xref: /freebsd/sys/compat/linux/linux_misc.c (revision 9768746b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * Copyright (c) 1994-1995 Søren Schmidt
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer
13  *    in this position and unchanged.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/blist.h>
37 #include <sys/fcntl.h>
38 #if defined(__i386__)
39 #include <sys/imgact_aout.h>
40 #endif
41 #include <sys/jail.h>
42 #include <sys/imgact.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mount.h>
49 #include <sys/msgbuf.h>
50 #include <sys/mutex.h>
51 #include <sys/namei.h>
52 #include <sys/poll.h>
53 #include <sys/priv.h>
54 #include <sys/proc.h>
55 #include <sys/procctl.h>
56 #include <sys/reboot.h>
57 #include <sys/racct.h>
58 #include <sys/random.h>
59 #include <sys/resourcevar.h>
60 #include <sys/sched.h>
61 #include <sys/sdt.h>
62 #include <sys/signalvar.h>
63 #include <sys/smp.h>
64 #include <sys/stat.h>
65 #include <sys/syscallsubr.h>
66 #include <sys/sysctl.h>
67 #include <sys/sysproto.h>
68 #include <sys/systm.h>
69 #include <sys/time.h>
70 #include <sys/vmmeter.h>
71 #include <sys/vnode.h>
72 #include <sys/wait.h>
73 #include <sys/cpuset.h>
74 #include <sys/uio.h>
75 
76 #include <security/audit/audit.h>
77 #include <security/mac/mac_framework.h>
78 
79 #include <vm/vm.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_extern.h>
84 #include <vm/swap_pager.h>
85 
86 #ifdef COMPAT_LINUX32
87 #include <machine/../linux32/linux.h>
88 #include <machine/../linux32/linux32_proto.h>
89 #else
90 #include <machine/../linux/linux.h>
91 #include <machine/../linux/linux_proto.h>
92 #endif
93 
94 #include <compat/linux/linux_common.h>
95 #include <compat/linux/linux_dtrace.h>
96 #include <compat/linux/linux_file.h>
97 #include <compat/linux/linux_mib.h>
98 #include <compat/linux/linux_signal.h>
99 #include <compat/linux/linux_timer.h>
100 #include <compat/linux/linux_util.h>
101 #include <compat/linux/linux_sysproto.h>
102 #include <compat/linux/linux_emul.h>
103 #include <compat/linux/linux_misc.h>
104 
105 int stclohz;				/* Statistics clock frequency */
106 
107 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
108 	RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
109 	RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
110 	RLIMIT_MEMLOCK, RLIMIT_AS
111 };
112 
113 struct l_sysinfo {
114 	l_long		uptime;		/* Seconds since boot */
115 	l_ulong		loads[3];	/* 1, 5, and 15 minute load averages */
116 #define LINUX_SYSINFO_LOADS_SCALE 65536
117 	l_ulong		totalram;	/* Total usable main memory size */
118 	l_ulong		freeram;	/* Available memory size */
119 	l_ulong		sharedram;	/* Amount of shared memory */
120 	l_ulong		bufferram;	/* Memory used by buffers */
121 	l_ulong		totalswap;	/* Total swap space size */
122 	l_ulong		freeswap;	/* swap space still available */
123 	l_ushort	procs;		/* Number of current processes */
124 	l_ushort	pads;
125 	l_ulong		totalhigh;
126 	l_ulong		freehigh;
127 	l_uint		mem_unit;
128 	char		_f[20-2*sizeof(l_long)-sizeof(l_int)];	/* padding */
129 };
130 
131 struct l_pselect6arg {
132 	l_uintptr_t	ss;
133 	l_size_t	ss_len;
134 };
135 
136 static int	linux_utimensat_lts_to_ts(struct l_timespec *,
137 			struct timespec *);
138 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
139 static int	linux_utimensat_lts64_to_ts(struct l_timespec64 *,
140 			struct timespec *);
141 #endif
142 static int	linux_common_utimensat(struct thread *, int,
143 			const char *, struct timespec *, int);
144 static int	linux_common_pselect6(struct thread *, l_int,
145 			l_fd_set *, l_fd_set *, l_fd_set *,
146 			struct timespec *, l_uintptr_t *);
147 static int	linux_common_ppoll(struct thread *, struct pollfd *,
148 			uint32_t, struct timespec *, l_sigset_t *,
149 			l_size_t);
150 static int	linux_pollin(struct thread *, struct pollfd *,
151 			struct pollfd *, u_int);
152 static int	linux_pollout(struct thread *, struct pollfd *,
153 			struct pollfd *, u_int);
154 
155 int
156 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
157 {
158 	struct l_sysinfo sysinfo;
159 	int i, j;
160 	struct timespec ts;
161 
162 	bzero(&sysinfo, sizeof(sysinfo));
163 	getnanouptime(&ts);
164 	if (ts.tv_nsec != 0)
165 		ts.tv_sec++;
166 	sysinfo.uptime = ts.tv_sec;
167 
168 	/* Use the information from the mib to get our load averages */
169 	for (i = 0; i < 3; i++)
170 		sysinfo.loads[i] = averunnable.ldavg[i] *
171 		    LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
172 
173 	sysinfo.totalram = physmem * PAGE_SIZE;
174 	sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE;
175 
176 	/*
177 	 * sharedram counts pages allocated to named, swap-backed objects such
178 	 * as shared memory segments and tmpfs files.  There is no cheap way to
179 	 * compute this, so just leave the field unpopulated.  Linux itself only
180 	 * started setting this field in the 3.x timeframe.
181 	 */
182 	sysinfo.sharedram = 0;
183 	sysinfo.bufferram = 0;
184 
185 	swap_pager_status(&i, &j);
186 	sysinfo.totalswap = i * PAGE_SIZE;
187 	sysinfo.freeswap = (i - j) * PAGE_SIZE;
188 
189 	sysinfo.procs = nprocs;
190 
191 	/*
192 	 * Platforms supported by the emulation layer do not have a notion of
193 	 * high memory.
194 	 */
195 	sysinfo.totalhigh = 0;
196 	sysinfo.freehigh = 0;
197 
198 	sysinfo.mem_unit = 1;
199 
200 	return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
201 }
202 
203 #ifdef LINUX_LEGACY_SYSCALLS
204 int
205 linux_alarm(struct thread *td, struct linux_alarm_args *args)
206 {
207 	struct itimerval it, old_it;
208 	u_int secs;
209 	int error __diagused;
210 
211 	secs = args->secs;
212 	/*
213 	 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2
214 	 * to match kern_setitimer()'s limit to avoid error from it.
215 	 *
216 	 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
217 	 * platforms.
218 	 */
219 	if (secs > INT32_MAX / 2)
220 		secs = INT32_MAX / 2;
221 
222 	it.it_value.tv_sec = secs;
223 	it.it_value.tv_usec = 0;
224 	timevalclear(&it.it_interval);
225 	error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
226 	KASSERT(error == 0, ("kern_setitimer returns %d", error));
227 
228 	if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
229 	    old_it.it_value.tv_usec >= 500000)
230 		old_it.it_value.tv_sec++;
231 	td->td_retval[0] = old_it.it_value.tv_sec;
232 	return (0);
233 }
234 #endif
235 
236 int
237 linux_brk(struct thread *td, struct linux_brk_args *args)
238 {
239 	struct vmspace *vm = td->td_proc->p_vmspace;
240 	uintptr_t new, old;
241 
242 	old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
243 	new = (uintptr_t)args->dsend;
244 	if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
245 		td->td_retval[0] = (register_t)new;
246 	else
247 		td->td_retval[0] = (register_t)old;
248 
249 	return (0);
250 }
251 
252 #if defined(__i386__)
253 /* XXX: what about amd64/linux32? */
254 
255 int
256 linux_uselib(struct thread *td, struct linux_uselib_args *args)
257 {
258 	struct nameidata ni;
259 	struct vnode *vp;
260 	struct exec *a_out;
261 	vm_map_t map;
262 	vm_map_entry_t entry;
263 	struct vattr attr;
264 	vm_offset_t vmaddr;
265 	unsigned long file_offset;
266 	unsigned long bss_size;
267 	char *library;
268 	ssize_t aresid;
269 	int error;
270 	bool locked, opened, textset;
271 
272 	a_out = NULL;
273 	vp = NULL;
274 	locked = false;
275 	textset = false;
276 	opened = false;
277 
278 	if (!LUSECONVPATH(td)) {
279 		NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
280 		    UIO_USERSPACE, args->library);
281 		error = namei(&ni);
282 	} else {
283 		LCONVPATHEXIST(args->library, &library);
284 		NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
285 		    UIO_SYSSPACE, library);
286 		error = namei(&ni);
287 		LFREEPATH(library);
288 	}
289 	if (error)
290 		goto cleanup;
291 
292 	vp = ni.ni_vp;
293 	NDFREE_PNBUF(&ni);
294 
295 	/*
296 	 * From here on down, we have a locked vnode that must be unlocked.
297 	 * XXX: The code below largely duplicates exec_check_permissions().
298 	 */
299 	locked = true;
300 
301 	/* Executable? */
302 	error = VOP_GETATTR(vp, &attr, td->td_ucred);
303 	if (error)
304 		goto cleanup;
305 
306 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
307 	    ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) {
308 		/* EACCESS is what exec(2) returns. */
309 		error = ENOEXEC;
310 		goto cleanup;
311 	}
312 
313 	/* Sensible size? */
314 	if (attr.va_size == 0) {
315 		error = ENOEXEC;
316 		goto cleanup;
317 	}
318 
319 	/* Can we access it? */
320 	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
321 	if (error)
322 		goto cleanup;
323 
324 	/*
325 	 * XXX: This should use vn_open() so that it is properly authorized,
326 	 * and to reduce code redundancy all over the place here.
327 	 * XXX: Not really, it duplicates far more of exec_check_permissions()
328 	 * than vn_open().
329 	 */
330 #ifdef MAC
331 	error = mac_vnode_check_open(td->td_ucred, vp, VREAD);
332 	if (error)
333 		goto cleanup;
334 #endif
335 	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
336 	if (error)
337 		goto cleanup;
338 	opened = true;
339 
340 	/* Pull in executable header into exec_map */
341 	error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE,
342 	    VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0);
343 	if (error)
344 		goto cleanup;
345 
346 	/* Is it a Linux binary ? */
347 	if (((a_out->a_magic >> 16) & 0xff) != 0x64) {
348 		error = ENOEXEC;
349 		goto cleanup;
350 	}
351 
352 	/*
353 	 * While we are here, we should REALLY do some more checks
354 	 */
355 
356 	/* Set file/virtual offset based on a.out variant. */
357 	switch ((int)(a_out->a_magic & 0xffff)) {
358 	case 0413:			/* ZMAGIC */
359 		file_offset = 1024;
360 		break;
361 	case 0314:			/* QMAGIC */
362 		file_offset = 0;
363 		break;
364 	default:
365 		error = ENOEXEC;
366 		goto cleanup;
367 	}
368 
369 	bss_size = round_page(a_out->a_bss);
370 
371 	/* Check various fields in header for validity/bounds. */
372 	if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) {
373 		error = ENOEXEC;
374 		goto cleanup;
375 	}
376 
377 	/* text + data can't exceed file size */
378 	if (a_out->a_data + a_out->a_text > attr.va_size) {
379 		error = EFAULT;
380 		goto cleanup;
381 	}
382 
383 	/*
384 	 * text/data/bss must not exceed limits
385 	 * XXX - this is not complete. it should check current usage PLUS
386 	 * the resources needed by this library.
