1 /*-
2  * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3  * All rights reserved.
4  * Copyright (c) 2020-2022 The FreeBSD Foundation
5  *
6  * Portions of this software were developed by Björn Zeeb
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/fcntl.h>
43 #include <sys/file.h>
44 #include <sys/filio.h>
45 #include <sys/pciio.h>
46 #include <sys/pctrie.h>
47 #include <sys/rwlock.h>
48 
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51 
52 #include <machine/stdarg.h>
53 
54 #include <dev/pci/pcivar.h>
55 #include <dev/pci/pci_private.h>
56 #include <dev/pci/pci_iov.h>
57 #include <dev/backlight/backlight.h>
58 
59 #include <linux/kernel.h>
60 #include <linux/kobject.h>
61 #include <linux/device.h>
62 #include <linux/slab.h>
63 #include <linux/module.h>
64 #include <linux/cdev.h>
65 #include <linux/file.h>
66 #include <linux/sysfs.h>
67 #include <linux/mm.h>
68 #include <linux/io.h>
69 #include <linux/vmalloc.h>
70 #include <linux/pci.h>
71 #include <linux/compat.h>
72 
73 #include <linux/backlight.h>
74 
75 #include "backlight_if.h"
76 #include "pcib_if.h"
77 
78 /* Undef the linux function macro defined in linux/pci.h */
79 #undef pci_get_class
80 
81 extern int linuxkpi_debug;
82 
83 SYSCTL_DECL(_compat_linuxkpi);
84 
85 static counter_u64_t lkpi_pci_nseg1_fail;
86 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
87     &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
88 
89 static device_probe_t linux_pci_probe;
90 static device_attach_t linux_pci_attach;
91 static device_detach_t linux_pci_detach;
92 static device_suspend_t linux_pci_suspend;
93 static device_resume_t linux_pci_resume;
94 static device_shutdown_t linux_pci_shutdown;
95 static pci_iov_init_t linux_pci_iov_init;
96 static pci_iov_uninit_t linux_pci_iov_uninit;
97 static pci_iov_add_vf_t linux_pci_iov_add_vf;
98 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
99 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
100 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
101 
102 static device_method_t pci_methods[] = {
103 	DEVMETHOD(device_probe, linux_pci_probe),
104 	DEVMETHOD(device_attach, linux_pci_attach),
105 	DEVMETHOD(device_detach, linux_pci_detach),
106 	DEVMETHOD(device_suspend, linux_pci_suspend),
107 	DEVMETHOD(device_resume, linux_pci_resume),
108 	DEVMETHOD(device_shutdown, linux_pci_shutdown),
109 	DEVMETHOD(pci_iov_init, linux_pci_iov_init),
110 	DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
111 	DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
112 
113 	/* backlight interface */
114 	DEVMETHOD(backlight_update_status, linux_backlight_update_status),
115 	DEVMETHOD(backlight_get_status, linux_backlight_get_status),
116 	DEVMETHOD(backlight_get_info, linux_backlight_get_info),
117 	DEVMETHOD_END
118 };
119 
120 struct linux_dma_priv {
121 	uint64_t	dma_mask;
122 	bus_dma_tag_t	dmat;
123 	uint64_t	dma_coherent_mask;
124 	bus_dma_tag_t	dmat_coherent;
125 	struct mtx	lock;
126 	struct pctrie	ptree;
127 };
128 #define	DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
129 #define	DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
130 
131 static int
132 linux_pdev_dma_uninit(struct pci_dev *pdev)
133 {
134 	struct linux_dma_priv *priv;
135 
136 	priv = pdev->dev.dma_priv;
137 	if (priv->dmat)
138 		bus_dma_tag_destroy(priv->dmat);
139 	if (priv->dmat_coherent)
140 		bus_dma_tag_destroy(priv->dmat_coherent);
141 	mtx_destroy(&priv->lock);
142 	pdev->dev.dma_priv = NULL;
143 	free(priv, M_DEVBUF);
144 	return (0);
145 }
146 
147 static int
148 linux_pdev_dma_init(struct pci_dev *pdev)
149 {
150 	struct linux_dma_priv *priv;
151 	int error;
152 
153 	priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
154 
155 	mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
156 	pctrie_init(&priv->ptree);
157 
158 	pdev->dev.dma_priv = priv;
159 
160 	/* Create a default DMA tags. */
161 	error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
162 	if (error != 0)
163 		goto err;
164 	/* Coherent is lower 32bit only by default in Linux. */
165 	error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
166 	if (error != 0)
167 		goto err;
168 
169 	return (error);
170 
171 err:
172 	linux_pdev_dma_uninit(pdev);
173 	return (error);
174 }
175 
176 int
177 linux_dma_tag_init(struct device *dev, u64 dma_mask)
178 {
179 	struct linux_dma_priv *priv;
180 	int error;
181 
182 	priv = dev->dma_priv;
183 
184 	if (priv->dmat) {
185 		if (priv->dma_mask == dma_mask)
186 			return (0);
187 
188 		bus_dma_tag_destroy(priv->dmat);
189 	}
190 
191 	priv->dma_mask = dma_mask;
192 
193 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
194 	    1, 0,			/* alignment, boundary */
195 	    dma_mask,			/* lowaddr */
196 	    BUS_SPACE_MAXADDR,		/* highaddr */
197 	    NULL, NULL,			/* filtfunc, filtfuncarg */
198 	    BUS_SPACE_MAXSIZE,		/* maxsize */
199 	    1,				/* nsegments */
200 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
201 	    0,				/* flags */
202 	    NULL, NULL,			/* lockfunc, lockfuncarg */
203 	    &priv->dmat);
204 	return (-error);
205 }
206 
207 int
208 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
209 {
