1 /*-
2  * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3  * All rights reserved.
4  * Copyright (c) 2020-2022 The FreeBSD Foundation
5  *
6  * Portions of this software were developed by Björn Zeeb
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/sysctl.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/fcntl.h>
40 #include <sys/file.h>
41 #include <sys/filio.h>
42 #include <sys/pciio.h>
43 #include <sys/pctrie.h>
44 #include <sys/rwlock.h>
45 
46 #include <vm/vm.h>
47 #include <vm/pmap.h>
48 
49 #include <machine/stdarg.h>
50 
51 #include <dev/pci/pcivar.h>
52 #include <dev/pci/pci_private.h>
53 #include <dev/pci/pci_iov.h>
54 #include <dev/backlight/backlight.h>
55 
56 #include <linux/kernel.h>
57 #include <linux/kobject.h>
58 #include <linux/device.h>
59 #include <linux/slab.h>
60 #include <linux/module.h>
61 #include <linux/cdev.h>
62 #include <linux/file.h>
63 #include <linux/sysfs.h>
64 #include <linux/mm.h>
65 #include <linux/io.h>
66 #include <linux/vmalloc.h>
67 #include <linux/pci.h>
68 #include <linux/compat.h>
69 
70 #include <linux/backlight.h>
71 
72 #include "backlight_if.h"
73 #include "pcib_if.h"
74 
75 /* Undef the linux function macro defined in linux/pci.h */
76 #undef pci_get_class
77 
78 extern int linuxkpi_debug;
79 
80 SYSCTL_DECL(_compat_linuxkpi);
81 
82 static counter_u64_t lkpi_pci_nseg1_fail;
83 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
84     &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
85 
86 static device_probe_t linux_pci_probe;
87 static device_attach_t linux_pci_attach;
88 static device_detach_t linux_pci_detach;
89 static device_suspend_t linux_pci_suspend;
90 static device_resume_t linux_pci_resume;
91 static device_shutdown_t linux_pci_shutdown;
92 static pci_iov_init_t linux_pci_iov_init;
93 static pci_iov_uninit_t linux_pci_iov_uninit;
94 static pci_iov_add_vf_t linux_pci_iov_add_vf;
95 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
96 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
97 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
98 
99 static device_method_t pci_methods[] = {
100 	DEVMETHOD(device_probe, linux_pci_probe),
101 	DEVMETHOD(device_attach, linux_pci_attach),
102 	DEVMETHOD(device_detach, linux_pci_detach),
103 	DEVMETHOD(device_suspend, linux_pci_suspend),
104 	DEVMETHOD(device_resume, linux_pci_resume),
105 	DEVMETHOD(device_shutdown, linux_pci_shutdown),
106 	DEVMETHOD(pci_iov_init, linux_pci_iov_init),
107 	DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
108 	DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
109 
110 	/* backlight interface */
111 	DEVMETHOD(backlight_update_status, linux_backlight_update_status),
112 	DEVMETHOD(backlight_get_status, linux_backlight_get_status),
113 	DEVMETHOD(backlight_get_info, linux_backlight_get_info),
114 	DEVMETHOD_END
115 };
116 
117 const char *pci_power_names[] = {
118 	"UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold"
119 };
120 
121 struct linux_dma_priv {
122 	uint64_t	dma_mask;
123 	bus_dma_tag_t	dmat;
124 	uint64_t	dma_coherent_mask;
125 	bus_dma_tag_t	dmat_coherent;
126 	struct mtx	lock;
127 	struct pctrie	ptree;
128 };
129 #define	DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
130 #define	DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
131 
132 static int
133 linux_pdev_dma_uninit(struct pci_dev *pdev)
134 {
135 	struct linux_dma_priv *priv;
136 
137 	priv = pdev->dev.dma_priv;
138 	if (priv->dmat)
139 		bus_dma_tag_destroy(priv->dmat);
140 	if (priv->dmat_coherent)
141 		bus_dma_tag_destroy(priv->dmat_coherent);
142 	mtx_destroy(&priv->lock);
143 	pdev->dev.dma_priv = NULL;
144 	free(priv, M_DEVBUF);
145 	return (0);
146 }
147 
148 static int
149 linux_pdev_dma_init(struct pci_dev *pdev)
150 {
151 	struct linux_dma_priv *priv;
152 	int error;
153 
154 	priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
155 
156 	mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
157 	pctrie_init(&priv->ptree);
158 
159 	pdev->dev.dma_priv = priv;
160 
161 	/* Create a default DMA tags. */
162 	error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
163 	if (error != 0)
164 		goto err;
165 	/* Coherent is lower 32bit only by default in Linux. */
166 	error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
167 	if (error != 0)
168 		goto err;
169 
170 	return (error);
171 
172 err:
173 	linux_pdev_dma_uninit(pdev);
174 	return (error);
175 }
176 
177 int
178 linux_dma_tag_init(struct device *dev, u64 dma_mask)
179 {
180 	struct linux_dma_priv *priv;
181 	int error;
182 
183 	priv = dev->dma_priv;
184 
185 	if (priv->dmat) {
186 		if (priv->dma_mask == dma_mask)
187 			return (0);
188 
189 		bus_dma_tag_destroy(priv->dmat);
190 	}
191 
192 	priv->dma_mask = dma_mask;
193 
194 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
195 	    1, 0,			/* alignment, boundary */
196 	    dma_mask,			/* lowaddr */
197 	    BUS_SPACE_MAXADDR,		/* highaddr */
198 	    NULL, NULL,			/* filtfunc, filtfuncarg */
199 	    BUS_SPACE_MAXSIZE,		/* maxsize */
200 	    1,				/* nsegments */
201 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
202 	    0,				/* flags */
203 	    NULL, NULL,			/* lockfunc, lockfuncarg */
204 	    &priv->dmat);
205 	return (-error);
206 }
207 
208 int
209 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
210 {
211 	struct linux_dma_priv *priv;
212 	int error;
213 
214 	priv = dev->dma_priv;
215 
216 	if (priv->dmat_coherent) {