387 	 */
388 	PROC_LOCK(td->td_proc);
389 	if (a_out->a_text > maxtsiz ||
390 	    a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) ||
391 	    racct_set(td->td_proc, RACCT_DATA, a_out->a_data +
392 	    bss_size) != 0) {
393 		PROC_UNLOCK(td->td_proc);
394 		error = ENOMEM;
395 		goto cleanup;
396 	}
397 	PROC_UNLOCK(td->td_proc);
398 
399 	/*
400 	 * Prevent more writers.
401 	 */
402 	error = VOP_SET_TEXT(vp);
403 	if (error != 0)
404 		goto cleanup;
405 	textset = true;
406 
407 	/*
408 	 * Lock no longer needed
409 	 */
410 	locked = false;
411 	VOP_UNLOCK(vp);
412 
413 	/*
414 	 * Check if file_offset page aligned. Currently we cannot handle
415 	 * misalinged file offsets, and so we read in the entire image
416 	 * (what a waste).
417 	 */
418 	if (file_offset & PAGE_MASK) {
419 		/* Map text+data read/write/execute */
420 
421 		/* a_entry is the load address and is page aligned */
422 		vmaddr = trunc_page(a_out->a_entry);
423 
424 		/* get anon user mapping, read+write+execute */
425 		error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
426 		    &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE,
427 		    VM_PROT_ALL, VM_PROT_ALL, 0);
428 		if (error)
429 			goto cleanup;
430 
431 		error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset,
432 		    a_out->a_text + a_out->a_data, UIO_USERSPACE, 0,
433 		    td->td_ucred, NOCRED, &aresid, td);
434 		if (error != 0)
435 			goto cleanup;
436 		if (aresid != 0) {
437 			error = ENOEXEC;
438 			goto cleanup;
439 		}
440 	} else {
441 		/*
442 		 * for QMAGIC, a_entry is 20 bytes beyond the load address
443 		 * to skip the executable header
444 		 */
445 		vmaddr = trunc_page(a_out->a_entry);
446 
447 		/*
448 		 * Map it all into the process's space as a single
449 		 * copy-on-write "data" segment.
450 		 */
451 		map = &td->td_proc->p_vmspace->vm_map;
452 		error = vm_mmap(map, &vmaddr,
453 		    a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL,
454 		    MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset);
455 		if (error)
456 			goto cleanup;
457 		vm_map_lock(map);
458 		if (!vm_map_lookup_entry(map, vmaddr, &entry)) {
459 			vm_map_unlock(map);
460 			error = EDOOFUS;
461 			goto cleanup;
462 		}
463 		entry->eflags |= MAP_ENTRY_VN_EXEC;
464 		vm_map_unlock(map);
465 		textset = false;
466 	}
467 
468 	if (bss_size != 0) {
469 		/* Calculate BSS start address */
470 		vmaddr = trunc_page(a_out->a_entry) + a_out->a_text +
471 		    a_out->a_data;
472 
473 		/* allocate some 'anon' space */
474 		error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
475 		    &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL,
476 		    VM_PROT_ALL, 0);
477 		if (error)
478 			goto cleanup;
479 	}
480 
481 cleanup:
482 	if (opened) {
483 		if (locked)
484 			VOP_UNLOCK(vp);
485 		locked = false;
486 		VOP_CLOSE(vp, FREAD, td->td_ucred, td);
487 	}
488 	if (textset) {
489 		if (!locked) {
490 			locked = true;
491 			VOP_LOCK(vp, LK_SHARED | LK_RETRY);
492 		}
493 		VOP_UNSET_TEXT_CHECKED(vp);
494 	}
495 	if (locked)
496 		VOP_UNLOCK(vp);
497 
498 	/* Release the temporary mapping. */
499 	if (a_out)
500 		kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE);
501 
502 	return (error);
503 }
504 
505 #endif	/* __i386__ */
506 
507 #ifdef LINUX_LEGACY_SYSCALLS
508 int
509 linux_select(struct thread *td, struct linux_select_args *args)
510 {
511 	l_timeval ltv;
512 	struct timeval tv0, tv1, utv, *tvp;
513 	int error;
514 
515 	/*
516 	 * Store current time for computation of the amount of
517 	 * time left.
518 	 */
519 	if (args->timeout) {
520 		if ((error = copyin(args->timeout, &ltv, sizeof(ltv))))
521 			goto select_out;
522 		utv.tv_sec = ltv.tv_sec;
523 		utv.tv_usec = ltv.tv_usec;
524 
525 		if (itimerfix(&utv)) {
526 			/*
527 			 * The timeval was invalid.  Convert it to something
528 			 * valid that will act as it does under Linux.
529 			 */
530 			utv.tv_sec += utv.tv_usec / 1000000;
531 			utv.tv_usec %= 1000000;
532 			if (utv.tv_usec < 0) {
533 				utv.tv_sec -= 1;
534 				utv.tv_usec += 1000000;
535 			}
536 			if (utv.tv_sec < 0)
537 				timevalclear(&utv);
538 		}
539 		microtime(&tv0);
540 		tvp = &utv;
541 	} else
542 		tvp = NULL;
543 
544 	error = kern_select(td, args->nfds, args->readfds, args->writefds,
545 	    args->exceptfds, tvp, LINUX_NFDBITS);
546 	if (error)
547 		goto select_out;
548 
549 	if (args->timeout) {
550 		if (td->td_retval[0]) {
551 			/*
552 			 * Compute how much time was left of the timeout,
553 			 * by subtracting the current time and the time
554 			 * before we started the call, and subtracting
555 			 * that result from the user-supplied value.
556 			 */
557 			microtime(&tv1);
558 			timevalsub(&tv1, &tv0);
559 			timevalsub(&utv, &tv1);
560 			if (utv.tv_sec < 0)
561 				timevalclear(&utv);
562 		} else
563 			timevalclear(&utv);
564 		ltv.tv_sec = utv.tv_sec;
565 		ltv.tv_usec = utv.tv_usec;
566 		if ((error = copyout(&ltv, args->timeout, sizeof(ltv))))
567 			goto select_out;
568 	}
569 
570 select_out:
571 	return (error);
572 }
573 #endif
574 
575 int
576 linux_mremap(struct thread *td, struct linux_mremap_args *args)
577 {
578 	uintptr_t addr;
579 	size_t len;
580 	int error = 0;
581 
582 	if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
583 		td->td_retval[0] = 0;
584 		return (EINVAL);
585 	}
586 
587 	/*
588 	 * Check for the page alignment.
589 	 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
590 	 */
591 	if (args->addr & PAGE_MASK) {
592 		td->td_retval[0] = 0;
593 		return (EINVAL);
594 	}
595 
596 	args->new_len = round_page(args->new_len);
597 	args->old_len = round_page(args->old_len);
598 
599 	if (args->new_len > args->old_len) {
600 		td->td_retval[0] = 0;
601 		return (ENOMEM);
602 	}
603 
604 	if (args->new_len < args->old_len) {
605 		addr = args->addr + args->new_len;
606 		len = args->old_len - args->new_len;
607 		error = kern_munmap(td, addr, len);
608 	}
609 
610 	td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
611 	return (error);
612 }
613 
614 #define LINUX_MS_ASYNC       0x0001
615 #define LINUX_MS_INVALIDATE  0x0002
616 #define LINUX_MS_SYNC        0x0004
617 
618 int
619 linux_msync(struct thread *td, struct linux_msync_args *args)
620 {
621 
622 	return (kern_msync(td, args->addr, args->len,
623 	    args->fl & ~LINUX_MS_SYNC));
624 }
625 
626 #ifdef LINUX_LEGACY_SYSCALLS
627 int
628 linux_time(struct thread *td, struct linux_time_args *args)
629 {
630 	struct timeval tv;
631 	l_time_t tm;
632 	int error;
633 
634 	microtime(&tv);
635 	tm = tv.tv_sec;
636 	if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
637 		return (error);
638 	td->td_retval[0] = tm;
639 	return (0);
640 }
641 #endif
642 
643 struct l_times_argv {
644 	l_clock_t	tms_utime;
645 	l_clock_t	tms_stime;
646 	l_clock_t	tms_cutime;
647 	l_clock_t	tms_cstime;
648 };
649 
650 /*
651  * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
652  * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
653  * auxiliary vector entry.
654  */
655 #define	CLK_TCK		100
656 
657 #define	CONVOTCK(r)	(r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
658 #define	CONVNTCK(r)	(r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
659 
660 #define	CONVTCK(r)	(linux_kernver(td) >= LINUX_KERNVER_2004000 ?		\
661 			    CONVNTCK(r) : CONVOTCK(r))
662 
663 int
664 linux_times(struct thread *td, struct linux_times_args *args)
665 {
666 	struct timeval tv, utime, stime, cutime, cstime;
667 	struct l_times_argv tms;
668 	struct proc *p;
669 	int error;
670 
671 	if (args->buf != NULL) {
672 		p = td->td_proc;
673 		PROC_LOCK(p);
674 		PROC_STATLOCK(p);
675 		calcru(p, &utime, &stime);
676 		PROC_STATUNLOCK(p);
677 		calccru(p, &cutime, &cstime);
678 		PROC_UNLOCK(p);
679 
680 		tms.tms_utime = CONVTCK(utime);
681 		tms.tms_stime = CONVTCK(stime);
682 
683 		tms.tms_cutime = CONVTCK(cutime);
684 		tms.tms_cstime = CONVTCK(cstime);
685 
686 		if ((error = copyout(&tms, args->buf, sizeof(tms))))
687 			return (error);
688 	}
689 
690 	microuptime(&tv);
691 	td->td_retval[0] = (int)CONVTCK(tv);
692 	return (0);
693 }
694 
695 int
696 linux_newuname(struct thread *td, struct linux_newuname_args *args)
697 {
698 	struct l_new_utsname utsname;
699 	char osname[LINUX_MAX_UTSNAME];
700 	char osrelease[LINUX_MAX_UTSNAME];
701 	char *p;
702 
703 	linux_get_osname(td, osname);
704 	linux_get_osrelease(td, osrelease);
705 
706 	bzero(&utsname, sizeof(utsname));
707 	strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
708 	getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
709 	getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
710 	strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
711 	strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
712 	for (p = utsname.version; *p != '\0'; ++p)
713 		if (*p == '\n') {
714 			*p = '\0';
715 			break;
716 		}
717 #if defined(__amd64__)
718 	/*
719 	 * On amd64, Linux uname(2) needs to return "x86_64"
720 	 * for both 64-bit and 32-bit applications.  On 32-bit,
721 	 * the string returned by getauxval(AT_PLATFORM) needs
722 	 * to remain "i686", though.