210 	struct linux_dma_priv *priv;
211 	int error;
212 
213 	priv = dev->dma_priv;
214 
215 	if (priv->dmat_coherent) {
216 		if (priv->dma_coherent_mask == dma_mask)
217 			return (0);
218 
219 		bus_dma_tag_destroy(priv->dmat_coherent);
220 	}
221 
222 	priv->dma_coherent_mask = dma_mask;
223 
224 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
225 	    1, 0,			/* alignment, boundary */
226 	    dma_mask,			/* lowaddr */
227 	    BUS_SPACE_MAXADDR,		/* highaddr */
228 	    NULL, NULL,			/* filtfunc, filtfuncarg */
229 	    BUS_SPACE_MAXSIZE,		/* maxsize */
230 	    1,				/* nsegments */
231 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
232 	    0,				/* flags */
233 	    NULL, NULL,			/* lockfunc, lockfuncarg */
234 	    &priv->dmat_coherent);
235 	return (-error);
236 }
237 
238 static struct pci_driver *
239 linux_pci_find(device_t dev, const struct pci_device_id **idp)
240 {
241 	const struct pci_device_id *id;
242 	struct pci_driver *pdrv;
243 	uint16_t vendor;
244 	uint16_t device;
245 	uint16_t subvendor;
246 	uint16_t subdevice;
247 
248 	vendor = pci_get_vendor(dev);
249 	device = pci_get_device(dev);
250 	subvendor = pci_get_subvendor(dev);
251 	subdevice = pci_get_subdevice(dev);
252 
253 	spin_lock(&pci_lock);
254 	list_for_each_entry(pdrv, &pci_drivers, node) {
255 		for (id = pdrv->id_table; id->vendor != 0; id++) {
256 			if (vendor == id->vendor &&
257 			    (PCI_ANY_ID == id->device || device == id->device) &&
258 			    (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
259 			    (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
260 				*idp = id;
261 				spin_unlock(&pci_lock);
262 				return (pdrv);
263 			}
264 		}
265 	}
266 	spin_unlock(&pci_lock);
267 	return (NULL);
268 }
269 
270 static void
271 lkpi_pci_dev_release(struct device *dev)
272 {
273 
274 	lkpi_devres_release_free_list(dev);
275 	spin_lock_destroy(&dev->devres_lock);
276 }
277 
278 static void
279 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
280 {
281 
282 	pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
283 	pdev->vendor = pci_get_vendor(dev);
284 	pdev->device = pci_get_device(dev);
285 	pdev->subsystem_vendor = pci_get_subvendor(dev);
286 	pdev->subsystem_device = pci_get_subdevice(dev);
287 	pdev->class = pci_get_class(dev);
288 	pdev->revision = pci_get_revid(dev);
289 	pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
290 	/*
291 	 * This should be the upstream bridge; pci_upstream_bridge()
292 	 * handles that case on demand as otherwise we'll shadow the
293 	 * entire PCI hierarchy.
294 	 */
295 	pdev->bus->self = pdev;
296 	pdev->bus->number = pci_get_bus(dev);
297 	pdev->bus->domain = pci_get_domain(dev);
298 	pdev->dev.bsddev = dev;
299 	pdev->dev.parent = &linux_root_device;
300 	pdev->dev.release = lkpi_pci_dev_release;
301 	INIT_LIST_HEAD(&pdev->dev.irqents);
302 	kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
303 	kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
304 	kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
305 	    kobject_name(&pdev->dev.kobj));
306 	spin_lock_init(&pdev->dev.devres_lock);
307 	INIT_LIST_HEAD(&pdev->dev.devres_head);
308 }
309 
310 static void
311 lkpinew_pci_dev_release(struct device *dev)
312 {
313 	struct pci_dev *pdev;
314 
315 	pdev = to_pci_dev(dev);
316 	if (pdev->root != NULL)
317 		pci_dev_put(pdev->root);
318 	if (pdev->bus->self != pdev)
319 		pci_dev_put(pdev->bus->self);
320 	free(pdev->bus, M_DEVBUF);
321 	free(pdev, M_DEVBUF);
322 }
323 
324 struct pci_dev *
325 lkpinew_pci_dev(device_t dev)
326 {
327 	struct pci_dev *pdev;
328 
329 	pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
330 	lkpifill_pci_dev(dev, pdev);
331 	pdev->dev.release = lkpinew_pci_dev_release;
332 
333 	return (pdev);
334 }
335 
336 struct pci_dev *
337 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
338 {
339 	device_t dev;
340 	device_t devfrom = NULL;
341 	struct pci_dev *pdev;
342 
343 	if (from != NULL)
344 		devfrom = from->dev.bsddev;
345 
346 	dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
347 	if (dev == NULL)
348 		return (NULL);
349 
350 	pdev = lkpinew_pci_dev(dev);
351 	return (pdev);
352 }
353 
354 struct pci_dev *
355 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
356     unsigned int devfn)
357 {
358 	device_t dev;
359 	struct pci_dev *pdev;
360 
361 	dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
362 	if (dev == NULL)
363 		return (NULL);
364 
365 	pdev = lkpinew_pci_dev(dev);
366 	return (pdev);
367 }
368 
369 static int
370 linux_pci_probe(device_t dev)
371 {
372 	const struct pci_device_id *id;
373 	struct pci_driver *pdrv;
374 
375 	if ((pdrv = linux_pci_find(dev, &id)) == NULL)
376 		return (ENXIO);
377 	if (device_get_driver(dev) != &pdrv->bsddriver)
378 		return (ENXIO);
379 	device_set_desc(dev, pdrv->name);
380 
381 	/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
382 	if (pdrv->bsd_probe_return == 0)
383 		return (BUS_PROBE_DEFAULT);
384 	else
385 		return (pdrv->bsd_probe_return);
386 }
387 
388 static int
389 linux_pci_attach(device_t dev)
390 {
391 	const struct pci_device_id *id;
392 	struct pci_driver *pdrv;
393 	struct pci_dev *pdev;
394 