217 		if (priv->dma_coherent_mask == dma_mask)
218 			return (0);
219 
220 		bus_dma_tag_destroy(priv->dmat_coherent);
221 	}
222 
223 	priv->dma_coherent_mask = dma_mask;
224 
225 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
226 	    1, 0,			/* alignment, boundary */
227 	    dma_mask,			/* lowaddr */
228 	    BUS_SPACE_MAXADDR,		/* highaddr */
229 	    NULL, NULL,			/* filtfunc, filtfuncarg */
230 	    BUS_SPACE_MAXSIZE,		/* maxsize */
231 	    1,				/* nsegments */
232 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
233 	    0,				/* flags */
234 	    NULL, NULL,			/* lockfunc, lockfuncarg */
235 	    &priv->dmat_coherent);
236 	return (-error);
237 }
238 
239 static struct pci_driver *
240 linux_pci_find(device_t dev, const struct pci_device_id **idp)
241 {
242 	const struct pci_device_id *id;
243 	struct pci_driver *pdrv;
244 	uint16_t vendor;
245 	uint16_t device;
246 	uint16_t subvendor;
247 	uint16_t subdevice;
248 
249 	vendor = pci_get_vendor(dev);
250 	device = pci_get_device(dev);
251 	subvendor = pci_get_subvendor(dev);
252 	subdevice = pci_get_subdevice(dev);
253 
254 	spin_lock(&pci_lock);
255 	list_for_each_entry(pdrv, &pci_drivers, node) {
256 		for (id = pdrv->id_table; id->vendor != 0; id++) {
257 			if (vendor == id->vendor &&
258 			    (PCI_ANY_ID == id->device || device == id->device) &&
259 			    (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
260 			    (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
261 				*idp = id;
262 				spin_unlock(&pci_lock);
263 				return (pdrv);
264 			}
265 		}
266 	}
267 	spin_unlock(&pci_lock);
268 	return (NULL);
269 }
270 
271 struct pci_dev *
272 lkpi_pci_get_device(uint16_t vendor, uint16_t device, struct pci_dev *odev)
273 {
274 	struct pci_dev *pdev;
275 
276 	KASSERT(odev == NULL, ("%s: odev argument not yet supported\n", __func__));
277 
278 	spin_lock(&pci_lock);
279 	list_for_each_entry(pdev, &pci_devices, links) {
280 		if (pdev->vendor == vendor && pdev->device == device)
281 			break;
282 	}
283 	spin_unlock(&pci_lock);
284 
285 	return (pdev);
286 }
287 
288 static void
289 lkpi_pci_dev_release(struct device *dev)
290 {
291 
292 	lkpi_devres_release_free_list(dev);
293 	spin_lock_destroy(&dev->devres_lock);
294 }
295 
296 static void
297 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
298 {
299 
300 	pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
301 	pdev->vendor = pci_get_vendor(dev);
302 	pdev->device = pci_get_device(dev);
303 	pdev->subsystem_vendor = pci_get_subvendor(dev);
304 	pdev->subsystem_device = pci_get_subdevice(dev);
305 	pdev->class = pci_get_class(dev);
306 	pdev->revision = pci_get_revid(dev);
307 	pdev->path_name = kasprintf(GFP_KERNEL, "%04d:%02d:%02d.%d",
308 	    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
309 	    pci_get_function(dev));
310 	pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
311 	/*
312 	 * This should be the upstream bridge; pci_upstream_bridge()
313 	 * handles that case on demand as otherwise we'll shadow the
314 	 * entire PCI hierarchy.
315 	 */
316 	pdev->bus->self = pdev;
317 	pdev->bus->number = pci_get_bus(dev);
318 	pdev->bus->domain = pci_get_domain(dev);
319 	pdev->dev.bsddev = dev;
320 	pdev->dev.parent = &linux_root_device;
321 	pdev->dev.release = lkpi_pci_dev_release;
322 	INIT_LIST_HEAD(&pdev->dev.irqents);
323 
324 	if (pci_msi_count(dev) > 0)
325 		pdev->msi_desc = malloc(pci_msi_count(dev) *
326 		    sizeof(*pdev->msi_desc), M_DEVBUF, M_WAITOK | M_ZERO);
327 
328 	kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
329 	kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
330 	kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
331 	    kobject_name(&pdev->dev.kobj));
332 	spin_lock_init(&pdev->dev.devres_lock);
333 	INIT_LIST_HEAD(&pdev->dev.devres_head);
334 }
335 
336 static void
337 lkpinew_pci_dev_release(struct device *dev)
338 {
339 	struct pci_dev *pdev;
340 	int i;
341 
342 	pdev = to_pci_dev(dev);
343 	if (pdev->root != NULL)
344 		pci_dev_put(pdev->root);
345 	if (pdev->bus->self != pdev)
346 		pci_dev_put(pdev->bus->self);
347 	free(pdev->bus, M_DEVBUF);
348 	if (pdev->msi_desc != NULL) {
349 		for (i = pci_msi_count(pdev->dev.bsddev) - 1; i >= 0; i--)
350 			free(pdev->msi_desc[i], M_DEVBUF);
351 		free(pdev->msi_desc, M_DEVBUF);
352 	}
353 	kfree(pdev->path_name);
354 	free(pdev, M_DEVBUF);
355 }
356 
357 struct pci_dev *
358 lkpinew_pci_dev(device_t dev)
359 {
360 	struct pci_dev *pdev;
361 
362 	pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
363 	lkpifill_pci_dev(dev, pdev);
364 	pdev->dev.release = lkpinew_pci_dev_release;
365 
366 	return (pdev);
367 }
368 
369 struct pci_dev *
370 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
371 {
372 	device_t dev;
373 	device_t devfrom = NULL;
374 	struct pci_dev *pdev;
375 
376 	if (from != NULL)
377 		devfrom = from->dev.bsddev;
378 
379 	dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
380 	if (dev == NULL)
381 		return (NULL);
382 
383 	pdev = lkpinew_pci_dev(dev);
384 	return (pdev);
385 }
386 
387 struct pci_dev *
388 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
389     unsigned int devfn)
390 {
391 	device_t dev;
392 	struct pci_dev *pdev;
393 
394 	dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
395 	if (dev == NULL)
396 		return (NULL);
397 
398 	pdev = lkpinew_pci_dev(dev);
399 	return (pdev);
400 }
401 
402 static int
403 linux_pci_probe(device_t dev)
404 {
405 	const struct pci_device_id *id;
