xref: /freebsd/sys/compat/linux/linux_misc.c (revision 206b73d0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * Copyright (c) 1994-1995 Søren Schmidt
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer
13  *    in this position and unchanged.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 
37 #include <sys/param.h>
38 #include <sys/blist.h>
39 #include <sys/fcntl.h>
40 #if defined(__i386__)
41 #include <sys/imgact_aout.h>
42 #endif
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/mount.h>
50 #include <sys/mutex.h>
51 #include <sys/namei.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/procctl.h>
55 #include <sys/reboot.h>
56 #include <sys/racct.h>
57 #include <sys/random.h>
58 #include <sys/resourcevar.h>
59 #include <sys/sched.h>
60 #include <sys/sdt.h>
61 #include <sys/signalvar.h>
62 #include <sys/stat.h>
63 #include <sys/syscallsubr.h>
64 #include <sys/sysctl.h>
65 #include <sys/sysproto.h>
66 #include <sys/systm.h>
67 #include <sys/time.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 #include <sys/wait.h>
71 #include <sys/cpuset.h>
72 #include <sys/uio.h>
73 
74 #include <security/mac/mac_framework.h>
75 
76 #include <vm/vm.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_extern.h>
81 #include <vm/vm_object.h>
82 #include <vm/swap_pager.h>
83 
84 #ifdef COMPAT_LINUX32
85 #include <machine/../linux32/linux.h>
86 #include <machine/../linux32/linux32_proto.h>
87 #else
88 #include <machine/../linux/linux.h>
89 #include <machine/../linux/linux_proto.h>
90 #endif
91 
92 #include <compat/linux/linux_dtrace.h>
93 #include <compat/linux/linux_file.h>
94 #include <compat/linux/linux_mib.h>
95 #include <compat/linux/linux_signal.h>
96 #include <compat/linux/linux_timer.h>
97 #include <compat/linux/linux_util.h>
98 #include <compat/linux/linux_sysproto.h>
99 #include <compat/linux/linux_emul.h>
100 #include <compat/linux/linux_misc.h>
101 
102 /**
103  * Special DTrace provider for the linuxulator.
104  *
105  * In this file we define the provider for the entire linuxulator. All
106  * modules (= files of the linuxulator) use it.
107  *
108  * We define a different name depending on the emulated bitsize, see
109  * ../../<ARCH>/linux{,32}/linux.h, e.g.:
110  *      native bitsize          = linuxulator
111  *      amd64, 32bit emulation  = linuxulator32
112  */
113 LIN_SDT_PROVIDER_DEFINE(LINUX_DTRACE);
114 
115 int stclohz;				/* Statistics clock frequency */
116 
117 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
118 	RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
119 	RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
120 	RLIMIT_MEMLOCK, RLIMIT_AS
121 };
122 
123 struct l_sysinfo {
124 	l_long		uptime;		/* Seconds since boot */
125 	l_ulong		loads[3];	/* 1, 5, and 15 minute load averages */
126 #define LINUX_SYSINFO_LOADS_SCALE 65536
127 	l_ulong		totalram;	/* Total usable main memory size */
128 	l_ulong		freeram;	/* Available memory size */
129 	l_ulong		sharedram;	/* Amount of shared memory */
130 	l_ulong		bufferram;	/* Memory used by buffers */
131 	l_ulong		totalswap;	/* Total swap space size */
132 	l_ulong		freeswap;	/* swap space still available */
133 	l_ushort	procs;		/* Number of current processes */
134 	l_ushort	pads;
135 	l_ulong		totalbig;
136 	l_ulong		freebig;
137 	l_uint		mem_unit;
138 	char		_f[20-2*sizeof(l_long)-sizeof(l_int)];	/* padding */
139 };
140 
141 struct l_pselect6arg {
142 	l_uintptr_t	ss;
143 	l_size_t	ss_len;
144 };
145 
146 static int	linux_utimensat_nsec_valid(l_long);
147 
148 
149 int
150 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
151 {
152 	struct l_sysinfo sysinfo;
153 	vm_object_t object;
154 	int i, j;
155 	struct timespec ts;
156 
157 	bzero(&sysinfo, sizeof(sysinfo));
158 	getnanouptime(&ts);
159 	if (ts.tv_nsec != 0)
160 		ts.tv_sec++;
161 	sysinfo.uptime = ts.tv_sec;
162 
163 	/* Use the information from the mib to get our load averages */
164 	for (i = 0; i < 3; i++)
165 		sysinfo.loads[i] = averunnable.ldavg[i] *
166 		    LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
167 
168 	sysinfo.totalram = physmem * PAGE_SIZE;
169 	sysinfo.freeram = sysinfo.totalram - vm_wire_count() * PAGE_SIZE;
170 
171 	sysinfo.sharedram = 0;
172 	mtx_lock(&vm_object_list_mtx);
173 	TAILQ_FOREACH(object, &vm_object_list, object_list)
174 		if (object->shadow_count > 1)
175 			sysinfo.sharedram += object->resident_page_count;
176 	mtx_unlock(&vm_object_list_mtx);
177 
178 	sysinfo.sharedram *= PAGE_SIZE;
179 	sysinfo.bufferram = 0;
180 
181 	swap_pager_status(&i, &j);
182 	sysinfo.totalswap = i * PAGE_SIZE;
183 	sysinfo.freeswap = (i - j) * PAGE_SIZE;
184 
185 	sysinfo.procs = nprocs;
186 
187 	/* The following are only present in newer Linux kernels. */
188 	sysinfo.totalbig = 0;
189 	sysinfo.freebig = 0;
190 	sysinfo.mem_unit = 1;
191 
192 	return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
193 }
194 
195 #ifdef LINUX_LEGACY_SYSCALLS
196 int
197 linux_alarm(struct thread *td, struct linux_alarm_args *args)
198 {
199 	struct itimerval it, old_it;
200 	u_int secs;
201 	int error;
202 
203 	secs = args->secs;
204 	/*
205 	 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2
206 	 * to match kern_setitimer()'s limit to avoid error from it.
207 	 *
208 	 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
209 	 * platforms.
210 	 */
211 	if (secs > INT32_MAX / 2)
212 		secs = INT32_MAX / 2;
213 
214 	it.it_value.tv_sec = secs;
215 	it.it_value.tv_usec = 0;
216 	timevalclear(&it.it_interval);
217 	error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
218 	KASSERT(error == 0, ("kern_setitimer returns %d", error));
219 
220 	if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
221 	    old_it.it_value.tv_usec >= 500000)
222 		old_it.it_value.tv_sec++;
223 	td->td_retval[0] = old_it.it_value.tv_sec;
224 	return (0);
225 }
226 #endif
227 
228 int
229 linux_brk(struct thread *td, struct linux_brk_args *args)
230 {
231 	struct vmspace *vm = td->td_proc->p_vmspace;
232 	uintptr_t new, old;
233 
234 	old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
235 	new = (uintptr_t)args->dsend;
236 	if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
237 		td->td_retval[0] = (register_t)new;
238 	else
239 		td->td_retval[0] = (register_t)old;
240 
241 	return (0);
242 }
243 
244 #if defined(__i386__)
245 /* XXX: what about amd64/linux32? */
246 
247 int
248 linux_uselib(struct thread *td, struct linux_uselib_args *args)
249 {
250 	struct nameidata ni;
251 	struct vnode *vp;
252 	struct exec *a_out;
253 	vm_map_t map;
254 	vm_map_entry_t entry;
255 	struct vattr attr;
256 	vm_offset_t vmaddr;
257 	unsigned long file_offset;
258 	unsigned long bss_size;
259 	char *library;
260 	ssize_t aresid;
261 	int error;
262 	bool locked, opened, textset;
263 
264 	LCONVPATHEXIST(td, args->library, &library);
265 
266 	a_out = NULL;
267 	vp = NULL;
268 	locked = false;
269 	textset = false;
270 	opened = false;
271 
272 	NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
273 	    UIO_SYSSPACE, library, td);
274 	error = namei(&ni);
275 	LFREEPATH(library);
276 	if (error)
277 		goto cleanup;
278 
279 	vp = ni.ni_vp;
280 	NDFREE(&ni, NDF_ONLY_PNBUF);
281 
282 	/*
283 	 * From here on down, we have a locked vnode that must be unlocked.
284 	 * XXX: The code below largely duplicates exec_check_permissions().
285 	 */
286 	locked = true;
287 
288 	/* Executable? */
289 	error = VOP_GETATTR(vp, &attr, td->td_ucred);
290 	if (error)
291 		goto cleanup;
292 
293 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
294 	    ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) {
295 		/* EACCESS is what exec(2) returns. */
296 		error = ENOEXEC;
297 		goto cleanup;
298 	}
299 
300 	/* Sensible size? */
301 	if (attr.va_size == 0) {
302 		error = ENOEXEC;
303 		goto cleanup;
304 	}
305 
306 	/* Can we access it? */
307 	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
308 	if (error)
309 		goto cleanup;
310 
311 	/*
312 	 * XXX: This should use vn_open() so that it is properly authorized,
313 	 * and to reduce code redundancy all over the place here.
314 	 * XXX: Not really, it duplicates far more of exec_check_permissions()
315 	 * than vn_open().
