1 /*
2  * Copyright (c) 2013 Qualcomm Atheros, Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10  * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14  * PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "opt_ah.h"
18 
19 #include "ah.h"
20 #include "ah_internal.h"
21 #include "ah_devid.h"
22 #ifdef AH_DEBUG
23 #include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24 #endif
25 
26 #include "ar9300/ar9300.h"
27 #include "ar9300/ar9300reg.h"
28 #include "ar9300/ar9300phy.h"
29 
30 
31 void
32 ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
33 {
34     struct ath_hal_9300 *ahp = AH9300(ah);
35     *hangs = 0;
36 
37     if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
38         *hangs |= HAL_RIFS_BB_HANG_WAR;
39     }
40     if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
41         *hangs |= HAL_DFS_BB_HANG_WAR;
42     }
43     if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
44         == HAL_OK)
45     {
46         *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
47     }
48     if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
49         *hangs |= HAL_MAC_HANG_WAR;
50     }
51     if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
52         == HAL_OK)
53     {
54         *hangs |= HAL_PHYRESTART_CLR_WAR;
55     }
56 
57     ahp->ah_hang_wars = *hangs;
58 }
59 
60 /*
61  * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
62  * HT20, HT40, fast-clock, turbo mode, etc.
63  */
64 static u_int
65 ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
66 {
67 #if 0
68     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
69 
70     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
71         return (ath_hal_mac_usec(ah, clks) / 2);
72     } else {
73         return (ath_hal_mac_usec(ah, clks));
74     }
75 #endif
76     return (ath_hal_mac_usec(ah, clks));
77 }
78 
79 u_int
80 ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
81 {
82 #if 0
83     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
84 
85     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
86         return (ath_hal_mac_clks(ah, usecs) * 2);
87     } else {
88         return (ath_hal_mac_clks(ah, usecs));
89     }
90 #endif
91     return (ath_hal_mac_clks(ah, usecs));
92 }
93 
94 void
95 ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
96 {
97     struct ath_hal_9300 *ahp = AH9300(ah);
98 
99     OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
100 }
101 
102 HAL_BOOL
103 ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
104 {
105     struct ath_hal_9300 *ahp = AH9300(ah);
106 
107     OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
108     return AH_TRUE;
109 }
110 
111 void
112 ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
113 {
114     struct ath_hal_9300 *ahp = AH9300(ah);
115 
116     OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
117 }
118 
119 HAL_BOOL
120 ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
121 {
122     struct ath_hal_9300 *ahp = AH9300(ah);
123 
124     /* save it since it must be rewritten on reset */
125     OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
126 
127     OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
128     OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
129     return AH_TRUE;
130 }
131 
132 /*
133  * Attempt to change the cards operating regulatory domain to the given value
134  * Returns: A_EINVAL for an unsupported regulatory domain.
135  *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
136  */
137 HAL_BOOL
138 ar9300_set_regulatory_domain(struct ath_hal *ah,
139         u_int16_t reg_domain, HAL_STATUS *status)
140 {
141     HAL_STATUS ecode;
142 
143     if (AH_PRIVATE(ah)->ah_currentRD == 0) {
144         AH_PRIVATE(ah)->ah_currentRD = reg_domain;
145         return AH_TRUE;
146     }
147     ecode = HAL_EIO;
148 
149 #if 0
150 bad:
151 #endif
152     if (status) {
153         *status = ecode;
154     }
155     return AH_FALSE;
156 }
157 
158 /*
159  * Return the wireless modes (a,b,g,t) supported by hardware.
160  *
161  * This value is what is actually supported by the hardware
162  * and is unaffected by regulatory/country code settings.
163  *
164  */
165 u_int
166 ar9300_get_wireless_modes(struct ath_hal *ah)
167 {
168     return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
169 }
170 
171 /*
172  * Set the interrupt and GPIO values so the ISR can disable RF
173  * on a switch signal.  Assumes GPIO port and interrupt polarity
174  * are set prior to call.
