct stat32) == 208);
131 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
132 #endif
133 CTASSERT(sizeof(struct sigaction32) == 24);
134 
135 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
136 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
137 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
138     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
139 
140 void
141 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
142 {
143 
144 	TV_CP(*s, *s32, ru_utime);
145 	TV_CP(*s, *s32, ru_stime);
146 	CP(*s, *s32, ru_maxrss);
147 	CP(*s, *s32, ru_ixrss);
148 	CP(*s, *s32, ru_idrss);
149 	CP(*s, *s32, ru_isrss);
150 	CP(*s, *s32, ru_minflt);
151 	CP(*s, *s32, ru_majflt);
152 	CP(*s, *s32, ru_nswap);
153 	CP(*s, *s32, ru_inblock);
154 	CP(*s, *s32, ru_oublock);
155 	CP(*s, *s32, ru_msgsnd);
156 	CP(*s, *s32, ru_msgrcv);
157 	CP(*s, *s32, ru_nsignals);
158 	CP(*s, *s32, ru_nvcsw);
159 	CP(*s, *s32, ru_nivcsw);
160 }
161 
162 int
163 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
164 {
165 	int error, status;
166 	struct rusage32 ru32;
167 	struct rusage ru, *rup;
168 
169 	if (uap->rusage != NULL)
170 		rup = &ru;
171 	else
172 		rup = NULL;
173 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
174 	if (error)
175 		return (error);
176 	if (uap->status != NULL)
177 		error = copyout(&status, uap->status, sizeof(status));
178 	if (uap->rusage != NULL && error == 0) {
179 		freebsd32_rusage_out(&ru, &ru32);
180 		error = copyout(&ru32, uap->rusage, sizeof(ru32));
181 	}
182 	return (error);
183 }
184 
185 int
186 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
187 {
188 	struct wrusage32 wru32;
189 	struct __wrusage wru, *wrup;
190 	struct siginfo32 si32;
191 	struct __siginfo si, *sip;
192 	int error, status;
193 
194 	if (uap->wrusage != NULL)
195 		wrup = &wru;
196 	else
197 		wrup = NULL;
198 	if (uap->info != NULL) {
199 		sip = &si;
200 		bzero(sip, sizeof(*sip));
201 	} else
202 		sip = NULL;
203 	error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
204 	    &status, uap->options, wrup, sip);
205 	if (error != 0)
206 		return (error);
207 	if (uap->status != NULL)
208 		error = copyout(&status, uap->status, sizeof(status));
209 	if (uap->wrusage != NULL && error == 0) {
210 		freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
211 		freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
212 		error = copyout(&wru32, uap->wrusage, sizeof(wru32));
213 	}
214 	if (uap->info != NULL && error == 0) {
215 		siginfo_to_siginfo32 (&si, &si32);
216 		error = copyout(&si32, uap->info, sizeof(si32));
217 	}
218 	return (error);
219 }
220 
221 #ifdef COMPAT_FREEBSD4
222 static void
223 copy_statfs(struct statfs *in, struct statfs32 *out)
224 {
225 
226 	statfs_scale_blocks(in, INT32_MAX);
227 	bzero(out, sizeof(*out));
228 	CP(*in, *out, f_bsize);
229 	out->f_iosize = MIN(in->f_iosize, INT32_MAX);
230 	CP(*in, *out, f_blocks);
231 	CP(*in, *out, f_bfree);
232 	CP(*in, *out, f_bavail);
233 	out->f_files = MIN(in->f_files, INT32_MAX);
234 	out->f_ffree = MIN(in->f_ffree, INT32_MAX);
235 	CP(*in, *out, f_fsid);
236 	CP(*in, *out, f_owner);
237 	CP(*in, *out, f_type);
238 	CP(*in, *out, f_flags);
239 	out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
240 	out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
241 	strlcpy(out->f_fstypename,
242 	      in->f_fstypename, MFSNAMELEN);
243 	strlcpy(out->f_mntonname,
244 	      in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN));
245 	out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
246 	out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
247 	strlcpy(out->f_mntfromname,
248 	      in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN));
249 }
250 #endif
251 
252 #ifdef COMPAT_FREEBSD4
253 int
254 freebsd4_freebsd32_getfsstat(struct thread *td,
255     struct freebsd4_freebsd32_getfsstat_args *uap)
256 {
257 	struct statfs *buf, *sp;
258 	struct statfs32 stat32;
259 	size_t count, size, copycount;
260 	int error;
261 
262 	count = uap->bufsize / sizeof(struct statfs32);
263 	size = count * sizeof(struct statfs);
264 	error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
265 	if (size > 0) {
266 		sp = buf;
267 		copycount = count;
268 		while (copycount > 0 && error == 0) {
269 			copy_statfs(sp, &stat32);
270 			error = copyout(&stat32, uap->buf, sizeof(stat32));
271 			sp++;
272 			uap->buf++;
273 			copycount--;
274 		}
275 		free(buf, M_STATFS);
276 	}
277 	if (error == 0)
278 		td->td_retval[0] = count;
279 	return (error);
280 }
281 #endif
282 
283 #ifdef COMPAT_FREEBSD10
284 int
285 freebsd10_freebsd32_pipe(struct thread *td,
286     struct freebsd10_freebsd32_pipe_args *uap) {
287 
288 	return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap));
289 }
290 #endif
291 
292 int
293 freebsd32_sigaltstack(struct thread *td,
294 		      struct freebsd32_sigaltstack_args *uap)
295 {
296 	struct sigaltstack32 s32;
297 	struct sigaltstack ss, oss, *ssp;
298 	int error;
299 
300 	if (uap->ss != NULL) {
301 		error = copyin(uap->ss, &s32, sizeof(s32));
302 		if (error)
303 			return (error);
304 		PTRIN_CP(s32, ss, ss_sp);
305 		CP(s32, ss, ss_size);
306 		CP(s32, ss, ss_flags);
307 		ssp = &ss;
308 	} else
309 		ssp = NULL;
310 	error = kern_sigaltstack(td, ssp, &oss);
311 	if (error == 0 && uap->oss != NULL) {
312 		PTROUT_CP(oss, s32, ss_sp);
313 		CP(oss, s32, ss_size);
314 		CP(oss, s32, ss_flags);
315 		error = copyout(&s32, uap->oss, sizeof(s32));
316 	}
317 	return (error);
318 }
319 
320 /*
321  * Custom version of exec_copyin_args() so that we can translate
322  * the pointers.
323  */
324 int
325 freebsd32_exec_copyin_args(struct image_args *args, char *fname,
326     enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv)
327 {
328 	char *argp, *envp;
329 	u_int32_t *p32, arg;
330 	size_t length;
331 	int error;
332 
333 	bzero(args, sizeof(*args));
334 	if (argv == NULL)
335 		return (EFAULT);
336 
337 	/*
338 	 * Allocate demand-paged memory for the file name, argument, and
339 	 * environment strings.
340 	 */
341 	error = exec_alloc_args(args);
342 	if (error != 0)
343 		return (error);
344 
345 	/*
346 	 * Copy the file name.
347 	 */
348 	if (fname != NULL) {
349 		args->fname = args->buf;
350 		error = (segflg == UIO_SYSSPACE) ?
351 		    copystr(fname, args->fname, PATH_MAX, &length) :
352 		    copyinstr(fname, args->fname, PATH_MAX, &length);
353 		if (error != 0)
354 			goto err_exit;
355 	} else
356 		length = 0;
357 
358 	args->begin_argv = args->buf + length;
359 	args->endp = args->begin_argv;
360 	args->stringspace = ARG_MAX;
361 
362 	/*
363 	 * extract arguments first
364 	 */
365 	p32 = argv;
366 	for (;;) {
367 		error = copyin(p32++, &arg, sizeof(arg));
368 		if (error)
369 			goto err_exit;
370 		if (arg == 0)
371 			break;
372 		argp = PTRIN(arg);
373 		error = copyinstr(argp, args->endp, args->stringspace, &length);
374 		if (error) {
375 			if (error == ENAMETOOLONG)
376 				error = E2BIG;
377 			goto err_exit;
378 		}
379 		args->stringspace -= length;
380 		args->endp += length;
381 		args->argc++;
382 	}
383 
384 	args->begin_envv = args->endp;
385 
386 	/*
387 	 * extract environment strings
388 	 */
389 	if (envv) {
390 		p32 = envv;
391 		for (;;) {
392 			error = copyin(p32++, &arg, sizeof(arg));
393 			if (error)
394 				goto err_exit;
395 			if (arg == 0)
396 				break;
397 			envp = PTRIN(arg);
398 			error = copyinstr(envp, args->endp, args->stringspace,
399 			    &length);
400 			if (error) {
401 				if (error == ENAMETOOLONG)
402 					error = E2BIG;
403 				goto err_exit;
404 			}
405 			args->stringspace -= length;
406 			args->endp += length;
407 			args->envc++;
408 		}
409 	}
410 
411 	return (0);
412 
413 err_exit:
414 	exec_free_args(args);
415 	return (error);
416 }
417 
418 int
419 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
420 {
421 	struct image_args eargs;
422 	struct vmspace *oldvmspace;
423 	int error;
424 
425 	error = pre_execve(td, &oldvmspace);
426 	if (error != 0)
427 		return (error);
428 	error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
429 	    uap->argv, uap->envv);
430 	if (error == 0)
431 		error = kern_execve(td, &eargs, NULL);
432 	post_execve(td, error, oldvmspace);
433 	return (error);
434 }
435 
436 int
437 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
438 {
439 	struct image_args eargs;
440 	struct vmspace *oldvmspace;
441 	int error;
442 
443 	error = pre_execve(td, &oldvmspace);
444 	if (error != 0)
445 		return (error);
446 	error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
447 	    uap->argv, uap->envv);
448 	if (error == 0) {
449 		eargs.fd = uap->fd;
450 		error = kern_execve(td, &eargs, NULL);
451 	}
452 	post_execve(td, error, oldvmspace);
453 	return (error);
454 }
455 
456 #if defined(COMPAT_FREEBSD11)
457 int
458 freebsd11_freebsd32_mknod(struct thread *td,
459     struct freebsd11_freebsd32_mknod_args *uap)
460 {
461 
462 	return (kern_mknodat(td, AT_FDCWD, uap->path, UIO_USERSPACE, uap->mode,
463 	    uap->dev));
464 }
465 
466 int
467 freebsd11_freebsd32_mknodat(struct thread *td,
468     struct freebsd11_freebsd32_mknodat_args *uap)
469 {
470 
471 	return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, uap->mode,
472 	    uap->dev));
473 }
474 #endif /* COMPAT_FREEBSD11 */
475 
476 int
477 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
478 {
479 	int prot;
480 
481 	prot = uap->prot;
482 #if defined(__amd64__)
483 	if (i386_read_exec && (prot & PROT_READ) != 0)
484 		prot |= PROT_EXEC;
485 #endif
486 	return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
487 	    prot));
488 }
489 
490 int
491 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
492 {
493 	int prot;
494 
495 	prot = uap->prot;
496 #if defined(__amd64__)
497 	if (i386_read_exec && (prot & PROT_READ))
498 		prot |= PROT_EXEC;
499 #endif
500 
501 	return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot,
502 	    uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos)));
503 }
504 
505 #ifdef COMPAT_FREEBSD6
506 int
507 freebsd6_freebsd32_mmap(struct thread *td,
508     struct freebsd6_freebsd32_mmap_args *uap)
509 {
510 	int prot;
511 
512 	prot = uap->prot;
513 #if defined(__amd64__)
514 	if (i386_read_exec && (prot & PROT_READ))
515 		prot |= PROT_EXEC;
516 #endif
517 
518 	return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot,
519 	    uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos)));
520 }
521 #endif
522 
523 int
524 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
525 {
526 	struct itimerval itv, oitv, *itvp;
527 	struct itimerval32 i32;
528 	int error;
529 
530 	if (uap->itv != NULL) {
531 		error = copyin(uap->itv, &i32, sizeof(i32));
532 		if (error)
533 			return (error);
534 		TV_CP(i32, itv, it_interval);
535 		TV_CP(i32, itv, it_value);
536 		itvp = &itv;
537 	} else
538 		itvp = NULL;
539 	error = kern_setitimer(td, uap->which, itvp, &oitv);
540 	if (error || uap->oitv == NULL)
541 		return (error);
542 	TV_CP(oitv, i32, it_interval);
543 	TV_CP(oitv, i32, it_value);
544 	return (copyout(&i32, uap->oitv, sizeof(i32)));
545 }
546 
547 int
548 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
549 {
550 	struct itimerval itv;
551 	struct itimerval32 i32;
552 	int error;
553 
554 	error = kern_getitimer(td, uap->which, &itv);
555 	if (error || uap->itv == NULL)
556 		return (error);
557 	TV_CP(itv, i32, it_interval);
558 	TV_CP(itv, i32, it_value);
559 	return (copyout(&i32, uap->itv, sizeof(i32)));
560 }
561 
562 int
563 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
564 {
565 	struct timeval32 tv32;
566 	struct timeval tv, *tvp;
567 	int error;
568 
569 	if (uap->tv != NULL) {
570 		error = copyin(uap->tv, &tv32, sizeof(tv32));
571 		if (error)
572 			return (error);
573 		CP(tv32, tv, tv_sec);
574 		CP(tv32, tv, tv_usec);
575 		tvp = &tv;
576 	} else
577 		tvp = NULL;
578 	/*
579 	 * XXX Do pointers need PTRIN()?