395 	pdrv = linux_pci_find(dev, &id);
396 	pdev = device_get_softc(dev);
397 
398 	MPASS(pdrv != NULL);
399 	MPASS(pdev != NULL);
400 
401 	return (linux_pci_attach_device(dev, pdrv, id, pdev));
402 }
403 
404 int
405 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
406     const struct pci_device_id *id, struct pci_dev *pdev)
407 {
408 	struct resource_list_entry *rle;
409 	device_t parent;
410 	uintptr_t rid;
411 	int error;
412 	bool isdrm;
413 
414 	linux_set_current(curthread);
415 
416 	parent = device_get_parent(dev);
417 	isdrm = pdrv != NULL && pdrv->isdrm;
418 
419 	if (isdrm) {
420 		struct pci_devinfo *dinfo;
421 
422 		dinfo = device_get_ivars(parent);
423 		device_set_ivars(dev, dinfo);
424 	}
425 
426 	lkpifill_pci_dev(dev, pdev);
427 	if (isdrm)
428 		PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
429 	else
430 		PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
431 	pdev->devfn = rid;
432 	pdev->pdrv = pdrv;
433 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
434 	if (rle != NULL)
435 		pdev->dev.irq = rle->start;
436 	else
437 		pdev->dev.irq = LINUX_IRQ_INVALID;
438 	pdev->irq = pdev->dev.irq;
439 	error = linux_pdev_dma_init(pdev);
440 	if (error)
441 		goto out_dma_init;
442 
443 	TAILQ_INIT(&pdev->mmio);
444 
445 	spin_lock(&pci_lock);
446 	list_add(&pdev->links, &pci_devices);
447 	spin_unlock(&pci_lock);
448 
449 	if (pdrv != NULL) {
450 		error = pdrv->probe(pdev, id);
451 		if (error)
452 			goto out_probe;
453 	}
454 	return (0);
455 
456 out_probe:
457 	free(pdev->bus, M_DEVBUF);
458 	linux_pdev_dma_uninit(pdev);
459 out_dma_init:
460 	spin_lock(&pci_lock);
461 	list_del(&pdev->links);
462 	spin_unlock(&pci_lock);
463 	put_device(&pdev->dev);
464 	return (-error);
465 }
466 
467 static int
468 linux_pci_detach(device_t dev)
469 {
470 	struct pci_dev *pdev;
471 
472 	pdev = device_get_softc(dev);
473 
474 	MPASS(pdev != NULL);
475 
476 	device_set_desc(dev, NULL);
477 
478 	return (linux_pci_detach_device(pdev));
479 }
480 
481 int
482 linux_pci_detach_device(struct pci_dev *pdev)
483 {
484 
485 	linux_set_current(curthread);
486 
487 	if (pdev->pdrv != NULL)
488 		pdev->pdrv->remove(pdev);
489 
490 	if (pdev->root != NULL)
491 		pci_dev_put(pdev->root);
492 	free(pdev->bus, M_DEVBUF);
493 	linux_pdev_dma_uninit(pdev);
494 
495 	spin_lock(&pci_lock);
496 	list_del(&pdev->links);
497 	spin_unlock(&pci_lock);
498 	put_device(&pdev->dev);
499 
500 	return (0);
501 }
502 
503 static int
504 lkpi_pci_disable_dev(struct device *dev)
505 {
506 
507 	(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
508 	(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
509 	return (0);
510 }
511 
512 struct pci_devres *
513 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
514 {
515 	struct pci_devres *dr;
516 
517 	dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
518 	if (dr == NULL) {
519 		dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
520 		    GFP_KERNEL | __GFP_ZERO);
521 		if (dr != NULL)
522 			lkpi_devres_add(&pdev->dev, dr);
523 	}
524 
525 	return (dr);
526 }
527 
528 void
529 lkpi_pci_devres_release(struct device *dev, void *p)
530 {
531 	struct pci_devres *dr;
532 	struct pci_dev *pdev;
533 	int bar;
534 
535 	pdev = to_pci_dev(dev);
536 	dr = p;
537 
538 	if (pdev->msix_enabled)
539 		lkpi_pci_disable_msix(pdev);
540         if (pdev->msi_enabled)
541 		lkpi_pci_disable_msi(pdev);
542 
543 	if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
544 		dr->enable_io = false;
545 
546 	if (dr->region_mask == 0)
547 		return;
548 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
549 
550 		if ((dr->region_mask & (1 << bar)) == 0)
551 			continue;
552 		pci_release_region(pdev, bar);
553 	}
554 }
555 
556 struct pcim_iomap_devres *
557 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
558 {
559 	struct pcim_iomap_devres *dr;
560 
561 	dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
562 	    NULL, NULL);
563 	if (dr == NULL) {
564 		dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
565 		    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
566 		if (dr != NULL)
567 			lkpi_devres_add(&pdev->dev, dr);
568 	}
569 
570 	if (dr == NULL)
571 		device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
572 
573 	return (dr);
574 }
575 
576 void
577 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
578 {
579 	struct pcim_iomap_devres *dr;
580 	struct pci_dev *pdev;
581 	int bar;
582 
583 	dr = p;
584 	pdev = to_pci_dev(dev);
585 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
586 
587 		if (dr->mmio_table[bar] == NULL)
588 			continue;
589 
590 		pci_iounmap(pdev, dr->mmio_table[bar]);
591 	}
592 }
593 
594 static int
595 linux_pci_suspend(device_t dev)
596 {
597 	const struct dev_pm_ops *pmops;
598 	struct pm_message pm = { };
599 	struct pci_dev *pdev;
600 	int error;
601 
602 	error = 0;
603 	linux_set_current(curthread);
604 	pdev = device_get_softc(dev);
605 	pmops = pdev->pdrv->driver.pm;
606 
607 	if (pdev->pdrv->suspend != NULL)
608 		error = -pdev->pdrv->suspend(pdev, pm);
609 	else if (pmops != NULL && pmops->suspend != NULL) {
610 		error = -pmops->suspend(&pdev->dev);