723 	 */
724 #if defined(COMPAT_LINUX32)
725 	if (linux32_emulate_i386)
726 		strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
727 	else
728 #endif
729 	strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
730 #elif defined(__aarch64__)
731 	strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME);
732 #elif defined(__i386__)
733 	strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
734 #endif
735 
736 	return (copyout(&utsname, args->buf, sizeof(utsname)));
737 }
738 
739 struct l_utimbuf {
740 	l_time_t l_actime;
741 	l_time_t l_modtime;
742 };
743 
744 #ifdef LINUX_LEGACY_SYSCALLS
745 int
746 linux_utime(struct thread *td, struct linux_utime_args *args)
747 {
748 	struct timeval tv[2], *tvp;
749 	struct l_utimbuf lut;
750 	char *fname;
751 	int error;
752 
753 	if (args->times) {
754 		if ((error = copyin(args->times, &lut, sizeof lut)) != 0)
755 			return (error);
756 		tv[0].tv_sec = lut.l_actime;
757 		tv[0].tv_usec = 0;
758 		tv[1].tv_sec = lut.l_modtime;
759 		tv[1].tv_usec = 0;
760 		tvp = tv;
761 	} else
762 		tvp = NULL;
763 
764 	if (!LUSECONVPATH(td)) {
765 		error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
766 		    tvp, UIO_SYSSPACE);
767 	} else {
768 		LCONVPATHEXIST(args->fname, &fname);
769 		error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp,
770 		    UIO_SYSSPACE);
771 		LFREEPATH(fname);
772 	}
773 	return (error);
774 }
775 #endif
776 
777 #ifdef LINUX_LEGACY_SYSCALLS
778 int
779 linux_utimes(struct thread *td, struct linux_utimes_args *args)
780 {
781 	l_timeval ltv[2];
782 	struct timeval tv[2], *tvp = NULL;
783 	char *fname;
784 	int error;
785 
786 	if (args->tptr != NULL) {
787 		if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0)
788 			return (error);
789 		tv[0].tv_sec = ltv[0].tv_sec;
790 		tv[0].tv_usec = ltv[0].tv_usec;
791 		tv[1].tv_sec = ltv[1].tv_sec;
792 		tv[1].tv_usec = ltv[1].tv_usec;
793 		tvp = tv;
794 	}
795 
796 	if (!LUSECONVPATH(td)) {
797 		error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
798 		    tvp, UIO_SYSSPACE);
799 	} else {
800 		LCONVPATHEXIST(args->fname, &fname);
801 		error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE,
802 		    tvp, UIO_SYSSPACE);
803 		LFREEPATH(fname);
804 	}
805 	return (error);
806 }
807 #endif
808 
809 static int
810 linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times)
811 {
812 
813 	if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
814 	    l_times->tv_nsec != LINUX_UTIME_NOW &&
815 	    (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
816 		return (EINVAL);
817 
818 	times->tv_sec = l_times->tv_sec;
819 	switch (l_times->tv_nsec)
820 	{
821 	case LINUX_UTIME_OMIT:
822 		times->tv_nsec = UTIME_OMIT;
823 		break;
824 	case LINUX_UTIME_NOW:
825 		times->tv_nsec = UTIME_NOW;
826 		break;
827 	default:
828 		times->tv_nsec = l_times->tv_nsec;
829 	}
830 
831 	return (0);
832 }
833 
834 static int
835 linux_common_utimensat(struct thread *td, int ldfd, const char *pathname,
836     struct timespec *timesp, int lflags)
837 {
838 	char *path = NULL;
839 	int error, dfd, flags = 0;
840 
841 	dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd;
842 
843 	if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH))
844 		return (EINVAL);
845 
846 	if (timesp != NULL) {
847 		/* This breaks POSIX, but is what the Linux kernel does
848 		 * _on purpose_ (documented in the man page for utimensat(2)),
849 		 * so we must follow that behaviour. */
850 		if (timesp[0].tv_nsec == UTIME_OMIT &&
851 		    timesp[1].tv_nsec == UTIME_OMIT)
852 			return (0);
853 	}
854 
855 	if (lflags & LINUX_AT_SYMLINK_NOFOLLOW)
856 		flags |= AT_SYMLINK_NOFOLLOW;
857 	if (lflags & LINUX_AT_EMPTY_PATH)
858 		flags |= AT_EMPTY_PATH;
859 
860 	if (!LUSECONVPATH(td)) {
861 		if (pathname != NULL) {
862 			return (kern_utimensat(td, dfd, pathname,
863 			    UIO_USERSPACE, timesp, UIO_SYSSPACE, flags));
864 		}
865 	}
866 
867 	if (pathname != NULL)
868 		LCONVPATHEXIST_AT(pathname, &path, dfd);
869 	else if (lflags != 0)
870 		return (EINVAL);
871 
872 	if (path == NULL)
873 		error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE);
874 	else {
875 		error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp,
876 			UIO_SYSSPACE, flags);
877 		LFREEPATH(path);
878 	}
879 
880 	return (error);
881 }
882 
883 int
884 linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
885 {
886 	struct l_timespec l_times[2];
887 	struct timespec times[2], *timesp;
888 	int error;
889 
890 	if (args->times != NULL) {
891 		error = copyin(args->times, l_times, sizeof(l_times));
892 		if (error != 0)
893 			return (error);
894 
895 		error = linux_utimensat_lts_to_ts(&l_times[0], &times[0]);
896 		if (error != 0)
897 			return (error);
898 		error = linux_utimensat_lts_to_ts(&l_times[1], &times[1]);
899 		if (error != 0)
900 			return (error);
901 		timesp = times;
902 	} else
903 		timesp = NULL;
904 
905 	return (linux_common_utimensat(td, args->dfd, args->pathname,
906 	    timesp, args->flags));
907 }
908 
909 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
910 static int
911 linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times)
912 {
913 
914 	/* Zero out the padding in compat mode. */
915 	l_times->tv_nsec &= 0xFFFFFFFFUL;
916 
917 	if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
918 	    l_times->tv_nsec != LINUX_UTIME_NOW &&
919 	    (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
920 		return (EINVAL);
921 
922 	times->tv_sec = l_times->tv_sec;
923 	switch (l_times->tv_nsec)
924 	{
925 	case LINUX_UTIME_OMIT:
926 		times->tv_nsec = UTIME_OMIT;
927 		break;
928 	case LINUX_UTIME_NOW:
929 		times->tv_nsec = UTIME_NOW;
930 		break;
931 	default:
932 		times->tv_nsec = l_times->tv_nsec;
933 	}
934 
935 	return (0);
936 }
937 
938 int
939 linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args)
940 {
941 	struct l_timespec64 l_times[2];
942 	struct timespec times[2], *timesp;
943 	int error;
944 
945 	if (args->times64 != NULL) {
946 		error = copyin(args->times64, l_times, sizeof(l_times));
947 		if (error != 0)
948 			return (error);
949 
950 		error = linux_utimensat_lts64_to_ts(&l_times[0], &times[0]);
951 		if (error != 0)
952 			return (error);
953 		error = linux_utimensat_lts64_to_ts(&l_times[1], &times[1]);
954 		if (error != 0)
955 			return (error);
956 		timesp = times;
957 	} else
958 		timesp = NULL;
959 
960 	return (linux_common_utimensat(td, args->dfd, args->pathname,
961 	    timesp, args->flags));
962 }
963 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
964 
965 #ifdef LINUX_LEGACY_SYSCALLS
966 int
967 linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
968 {
969 	l_timeval ltv[2];
970 	struct timeval tv[2], *tvp = NULL;
971 	char *fname;
972 	int error, dfd;
973 
974 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
975 
976 	if (args->utimes != NULL) {
977 		if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0)
978 			return (error);
979 		tv[0].tv_sec = ltv[0].tv_sec;
980 		tv[0].tv_usec = ltv[0].tv_usec;
981 		tv[1].tv_sec = ltv[1].tv_sec;
982 		tv[1].tv_usec = ltv[1].tv_usec;
983 		tvp = tv;
984 	}
985 
986 	if (!LUSECONVPATH(td)) {
987 		error = kern_utimesat(td, dfd, args->filename, UIO_USERSPACE,
988 		    tvp, UIO_SYSSPACE);
989 	} else {
990 		LCONVPATHEXIST_AT(args->filename, &fname, dfd);
991 		error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE,
992 		    tvp, UIO_SYSSPACE);
993 		LFREEPATH(fname);
994 	}
995 	return (error);
996 }
997 #endif
998 
999 static int
1000 linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp,
1001     int options, void *rup, l_siginfo_t *infop)
1002 {
1003 	l_siginfo_t lsi;
1004 	siginfo_t siginfo;
1005 	struct __wrusage wru;
1006 	int error, status, tmpstat, sig;
1007 
1008 	error = kern_wait6(td, idtype, id, &status, options,
1009 	    rup != NULL ? &wru : NULL, &siginfo);
1010 
1011 	if (error == 0 && statusp) {
1012 		tmpstat = status & 0xffff;
1013 		if (WIFSIGNALED(tmpstat)) {
1014 			tmpstat = (tmpstat & 0xffffff80) |
1015 			    bsd_to_linux_signal(WTERMSIG(tmpstat));
1016 		} else if (WIFSTOPPED(tmpstat)) {
1017 			tmpstat = (tmpstat & 0xffff00ff) |
1018 			    (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
1019 #if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32))
1020 			if (WSTOPSIG(status) == SIGTRAP) {
1021 				tmpstat = linux_ptrace_status(td,
1022 				    siginfo.si_pid, tmpstat);
1023 			}
1024 #endif
1025 		} else if (WIFCONTINUED(tmpstat)) {
1026 			tmpstat = 0xffff;
1027 		}
1028 		error = copyout(&tmpstat, statusp, sizeof(int));
1029 	}
1030 	if (error == 0 && rup != NULL)
1031 		error = linux_copyout_rusage(&wru.wru_self, rup);
1032 	if (error == 0 && infop != NULL && td->td_retval[0] != 0) {
1033 		sig = bsd_to_linux_signal(siginfo.si_signo);
1034 		siginfo_to_lsiginfo(&siginfo, &lsi, sig);
1035 		error = copyout(&lsi, infop, sizeof(lsi));
1036 	}
1037 
1038 	return (error);
1039 }
1040 
1041 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1042 int
1043 linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
1044 {
1045 	struct linux_wait4_args wait4_args = {
1046 		.pid = args->pid,
1047 		.status = args->status,
1048 		.options = args->options,
1049 		.rusage = NULL,
1050 	};
1051 
1052 	return (linux_wait4(td, &wait4_args));
1053 }
1054 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1055 
1056 int
1057 linux_wait4(struct thread *td, struct linux_wait4_args *args)
1058 {
1059 	struct proc *p;
1060 	int options, id, idtype;
1061 
1062 	if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
1063 	    LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
1064 		return (EINVAL);
1065 
1066 	/* -INT_MIN is not defined. */
1067 	if (args->pid == INT_MIN)
1068 		return (ESRCH);
1069 
1070 	options = 0;
1071 	linux_to_bsd_waitopts(args->options, &options);
1072 
1073 	/*
1074 	 * For backward compatibility we implicitly add flags WEXITED
1075 	 * and WTRAPPED here.