406 	struct pci_driver *pdrv;
407 
408 	if ((pdrv = linux_pci_find(dev, &id)) == NULL)
409 		return (ENXIO);
410 	if (device_get_driver(dev) != &pdrv->bsddriver)
411 		return (ENXIO);
412 	device_set_desc(dev, pdrv->name);
413 
414 	/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
415 	if (pdrv->bsd_probe_return == 0)
416 		return (BUS_PROBE_DEFAULT);
417 	else
418 		return (pdrv->bsd_probe_return);
419 }
420 
421 static int
422 linux_pci_attach(device_t dev)
423 {
424 	const struct pci_device_id *id;
425 	struct pci_driver *pdrv;
426 	struct pci_dev *pdev;
427 
428 	pdrv = linux_pci_find(dev, &id);
429 	pdev = device_get_softc(dev);
430 
431 	MPASS(pdrv != NULL);
432 	MPASS(pdev != NULL);
433 
434 	return (linux_pci_attach_device(dev, pdrv, id, pdev));
435 }
436 
437 int
438 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
439     const struct pci_device_id *id, struct pci_dev *pdev)
440 {
441 	struct resource_list_entry *rle;
442 	device_t parent;
443 	uintptr_t rid;
444 	int error;
445 	bool isdrm;
446 
447 	linux_set_current(curthread);
448 
449 	parent = device_get_parent(dev);
450 	isdrm = pdrv != NULL && pdrv->isdrm;
451 
452 	if (isdrm) {
453 		struct pci_devinfo *dinfo;
454 
455 		dinfo = device_get_ivars(parent);
456 		device_set_ivars(dev, dinfo);
457 	}
458 
459 	lkpifill_pci_dev(dev, pdev);
460 	if (isdrm)
461 		PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
462 	else
463 		PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
464 	pdev->devfn = rid;
465 	pdev->pdrv = pdrv;
466 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
467 	if (rle != NULL)
468 		pdev->dev.irq = rle->start;
469 	else
470 		pdev->dev.irq = LINUX_IRQ_INVALID;
471 	pdev->irq = pdev->dev.irq;
472 	error = linux_pdev_dma_init(pdev);
473 	if (error)
474 		goto out_dma_init;
475 
476 	TAILQ_INIT(&pdev->mmio);
477 
478 	spin_lock(&pci_lock);
479 	list_add(&pdev->links, &pci_devices);
480 	spin_unlock(&pci_lock);
481 
482 	if (pdrv != NULL) {
483 		error = pdrv->probe(pdev, id);
484 		if (error)
485 			goto out_probe;
486 	}
487 	return (0);
488 
489 out_probe:
490 	free(pdev->bus, M_DEVBUF);
491 	linux_pdev_dma_uninit(pdev);
492 out_dma_init:
493 	spin_lock(&pci_lock);
494 	list_del(&pdev->links);
495 	spin_unlock(&pci_lock);
496 	put_device(&pdev->dev);
497 	return (-error);
498 }
499 
500 static int
501 linux_pci_detach(device_t dev)
502 {
503 	struct pci_dev *pdev;
504 
505 	pdev = device_get_softc(dev);
506 
507 	MPASS(pdev != NULL);
508 
509 	device_set_desc(dev, NULL);
510 
511 	return (linux_pci_detach_device(pdev));
512 }
513 
514 int
515 linux_pci_detach_device(struct pci_dev *pdev)
516 {
517 
518 	linux_set_current(curthread);
519 
520 	if (pdev->pdrv != NULL)
521 		pdev->pdrv->remove(pdev);
522 
523 	if (pdev->root != NULL)
524 		pci_dev_put(pdev->root);
525 	free(pdev->bus, M_DEVBUF);
526 	linux_pdev_dma_uninit(pdev);
527 
528 	spin_lock(&pci_lock);
529 	list_del(&pdev->links);
530 	spin_unlock(&pci_lock);
531 	put_device(&pdev->dev);
532 
533 	return (0);
534 }
535 
536 static int
537 lkpi_pci_disable_dev(struct device *dev)
538 {
539 
540 	(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
541 	(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
542 	return (0);
543 }
544 
545 struct pci_devres *
546 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
547 {
548 	struct pci_devres *dr;
549 
550 	dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
551 	if (dr == NULL) {
552 		dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
553 		    GFP_KERNEL | __GFP_ZERO);
554 		if (dr != NULL)
555 			lkpi_devres_add(&pdev->dev, dr);
556 	}
557 
558 	return (dr);
559 }
560 
561 void
562 lkpi_pci_devres_release(struct device *dev, void *p)
563 {
564 	struct pci_devres *dr;
565 	struct pci_dev *pdev;
566 	int bar;
567 
568 	pdev = to_pci_dev(dev);
569 	dr = p;
570 
571 	if (pdev->msix_enabled)
572 		lkpi_pci_disable_msix(pdev);
573         if (pdev->msi_enabled)
574 		lkpi_pci_disable_msi(pdev);
575 
576 	if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
577 		dr->enable_io = false;
578 
579 	if (dr->region_mask == 0)
580 		return;
581 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
582 
583 		if ((dr->region_mask & (1 << bar)) == 0)
584 			continue;
585 		pci_release_region(pdev, bar);
586 	}
587 }
588 
589 struct pcim_iomap_devres *
590 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
591 {
592 	struct pcim_iomap_devres *dr;
593 
594 	dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
595 	    NULL, NULL);
596 	if (dr == NULL) {
597 		dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
598 		    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
599 		if (dr != NULL)
600 			lkpi_devres_add(&pdev->dev, dr);
601 	}
602 
603 	if (dr == NULL)
604 		device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
605 
606 	return (dr);
607 }
608 
609 void
610 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
611 {
612 	struct pcim_iomap_devres *dr;
613 	struct pci_dev *pdev;
614 	int bar;
615 
616 	dr = p;
617 	pdev = to_pci_dev(dev);
618 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
619 
620 		if (dr->mmio_table[bar] == NULL)
621 			continue;
622 
623 		pci_iounmap(pdev, dr->mmio_table[bar]);
624 	}
625 }
626 
627 static int
628 linux_pci_suspend(device_t dev)
629 {
630 	const struct dev_pm_ops *pmops;
631 	struct pm_message pm = { };
632 	struct pci_dev *pdev;
633 	int error;
634 
635 	error = 0;