611 		if (error == 0 && pmops->suspend_late != NULL)
612 			error = -pmops->suspend_late(&pdev->dev);
613 	}
614 	return (error);
615 }
616 
617 static int
618 linux_pci_resume(device_t dev)
619 {
620 	const struct dev_pm_ops *pmops;
621 	struct pci_dev *pdev;
622 	int error;
623 
624 	error = 0;
625 	linux_set_current(curthread);
626 	pdev = device_get_softc(dev);
627 	pmops = pdev->pdrv->driver.pm;
628 
629 	if (pdev->pdrv->resume != NULL)
630 		error = -pdev->pdrv->resume(pdev);
631 	else if (pmops != NULL && pmops->resume != NULL) {
632 		if (pmops->resume_early != NULL)
633 			error = -pmops->resume_early(&pdev->dev);
634 		if (error == 0 && pmops->resume != NULL)
635 			error = -pmops->resume(&pdev->dev);
636 	}
637 	return (error);
638 }
639 
640 static int
641 linux_pci_shutdown(device_t dev)
642 {
643 	struct pci_dev *pdev;
644 
645 	linux_set_current(curthread);
646 	pdev = device_get_softc(dev);
647 	if (pdev->pdrv->shutdown != NULL)
648 		pdev->pdrv->shutdown(pdev);
649 	return (0);
650 }
651 
652 static int
653 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
654 {
655 	struct pci_dev *pdev;
656 	int error;
657 
658 	linux_set_current(curthread);
659 	pdev = device_get_softc(dev);
660 	if (pdev->pdrv->bsd_iov_init != NULL)
661 		error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
662 	else
663 		error = EINVAL;
664 	return (error);
665 }
666 
667 static void
668 linux_pci_iov_uninit(device_t dev)
669 {
670 	struct pci_dev *pdev;
671 
672 	linux_set_current(curthread);
673 	pdev = device_get_softc(dev);
674 	if (pdev->pdrv->bsd_iov_uninit != NULL)
675 		pdev->pdrv->bsd_iov_uninit(dev);
676 }
677 
678 static int
679 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
680 {
681 	struct pci_dev *pdev;
682 	int error;
683 
684 	linux_set_current(curthread);
685 	pdev = device_get_softc(dev);
686 	if (pdev->pdrv->bsd_iov_add_vf != NULL)
687 		error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
688 	else
689 		error = EINVAL;
690 	return (error);
691 }
692 
693 static int
694 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
695 {
696 	int error;
697 
698 	linux_set_current(curthread);
699 	spin_lock(&pci_lock);
700 	list_add(&pdrv->node, &pci_drivers);
701 	spin_unlock(&pci_lock);
702 	if (pdrv->bsddriver.name == NULL)
703 		pdrv->bsddriver.name = pdrv->name;
704 	pdrv->bsddriver.methods = pci_methods;
705 	pdrv->bsddriver.size = sizeof(struct pci_dev);
706 
707 	bus_topo_lock();
708 	error = devclass_add_driver(dc, &pdrv->bsddriver,
709 	    BUS_PASS_DEFAULT, &pdrv->bsdclass);
710 	bus_topo_unlock();
711 	return (-error);
712 }
713 
714 int
715 linux_pci_register_driver(struct pci_driver *pdrv)
716 {
717 	devclass_t dc;
718 
719 	dc = devclass_find("pci");
720 	if (dc == NULL)
721 		return (-ENXIO);
722 	pdrv->isdrm = false;
723 	return (_linux_pci_register_driver(pdrv, dc));
724 }
725 
726 struct resource_list_entry *
727 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
728     int type, int rid)
729 {
730 	device_t dev;
731 	struct resource *res;
732 
733 	KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
734 	    ("trying to reserve non-BAR type %d", type));
735 
736 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
737 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
738 	res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
739 	    1, 1, 0);
740 	if (res == NULL)
741 		return (NULL);
742 	return (resource_list_find(rl, type, rid));
743 }
744 
745 unsigned long
746 pci_resource_start(struct pci_dev *pdev, int bar)
747 {
748 	struct resource_list_entry *rle;
749 	rman_res_t newstart;
750 	device_t dev;
751 	int error;
752 
753 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
754 		return (0);
755 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
756 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
757 	error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
758 	if (error != 0) {
759 		device_printf(pdev->dev.bsddev,
760 		    "translate of %#jx failed: %d\n",
761 		    (uintmax_t)rle->start, error);
762 		return (0);
763 	}
764 	return (newstart);
765 }
766 
767 unsigned long
768 pci_resource_len(struct pci_dev *pdev, int bar)
769 {
770 	struct resource_list_entry *rle;
771 
772 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
773 		return (0);
774 	return (rle->count);
775 }
776 
777 int
778 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
779 {
780 	struct resource *res;
781 	struct pci_devres *dr;
782 	struct pci_mmio_region *mmio;
783 	int rid;
784 	int type;
785 
786 	type = pci_resource_type(pdev, bar);
787 	if (type < 0)
788 		return (-ENODEV);
789 	rid = PCIR_BAR(bar);
790 	res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
791 	    RF_ACTIVE|RF_SHAREABLE);
792 	if (res == NULL) {
793 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
794 		    "bar %d type %d rid %d\n",
795 		    __func__, bar, type, PCIR_BAR(bar));
796 		return (-ENODEV);
797 	}
798 
799 	/*
800 	 * It seems there is an implicit devres tracking on these if the device
801 	 * is managed; otherwise the resources are not automatiaclly freed on
802 	 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
803 	 * drivers.