1076 	 */
1077 	options |= WEXITED | WTRAPPED;
1078 
1079 	if (args->pid == WAIT_ANY) {
1080 		idtype = P_ALL;
1081 		id = 0;
1082 	} else if (args->pid < 0) {
1083 		idtype = P_PGID;
1084 		id = (id_t)-args->pid;
1085 	} else if (args->pid == 0) {
1086 		idtype = P_PGID;
1087 		p = td->td_proc;
1088 		PROC_LOCK(p);
1089 		id = p->p_pgid;
1090 		PROC_UNLOCK(p);
1091 	} else {
1092 		idtype = P_PID;
1093 		id = (id_t)args->pid;
1094 	}
1095 
1096 	return (linux_common_wait(td, idtype, id, args->status, options,
1097 	    args->rusage, NULL));
1098 }
1099 
1100 int
1101 linux_waitid(struct thread *td, struct linux_waitid_args *args)
1102 {
1103 	idtype_t idtype;
1104 	int error, options;
1105 	struct proc *p;
1106 	pid_t id;
1107 
1108 	if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED |
1109 	    LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
1110 		return (EINVAL);
1111 
1112 	options = 0;
1113 	linux_to_bsd_waitopts(args->options, &options);
1114 
1115 	id = args->id;
1116 	switch (args->idtype) {
1117 	case LINUX_P_ALL:
1118 		idtype = P_ALL;
1119 		break;
1120 	case LINUX_P_PID:
1121 		if (args->id <= 0)
1122 			return (EINVAL);
1123 		idtype = P_PID;
1124 		break;
1125 	case LINUX_P_PGID:
1126 		if (linux_use54(td) && args->id == 0) {
1127 			p = td->td_proc;
1128 			PROC_LOCK(p);
1129 			id = p->p_pgid;
1130 			PROC_UNLOCK(p);
1131 		} else if (args->id <= 0)
1132 			return (EINVAL);
1133 		idtype = P_PGID;
1134 		break;
1135 	case LINUX_P_PIDFD:
1136 		LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype");
1137 		return (ENOSYS);
1138 	default:
1139 		return (EINVAL);
1140 	}
1141 
1142 	error = linux_common_wait(td, idtype, id, NULL, options,
1143 	    args->rusage, args->info);
1144 	td->td_retval[0] = 0;
1145 
1146 	return (error);
1147 }
1148 
1149 #ifdef LINUX_LEGACY_SYSCALLS
1150 int
1151 linux_mknod(struct thread *td, struct linux_mknod_args *args)
1152 {
1153 	char *path;
1154 	int error;
1155 	enum uio_seg seg;
1156 	bool convpath;
1157 
1158 	convpath = LUSECONVPATH(td);
1159 	if (!convpath) {
1160 		path = args->path;
1161 		seg = UIO_USERSPACE;
1162 	} else {
1163 		LCONVPATHCREAT(args->path, &path);
1164 		seg = UIO_SYSSPACE;
1165 	}
1166 
1167 	switch (args->mode & S_IFMT) {
1168 	case S_IFIFO:
1169 	case S_IFSOCK:
1170 		error = kern_mkfifoat(td, AT_FDCWD, path, seg,
1171 		    args->mode);
1172 		break;
1173 
1174 	case S_IFCHR:
1175 	case S_IFBLK:
1176 		error = kern_mknodat(td, AT_FDCWD, path, seg,
1177 		    args->mode, args->dev);
1178 		break;
1179 
1180 	case S_IFDIR:
1181 		error = EPERM;
1182 		break;
1183 
1184 	case 0:
1185 		args->mode |= S_IFREG;
1186 		/* FALLTHROUGH */
1187 	case S_IFREG:
1188 		error = kern_openat(td, AT_FDCWD, path, seg,
1189 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
1190 		if (error == 0)
1191 			kern_close(td, td->td_retval[0]);
1192 		break;
1193 
1194 	default:
1195 		error = EINVAL;
1196 		break;
1197 	}
1198 	if (convpath)
1199 		LFREEPATH(path);
1200 	return (error);
1201 }
1202 #endif
1203 
1204 int
1205 linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
1206 {
1207 	char *path;
1208 	int error, dfd;
1209 	enum uio_seg seg;
1210 	bool convpath;
1211 
1212 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
1213 
1214 	convpath = LUSECONVPATH(td);
1215 	if (!convpath) {
1216 		path = __DECONST(char *, args->filename);
1217 		seg = UIO_USERSPACE;
1218 	} else {
1219 		LCONVPATHCREAT_AT(args->filename, &path, dfd);
1220 		seg = UIO_SYSSPACE;
1221 	}
1222 
1223 	switch (args->mode & S_IFMT) {
1224 	case S_IFIFO:
1225 	case S_IFSOCK:
1226 		error = kern_mkfifoat(td, dfd, path, seg, args->mode);
1227 		break;
1228 
1229 	case S_IFCHR:
1230 	case S_IFBLK:
1231 		error = kern_mknodat(td, dfd, path, seg, args->mode,
1232 		    args->dev);
1233 		break;
1234 
1235 	case S_IFDIR:
1236 		error = EPERM;
1237 		break;
1238 
1239 	case 0:
1240 		args->mode |= S_IFREG;
1241 		/* FALLTHROUGH */
1242 	case S_IFREG:
1243 		error = kern_openat(td, dfd, path, seg,
1244 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
1245 		if (error == 0)
1246 			kern_close(td, td->td_retval[0]);
1247 		break;
1248 
1249 	default:
1250 		error = EINVAL;
1251 		break;
1252 	}
1253 	if (convpath)
1254 		LFREEPATH(path);
1255 	return (error);
1256 }
1257 
1258 /*
1259  * UGH! This is just about the dumbest idea I've ever heard!!
1260  */
1261 int
1262 linux_personality(struct thread *td, struct linux_personality_args *args)
1263 {
1264 	struct linux_pemuldata *pem;
1265 	struct proc *p = td->td_proc;
1266 	uint32_t old;
1267 
1268 	PROC_LOCK(p);
1269 	pem = pem_find(p);
1270 	old = pem->persona;
1271 	if (args->per != 0xffffffff)
1272 		pem->persona = args->per;
1273 	PROC_UNLOCK(p);
1274 
1275 	td->td_retval[0] = old;
1276 	return (0);
1277 }
1278 
1279 struct l_itimerval {
1280 	l_timeval it_interval;
1281 	l_timeval it_value;
1282 };
1283 
1284 #define	B2L_ITIMERVAL(bip, lip)						\
1285 	(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec;		\
1286 	(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec;	\
1287 	(bip)->it_value.tv_sec = (lip)->it_value.tv_sec;		\
1288 	(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
1289 
1290 int
1291 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
1292 {
1293 	int error;
1294 	struct l_itimerval ls;
1295 	struct itimerval aitv, oitv;
1296 
1297 	if (uap->itv == NULL) {
1298 		uap->itv = uap->oitv;
1299 		return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
1300 	}
1301 
1302 	error = copyin(uap->itv, &ls, sizeof(ls));
1303 	if (error != 0)
1304 		return (error);
1305 	B2L_ITIMERVAL(&aitv, &ls);
1306 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
1307 	if (error != 0 || uap->oitv == NULL)
1308 		return (error);
1309 	B2L_ITIMERVAL(&ls, &oitv);
1310 
1311 	return (copyout(&ls, uap->oitv, sizeof(ls)));
1312 }
1313 
1314 int
1315 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
1316 {
1317 	int error;
1318 	struct l_itimerval ls;
1319 	struct itimerval aitv;
1320 
1321 	error = kern_getitimer(td, uap->which, &aitv);
1322 	if (error != 0)
1323 		return (error);
1324 	B2L_ITIMERVAL(&ls, &aitv);
1325 	return (copyout(&ls, uap->itv, sizeof(ls)));
1326 }
1327 
1328 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1329 int
1330 linux_nice(struct thread *td, struct linux_nice_args *args)
1331 {
1332 
1333 	return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc));
1334 }
1335 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1336 
1337 int
1338 linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
1339 {
1340 	struct ucred *newcred, *oldcred;
1341 	l_gid_t *linux_gidset;
1342 	gid_t *bsd_gidset;
1343 	int ngrp, error;
1344 	struct proc *p;
1345 
1346 	ngrp = args->gidsetsize;
1347 	if (ngrp < 0 || ngrp >= ngroups_max + 1)
1348 		return (EINVAL);
1349 	linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1350 	error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
1351 	if (error)
1352 		goto out;
1353 	newcred = crget();
1354 	crextend(newcred, ngrp + 1);
1355 	p = td->td_proc;
1356 	PROC_LOCK(p);
1357 	oldcred = p->p_ucred;
1358 	crcopy(newcred, oldcred);
1359 
1360 	/*
1361 	 * cr_groups[0] holds egid. Setting the whole set from
1362 	 * the supplied set will cause egid to be changed too.
1363 	 * Keep cr_groups[0] unchanged to prevent that.
1364 	 */
1365 
1366 	if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
1367 		PROC_UNLOCK(p);
1368 		crfree(newcred);
1369 		goto out;
1370 	}
1371 
1372 	if (ngrp > 0) {
1373 		newcred->cr_ngroups = ngrp + 1;
1374 
1375 		bsd_gidset = newcred->cr_groups;
1376 		ngrp--;
1377 		while (ngrp >= 0) {
1378 			bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
1379 			ngrp--;
1380 		}
1381 	} else
1382 		newcred->cr_ngroups = 1;
1383 
1384 	setsugid(p);
1385 	proc_set_cred(p, newcred);
1386 	PROC_UNLOCK(p);
1387 	crfree(oldcred);
1388 	error = 0;
1389 out:
1390 	free(linux_gidset, M_LINUX);
1391 	return (error);
1392 }
1393 
1394 int
1395 linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
1396 {
1397 	struct ucred *cred;
1398 	l_gid_t *linux_gidset;
1399 	gid_t *bsd_gidset;
1400 	int bsd_gidsetsz, ngrp, error;
1401 
1402 	cred = td->td_ucred;
1403 	bsd_gidset = cred->cr_groups;
1404 	bsd_gidsetsz = cred->cr_ngroups - 1;
1405 
1406 	/*
1407 	 * cr_groups[0] holds egid. Returning the whole set
1408 	 * here will cause a duplicate. Exclude cr_groups[0]
1409 	 * to prevent that.