316 	 */
317 #ifdef MAC
318 	error = mac_vnode_check_open(td->td_ucred, vp, VREAD);
319 	if (error)
320 		goto cleanup;
321 #endif
322 	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
323 	if (error)
324 		goto cleanup;
325 	opened = true;
326 
327 	/* Pull in executable header into exec_map */
328 	error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE,
329 	    VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0);
330 	if (error)
331 		goto cleanup;
332 
333 	/* Is it a Linux binary ? */
334 	if (((a_out->a_magic >> 16) & 0xff) != 0x64) {
335 		error = ENOEXEC;
336 		goto cleanup;
337 	}
338 
339 	/*
340 	 * While we are here, we should REALLY do some more checks
341 	 */
342 
343 	/* Set file/virtual offset based on a.out variant. */
344 	switch ((int)(a_out->a_magic & 0xffff)) {
345 	case 0413:			/* ZMAGIC */
346 		file_offset = 1024;
347 		break;
348 	case 0314:			/* QMAGIC */
349 		file_offset = 0;
350 		break;
351 	default:
352 		error = ENOEXEC;
353 		goto cleanup;
354 	}
355 
356 	bss_size = round_page(a_out->a_bss);
357 
358 	/* Check various fields in header for validity/bounds. */
359 	if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) {
360 		error = ENOEXEC;
361 		goto cleanup;
362 	}
363 
364 	/* text + data can't exceed file size */
365 	if (a_out->a_data + a_out->a_text > attr.va_size) {
366 		error = EFAULT;
367 		goto cleanup;
368 	}
369 
370 	/*
371 	 * text/data/bss must not exceed limits
372 	 * XXX - this is not complete. it should check current usage PLUS
373 	 * the resources needed by this library.
374 	 */
375 	PROC_LOCK(td->td_proc);
376 	if (a_out->a_text > maxtsiz ||
377 	    a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) ||
378 	    racct_set(td->td_proc, RACCT_DATA, a_out->a_data +
379 	    bss_size) != 0) {
380 		PROC_UNLOCK(td->td_proc);
381 		error = ENOMEM;
382 		goto cleanup;
383 	}
384 	PROC_UNLOCK(td->td_proc);
385 
386 	/*
387 	 * Prevent more writers.
388 	 */
389 	error = VOP_SET_TEXT(vp);
390 	if (error != 0)
391 		goto cleanup;
392 	textset = true;
393 
394 	/*
395 	 * Lock no longer needed
396 	 */
397 	locked = false;
398 	VOP_UNLOCK(vp, 0);
399 
400 	/*
401 	 * Check if file_offset page aligned. Currently we cannot handle
402 	 * misalinged file offsets, and so we read in the entire image
403 	 * (what a waste).
404 	 */
405 	if (file_offset & PAGE_MASK) {
406 		/* Map text+data read/write/execute */
407 
408 		/* a_entry is the load address and is page aligned */
409 		vmaddr = trunc_page(a_out->a_entry);
410 
411 		/* get anon user mapping, read+write+execute */
412 		error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
413 		    &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE,
414 		    VM_PROT_ALL, VM_PROT_ALL, 0);
415 		if (error)
416 			goto cleanup;
417 
418 		error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset,
419 		    a_out->a_text + a_out->a_data, UIO_USERSPACE, 0,
420 		    td->td_ucred, NOCRED, &aresid, td);
421 		if (error != 0)
422 			goto cleanup;
423 		if (aresid != 0) {
424 			error = ENOEXEC;
425 			goto cleanup;
426 		}
427 	} else {
428 		/*
429 		 * for QMAGIC, a_entry is 20 bytes beyond the load address
430 		 * to skip the executable header
431 		 */
432 		vmaddr = trunc_page(a_out->a_entry);
433 
434 		/*
435 		 * Map it all into the process's space as a single
436 		 * copy-on-write "data" segment.
437 		 */
438 		map = &td->td_proc->p_vmspace->vm_map;
439 		error = vm_mmap(map, &vmaddr,
440 		    a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL,
441 		    MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset);
442 		if (error)
443 			goto cleanup;
444 		vm_map_lock(map);
445 		if (!vm_map_lookup_entry(map, vmaddr, &entry)) {
446 			vm_map_unlock(map);
447 			error = EDOOFUS;
448 			goto cleanup;
449 		}
450 		entry->eflags |= MAP_ENTRY_VN_EXEC;
451 		vm_map_unlock(map);
452 		textset = false;
453 	}
454 
455 	if (bss_size != 0) {
456 		/* Calculate BSS start address */
457 		vmaddr = trunc_page(a_out->a_entry) + a_out->a_text +
458 		    a_out->a_data;
459 
460 		/* allocate some 'anon' space */
461 		error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
462 		    &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL,
463 		    VM_PROT_ALL, 0);
464 		if (error)
465 			goto cleanup;
466 	}
467 
468 cleanup:
469 	if (opened) {
470 		if (locked)
471 			VOP_UNLOCK(vp, 0);
472 		locked = false;
473 		VOP_CLOSE(vp, FREAD, td->td_ucred, td);
474 	}
475 	if (textset) {
476 		if (!locked) {
477 			locked = true;
478 			VOP_LOCK(vp, LK_SHARED | LK_RETRY);
479 		}
480 		VOP_UNSET_TEXT_CHECKED(vp);
481 	}
482 	if (locked)
483 		VOP_UNLOCK(vp, 0);
484 
485 	/* Release the temporary mapping. */
486 	if (a_out)
487 		kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE);
488 
489 	return (error);
490 }
491 
492 #endif	/* __i386__ */
493 
494 #ifdef LINUX_LEGACY_SYSCALLS
495 int
496 linux_select(struct thread *td, struct linux_select_args *args)
497 {
498 	l_timeval ltv;
499 	struct timeval tv0, tv1, utv, *tvp;
500 	int error;
501 
502 	/*
503 	 * Store current time for computation of the amount of
504 	 * time left.
505 	 */
506 	if (args->timeout) {
507 		if ((error = copyin(args->timeout, &ltv, sizeof(ltv))))
508 			goto select_out;
509 		utv.tv_sec = ltv.tv_sec;
510 		utv.tv_usec = ltv.tv_usec;
511 
512 		if (itimerfix(&utv)) {
513 			/*
514 			 * The timeval was invalid.  Convert it to something
515 			 * valid that will act as it does under Linux.
516 			 */
517 			utv.tv_sec += utv.tv_usec / 1000000;
518 			utv.tv_usec %= 1000000;
519 			if (utv.tv_usec < 0) {
520 				utv.tv_sec -= 1;
521 				utv.tv_usec += 1000000;
522 			}
523 			if (utv.tv_sec < 0)
524 				timevalclear(&utv);
525 		}
526 		microtime(&tv0);
527 		tvp = &utv;
528 	} else
529 		tvp = NULL;
530 
531 	error = kern_select(td, args->nfds, args->readfds, args->writefds,
532 	    args->exceptfds, tvp, LINUX_NFDBITS);
533 	if (error)
534 		goto select_out;
535 
536 	if (args->timeout) {
537 		if (td->td_retval[0]) {
538 			/*
539 			 * Compute how much time was left of the timeout,
540 			 * by subtracting the current time and the time
541 			 * before we started the call, and subtracting
542 			 * that result from the user-supplied value.
543 			 */
544 			microtime(&tv1);
545 			timevalsub(&tv1, &tv0);
546 			timevalsub(&utv, &tv1);
547 			if (utv.tv_sec < 0)
548 				timevalclear(&utv);
549 		} else
550 			timevalclear(&utv);
551 		ltv.tv_sec = utv.tv_sec;
552 		ltv.tv_usec = utv.tv_usec;
553 		if ((error = copyout(&ltv, args->timeout, sizeof(ltv))))
554 			goto select_out;
555 	}
556 
557 select_out:
558 	return (error);
559 }
560 #endif
561 
562 int
563 linux_mremap(struct thread *td, struct linux_mremap_args *args)
564 {
565 	uintptr_t addr;
566 	size_t len;
567 	int error = 0;
568 
569 	if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
570 		td->td_retval[0] = 0;
571 		return (EINVAL);
572 	}
573 
574 	/*
575 	 * Check for the page alignment.
576 	 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
577 	 */
578 	if (args->addr & PAGE_MASK) {
579 		td->td_retval[0] = 0;
580 		return (EINVAL);
581 	}
582 
583 	args->new_len = round_page(args->new_len);
584 	args->old_len = round_page(args->old_len);
585 
586 	if (args->new_len > args->old_len) {
587 		td->td_retval[0] = 0;
588 		return (ENOMEM);
589 	}
590 
591 	if (args->new_len < args->old_len) {
592 		addr = args->addr + args->new_len;
593 		len = args->old_len - args->new_len;
594 		error = kern_munmap(td, addr, len);
595 	}
596 
597 	td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
598 	return (error);
599 }
600 
601 #define LINUX_MS_ASYNC       0x0001
602 #define LINUX_MS_INVALIDATE  0x0002
603 #define LINUX_MS_SYNC        0x0004
604 
605 int
606 linux_msync(struct thread *td, struct linux_msync_args *args)
607 {
608 
609 	return (kern_msync(td, args->addr, args->len,
610 	    args->fl & ~LINUX_MS_SYNC));
611 }
612 
613 #ifdef LINUX_LEGACY_SYSCALLS
614 int
615 linux_time(struct thread *td, struct linux_time_args *args)
616 {
617 	struct timeval tv;
618 	l_time_t tm;
619 	int error;
620 
621 	microtime(&tv);
622 	tm = tv.tv_sec;
623 	if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
624 		return (error);
625 	td->td_retval[0] = tm;
626 	return (0);
627 }
628 #endif
629 
630 struct l_times_argv {
631 	l_clock_t	tms_utime;
632 	l_clock_t	tms_stime;
633 	l_clock_t	tms_cutime;
634 	l_clock_t	tms_cstime;
635 };
636 
637 
638 /*
639  * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
640  * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
641  * auxiliary vector entry.