580 	 */
581 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
582 	    sizeof(int32_t) * 8));
583 }
584 
585 int
586 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
587 {
588 	struct timespec32 ts32;
589 	struct timespec ts;
590 	struct timeval tv, *tvp;
591 	sigset_t set, *uset;
592 	int error;
593 
594 	if (uap->ts != NULL) {
595 		error = copyin(uap->ts, &ts32, sizeof(ts32));
596 		if (error != 0)
597 			return (error);
598 		CP(ts32, ts, tv_sec);
599 		CP(ts32, ts, tv_nsec);
600 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
601 		tvp = &tv;
602 	} else
603 		tvp = NULL;
604 	if (uap->sm != NULL) {
605 		error = copyin(uap->sm, &set, sizeof(set));
606 		if (error != 0)
607 			return (error);
608 		uset = &set;
609 	} else
610 		uset = NULL;
611 	/*
612 	 * XXX Do pointers need PTRIN()?
613 	 */
614 	error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
615 	    uset, sizeof(int32_t) * 8);
616 	return (error);
617 }
618 
619 /*
620  * Copy 'count' items into the destination list pointed to by uap->eventlist.
621  */
622 static int
623 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
624 {
625 	struct freebsd32_kevent_args *uap;
626 	struct kevent32	ks32[KQ_NEVENTS];
627 	uint64_t e;
628 	int i, j, error;
629 
630 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
631 	uap = (struct freebsd32_kevent_args *)arg;
632 
633 	for (i = 0; i < count; i++) {
634 		CP(kevp[i], ks32[i], ident);
635 		CP(kevp[i], ks32[i], filter);
636 		CP(kevp[i], ks32[i], flags);
637 		CP(kevp[i], ks32[i], fflags);
638 #if BYTE_ORDER == LITTLE_ENDIAN
639 		ks32[i].data1 = kevp[i].data;
640 		ks32[i].data2 = kevp[i].data >> 32;
641 #else
642 		ks32[i].data1 = kevp[i].data >> 32;
643 		ks32[i].data2 = kevp[i].data;
644 #endif
645 		PTROUT_CP(kevp[i], ks32[i], udata);
646 		for (j = 0; j < nitems(kevp->ext); j++) {
647 			e = kevp[i].ext[j];
648 #if BYTE_ORDER == LITTLE_ENDIAN
649 			ks32[i].ext64[2 * j] = e;
650 			ks32[i].ext64[2 * j + 1] = e >> 32;
651 #else
652 			ks32[i].ext64[2 * j] = e >> 32;
653 			ks32[i].ext64[2 * j + 1] = e;
654 #endif
655 		}
656 	}
657 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
658 	if (error == 0)
659 		uap->eventlist += count;
660 	return (error);
661 }
662 
663 /*
664  * Copy 'count' items from the list pointed to by uap->changelist.
665  */
666 static int
667 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
668 {
669 	struct freebsd32_kevent_args *uap;
670 	struct kevent32	ks32[KQ_NEVENTS];
671 	uint64_t e;
672 	int i, j, error;
673 
674 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
675 	uap = (struct freebsd32_kevent_args *)arg;
676 
677 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
678 	if (error)
679 		goto done;
680 	uap->changelist += count;
681 
682 	for (i = 0; i < count; i++) {
683 		CP(ks32[i], kevp[i], ident);
684 		CP(ks32[i], kevp[i], filter);
685 		CP(ks32[i], kevp[i], flags);
686 		CP(ks32[i], kevp[i], fflags);
687 		kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
688 		PTRIN_CP(ks32[i], kevp[i], udata);
689 		for (j = 0; j < nitems(kevp->ext); j++) {
690 #if BYTE_ORDER == LITTLE_ENDIAN
691 			e = ks32[i].ext64[2 * j + 1];
692 			e <<= 32;
693 			e += ks32[i].ext64[2 * j];
694 #else
695 			e = ks32[i].ext64[2 * j];
696 			e <<= 32;
697 			e += ks32[i].ext64[2 * j + 1];
698 #endif
699 			kevp[i].ext[j] = e;
700 		}
701 	}
702 done:
703 	return (error);
704 }
705 
706 int
707 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
708 {
709 	struct timespec32 ts32;
710 	struct timespec ts, *tsp;
711 	struct kevent_copyops k_ops = {
712 		.arg = uap,
713 		.k_copyout = freebsd32_kevent_copyout,
714 		.k_copyin = freebsd32_kevent_copyin,
715 	};
716 	int error;
717 
718 	if (uap->timeout) {
719 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
720 		if (error)
721 			return (error);
722 		CP(ts32, ts, tv_sec);
723 		CP(ts32, ts, tv_nsec);
724 		tsp = &ts;
725 	} else
726 		tsp = NULL;
727 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
728 	    &k_ops, tsp);
729 	return (error);
730 }
731 
732 #ifdef COMPAT_FREEBSD11
733 struct kevent32_freebsd11 {
734 	u_int32_t	ident;		/* identifier for this event */
735 	short		filter;		/* filter for event */
736 	u_short		flags;
737 	u_int		fflags;
738 	int32_t		data;
739 	u_int32_t	udata;		/* opaque user data identifier */
740 };
741 
742 static int
743 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
744 {
745 	struct freebsd11_freebsd32_kevent_args *uap;
746 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
747 	int i, error;
748 
749 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
750 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
751 
752 	for (i = 0; i < count; i++) {
753 		CP(kevp[i], ks32[i], ident);
754 		CP(kevp[i], ks32[i], filter);
755 		CP(kevp[i], ks32[i], flags);
756 		CP(kevp[i], ks32[i], fflags);
757 		CP(kevp[i], ks32[i], data);
758 		PTROUT_CP(kevp[i], ks32[i], udata);
759 	}
760 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
761 	if (error == 0)
762 		uap->eventlist += count;
763 	return (error);
764 }
765 
766 /*
767  * Copy 'count' items from the list pointed to by uap->changelist.
768  */
769 static int
770 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
771 {
772 	struct freebsd11_freebsd32_kevent_args *uap;
773 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
774 	int i, j, error;
775 
776 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
777 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
778 
779 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
780 	if (error)
781 		goto done;
782 	uap->changelist += count;
783 
784 	for (i = 0; i < count; i++) {
785 		CP(ks32[i], kevp[i], ident);
786 		CP(ks32[i], kevp[i], filter);
787 		CP(ks32[i], kevp[i], flags);
788 		CP(ks32[i], kevp[i], fflags);
789 		CP(ks32[i], kevp[i], data);
790 		PTRIN_CP(ks32[i], kevp[i], udata);
791 		for (j = 0; j < nitems(kevp->ext); j++)
792 			kevp[i].ext[j] = 0;
793 	}
794 done:
795 	return (error);
796 }
797 
798 int
799 freebsd11_freebsd32_kevent(struct thread *td,
800     struct freebsd11_freebsd32_kevent_args *uap)
801 {
802 	struct timespec32 ts32;
803 	struct timespec ts, *tsp;
804 	struct kevent_copyops k_ops = {
805 		.arg = uap,
806 		.k_copyout = freebsd32_kevent11_copyout,
807 		.k_copyin = freebsd32_kevent11_copyin,
808 	};
809 	int error;
810 
811 	if (uap->timeout) {
812 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
813 		if (error)
814 			return (error);
815 		CP(ts32, ts, tv_sec);
816 		CP(ts32, ts, tv_nsec);
817 		tsp = &ts;
818 	} else
819 		tsp = NULL;
820 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
821 	    &k_ops, tsp);
822 	return (error);
823 }
824 #endif
825 
826 int
827 freebsd32_gettimeofday(struct thread *td,
828 		       struct freebsd32_gettimeofday_args *uap)
829 {
830 	struct timeval atv;
831 	struct timeval32 atv32;
832 	struct timezone rtz;
833 	int error = 0;
834 
835 	if (uap->tp) {
836 		microtime(&atv);
837 		CP(atv, atv32, tv_sec);
838 		CP(atv, atv32, tv_usec);
839 		error = copyout(&atv32, uap->tp, sizeof (atv32));
840 	}
841 	if (error == 0 && uap->tzp != NULL) {
842 		rtz.tz_minuteswest = tz_minuteswest;
843 		rtz.tz_dsttime = tz_dsttime;
844 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
845 	}
846 	return (error);
847 }
848 
849 int
850 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
851 {
852 	struct rusage32 s32;
853 	struct rusage s;
854 	int error;
855 
856 	error = kern_getrusage(td, uap->who, &s);
857 	if (error)
858 		return (error);
859 	if (uap->rusage != NULL) {
860 		freebsd32_rusage_out(&s, &s32);
861 		error = copyout(&s32, uap->rusage, sizeof(s32));
862 	}
863 	return (error);
864 }
865 
866 static int
867 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
868 {
869 	struct iovec32 iov32;
870 	struct iovec *iov;
871 	struct uio *uio;
872 	u_int iovlen;
873 	int error, i;
874 
875 	*uiop = NULL;
876 	if (iovcnt > UIO_MAXIOV)
877 		return (EINVAL);
878 	iovlen = iovcnt * sizeof(struct iovec);
879 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
880 	iov = (struct iovec *)(uio + 1);
881 	for (i = 0; i < iovcnt; i++) {
882 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
883 		if (error) {
884 			free(uio, M_IOV);
885 			return (error);
886 		}
887 		iov[i].iov_base = PTRIN(iov32.iov_base);
888 		iov[i].iov_len = iov32.iov_len;
889 	}
890 	uio->uio_iov = iov;
891 	uio->uio_iovcnt = iovcnt;
892 	uio->uio_segflg = UIO_USERSPACE;
893 	uio->uio_offset = -1;
894 	uio->uio_resid = 0;
895 	for (i = 0; i < iovcnt; i++) {
896 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
897 			free(uio, M_IOV);
898 			return (EINVAL);
899 		}
900 		uio->uio_resid += iov->iov_len;
901 		iov++;
902 	}
903 	*uiop = uio;
904 	return (0);
905 }
906 
907 int
908 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
909 {
910 	struct uio *auio;
911 	int error;
912 
913 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
914 	if (error)
915 		return (error);
916 	error = kern_readv(td, uap->fd, auio);
917 	free(auio, M_IOV);
918 	return (error);
919 }
920 
921 int
922 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
923 {
924 	struct uio *auio;
925 	int error;
926 
927 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
928 	if (error)
929 		return (error);
930 	error = kern_writev(td, uap->fd, auio);
931 	free(auio, M_IOV);
932 	return (error);
933 }
934 
935 int
936 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
937 {
938 	struct uio *auio;
939 	int error;
940 
941 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
942 	if (error)
943 		return (error);
944 	error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
945 	free(auio, M_IOV);
946 	return (error);
947 }
948 
949 int
950 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
951 {
952 	struct uio *auio;
953 	int error;
954 
955 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
956 	if (error)
957 		return (error);
958 	error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
959 	free(auio, M_IOV);
960 	return (error);
961 }
962 
963 int
964 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
965     int error)
966 {
967 	struct iovec32 iov32;
968 	struct iovec *iov;
969 	u_int iovlen;
970 	int i;
971 
972 	*iovp = NULL;
973 	if (iovcnt > UIO_MAXIOV)
974 		return (error);
975 	iovlen = iovcnt * sizeof(struct iovec);
976 	iov = malloc(iovlen, M_IOV, M_WAITOK);
977 	for (i = 0; i < iovcnt; i++) {
978 		error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
979 		if (error) {
980 			free(iov, M_IOV);
981 			return (error);
982 		}
983 		iov[i].iov_base = PTRIN(iov32.iov_base);
984 		iov[i].iov_len = iov32.iov_len;
985 	}
986 	*iovp = iov;
987 	return (0);
988 }
989 
990 static int
991 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg)
992 {
993 	struct msghdr32 m32;
994 	int error;
995 
996 	error = copyin(msg32, &m32, sizeof(m32));
997 	if (error)