804 	 */
805 	dr = lkpi_pci_devres_find(pdev);
806 	if (dr != NULL) {
807 		dr->region_mask |= (1 << bar);
808 		dr->region_table[bar] = res;
809 	}
810 
811 	/* Even if the device is not managed we need to track it for iomap. */
812 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
813 	mmio->rid = PCIR_BAR(bar);
814 	mmio->type = type;
815 	mmio->res = res;
816 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
817 
818 	return (0);
819 }
820 
821 struct resource *
822 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
823 {
824 	struct pci_mmio_region *mmio, *p;
825 	int type;
826 
827 	type = pci_resource_type(pdev, bar);
828 	if (type < 0) {
829 		device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
830 		     __func__, bar, type);
831 		return (NULL);
832 	}
833 
834 	/*
835 	 * Check for duplicate mappings.
836 	 * This can happen if a driver calls pci_request_region() first.
837 	 */
838 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
839 		if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
840 			return (mmio->res);
841 		}
842 	}
843 
844 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
845 	mmio->rid = PCIR_BAR(bar);
846 	mmio->type = type;
847 	mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
848 	    &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
849 	if (mmio->res == NULL) {
850 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
851 		    "bar %d type %d rid %d\n",
852 		    __func__, bar, type, PCIR_BAR(bar));
853 		free(mmio, M_DEVBUF);
854 		return (NULL);
855 	}
856 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
857 
858 	return (mmio->res);
859 }
860 
861 int
862 linux_pci_register_drm_driver(struct pci_driver *pdrv)
863 {
864 	devclass_t dc;
865 
866 	dc = devclass_create("vgapci");
867 	if (dc == NULL)
868 		return (-ENXIO);
869 	pdrv->isdrm = true;
870 	pdrv->name = "drmn";
871 	return (_linux_pci_register_driver(pdrv, dc));
872 }
873 
874 void
875 linux_pci_unregister_driver(struct pci_driver *pdrv)
876 {
877 	devclass_t bus;
878 
879 	bus = devclass_find("pci");
880 
881 	spin_lock(&pci_lock);
882 	list_del(&pdrv->node);
883 	spin_unlock(&pci_lock);
884 	bus_topo_lock();
885 	if (bus != NULL)
886 		devclass_delete_driver(bus, &pdrv->bsddriver);
887 	bus_topo_unlock();
888 }
889 
890 void
891 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
892 {
893 	devclass_t bus;
894 
895 	bus = devclass_find("vgapci");
896 
897 	spin_lock(&pci_lock);
898 	list_del(&pdrv->node);
899 	spin_unlock(&pci_lock);
900 	bus_topo_lock();
901 	if (bus != NULL)
902 		devclass_delete_driver(bus, &pdrv->bsddriver);
903 	bus_topo_unlock();
904 }
905 
906 int
907 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
908     unsigned int flags)
909 {
910 	int error;
911 
912 	if (flags & PCI_IRQ_MSIX) {
913 		struct msix_entry *entries;
914 		int i;
915 
916 		entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
917 		if (entries == NULL) {
918 			error = -ENOMEM;
919 			goto out;
920 		}
921 		for (i = 0; i < maxv; ++i)
922 			entries[i].entry = i;
923 		error = pci_enable_msix(pdev, entries, maxv);
924 out:
925 		kfree(entries);
926 		if (error == 0 && pdev->msix_enabled)
927 			return (pdev->dev.irq_end - pdev->dev.irq_start);
928 	}
929 	if (flags & PCI_IRQ_MSI) {
930 		error = pci_enable_msi(pdev);
931 		if (error == 0 && pdev->msi_enabled)
932 			return (pdev->dev.irq_end - pdev->dev.irq_start);
933 	}
934 	if (flags & PCI_IRQ_LEGACY) {
935 		if (pdev->irq)
936 			return (1);
937 	}
938 
939 	return (-EINVAL);
940 }
941 
942 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
943 
944 struct linux_dma_obj {
945 	void		*vaddr;
946 	uint64_t	dma_addr;
947 	bus_dmamap_t	dmamap;
948 	bus_dma_tag_t	dmat;
949 };
950 
951 static uma_zone_t linux_dma_trie_zone;
952 static uma_zone_t linux_dma_obj_zone;
953 
954 static void
955 linux_dma_init(void *arg)
956 {
957 
958 	linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
959 	    pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
960 	    UMA_ALIGN_PTR, 0);
961 	linux_dma_obj_zone = uma_zcreate("linux_dma_object",
962 	    sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
963 	    UMA_ALIGN_PTR, 0);
964 	lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
965 }
966 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
967 
968 static void
969 linux_dma_uninit(void *arg)
970 {
971 
972 	counter_u64_free(lkpi_pci_nseg1_fail);
973 	uma_zdestroy(linux_dma_obj_zone);
974 	uma_zdestroy(linux_dma_trie_zone);
975 }
976 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
977 
978 static void *
979 linux_dma_trie_alloc(struct pctrie *ptree)
980 {
981 
982 	return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
983 }
984 
985 static void
986 linux_dma_trie_free(struct pctrie *ptree, void *node)
987 {
988 
989 	uma_zfree(linux_dma_trie_zone, node);
990 }
991 
992 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
993     linux_dma_trie_free);
994 
995 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
996 static dma_addr_t
997 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
998     bus_dma_tag_t dmat)
999 {
1000 	struct linux_dma_priv *priv;
1001 	struct linux_dma_obj *obj;
1002 	int error, nseg;
1003 	bus_dma_segment_t seg;
1004 
1005 	priv = dev->dma_priv;
1006 
1007 	/*
1008 	 * If the resultant mapping will be entirely 1:1 with the
1009 	 * physical address, short-circuit the remainder of the
1010 	 * bus_dma API.  This avoids tracking collisions in the pctrie
1011 	 * with the additional benefit of reducing overhead.