642  */
643 #define	CLK_TCK		100
644 
645 #define	CONVOTCK(r)	(r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
646 #define	CONVNTCK(r)	(r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
647 
648 #define	CONVTCK(r)	(linux_kernver(td) >= LINUX_KERNVER_2004000 ?		\
649 			    CONVNTCK(r) : CONVOTCK(r))
650 
651 int
652 linux_times(struct thread *td, struct linux_times_args *args)
653 {
654 	struct timeval tv, utime, stime, cutime, cstime;
655 	struct l_times_argv tms;
656 	struct proc *p;
657 	int error;
658 
659 	if (args->buf != NULL) {
660 		p = td->td_proc;
661 		PROC_LOCK(p);
662 		PROC_STATLOCK(p);
663 		calcru(p, &utime, &stime);
664 		PROC_STATUNLOCK(p);
665 		calccru(p, &cutime, &cstime);
666 		PROC_UNLOCK(p);
667 
668 		tms.tms_utime = CONVTCK(utime);
669 		tms.tms_stime = CONVTCK(stime);
670 
671 		tms.tms_cutime = CONVTCK(cutime);
672 		tms.tms_cstime = CONVTCK(cstime);
673 
674 		if ((error = copyout(&tms, args->buf, sizeof(tms))))
675 			return (error);
676 	}
677 
678 	microuptime(&tv);
679 	td->td_retval[0] = (int)CONVTCK(tv);
680 	return (0);
681 }
682 
683 int
684 linux_newuname(struct thread *td, struct linux_newuname_args *args)
685 {
686 	struct l_new_utsname utsname;
687 	char osname[LINUX_MAX_UTSNAME];
688 	char osrelease[LINUX_MAX_UTSNAME];
689 	char *p;
690 
691 	linux_get_osname(td, osname);
692 	linux_get_osrelease(td, osrelease);
693 
694 	bzero(&utsname, sizeof(utsname));
695 	strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
696 	getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
697 	getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
698 	strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
699 	strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
700 	for (p = utsname.version; *p != '\0'; ++p)
701 		if (*p == '\n') {
702 			*p = '\0';
703 			break;
704 		}
705 	strlcpy(utsname.machine, linux_kplatform, LINUX_MAX_UTSNAME);
706 
707 	return (copyout(&utsname, args->buf, sizeof(utsname)));
708 }
709 
710 struct l_utimbuf {
711 	l_time_t l_actime;
712 	l_time_t l_modtime;
713 };
714 
715 #ifdef LINUX_LEGACY_SYSCALLS
716 int
717 linux_utime(struct thread *td, struct linux_utime_args *args)
718 {
719 	struct timeval tv[2], *tvp;
720 	struct l_utimbuf lut;
721 	char *fname;
722 	int error;
723 
724 	LCONVPATHEXIST(td, args->fname, &fname);
725 
726 	if (args->times) {
727 		if ((error = copyin(args->times, &lut, sizeof lut))) {
728 			LFREEPATH(fname);
729 			return (error);
730 		}
731 		tv[0].tv_sec = lut.l_actime;
732 		tv[0].tv_usec = 0;
733 		tv[1].tv_sec = lut.l_modtime;
734 		tv[1].tv_usec = 0;
735 		tvp = tv;
736 	} else
737 		tvp = NULL;
738 
739 	error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp,
740 	    UIO_SYSSPACE);
741 	LFREEPATH(fname);
742 	return (error);
743 }
744 #endif
745 
746 #ifdef LINUX_LEGACY_SYSCALLS
747 int
748 linux_utimes(struct thread *td, struct linux_utimes_args *args)
749 {
750 	l_timeval ltv[2];
751 	struct timeval tv[2], *tvp = NULL;
752 	char *fname;
753 	int error;
754 
755 	LCONVPATHEXIST(td, args->fname, &fname);
756 
757 	if (args->tptr != NULL) {
758 		if ((error = copyin(args->tptr, ltv, sizeof ltv))) {
759 			LFREEPATH(fname);
760 			return (error);
761 		}
762 		tv[0].tv_sec = ltv[0].tv_sec;
763 		tv[0].tv_usec = ltv[0].tv_usec;
764 		tv[1].tv_sec = ltv[1].tv_sec;
765 		tv[1].tv_usec = ltv[1].tv_usec;
766 		tvp = tv;
767 	}
768 
769 	error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE,
770 	    tvp, UIO_SYSSPACE);
771 	LFREEPATH(fname);
772 	return (error);
773 }
774 #endif
775 
776 static int
777 linux_utimensat_nsec_valid(l_long nsec)
778 {
779 
780 	if (nsec == LINUX_UTIME_OMIT || nsec == LINUX_UTIME_NOW)
781 		return (0);
782 	if (nsec >= 0 && nsec <= 999999999)
783 		return (0);
784 	return (1);
785 }
786 
787 int
788 linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
789 {
790 	struct l_timespec l_times[2];
791 	struct timespec times[2], *timesp = NULL;
792 	char *path = NULL;
793 	int error, dfd, flags = 0;
794 
795 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
796 
797 	if (args->flags & ~LINUX_AT_SYMLINK_NOFOLLOW)
798 		return (EINVAL);
799 
800 	if (args->times != NULL) {
801 		error = copyin(args->times, l_times, sizeof(l_times));
802 		if (error != 0)
803 			return (error);
804 
805 		if (linux_utimensat_nsec_valid(l_times[0].tv_nsec) != 0 ||
806 		    linux_utimensat_nsec_valid(l_times[1].tv_nsec) != 0)
807 			return (EINVAL);
808 
809 		times[0].tv_sec = l_times[0].tv_sec;
810 		switch (l_times[0].tv_nsec)
811 		{
812 		case LINUX_UTIME_OMIT:
813 			times[0].tv_nsec = UTIME_OMIT;
814 			break;
815 		case LINUX_UTIME_NOW:
816 			times[0].tv_nsec = UTIME_NOW;
817 			break;
818 		default:
819 			times[0].tv_nsec = l_times[0].tv_nsec;
820 		}
821 
822 		times[1].tv_sec = l_times[1].tv_sec;
823 		switch (l_times[1].tv_nsec)
824 		{
825 		case LINUX_UTIME_OMIT:
826 			times[1].tv_nsec = UTIME_OMIT;
827 			break;
828 		case LINUX_UTIME_NOW:
829 			times[1].tv_nsec = UTIME_NOW;
830 			break;
831 		default:
832 			times[1].tv_nsec = l_times[1].tv_nsec;
833 			break;
834 		}
835 		timesp = times;
836 
837 		/* This breaks POSIX, but is what the Linux kernel does
838 		 * _on purpose_ (documented in the man page for utimensat(2)),
839 		 * so we must follow that behaviour. */
840 		if (times[0].tv_nsec == UTIME_OMIT &&
841 		    times[1].tv_nsec == UTIME_OMIT)
842 			return (0);
843 	}
844 
845 	if (args->pathname != NULL)
846 		LCONVPATHEXIST_AT(td, args->pathname, &path, dfd);
847 	else if (args->flags != 0)
848 		return (EINVAL);
849 
850 	if (args->flags & LINUX_AT_SYMLINK_NOFOLLOW)
851 		flags |= AT_SYMLINK_NOFOLLOW;
852 
853 	if (path == NULL)
854 		error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE);
855 	else {
856 		error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp,
857 			UIO_SYSSPACE, flags);
858 		LFREEPATH(path);
859 	}
860 
861 	return (error);
862 }
863 
864 #ifdef LINUX_LEGACY_SYSCALLS
865 int
866 linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
867 {
868 	l_timeval ltv[2];
869 	struct timeval tv[2], *tvp = NULL;
870 	char *fname;
871 	int error, dfd;
872 
873 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
874 	LCONVPATHEXIST_AT(td, args->filename, &fname, dfd);
875 
876 	if (args->utimes != NULL) {
877 		if ((error = copyin(args->utimes, ltv, sizeof ltv))) {
878 			LFREEPATH(fname);
879 			return (error);
880 		}
881 		tv[0].tv_sec = ltv[0].tv_sec;
882 		tv[0].tv_usec = ltv[0].tv_usec;
883 		tv[1].tv_sec = ltv[1].tv_sec;
884 		tv[1].tv_usec = ltv[1].tv_usec;
885 		tvp = tv;
886 	}
887 
888 	error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE);
889 	LFREEPATH(fname);
890 	return (error);
891 }
892 #endif
893 
894 static int
895 linux_common_wait(struct thread *td, int pid, int *statusp,
896     int options, struct __wrusage *wrup)
897 {
898 	siginfo_t siginfo;
899 	idtype_t idtype;
900 	id_t id;
901 	int error, status, tmpstat;
902 
903 	if (pid == WAIT_ANY) {
904 		idtype = P_ALL;
905 		id = 0;
906 	} else if (pid < 0) {
907 		idtype = P_PGID;
908 		id = (id_t)-pid;
909 	} else {
910 		idtype = P_PID;
911 		id = (id_t)pid;
912 	}
913 
914 	/*
915 	 * For backward compatibility we implicitly add flags WEXITED
916 	 * and WTRAPPED here.