1410 	 */
1411 
1412 	if ((ngrp = args->gidsetsize) == 0) {
1413 		td->td_retval[0] = bsd_gidsetsz;
1414 		return (0);
1415 	}
1416 
1417 	if (ngrp < bsd_gidsetsz)
1418 		return (EINVAL);
1419 
1420 	ngrp = 0;
1421 	linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset),
1422 	    M_LINUX, M_WAITOK);
1423 	while (ngrp < bsd_gidsetsz) {
1424 		linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
1425 		ngrp++;
1426 	}
1427 
1428 	error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
1429 	free(linux_gidset, M_LINUX);
1430 	if (error)
1431 		return (error);
1432 
1433 	td->td_retval[0] = ngrp;
1434 	return (0);
1435 }
1436 
1437 static bool
1438 linux_get_dummy_limit(l_uint resource, struct rlimit *rlim)
1439 {
1440 
1441 	if (linux_dummy_rlimits == 0)
1442 		return (false);
1443 
1444 	switch (resource) {
1445 	case LINUX_RLIMIT_LOCKS:
1446 	case LINUX_RLIMIT_SIGPENDING:
1447 	case LINUX_RLIMIT_MSGQUEUE:
1448 	case LINUX_RLIMIT_RTTIME:
1449 		rlim->rlim_cur = LINUX_RLIM_INFINITY;
1450 		rlim->rlim_max = LINUX_RLIM_INFINITY;
1451 		return (true);
1452 	case LINUX_RLIMIT_NICE:
1453 	case LINUX_RLIMIT_RTPRIO:
1454 		rlim->rlim_cur = 0;
1455 		rlim->rlim_max = 0;
1456 		return (true);
1457 	default:
1458 		return (false);
1459 	}
1460 }
1461 
1462 int
1463 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
1464 {
1465 	struct rlimit bsd_rlim;
1466 	struct l_rlimit rlim;
1467 	u_int which;
1468 	int error;
1469 
1470 	if (args->resource >= LINUX_RLIM_NLIMITS)
1471 		return (EINVAL);
1472 
1473 	which = linux_to_bsd_resource[args->resource];
1474 	if (which == -1)
1475 		return (EINVAL);
1476 
1477 	error = copyin(args->rlim, &rlim, sizeof(rlim));
1478 	if (error)
1479 		return (error);
1480 
1481 	bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
1482 	bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
1483 	return (kern_setrlimit(td, which, &bsd_rlim));
1484 }
1485 
1486 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1487 int
1488 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
1489 {
1490 	struct l_rlimit rlim;
1491 	struct rlimit bsd_rlim;
1492 	u_int which;
1493 
1494 	if (linux_get_dummy_limit(args->resource, &bsd_rlim)) {
1495 		rlim.rlim_cur = bsd_rlim.rlim_cur;
1496 		rlim.rlim_max = bsd_rlim.rlim_max;
1497 		return (copyout(&rlim, args->rlim, sizeof(rlim)));
1498 	}
1499 
1500 	if (args->resource >= LINUX_RLIM_NLIMITS)
1501 		return (EINVAL);
1502 
1503 	which = linux_to_bsd_resource[args->resource];
1504 	if (which == -1)
1505 		return (EINVAL);
1506 
1507 	lim_rlimit(td, which, &bsd_rlim);
1508 
1509 #ifdef COMPAT_LINUX32
1510 	rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
1511 	if (rlim.rlim_cur == UINT_MAX)
1512 		rlim.rlim_cur = INT_MAX;
1513 	rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
1514 	if (rlim.rlim_max == UINT_MAX)
1515 		rlim.rlim_max = INT_MAX;
1516 #else
1517 	rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
1518 	if (rlim.rlim_cur == ULONG_MAX)
1519 		rlim.rlim_cur = LONG_MAX;
1520 	rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
1521 	if (rlim.rlim_max == ULONG_MAX)
1522 		rlim.rlim_max = LONG_MAX;
1523 #endif
1524 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1525 }
1526 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1527 
1528 int
1529 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
1530 {
1531 	struct l_rlimit rlim;
1532 	struct rlimit bsd_rlim;
1533 	u_int which;
1534 
1535 	if (linux_get_dummy_limit(args->resource, &bsd_rlim)) {
1536 		rlim.rlim_cur = bsd_rlim.rlim_cur;
1537 		rlim.rlim_max = bsd_rlim.rlim_max;
1538 		return (copyout(&rlim, args->rlim, sizeof(rlim)));
1539 	}
1540 
1541 	if (args->resource >= LINUX_RLIM_NLIMITS)
1542 		return (EINVAL);
1543 
1544 	which = linux_to_bsd_resource[args->resource];
1545 	if (which == -1)
1546 		return (EINVAL);
1547 
1548 	lim_rlimit(td, which, &bsd_rlim);
1549 
1550 	rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
1551 	rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
1552 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1553 }
1554 
1555 int
1556 linux_sched_setscheduler(struct thread *td,
1557     struct linux_sched_setscheduler_args *args)
1558 {
1559 	struct sched_param sched_param;
1560 	struct thread *tdt;
1561 	int error, policy;
1562 
1563 	switch (args->policy) {
1564 	case LINUX_SCHED_OTHER:
1565 		policy = SCHED_OTHER;
1566 		break;
1567 	case LINUX_SCHED_FIFO:
1568 		policy = SCHED_FIFO;
1569 		break;
1570 	case LINUX_SCHED_RR:
1571 		policy = SCHED_RR;
1572 		break;
1573 	default:
1574 		return (EINVAL);
1575 	}
1576 
1577 	error = copyin(args->param, &sched_param, sizeof(sched_param));
1578 	if (error)
1579 		return (error);
1580 
1581 	if (linux_map_sched_prio) {
1582 		switch (policy) {
1583 		case SCHED_OTHER:
1584 			if (sched_param.sched_priority != 0)
1585 				return (EINVAL);
1586 
1587 			sched_param.sched_priority =
1588 			    PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1589 			break;
1590 		case SCHED_FIFO:
1591 		case SCHED_RR:
1592 			if (sched_param.sched_priority < 1 ||
1593 			    sched_param.sched_priority >= LINUX_MAX_RT_PRIO)
1594 				return (EINVAL);
1595 
1596 			/*
1597 			 * Map [1, LINUX_MAX_RT_PRIO - 1] to
1598 			 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1599 			 */
1600 			sched_param.sched_priority =
1601 			    (sched_param.sched_priority - 1) *
1602 			    (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1603 			    (LINUX_MAX_RT_PRIO - 1);
1604 			break;
1605 		}
1606 	}
1607 
1608 	tdt = linux_tdfind(td, args->pid, -1);
1609 	if (tdt == NULL)
1610 		return (ESRCH);
1611 
1612 	error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
1613 	PROC_UNLOCK(tdt->td_proc);
1614 	return (error);
1615 }
1616 
1617 int
1618 linux_sched_getscheduler(struct thread *td,
1619     struct linux_sched_getscheduler_args *args)
1620 {
1621 	struct thread *tdt;
1622 	int error, policy;
1623 
1624 	tdt = linux_tdfind(td, args->pid, -1);
1625 	if (tdt == NULL)
1626 		return (ESRCH);
1627 
1628 	error = kern_sched_getscheduler(td, tdt, &policy);
1629 	PROC_UNLOCK(tdt->td_proc);
1630 
1631 	switch (policy) {
1632 	case SCHED_OTHER:
1633 		td->td_retval[0] = LINUX_SCHED_OTHER;
1634 		break;
1635 	case SCHED_FIFO:
1636 		td->td_retval[0] = LINUX_SCHED_FIFO;
1637 		break;
1638 	case SCHED_RR:
1639 		td->td_retval[0] = LINUX_SCHED_RR;
1640 		break;
1641 	}
1642 	return (error);
1643 }
1644 
1645 int
1646 linux_sched_get_priority_max(struct thread *td,
1647     struct linux_sched_get_priority_max_args *args)
1648 {
1649 	struct sched_get_priority_max_args bsd;
1650 
1651 	if (linux_map_sched_prio) {
1652 		switch (args->policy) {
1653 		case LINUX_SCHED_OTHER:
1654 			td->td_retval[0] = 0;
1655 			return (0);
1656 		case LINUX_SCHED_FIFO:
1657 		case LINUX_SCHED_RR:
1658 			td->td_retval[0] = LINUX_MAX_RT_PRIO - 1;
1659 			return (0);
1660 		default:
1661 			return (EINVAL);
1662 		}
1663 	}
1664 
1665 	switch (args->policy) {
1666 	case LINUX_SCHED_OTHER:
1667 		bsd.policy = SCHED_OTHER;
1668 		break;
1669 	case LINUX_SCHED_FIFO:
1670 		bsd.policy = SCHED_FIFO;
1671 		break;
1672 	case LINUX_SCHED_RR:
1673 		bsd.policy = SCHED_RR;
1674 		break;
1675 	default:
1676 		return (EINVAL);
1677 	}
1678 	return (sys_sched_get_priority_max(td, &bsd));
1679 }
1680 
1681 int
1682 linux_sched_get_priority_min(struct thread *td,
1683     struct linux_sched_get_priority_min_args *args)
1684 {
1685 	struct sched_get_priority_min_args bsd;
1686 
1687 	if (linux_map_sched_prio) {
1688 		switch (args->policy) {
1689 		case LINUX_SCHED_OTHER:
1690 			td->td_retval[0] = 0;
1691 			return (0);
1692 		case LINUX_SCHED_FIFO:
1693 		case LINUX_SCHED_RR:
1694 			td->td_retval[0] = 1;
1695 			return (0);
1696 		default:
1697 			return (EINVAL);
1698 		}
1699 	}
1700 
1701 	switch (args->policy) {
1702 	case LINUX_SCHED_OTHER:
1703 		bsd.policy = SCHED_OTHER;
1704 		break;
1705 	case LINUX_SCHED_FIFO:
1706 		bsd.policy = SCHED_FIFO;
1707 		break;
1708 	case LINUX_SCHED_RR:
1709 		bsd.policy = SCHED_RR;
1710 		break;
1711 	default:
1712 		return (EINVAL);
1713 	}
1714 	return (sys_sched_get_priority_min(td, &bsd));
1715 }
1716 
1717 #define REBOOT_CAD_ON	0x89abcdef
1718 #define REBOOT_CAD_OFF	0
1719 #define REBOOT_HALT	0xcdef0123
1720 #define REBOOT_RESTART	0x01234567
1721 #define REBOOT_RESTART2	0xA1B2C3D4
1722 #define REBOOT_POWEROFF	0x4321FEDC
1723 #define REBOOT_MAGIC1	0xfee1dead
1724 #define REBOOT_MAGIC2	0x28121969
1725 #define REBOOT_MAGIC2A	0x05121996
1726 #define REBOOT_MAGIC2B	0x16041998
1727 
1728 int
1729 linux_reboot(struct thread *td, struct linux_reboot_args *args)
1730 {
1731 	struct reboot_args bsd_args;
1732 
1733 	if (args->magic1 != REBOOT_MAGIC1)
1734 		return (EINVAL);
1735 
1736 	switch (args->magic2) {
1737 	case REBOOT_MAGIC2:
1738 	case REBOOT_MAGIC2A:
1739 	case REBOOT_MAGIC2B:
1740 		break;
1741 	default:
1742 		return (EINVAL);
1743 	}
1744 
1745 	switch (args->cmd) {
1746 	case REBOOT_CAD_ON:
1747 	case REBOOT_CAD_OFF:
1748 		return (priv_check(td, PRIV_REBOOT));
1749 	case REBOOT_HALT:
1750 		bsd_args.opt = RB_HALT;
1751 		break;
1752 	case REBOOT_RESTART:
1753 	case REBOOT_RESTART2:
1754 		bsd_args.opt = 0;
1755 		break;
1756 	case REBOOT_POWEROFF:
1757 		bsd_args.opt = RB_POWEROFF;
1758 		break;
1759 	default:
1760 		return (EINVAL);
1761 	}
1762 	return (sys_reboot(td, &bsd_args));
1763 }
1764 
1765 int
1766 linux_getpid(struct thread *td, struct linux_getpid_args *args)
1767 {
1768 
1769 	td->td_retval[0] = td->td_proc->p_pid;
1770 
1771 	return (0);
1772 }
1773 
1774 int
1775 linux_gettid(struct thread *td, struct linux_gettid_args *args)
1776 {
1777 	struct linux_emuldata *em;
1778 
1779 	em = em_find(td);
1780 	KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
1781 
1782 	td->td_retval[0] = em->em_tid;
1783 
1784 	return (0);
1785 }
1786 
1787 int
1788 linux_getppid(struct thread *td, struct linux_getppid_args *args)
1789 {
1790 
1791 	td->td_retval[0] = kern_getppid(td);
1792 	return (0);
1793 }
1794 
1795 int
1796 linux_getgid(struct thread *td, struct linux_getgid_args *args)
1797 {
1798 
1799 	td->td_retval[0] = td->td_ucred->cr_rgid;
1800 	return (0);
1801 }
1802 
1803 int
1804 linux_getuid(struct thread *td, struct linux_getuid_args *args)
1805 {
1806 
1807 	td->td_retval[0] = td->td_ucred->cr_ruid;
1808 	return (0);
1809 }
1810 
1811 int
1812 linux_getsid(struct thread *td, struct linux_getsid_args *args)
1813 {
1814 
1815 	return (kern_getsid(td, args->pid));
1816 }
1817 
1818 int
1819 linux_nosys(struct thread *td, struct nosys_args *ignore)
1820 {
1821 
1822 	return (ENOSYS);
1823 }
1824 
1825 int
1826 linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
1827 {
1828 	int error;
1829 
1830 	error = kern_getpriority(td, args->which, args->who);
1831 	td->td_retval[0] = 20 - td->td_retval[0];
1832 	return (error);
1833 }
1834 
1835 int
1836 linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
1837 {
1838 	int name[2];
1839 
1840 	name[0] = CTL_KERN;
1841 	name[1] = KERN_HOSTNAME;
1842 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
1843 	    args->len, 0, 0));
1844 }
1845 
1846 int
1847 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
1848 {
1849 	int name[2];
1850 
1851 	name[0] = CTL_KERN;
1852 	name[1] = KERN_NISDOMAINNAME;
1853 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
1854 	    args->len, 0, 0));
1855 }
1856 
1857 int
1858 linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
1859 {
1860 
1861 	LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
1862 	    args->error_code);
1863 
1864 	/*
1865 	 * XXX: we should send a signal to the parent if
1866 	 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
1867 	 * as it doesnt occur often.