998 		return (error);
999 	msg->msg_name = PTRIN(m32.msg_name);
1000 	msg->msg_namelen = m32.msg_namelen;
1001 	msg->msg_iov = PTRIN(m32.msg_iov);
1002 	msg->msg_iovlen = m32.msg_iovlen;
1003 	msg->msg_control = PTRIN(m32.msg_control);
1004 	msg->msg_controllen = m32.msg_controllen;
1005 	msg->msg_flags = m32.msg_flags;
1006 	return (0);
1007 }
1008 
1009 static int
1010 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1011 {
1012 	struct msghdr32 m32;
1013 	int error;
1014 
1015 	m32.msg_name = PTROUT(msg->msg_name);
1016 	m32.msg_namelen = msg->msg_namelen;
1017 	m32.msg_iov = PTROUT(msg->msg_iov);
1018 	m32.msg_iovlen = msg->msg_iovlen;
1019 	m32.msg_control = PTROUT(msg->msg_control);
1020 	m32.msg_controllen = msg->msg_controllen;
1021 	m32.msg_flags = msg->msg_flags;
1022 	error = copyout(&m32, msg32, sizeof(m32));
1023 	return (error);
1024 }
1025 
1026 #ifndef __mips__
1027 #define FREEBSD32_ALIGNBYTES	(sizeof(int) - 1)
1028 #else
1029 #define FREEBSD32_ALIGNBYTES	(sizeof(long) - 1)
1030 #endif
1031 #define FREEBSD32_ALIGN(p)	\
1032 	(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1033 #define	FREEBSD32_CMSG_SPACE(l)	\
1034 	(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1035 
1036 #define	FREEBSD32_CMSG_DATA(cmsg)	((unsigned char *)(cmsg) + \
1037 				 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1038 static int
1039 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1040 {
1041 	struct cmsghdr *cm;
1042 	void *data;
1043 	socklen_t clen, datalen;
1044 	int error;
1045 	caddr_t ctlbuf;
1046 	int len, maxlen, copylen;
1047 	struct mbuf *m;
1048 	error = 0;
1049 
1050 	len    = msg->msg_controllen;
1051 	maxlen = msg->msg_controllen;
1052 	msg->msg_controllen = 0;
1053 
1054 	m = control;
1055 	ctlbuf = msg->msg_control;
1056 
1057 	while (m && len > 0) {
1058 		cm = mtod(m, struct cmsghdr *);
1059 		clen = m->m_len;
1060 
1061 		while (cm != NULL) {
1062 
1063 			if (sizeof(struct cmsghdr) > clen ||
1064 			    cm->cmsg_len > clen) {
1065 				error = EINVAL;
1066 				break;
1067 			}
1068 
1069 			data   = CMSG_DATA(cm);
1070 			datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1071 
1072 			/* Adjust message length */
1073 			cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1074 			    datalen;
1075 
1076 
1077 			/* Copy cmsghdr */
1078 			copylen = sizeof(struct cmsghdr);
1079 			if (len < copylen) {
1080 				msg->msg_flags |= MSG_CTRUNC;
1081 				copylen = len;
1082 			}
1083 
1084 			error = copyout(cm,ctlbuf,copylen);
1085 			if (error)
1086 				goto exit;
1087 
1088 			ctlbuf += FREEBSD32_ALIGN(copylen);
1089 			len    -= FREEBSD32_ALIGN(copylen);
1090 
1091 			if (len <= 0)
1092 				break;
1093 
1094 			/* Copy data */
1095 			copylen = datalen;
1096 			if (len < copylen) {
1097 				msg->msg_flags |= MSG_CTRUNC;
1098 				copylen = len;
1099 			}
1100 
1101 			error = copyout(data,ctlbuf,copylen);
1102 			if (error)
1103 				goto exit;
1104 
1105 			ctlbuf += FREEBSD32_ALIGN(copylen);
1106 			len    -= FREEBSD32_ALIGN(copylen);
1107 
1108 			if (CMSG_SPACE(datalen) < clen) {
1109 				clen -= CMSG_SPACE(datalen);
1110 				cm = (struct cmsghdr *)
1111 					((caddr_t)cm + CMSG_SPACE(datalen));
1112 			} else {
1113 				clen = 0;
1114 				cm = NULL;
1115 			}
1116 		}
1117 		m = m->m_next;
1118 	}
1119 
1120 	msg->msg_controllen = (len <= 0) ? maxlen :  ctlbuf - (caddr_t)msg->msg_control;
1121 
1122 exit:
1123 	return (error);
1124 
1125 }
1126 
1127 int
1128 freebsd32_recvmsg(td, uap)
1129 	struct thread *td;
1130 	struct freebsd32_recvmsg_args /* {
1131 		int	s;
1132 		struct	msghdr32 *msg;
1133 		int	flags;
1134 	} */ *uap;
1135 {
1136 	struct msghdr msg;
1137 	struct msghdr32 m32;
1138 	struct iovec *uiov, *iov;
1139 	struct mbuf *control = NULL;
1140 	struct mbuf **controlp;
1141 
1142 	int error;
1143 	error = copyin(uap->msg, &m32, sizeof(m32));
1144 	if (error)
1145 		return (error);
1146 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1147 	if (error)
1148 		return (error);
1149 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1150 	    EMSGSIZE);
1151 	if (error)
1152 		return (error);
1153 	msg.msg_flags = uap->flags;
1154 	uiov = msg.msg_iov;
1155 	msg.msg_iov = iov;
1156 
1157 	controlp = (msg.msg_control != NULL) ?  &control : NULL;
1158 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1159 	if (error == 0) {
1160 		msg.msg_iov = uiov;
1161 
1162 		if (control != NULL)
1163 			error = freebsd32_copy_msg_out(&msg, control);
1164 		else
1165 			msg.msg_controllen = 0;
1166 
1167 		if (error == 0)
1168 			error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1169 	}
1170 	free(iov, M_IOV);
1171 
1172 	if (control != NULL)
1173 		m_freem(control);
1174 
1175 	return (error);
1176 }
1177 
1178 /*
1179  * Copy-in the array of control messages constructed using alignment
1180  * and padding suitable for a 32-bit environment and construct an
1181  * mbuf using alignment and padding suitable for a 64-bit kernel.
1182  * The alignment and padding are defined indirectly by CMSG_DATA(),
1183  * CMSG_SPACE() and CMSG_LEN().
1184  */
1185 static int
1186 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1187 {
1188 	struct mbuf *m;
1189 	void *md;
1190 	u_int idx, len, msglen;
1191 	int error;
1192 
1193 	buflen = FREEBSD32_ALIGN(buflen);
1194 
1195 	if (buflen > MCLBYTES)
1196 		return (EINVAL);
1197 
1198 	/*
1199 	 * Iterate over the buffer and get the length of each message
1200 	 * in there. This has 32-bit alignment and padding. Use it to
1201 	 * determine the length of these messages when using 64-bit
1202 	 * alignment and padding.
1203 	 */
1204 	idx = 0;
1205 	len = 0;
1206 	while (idx < buflen) {
1207 		error = copyin(buf + idx, &msglen, sizeof(msglen));
1208 		if (error)
1209 			return (error);
1210 		if (msglen < sizeof(struct cmsghdr))
1211 			return (EINVAL);
1212 		msglen = FREEBSD32_ALIGN(msglen);
1213 		if (idx + msglen > buflen)
1214 			return (EINVAL);
1215 		idx += msglen;
1216 		msglen += CMSG_ALIGN(sizeof(struct cmsghdr)) -
1217 		    FREEBSD32_ALIGN(sizeof(struct cmsghdr));
1218 		len += CMSG_ALIGN(msglen);
1219 	}
1220 
1221 	if (len > MCLBYTES)
1222 		return (EINVAL);
1223 
1224 	m = m_get(M_WAITOK, MT_CONTROL);
1225 	if (len > MLEN)
1226 		MCLGET(m, M_WAITOK);
1227 	m->m_len = len;
1228 
1229 	md = mtod(m, void *);
1230 	while (buflen > 0) {
1231 		error = copyin(buf, md, sizeof(struct cmsghdr));
1232 		if (error)
1233 			break;
1234 		msglen = *(u_int *)md;
1235 		msglen = FREEBSD32_ALIGN(msglen);
1236 
1237 		/* Modify the message length to account for alignment. */
1238 		*(u_int *)md = msglen + CMSG_ALIGN(sizeof(struct cmsghdr)) -
1239 		    FREEBSD32_ALIGN(sizeof(struct cmsghdr));
1240 
1241 		md = (char *)md + CMSG_ALIGN(sizeof(struct cmsghdr));
1242 		buf += FREEBSD32_ALIGN(sizeof(struct cmsghdr));
1243 		buflen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr));
1244 
1245 		msglen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr));
1246 		if (msglen > 0) {
1247 			error = copyin(buf, md, msglen);
1248 			if (error)
1249 				break;
1250 			md = (char *)md + CMSG_ALIGN(msglen);
1251 			buf += msglen;
1252 			buflen -= msglen;
1253 		}
1254 	}
1255 
1256 	if (error)
1257 		m_free(m);
1258 	else
1259 		*mp = m;
1260 	return (error);
1261 }
1262 
1263 int
1264 freebsd32_sendmsg(struct thread *td,
1265 		  struct freebsd32_sendmsg_args *uap)
1266 {
1267 	struct msghdr msg;
1268 	struct msghdr32 m32;
1269 	struct iovec *iov;
1270 	struct mbuf *control = NULL;
1271 	struct sockaddr *to = NULL;
1272 	int error;
1273 
1274 	error = copyin(uap->msg, &m32, sizeof(m32));
1275 	if (error)
1276 		return (error);
1277 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1278 	if (error)
1279 		return (error);
1280 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1281 	    EMSGSIZE);
1282 	if (error)
1283 		return (error);
1284 	msg.msg_iov = iov;
1285 	if (msg.msg_name != NULL) {
1286 		error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1287 		if (error) {
1288 			to = NULL;
1289 			goto out;
1290 		}
1291 		msg.msg_name = to;
1292 	}
1293 
1294 	if (msg.msg_control) {
1295 		if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1296 			error = EINVAL;
1297 			goto out;
1298 		}
1299 
1300 		error = freebsd32_copyin_control(&control, msg.msg_control,
1301 		    msg.msg_controllen);
1302 		if (error)
1303 			goto out;
1304 
1305 		msg.msg_control = NULL;
1306 		msg.msg_controllen = 0;
1307 	}
1308 
1309 	error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1310 	    UIO_USERSPACE);
1311 
1312 out:
1313 	free(iov, M_IOV);
1314 	if (to)
1315 		free(to, M_SONAME);
1316 	return (error);
1317 }
1318 
1319 int
1320 freebsd32_recvfrom(struct thread *td,
1321 		   struct freebsd32_recvfrom_args *uap)
1322 {
1323 	struct msghdr msg;
1324 	struct iovec aiov;
1325 	int error;
1326 
1327 	if (uap->fromlenaddr) {
1328 		error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen,
1329 		    sizeof(msg.msg_namelen));
1330 		if (error)
1331 			return (error);
1332 	} else {
1333 		msg.msg_namelen = 0;
1334 	}
1335 
1336 	msg.msg_name = PTRIN(uap->from);
1337 	msg.msg_iov = &aiov;
1338 	msg.msg_iovlen = 1;
1339 	aiov.iov_base = PTRIN(uap->buf);
1340 	aiov.iov_len = uap->len;
1341 	msg.msg_control = NULL;
1342 	msg.msg_flags = uap->flags;
1343 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL);
1344 	if (error == 0 && uap->fromlenaddr)
1345 		error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr),
1346 		    sizeof (msg.msg_namelen));
1347 	return (error);
1348 }
1349 
1350 int
1351 freebsd32_settimeofday(struct thread *td,
1352 		       struct freebsd32_settimeofday_args *uap)
1353 {
1354 	struct timeval32 tv32;
1355 	struct timeval tv, *tvp;
1356 	struct timezone tz, *tzp;
1357 	int error;
1358 
1359 	if (uap->tv) {
1360 		error = copyin(uap->tv, &tv32, sizeof(tv32));
1361 		if (error)
1362 			return (error);
1363 		CP(tv32, tv, tv_sec);
1364 		CP(tv32, tv, tv_usec);
1365 		tvp = &tv;
1366 	} else
1367 		tvp = NULL;
1368 	if (uap->tzp) {
1369 		error = copyin(uap->tzp, &tz, sizeof(tz));
1370 		if (error)
1371 			return (error);
1372 		tzp = &tz;
1373 	} else
1374 		tzp = NULL;
1375 	return (kern_settimeofday(td, tvp, tzp));
1376 }
1377 
1378 int
1379 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1380 {
1381 	struct timeval32 s32[2];
1382 	struct timeval s[2], *sp;
1383 	int error;
1384 
1385 	if (uap->tptr != NULL) {
1386 		error = copyin(uap->tptr, s32, sizeof(s32));
1387 		if (error)
1388 			return (error);
1389 		CP(s32[0], s[0], tv_sec);
1390 		CP(s32[0], s[0], tv_usec);
1391 		CP(s32[1], s[1], tv_sec);
1392 		CP(s32[1], s[1], tv_usec);
1393 		sp = s;
1394 	} else
1395 		sp = NULL;
1396 	return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1397 	    sp, UIO_SYSSPACE));
1398 }
1399 
1400 int
1401 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1402 {