917 	 */
918 	options |= WEXITED | WTRAPPED;
919 	error = kern_wait6(td, idtype, id, &status, options, wrup, &siginfo);
920 	if (error)
921 		return (error);
922 
923 	if (statusp) {
924 		tmpstat = status & 0xffff;
925 		if (WIFSIGNALED(tmpstat)) {
926 			tmpstat = (tmpstat & 0xffffff80) |
927 			    bsd_to_linux_signal(WTERMSIG(tmpstat));
928 		} else if (WIFSTOPPED(tmpstat)) {
929 			tmpstat = (tmpstat & 0xffff00ff) |
930 			    (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
931 #if defined(__amd64__) && !defined(COMPAT_LINUX32)
932 			if (WSTOPSIG(status) == SIGTRAP) {
933 				tmpstat = linux_ptrace_status(td,
934 				    siginfo.si_pid, tmpstat);
935 			}
936 #endif
937 		} else if (WIFCONTINUED(tmpstat)) {
938 			tmpstat = 0xffff;
939 		}
940 		error = copyout(&tmpstat, statusp, sizeof(int));
941 	}
942 
943 	return (error);
944 }
945 
946 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
947 int
948 linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
949 {
950 	struct linux_wait4_args wait4_args;
951 
952 	wait4_args.pid = args->pid;
953 	wait4_args.status = args->status;
954 	wait4_args.options = args->options;
955 	wait4_args.rusage = NULL;
956 
957 	return (linux_wait4(td, &wait4_args));
958 }
959 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
960 
961 int
962 linux_wait4(struct thread *td, struct linux_wait4_args *args)
963 {
964 	int error, options;
965 	struct __wrusage wru, *wrup;
966 
967 	if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
968 	    LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
969 		return (EINVAL);
970 
971 	options = WEXITED;
972 	linux_to_bsd_waitopts(args->options, &options);
973 
974 	if (args->rusage != NULL)
975 		wrup = &wru;
976 	else
977 		wrup = NULL;
978 	error = linux_common_wait(td, args->pid, args->status, options, wrup);
979 	if (error != 0)
980 		return (error);
981 	if (args->rusage != NULL)
982 		error = linux_copyout_rusage(&wru.wru_self, args->rusage);
983 	return (error);
984 }
985 
986 int
987 linux_waitid(struct thread *td, struct linux_waitid_args *args)
988 {
989 	int status, options, sig;
990 	struct __wrusage wru;
991 	siginfo_t siginfo;
992 	l_siginfo_t lsi;
993 	idtype_t idtype;
994 	struct proc *p;
995 	int error;
996 
997 	options = 0;
998 	linux_to_bsd_waitopts(args->options, &options);
999 
1000 	if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED))
1001 		return (EINVAL);
1002 	if (!(options & (WEXITED | WUNTRACED | WCONTINUED)))
1003 		return (EINVAL);
1004 
1005 	switch (args->idtype) {
1006 	case LINUX_P_ALL:
1007 		idtype = P_ALL;
1008 		break;
1009 	case LINUX_P_PID:
1010 		if (args->id <= 0)
1011 			return (EINVAL);
1012 		idtype = P_PID;
1013 		break;
1014 	case LINUX_P_PGID:
1015 		if (args->id <= 0)
1016 			return (EINVAL);
1017 		idtype = P_PGID;
1018 		break;
1019 	default:
1020 		return (EINVAL);
1021 	}
1022 
1023 	error = kern_wait6(td, idtype, args->id, &status, options,
1024 	    &wru, &siginfo);
1025 	if (error != 0)
1026 		return (error);
1027 	if (args->rusage != NULL) {
1028 		error = linux_copyout_rusage(&wru.wru_children,
1029 		    args->rusage);
1030 		if (error != 0)
1031 			return (error);
1032 	}
1033 	if (args->info != NULL) {
1034 		p = td->td_proc;
1035 		bzero(&lsi, sizeof(lsi));
1036 		if (td->td_retval[0] != 0) {
1037 			sig = bsd_to_linux_signal(siginfo.si_signo);
1038 			siginfo_to_lsiginfo(&siginfo, &lsi, sig);
1039 		}
1040 		error = copyout(&lsi, args->info, sizeof(lsi));
1041 	}
1042 	td->td_retval[0] = 0;
1043 
1044 	return (error);
1045 }
1046 
1047 #ifdef LINUX_LEGACY_SYSCALLS
1048 int
1049 linux_mknod(struct thread *td, struct linux_mknod_args *args)
1050 {
1051 	char *path;
1052 	int error;
1053 
1054 	LCONVPATHCREAT(td, args->path, &path);
1055 
1056 	switch (args->mode & S_IFMT) {
1057 	case S_IFIFO:
1058 	case S_IFSOCK:
1059 		error = kern_mkfifoat(td, AT_FDCWD, path, UIO_SYSSPACE,
1060 		    args->mode);
1061 		break;
1062 
1063 	case S_IFCHR:
1064 	case S_IFBLK:
1065 		error = kern_mknodat(td, AT_FDCWD, path, UIO_SYSSPACE,
1066 		    args->mode, args->dev);
1067 		break;
1068 
1069 	case S_IFDIR:
1070 		error = EPERM;
1071 		break;
1072 
1073 	case 0:
1074 		args->mode |= S_IFREG;
1075 		/* FALLTHROUGH */
1076 	case S_IFREG:
1077 		error = kern_openat(td, AT_FDCWD, path, UIO_SYSSPACE,
1078 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
1079 		if (error == 0)
1080 			kern_close(td, td->td_retval[0]);
1081 		break;
1082 
1083 	default:
1084 		error = EINVAL;
1085 		break;
1086 	}
1087 	LFREEPATH(path);
1088 	return (error);
1089 }
1090 #endif
1091 
1092 int
1093 linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
1094 {
1095 	char *path;
1096 	int error, dfd;
1097 
1098 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
1099 	LCONVPATHCREAT_AT(td, args->filename, &path, dfd);
1100 
1101 	switch (args->mode & S_IFMT) {
1102 	case S_IFIFO:
1103 	case S_IFSOCK:
1104 		error = kern_mkfifoat(td, dfd, path, UIO_SYSSPACE, args->mode);
1105 		break;
1106 
1107 	case S_IFCHR:
1108 	case S_IFBLK:
1109 		error = kern_mknodat(td, dfd, path, UIO_SYSSPACE, args->mode,
1110 		    args->dev);
1111 		break;
1112 
1113 	case S_IFDIR:
1114 		error = EPERM;
1115 		break;
1116 
1117 	case 0:
1118 		args->mode |= S_IFREG;
1119 		/* FALLTHROUGH */
1120 	case S_IFREG:
1121 		error = kern_openat(td, dfd, path, UIO_SYSSPACE,
1122 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
1123 		if (error == 0)
1124 			kern_close(td, td->td_retval[0]);
1125 		break;
1126 
1127 	default:
1128 		error = EINVAL;
1129 		break;
1130 	}
1131 	LFREEPATH(path);
1132 	return (error);
1133 }
1134 
1135 /*
1136  * UGH! This is just about the dumbest idea I've ever heard!!