636 	linux_set_current(curthread);
637 	pdev = device_get_softc(dev);
638 	pmops = pdev->pdrv->driver.pm;
639 
640 	if (pdev->pdrv->suspend != NULL)
641 		error = -pdev->pdrv->suspend(pdev, pm);
642 	else if (pmops != NULL && pmops->suspend != NULL) {
643 		error = -pmops->suspend(&pdev->dev);
644 		if (error == 0 && pmops->suspend_late != NULL)
645 			error = -pmops->suspend_late(&pdev->dev);
646 	}
647 	return (error);
648 }
649 
650 static int
651 linux_pci_resume(device_t dev)
652 {
653 	const struct dev_pm_ops *pmops;
654 	struct pci_dev *pdev;
655 	int error;
656 
657 	error = 0;
658 	linux_set_current(curthread);
659 	pdev = device_get_softc(dev);
660 	pmops = pdev->pdrv->driver.pm;
661 
662 	if (pdev->pdrv->resume != NULL)
663 		error = -pdev->pdrv->resume(pdev);
664 	else if (pmops != NULL && pmops->resume != NULL) {
665 		if (pmops->resume_early != NULL)
666 			error = -pmops->resume_early(&pdev->dev);
667 		if (error == 0 && pmops->resume != NULL)
668 			error = -pmops->resume(&pdev->dev);
669 	}
670 	return (error);
671 }
672 
673 static int
674 linux_pci_shutdown(device_t dev)
675 {
676 	struct pci_dev *pdev;
677 
678 	linux_set_current(curthread);
679 	pdev = device_get_softc(dev);
680 	if (pdev->pdrv->shutdown != NULL)
681 		pdev->pdrv->shutdown(pdev);
682 	return (0);
683 }
684 
685 static int
686 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
687 {
688 	struct pci_dev *pdev;
689 	int error;
690 
691 	linux_set_current(curthread);
692 	pdev = device_get_softc(dev);
693 	if (pdev->pdrv->bsd_iov_init != NULL)
694 		error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
695 	else
696 		error = EINVAL;
697 	return (error);
698 }
699 
700 static void
701 linux_pci_iov_uninit(device_t dev)
702 {
703 	struct pci_dev *pdev;
704 
705 	linux_set_current(curthread);
706 	pdev = device_get_softc(dev);
707 	if (pdev->pdrv->bsd_iov_uninit != NULL)
708 		pdev->pdrv->bsd_iov_uninit(dev);
709 }
710 
711 static int
712 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
713 {
714 	struct pci_dev *pdev;
715 	int error;
716 
717 	linux_set_current(curthread);
718 	pdev = device_get_softc(dev);
719 	if (pdev->pdrv->bsd_iov_add_vf != NULL)
720 		error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
721 	else
722 		error = EINVAL;
723 	return (error);
724 }
725 
726 static int
727 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
728 {
729 	int error;
730 
731 	linux_set_current(curthread);
732 	spin_lock(&pci_lock);
733 	list_add(&pdrv->node, &pci_drivers);
734 	spin_unlock(&pci_lock);
735 	if (pdrv->bsddriver.name == NULL)
736 		pdrv->bsddriver.name = pdrv->name;
737 	pdrv->bsddriver.methods = pci_methods;
738 	pdrv->bsddriver.size = sizeof(struct pci_dev);
739 
740 	bus_topo_lock();
741 	error = devclass_add_driver(dc, &pdrv->bsddriver,
742 	    BUS_PASS_DEFAULT, &pdrv->bsdclass);
743 	bus_topo_unlock();
744 	return (-error);
745 }
746 
747 int
748 linux_pci_register_driver(struct pci_driver *pdrv)
749 {
750 	devclass_t dc;
751 
752 	dc = devclass_find("pci");
753 	if (dc == NULL)
754 		return (-ENXIO);
755 	pdrv->isdrm = false;
756 	return (_linux_pci_register_driver(pdrv, dc));
757 }
758 
759 struct resource_list_entry *
760 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
761     int type, int rid)
762 {
763 	device_t dev;
764 	struct resource *res;
765 
766 	KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
767 	    ("trying to reserve non-BAR type %d", type));
768 
769 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
770 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
771 	res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
772 	    1, 1, 0);
773 	if (res == NULL)
774 		return (NULL);
775 	return (resource_list_find(rl, type, rid));
776 }
777 
778 unsigned long
779 pci_resource_start(struct pci_dev *pdev, int bar)
780 {
781 	struct resource_list_entry *rle;
782 	rman_res_t newstart;
783 	device_t dev;
784 	int error;
785 
786 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
787 		return (0);
788 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
789 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
790 	error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
791 	if (error != 0) {
792 		device_printf(pdev->dev.bsddev,
793 		    "translate of %#jx failed: %d\n",
794 		    (uintmax_t)rle->start, error);
795 		return (0);
796 	}
797 	return (newstart);
798 }
799 
800 unsigned long
801 pci_resource_len(struct pci_dev *pdev, int bar)
802 {
803 	struct resource_list_entry *rle;
804 
805 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
806 		return (0);
807 	return (rle->count);
808 }
809 
810 int
811 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
812 {
813 	struct resource *res;
814 	struct pci_devres *dr;
815 	struct pci_mmio_region *mmio;
816 	int rid;
817 	int type;
818 
819 	type = pci_resource_type(pdev, bar);
820 	if (type < 0)
821 		return (-ENODEV);
822 	rid = PCIR_BAR(bar);
823 	res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
824 	    RF_ACTIVE|RF_SHAREABLE);
825 	if (res == NULL) {
826 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
827 		    "bar %d type %d rid %d\n",
828 		    __func__, bar, type, PCIR_BAR(bar));
829 		return (-ENODEV);
830 	}
831 
832 	/*
833 	 * It seems there is an implicit devres tracking on these if the device
834 	 * is managed; otherwise the resources are not automatiaclly freed on
835 	 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
836 	 * drivers.