1868 	 */
1869 	exit1(td, args->error_code, 0);
1870 		/* NOTREACHED */
1871 }
1872 
1873 #define _LINUX_CAPABILITY_VERSION_1  0x19980330
1874 #define _LINUX_CAPABILITY_VERSION_2  0x20071026
1875 #define _LINUX_CAPABILITY_VERSION_3  0x20080522
1876 
1877 struct l_user_cap_header {
1878 	l_int	version;
1879 	l_int	pid;
1880 };
1881 
1882 struct l_user_cap_data {
1883 	l_int	effective;
1884 	l_int	permitted;
1885 	l_int	inheritable;
1886 };
1887 
1888 int
1889 linux_capget(struct thread *td, struct linux_capget_args *uap)
1890 {
1891 	struct l_user_cap_header luch;
1892 	struct l_user_cap_data lucd[2];
1893 	int error, u32s;
1894 
1895 	if (uap->hdrp == NULL)
1896 		return (EFAULT);
1897 
1898 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1899 	if (error != 0)
1900 		return (error);
1901 
1902 	switch (luch.version) {
1903 	case _LINUX_CAPABILITY_VERSION_1:
1904 		u32s = 1;
1905 		break;
1906 	case _LINUX_CAPABILITY_VERSION_2:
1907 	case _LINUX_CAPABILITY_VERSION_3:
1908 		u32s = 2;
1909 		break;
1910 	default:
1911 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1912 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1913 		if (error)
1914 			return (error);
1915 		return (EINVAL);
1916 	}
1917 
1918 	if (luch.pid)
1919 		return (EPERM);
1920 
1921 	if (uap->datap) {
1922 		/*
1923 		 * The current implementation doesn't support setting
1924 		 * a capability (it's essentially a stub) so indicate
1925 		 * that no capabilities are currently set or available
1926 		 * to request.
1927 		 */
1928 		memset(&lucd, 0, u32s * sizeof(lucd[0]));
1929 		error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
1930 	}
1931 
1932 	return (error);
1933 }
1934 
1935 int
1936 linux_capset(struct thread *td, struct linux_capset_args *uap)
1937 {
1938 	struct l_user_cap_header luch;
1939 	struct l_user_cap_data lucd[2];
1940 	int error, i, u32s;
1941 
1942 	if (uap->hdrp == NULL || uap->datap == NULL)
1943 		return (EFAULT);
1944 
1945 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1946 	if (error != 0)
1947 		return (error);
1948 
1949 	switch (luch.version) {
1950 	case _LINUX_CAPABILITY_VERSION_1:
1951 		u32s = 1;
1952 		break;
1953 	case _LINUX_CAPABILITY_VERSION_2:
1954 	case _LINUX_CAPABILITY_VERSION_3:
1955 		u32s = 2;
1956 		break;
1957 	default:
1958 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1959 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1960 		if (error)
1961 			return (error);
1962 		return (EINVAL);
1963 	}
1964 
1965 	if (luch.pid)
1966 		return (EPERM);
1967 
1968 	error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
1969 	if (error != 0)
1970 		return (error);
1971 
1972 	/* We currently don't support setting any capabilities. */
1973 	for (i = 0; i < u32s; i++) {
1974 		if (lucd[i].effective || lucd[i].permitted ||
1975 		    lucd[i].inheritable) {
1976 			linux_msg(td,
1977 			    "capset[%d] effective=0x%x, permitted=0x%x, "
1978 			    "inheritable=0x%x is not implemented", i,
1979 			    (int)lucd[i].effective, (int)lucd[i].permitted,
1980 			    (int)lucd[i].inheritable);
1981 			return (EPERM);
1982 		}
1983 	}
1984 
1985 	return (0);
1986 }
1987 
1988 int
1989 linux_prctl(struct thread *td, struct linux_prctl_args *args)
1990 {
1991 	int error = 0, max_size, arg;
1992 	struct proc *p = td->td_proc;
1993 	char comm[LINUX_MAX_COMM_LEN];
1994 	int pdeath_signal, trace_state;
1995 
1996 	switch (args->option) {
1997 	case LINUX_PR_SET_PDEATHSIG:
1998 		if (!LINUX_SIG_VALID(args->arg2))
1999 			return (EINVAL);
2000 		pdeath_signal = linux_to_bsd_signal(args->arg2);
2001 		return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
2002 		    &pdeath_signal));
2003 	case LINUX_PR_GET_PDEATHSIG:
2004 		error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
2005 		    &pdeath_signal);
2006 		if (error != 0)
2007 			return (error);
2008 		pdeath_signal = bsd_to_linux_signal(pdeath_signal);
2009 		return (copyout(&pdeath_signal,
2010 		    (void *)(register_t)args->arg2,
2011 		    sizeof(pdeath_signal)));
2012 	/*
2013 	 * In Linux, this flag controls if set[gu]id processes can coredump.
2014 	 * There are additional semantics imposed on processes that cannot
2015 	 * coredump:
2016 	 * - Such processes can not be ptraced.
2017 	 * - There are some semantics around ownership of process-related files
2018 	 *   in the /proc namespace.
2019 	 *
2020 	 * In FreeBSD, we can (and by default, do) disable setuid coredump
2021 	 * system-wide with 'sugid_coredump.'  We control tracability on a
2022 	 * per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag).
2023 	 * By happy coincidence, P2_NOTRACE also prevents coredumping.  So the
2024 	 * procctl is roughly analogous to Linux's DUMPABLE.
2025 	 *
2026 	 * So, proxy these knobs to the corresponding PROC_TRACE setting.
2027 	 */
2028 	case LINUX_PR_GET_DUMPABLE:
2029 		error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS,
2030 		    &trace_state);
2031 		if (error != 0)
2032 			return (error);
2033 		td->td_retval[0] = (trace_state != -1);
2034 		return (0);
2035 	case LINUX_PR_SET_DUMPABLE:
2036 		/*
2037 		 * It is only valid for userspace to set one of these two
2038 		 * flags, and only one at a time.
2039 		 */
2040 		switch (args->arg2) {
2041 		case LINUX_SUID_DUMP_DISABLE:
2042 			trace_state = PROC_TRACE_CTL_DISABLE_EXEC;
2043 			break;
2044 		case LINUX_SUID_DUMP_USER:
2045 			trace_state = PROC_TRACE_CTL_ENABLE;
2046 			break;
2047 		default:
2048 			return (EINVAL);
2049 		}
2050 		return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL,
2051 		    &trace_state));
2052 	case LINUX_PR_GET_KEEPCAPS:
2053 		/*
2054 		 * Indicate that we always clear the effective and
2055 		 * permitted capability sets when the user id becomes
2056 		 * non-zero (actually the capability sets are simply
2057 		 * always zero in the current implementation).
2058 		 */
2059 		td->td_retval[0] = 0;
2060 		break;
2061 	case LINUX_PR_SET_KEEPCAPS:
2062 		/*
2063 		 * Ignore requests to keep the effective and permitted
2064 		 * capability sets when the user id becomes non-zero.
2065 		 */
2066 		break;
2067 	case LINUX_PR_SET_NAME:
2068 		/*
2069 		 * To be on the safe side we need to make sure to not
2070 		 * overflow the size a Linux program expects. We already
2071 		 * do this here in the copyin, so that we don't need to
2072 		 * check on copyout.
2073 		 */
2074 		max_size = MIN(sizeof(comm), sizeof(p->p_comm));
2075 		error = copyinstr((void *)(register_t)args->arg2, comm,
2076 		    max_size, NULL);
2077 
2078 		/* Linux silently truncates the name if it is too long. */
2079 		if (error == ENAMETOOLONG) {
2080 			/*
2081 			 * XXX: copyinstr() isn't documented to populate the
2082 			 * array completely, so do a copyin() to be on the
2083 			 * safe side. This should be changed in case
2084 			 * copyinstr() is changed to guarantee this.
2085 			 */
2086 			error = copyin((void *)(register_t)args->arg2, comm,
2087 			    max_size - 1);
2088 			comm[max_size - 1] = '\0';
2089 		}
2090 		if (error)
2091 			return (error);
2092 
2093 		PROC_LOCK(p);
2094 		strlcpy(p->p_comm, comm, sizeof(p->p_comm));
2095 		PROC_UNLOCK(p);
2096 		break;
2097 	case LINUX_PR_GET_NAME:
2098 		PROC_LOCK(p);
2099 		strlcpy(comm, p->p_comm, sizeof(comm));
2100 		PROC_UNLOCK(p);
2101 		error = copyout(comm, (void *)(register_t)args->arg2,
2102 		    strlen(comm) + 1);
2103 		break;
2104 	case LINUX_PR_GET_SECCOMP:
2105 	case LINUX_PR_SET_SECCOMP:
2106 		/*
2107 		 * Same as returned by Linux without CONFIG_SECCOMP enabled.
2108 		 */
2109 		error = EINVAL;
2110 		break;
2111 	case LINUX_PR_CAPBSET_READ:
2112 #if 0
2113 		/*
2114 		 * This makes too much noise with Ubuntu Focal.
2115 		 */
2116 		linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d",
2117 		    (int)args->arg2);
2118 #endif
2119 		error = EINVAL;
2120 		break;
2121 	case LINUX_PR_SET_NO_NEW_PRIVS:
2122 		arg = args->arg2 == 1 ?
2123 		    PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
2124 		error = kern_procctl(td, P_PID, p->p_pid,
2125 		    PROC_NO_NEW_PRIVS_CTL, &arg);
2126 		break;
2127 	case LINUX_PR_SET_PTRACER:
2128 		linux_msg(td, "unsupported prctl PR_SET_PTRACER");
2129 		error = EINVAL;
2130 		break;
2131 	default:
2132 		linux_msg(td, "unsupported prctl option %d", args->option);
2133 		error = EINVAL;
2134 		break;
2135 	}
2136 
2137 	return (error);
2138 }
2139 
2140 int
2141 linux_sched_setparam(struct thread *td,
2142     struct linux_sched_setparam_args *uap)
2143 {
2144 	struct sched_param sched_param;
2145 	struct thread *tdt;
2146 	int error, policy;
2147 
2148 	error = copyin(uap->param, &sched_param, sizeof(sched_param));
2149 	if (error)
2150 		return (error);
2151 
2152 	tdt = linux_tdfind(td, uap->pid, -1);
2153 	if (tdt == NULL)
2154 		return (ESRCH);
2155 
2156 	if (linux_map_sched_prio) {
2157 		error = kern_sched_getscheduler(td, tdt, &policy);
2158 		if (error)
2159 			goto out;
2160 
2161 		switch (policy) {
2162 		case SCHED_OTHER:
2163 			if (sched_param.sched_priority != 0) {
2164 				error = EINVAL;
2165 				goto out;
2166 			}
2167 			sched_param.sched_priority =
2168 			    PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
2169 			break;
2170 		case SCHED_FIFO:
2171 		case SCHED_RR:
2172 			if (sched_param.sched_priority < 1 ||
2173 			    sched_param.sched_priority >= LINUX_MAX_RT_PRIO) {
2174 				error = EINVAL;
2175 				goto out;
2176 			}
2177 			/*
2178 			 * Map [1, LINUX_MAX_RT_PRIO - 1] to
2179 			 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
2180 			 */
2181 			sched_param.sched_priority =
2182 			    (sched_param.sched_priority - 1) *
2183 			    (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
2184 			    (LINUX_MAX_RT_PRIO - 1);
2185 			break;
2186 		}
2187 	}
2188 
2189 	error = kern_sched_setparam(td, tdt, &sched_param);
2190 out:	PROC_UNLOCK(tdt->td_proc);
2191 	return (error);
2192 }
2193 
2194 int
2195 linux_sched_getparam(struct thread *td,
2196     struct linux_sched_getparam_args *uap)
2197 {
2198 	struct sched_param sched_param;
2199 	struct thread *tdt;
2200 	int error, policy;
2201 
2202 	tdt = linux_tdfind(td, uap->pid, -1);
2203 	if (tdt == NULL)
2204 		return (ESRCH);
2205 
2206 	error = kern_sched_getparam(td, tdt, &sched_param);
2207 	if (error) {
2208 		PROC_UNLOCK(tdt->td_proc);
2209 		return (error);
2210 	}
2211 
2212 	if (linux_map_sched_prio) {
2213 		error = kern_sched_getscheduler(td, tdt, &policy);
2214 		PROC_UNLOCK(tdt->td_proc);
2215 		if (error)
2216 			return (error);
2217 
2218 		switch (policy) {
2219 		case SCHED_OTHER:
2220 			sched_param.sched_priority = 0;
2221 			break;
2222 		case SCHED_FIFO:
2223 		case SCHED_RR:
2224 			/*
2225 			 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to
2226 			 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up).