1137  */
1138 int
1139 linux_personality(struct thread *td, struct linux_personality_args *args)
1140 {
1141 	struct linux_pemuldata *pem;
1142 	struct proc *p = td->td_proc;
1143 	uint32_t old;
1144 
1145 	PROC_LOCK(p);
1146 	pem = pem_find(p);
1147 	old = pem->persona;
1148 	if (args->per != 0xffffffff)
1149 		pem->persona = args->per;
1150 	PROC_UNLOCK(p);
1151 
1152 	td->td_retval[0] = old;
1153 	return (0);
1154 }
1155 
1156 struct l_itimerval {
1157 	l_timeval it_interval;
1158 	l_timeval it_value;
1159 };
1160 
1161 #define	B2L_ITIMERVAL(bip, lip)						\
1162 	(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec;		\
1163 	(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec;	\
1164 	(bip)->it_value.tv_sec = (lip)->it_value.tv_sec;		\
1165 	(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
1166 
1167 int
1168 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
1169 {
1170 	int error;
1171 	struct l_itimerval ls;
1172 	struct itimerval aitv, oitv;
1173 
1174 	if (uap->itv == NULL) {
1175 		uap->itv = uap->oitv;
1176 		return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
1177 	}
1178 
1179 	error = copyin(uap->itv, &ls, sizeof(ls));
1180 	if (error != 0)
1181 		return (error);
1182 	B2L_ITIMERVAL(&aitv, &ls);
1183 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
1184 	if (error != 0 || uap->oitv == NULL)
1185 		return (error);
1186 	B2L_ITIMERVAL(&ls, &oitv);
1187 
1188 	return (copyout(&ls, uap->oitv, sizeof(ls)));
1189 }
1190 
1191 int
1192 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
1193 {
1194 	int error;
1195 	struct l_itimerval ls;
1196 	struct itimerval aitv;
1197 
1198 	error = kern_getitimer(td, uap->which, &aitv);
1199 	if (error != 0)
1200 		return (error);
1201 	B2L_ITIMERVAL(&ls, &aitv);
1202 	return (copyout(&ls, uap->itv, sizeof(ls)));
1203 }
1204 
1205 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1206 int
1207 linux_nice(struct thread *td, struct linux_nice_args *args)
1208 {
1209 	struct setpriority_args bsd_args;
1210 
1211 	bsd_args.which = PRIO_PROCESS;
1212 	bsd_args.who = 0;		/* current process */
1213 	bsd_args.prio = args->inc;
1214 	return (sys_setpriority(td, &bsd_args));
1215 }
1216 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1217 
1218 int
1219 linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
1220 {
1221 	struct ucred *newcred, *oldcred;
1222 	l_gid_t *linux_gidset;
1223 	gid_t *bsd_gidset;
1224 	int ngrp, error;
1225 	struct proc *p;
1226 
1227 	ngrp = args->gidsetsize;
1228 	if (ngrp < 0 || ngrp >= ngroups_max + 1)
1229 		return (EINVAL);
1230 	linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1231 	error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
1232 	if (error)
1233 		goto out;
1234 	newcred = crget();
1235 	crextend(newcred, ngrp + 1);
1236 	p = td->td_proc;
1237 	PROC_LOCK(p);
1238 	oldcred = p->p_ucred;
1239 	crcopy(newcred, oldcred);
1240 
1241 	/*
1242 	 * cr_groups[0] holds egid. Setting the whole set from
1243 	 * the supplied set will cause egid to be changed too.
1244 	 * Keep cr_groups[0] unchanged to prevent that.
1245 	 */
1246 
1247 	if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
1248 		PROC_UNLOCK(p);
1249 		crfree(newcred);
1250 		goto out;
1251 	}
1252 
1253 	if (ngrp > 0) {
1254 		newcred->cr_ngroups = ngrp + 1;
1255 
1256 		bsd_gidset = newcred->cr_groups;
1257 		ngrp--;
1258 		while (ngrp >= 0) {
1259 			bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
1260 			ngrp--;
1261 		}
1262 	} else
1263 		newcred->cr_ngroups = 1;
1264 
1265 	setsugid(p);
1266 	proc_set_cred(p, newcred);
1267 	PROC_UNLOCK(p);
1268 	crfree(oldcred);
1269 	error = 0;
1270 out:
1271 	free(linux_gidset, M_LINUX);
1272 	return (error);
1273 }
1274 
1275 int
1276 linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
1277 {
1278 	struct ucred *cred;
1279 	l_gid_t *linux_gidset;
1280 	gid_t *bsd_gidset;
1281 	int bsd_gidsetsz, ngrp, error;
1282 
1283 	cred = td->td_ucred;
1284 	bsd_gidset = cred->cr_groups;
1285 	bsd_gidsetsz = cred->cr_ngroups - 1;
1286 
1287 	/*
1288 	 * cr_groups[0] holds egid. Returning the whole set
1289 	 * here will cause a duplicate. Exclude cr_groups[0]
1290 	 * to prevent that.
1291 	 */
1292 
1293 	if ((ngrp = args->gidsetsize) == 0) {
1294 		td->td_retval[0] = bsd_gidsetsz;
1295 		return (0);
1296 	}
1297 
1298 	if (ngrp < bsd_gidsetsz)
1299 		return (EINVAL);
1300 
1301 	ngrp = 0;
1302 	linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset),
1303 	    M_LINUX, M_WAITOK);
1304 	while (ngrp < bsd_gidsetsz) {
1305 		linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
1306 		ngrp++;
1307 	}
1308 
1309 	error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
1310 	free(linux_gidset, M_LINUX);
1311 	if (error)
1312 		return (error);
1313 
1314 	td->td_retval[0] = ngrp;
1315 	return (0);
1316 }
1317 
1318 int
1319 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
1320 {
1321 	struct rlimit bsd_rlim;
1322 	struct l_rlimit rlim;
1323 	u_int which;
1324 	int error;
1325 
1326 	if (args->resource >= LINUX_RLIM_NLIMITS)
1327 		return (EINVAL);
1328 
1329 	which = linux_to_bsd_resource[args->resource];
1330 	if (which == -1)
1331 		return (EINVAL);
1332 
1333 	error = copyin(args->rlim, &rlim, sizeof(rlim));
1334 	if (error)
1335 		return (error);
1336 
1337 	bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
1338 	bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
1339 	return (kern_setrlimit(td, which, &bsd_rlim));
1340 }
1341 
1342 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1343 int
1344 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
1345 {
1346 	struct l_rlimit rlim;
1347 	struct rlimit bsd_rlim;
1348 	u_int which;
1349 
1350 	if (args->resource >= LINUX_RLIM_NLIMITS)
1351 		return (EINVAL);
1352 
1353 	which = linux_to_bsd_resource[args->resource];
1354 	if (which == -1)
1355 		return (EINVAL);
1356 
1357 	lim_rlimit(td, which, &bsd_rlim);
1358 
1359 #ifdef COMPAT_LINUX32
1360 	rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
1361 	if (rlim.rlim_cur == UINT_MAX)
1362 		rlim.rlim_cur = INT_MAX;
1363 	rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
1364 	if (rlim.rlim_max == UINT_MAX)
1365 		rlim.rlim_max = INT_MAX;
1366 #else
1367 	rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
1368 	if (rlim.rlim_cur == ULONG_MAX)
1369 		rlim.rlim_cur = LONG_MAX;
1370 	rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
1371 	if (rlim.rlim_max == ULONG_MAX)
1372 		rlim.rlim_max = LONG_MAX;
1373 #endif
1374 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1375 }
1376 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1377 
1378 int
1379 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
1380 {
1381 	struct l_rlimit rlim;
1382 	struct rlimit bsd_rlim;
1383 	u_int which;
1384 
1385 	if (args->resource >= LINUX_RLIM_NLIMITS)
1386 		return (EINVAL);
1387 
1388 	which = linux_to_bsd_resource[args->resource];
1389 	if (which == -1)
1390 		return (EINVAL);
1391 
1392 	lim_rlimit(td, which, &bsd_rlim);
1393 
1394 	rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
1395 	rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
1396 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1397 }
1398 
1399 int
1400 linux_sched_setscheduler(struct thread *td,
1401     struct linux_sched_setscheduler_args *args)
1402 {
1403 	struct sched_param sched_param;
1404 	struct thread *tdt;
1405 	int error, policy;
1406 
1407 	switch (args->policy) {
1408 	case LINUX_SCHED_OTHER:
1409 		policy = SCHED_OTHER;
1410 		break;