1403 	struct timeval32 s32[2];
1404 	struct timeval s[2], *sp;
1405 	int error;
1406 
1407 	if (uap->tptr != NULL) {
1408 		error = copyin(uap->tptr, s32, sizeof(s32));
1409 		if (error)
1410 			return (error);
1411 		CP(s32[0], s[0], tv_sec);
1412 		CP(s32[0], s[0], tv_usec);
1413 		CP(s32[1], s[1], tv_sec);
1414 		CP(s32[1], s[1], tv_usec);
1415 		sp = s;
1416 	} else
1417 		sp = NULL;
1418 	return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1419 }
1420 
1421 int
1422 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1423 {
1424 	struct timeval32 s32[2];
1425 	struct timeval s[2], *sp;
1426 	int error;
1427 
1428 	if (uap->tptr != NULL) {
1429 		error = copyin(uap->tptr, s32, sizeof(s32));
1430 		if (error)
1431 			return (error);
1432 		CP(s32[0], s[0], tv_sec);
1433 		CP(s32[0], s[0], tv_usec);
1434 		CP(s32[1], s[1], tv_sec);
1435 		CP(s32[1], s[1], tv_usec);
1436 		sp = s;
1437 	} else
1438 		sp = NULL;
1439 	return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1440 }
1441 
1442 int
1443 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1444 {
1445 	struct timeval32 s32[2];
1446 	struct timeval s[2], *sp;
1447 	int error;
1448 
1449 	if (uap->times != NULL) {
1450 		error = copyin(uap->times, s32, sizeof(s32));
1451 		if (error)
1452 			return (error);
1453 		CP(s32[0], s[0], tv_sec);
1454 		CP(s32[0], s[0], tv_usec);
1455 		CP(s32[1], s[1], tv_sec);
1456 		CP(s32[1], s[1], tv_usec);
1457 		sp = s;
1458 	} else
1459 		sp = NULL;
1460 	return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1461 		sp, UIO_SYSSPACE));
1462 }
1463 
1464 int
1465 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1466 {
1467 	struct timespec32 ts32[2];
1468 	struct timespec ts[2], *tsp;
1469 	int error;
1470 
1471 	if (uap->times != NULL) {
1472 		error = copyin(uap->times, ts32, sizeof(ts32));
1473 		if (error)
1474 			return (error);
1475 		CP(ts32[0], ts[0], tv_sec);
1476 		CP(ts32[0], ts[0], tv_nsec);
1477 		CP(ts32[1], ts[1], tv_sec);
1478 		CP(ts32[1], ts[1], tv_nsec);
1479 		tsp = ts;
1480 	} else
1481 		tsp = NULL;
1482 	return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1483 }
1484 
1485 int
1486 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1487 {
1488 	struct timespec32 ts32[2];
1489 	struct timespec ts[2], *tsp;
1490 	int error;
1491 
1492 	if (uap->times != NULL) {
1493 		error = copyin(uap->times, ts32, sizeof(ts32));
1494 		if (error)
1495 			return (error);
1496 		CP(ts32[0], ts[0], tv_sec);
1497 		CP(ts32[0], ts[0], tv_nsec);
1498 		CP(ts32[1], ts[1], tv_sec);
1499 		CP(ts32[1], ts[1], tv_nsec);
1500 		tsp = ts;
1501 	} else
1502 		tsp = NULL;
1503 	return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1504 	    tsp, UIO_SYSSPACE, uap->flag));
1505 }
1506 
1507 int
1508 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1509 {
1510 	struct timeval32 tv32;
1511 	struct timeval delta, olddelta, *deltap;
1512 	int error;
1513 
1514 	if (uap->delta) {
1515 		error = copyin(uap->delta, &tv32, sizeof(tv32));
1516 		if (error)
1517 			return (error);
1518 		CP(tv32, delta, tv_sec);
1519 		CP(tv32, delta, tv_usec);
1520 		deltap = &delta;
1521 	} else
1522 		deltap = NULL;
1523 	error = kern_adjtime(td, deltap, &olddelta);
1524 	if (uap->olddelta && error == 0) {
1525 		CP(olddelta, tv32, tv_sec);
1526 		CP(olddelta, tv32, tv_usec);
1527 		error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1528 	}
1529 	return (error);
1530 }
1531 
1532 #ifdef COMPAT_FREEBSD4
1533 int
1534 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1535 {
1536 	struct statfs32 s32;
1537 	struct statfs *sp;
1538 	int error;
1539 
1540 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1541 	error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1542 	if (error == 0) {
1543 		copy_statfs(sp, &s32);
1544 		error = copyout(&s32, uap->buf, sizeof(s32));
1545 	}
1546 	free(sp, M_STATFS);
1547 	return (error);
1548 }
1549 #endif
1550 
1551 #ifdef COMPAT_FREEBSD4
1552 int
1553 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1554 {
1555 	struct statfs32 s32;
1556 	struct statfs *sp;
1557 	int error;
1558 
1559 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1560 	error = kern_fstatfs(td, uap->fd, sp);
1561 	if (error == 0) {
1562 		copy_statfs(sp, &s32);
1563 		error = copyout(&s32, uap->buf, sizeof(s32));
1564 	}
1565 	free(sp, M_STATFS);
1566 	return (error);
1567 }
1568 #endif
1569 
1570 #ifdef COMPAT_FREEBSD4
1571 int
1572 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1573 {
1574 	struct statfs32 s32;
1575 	struct statfs *sp;
1576 	fhandle_t fh;
1577 	int error;
1578 
1579 	if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1580 		return (error);
1581 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1582 	error = kern_fhstatfs(td, fh, sp);
1583 	if (error == 0) {
1584 		copy_statfs(sp, &s32);
1585 		error = copyout(&s32, uap->buf, sizeof(s32));
1586 	}
1587 	free(sp, M_STATFS);
1588 	return (error);
1589 }
1590 #endif
1591 
1592 int
1593 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1594 {
1595 
1596 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1597 	    PAIR32TO64(off_t, uap->offset)));
1598 }
1599 
1600 int
1601 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1602 {
1603 
1604 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1605 	    PAIR32TO64(off_t, uap->offset)));
1606 }
1607 
1608 #ifdef COMPAT_43
1609 int
1610 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1611 {
1612 
1613 	return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
1614 }
1615 #endif
1616 
1617 int
1618 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1619 {
1620 	int error;
1621 	off_t pos;
1622 
1623 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1624 	    uap->whence);
1625 	/* Expand the quad return into two parts for eax and edx */
1626 	pos = td->td_uretoff.tdu_off;
1627 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1628 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1629 	return error;
1630 }
1631 
1632 int
1633 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
1634 {
1635 
1636 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
1637 	    PAIR32TO64(off_t, uap->length)));
1638 }
1639 
1640 int
1641 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
1642 {
1643 
1644 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
1645 }
1646 
1647 #ifdef COMPAT_43
1648 int
1649 ofreebsd32_getdirentries(struct thread *td,
1650     struct ofreebsd32_getdirentries_args *uap)
1651 {
1652 	struct ogetdirentries_args ap;
1653 	int error;
1654 	long loff;
1655 	int32_t loff_cut;
1656 
1657 	ap.fd = uap->fd;
1658 	ap.buf = uap->buf;
1659 	ap.count = uap->count;
1660 	ap.basep = NULL;
1661 	error = kern_ogetdirentries(td, &ap, &loff);
1662 	if (error == 0) {
1663 		loff_cut = loff;
1664 		error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
1665 	}
1666 	return (error);
1667 }
1668 #endif
1669 
1670 #if defined(COMPAT_FREEBSD11)
1671 int
1672 freebsd11_freebsd32_getdirentries(struct thread *td,
1673     struct freebsd11_freebsd32_getdirentries_args *uap)
1674 {
1675 	long base;
1676 	int32_t base32;
1677 	int error;
1678 
1679 	error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
1680 	    &base, NULL);
1681 	if (error)
1682 		return (error);
1683 	if (uap->basep != NULL) {
1684 		base32 = base;
1685 		error = copyout(&base32, uap->basep, sizeof(int32_t));
1686 	}
1687 	return (error);
1688 }
1689 
1690 int
1691 freebsd11_freebsd32_getdents(struct thread *td,
1692     struct freebsd11_freebsd32_getdents_args *uap)
1693 {
1694 	struct freebsd11_freebsd32_getdirentries_args ap;
1695 
1696 	ap.fd = uap->fd;
1697 	ap.buf = uap->buf;
1698 	ap.count = uap->count;
1699 	ap.basep = NULL;
1700 	return (freebsd11_freebsd32_getdirentries(td, &ap));
1701 }
1702 #endif /* COMPAT_FREEBSD11 */
1703 
1704 int
1705 freebsd32_getdirentries(struct thread *td,
1706     struct freebsd32_getdirentries_args *uap)
1707 {
1708 	long base;
1709 	int32_t base32;
1710 	int error;
1711 
1712 	error = kern_getdirentries(td, uap->fd, uap->buf, uap->count, &base,
1713 	    NULL, UIO_USERSPACE);
1714 	if (error)
1715 		return (error);
1716 	if (uap->basep != NULL) {
1717 		base32 = base;
1718 		error = copyout(&base32, uap->basep, sizeof(int32_t));
1719 	}
1720 	return (error);
1721 }
1722 
1723 #ifdef COMPAT_FREEBSD6
1724 /* versions with the 'int pad' argument */
1725 int
1726 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
1727 {
1728 
1729 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1730 	    PAIR32TO64(off_t, uap->offset)));
1731 }
1732 
1733 int
1734 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
1735 {
1736 
1737 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1738 	    PAIR32TO64(off_t, uap->offset)));
1739 }
1740 
1741 int
1742 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
1743 {
1744 	int error;
1745 	off_t pos;
1746 
1747 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1748 	    uap->whence);
1749 	/* Expand the quad return into two parts for eax and edx */
1750 	pos = *(off_t *)(td->td_retval);
1751 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1752 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1753 	return error;
1754 }
1755 
1756 int
1757 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
1758 {
1759 
1760 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
1761 	    PAIR32TO64(off_t, uap->length)));
1762 }
1763 
1764 int
1765 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
1766 {
1767 
1768 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
1769 }
1770 #endif /* COMPAT_FREEBSD6 */
1771 
1772 struct sf_hdtr32 {
1773 	uint32_t headers;
1774 	int hdr_cnt;
1775 	uint32_t trailers;
1776 	int trl_cnt;
1777 };
1778 
1779 static int
1780 freebsd32_do_sendfile(struct thread *td,
1781     struct freebsd32_sendfile_args *uap, int compat)
1782 {
1783 	struct sf_hdtr32 hdtr32;
1784 	struct sf_hdtr hdtr;
1785 	struct uio *hdr_uio, *trl_uio;
1786 	struct file *fp;
1787 	cap_rights_t rights;
1788 	struct iovec32 *iov32;
1789 	off_t offset, sbytes;
1790 	int error;
1791 
1792 	offset = PAIR32TO64(off_t, uap->offset);
1793 	if (offset < 0)
1794 		return (EINVAL);
1795 
1796 	hdr_uio = trl_uio = NULL;
1797 
1798 	if (uap->hdtr != NULL) {
1799 		error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
1800 		if (error)
1801 			goto out;
1802 		PTRIN_CP(hdtr32, hdtr, headers);
1803 		CP(hdtr32, hdtr, hdr_cnt);
1804 		PTRIN_CP(hdtr32, hdtr, trailers);
1805 		CP(hdtr32, hdtr, trl_cnt);
1806 
1807 		if (hdtr.headers != NULL) {
1808 			iov32 = PTRIN(hdtr32.headers);
1809 			error = freebsd32_copyinuio(iov32,
1810 			    hdtr32.hdr_cnt, &hdr_uio);
1811 			if (error)
1812 				goto out;
1813 #ifdef COMPAT_FREEBSD4
1814 			/*
1815 			 * In FreeBSD < 5.0 the nbytes to send also included
1816 			 * the header.  If compat is specified subtract the
1817 			 * header size from nbytes.