1012 	 */
1013 	if (bus_dma_id_mapped(dmat, phys, len))
1014 		return (phys);
1015 
1016 	obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1017 	if (obj == NULL) {
1018 		return (0);
1019 	}
1020 	obj->dmat = dmat;
1021 
1022 	DMA_PRIV_LOCK(priv);
1023 	if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1024 		DMA_PRIV_UNLOCK(priv);
1025 		uma_zfree(linux_dma_obj_zone, obj);
1026 		return (0);
1027 	}
1028 
1029 	nseg = -1;
1030 	if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1031 	    BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
1032 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1033 		DMA_PRIV_UNLOCK(priv);
1034 		uma_zfree(linux_dma_obj_zone, obj);
1035 		counter_u64_add(lkpi_pci_nseg1_fail, 1);
1036 		if (linuxkpi_debug)
1037 			dump_stack();
1038 		return (0);
1039 	}
1040 
1041 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1042 	obj->dma_addr = seg.ds_addr;
1043 
1044 	error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1045 	if (error != 0) {
1046 		bus_dmamap_unload(obj->dmat, obj->dmamap);
1047 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1048 		DMA_PRIV_UNLOCK(priv);
1049 		uma_zfree(linux_dma_obj_zone, obj);
1050 		return (0);
1051 	}
1052 	DMA_PRIV_UNLOCK(priv);
1053 	return (obj->dma_addr);
1054 }
1055 #else
1056 static dma_addr_t
1057 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1058     size_t len __unused, bus_dma_tag_t dmat __unused)
1059 {
1060 	return (phys);
1061 }
1062 #endif
1063 
1064 dma_addr_t
1065 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1066 {
1067 	struct linux_dma_priv *priv;
1068 
1069 	priv = dev->dma_priv;
1070 	return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
1071 }
1072 
1073 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1074 void
1075 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1076 {
1077 	struct linux_dma_priv *priv;
1078 	struct linux_dma_obj *obj;
1079 
1080 	priv = dev->dma_priv;
1081 
1082 	if (pctrie_is_empty(&priv->ptree))
1083 		return;
1084 
1085 	DMA_PRIV_LOCK(priv);
1086 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1087 	if (obj == NULL) {
1088 		DMA_PRIV_UNLOCK(priv);
1089 		return;
1090 	}
1091 	LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1092 	bus_dmamap_unload(obj->dmat, obj->dmamap);
1093 	bus_dmamap_destroy(obj->dmat, obj->dmamap);
1094 	DMA_PRIV_UNLOCK(priv);
1095 
1096 	uma_zfree(linux_dma_obj_zone, obj);
1097 }
1098 #else
1099 void
1100 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1101 {
1102 }
1103 #endif
1104 
1105 void *
1106 linux_dma_alloc_coherent(struct device *dev, size_t size,
1107     dma_addr_t *dma_handle, gfp_t flag)
1108 {
1109 	struct linux_dma_priv *priv;
1110 	vm_paddr_t high;
1111 	size_t align;
1112 	void *mem;
1113 
1114 	if (dev == NULL || dev->dma_priv == NULL) {
1115 		*dma_handle = 0;
1116 		return (NULL);
1117 	}
1118 	priv = dev->dma_priv;
1119 	if (priv->dma_coherent_mask)
1120 		high = priv->dma_coherent_mask;
1121 	else
1122 		/* Coherent is lower 32bit only by default in Linux. */
1123 		high = BUS_SPACE_MAXADDR_32BIT;
1124 	align = PAGE_SIZE << get_order(size);
1125 	/* Always zero the allocation. */
1126 	flag |= M_ZERO;
1127 	mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1128 	    align, 0, VM_MEMATTR_DEFAULT);
1129 	if (mem != NULL) {
1130 		*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1131 		    priv->dmat_coherent);
1132 		if (*dma_handle == 0) {
1133 			kmem_free(mem, size);
1134 			mem = NULL;
1135 		}
1136 	} else {
1137 		*dma_handle = 0;
1138 	}
1139 	return (mem);
1140 }
1141 
1142 struct lkpi_devres_dmam_coherent {
1143 	size_t size;
1144 	dma_addr_t *handle;
1145 	void *mem;
1146 };
1147 
1148 static void
1149 lkpi_dmam_free_coherent(struct device *dev, void *p)
1150 {
1151 	struct lkpi_devres_dmam_coherent *dr;
1152 
1153 	dr = p;
1154 	dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1155 }
1156 
1157 void *
1158 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1159     gfp_t flag)
1160 {
1161 	struct lkpi_devres_dmam_coherent *dr;
1162 
1163 	dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1164 	   sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1165 
1166 	if (dr == NULL)
1167 		return (NULL);
1168 
1169 	dr->size = size;
1170 	dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1171 	dr->handle = dma_handle;
1172 	if (dr->mem == NULL) {
1173 		lkpi_devres_free(dr);
1174 		return (NULL);
1175 	}
1176 
1177 	lkpi_devres_add(dev, dr);
1178 	return (dr->mem);
1179 }
1180 
1181 void
1182 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1183     bus_dmasync_op_t op)
1184 {
1185 	struct linux_dma_priv *priv;
1186 	struct linux_dma_obj *obj;
1187 
1188 	priv = dev->dma_priv;
1189 
1190 	if (pctrie_is_empty(&priv->ptree))
1191 		return;
1192 
1193 	DMA_PRIV_LOCK(priv);