175  */
176 void
177 ar9300_enable_rf_kill(struct ath_hal *ah)
178 {
179     /* TODO - can this really be above the hal on the GPIO interface for
180      * TODO - the client only?
181      */
182     struct ath_hal_9300    *ahp = AH9300(ah);
183 
184     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
185     	/* Check RF kill GPIO before set/clear RFSILENT bits. */
186     	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
187             OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
188                            AR_RFSILENT_FORCE);
189             OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
190         }
191         else {
192             OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
193                            AR_RFSILENT_FORCE);
194             OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
195         }
196     }
197     else {
198         /* Connect rfsilent_bb_l to baseband */
199         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
200             AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
201 
202         /* Set input mux for rfsilent_bb_l to GPIO #0 */
203         OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
204             AR_GPIO_INPUT_MUX2_RFSILENT);
205         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206             (ahp->ah_gpio_select & 0x0f) << 4);
207 
208         /*
209          * Configure the desired GPIO port for input and
210          * enable baseband rf silence
211          */
212         ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
213         OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
214     }
215 
216     /*
217      * If radio disable switch connection to GPIO bit x is enabled
218      * program GPIO interrupt.
219      * If rfkill bit on eeprom is 1, setupeeprommap routine has already
220      * verified that it is a later version of eeprom, it has a place for
221      * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
222      * connection is present.
223      */
224      /*
225       * RFKill uses polling not interrupt,
226       * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
227       */
228     if (ath_hal_hasrfkill_int(ah)) {
229         if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
230             /* switch already closed, set to interrupt upon open */
231             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
232         } else {
233             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
234         }
235     }
236 }
237 
238 /*
239  * Change the LED blinking pattern to correspond to the connectivity
240  */
241 void
242 ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
243 {
244     static const u_int32_t ledbits[8] = {
245         AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
246         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
247         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
248         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
249         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
250         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
251         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
252         AR_CFG_LED_ASSOC_NONE,
253     };
254 
255     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
256 }
257 
258 /*
259  * Sets the Power LED on the cardbus without affecting the Network LED.
260  */
261 void
262 ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
263 {
264     u_int32_t    val;
265 
266     val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
267     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
268 }
269 
270 /*
271  * Sets the Network LED on the cardbus without affecting the Power LED.
272  */
273 void
274 ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
275 {
276     u_int32_t    val;
277 
278     val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
279     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
280 }
281 
282 /*
283  * Change association related fields programmed into the hardware.
284  * Writing a valid BSSID to the hardware effectively enables the hardware
285  * to synchronize its TSF to the correct beacons and receive frames coming
286  * from that BSSID. It is called by the SME JOIN operation.
287  */
288 void
289 ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
290     u_int16_t assoc_id)
291 {
292     struct ath_hal_9300 *ahp = AH9300(ah);
293 
294     /* save bssid and assoc_id for restore on reset */
295     OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
296     ahp->ah_assoc_id = assoc_id;
297 
298     OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
299     OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
300                                  ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
301 }
302 
303 /*
304  * Get the current hardware tsf for stamlme
305  */
306 u_int64_t
307 ar9300_get_tsf64(struct ath_hal *ah)
308 {
309     u_int64_t tsf;
310 
311     /* XXX sync multi-word read? */
312     tsf = OS_REG_READ(ah, AR_TSF_U32);
313     tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
314     return tsf;
315 }
316 
317 void
318 ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
319 {
320     OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
321     OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
322 }
323 
324 /*
325  * Get the current hardware tsf for stamlme
326  */
327 u_int32_t
328 ar9300_get_tsf32(struct ath_hal *ah)
329 {
330     return OS_REG_READ(ah, AR_TSF_L32);
331 }
332 
333 u_int32_t
334 ar9300_get_tsf2_32(struct ath_hal *ah)
335 {
336     return OS_REG_READ(ah, AR_TSF2_L32);
337 }
338 
339 /*
340  * Reset the current hardware tsf for stamlme.