1818 			 */
1819 			if (compat) {
1820 				if (uap->nbytes > hdr_uio->uio_resid)
1821 					uap->nbytes -= hdr_uio->uio_resid;
1822 				else
1823 					uap->nbytes = 0;
1824 			}
1825 #endif
1826 		}
1827 		if (hdtr.trailers != NULL) {
1828 			iov32 = PTRIN(hdtr32.trailers);
1829 			error = freebsd32_copyinuio(iov32,
1830 			    hdtr32.trl_cnt, &trl_uio);
1831 			if (error)
1832 				goto out;
1833 		}
1834 	}
1835 
1836 	AUDIT_ARG_FD(uap->fd);
1837 
1838 	if ((error = fget_read(td, uap->fd,
1839 	    cap_rights_init(&rights, CAP_PREAD), &fp)) != 0)
1840 		goto out;
1841 
1842 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
1843 	    uap->nbytes, &sbytes, uap->flags, td);
1844 	fdrop(fp, td);
1845 
1846 	if (uap->sbytes != NULL)
1847 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1848 
1849 out:
1850 	if (hdr_uio)
1851 		free(hdr_uio, M_IOV);
1852 	if (trl_uio)
1853 		free(trl_uio, M_IOV);
1854 	return (error);
1855 }
1856 
1857 #ifdef COMPAT_FREEBSD4
1858 int
1859 freebsd4_freebsd32_sendfile(struct thread *td,
1860     struct freebsd4_freebsd32_sendfile_args *uap)
1861 {
1862 	return (freebsd32_do_sendfile(td,
1863 	    (struct freebsd32_sendfile_args *)uap, 1));
1864 }
1865 #endif
1866 
1867 int
1868 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
1869 {
1870 
1871 	return (freebsd32_do_sendfile(td, uap, 0));
1872 }
1873 
1874 static void
1875 copy_stat(struct stat *in, struct stat32 *out)
1876 {
1877 
1878 	CP(*in, *out, st_dev);
1879 	CP(*in, *out, st_ino);
1880 	CP(*in, *out, st_mode);
1881 	CP(*in, *out, st_nlink);
1882 	CP(*in, *out, st_uid);
1883 	CP(*in, *out, st_gid);
1884 	CP(*in, *out, st_rdev);
1885 	TS_CP(*in, *out, st_atim);
1886 	TS_CP(*in, *out, st_mtim);
1887 	TS_CP(*in, *out, st_ctim);
1888 	CP(*in, *out, st_size);
1889 	CP(*in, *out, st_blocks);
1890 	CP(*in, *out, st_blksize);
1891 	CP(*in, *out, st_flags);
1892 	CP(*in, *out, st_gen);
1893 	TS_CP(*in, *out, st_birthtim);
1894 	out->st_padding0 = 0;
1895 	out->st_padding1 = 0;
1896 #ifdef __STAT32_TIME_T_EXT
1897 	out->st_atim_ext = 0;
1898 	out->st_mtim_ext = 0;
1899 	out->st_ctim_ext = 0;
1900 	out->st_btim_ext = 0;
1901 #endif
1902 	bzero(out->st_spare, sizeof(out->st_spare));
1903 }
1904 
1905 #ifdef COMPAT_43
1906 static void
1907 copy_ostat(struct stat *in, struct ostat32 *out)
1908 {
1909 
1910 	CP(*in, *out, st_dev);
1911 	CP(*in, *out, st_ino);
1912 	CP(*in, *out, st_mode);
1913 	CP(*in, *out, st_nlink);
1914 	CP(*in, *out, st_uid);
1915 	CP(*in, *out, st_gid);
1916 	CP(*in, *out, st_rdev);
1917 	CP(*in, *out, st_size);
1918 	TS_CP(*in, *out, st_atim);
1919 	TS_CP(*in, *out, st_mtim);
1920 	TS_CP(*in, *out, st_ctim);
1921 	CP(*in, *out, st_blksize);
1922 	CP(*in, *out, st_blocks);
1923 	CP(*in, *out, st_flags);
1924 	CP(*in, *out, st_gen);
1925 }
1926 #endif
1927 
1928 #ifdef COMPAT_43
1929 int
1930 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
1931 {
1932 	struct stat sb;
1933 	struct ostat32 sb32;
1934 	int error;
1935 
1936 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
1937 	    &sb, NULL);
1938 	if (error)
1939 		return (error);
1940 	copy_ostat(&sb, &sb32);
1941 	error = copyout(&sb32, uap->ub, sizeof (sb32));
1942 	return (error);
1943 }
1944 #endif
1945 
1946 int
1947 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
1948 {
1949 	struct stat ub;
1950 	struct stat32 ub32;
1951 	int error;
1952 
1953 	error = kern_fstat(td, uap->fd, &ub);
1954 	if (error)
1955 		return (error);
1956 	copy_stat(&ub, &ub32);
1957 	error = copyout(&ub32, uap->ub, sizeof(ub32));
1958 	return (error);
1959 }
1960 
1961 #ifdef COMPAT_43
1962 int
1963 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
1964 {
1965 	struct stat ub;
1966 	struct ostat32 ub32;
1967 	int error;
1968 
1969 	error = kern_fstat(td, uap->fd, &ub);
1970 	if (error)
1971 		return (error);
1972 	copy_ostat(&ub, &ub32);
1973 	error = copyout(&ub32, uap->ub, sizeof(ub32));
1974 	return (error);
1975 }
1976 #endif
1977 
1978 int
1979 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
1980 {
1981 	struct stat ub;
1982 	struct stat32 ub32;
1983 	int error;
1984 
1985 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
1986 	    &ub, NULL);
1987 	if (error)
1988 		return (error);
1989 	copy_stat(&ub, &ub32);
1990 	error = copyout(&ub32, uap->buf, sizeof(ub32));
1991 	return (error);
1992 }
1993 
1994 #ifdef COMPAT_43
1995 int
1996 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
1997 {
1998 	struct stat sb;
1999 	struct ostat32 sb32;
2000 	int error;
2001 
2002 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2003 	    UIO_USERSPACE, &sb, NULL);
2004 	if (error)
2005 		return (error);
2006 	copy_ostat(&sb, &sb32);
2007 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2008 	return (error);
2009 }
2010 #endif
2011 
2012 int
2013 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2014 {
2015 	struct stat sb;
2016 	struct stat32 sb32;
2017 	struct fhandle fh;
2018 	int error;
2019 
2020 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2021         if (error != 0)
2022                 return (error);
2023 	error = kern_fhstat(td, fh, &sb);
2024 	if (error != 0)
2025 		return (error);
2026 	copy_stat(&sb, &sb32);
2027 	error = copyout(&sb32, uap->sb, sizeof (sb32));
2028 	return (error);
2029 }
2030 
2031 #if defined(COMPAT_FREEBSD11)
2032 extern int ino64_trunc_error;
2033 
2034 static int
2035 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2036 {
2037 
2038 	CP(*in, *out, st_ino);
2039 	if (in->st_ino != out->st_ino) {
2040 		switch (ino64_trunc_error) {
2041 		default:
2042 		case 0:
2043 			break;
2044 		case 1:
2045 			return (EOVERFLOW);
2046 		case 2:
2047 			out->st_ino = UINT32_MAX;
2048 			break;
2049 		}
2050 	}
2051 	CP(*in, *out, st_nlink);
2052 	if (in->st_nlink != out->st_nlink) {
2053 		switch (ino64_trunc_error) {
2054 		default:
2055 		case 0:
2056 			break;
2057 		case 1:
2058 			return (EOVERFLOW);
2059 		case 2:
2060 			out->st_nlink = UINT16_MAX;
2061 			break;
2062 		}
2063 	}
2064 	CP(*in, *out, st_dev);
2065 	CP(*in, *out, st_mode);
2066 	CP(*in, *out, st_uid);
2067 	CP(*in, *out, st_gid);
2068 	CP(*in, *out, st_rdev);
2069 	TS_CP(*in, *out, st_atim);
2070 	TS_CP(*in, *out, st_mtim);
2071 	TS_CP(*in, *out, st_ctim);
2072 	CP(*in, *out, st_size);
2073 	CP(*in, *out, st_blocks);
2074 	CP(*in, *out, st_blksize);
2075 	CP(*in, *out, st_flags);
2076 	CP(*in, *out, st_gen);
2077 	TS_CP(*in, *out, st_birthtim);
2078 	out->st_lspare = 0;
2079 	bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2080 	    sizeof(*out) - offsetof(struct freebsd11_stat32,
2081 	    st_birthtim) - sizeof(out->st_birthtim));
2082 	return (0);
2083 }
2084 
2085 int
2086 freebsd11_freebsd32_stat(struct thread *td,
2087     struct freebsd11_freebsd32_stat_args *uap)
2088 {
2089 	struct stat sb;
2090 	struct freebsd11_stat32 sb32;
2091 	int error;
2092 
2093 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2094 	    &sb, NULL);
2095 	if (error != 0)
2096 		return (error);
2097 	error = freebsd11_cvtstat32(&sb, &sb32);
2098 	if (error == 0)
2099 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2100 	return (error);
2101 }
2102 
2103 int
2104 freebsd11_freebsd32_fstat(struct thread *td,
2105     struct freebsd11_freebsd32_fstat_args *uap)
2106 {
2107 	struct stat sb;
2108 	struct freebsd11_stat32 sb32;
2109 	int error;
2110 
2111 	error = kern_fstat(td, uap->fd, &sb);
2112 	if (error != 0)
2113 		return (error);
2114 	error = freebsd11_cvtstat32(&sb, &sb32);
2115 	if (error == 0)
2116 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2117 	return (error);
2118 }
2119 
2120 int
2121 freebsd11_freebsd32_fstatat(struct thread *td,
2122     struct freebsd11_freebsd32_fstatat_args *uap)
2123 {
2124 	struct stat sb;
2125 	struct freebsd11_stat32 sb32;
2126 	int error;
2127 
2128 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2129 	    &sb, NULL);
2130 	if (error != 0)
2131 		return (error);
2132 	error = freebsd11_cvtstat32(&sb, &sb32);
2133 	if (error == 0)
2134 		error = copyout(&sb32, uap->buf, sizeof (sb32));
2135 	return (error);
2136 }
2137 
2138 int
2139 freebsd11_freebsd32_lstat(struct thread *td,
2140     struct freebsd11_freebsd32_lstat_args *uap)
2141 {
2142 	struct stat sb;
2143 	struct freebsd11_stat32 sb32;
2144 	int error;
2145 
2146 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2147 	    UIO_USERSPACE, &sb, NULL);
2148 	if (error != 0)
2149 		return (error);
2150 	error = freebsd11_cvtstat32(&sb, &sb32);
2151 	if (error == 0)
2152 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2153 	return (error);
2154 }
2155 
2156 int
2157 freebsd11_freebsd32_fhstat(struct thread *td,
2158     struct freebsd11_freebsd32_fhstat_args *uap)
2159 {
2160 	struct stat sb;
2161 	struct freebsd11_stat32 sb32;
2162 	struct fhandle fh;
2163 	int error;
2164 
2165 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2166         if (error != 0)
2167                 return (error);
2168 	error = kern_fhstat(td, fh, &sb);
2169 	if (error != 0)
2170 		return (error);
2171 	error = freebsd11_cvtstat32(&sb, &sb32);
2172 	if (error == 0)
2173 		error = copyout(&sb32, uap->sb, sizeof (sb32));
2174 	return (error);
2175 }
2176 #endif
2177 
2178 int
2179 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap)
2180 {
2181 	int error, name[CTL_MAXNAME];
2182 	size_t j, oldlen;
2183 	uint32_t tmp;
2184 
2185 	if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2186 		return (EINVAL);
2187  	error = copyin(uap->name, name, uap->namelen * sizeof(int));
2188  	if (error)
2189 		return (error);
2190 	if (uap->oldlenp) {
2191 		error = fueword32(uap->oldlenp, &tmp);
2192 		oldlen = tmp;
2193 	} else {
2194 		oldlen = 0;
2195 	}
2196 	if (error != 0)
2197 		return (EFAULT);
2198 	error = userland_sysctl(td, name, uap->namelen,
2199 		uap->old, &oldlen, 1,
2200 		uap->new, uap->newlen, &j, SCTL_MASK32);
2201 	if (error && error != ENOMEM)
2202 		return (error);
2203 	if (uap->oldlenp)
2204 		suword32(uap->oldlenp, j);
2205 	return (0);
2206 }
2207 
2208 int
2209 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2210 {
2211 	uint32_t version;
2212 	int error;
2213 	struct jail j;
2214 
2215 	error = copyin(uap->jail, &version, sizeof(uint32_t));
2216 	if (error)
2217 		return (error);
2218 
2219 	switch (version) {
2220 	case 0:
2221 	{
2222 		/* FreeBSD single IPv4 jails. */
2223 		struct jail32_v0 j32_v0;
2224 
2225 		bzero(&j, sizeof(struct jail));
2226 		error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2227 		if (error)
2228 			return (error);
2229 		CP(j32_v0, j, version);
2230 		PTRIN_CP(j32_v0, j, path);
2231 		PTRIN_CP(j32_v0, j, hostname);
2232 		j.ip4s = htonl(j32_v0.ip_number);	/* jail_v0 is host order */
2233 		break;
2234 	}
2235 
2236 	case 1:
2237 		/*
2238 		 * Version 1 was used by multi-IPv4 jail implementations
2239 		 * that never made it into the official kernel.