1411 	case LINUX_SCHED_FIFO:
1412 		policy = SCHED_FIFO;
1413 		break;
1414 	case LINUX_SCHED_RR:
1415 		policy = SCHED_RR;
1416 		break;
1417 	default:
1418 		return (EINVAL);
1419 	}
1420 
1421 	error = copyin(args->param, &sched_param, sizeof(sched_param));
1422 	if (error)
1423 		return (error);
1424 
1425 	tdt = linux_tdfind(td, args->pid, -1);
1426 	if (tdt == NULL)
1427 		return (ESRCH);
1428 
1429 	error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
1430 	PROC_UNLOCK(tdt->td_proc);
1431 	return (error);
1432 }
1433 
1434 int
1435 linux_sched_getscheduler(struct thread *td,
1436     struct linux_sched_getscheduler_args *args)
1437 {
1438 	struct thread *tdt;
1439 	int error, policy;
1440 
1441 	tdt = linux_tdfind(td, args->pid, -1);
1442 	if (tdt == NULL)
1443 		return (ESRCH);
1444 
1445 	error = kern_sched_getscheduler(td, tdt, &policy);
1446 	PROC_UNLOCK(tdt->td_proc);
1447 
1448 	switch (policy) {
1449 	case SCHED_OTHER:
1450 		td->td_retval[0] = LINUX_SCHED_OTHER;
1451 		break;
1452 	case SCHED_FIFO:
1453 		td->td_retval[0] = LINUX_SCHED_FIFO;
1454 		break;
1455 	case SCHED_RR:
1456 		td->td_retval[0] = LINUX_SCHED_RR;
1457 		break;
1458 	}
1459 	return (error);
1460 }
1461 
1462 int
1463 linux_sched_get_priority_max(struct thread *td,
1464     struct linux_sched_get_priority_max_args *args)
1465 {
1466 	struct sched_get_priority_max_args bsd;
1467 
1468 	switch (args->policy) {
1469 	case LINUX_SCHED_OTHER:
1470 		bsd.policy = SCHED_OTHER;
1471 		break;
1472 	case LINUX_SCHED_FIFO:
1473 		bsd.policy = SCHED_FIFO;
1474 		break;
1475 	case LINUX_SCHED_RR:
1476 		bsd.policy = SCHED_RR;
1477 		break;
1478 	default:
1479 		return (EINVAL);
1480 	}
1481 	return (sys_sched_get_priority_max(td, &bsd));
1482 }
1483 
1484 int
1485 linux_sched_get_priority_min(struct thread *td,
1486     struct linux_sched_get_priority_min_args *args)
1487 {
1488 	struct sched_get_priority_min_args bsd;
1489 
1490 	switch (args->policy) {
1491 	case LINUX_SCHED_OTHER:
1492 		bsd.policy = SCHED_OTHER;
1493 		break;
1494 	case LINUX_SCHED_FIFO:
1495 		bsd.policy = SCHED_FIFO;
1496 		break;
1497 	case LINUX_SCHED_RR:
1498 		bsd.policy = SCHED_RR;
1499 		break;
1500 	default:
1501 		return (EINVAL);
1502 	}
1503 	return (sys_sched_get_priority_min(td, &bsd));
1504 }
1505 
1506 #define REBOOT_CAD_ON	0x89abcdef
1507 #define REBOOT_CAD_OFF	0
1508 #define REBOOT_HALT	0xcdef0123
1509 #define REBOOT_RESTART	0x01234567
1510 #define REBOOT_RESTART2	0xA1B2C3D4
1511 #define REBOOT_POWEROFF	0x4321FEDC
1512 #define REBOOT_MAGIC1	0xfee1dead
1513 #define REBOOT_MAGIC2	0x28121969
1514 #define REBOOT_MAGIC2A	0x05121996
1515 #define REBOOT_MAGIC2B	0x16041998
1516 
1517 int
1518 linux_reboot(struct thread *td, struct linux_reboot_args *args)
1519 {
1520 	struct reboot_args bsd_args;
1521 
1522 	if (args->magic1 != REBOOT_MAGIC1)
1523 		return (EINVAL);
1524 
1525 	switch (args->magic2) {
1526 	case REBOOT_MAGIC2:
1527 	case REBOOT_MAGIC2A:
1528 	case REBOOT_MAGIC2B:
1529 		break;
1530 	default:
1531 		return (EINVAL);
1532 	}
1533 
1534 	switch (args->cmd) {
1535 	case REBOOT_CAD_ON:
1536 	case REBOOT_CAD_OFF:
1537 		return (priv_check(td, PRIV_REBOOT));
1538 	case REBOOT_HALT:
1539 		bsd_args.opt = RB_HALT;
1540 		break;
1541 	case REBOOT_RESTART:
1542 	case REBOOT_RESTART2:
1543 		bsd_args.opt = 0;
1544 		break;
1545 	case REBOOT_POWEROFF:
1546 		bsd_args.opt = RB_POWEROFF;
1547 		break;
1548 	default:
1549 		return (EINVAL);
1550 	}
1551 	return (sys_reboot(td, &bsd_args));
1552 }
1553 
1554 
1555 int
1556 linux_getpid(struct thread *td, struct linux_getpid_args *args)
1557 {
1558 
1559 	td->td_retval[0] = td->td_proc->p_pid;
1560 
1561 	return (0);
1562 }
1563 
1564 int
1565 linux_gettid(struct thread *td, struct linux_gettid_args *args)
1566 {
1567 	struct linux_emuldata *em;
1568 
1569 	em = em_find(td);
1570 	KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
1571 
1572 	td->td_retval[0] = em->em_tid;
1573 
1574 	return (0);
1575 }
1576 
1577 
1578 int
1579 linux_getppid(struct thread *td, struct linux_getppid_args *args)
1580 {
1581 
1582 	td->td_retval[0] = kern_getppid(td);
1583 	return (0);
1584 }
1585 
1586 int
1587 linux_getgid(struct thread *td, struct linux_getgid_args *args)
1588 {
1589 
1590 	td->td_retval[0] = td->td_ucred->cr_rgid;
1591 	return (0);
1592 }
1593 
1594 int
1595 linux_getuid(struct thread *td, struct linux_getuid_args *args)
1596 {
1597 
1598 	td->td_retval[0] = td->td_ucred->cr_ruid;
1599 	return (0);
1600 }
1601 
1602 
1603 int
1604 linux_getsid(struct thread *td, struct linux_getsid_args *args)
1605 {
1606 	struct getsid_args bsd;
1607 
1608 	bsd.pid = args->pid;
1609 	return (sys_getsid(td, &bsd));
1610 }
1611 
1612 int
1613 linux_nosys(struct thread *td, struct nosys_args *ignore)
1614 {
1615 
1616 	return (ENOSYS);
1617 }
1618 
1619 int
1620 linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
1621 {
1622 	struct getpriority_args bsd_args;
1623 	int error;
1624 
1625 	bsd_args.which = args->which;
1626 	bsd_args.who = args->who;
1627 	error = sys_getpriority(td, &bsd_args);
1628 	td->td_retval[0] = 20 - td->td_retval[0];
1629 	return (error);
1630 }
1631 
1632 int
1633 linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
1634 {
1635 	int name[2];
1636 
1637 	name[0] = CTL_KERN;
1638 	name[1] = KERN_HOSTNAME;
1639 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
1640 	    args->len, 0, 0));
1641 }
1642 
1643 int
1644 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
1645 {
1646 	int name[2];
1647 
1648 	name[0] = CTL_KERN;
1649 	name[1] = KERN_NISDOMAINNAME;
1650 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
1651 	    args->len, 0, 0));
1652 }
1653 
1654 int
1655 linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
1656 {
1657 
1658 	LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
1659 	    args->error_code);
1660 
1661 	/*
1662 	 * XXX: we should send a signal to the parent if
1663 	 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
1664 	 * as it doesnt occur often.
1665 	 */
1666 	exit1(td, args->error_code, 0);
1667 		/* NOTREACHED */
1668 }
1669 
1670 #define _LINUX_CAPABILITY_VERSION_1  0x19980330
1671 #define _LINUX_CAPABILITY_VERSION_2  0x20071026
1672 #define _LINUX_CAPABILITY_VERSION_3  0x20080522
1673 
1674 struct l_user_cap_header {
1675 	l_int	version;
1676 	l_int	pid;
1677 };
1678 
1679 struct l_user_cap_data {
1680 	l_int	effective;
1681 	l_int	permitted;
1682 	l_int	inheritable;
1683 };
1684 
1685 int
1686 linux_capget(struct thread *td, struct linux_capget_args *uap)
1687 {
1688 	struct l_user_cap_header luch;
1689 	struct l_user_cap_data lucd[2];
1690 	int error, u32s;
1691 
1692 	if (uap->hdrp == NULL)
1693 		return (EFAULT);
1694 
1695 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1696 	if (error != 0)
1697 		return (error);
1698 
1699 	switch (luch.version) {
1700 	case _LINUX_CAPABILITY_VERSION_1:
1701 		u32s = 1;
1702 		break;
1703 	case _LINUX_CAPABILITY_VERSION_2:
1704 	case _LINUX_CAPABILITY_VERSION_3:
1705 		u32s = 2;
1706 		break;
1707 	default:
1708 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1709 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1710 		if (error)
1711 			return (error);
1712 		return (EINVAL);
1713 	}
1714 
1715 	if (luch.pid)
1716 		return (EPERM);
1717 
1718 	if (uap->datap) {
1719 		/*
1720 		 * The current implementation doesn't support setting
1721 		 * a capability (it's essentially a stub) so indicate
1722 		 * that no capabilities are currently set or available
1723 		 * to request.