1194 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1195 	if (obj == NULL) {
1196 		DMA_PRIV_UNLOCK(priv);
1197 		return;
1198 	}
1199 
1200 	bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1201 	DMA_PRIV_UNLOCK(priv);
1202 }
1203 
1204 int
1205 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1206     enum dma_data_direction direction, unsigned long attrs __unused)
1207 {
1208 	struct linux_dma_priv *priv;
1209 	struct scatterlist *sg;
1210 	int i, nseg;
1211 	bus_dma_segment_t seg;
1212 
1213 	priv = dev->dma_priv;
1214 
1215 	DMA_PRIV_LOCK(priv);
1216 
1217 	/* create common DMA map in the first S/G entry */
1218 	if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1219 		DMA_PRIV_UNLOCK(priv);
1220 		return (0);
1221 	}
1222 
1223 	/* load all S/G list entries */
1224 	for_each_sg(sgl, sg, nents, i) {
1225 		nseg = -1;
1226 		if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1227 		    sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1228 		    &seg, &nseg) != 0) {
1229 			bus_dmamap_unload(priv->dmat, sgl->dma_map);
1230 			bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1231 			DMA_PRIV_UNLOCK(priv);
1232 			return (0);
1233 		}
1234 		KASSERT(nseg == 0,
1235 		    ("More than one segment (nseg=%d)", nseg + 1));
1236 
1237 		sg_dma_address(sg) = seg.ds_addr;
1238 	}
1239 
1240 	switch (direction) {
1241 	case DMA_BIDIRECTIONAL:
1242 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1243 		break;
1244 	case DMA_TO_DEVICE:
1245 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1246 		break;
1247 	case DMA_FROM_DEVICE:
1248 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1249 		break;
1250 	default:
1251 		break;
1252 	}
1253 
1254 	DMA_PRIV_UNLOCK(priv);
1255 
1256 	return (nents);
1257 }
1258 
1259 void
1260 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1261     int nents __unused, enum dma_data_direction direction,
1262     unsigned long attrs __unused)
1263 {
1264 	struct linux_dma_priv *priv;
1265 
1266 	priv = dev->dma_priv;
1267 
1268 	DMA_PRIV_LOCK(priv);
1269 
1270 	switch (direction) {
1271 	case DMA_BIDIRECTIONAL:
1272 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1273 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1274 		break;
1275 	case DMA_TO_DEVICE:
1276 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1277 		break;
1278 	case DMA_FROM_DEVICE:
1279 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1280 		break;
1281 	default:
1282 		break;
1283 	}
1284 
1285 	bus_dmamap_unload(priv->dmat, sgl->dma_map);
1286 	bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1287 	DMA_PRIV_UNLOCK(priv);
1288 }
1289 
1290 struct dma_pool {
1291 	struct device  *pool_device;
1292 	uma_zone_t	pool_zone;
1293 	struct mtx	pool_lock;
1294 	bus_dma_tag_t	pool_dmat;
1295 	size_t		pool_entry_size;
1296 	struct pctrie	pool_ptree;
1297 };
1298 
1299 #define	DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1300 #define	DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1301 
1302 static inline int
1303 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1304 {
1305 	struct linux_dma_obj *obj = mem;
1306 	struct dma_pool *pool = arg;
1307 	int error, nseg;
1308 	bus_dma_segment_t seg;
1309 
1310 	nseg = -1;
1311 	DMA_POOL_LOCK(pool);
1312 	error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1313 	    vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1314 	    &seg, &nseg);
1315 	DMA_POOL_UNLOCK(pool);
1316 	if (error != 0) {
1317 		return (error);
1318 	}
1319 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1320 	obj->dma_addr = seg.ds_addr;
1321 
1322 	return (0);
1323 }
1324 
1325 static void
1326 dma_pool_obj_dtor(void *mem, int size, void *arg)
1327 {
1328 	struct linux_dma_obj *obj = mem;
1329 	struct dma_pool *pool = arg;
1330 
1331 	DMA_POOL_LOCK(pool);
1332 	bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1333 	DMA_POOL_UNLOCK(pool);
1334 }
1335 
1336 static int
1337 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1338     int flags)
1339 {
1340 	struct dma_pool *pool = arg;
1341 	struct linux_dma_obj *obj;
1342 	int error, i;
1343 
1344 	for (i = 0; i < count; i++) {
1345 		obj = uma_zalloc(linux_dma_obj_zone, flags);
1346 		if (obj == NULL)
1347 			break;
1348 
1349 		error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1350 		    BUS_DMA_NOWAIT, &obj->dmamap);
1351 		if (error!= 0) {
1352 			uma_zfree(linux_dma_obj_zone, obj);
1353 			break;
1354 		}
1355 
1356 		store[i] = obj;
1357 	}
1358 
1359 	return (i);
1360 }
1361 
1362 static void
1363 dma_pool_obj_release(void *arg, void **store, int count)
1364 {
1365 	struct dma_pool *pool = arg;
1366 	struct linux_dma_obj *obj;
1367 	int i;
1368 
1369 	for (i = 0; i < count; i++) {
1370 		obj = store[i];
1371 		bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1372 		uma_zfree(linux_dma_obj_zone, obj);