837 	 */
838 	dr = lkpi_pci_devres_find(pdev);
839 	if (dr != NULL) {
840 		dr->region_mask |= (1 << bar);
841 		dr->region_table[bar] = res;
842 	}
843 
844 	/* Even if the device is not managed we need to track it for iomap. */
845 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
846 	mmio->rid = PCIR_BAR(bar);
847 	mmio->type = type;
848 	mmio->res = res;
849 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
850 
851 	return (0);
852 }
853 
854 struct resource *
855 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
856 {
857 	struct pci_mmio_region *mmio, *p;
858 	int type;
859 
860 	type = pci_resource_type(pdev, bar);
861 	if (type < 0) {
862 		device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
863 		     __func__, bar, type);
864 		return (NULL);
865 	}
866 
867 	/*
868 	 * Check for duplicate mappings.
869 	 * This can happen if a driver calls pci_request_region() first.
870 	 */
871 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
872 		if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
873 			return (mmio->res);
874 		}
875 	}
876 
877 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
878 	mmio->rid = PCIR_BAR(bar);
879 	mmio->type = type;
880 	mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
881 	    &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
882 	if (mmio->res == NULL) {
883 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
884 		    "bar %d type %d rid %d\n",
885 		    __func__, bar, type, PCIR_BAR(bar));
886 		free(mmio, M_DEVBUF);
887 		return (NULL);
888 	}
889 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
890 
891 	return (mmio->res);
892 }
893 
894 int
895 linux_pci_register_drm_driver(struct pci_driver *pdrv)
896 {
897 	devclass_t dc;
898 
899 	dc = devclass_create("vgapci");
900 	if (dc == NULL)
901 		return (-ENXIO);
902 	pdrv->isdrm = true;
903 	pdrv->name = "drmn";
904 	return (_linux_pci_register_driver(pdrv, dc));
905 }
906 
907 void
908 linux_pci_unregister_driver(struct pci_driver *pdrv)
909 {
910 	devclass_t bus;
911 
912 	bus = devclass_find("pci");
913 
914 	spin_lock(&pci_lock);
915 	list_del(&pdrv->node);
916 	spin_unlock(&pci_lock);
917 	bus_topo_lock();
918 	if (bus != NULL)
919 		devclass_delete_driver(bus, &pdrv->bsddriver);
920 	bus_topo_unlock();
921 }
922 
923 void
924 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
925 {
926 	devclass_t bus;
927 
928 	bus = devclass_find("vgapci");
929 
930 	spin_lock(&pci_lock);
931 	list_del(&pdrv->node);
932 	spin_unlock(&pci_lock);
933 	bus_topo_lock();
934 	if (bus != NULL)
935 		devclass_delete_driver(bus, &pdrv->bsddriver);
936 	bus_topo_unlock();
937 }
938 
939 int
940 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
941     unsigned int flags)
942 {
943 	int error;
944 
945 	if (flags & PCI_IRQ_MSIX) {
946 		struct msix_entry *entries;
947 		int i;
948 
949 		entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
950 		if (entries == NULL) {
951 			error = -ENOMEM;
952 			goto out;
953 		}
954 		for (i = 0; i < maxv; ++i)
955 			entries[i].entry = i;
956 		error = pci_enable_msix(pdev, entries, maxv);
957 out:
958 		kfree(entries);
959 		if (error == 0 && pdev->msix_enabled)
960 			return (pdev->dev.irq_end - pdev->dev.irq_start);
961 	}
962 	if (flags & PCI_IRQ_MSI) {
963 		if (pci_msi_count(pdev->dev.bsddev) < minv)
964 			return (-ENOSPC);
965 		error = _lkpi_pci_enable_msi_range(pdev, minv, maxv);
966 		if (error == 0 && pdev->msi_enabled)
967 			return (pdev->dev.irq_end - pdev->dev.irq_start);
968 	}
969 	if (flags & PCI_IRQ_LEGACY) {
970 		if (pdev->irq)
971 			return (1);
972 	}
973 
974 	return (-EINVAL);
975 }
976 
977 struct msi_desc *
978 lkpi_pci_msi_desc_alloc(int irq)
979 {
980 	struct device *dev;
981 	struct pci_dev *pdev;
982 	struct msi_desc *desc;
983 	struct pci_devinfo *dinfo;
984 	struct pcicfg_msi *msi;
985 	int vec;
986 
987 	dev = linux_pci_find_irq_dev(irq);
988 	if (dev == NULL)
989 		return (NULL);
990 
991 	pdev = to_pci_dev(dev);
992 
993 	if (pdev->msi_desc == NULL)
994 		return (NULL);
995 
996 	if (irq < pdev->dev.irq_start || irq >= pdev->dev.irq_end)
997 		return (NULL);
998 
999 	vec = pdev->dev.irq_start - irq;
1000 
1001 	if (pdev->msi_desc[vec] != NULL)
1002 		return (pdev->msi_desc[vec]);
1003 
1004 	dinfo = device_get_ivars(dev->bsddev);
1005 	msi = &dinfo->cfg.msi;
1006 
1007 	desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO);
1008 
1009 	desc->pci.msi_attrib.is_64 =
1010 	   (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false;
1011 	desc->msg.data = msi->msi_data;
1012 
1013 	pdev->msi_desc[vec] = desc;
1014 
1015 	return (desc);
1016 }
1017 
1018 bool
1019 pci_device_is_present(struct pci_dev *pdev)
1020 {
1021 	device_t dev;
1022 
1023 	dev = pdev->dev.bsddev;
1024 
1025 	return (bus_child_present(dev));
1026 }
1027 
1028 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
1029 
1030 struct linux_dma_obj {
1031 	void		*vaddr;
1032 	uint64_t	dma_addr;
1033 	bus_dmamap_t	dmamap;
1034 	bus_dma_tag_t	dmat;
1035 };
1036 
1037 static uma_zone_t linux_dma_trie_zone;
1038 static uma_zone_t linux_dma_obj_zone;
1039 
1040 static void
1041 linux_dma_init(void *arg)
1042 {
1043 
1044 	linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
1045 	    pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
1046 	    UMA_ALIGN_PTR, 0);