341  */
342 void
343 ar9300_reset_tsf(struct ath_hal *ah)
344 {
345     int count;
346 
347     count = 0;
348     while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
349         count++;
350         if (count > 10) {
351             HALDEBUG(ah, HAL_DEBUG_RESET,
352                 "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
353             break;
354         }
355         OS_DELAY(10);
356     }
357     OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
358 }
359 
360 /*
361  * Set or clear hardware basic rate bit
362  * Set hardware basic rate set if basic rate is found
363  * and basic rate is equal or less than 2Mbps
364  */
365 void
366 ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
367 {
368     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
369     u_int32_t reg;
370     u_int8_t xset;
371     int i;
372 
373     if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
374         return;
375     }
376     xset = 0;
377     for (i = 0; i < rs->rs_count; i++) {
378         u_int8_t rset = rs->rs_rates[i];
379         /* Basic rate defined? */
380         if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
381             xset = rset;
382         }
383     }
384     /*
385      * Set the h/w bit to reflect whether or not the basic
386      * rate is found to be equal or less than 2Mbps.
387      */
388     reg = OS_REG_READ(ah, AR_STA_ID1);
389     if (xset && xset / 2 <= 2) {
390         OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
391     } else {
392         OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
393     }
394 }
395 
396 /*
397  * Grab a semi-random value from hardware registers - may not
398  * change often
399  */
400 u_int32_t
401 ar9300_get_random_seed(struct ath_hal *ah)
402 {
403     u_int32_t nf;
404 
405     nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
406     if (nf & 0x100) {
407         nf = 0 - ((nf ^ 0x1ff) + 1);
408     }
409     return (OS_REG_READ(ah, AR_TSF_U32) ^
410         OS_REG_READ(ah, AR_TSF_L32) ^ nf);
411 }
412 
413 /*
414  * Detect if our card is present
415  */
416 HAL_BOOL
417 ar9300_detect_card_present(struct ath_hal *ah)
418 {
419     u_int16_t mac_version, mac_rev;
420     u_int32_t v;
421 
422     /*
423      * Read the Silicon Revision register and compare that
424      * to what we read at attach time.  If the same, we say
425      * a card/device is present.
426      */
427     v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
428     if (v == 0xFF) {
429         /* new SREV format */
430         v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
431         /*
432          * Include 6-bit Chip Type (masked to 0) to differentiate
433          * from pre-Sowl versions
434          */
435         mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
436         mac_rev = MS(v, AR_SREV_REVISION2);
437     } else {
438         mac_version = MS(v, AR_SREV_VERSION);
439         mac_rev = v & AR_SREV_REVISION;
440     }
441     return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
442             AH_PRIVATE(ah)->ah_macRev == mac_rev);
443 }
444 
445 /*
446  * Update MIB Counters
447  */
448 void
449 ar9300_update_mib_mac_stats(struct ath_hal *ah)
450 {
451     struct ath_hal_9300 *ahp = AH9300(ah);
452     HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
453 
454     stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
455     stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
456     stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
457     stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
458     stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
459 }
460 
461 void
462 ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
463 {
464     struct ath_hal_9300 *ahp = AH9300(ah);
465     HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
466 
467     stats->ackrcv_bad = istats->ackrcv_bad;
468     stats->rts_bad    = istats->rts_bad;
469     stats->fcs_bad    = istats->fcs_bad;
470     stats->rts_good   = istats->rts_good;
471     stats->beacons    = istats->beacons;
472 }
473 
474 /*
475  * Detect if the HW supports spreading a CCK signal on channel 14
476  */
477 HAL_BOOL
478 ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
479 {
480     return AH_TRUE;
481 }
482 
483 /*
484  * Get the rssi of frame curently being received.