2227 			 */
2228 			sched_param.sched_priority =
2229 			    (sched_param.sched_priority *
2230 			    (LINUX_MAX_RT_PRIO - 1) +
2231 			    (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) /
2232 			    (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1;
2233 			break;
2234 		}
2235 	} else
2236 		PROC_UNLOCK(tdt->td_proc);
2237 
2238 	error = copyout(&sched_param, uap->param, sizeof(sched_param));
2239 	return (error);
2240 }
2241 
2242 /*
2243  * Get affinity of a process.
2244  */
2245 int
2246 linux_sched_getaffinity(struct thread *td,
2247     struct linux_sched_getaffinity_args *args)
2248 {
2249 	struct thread *tdt;
2250 	cpuset_t *mask;
2251 	size_t size;
2252 	int error;
2253 	id_t tid;
2254 
2255 	tdt = linux_tdfind(td, args->pid, -1);
2256 	if (tdt == NULL)
2257 		return (ESRCH);
2258 	tid = tdt->td_tid;
2259 	PROC_UNLOCK(tdt->td_proc);
2260 
2261 	mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO);
2262 	size = min(args->len, sizeof(cpuset_t));
2263 	error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
2264 	    tid, size, mask);
2265 	if (error == ERANGE)
2266 		error = EINVAL;
2267  	if (error == 0)
2268 		error = copyout(mask, args->user_mask_ptr, size);
2269 	if (error == 0)
2270 		td->td_retval[0] = size;
2271 	free(mask, M_LINUX);
2272 	return (error);
2273 }
2274 
2275 /*
2276  *  Set affinity of a process.
2277  */
2278 int
2279 linux_sched_setaffinity(struct thread *td,
2280     struct linux_sched_setaffinity_args *args)
2281 {
2282 	struct thread *tdt;
2283 	cpuset_t *mask;
2284 	int cpu, error;
2285 	size_t len;
2286 	id_t tid;
2287 
2288 	tdt = linux_tdfind(td, args->pid, -1);
2289 	if (tdt == NULL)
2290 		return (ESRCH);
2291 	tid = tdt->td_tid;
2292 	PROC_UNLOCK(tdt->td_proc);
2293 
2294 	len = min(args->len, sizeof(cpuset_t));
2295 	mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO);;
2296 	error = copyin(args->user_mask_ptr, mask, len);
2297 	if (error != 0)
2298 		goto out;
2299 	/* Linux ignore high bits */
2300 	CPU_FOREACH_ISSET(cpu, mask)
2301 		if (cpu > mp_maxid)
2302 			CPU_CLR(cpu, mask);
2303 
2304 	error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
2305 	    tid, mask);
2306 	if (error == EDEADLK)
2307 		error = EINVAL;
2308 out:
2309 	free(mask, M_TEMP);
2310 	return (error);
2311 }
2312 
2313 struct linux_rlimit64 {
2314 	uint64_t	rlim_cur;
2315 	uint64_t	rlim_max;
2316 };
2317 
2318 int
2319 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
2320 {
2321 	struct rlimit rlim, nrlim;
2322 	struct linux_rlimit64 lrlim;
2323 	struct proc *p;
2324 	u_int which;
2325 	int flags;
2326 	int error;
2327 
2328 	if (args->new == NULL && args->old != NULL) {
2329 		if (linux_get_dummy_limit(args->resource, &rlim)) {
2330 			lrlim.rlim_cur = rlim.rlim_cur;
2331 			lrlim.rlim_max = rlim.rlim_max;
2332 			return (copyout(&lrlim, args->old, sizeof(lrlim)));
2333 		}
2334 	}
2335 
2336 	if (args->resource >= LINUX_RLIM_NLIMITS)
2337 		return (EINVAL);
2338 
2339 	which = linux_to_bsd_resource[args->resource];
2340 	if (which == -1)
2341 		return (EINVAL);
2342 
2343 	if (args->new != NULL) {
2344 		/*
2345 		 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux
2346 		 * rlim is unsigned 64-bit. FreeBSD treats negative limits
2347 		 * as INFINITY so we do not need a conversion even.
2348 		 */
2349 		error = copyin(args->new, &nrlim, sizeof(nrlim));
2350 		if (error != 0)
2351 			return (error);
2352 	}
2353 
2354 	flags = PGET_HOLD | PGET_NOTWEXIT;
2355 	if (args->new != NULL)
2356 		flags |= PGET_CANDEBUG;
2357 	else
2358 		flags |= PGET_CANSEE;
2359 	if (args->pid == 0) {
2360 		p = td->td_proc;
2361 		PHOLD(p);
2362 	} else {
2363 		error = pget(args->pid, flags, &p);
2364 		if (error != 0)
2365 			return (error);
2366 	}
2367 	if (args->old != NULL) {
2368 		PROC_LOCK(p);
2369 		lim_rlimit_proc(p, which, &rlim);
2370 		PROC_UNLOCK(p);
2371 		if (rlim.rlim_cur == RLIM_INFINITY)
2372 			lrlim.rlim_cur = LINUX_RLIM_INFINITY;
2373 		else
2374 			lrlim.rlim_cur = rlim.rlim_cur;
2375 		if (rlim.rlim_max == RLIM_INFINITY)
2376 			lrlim.rlim_max = LINUX_RLIM_INFINITY;
2377 		else
2378 			lrlim.rlim_max = rlim.rlim_max;
2379 		error = copyout(&lrlim, args->old, sizeof(lrlim));
2380 		if (error != 0)
2381 			goto out;
2382 	}
2383 
2384 	if (args->new != NULL)
2385 		error = kern_proc_setrlimit(td, p, which, &nrlim);
2386 
2387  out:
2388 	PRELE(p);
2389 	return (error);
2390 }
2391 
2392 int
2393 linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
2394 {
2395 	struct timespec ts, *tsp;
2396 	int error;
2397 
2398 	if (args->tsp != NULL) {
2399 		error = linux_get_timespec(&ts, args->tsp);
2400 		if (error != 0)
2401 			return (error);
2402 		tsp = &ts;
2403 	} else
2404 		tsp = NULL;
2405 
2406 	error = linux_common_pselect6(td, args->nfds, args->readfds,
2407 	    args->writefds, args->exceptfds, tsp, args->sig);
2408 
2409 	if (args->tsp != NULL)
2410 		linux_put_timespec(&ts, args->tsp);
2411 	return (error);
2412 }
2413 
2414 static int
2415 linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds,
2416     l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp,
2417     l_uintptr_t *sig)
2418 {
2419 	struct timeval utv, tv0, tv1, *tvp;
2420 	struct l_pselect6arg lpse6;
2421 	sigset_t *ssp;
2422 	sigset_t ss;
2423 	int error;
2424 
2425 	ssp = NULL;
2426 	if (sig != NULL) {
2427 		error = copyin(sig, &lpse6, sizeof(lpse6));
2428 		if (error != 0)
2429 			return (error);
2430 		error = linux_copyin_sigset(td, PTRIN(lpse6.ss),
2431 		    lpse6.ss_len, &ss, &ssp);
2432 		if (error != 0)
2433 		    return (error);
2434 	} else
2435 		ssp = NULL;
2436 
2437 	/*
2438 	 * Currently glibc changes nanosecond number to microsecond.
2439 	 * This mean losing precision but for now it is hardly seen.
2440 	 */
2441 	if (tsp != NULL) {
2442 		TIMESPEC_TO_TIMEVAL(&utv, tsp);
2443 		if (itimerfix(&utv))
2444 			return (EINVAL);
2445 
2446 		microtime(&tv0);
2447 		tvp = &utv;
2448 	} else
2449 		tvp = NULL;
2450 
2451 	error = kern_pselect(td, nfds, readfds, writefds,
2452 	    exceptfds, tvp, ssp, LINUX_NFDBITS);
2453 
2454 	if (tsp != NULL) {
2455 		/*
2456 		 * Compute how much time was left of the timeout,
2457 		 * by subtracting the current time and the time
2458 		 * before we started the call, and subtracting
2459 		 * that result from the user-supplied value.
2460 		 */
2461 		microtime(&tv1);
2462 		timevalsub(&tv1, &tv0);
2463 		timevalsub(&utv, &tv1);
2464 		if (utv.tv_sec < 0)
2465 			timevalclear(&utv);
2466 		TIMEVAL_TO_TIMESPEC(&utv, tsp);
2467 	}
2468 	return (error);
2469 }
2470 
2471 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2472 int
2473 linux_pselect6_time64(struct thread *td,
2474     struct linux_pselect6_time64_args *args)
2475 {
2476 	struct timespec ts, *tsp;
2477 	int error;
2478 
2479 	if (args->tsp != NULL) {
2480 		error = linux_get_timespec64(&ts, args->tsp);
2481 		if (error != 0)
2482 			return (error);
2483 		tsp = &ts;
2484 	} else
2485 		tsp = NULL;
2486 
2487 	error = linux_common_pselect6(td, args->nfds, args->readfds,
2488 	    args->writefds, args->exceptfds, tsp, args->sig);
2489 
2490 	if (args->tsp != NULL)
2491 		linux_put_timespec64(&ts, args->tsp);
2492 	return (error);
2493 }
2494 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2495 
2496 int
2497 linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
2498 {
2499 	struct timespec uts, *tsp;
2500 	int error;
2501 
2502 	if (args->tsp != NULL) {
2503 		error = linux_get_timespec(&uts, args->tsp);
2504 		if (error != 0)
2505 			return (error);
2506 		tsp = &uts;
2507 	} else
2508 		tsp = NULL;
2509 
2510 	error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2511 	    args->sset, args->ssize);
2512 	if (error == 0 && args->tsp != NULL)
2513 		error = linux_put_timespec(&uts, args->tsp);
2514 	return (error);
2515 }
2516 
2517 static int
2518 linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds,
2519     struct timespec *tsp, l_sigset_t *sset, l_size_t ssize)
2520 {
2521 	struct timespec ts0, ts1;
2522 	struct pollfd stackfds[32];
2523 	struct pollfd *kfds;
2524  	sigset_t *ssp;
2525  	sigset_t ss;
2526  	int error;
2527 
2528 	if (kern_poll_maxfds(nfds))
2529 		return (EINVAL);
2530 	if (sset != NULL) {
2531 		error = linux_copyin_sigset(td, sset, ssize, &ss, &ssp);
2532 		if (error != 0)
2533 		    return (error);
2534 	} else
2535 		ssp = NULL;
2536 	if (tsp != NULL)
2537 		nanotime(&ts0);
2538 
2539 	if (nfds > nitems(stackfds))
2540 		kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
2541 	else
2542 		kfds = stackfds;
2543 	error = linux_pollin(td, kfds, fds, nfds);
2544 	if (error != 0)
2545 		goto out;
2546 
2547 	error = kern_poll_kfds(td, kfds, nfds, tsp, ssp);
2548 	if (error == 0)
2549 		error = linux_pollout(td, kfds, fds, nfds);
2550 
2551 	if (error == 0 && tsp != NULL) {
2552 		if (td->td_retval[0]) {
2553 			nanotime(&ts1);
2554 			timespecsub(&ts1, &ts0, &ts1);
2555 			timespecsub(tsp, &ts1, tsp);
2556 			if (tsp->tv_sec < 0)
2557 				timespecclear(tsp);
2558 		} else
2559 			timespecclear(tsp);
2560 	}
2561 
2562 out:
2563 	if (nfds > nitems(stackfds))
2564 		free(kfds, M_TEMP);
2565 	return (error);
2566 }
2567 
2568 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2569 int
2570 linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args)
2571 {
2572 	struct timespec uts, *tsp;
2573 	int error;
2574 
2575 	if (args->tsp != NULL) {
2576 		error = linux_get_timespec64(&uts, args->tsp);
2577 		if (error != 0)
2578 			return (error);
2579 		tsp = &uts;
2580 	} else
2581  		tsp = NULL;
2582 	error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2583 	    args->sset, args->ssize);
2584 	if (error == 0 && args->tsp != NULL)
2585 		error = linux_put_timespec64(&uts, args->tsp);
2586 	return (error);
2587 }
2588 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2589 
2590 static int
2591 linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2592 {
2593 	int error;
2594 	u_int i;
2595 
2596 	error = copyin(ufds, fds, nfd * sizeof(*fds));
2597 	if (error != 0)
2598 		return (error);
2599 
2600 	for (i = 0; i < nfd; i++) {
2601 		if (fds->events != 0)
2602 			linux_to_bsd_poll_events(td, fds->fd,
2603 			    fds->events, &fds->events);
2604 		fds++;
2605 	}
2606 	return (0);
2607 }
2608 
2609 static int
2610 linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2611 {
2612 	int error = 0;
2613 	u_int i, n = 0;
2614 
2615 	for (i = 0; i < nfd; i++) {
2616 		if (fds->revents != 0) {
2617 			bsd_to_linux_poll_events(fds->revents,
2618 			    &fds->revents);
2619 			n++;
2620 		}
2621 		error = copyout(&fds->revents, &ufds->revents,
2622 		    sizeof(ufds->revents));
2623 		if (error)
2624 			return (error);
2625 		fds++;
2626 		ufds++;
2627 	}
2628 	td->td_retval[0] = n;
2629 	return (0);
2630 }
2631 
2632 static int
2633 linux_sched_rr_get_interval_common(struct thread *td, pid_t pid,
2634     struct timespec *ts)
2635 {
2636 	struct thread *tdt;
2637 	int error;
2638 
2639 	/*
2640 	 * According to man in case the invalid pid specified
2641 	 * EINVAL should be returned.