2240 		 */
2241 		return (EINVAL);
2242 
2243 	case 2:	/* JAIL_API_VERSION */
2244 	{
2245 		/* FreeBSD multi-IPv4/IPv6,noIP jails. */
2246 		struct jail32 j32;
2247 
2248 		error = copyin(uap->jail, &j32, sizeof(struct jail32));
2249 		if (error)
2250 			return (error);
2251 		CP(j32, j, version);
2252 		PTRIN_CP(j32, j, path);
2253 		PTRIN_CP(j32, j, hostname);
2254 		PTRIN_CP(j32, j, jailname);
2255 		CP(j32, j, ip4s);
2256 		CP(j32, j, ip6s);
2257 		PTRIN_CP(j32, j, ip4);
2258 		PTRIN_CP(j32, j, ip6);
2259 		break;
2260 	}
2261 
2262 	default:
2263 		/* Sci-Fi jails are not supported, sorry. */
2264 		return (EINVAL);
2265 	}
2266 	return (kern_jail(td, &j));
2267 }
2268 
2269 int
2270 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2271 {
2272 	struct uio *auio;
2273 	int error;
2274 
2275 	/* Check that we have an even number of iovecs. */
2276 	if (uap->iovcnt & 1)
2277 		return (EINVAL);
2278 
2279 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2280 	if (error)
2281 		return (error);
2282 	error = kern_jail_set(td, auio, uap->flags);
2283 	free(auio, M_IOV);
2284 	return (error);
2285 }
2286 
2287 int
2288 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2289 {
2290 	struct iovec32 iov32;
2291 	struct uio *auio;
2292 	int error, i;
2293 
2294 	/* Check that we have an even number of iovecs. */
2295 	if (uap->iovcnt & 1)
2296 		return (EINVAL);
2297 
2298 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2299 	if (error)
2300 		return (error);
2301 	error = kern_jail_get(td, auio, uap->flags);
2302 	if (error == 0)
2303 		for (i = 0; i < uap->iovcnt; i++) {
2304 			PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2305 			CP(auio->uio_iov[i], iov32, iov_len);
2306 			error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2307 			if (error != 0)
2308 				break;
2309 		}
2310 	free(auio, M_IOV);
2311 	return (error);
2312 }
2313 
2314 int
2315 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2316 {
2317 	struct sigaction32 s32;
2318 	struct sigaction sa, osa, *sap;
2319 	int error;
2320 
2321 	if (uap->act) {
2322 		error = copyin(uap->act, &s32, sizeof(s32));
2323 		if (error)
2324 			return (error);
2325 		sa.sa_handler = PTRIN(s32.sa_u);
2326 		CP(s32, sa, sa_flags);
2327 		CP(s32, sa, sa_mask);
2328 		sap = &sa;
2329 	} else
2330 		sap = NULL;
2331 	error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2332 	if (error == 0 && uap->oact != NULL) {
2333 		s32.sa_u = PTROUT(osa.sa_handler);
2334 		CP(osa, s32, sa_flags);
2335 		CP(osa, s32, sa_mask);
2336 		error = copyout(&s32, uap->oact, sizeof(s32));
2337 	}
2338 	return (error);
2339 }
2340 
2341 #ifdef COMPAT_FREEBSD4
2342 int
2343 freebsd4_freebsd32_sigaction(struct thread *td,
2344 			     struct freebsd4_freebsd32_sigaction_args *uap)
2345 {
2346 	struct sigaction32 s32;
2347 	struct sigaction sa, osa, *sap;
2348 	int error;
2349 
2350 	if (uap->act) {
2351 		error = copyin(uap->act, &s32, sizeof(s32));
2352 		if (error)
2353 			return (error);
2354 		sa.sa_handler = PTRIN(s32.sa_u);
2355 		CP(s32, sa, sa_flags);
2356 		CP(s32, sa, sa_mask);
2357 		sap = &sa;
2358 	} else
2359 		sap = NULL;
2360 	error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2361 	if (error == 0 && uap->oact != NULL) {
2362 		s32.sa_u = PTROUT(osa.sa_handler);
2363 		CP(osa, s32, sa_flags);
2364 		CP(osa, s32, sa_mask);
2365 		error = copyout(&s32, uap->oact, sizeof(s32));
2366 	}
2367 	return (error);
2368 }
2369 #endif
2370 
2371 #ifdef COMPAT_43
2372 struct osigaction32 {
2373 	u_int32_t	sa_u;
2374 	osigset_t	sa_mask;
2375 	int		sa_flags;
2376 };
2377 
2378 #define	ONSIG	32
2379 
2380 int
2381 ofreebsd32_sigaction(struct thread *td,
2382 			     struct ofreebsd32_sigaction_args *uap)
2383 {
2384 	struct osigaction32 s32;
2385 	struct sigaction sa, osa, *sap;
2386 	int error;
2387 
2388 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2389 		return (EINVAL);
2390 
2391 	if (uap->nsa) {
2392 		error = copyin(uap->nsa, &s32, sizeof(s32));
2393 		if (error)
2394 			return (error);
2395 		sa.sa_handler = PTRIN(s32.sa_u);
2396 		CP(s32, sa, sa_flags);
2397 		OSIG2SIG(s32.sa_mask, sa.sa_mask);
2398 		sap = &sa;
2399 	} else
2400 		sap = NULL;
2401 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2402 	if (error == 0 && uap->osa != NULL) {
2403 		s32.sa_u = PTROUT(osa.sa_handler);
2404 		CP(osa, s32, sa_flags);
2405 		SIG2OSIG(osa.sa_mask, s32.sa_mask);
2406 		error = copyout(&s32, uap->osa, sizeof(s32));
2407 	}
2408 	return (error);
2409 }
2410 
2411 int
2412 ofreebsd32_sigprocmask(struct thread *td,
2413 			       struct ofreebsd32_sigprocmask_args *uap)
2414 {
2415 	sigset_t set, oset;
2416 	int error;
2417 
2418 	OSIG2SIG(uap->mask, set);
2419 	error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD);
2420 	SIG2OSIG(oset, td->td_retval[0]);
2421 	return (error);
2422 }
2423 
2424 int
2425 ofreebsd32_sigpending(struct thread *td,
2426 			      struct ofreebsd32_sigpending_args *uap)
2427 {
2428 	struct proc *p = td->td_proc;
2429 	sigset_t siglist;
2430 
2431 	PROC_LOCK(p);
2432 	siglist = p->p_siglist;
2433 	SIGSETOR(siglist, td->td_siglist);
2434 	PROC_UNLOCK(p);
2435 	SIG2OSIG(siglist, td->td_retval[0]);
2436 	return (0);
2437 }
2438 
2439 struct sigvec32 {
2440 	u_int32_t	sv_handler;
2441 	int		sv_mask;
2442 	int		sv_flags;
2443 };
2444 
2445 int
2446 ofreebsd32_sigvec(struct thread *td,
2447 			  struct ofreebsd32_sigvec_args *uap)
2448 {
2449 	struct sigvec32 vec;
2450 	struct sigaction sa, osa, *sap;
2451 	int error;
2452 
2453 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2454 		return (EINVAL);
2455 
2456 	if (uap->nsv) {
2457 		error = copyin(uap->nsv, &vec, sizeof(vec));
2458 		if (error)
2459 			return (error);
2460 		sa.sa_handler = PTRIN(vec.sv_handler);
2461 		OSIG2SIG(vec.sv_mask, sa.sa_mask);
2462 		sa.sa_flags = vec.sv_flags;
2463 		sa.sa_flags ^= SA_RESTART;
2464 		sap = &sa;
2465 	} else
2466 		sap = NULL;
2467 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2468 	if (error == 0 && uap->osv != NULL) {
2469 		vec.sv_handler = PTROUT(osa.sa_handler);
2470 		SIG2OSIG(osa.sa_mask, vec.sv_mask);
2471 		vec.sv_flags = osa.sa_flags;
2472 		vec.sv_flags &= ~SA_NOCLDWAIT;
2473 		vec.sv_flags ^= SA_RESTART;
2474 		error = copyout(&vec, uap->osv, sizeof(vec));
2475 	}
2476 	return (error);
2477 }
2478 
2479 int
2480 ofreebsd32_sigblock(struct thread *td,
2481 			    struct ofreebsd32_sigblock_args *uap)
2482 {
2483 	sigset_t set, oset;
2484 
2485 	OSIG2SIG(uap->mask, set);
2486 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
2487 	SIG2OSIG(oset, td->td_retval[0]);
2488 	return (0);
2489 }
2490 
2491 int
2492 ofreebsd32_sigsetmask(struct thread *td,
2493 			      struct ofreebsd32_sigsetmask_args *uap)
2494 {
2495 	sigset_t set, oset;
2496 
2497 	OSIG2SIG(uap->mask, set);
2498 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
2499 	SIG2OSIG(oset, td->td_retval[0]);
2500 	return (0);
2501 }
2502 
2503 int
2504 ofreebsd32_sigsuspend(struct thread *td,
2505 			      struct ofreebsd32_sigsuspend_args *uap)
2506 {
2507 	sigset_t mask;
2508 
2509 	OSIG2SIG(uap->mask, mask);
2510 	return (kern_sigsuspend(td, mask));
2511 }
2512 
2513 struct sigstack32 {
2514 	u_int32_t	ss_sp;
2515 	int		ss_onstack;
2516 };
2517 
2518 int
2519 ofreebsd32_sigstack(struct thread *td,
2520 			    struct ofreebsd32_sigstack_args *uap)
2521 {
2522 	struct sigstack32 s32;
2523 	struct sigstack nss, oss;
2524 	int error = 0, unss;
2525 
2526 	if (uap->nss != NULL) {
2527 		error = copyin(uap->nss, &s32, sizeof(s32));
2528 		if (error)
2529 			return (error);
2530 		nss.ss_sp = PTRIN(s32.ss_sp);
2531 		CP(s32, nss, ss_onstack);
2532 		unss = 1;
2533 	} else {
2534 		unss = 0;
2535 	}
2536 	oss.ss_sp = td->td_sigstk.ss_sp;
2537 	oss.ss_onstack = sigonstack(cpu_getstack(td));
2538 	if (unss) {
2539 		td->td_sigstk.ss_sp = nss.ss_sp;
2540 		td->td_sigstk.ss_size = 0;
2541 		td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2542 		td->td_pflags |= TDP_ALTSTACK;
2543 	}
2544 	if (uap->oss != NULL) {
2545 		s32.ss_sp = PTROUT(oss.ss_sp);
2546 		CP(oss, s32, ss_onstack);
2547 		error = copyout(&s32, uap->oss, sizeof(s32));
2548 	}
2549 	return (error);
2550 }
2551 #endif
2552 
2553 int
2554 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2555 {
2556 
2557 	return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
2558 	    TIMER_RELTIME, uap->rqtp, uap->rmtp));
2559 }
2560 
2561 int
2562 freebsd32_clock_nanosleep(struct thread *td,
2563     struct freebsd32_clock_nanosleep_args *uap)
2564 {
2565 	int error;
2566 
2567 	error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
2568 	    uap->rqtp, uap->rmtp);
2569 	return (kern_posix_error(td, error));
2570 }
2571 
2572 static int
2573 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
2574     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
2575 {
2576 	struct timespec32 rmt32, rqt32;
2577 	struct timespec rmt, rqt;
2578 	int error;
2579 
2580 	error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
2581 	if (error)
2582 		return (error);
2583 
2584 	CP(rqt32, rqt, tv_sec);
2585 	CP(rqt32, rqt, tv_nsec);
2586 
2587 	if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 &&
2588 	    !useracc(ua_rmtp, sizeof(rmt32), VM_PROT_WRITE))
2589 		return (EFAULT);
2590 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
2591 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
2592 		int error2;
2593 
2594 		CP(rmt, rmt32, tv_sec);
2595 		CP(rmt, rmt32, tv_nsec);
2596 
2597 		error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
2598 		if (error2)
2599 			error = error2;
2600 	}
2601 	return (error);
2602 }
2603 
2604 int
2605 freebsd32_clock_gettime(struct thread *td,
2606 			struct freebsd32_clock_gettime_args *uap)
2607 {
2608 	struct timespec	ats;
2609 	struct timespec32 ats32;
2610 	int error;
2611 
2612 	error = kern_clock_gettime(td, uap->clock_id, &ats);
2613 	if (error == 0) {
2614 		CP(ats, ats32, tv_sec);
2615 		CP(ats, ats32, tv_nsec);
2616 		error = copyout(&ats32, uap->tp, sizeof(ats32));
2617 	}
2618 	return (error);
2619 }
2620 
2621 int
2622 freebsd32_clock_settime(struct thread *td,
2623 			struct freebsd32_clock_settime_args *uap)
2624 {
2625 	struct timespec	ats;
2626 	struct timespec32 ats32;
2627 	int error;
2628 
2629 	error = copyin(uap->tp, &ats32, sizeof(ats32));
2630 	if (error)
2631 		return (error);
2632 	CP(ats32, ats, tv_sec);
2633 	CP(ats32, ats, tv_nsec);
2634 
2635 	return (kern_clock_settime(td, uap->clock_id, &ats));
2636 }
2637 
2638 int
2639 freebsd32_clock_getres(struct thread *td,
2640 		       struct freebsd32_clock_getres_args *uap)
2641 {
2642 	struct timespec	ts;
2643 	struct timespec32 ts32;
2644 	int error;
2645 
2646 	if (uap->tp == NULL)
2647 		return (0);
2648 	error = kern_clock_getres(td, uap->clock_id, &ts);
2649 	if (error == 0) {
2650 		CP(ts, ts32, tv_sec);
2651 		CP(ts, ts32, tv_nsec);
2652 		error = copyout(&ts32, uap->tp, sizeof(ts32));
2653 	}
2654 	return (error);
2655 }
2656 
2657 int freebsd32_ktimer_create(struct thread *td,
2658     struct freebsd32_ktimer_create_args *uap)
2659 {
2660 	struct sigevent32 ev32;
2661 	struct sigevent ev, *evp;
2662 	int error, id;
2663 
2664 	if (uap->evp == NULL) {
2665 		evp = NULL;
2666 	} else {
2667 		evp = &ev;
2668 		error = copyin(uap->evp, &ev32, sizeof(ev32));
2669 		if (error != 0)