485  */
486 u_int32_t
487 ar9300_get_cur_rssi(struct ath_hal *ah)
488 {
489     /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
490     /* get combined RSSI */
491     return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
492 }
493 
494 #if ATH_GEN_RANDOMNESS
495 /*
496  * Get the rssi value from BB on ctl chain0.
497  */
498 u_int32_t
499 ar9300_get_rssi_chain0(struct ath_hal *ah)
500 {
501     /* get ctl chain0 RSSI */
502     return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
503 }
504 #endif
505 
506 u_int
507 ar9300_get_def_antenna(struct ath_hal *ah)
508 {
509     return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
510 }
511 
512 /* Setup coverage class */
513 void
514 ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
515 {
516 }
517 
518 void
519 ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
520 {
521     OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
522 }
523 
524 HAL_BOOL
525 ar9300_set_antenna_switch(struct ath_hal *ah,
526     HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
527     u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
528 {
529     struct ath_hal_9300 *ahp = AH9300(ah);
530 
531     /*
532      * Owl does not support diversity or changing antennas.
533      *
534      * Instead this API and function are defined differently for AR9300.
535      * To support Tablet PC's, this interface allows the system
536      * to dramatically reduce the TX power on a particular chain.
537      *
538      * Based on the value of (redefined) diversity_control, the
539      * reset code will decrease power on chain 0 or chain 1/2.
540      *
541      * Based on the value of bit 0 of antenna_switch_swap,
542      * the mapping between OID call and chain is defined as:
543      *  0:  map A -> 0, B -> 1;
544      *  1:  map A -> 1, B -> 0;
545      *
546      * NOTE:
547      *   The devices that use this OID should use a tx_chain_mask and
548      *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
549      *   used in order to ensure an active transmit antenna.  This
550      *   API will allow the host to turn off the only transmitting
551      *   antenna to ensure the antenna closest to the user's body is
552      *   powered-down.
553      */
554     /*
555      * Set antenna control for use during reset sequence by
556      * ar9300_decrease_chain_power()
557      */
558     ahp->ah_diversity_control = settings;
559 
560     return AH_TRUE;
561 }
562 
563 HAL_BOOL
564 ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
565 {
566     return AH_TRUE;
567 }
568 
569 HAL_BOOL
570 ar9300_set_slot_time(struct ath_hal *ah, u_int us)
571 {
572     struct ath_hal_9300 *ahp = AH9300(ah);
573     if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
574         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
575         ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
576         return AH_FALSE;
577     } else {
578         /* convert to system clocks */
579         OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
580         ahp->ah_slot_time = us;
581         return AH_TRUE;
582     }
583 }
584 
585 HAL_BOOL
586 ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
587 {
588     struct ath_hal_9300 *ahp = AH9300(ah);
589 
590     if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
591         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
592         ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
593         return AH_FALSE;
594     } else {
595         /* convert to system clocks */
596         OS_REG_RMW_FIELD(ah,
597             AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
598         ahp->ah_ack_timeout = us;
599         return AH_TRUE;
600     }
601 }
602 
603 u_int
604 ar9300_get_ack_timeout(struct ath_hal *ah)
605 {
606     u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
607     return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
608 }
609 
610 HAL_STATUS
611 ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
612                  u_int32_t next_start, HAL_QUIET_FLAG flag)
613 {
614 #define	TU_TO_USEC(_tu)		((_tu) << 10)
615     HAL_STATUS status = HAL_EIO;
616     u_int32_t tsf = 0, j, next_start_us = 0;
617     if (flag & HAL_QUIET_ENABLE) {
618         for (j = 0; j < 2; j++) {
619             next_start_us = TU_TO_USEC(next_start);
620             tsf = OS_REG_READ(ah, AR_TSF_L32);
621             if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
622                 next_start_us += tsf;
623             }
624             if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
625                 next_start_us +=
626                     ah->ah_config.ah_sw_beacon_response_time;
627             }
628             OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
629             OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
630             OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
631             OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
632             OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
633             if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
634                 status = HAL_OK;
635                 break;
636             }
637             HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
638                 "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
639             /* TSF shouldn't count twice or reg access is taking forever */
640             HALASSERT(j < 1);
641         }