1724 		 */
1725 		memset(&lucd, 0, u32s * sizeof(lucd[0]));
1726 		error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
1727 	}
1728 
1729 	return (error);
1730 }
1731 
1732 int
1733 linux_capset(struct thread *td, struct linux_capset_args *uap)
1734 {
1735 	struct l_user_cap_header luch;
1736 	struct l_user_cap_data lucd[2];
1737 	int error, i, u32s;
1738 
1739 	if (uap->hdrp == NULL || uap->datap == NULL)
1740 		return (EFAULT);
1741 
1742 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1743 	if (error != 0)
1744 		return (error);
1745 
1746 	switch (luch.version) {
1747 	case _LINUX_CAPABILITY_VERSION_1:
1748 		u32s = 1;
1749 		break;
1750 	case _LINUX_CAPABILITY_VERSION_2:
1751 	case _LINUX_CAPABILITY_VERSION_3:
1752 		u32s = 2;
1753 		break;
1754 	default:
1755 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1756 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1757 		if (error)
1758 			return (error);
1759 		return (EINVAL);
1760 	}
1761 
1762 	if (luch.pid)
1763 		return (EPERM);
1764 
1765 	error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
1766 	if (error != 0)
1767 		return (error);
1768 
1769 	/* We currently don't support setting any capabilities. */
1770 	for (i = 0; i < u32s; i++) {
1771 		if (lucd[i].effective || lucd[i].permitted ||
1772 		    lucd[i].inheritable) {
1773 			linux_msg(td,
1774 			    "capset[%d] effective=0x%x, permitted=0x%x, "
1775 			    "inheritable=0x%x is not implemented", i,
1776 			    (int)lucd[i].effective, (int)lucd[i].permitted,
1777 			    (int)lucd[i].inheritable);
1778 			return (EPERM);
1779 		}
1780 	}
1781 
1782 	return (0);
1783 }
1784 
1785 int
1786 linux_prctl(struct thread *td, struct linux_prctl_args *args)
1787 {
1788 	int error = 0, max_size;
1789 	struct proc *p = td->td_proc;
1790 	char comm[LINUX_MAX_COMM_LEN];
1791 	int pdeath_signal;
1792 
1793 	switch (args->option) {
1794 	case LINUX_PR_SET_PDEATHSIG:
1795 		if (!LINUX_SIG_VALID(args->arg2))
1796 			return (EINVAL);
1797 		pdeath_signal = linux_to_bsd_signal(args->arg2);
1798 		return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
1799 		    &pdeath_signal));
1800 	case LINUX_PR_GET_PDEATHSIG:
1801 		error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
1802 		    &pdeath_signal);
1803 		if (error != 0)
1804 			return (error);
1805 		pdeath_signal = bsd_to_linux_signal(pdeath_signal);
1806 		return (copyout(&pdeath_signal,
1807 		    (void *)(register_t)args->arg2,
1808 		    sizeof(pdeath_signal)));
1809 		break;
1810 	case LINUX_PR_GET_KEEPCAPS:
1811 		/*
1812 		 * Indicate that we always clear the effective and
1813 		 * permitted capability sets when the user id becomes
1814 		 * non-zero (actually the capability sets are simply
1815 		 * always zero in the current implementation).
1816 		 */
1817 		td->td_retval[0] = 0;
1818 		break;
1819 	case LINUX_PR_SET_KEEPCAPS:
1820 		/*
1821 		 * Ignore requests to keep the effective and permitted
1822 		 * capability sets when the user id becomes non-zero.
1823 		 */
1824 		break;
1825 	case LINUX_PR_SET_NAME:
1826 		/*
1827 		 * To be on the safe side we need to make sure to not
1828 		 * overflow the size a Linux program expects. We already
1829 		 * do this here in the copyin, so that we don't need to
1830 		 * check on copyout.
1831 		 */
1832 		max_size = MIN(sizeof(comm), sizeof(p->p_comm));
1833 		error = copyinstr((void *)(register_t)args->arg2, comm,
1834 		    max_size, NULL);
1835 
1836 		/* Linux silently truncates the name if it is too long. */
1837 		if (error == ENAMETOOLONG) {
1838 			/*
1839 			 * XXX: copyinstr() isn't documented to populate the
1840 			 * array completely, so do a copyin() to be on the
1841 			 * safe side. This should be changed in case
1842 			 * copyinstr() is changed to guarantee this.
1843 			 */
1844 			error = copyin((void *)(register_t)args->arg2, comm,
1845 			    max_size - 1);
1846 			comm[max_size - 1] = '\0';
1847 		}
1848 		if (error)
1849 			return (error);
1850 
1851 		PROC_LOCK(p);
1852 		strlcpy(p->p_comm, comm, sizeof(p->p_comm));
1853 		PROC_UNLOCK(p);
1854 		break;
1855 	case LINUX_PR_GET_NAME:
1856 		PROC_LOCK(p);
1857 		strlcpy(comm, p->p_comm, sizeof(comm));
1858 		PROC_UNLOCK(p);
1859 		error = copyout(comm, (void *)(register_t)args->arg2,
1860 		    strlen(comm) + 1);
1861 		break;
1862 	default:
1863 		error = EINVAL;
1864 		break;
1865 	}
1866 
1867 	return (error);
1868 }
1869 
1870 int
1871 linux_sched_setparam(struct thread *td,
1872     struct linux_sched_setparam_args *uap)
1873 {
1874 	struct sched_param sched_param;
1875 	struct thread *tdt;
1876 	int error;
1877 
1878 	error = copyin(uap->param, &sched_param, sizeof(sched_param));
1879 	if (error)
1880 		return (error);
1881 
1882 	tdt = linux_tdfind(td, uap->pid, -1);
1883 	if (tdt == NULL)
1884 		return (ESRCH);
1885 
1886 	error = kern_sched_setparam(td, tdt, &sched_param);
1887 	PROC_UNLOCK(tdt->td_proc);
1888 	return (error);
1889 }
1890 
1891 int
1892 linux_sched_getparam(struct thread *td,
1893     struct linux_sched_getparam_args *uap)
1894 {
1895 	struct sched_param sched_param;
1896 	struct thread *tdt;
1897 	int error;
1898 
1899 	tdt = linux_tdfind(td, uap->pid, -1);
1900 	if (tdt == NULL)
1901 		return (ESRCH);
1902 
1903 	error = kern_sched_getparam(td, tdt, &sched_param);
1904 	PROC_UNLOCK(tdt->td_proc);
1905 	if (error == 0)
1906 		error = copyout(&sched_param, uap->param,
1907 		    sizeof(sched_param));
1908 	return (error);
1909 }
1910 
1911 /*
1912  * Get affinity of a process.
1913  */
1914 int
1915 linux_sched_getaffinity(struct thread *td,
1916     struct linux_sched_getaffinity_args *args)
1917 {
1918 	int error;
1919 	struct thread *tdt;
1920 
1921 	if (args->len < sizeof(cpuset_t))
1922 		return (EINVAL);
1923 
1924 	tdt = linux_tdfind(td, args->pid, -1);
1925 	if (tdt == NULL)
1926 		return (ESRCH);
1927 
1928 	PROC_UNLOCK(tdt->td_proc);
1929 
1930 	error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1931 	    tdt->td_tid, sizeof(cpuset_t), (cpuset_t *)args->user_mask_ptr);
1932 	if (error == 0)
1933 		td->td_retval[0] = sizeof(cpuset_t);
1934 
1935 	return (error);
1936 }
1937 
1938 /*
1939  *  Set affinity of a process.
1940  */
1941 int
1942 linux_sched_setaffinity(struct thread *td,
1943     struct linux_sched_setaffinity_args *args)
1944 {
1945 	struct thread *tdt;
1946 
1947 	if (args->len < sizeof(cpuset_t))
1948 		return (EINVAL);
1949 
1950 	tdt = linux_tdfind(td, args->pid, -1);
1951 	if (tdt == NULL)
1952 		return (ESRCH);
1953 
1954 	PROC_UNLOCK(tdt->td_proc);
1955 
1956 	return (kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1957 	    tdt->td_tid, sizeof(cpuset_t), (cpuset_t *) args->user_mask_ptr));
1958 }
1959 
1960 struct linux_rlimit64 {
1961 	uint64_t	rlim_cur;
1962 	uint64_t	rlim_max;
1963 };
1964 
1965 int
1966 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
1967 {
1968 	struct rlimit rlim, nrlim;
1969 	struct linux_rlimit64 lrlim;
1970 	struct proc *p;
1971 	u_int which;
1972 	int flags;
1973 	int error;
1974 
1975 	if (args->resource >= LINUX_RLIM_NLIMITS)
1976 		return (EINVAL);
1977 
1978 	which = linux_to_bsd_resource[args->resource];
1979 	if (which == -1)
1980 		return (EINVAL);
1981 
1982 	if (args->new != NULL) {
1983 		/*
1984 		 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux
1985 		 * rlim is unsigned 64-bit. FreeBSD treats negative limits
1986 		 * as INFINITY so we do not need a conversion even.
1987 		 */
1988 		error = copyin(args->new, &nrlim, sizeof(nrlim));
1989 		if (error != 0)
1990 			return (error);
1991 	}
1992 
1993 	flags = PGET_HOLD | PGET_NOTWEXIT;
1994 	if (args->new != NULL)
1995 		flags |= PGET_CANDEBUG;
1996 	else
1997 		flags |= PGET_CANSEE;
1998 	if (args->pid == 0) {
1999 		p = td->td_proc;
2000 		PHOLD(p);
2001 	} else {
2002 		error = pget(args->pid, flags, &p);
2003 		if (error != 0)
2004 			return (error);
2005 	}
2006 	if (args->old != NULL) {
2007 		PROC_LOCK(p);
2008 		lim_rlimit_proc(p, which, &rlim);
2009 		PROC_UNLOCK(p);
2010 		if (rlim.rlim_cur == RLIM_INFINITY)
2011 			lrlim.rlim_cur = LINUX_RLIM_INFINITY;
2012 		else
2013 			lrlim.rlim_cur = rlim.rlim_cur;
2014 		if (rlim.rlim_max == RLIM_INFINITY)
2015 			lrlim.rlim_max = LINUX_RLIM_INFINITY;
2016 		else
2017 			lrlim.rlim_max = rlim.rlim_max;
2018 		error = copyout(&lrlim, args->old, sizeof(lrlim));
2019 		if (error != 0)
2020 			goto out;
2021 	}
2022 
2023 	if (args->new != NULL)
2024 		error = kern_proc_setrlimit(td, p, which, &nrlim);
2025 
2026  out:
2027 	PRELE(p);
2028 	return (error);
2029 }
2030 
2031 int
2032 linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
2033 {
2034 	struct timeval utv, tv0, tv1, *tvp;
2035 	struct l_pselect6arg lpse6;
2036 	struct l_timespec lts;
2037 	struct timespec uts;
2038 	l_sigset_t l_ss;
2039 	sigset_t *ssp;
2040 	sigset_t ss;
2041 	int error;
2042 
2043 	ssp = NULL;
2044 	if (args->sig != NULL) {
2045 		error = copyin(args->sig, &lpse6, sizeof(lpse6));
2046 		if (error != 0)
2047 			return (error);
2048 		if (lpse6.ss_len != sizeof(l_ss))
2049 			return (EINVAL);
2050 		if (lpse6.ss != 0) {
2051 			error = copyin(PTRIN(lpse6.ss), &l_ss,
2052 			    sizeof(l_ss));
2053 			if (error != 0)
2054 				return (error);
2055 			linux_to_bsd_sigset(&l_ss, &ss);
2056 			ssp = &ss;
2057 		}
2058 	}
2059 
2060 	/*
2061 	 * Currently glibc changes nanosecond number to microsecond.