2670 			return (error);
2671 		error = convert_sigevent32(&ev32, &ev);
2672 		if (error != 0)
2673 			return (error);
2674 	}
2675 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
2676 	if (error == 0) {
2677 		error = copyout(&id, uap->timerid, sizeof(int));
2678 		if (error != 0)
2679 			kern_ktimer_delete(td, id);
2680 	}
2681 	return (error);
2682 }
2683 
2684 int
2685 freebsd32_ktimer_settime(struct thread *td,
2686     struct freebsd32_ktimer_settime_args *uap)
2687 {
2688 	struct itimerspec32 val32, oval32;
2689 	struct itimerspec val, oval, *ovalp;
2690 	int error;
2691 
2692 	error = copyin(uap->value, &val32, sizeof(val32));
2693 	if (error != 0)
2694 		return (error);
2695 	ITS_CP(val32, val);
2696 	ovalp = uap->ovalue != NULL ? &oval : NULL;
2697 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
2698 	if (error == 0 && uap->ovalue != NULL) {
2699 		ITS_CP(oval, oval32);
2700 		error = copyout(&oval32, uap->ovalue, sizeof(oval32));
2701 	}
2702 	return (error);
2703 }
2704 
2705 int
2706 freebsd32_ktimer_gettime(struct thread *td,
2707     struct freebsd32_ktimer_gettime_args *uap)
2708 {
2709 	struct itimerspec32 val32;
2710 	struct itimerspec val;
2711 	int error;
2712 
2713 	error = kern_ktimer_gettime(td, uap->timerid, &val);
2714 	if (error == 0) {
2715 		ITS_CP(val, val32);
2716 		error = copyout(&val32, uap->value, sizeof(val32));
2717 	}
2718 	return (error);
2719 }
2720 
2721 int
2722 freebsd32_clock_getcpuclockid2(struct thread *td,
2723     struct freebsd32_clock_getcpuclockid2_args *uap)
2724 {
2725 	clockid_t clk_id;
2726 	int error;
2727 
2728 	error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
2729 	    uap->which, &clk_id);
2730 	if (error == 0)
2731 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
2732 	return (error);
2733 }
2734 
2735 int
2736 freebsd32_thr_new(struct thread *td,
2737 		  struct freebsd32_thr_new_args *uap)
2738 {
2739 	struct thr_param32 param32;
2740 	struct thr_param param;
2741 	int error;
2742 
2743 	if (uap->param_size < 0 ||
2744 	    uap->param_size > sizeof(struct thr_param32))
2745 		return (EINVAL);
2746 	bzero(&param, sizeof(struct thr_param));
2747 	bzero(&param32, sizeof(struct thr_param32));
2748 	error = copyin(uap->param, &param32, uap->param_size);
2749 	if (error != 0)
2750 		return (error);
2751 	param.start_func = PTRIN(param32.start_func);
2752 	param.arg = PTRIN(param32.arg);
2753 	param.stack_base = PTRIN(param32.stack_base);
2754 	param.stack_size = param32.stack_size;
2755 	param.tls_base = PTRIN(param32.tls_base);
2756 	param.tls_size = param32.tls_size;
2757 	param.child_tid = PTRIN(param32.child_tid);
2758 	param.parent_tid = PTRIN(param32.parent_tid);
2759 	param.flags = param32.flags;
2760 	param.rtp = PTRIN(param32.rtp);
2761 	param.spare[0] = PTRIN(param32.spare[0]);
2762 	param.spare[1] = PTRIN(param32.spare[1]);
2763 	param.spare[2] = PTRIN(param32.spare[2]);
2764 
2765 	return (kern_thr_new(td, &param));
2766 }
2767 
2768 int
2769 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
2770 {
2771 	struct timespec32 ts32;
2772 	struct timespec ts, *tsp;
2773 	int error;
2774 
2775 	error = 0;
2776 	tsp = NULL;
2777 	if (uap->timeout != NULL) {
2778 		error = copyin((const void *)uap->timeout, (void *)&ts32,
2779 		    sizeof(struct timespec32));
2780 		if (error != 0)
2781 			return (error);
2782 		ts.tv_sec = ts32.tv_sec;
2783 		ts.tv_nsec = ts32.tv_nsec;
2784 		tsp = &ts;
2785 	}
2786 	return (kern_thr_suspend(td, tsp));
2787 }
2788 
2789 void
2790 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst)
2791 {
2792 	bzero(dst, sizeof(*dst));
2793 	dst->si_signo = src->si_signo;
2794 	dst->si_errno = src->si_errno;
2795 	dst->si_code = src->si_code;
2796 	dst->si_pid = src->si_pid;
2797 	dst->si_uid = src->si_uid;
2798 	dst->si_status = src->si_status;
2799 	dst->si_addr = (uintptr_t)src->si_addr;
2800 	dst->si_value.sival_int = src->si_value.sival_int;
2801 	dst->si_timerid = src->si_timerid;
2802 	dst->si_overrun = src->si_overrun;
2803 }
2804 
2805 #ifndef _FREEBSD32_SYSPROTO_H_
2806 struct freebsd32_sigqueue_args {
2807         pid_t pid;
2808         int signum;
2809         /* union sigval32 */ int value;
2810 };
2811 #endif
2812 int
2813 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
2814 {
2815 	union sigval sv;
2816 
2817 	/*
2818 	 * On 32-bit ABIs, sival_int and sival_ptr are the same.
2819 	 * On 64-bit little-endian ABIs, the low bits are the same.
2820 	 * In 64-bit big-endian ABIs, sival_int overlaps with
2821 	 * sival_ptr's HIGH bits.  We choose to support sival_int
2822 	 * rather than sival_ptr in this case as it seems to be
2823 	 * more common.
2824 	 */
2825 	bzero(&sv, sizeof(sv));
2826 	sv.sival_int = uap->value;
2827 
2828 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
2829 }
2830 
2831 int
2832 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
2833 {
2834 	struct timespec32 ts32;
2835 	struct timespec ts;
2836 	struct timespec *timeout;
2837 	sigset_t set;
2838 	ksiginfo_t ksi;
2839 	struct siginfo32 si32;
2840 	int error;
2841 
2842 	if (uap->timeout) {
2843 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
2844 		if (error)
2845 			return (error);
2846 		ts.tv_sec = ts32.tv_sec;
2847 		ts.tv_nsec = ts32.tv_nsec;
2848 		timeout = &ts;
2849 	} else
2850 		timeout = NULL;
2851 
2852 	error = copyin(uap->set, &set, sizeof(set));
2853 	if (error)
2854 		return (error);
2855 
2856 	error = kern_sigtimedwait(td, set, &ksi, timeout);
2857 	if (error)
2858 		return (error);
2859 
2860 	if (uap->info) {
2861 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
2862 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
2863 	}
2864 
2865 	if (error == 0)
2866 		td->td_retval[0] = ksi.ksi_signo;
2867 	return (error);
2868 }
2869 
2870 /*
2871  * MPSAFE
2872  */
2873 int
2874 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
2875 {
2876 	ksiginfo_t ksi;
2877 	struct siginfo32 si32;
2878 	sigset_t set;
2879 	int error;
2880 
2881 	error = copyin(uap->set, &set, sizeof(set));
2882 	if (error)
2883 		return (error);
2884 
2885 	error = kern_sigtimedwait(td, set, &ksi, NULL);
2886 	if (error)
2887 		return (error);
2888 
2889 	if (uap->info) {
2890 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
2891 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
2892 	}
2893 	if (error == 0)
2894 		td->td_retval[0] = ksi.ksi_signo;
2895 	return (error);
2896 }
2897 
2898 int
2899 freebsd32_cpuset_setid(struct thread *td,
2900     struct freebsd32_cpuset_setid_args *uap)
2901 {
2902 
2903 	return (kern_cpuset_setid(td, uap->which,
2904 	    PAIR32TO64(id_t, uap->id), uap->setid));
2905 }
2906 
2907 int
2908 freebsd32_cpuset_getid(struct thread *td,
2909     struct freebsd32_cpuset_getid_args *uap)
2910 {
2911 
2912 	return (kern_cpuset_getid(td, uap->level, uap->which,
2913 	    PAIR32TO64(id_t, uap->id), uap->setid));
2914 }
2915 
2916 int
2917 freebsd32_cpuset_getaffinity(struct thread *td,
2918     struct freebsd32_cpuset_getaffinity_args *uap)
2919 {
2920 
2921 	return (kern_cpuset_getaffinity(td, uap->level, uap->which,
2922 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
2923 }
2924 
2925 int
2926 freebsd32_cpuset_setaffinity(struct thread *td,
2927     struct freebsd32_cpuset_setaffinity_args *uap)
2928 {
2929 
2930 	return (kern_cpuset_setaffinity(td, uap->level, uap->which,
2931 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
2932 }
2933 
2934 int
2935 freebsd32_nmount(struct thread *td,
2936     struct freebsd32_nmount_args /* {
2937     	struct iovec *iovp;
2938     	unsigned int iovcnt;
2939     	int flags;
2940     } */ *uap)
2941 {
2942 	struct uio *auio;
2943 	uint64_t flags;
2944 	int error;
2945 
2946 	/*
2947 	 * Mount flags are now 64-bits. On 32-bit archtectures only
2948 	 * 32-bits are passed in, but from here on everything handles
2949 	 * 64-bit flags correctly.
2950 	 */
2951 	flags = uap->flags;
2952 
2953 	AUDIT_ARG_FFLAGS(flags);
2954 
2955 	/*
2956 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
2957 	 * userspace to set this flag, but we must filter it out if we want
2958 	 * MNT_UPDATE on the root file system to work.
2959 	 * MNT_ROOTFS should only be set by the kernel when mounting its
2960 	 * root file system.
2961 	 */
2962 	flags &= ~MNT_ROOTFS;
2963 
2964 	/*
2965 	 * check that we have an even number of iovec's
2966 	 * and that we have at least two options.
2967 	 */
2968 	if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
2969 		return (EINVAL);
2970 
2971 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2972 	if (error)
2973 		return (error);
2974 	error = vfs_donmount(td, flags, auio);
2975 
2976 	free(auio, M_IOV);
2977 	return error;
2978 }
2979 
2980 #if 0
2981 int
2982 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
2983 {
2984 	struct yyy32 *p32, s32;
2985 	struct yyy *p = NULL, s;
2986 	struct xxx_arg ap;
2987 	int error;
2988 
2989 	if (uap->zzz) {
2990 		error = copyin(uap->zzz, &s32, sizeof(s32));
2991 		if (error)
2992 			return (error);
2993 		/* translate in */
2994 		p = &s;
2995 	}
2996 	error = kern_xxx(td, p);
2997 	if (error)
2998 		return (error);
2999 	if (uap->zzz) {
3000 		/* translate out */
3001 		error = copyout(&s32, p32, sizeof(s32));
3002 	}
3003 	return (error);
3004 }
3005 #endif
3006 
3007 int
3008 syscall32_register(int *offset, struct sysent *new_sysent,
3009     struct sysent *old_sysent, int flags)
3010 {
3011 
3012 	if ((flags & ~SY_THR_STATIC) != 0)
3013 		return (EINVAL);
3014 
3015 	if (*offset == NO_SYSCALL) {
3016 		int i;
3017 
3018 		for (i = 1; i < SYS_MAXSYSCALL; ++i)
3019 			if (freebsd32_sysent[i].sy_call ==
3020 			    (sy_call_t *)lkmnosys)
3021 				break;
3022 		if (i == SYS_MAXSYSCALL)
3023 			return (ENFILE);
3024 		*offset = i;
3025 	} else if (*offset < 0 || *offset >= SYS_MAXSYSCALL)
3026 		return (EINVAL);
3027 	else if (freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmnosys &&
3028 	    freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmressys)
3029 		return (EEXIST);
3030 
3031 	*old_sysent = freebsd32_sysent[*offset];
3032 	freebsd32_sysent[*offset] = *new_sysent;
3033 	atomic_store_rel_32(&freebsd32_sysent[*offset].sy_thrcnt, flags);
3034 	return (0);
3035 }
3036 
3037 int
3038 syscall32_deregister(int *offset, struct sysent *old_sysent)
3039 {
3040 
3041 	if (*offset == 0)
3042 		return (0);
3043 
3044 	freebsd32_sysent[*offset] = *old_sysent;
3045 	return (0);
3046 }
3047 
3048 int
3049 syscall32_module_handler(struct module *mod, int what, void *arg)
3050 {
3051 	struct syscall_module_data *data = (struct syscall_module_data*)arg;
3052 	modspecific_t ms;
3053 	int error;
3054 
3055 	switch (what) {
3056 	case MOD_LOAD:
3057 		error = syscall32_register(data->offset, data->new_sysent,
3058 		    &data->old_sysent, SY_THR_STATIC_KLD);
3059 		if (error) {
3060 			/* Leave a mark so we know to safely unload below. */
3061 			data->offset = NULL;
3062 			return error;
3063 		}
3064 		ms.intval = *data->offset;
3065 		MOD_XLOCK;
3066 		module_setspecific(mod, &ms);
3067 		MOD_XUNLOCK;
3068 		if (data->chainevh)
3069 			error = data->chainevh(mod, what, data->chainarg);
3070 		return (error);
3071 	case MOD_UNLOAD:
3072 		/*
3073 		 * MOD_LOAD failed, so just return without calling the
3074 		 * chained handler since we didn't pass along the MOD_LOAD
3075 		 * event.