642     } else {
643         OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
644         status = HAL_OK;
645     }
646 
647     return status;
648 #undef	TU_TO_USEC
649 }
650 #ifdef ATH_SUPPORT_DFS
651 void
652 ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
653 {
654     u32 reg1, reg2;
655 
656     reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
657     reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
658     AH9300(ah)->ah_cac_quiet_enabled = enable;
659 
660     if (enable) {
661         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
662                      reg1 | AR_PCU_FORCE_QUIET_COLL);
663         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
664                      reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
665     } else {
666         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
667                      reg1 & ~AR_PCU_FORCE_QUIET_COLL);
668         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
669                      reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
670     }
671 }
672 #endif /* ATH_SUPPORT_DFS */
673 
674 void
675 ar9300_set_pcu_config(struct ath_hal *ah)
676 {
677     ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
678 }
679 
680 HAL_STATUS
681 ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
682     u_int32_t capability, u_int32_t *result)
683 {
684     struct ath_hal_9300 *ahp = AH9300(ah);
685     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
686     struct ar9300_ani_state *ani;
687 
688     switch (type) {
689     case HAL_CAP_CIPHER:            /* cipher handled in hardware */
690         switch (capability) {
691         case HAL_CIPHER_AES_CCM:
692         case HAL_CIPHER_AES_OCB:
693         case HAL_CIPHER_TKIP:
694         case HAL_CIPHER_WEP:
695         case HAL_CIPHER_MIC:
696         case HAL_CIPHER_CLR:
697             return HAL_OK;
698         default:
699             return HAL_ENOTSUPP;
700         }
701     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
702         switch (capability) {
703         case 0:         /* hardware capability */
704             return HAL_OK;
705         case 1:
706             return (ahp->ah_sta_id1_defaults &
707                     AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
708         default:
709             return HAL_ENOTSUPP;
710         }
711     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
712         switch (capability) {
713         case 0: /* hardware capability */
714             return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
715         case 1: /* current setting */
716             return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
717                 HAL_ENXIO : HAL_OK;
718         default:
719             return HAL_ENOTSUPP;
720         }
721     case HAL_CAP_WME_TKIPMIC:
722         /* hardware can do TKIP MIC when WMM is turned on */
723         return HAL_OK;
724     case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
725         return HAL_OK;
726     case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
727         switch (capability) {
728         case 0:                 /* hardware capability */
729             return HAL_OK;
730         case 1:                 /* current setting */
731             return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
732                             AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
733                             HAL_OK : HAL_ENXIO;
734         }
735         return HAL_EINVAL;
736     case HAL_CAP_TPC:
737         switch (capability) {
738         case 0:                 /* hardware capability */
739             return HAL_OK;
740         case 1:
741             return ah->ah_config.ath_hal_desc_tpc ?
742                                HAL_OK : HAL_ENXIO;
743         }
744         return HAL_OK;
745     case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
746         return HAL_OK;
747     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
748         switch (capability) {
749         case 0:                 /* hardware capability */
750             return HAL_OK;
751         case 1:
752             if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
753                 /*
754                  * Owl and Merlin have problems in mcast key search.
755                  * Disable this cap. in Ad-hoc mode. see Bug 25776 and
756                  * 26802
757                  */
758                 return HAL_ENXIO;
759             } else {
760                 return (ahp->ah_sta_id1_defaults &
761                         AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
762             }
763         }
764         return HAL_EINVAL;
765     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
766         switch (capability) {
767         case 0:                 /* hardware capability */
768             return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
769         case 1:
770             return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
771                 HAL_OK : HAL_ENXIO;
772         }
773         return HAL_EINVAL;
774     case HAL_CAP_RFSILENT:      /* rfsilent support  */
775         if (capability == 3) {  /* rfkill interrupt */
776             /*
777              * XXX: Interrupt-based notification of RF Kill state
778              *      changes not working yet. Report that this feature
779              *      is not supported so that polling is used instead.