2062 	 * This mean losing precision but for now it is hardly seen.
2063 	 */
2064 	if (args->tsp != NULL) {
2065 		error = copyin(args->tsp, &lts, sizeof(lts));
2066 		if (error != 0)
2067 			return (error);
2068 		error = linux_to_native_timespec(&uts, &lts);
2069 		if (error != 0)
2070 			return (error);
2071 
2072 		TIMESPEC_TO_TIMEVAL(&utv, &uts);
2073 		if (itimerfix(&utv))
2074 			return (EINVAL);
2075 
2076 		microtime(&tv0);
2077 		tvp = &utv;
2078 	} else
2079 		tvp = NULL;
2080 
2081 	error = kern_pselect(td, args->nfds, args->readfds, args->writefds,
2082 	    args->exceptfds, tvp, ssp, LINUX_NFDBITS);
2083 
2084 	if (error == 0 && args->tsp != NULL) {
2085 		if (td->td_retval[0] != 0) {
2086 			/*
2087 			 * Compute how much time was left of the timeout,
2088 			 * by subtracting the current time and the time
2089 			 * before we started the call, and subtracting
2090 			 * that result from the user-supplied value.
2091 			 */
2092 
2093 			microtime(&tv1);
2094 			timevalsub(&tv1, &tv0);
2095 			timevalsub(&utv, &tv1);
2096 			if (utv.tv_sec < 0)
2097 				timevalclear(&utv);
2098 		} else
2099 			timevalclear(&utv);
2100 
2101 		TIMEVAL_TO_TIMESPEC(&utv, &uts);
2102 
2103 		error = native_to_linux_timespec(&lts, &uts);
2104 		if (error == 0)
2105 			error = copyout(&lts, args->tsp, sizeof(lts));
2106 	}
2107 
2108 	return (error);
2109 }
2110 
2111 int
2112 linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
2113 {
2114 	struct timespec ts0, ts1;
2115 	struct l_timespec lts;
2116 	struct timespec uts, *tsp;
2117 	l_sigset_t l_ss;
2118 	sigset_t *ssp;
2119 	sigset_t ss;
2120 	int error;
2121 
2122 	if (args->sset != NULL) {
2123 		if (args->ssize != sizeof(l_ss))
2124 			return (EINVAL);
2125 		error = copyin(args->sset, &l_ss, sizeof(l_ss));
2126 		if (error)
2127 			return (error);
2128 		linux_to_bsd_sigset(&l_ss, &ss);
2129 		ssp = &ss;
2130 	} else
2131 		ssp = NULL;
2132 	if (args->tsp != NULL) {
2133 		error = copyin(args->tsp, &lts, sizeof(lts));
2134 		if (error)
2135 			return (error);
2136 		error = linux_to_native_timespec(&uts, &lts);
2137 		if (error != 0)
2138 			return (error);
2139 
2140 		nanotime(&ts0);
2141 		tsp = &uts;
2142 	} else
2143 		tsp = NULL;
2144 
2145 	error = kern_poll(td, args->fds, args->nfds, tsp, ssp);
2146 
2147 	if (error == 0 && args->tsp != NULL) {
2148 		if (td->td_retval[0]) {
2149 			nanotime(&ts1);
2150 			timespecsub(&ts1, &ts0, &ts1);
2151 			timespecsub(&uts, &ts1, &uts);
2152 			if (uts.tv_sec < 0)
2153 				timespecclear(&uts);
2154 		} else
2155 			timespecclear(&uts);
2156 
2157 		error = native_to_linux_timespec(&lts, &uts);
2158 		if (error == 0)
2159 			error = copyout(&lts, args->tsp, sizeof(lts));
2160 	}
2161 
2162 	return (error);
2163 }
2164 
2165 int
2166 linux_sched_rr_get_interval(struct thread *td,
2167     struct linux_sched_rr_get_interval_args *uap)
2168 {
2169 	struct timespec ts;
2170 	struct l_timespec lts;
2171 	struct thread *tdt;
2172 	int error;
2173 
2174 	/*
2175 	 * According to man in case the invalid pid specified
2176 	 * EINVAL should be returned.
2177 	 */
2178 	if (uap->pid < 0)
2179 		return (EINVAL);
2180 
2181 	tdt = linux_tdfind(td, uap->pid, -1);
2182 	if (tdt == NULL)
2183 		return (ESRCH);
2184 
2185 	error = kern_sched_rr_get_interval_td(td, tdt, &ts);
2186 	PROC_UNLOCK(tdt->td_proc);
2187 	if (error != 0)
2188 		return (error);
2189 	error = native_to_linux_timespec(&lts, &ts);
2190 	if (error != 0)
2191 		return (error);
2192 	return (copyout(&lts, uap->interval, sizeof(lts)));
2193 }
2194 
2195 /*
2196  * In case when the Linux thread is the initial thread in
2197  * the thread group thread id is equal to the process id.
2198  * Glibc depends on this magic (assert in pthread_getattr_np.c).
2199  */
2200 struct thread *
2201 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
2202 {
2203 	struct linux_emuldata *em;
2204 	struct thread *tdt;
2205 	struct proc *p;
2206 
2207 	tdt = NULL;
2208 	if (tid == 0 || tid == td->td_tid) {
2209 		tdt = td;
2210 		PROC_LOCK(tdt->td_proc);
2211 	} else if (tid > PID_MAX)
2212 		tdt = tdfind(tid, pid);
2213 	else {
2214 		/*
2215 		 * Initial thread where the tid equal to the pid.
2216 		 */
2217 		p = pfind(tid);
2218 		if (p != NULL) {
2219 			if (SV_PROC_ABI(p) != SV_ABI_LINUX) {
2220 				/*
2221 				 * p is not a Linuxulator process.
2222 				 */
2223 				PROC_UNLOCK(p);
2224 				return (NULL);
2225 			}
2226 			FOREACH_THREAD_IN_PROC(p, tdt) {
2227 				em = em_find(tdt);
2228 				if (tid == em->em_tid)
2229 					return (tdt);
2230 			}
2231 			PROC_UNLOCK(p);
2232 		}
2233 		return (NULL);
2234 	}
2235 
2236 	return (tdt);
2237 }
2238 
2239 void
2240 linux_to_bsd_waitopts(int options, int *bsdopts)
2241 {
2242 
2243 	if (options & LINUX_WNOHANG)
2244 		*bsdopts |= WNOHANG;
2245 	if (options & LINUX_WUNTRACED)
2246 		*bsdopts |= WUNTRACED;
2247 	if (options & LINUX_WEXITED)
2248 		*bsdopts |= WEXITED;
2249 	if (options & LINUX_WCONTINUED)
2250 		*bsdopts |= WCONTINUED;
2251 	if (options & LINUX_WNOWAIT)
2252 		*bsdopts |= WNOWAIT;
2253 
2254 	if (options & __WCLONE)
2255 		*bsdopts |= WLINUXCLONE;
2256 }
2257 
2258 int
2259 linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
2260 {
2261 	struct uio uio;
2262 	struct iovec iov;
2263 	int error;
2264 
2265 	if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
2266 		return (EINVAL);
2267 	if (args->count > INT_MAX)
2268 		args->count = INT_MAX;
2269 
2270 	iov.iov_base = args->buf;
2271 	iov.iov_len = args->count;
2272 
2273 	uio.uio_iov = &iov;
2274 	uio.uio_iovcnt = 1;
2275 	uio.uio_resid = iov.iov_len;
2276 	uio.uio_segflg = UIO_USERSPACE;
2277 	uio.uio_rw = UIO_READ;
2278 	uio.uio_td = td;
2279 
2280 	error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
2281 	if (error == 0)
2282 		td->td_retval[0] = args->count - uio.uio_resid;
2283 	return (error);
2284 }
2285 
2286 int
2287 linux_mincore(struct thread *td, struct linux_mincore_args *args)
2288 {
2289 
2290 	/* Needs to be page-aligned */
2291 	if (args->start & PAGE_MASK)
2292 		return (EINVAL);
2293 	return (kern_mincore(td, args->start, args->len, args->vec));
2294 }
2295