1373 	}
1374 }
1375 
1376 struct dma_pool *
1377 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1378     size_t align, size_t boundary)
1379 {
1380 	struct linux_dma_priv *priv;
1381 	struct dma_pool *pool;
1382 
1383 	priv = dev->dma_priv;
1384 
1385 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1386 	pool->pool_device = dev;
1387 	pool->pool_entry_size = size;
1388 
1389 	if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1390 	    align, boundary,		/* alignment, boundary */
1391 	    priv->dma_mask,		/* lowaddr */
1392 	    BUS_SPACE_MAXADDR,		/* highaddr */
1393 	    NULL, NULL,			/* filtfunc, filtfuncarg */
1394 	    size,			/* maxsize */
1395 	    1,				/* nsegments */
1396 	    size,			/* maxsegsz */
1397 	    0,				/* flags */
1398 	    NULL, NULL,			/* lockfunc, lockfuncarg */
1399 	    &pool->pool_dmat)) {
1400 		kfree(pool);
1401 		return (NULL);
1402 	}
1403 
1404 	pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1405 	    dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1406 	    dma_pool_obj_release, pool, 0);
1407 
1408 	mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1409 	pctrie_init(&pool->pool_ptree);
1410 
1411 	return (pool);
1412 }
1413 
1414 void
1415 linux_dma_pool_destroy(struct dma_pool *pool)
1416 {
1417 
1418 	uma_zdestroy(pool->pool_zone);
1419 	bus_dma_tag_destroy(pool->pool_dmat);
1420 	mtx_destroy(&pool->pool_lock);
1421 	kfree(pool);
1422 }
1423 
1424 void
1425 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1426 {
1427 	struct dma_pool *pool;
1428 
1429 	pool = *(struct dma_pool **)p;
1430 	LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1431 	linux_dma_pool_destroy(pool);
1432 }
1433 
1434 void *
1435 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1436     dma_addr_t *handle)
1437 {
1438 	struct linux_dma_obj *obj;
1439 
1440 	obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1441 	if (obj == NULL)
1442 		return (NULL);
1443 
1444 	DMA_POOL_LOCK(pool);
1445 	if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1446 		DMA_POOL_UNLOCK(pool);
1447 		uma_zfree_arg(pool->pool_zone, obj, pool);
1448 		return (NULL);
1449 	}
1450 	DMA_POOL_UNLOCK(pool);
1451 
1452 	*handle = obj->dma_addr;
1453 	return (obj->vaddr);
1454 }
1455 
1456 void
1457 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1458 {
1459 	struct linux_dma_obj *obj;
1460 
1461 	DMA_POOL_LOCK(pool);
1462 	obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1463 	if (obj == NULL) {
1464 		DMA_POOL_UNLOCK(pool);
1465 		return;
1466 	}
1467 	LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1468 	DMA_POOL_UNLOCK(pool);
1469 
1470 	uma_zfree_arg(pool->pool_zone, obj, pool);
1471 }
1472 
1473 static int
1474 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1475 {
1476 	struct pci_dev *pdev;
1477 
1478 	linux_set_current(curthread);
1479 	pdev = device_get_softc(dev);
1480 
1481 	props->brightness = pdev->dev.bd->props.brightness;
1482 	props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1483 	props->nlevels = 0;
1484 
1485 	return (0);
1486 }
1487 
1488 static int
1489 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1490 {
1491 	struct pci_dev *pdev;
1492 
1493 	linux_set_current(curthread);
1494 	pdev = device_get_softc(dev);
1495 
1496 	info->type = BACKLIGHT_TYPE_PANEL;
1497 	strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
1498 	return (0);
1499 }
1500 
1501 static int
1502 linux_backlight_update_status(device_t dev, struct backlight_props *props)
1503 {
1504 	struct pci_dev *pdev;
1505 
1506 	linux_set_current(curthread);
1507 	pdev = device_get_softc(dev);
1508 
1509 	pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
1510 		props->brightness / 100;
1511 	pdev->dev.bd->props.power = props->brightness == 0 ?
1512 		4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
1513 	return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
1514 }
1515 
1516 struct backlight_device *
1517 linux_backlight_device_register(const char *name, struct device *dev,
1518     void *data, const struct backlight_ops *ops, struct backlight_properties *props)
1519 {
1520 
1521 	dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
1522 	dev->bd->ops = ops;
1523 	dev->bd->props.type = props->type;
1524 	dev->bd->props.max_brightness = props->max_brightness;
1525 	dev->bd->props.brightness = props->brightness;
1526 	dev->bd->props.power = props->power;
1527 	dev->bd->data = data;
1528 	dev->bd->dev = dev;
1529 	dev->bd->name = strdup(name, M_DEVBUF);
1530 
1531 	dev->backlight_dev = backlight_register(name, dev->bsddev);
1532 
1533 	return (dev->bd);
1534 }
1535 
1536 void
1537 linux_backlight_device_unregister(struct backlight_device *bd)
1538 {
1539 
1540 	backlight_destroy(bd->dev->backlight_dev);
1541 	free(bd->name, M_DEVBUF);
1542 	free(bd, M_DEVBUF);
1543 }
1544