3076 		 */
3077 		if (data->offset == NULL)
3078 			return (0);
3079 		if (data->chainevh) {
3080 			error = data->chainevh(mod, what, data->chainarg);
3081 			if (error)
3082 				return (error);
3083 		}
3084 		error = syscall32_deregister(data->offset, &data->old_sysent);
3085 		return (error);
3086 	default:
3087 		error = EOPNOTSUPP;
3088 		if (data->chainevh)
3089 			error = data->chainevh(mod, what, data->chainarg);
3090 		return (error);
3091 	}
3092 }
3093 
3094 int
3095 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3096 {
3097 	struct syscall_helper_data *sd1;
3098 	int error;
3099 
3100 	for (sd1 = sd; sd1->syscall_no != NO_SYSCALL; sd1++) {
3101 		error = syscall32_register(&sd1->syscall_no, &sd1->new_sysent,
3102 		    &sd1->old_sysent, flags);
3103 		if (error != 0) {
3104 			syscall32_helper_unregister(sd);
3105 			return (error);
3106 		}
3107 		sd1->registered = 1;
3108 	}
3109 	return (0);
3110 }
3111 
3112 int
3113 syscall32_helper_unregister(struct syscall_helper_data *sd)
3114 {
3115 	struct syscall_helper_data *sd1;
3116 
3117 	for (sd1 = sd; sd1->registered != 0; sd1++) {
3118 		syscall32_deregister(&sd1->syscall_no, &sd1->old_sysent);
3119 		sd1->registered = 0;
3120 	}
3121 	return (0);
3122 }
3123 
3124 register_t *
3125 freebsd32_copyout_strings(struct image_params *imgp)
3126 {
3127 	int argc, envc, i;
3128 	u_int32_t *vectp;
3129 	char *stringp;
3130 	uintptr_t destp;
3131 	u_int32_t *stack_base;
3132 	struct freebsd32_ps_strings *arginfo;
3133 	char canary[sizeof(long) * 8];
3134 	int32_t pagesizes32[MAXPAGESIZES];
3135 	size_t execpath_len;
3136 	int szsigcode;
3137 
3138 	/*
3139 	 * Calculate string base and vector table pointers.
3140 	 * Also deal with signal trampoline code for this exec type.
3141 	 */
3142 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
3143 		execpath_len = strlen(imgp->execpath) + 1;
3144 	else
3145 		execpath_len = 0;
3146 	arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent->
3147 	    sv_psstrings;
3148 	if (imgp->proc->p_sysent->sv_sigcode_base == 0)
3149 		szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
3150 	else
3151 		szsigcode = 0;
3152 	destp =	(uintptr_t)arginfo;
3153 
3154 	/*
3155 	 * install sigcode
3156 	 */
3157 	if (szsigcode != 0) {
3158 		destp -= szsigcode;
3159 		destp = rounddown2(destp, sizeof(uint32_t));
3160 		copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp,
3161 		    szsigcode);
3162 	}
3163 
3164 	/*
3165 	 * Copy the image path for the rtld.
3166 	 */
3167 	if (execpath_len != 0) {
3168 		destp -= execpath_len;
3169 		imgp->execpathp = destp;
3170 		copyout(imgp->execpath, (void *)destp, execpath_len);
3171 	}
3172 
3173 	/*
3174 	 * Prepare the canary for SSP.
3175 	 */
3176 	arc4rand(canary, sizeof(canary), 0);
3177 	destp -= sizeof(canary);
3178 	imgp->canary = destp;
3179 	copyout(canary, (void *)destp, sizeof(canary));
3180 	imgp->canarylen = sizeof(canary);
3181 
3182 	/*
3183 	 * Prepare the pagesizes array.
3184 	 */
3185 	for (i = 0; i < MAXPAGESIZES; i++)
3186 		pagesizes32[i] = (uint32_t)pagesizes[i];
3187 	destp -= sizeof(pagesizes32);
3188 	destp = rounddown2(destp, sizeof(uint32_t));
3189 	imgp->pagesizes = destp;
3190 	copyout(pagesizes32, (void *)destp, sizeof(pagesizes32));
3191 	imgp->pagesizeslen = sizeof(pagesizes32);
3192 
3193 	destp -= ARG_MAX - imgp->args->stringspace;
3194 	destp = rounddown2(destp, sizeof(uint32_t));
3195 
3196 	/*
3197 	 * If we have a valid auxargs ptr, prepare some room
3198 	 * on the stack.
3199 	 */
3200 	if (imgp->auxargs) {
3201 		/*
3202 		 * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for
3203 		 * lower compatibility.
3204 		 */
3205 		imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size
3206 			: (AT_COUNT * 2);
3207 		/*
3208 		 * The '+ 2' is for the null pointers at the end of each of
3209 		 * the arg and env vector sets,and imgp->auxarg_size is room
3210 		 * for argument of Runtime loader.
3211 		 */
3212 		vectp = (u_int32_t *) (destp - (imgp->args->argc +
3213 		    imgp->args->envc + 2 + imgp->auxarg_size + execpath_len) *
3214 		    sizeof(u_int32_t));
3215 	} else {
3216 		/*
3217 		 * The '+ 2' is for the null pointers at the end of each of
3218 		 * the arg and env vector sets
3219 		 */
3220 		vectp = (u_int32_t *)(destp - (imgp->args->argc +
3221 		    imgp->args->envc + 2) * sizeof(u_int32_t));
3222 	}
3223 
3224 	/*
3225 	 * vectp also becomes our initial stack base
3226 	 */
3227 	stack_base = vectp;
3228 
3229 	stringp = imgp->args->begin_argv;
3230 	argc = imgp->args->argc;
3231 	envc = imgp->args->envc;
3232 	/*
3233 	 * Copy out strings - arguments and environment.
3234 	 */
3235 	copyout(stringp, (void *)destp, ARG_MAX - imgp->args->stringspace);
3236 
3237 	/*
3238 	 * Fill in "ps_strings" struct for ps, w, etc.
3239 	 */
3240 	suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp);
3241 	suword32(&arginfo->ps_nargvstr, argc);
3242 
3243 	/*
3244 	 * Fill in argument portion of vector table.
3245 	 */
3246 	for (; argc > 0; --argc) {
3247 		suword32(vectp++, (u_int32_t)(intptr_t)destp);
3248 		while (*stringp++ != 0)
3249 			destp++;
3250 		destp++;
3251 	}
3252 
3253 	/* a null vector table pointer separates the argp's from the envp's */
3254 	suword32(vectp++, 0);
3255 
3256 	suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp);
3257 	suword32(&arginfo->ps_nenvstr, envc);
3258 
3259 	/*
3260 	 * Fill in environment portion of vector table.
3261 	 */
3262 	for (; envc > 0; --envc) {
3263 		suword32(vectp++, (u_int32_t)(intptr_t)destp);
3264 		while (*stringp++ != 0)
3265 			destp++;
3266 		destp++;
3267 	}
3268 
3269 	/* end of vector table is a null pointer */
3270 	suword32(vectp, 0);
3271 
3272 	return ((register_t *)stack_base);
3273 }
3274 
3275 int
3276 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3277 {
3278 	struct kld_file_stat stat;
3279 	struct kld32_file_stat stat32;
3280 	int error, version;
3281 
3282 	if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3283 	    != 0)
3284 		return (error);
3285 	if (version != sizeof(struct kld32_file_stat_1) &&
3286 	    version != sizeof(struct kld32_file_stat))
3287 		return (EINVAL);
3288 
3289 	error = kern_kldstat(td, uap->fileid, &stat);
3290 	if (error != 0)
3291 		return (error);
3292 
3293 	bcopy(&stat.name[0], &stat32.name[0], sizeof(stat.name));
3294 	CP(stat, stat32, refs);
3295 	CP(stat, stat32, id);
3296 	PTROUT_CP(stat, stat32, address);
3297 	CP(stat, stat32, size);
3298 	bcopy(&stat.pathname[0], &stat32.pathname[0], sizeof(stat.pathname));
3299 	return (copyout(&stat32, uap->stat, version));
3300 }
3301 
3302 int
3303 freebsd32_posix_fallocate(struct thread *td,
3304     struct freebsd32_posix_fallocate_args *uap)
3305 {
3306 	int error;
3307 
3308 	error = kern_posix_fallocate(td, uap->fd,
3309 	    PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3310 	return (kern_posix_error(td, error));
3311 }
3312 
3313 int
3314 freebsd32_posix_fadvise(struct thread *td,
3315     struct freebsd32_posix_fadvise_args *uap)
3316 {
3317 	int error;
3318 
3319 	error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3320 	    PAIR32TO64(off_t, uap->len), uap->advice);
3321 	return (kern_posix_error(td, error));
3322 }
3323 
3324 int
3325 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3326 {
3327 
3328 	CP(*sig32, *sig, sigev_notify);
3329 	switch (sig->sigev_notify) {
3330 	case SIGEV_NONE:
3331 		break;
3332 	case SIGEV_THREAD_ID:
3333 		CP(*sig32, *sig, sigev_notify_thread_id);
3334 		/* FALLTHROUGH */
3335 	case SIGEV_SIGNAL:
3336 		CP(*sig32, *sig, sigev_signo);
3337 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3338 		break;
3339 	case SIGEV_KEVENT:
3340 		CP(*sig32, *sig, sigev_notify_kqueue);
3341 		CP(*sig32, *sig, sigev_notify_kevent_flags);
3342 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3343 		break;
3344 	default:
3345 		return (EINVAL);
3346 	}
3347 	return (0);
3348 }
3349 
3350 int
3351 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3352 {
3353 	void *data;
3354 	union {
3355 		struct procctl_reaper_status rs;
3356 		struct procctl_reaper_pids rp;
3357 		struct procctl_reaper_kill rk;
3358 	} x;
3359 	union {
3360 		struct procctl_reaper_pids32 rp;
3361 	} x32;
3362 	int error, error1, flags;
3363 
3364 	switch (uap->com) {
3365 	case PROC_SPROTECT:
3366 	case PROC_TRACE_CTL:
3367 	case PROC_TRAPCAP_CTL:
3368 		error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3369 		if (error != 0)
3370 			return (error);
3371 		data = &flags;
3372 		break;
3373 	case PROC_REAP_ACQUIRE:
3374 	case PROC_REAP_RELEASE:
3375 		if (uap->data != NULL)
3376 			return (EINVAL);
3377 		data = NULL;
3378 		break;
3379 	case PROC_REAP_STATUS:
3380 		data = &x.rs;
3381 		break;
3382 	case PROC_REAP_GETPIDS:
3383 		error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3384 		if (error != 0)
3385 			return (error);
3386 		CP(x32.rp, x.rp, rp_count);
3387 		PTRIN_CP(x32.rp, x.rp, rp_pids);
3388 		data = &x.rp;
3389 		break;
3390 	case PROC_REAP_KILL:
3391 		error = copyin(uap->data, &x.rk, sizeof(x.rk));
3392 		if (error != 0)
3393 			return (error);
3394 		data = &x.rk;
3395 		break;
3396 	case PROC_TRACE_STATUS:
3397 	case PROC_TRAPCAP_STATUS:
3398 		data = &flags;
3399 		break;
3400 	default:
3401 		return (EINVAL);
3402 	}
3403 	error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3404 	    uap->com, data);
3405 	switch (uap->com) {
3406 	case PROC_REAP_STATUS:
3407 		if (error == 0)
3408 			error = copyout(&x.rs, uap->data, sizeof(x.rs));
3409 		break;
3410 	case PROC_REAP_KILL:
3411 		error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3412 		if (error == 0)
3413 			error = error1;
3414 		break;
3415 	case PROC_TRACE_STATUS:
3416 	case PROC_TRAPCAP_STATUS:
3417 		if (error == 0)
3418 			error = copyout(&flags, uap->data, sizeof(flags));
3419 		break;
3420 	}
3421 	return (error);
3422 }
3423 
3424 int
3425 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3426 {
3427 	long tmp;
3428 
3429 	switch (uap->cmd) {
3430 	/*
3431 	 * Do unsigned conversion for arg when operation
3432 	 * interprets it as flags or pointer.
3433 	 */
3434 	case F_SETLK_REMOTE:
3435 	case F_SETLKW:
3436 	case F_SETLK:
3437 	case F_GETLK:
3438 	case F_SETFD:
3439 	case F_SETFL:
3440 	case F_OGETLK:
3441 	case F_OSETLK:
3442 	case F_OSETLKW:
3443 		tmp = (unsigned int)(uap->arg);
3444 		break;
3445 	default:
3446 		tmp = uap->arg;
3447 		break;
3448 	}
3449 	return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
3450 }
3451 
3452 int
3453 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
3454 {
3455 	struct timespec32 ts32;
3456 	struct timespec ts, *tsp;
3457 	sigset_t set, *ssp;
3458 	int error;
3459 
3460 	if (uap->ts != NULL) {
3461 		error = copyin(uap->ts, &ts32, sizeof(ts32));
3462 		if (error != 0)
3463 			return (error);
3464 		CP(ts32, ts, tv_sec);
3465 		CP(ts32, ts, tv_nsec);
3466 		tsp = &ts;
3467 	} else
3468 		tsp = NULL;
3469 	if (uap->set != NULL) {
3470 		error = copyin(uap->set, &set, sizeof(set));
3471 		if (error != 0)
3472 			return (error);
3473 		ssp = &set;
3474 	} else
3475 		ssp = NULL;
3476 
3477 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
3478 }
3479