2642 	 */
2643 	if (pid < 0)
2644 		return (EINVAL);
2645 
2646 	tdt = linux_tdfind(td, pid, -1);
2647 	if (tdt == NULL)
2648 		return (ESRCH);
2649 
2650 	error = kern_sched_rr_get_interval_td(td, tdt, ts);
2651 	PROC_UNLOCK(tdt->td_proc);
2652 	return (error);
2653 }
2654 
2655 int
2656 linux_sched_rr_get_interval(struct thread *td,
2657     struct linux_sched_rr_get_interval_args *uap)
2658 {
2659 	struct timespec ts;
2660 	int error;
2661 
2662 	error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2663 	if (error != 0)
2664 		return (error);
2665 	return (linux_put_timespec(&ts, uap->interval));
2666 }
2667 
2668 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2669 int
2670 linux_sched_rr_get_interval_time64(struct thread *td,
2671     struct linux_sched_rr_get_interval_time64_args *uap)
2672 {
2673 	struct timespec ts;
2674 	int error;
2675 
2676 	error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2677 	if (error != 0)
2678 		return (error);
2679 	return (linux_put_timespec64(&ts, uap->interval));
2680 }
2681 #endif
2682 
2683 /*
2684  * In case when the Linux thread is the initial thread in
2685  * the thread group thread id is equal to the process id.
2686  * Glibc depends on this magic (assert in pthread_getattr_np.c).
2687  */
2688 struct thread *
2689 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
2690 {
2691 	struct linux_emuldata *em;
2692 	struct thread *tdt;
2693 	struct proc *p;
2694 
2695 	tdt = NULL;
2696 	if (tid == 0 || tid == td->td_tid) {
2697 		if (pid != -1 && td->td_proc->p_pid != pid)
2698 			return (NULL);
2699 		PROC_LOCK(td->td_proc);
2700 		return (td);
2701 	} else if (tid > PID_MAX)
2702 		return (tdfind(tid, pid));
2703 
2704 	/*
2705 	 * Initial thread where the tid equal to the pid.
2706 	 */
2707 	p = pfind(tid);
2708 	if (p != NULL) {
2709 		if (SV_PROC_ABI(p) != SV_ABI_LINUX ||
2710 		    (pid != -1 && tid != pid)) {
2711 			/*
2712 			 * p is not a Linuxulator process.
2713 			 */
2714 			PROC_UNLOCK(p);
2715 			return (NULL);
2716 		}
2717 		FOREACH_THREAD_IN_PROC(p, tdt) {
2718 			em = em_find(tdt);
2719 			if (tid == em->em_tid)
2720 				return (tdt);
2721 		}
2722 		PROC_UNLOCK(p);
2723 	}
2724 	return (NULL);
2725 }
2726 
2727 void
2728 linux_to_bsd_waitopts(int options, int *bsdopts)
2729 {
2730 
2731 	if (options & LINUX_WNOHANG)
2732 		*bsdopts |= WNOHANG;
2733 	if (options & LINUX_WUNTRACED)
2734 		*bsdopts |= WUNTRACED;
2735 	if (options & LINUX_WEXITED)
2736 		*bsdopts |= WEXITED;
2737 	if (options & LINUX_WCONTINUED)
2738 		*bsdopts |= WCONTINUED;
2739 	if (options & LINUX_WNOWAIT)
2740 		*bsdopts |= WNOWAIT;
2741 
2742 	if (options & __WCLONE)
2743 		*bsdopts |= WLINUXCLONE;
2744 }
2745 
2746 int
2747 linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
2748 {
2749 	struct uio uio;
2750 	struct iovec iov;
2751 	int error;
2752 
2753 	if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
2754 		return (EINVAL);
2755 	if (args->count > INT_MAX)
2756 		args->count = INT_MAX;
2757 
2758 	iov.iov_base = args->buf;
2759 	iov.iov_len = args->count;
2760 
2761 	uio.uio_iov = &iov;
2762 	uio.uio_iovcnt = 1;
2763 	uio.uio_resid = iov.iov_len;
2764 	uio.uio_segflg = UIO_USERSPACE;
2765 	uio.uio_rw = UIO_READ;
2766 	uio.uio_td = td;
2767 
2768 	error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
2769 	if (error == 0)
2770 		td->td_retval[0] = args->count - uio.uio_resid;
2771 	return (error);
2772 }
2773 
2774 int
2775 linux_mincore(struct thread *td, struct linux_mincore_args *args)
2776 {
2777 
2778 	/* Needs to be page-aligned */
2779 	if (args->start & PAGE_MASK)
2780 		return (EINVAL);
2781 	return (kern_mincore(td, args->start, args->len, args->vec));
2782 }
2783 
2784 #define	SYSLOG_TAG	"<6>"
2785 
2786 int
2787 linux_syslog(struct thread *td, struct linux_syslog_args *args)
2788 {
2789 	char buf[128], *src, *dst;
2790 	u_int seq;
2791 	int buflen, error;
2792 
2793 	if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) {
2794 		linux_msg(td, "syslog unsupported type 0x%x", args->type);
2795 		return (EINVAL);
2796 	}
2797 
2798 	if (args->len < 6) {
2799 		td->td_retval[0] = 0;
2800 		return (0);
2801 	}
2802 
2803 	error = priv_check(td, PRIV_MSGBUF);
2804 	if (error)
2805 		return (error);
2806 
2807 	mtx_lock(&msgbuf_lock);
2808 	msgbuf_peekbytes(msgbufp, NULL, 0, &seq);
2809 	mtx_unlock(&msgbuf_lock);
2810 
2811 	dst = args->buf;
2812 	error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG));
2813 	/* The -1 is to skip the trailing '\0'. */
2814 	dst += sizeof(SYSLOG_TAG) - 1;
2815 
2816 	while (error == 0) {
2817 		mtx_lock(&msgbuf_lock);
2818 		buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq);
2819 		mtx_unlock(&msgbuf_lock);
2820 
2821 		if (buflen == 0)
2822 			break;
2823 
2824 		for (src = buf; src < buf + buflen && error == 0; src++) {
2825 			if (*src == '\0')
2826 				continue;
2827 
2828 			if (dst >= args->buf + args->len)
2829 				goto out;
2830 
2831 			error = copyout(src, dst, 1);
2832 			dst++;
2833 
2834 			if (*src == '\n' && *(src + 1) != '<' &&
2835 			    dst + sizeof(SYSLOG_TAG) < args->buf + args->len) {
2836 				error = copyout(&SYSLOG_TAG,
2837 				    dst, sizeof(SYSLOG_TAG));
2838 				dst += sizeof(SYSLOG_TAG) - 1;
2839 			}
2840 		}
2841 	}
2842 out:
2843 	td->td_retval[0] = dst - args->buf;
2844 	return (error);
2845 }
2846 
2847 int
2848 linux_getcpu(struct thread *td, struct linux_getcpu_args *args)
2849 {
2850 	int cpu, error, node;
2851 
2852 	cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */
2853 	error = 0;
2854 	node = cpuid_to_pcpu[cpu]->pc_domain;
2855 
2856 	if (args->cpu != NULL)
2857 		error = copyout(&cpu, args->cpu, sizeof(l_int));
2858 	if (args->node != NULL)
2859 		error = copyout(&node, args->node, sizeof(l_int));
2860 	return (error);
2861 }
2862 
2863 #if defined(__i386__) || defined(__amd64__)
2864 int
2865 linux_poll(struct thread *td, struct linux_poll_args *args)
2866 {
2867 	struct timespec ts, *tsp;
2868 
2869 	if (args->timeout != INFTIM) {
2870 		if (args->timeout < 0)
2871 			return (EINVAL);
2872 		ts.tv_sec = args->timeout / 1000;
2873 		ts.tv_nsec = (args->timeout % 1000) * 1000000;
2874 		tsp = &ts;
2875 	} else
2876 		tsp = NULL;
2877 
2878 	return (linux_common_ppoll(td, args->fds, args->nfds,
2879 	    tsp, NULL, 0));
2880 }
2881 #endif /* __i386__ || __amd64__ */
2882 
2883 int
2884 linux_seccomp(struct thread *td, struct linux_seccomp_args *args)
2885 {
2886 
2887 	switch (args->op) {
2888 	case LINUX_SECCOMP_GET_ACTION_AVAIL:
2889 		return (EOPNOTSUPP);
2890 	default:
2891 		/*
2892 		 * Ignore unknown operations, just like Linux kernel built
2893 		 * without CONFIG_SECCOMP.
2894 		 */
2895 		return (EINVAL);
2896 	}
2897 }
2898 
2899 #ifndef COMPAT_LINUX32
2900 int
2901 linux_execve(struct thread *td, struct linux_execve_args *args)
2902 {
2903 	struct image_args eargs;
2904 	char *path;
2905 	int error;
2906 
2907 	LINUX_CTR(execve);
2908 
2909 	if (!LUSECONVPATH(td)) {
2910 		error = exec_copyin_args(&eargs, args->path, UIO_USERSPACE,
2911 		    args->argp, args->envp);
2912 	} else {
2913 		LCONVPATHEXIST(args->path, &path);
2914 		error = exec_copyin_args(&eargs, path, UIO_SYSSPACE, args->argp,
2915 		    args->envp);
2916 		LFREEPATH(path);
2917 	}
2918 	if (error == 0)
2919 		error = linux_common_execve(td, &eargs);
2920 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
2921 	return (error);
2922 }
2923 #endif
2924