1047 	linux_dma_obj_zone = uma_zcreate("linux_dma_object",
1048 	    sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
1049 	    UMA_ALIGN_PTR, 0);
1050 	lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
1051 }
1052 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
1053 
1054 static void
1055 linux_dma_uninit(void *arg)
1056 {
1057 
1058 	counter_u64_free(lkpi_pci_nseg1_fail);
1059 	uma_zdestroy(linux_dma_obj_zone);
1060 	uma_zdestroy(linux_dma_trie_zone);
1061 }
1062 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
1063 
1064 static void *
1065 linux_dma_trie_alloc(struct pctrie *ptree)
1066 {
1067 
1068 	return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
1069 }
1070 
1071 static void
1072 linux_dma_trie_free(struct pctrie *ptree, void *node)
1073 {
1074 
1075 	uma_zfree(linux_dma_trie_zone, node);
1076 }
1077 
1078 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
1079     linux_dma_trie_free);
1080 
1081 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1082 static dma_addr_t
1083 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
1084     bus_dma_tag_t dmat)
1085 {
1086 	struct linux_dma_priv *priv;
1087 	struct linux_dma_obj *obj;
1088 	int error, nseg;
1089 	bus_dma_segment_t seg;
1090 
1091 	priv = dev->dma_priv;
1092 
1093 	/*
1094 	 * If the resultant mapping will be entirely 1:1 with the
1095 	 * physical address, short-circuit the remainder of the
1096 	 * bus_dma API.  This avoids tracking collisions in the pctrie
1097 	 * with the additional benefit of reducing overhead.
1098 	 */
1099 	if (bus_dma_id_mapped(dmat, phys, len))
1100 		return (phys);
1101 
1102 	obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1103 	if (obj == NULL) {
1104 		return (0);
1105 	}
1106 	obj->dmat = dmat;
1107 
1108 	DMA_PRIV_LOCK(priv);
1109 	if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1110 		DMA_PRIV_UNLOCK(priv);
1111 		uma_zfree(linux_dma_obj_zone, obj);
1112 		return (0);
1113 	}
1114 
1115 	nseg = -1;
1116 	if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1117 	    BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
1118 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1119 		DMA_PRIV_UNLOCK(priv);
1120 		uma_zfree(linux_dma_obj_zone, obj);
1121 		counter_u64_add(lkpi_pci_nseg1_fail, 1);
1122 		if (linuxkpi_debug)
1123 			dump_stack();
1124 		return (0);
1125 	}
1126 
1127 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1128 	obj->dma_addr = seg.ds_addr;
1129 
1130 	error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1131 	if (error != 0) {
1132 		bus_dmamap_unload(obj->dmat, obj->dmamap);
1133 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1134 		DMA_PRIV_UNLOCK(priv);
1135 		uma_zfree(linux_dma_obj_zone, obj);
1136 		return (0);
1137 	}
1138 	DMA_PRIV_UNLOCK(priv);
1139 	return (obj->dma_addr);
1140 }
1141 #else
1142 static dma_addr_t
1143 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1144     size_t len __unused, bus_dma_tag_t dmat __unused)
1145 {
1146 	return (phys);
1147 }
1148 #endif
1149 
1150 dma_addr_t
1151 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1152 {
1153 	struct linux_dma_priv *priv;
1154 
1155 	priv = dev->dma_priv;
1156 	return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
1157 }
1158 
1159 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1160 void
1161 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1162 {
1163 	struct linux_dma_priv *priv;
1164 	struct linux_dma_obj *obj;
1165 
1166 	priv = dev->dma_priv;
1167 
1168 	if (pctrie_is_empty(&priv->ptree))
1169 		return;
1170 
1171 	DMA_PRIV_LOCK(priv);
1172 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1173 	if (obj == NULL) {
1174 		DMA_PRIV_UNLOCK(priv);
1175 		return;
1176 	}
1177 	LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1178 	bus_dmamap_unload(obj->dmat, obj->dmamap);
1179 	bus_dmamap_destroy(obj->dmat, obj->dmamap);
1180 	DMA_PRIV_UNLOCK(priv);
1181 
1182 	uma_zfree(linux_dma_obj_zone, obj);
1183 }
1184 #else
1185 void
1186 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1187 {
1188 }
1189 #endif
1190 
1191 void *
1192 linux_dma_alloc_coherent(struct device *dev, size_t size,
1193     dma_addr_t *dma_handle, gfp_t flag)
1194 {
1195 	struct linux_dma_priv *priv;
1196 	vm_paddr_t high;
1197 	size_t align;
1198 	void *mem;
1199 
1200 	if (dev == NULL || dev->dma_priv == NULL) {
1201 		*dma_handle = 0;
1202 		return (NULL);
1203 	}
1204 	priv = dev->dma_priv;
1205 	if (priv->dma_coherent_mask)
1206 		high = priv->dma_coherent_mask;
1207 	else
1208 		/* Coherent is lower 32bit only by default in Linux. */
1209 		high = BUS_SPACE_MAXADDR_32BIT;
1210 	align = PAGE_SIZE << get_order(size);
1211 	/* Always zero the allocation. */
1212 	flag |= M_ZERO;
1213 	mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1214 	    align, 0, VM_MEMATTR_DEFAULT);
1215 	if (mem != NULL) {
1216 		*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1217 		    priv->dmat_coherent);
1218 		if (*dma_handle == 0) {
1219 			kmem_free(mem, size);
1220 			mem = NULL;
1221 		}
1222 	} else {
1223 		*dma_handle = 0;
1224 	}
1225 	return (mem);
1226 }
1227 
1228 struct lkpi_devres_dmam_coherent {
1229 	size_t size;
1230 	dma_addr_t *handle;
1231 	void *mem;
1232 };
1233 
1234 static void
1235 lkpi_dmam_free_coherent(struct device *dev, void *p)
1236 {
1237 	struct lkpi_devres_dmam_coherent *dr;
1238 
1239 	dr = p;
1240 	dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1241 }
1242 
1243 void *
1244 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1245     gfp_t flag)
1246 {
1247 	struct lkpi_devres_dmam_coherent *dr;
1248 
1249 	dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1250 	    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1251 
1252 	if (dr == NULL)
1253 		return (NULL);
1254 
1255 	dr->size = size;
1256 	dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1257 	dr->handle = dma_handle;
1258 	if (dr->mem == NULL) {
1259 		lkpi_devres_free(dr);
1260 		return (NULL);
1261 	}
1262 
1263 	lkpi_devres_add(dev, dr);
1264 	return (dr->mem);
1265 }
1266 
1267 void
1268 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1269     bus_dmasync_op_t op)
1270 {
1271 	struct linux_dma_priv *priv;
1272 	struct linux_dma_obj *obj;
1273 
1274 	priv = dev->dma_priv;
1275 
1276 	if (pctrie_is_empty(&priv->ptree))
1277 		return;
1278 
1279 	DMA_PRIV_LOCK(priv);
1280 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1281 	if (obj == NULL) {
1282 		DMA_PRIV_UNLOCK(priv);
1283 		return;
1284 	}
1285 
1286 	bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1287 	DMA_PRIV_UNLOCK(priv);
1288 }
1289 
1290 int
1291 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1292     enum dma_data_direction direction, unsigned long attrs __unused)
1293 {
1294 	struct linux_dma_priv *priv;
1295 	struct scatterlist *sg;
1296 	int i, nseg;
1297 	bus_dma_segment_t seg;
1298 
1299 	priv = dev->dma_priv;
1300 
1301 	DMA_PRIV_LOCK(priv);
1302 
1303 	/* create common DMA map in the first S/G entry */
1304 	if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1305 		DMA_PRIV_UNLOCK(priv);
1306 		return (0);
1307 	}
1308 
1309 	/* load all S/G list entries */
1310 	for_each_sg(sgl, sg, nents, i) {
1311 		nseg = -1;
1312 		if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1313 		    sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1314 		    &seg, &nseg) != 0) {
1315 			bus_dmamap_unload(priv->dmat, sgl->dma_map);
1316 			bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1317 			DMA_PRIV_UNLOCK(priv);
1318 			return (0);
1319 		}
1320 		KASSERT(nseg == 0,
1321 		    ("More than one segment (nseg=%d)", nseg + 1));
1322 
1323 		sg_dma_address(sg) = seg.ds_addr;
1324 	}
1325 
1326 	switch (direction) {
1327 	case DMA_BIDIRECTIONAL:
1328 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1329 		break;
1330 	case DMA_TO_DEVICE:
1331 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1332 		break;
1333 	case DMA_FROM_DEVICE:
1334 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1335 		break;
1336 	default:
1337 		break;
1338 	}
1339 
1340 	DMA_PRIV_UNLOCK(priv);
1341 
1342 	return (nents);
1343 }
1344 
1345 void
1346 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1347     int nents __unused, enum dma_data_direction direction,
1348     unsigned long attrs __unused)
1349 {
1350 	struct linux_dma_priv *priv;
1351 
1352 	priv = dev->dma_priv;
1353 
1354 	DMA_PRIV_LOCK(priv);
1355 
1356 	switch (direction) {
1357 	case DMA_BIDIRECTIONAL:
1358 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1359 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1360 		break;
1361 	case DMA_TO_DEVICE:
1362 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1363 		break;
1364 	case DMA_FROM_DEVICE:
1365 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1366 		break;
1367 	default:
1368 		break;
1369 	}
1370 
1371 	bus_dmamap_unload(priv->dmat, sgl->dma_map);
1372 	bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1373 	DMA_PRIV_UNLOCK(priv);
1374 }
1375 
1376 struct dma_pool {
1377 	struct device  *pool_device;
1378 	uma_zone_t	pool_zone;
1379 	struct mtx	pool_lock;
1380 	bus_dma_tag_t	pool_dmat;
1381 	size_t		pool_entry_size;
1382 	struct pctrie	pool_ptree;
1383 };
1384 
1385 #define	DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1386 #define	DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1387 
1388 static inline int
1389 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1390 {
1391 	struct linux_dma_obj *obj = mem;
1392 	struct dma_pool *pool = arg;
1393 	int error, nseg;
1394 	bus_dma_segment_t seg;
1395 
1396 	nseg = -1;
1397 	DMA_POOL_LOCK(pool);
1398 	error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1399 	    vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1400 	    &seg, &nseg);
1401 	DMA_POOL_UNLOCK(pool);
1402 	if (error != 0) {
1403 		return (error);
1404 	}
1405 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1406 	obj->dma_addr = seg.ds_addr;
1407 
1408 	return (0);
1409 }
1410 
1411 static void
1412 dma_pool_obj_dtor(void *mem, int size, void *arg)
1413 {
1414 	struct linux_dma_obj *obj = mem;
1415 	struct dma_pool *pool = arg;
1416 
1417 	DMA_POOL_LOCK(pool);
1418 	bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1419 	DMA_POOL_UNLOCK(pool);
1420 }
1421 
1422 static int
1423 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1424     int flags)
1425 {
1426 	struct dma_pool *pool = arg;
1427 	struct linux_dma_obj *obj;
1428 	int error, i;
1429 
1430 	for (i = 0; i < count; i++) {
1431 		obj = uma_zalloc(linux_dma_obj_zone, flags);
1432 		if (obj == NULL)
1433 			break;
1434 
1435 		error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1436 		    BUS_DMA_NOWAIT, &obj->dmamap);
1437 		if (error!= 0) {
1438 			uma_zfree(linux_dma_obj_zone, obj);
1439 			break;
1440 		}
1441 
1442 		store[i] = obj;
1443 	}
1444 
1445 	return (i);
1446 }
1447 
1448 static void
1449 dma_pool_obj_release(void *arg, void **store, int count)
1450 {
1451 	struct dma_pool *pool = arg;
1452 	struct linux_dma_obj *obj;
1453 	int i;
1454 
1455 	for (i = 0; i < count; i++) {
1456 		obj = store[i];
1457 		bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1458 		uma_zfree(linux_dma_obj_zone, obj);
1459 	}
1460 }
1461 
1462 struct dma_pool *
1463 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1464     size_t align, size_t boundary)
1465 {
1466 	struct linux_dma_priv *priv;
1467 	struct dma_pool *pool;
1468 
1469 	priv = dev->dma_priv;
1470 
1471 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1472 	pool->pool_device = dev;
1473 	pool->pool_entry_size = size;
1474 
1475 	if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1476 	    align, boundary,		/* alignment, boundary */
1477 	    priv->dma_mask,		/* lowaddr */
1478 	    BUS_SPACE_MAXADDR,		/* highaddr */
1479 	    NULL, NULL,			/* filtfunc, filtfuncarg */
1480 	    size,			/* maxsize */
1481 	    1,				/* nsegments */
1482 	    size,			/* maxsegsz */
1483 	    0,				/* flags */
1484 	    NULL, NULL,			/* lockfunc, lockfuncarg */
1485 	    &pool->pool_dmat)) {
1486 		kfree(pool);
1487 		return (NULL);
1488 	}
1489 
1490 	pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1491 	    dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1492 	    dma_pool_obj_release, pool, 0);
1493 
1494 	mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1495 	pctrie_init(&pool->pool_ptree);
1496 
1497 	return (pool);
1498 }
1499 
1500 void
1501 linux_dma_pool_destroy(struct dma_pool *pool)
1502 {
1503 
1504 	uma_zdestroy(pool->pool_zone);
1505 	bus_dma_tag_destroy(pool->pool_dmat);
1506 	mtx_destroy(&pool->pool_lock);
1507 	kfree(pool);
1508 }
1509 
1510 void
1511 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1512 {
1513 	struct dma_pool *pool;
1514 
1515 	pool = *(struct dma_pool **)p;
1516 	LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1517 	linux_dma_pool_destroy(pool);
1518 }
1519 
1520 void *
1521 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1522     dma_addr_t *handle)
1523 {
1524 	struct linux_dma_obj *obj;
1525 
1526 	obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1527 	if (obj == NULL)
1528 		return (NULL);
1529 
1530 	DMA_POOL_LOCK(pool);
1531 	if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1532 		DMA_POOL_UNLOCK(pool);
1533 		uma_zfree_arg(pool->pool_zone, obj, pool);
1534 		return (NULL);
1535 	}
1536 	DMA_POOL_UNLOCK(pool);
1537 
1538 	*handle = obj->dma_addr;
1539 	return (obj->vaddr);
1540 }
1541 
1542 void
1543 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1544 {
1545 	struct linux_dma_obj *obj;
1546 
1547 	DMA_POOL_LOCK(pool);
1548 	obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1549 	if (obj == NULL) {
1550 		DMA_POOL_UNLOCK(pool);
1551 		return;
1552 	}
1553 	LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1554 	DMA_POOL_UNLOCK(pool);
1555 
1556 	uma_zfree_arg(pool->pool_zone, obj, pool);
1557 }
1558 
1559 static int
1560 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1561 {
1562 	struct pci_dev *pdev;
1563 
1564 	linux_set_current(curthread);
1565 	pdev = device_get_softc(dev);
1566 
1567 	props->brightness = pdev->dev.bd->props.brightness;
1568 	props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1569 	props->nlevels = 0;
1570 
1571 	return (0);
1572 }
1573 
1574 static int
1575 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1576 {
1577 	struct pci_dev *pdev;
1578 
1579 	linux_set_current(curthread);
1580 	pdev = device_get_softc(dev);
1581 
1582 	info->type = BACKLIGHT_TYPE_PANEL;
1583 	strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
1584 	return (0);
1585 }
1586 
1587 static int
1588 linux_backlight_update_status(device_t dev, struct backlight_props *props)
1589 {
1590 	struct pci_dev *pdev;
1591 
1592 	linux_set_current(curthread);
1593 	pdev = device_get_softc(dev);
1594 
1595 	pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
1596 		props->brightness / 100;
1597 	pdev->dev.bd->props.power = props->brightness == 0 ?
1598 		4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
1599 	return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
1600 }
1601 
1602 struct backlight_device *
1603 linux_backlight_device_register(const char *name, struct device *dev,
1604     void *data, const struct backlight_ops *ops, struct backlight_properties *props)
1605 {
1606 
1607 	dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
1608 	dev->bd->ops = ops;
1609 	dev->bd->props.type = props->type;
1610 	dev->bd->props.max_brightness = props->max_brightness;
1611 	dev->bd->props.brightness = props->brightness;
1612 	dev->bd->props.power = props->power;
1613 	dev->bd->data = data;
1614 	dev->bd->dev = dev;
1615 	dev->bd->name = strdup(name, M_DEVBUF);
1616 
1617 	dev->backlight_dev = backlight_register(name, dev->bsddev);
1618 
1619 	return (dev->bd);
1620 }
1621 
1622 void
1623 linux_backlight_device_unregister(struct backlight_device *bd)
1624 {
1625 
1626 	backlight_destroy(bd->dev->backlight_dev);
1627 	free(bd->name, M_DEVBUF);
1628 	free(bd, M_DEVBUF);
1629 }
1630