780              */
781             return (HAL_ENOTSUPP);
782         }
783         return ath_hal_getcapability(ah, type, capability, result);
784     case HAL_CAP_4ADDR_AGGR:
785         return HAL_OK;
786     case HAL_CAP_BB_RIFS_HANG:
787         return HAL_ENOTSUPP;
788     case HAL_CAP_BB_DFS_HANG:
789         return HAL_ENOTSUPP;
790     case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
791         /* Track chips that are known to have BB hangs related
792          * to rx_clear stuck low.
793          */
794         return HAL_ENOTSUPP;
795     case HAL_CAP_MAC_HANG:
796         /* Track chips that are known to have MAC hangs.
797          */
798         return HAL_OK;
799     case HAL_CAP_RIFS_RX_ENABLED:
800         /* Is RIFS RX currently enabled */
801         return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
802 #if 0
803     case HAL_CAP_ANT_CFG_2GHZ:
804         *result = p_cap->halNumAntCfg2Ghz;
805         return HAL_OK;
806     case HAL_CAP_ANT_CFG_5GHZ:
807         *result = p_cap->halNumAntCfg5Ghz;
808         return HAL_OK;
809     case HAL_CAP_RX_STBC:
810         *result = p_cap->hal_rx_stbc_support;
811         return HAL_OK;
812     case HAL_CAP_TX_STBC:
813         *result = p_cap->hal_tx_stbc_support;
814         return HAL_OK;
815 #endif
816     case HAL_CAP_LDPC:
817         *result = p_cap->halLDPCSupport;
818         return HAL_OK;
819     case HAL_CAP_DYNAMIC_SMPS:
820         return HAL_OK;
821     case HAL_CAP_DS:
822         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
823                 (p_cap->halTxChainMask & 0x3) != 0x3 ||
824                 (p_cap->halRxChainMask & 0x3) != 0x3) ?
825             HAL_ENOTSUPP : HAL_OK;
826     case HAL_CAP_TS:
827         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
828                 (p_cap->halTxChainMask & 0x7) != 0x7 ||
829                 (p_cap->halRxChainMask & 0x7) != 0x7) ?
830             HAL_ENOTSUPP : HAL_OK;
831     case HAL_CAP_OL_PWRCTRL:
832         return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
833             HAL_OK : HAL_ENOTSUPP;
834     case HAL_CAP_CRDC:
835 #if ATH_SUPPORT_CRDC
836         return (AR_SREV_WASP(ah) &&
837                 ah->ah_config.ath_hal_crdc_enable) ?
838                     HAL_OK : HAL_ENOTSUPP;
839 #else
840         return HAL_ENOTSUPP;
841 #endif
842 #if 0
843     case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
844         *result = (u_int32_t)(-1);
845         return HAL_OK;
846     case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
847         *result = (u_int32_t)(-1);
848         return HAL_OK;
849 #endif
850     case HAL_CAP_BB_PANIC_WATCHDOG:
851         return HAL_OK;
852     case HAL_CAP_PHYRESTART_CLR_WAR:
853         if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
854             (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
855         {
856             return HAL_OK;
857         }
858         else
859         {
860             return HAL_ENOTSUPP;
861         }
862     case HAL_CAP_ENTERPRISE_MODE:
863         *result = ahp->ah_enterprise_mode >> 16;
864         /*
865          * WAR for EV 77658 - Add delimiters to first sub-frame when using
866          * RTS/CTS with aggregation and non-enterprise Osprey.
867          *
868          * Bug fixed in AR9580/Peacock, Wasp1.1 and later
869          */
870         if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
871                 !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
872                 AR_SREV_WASP_10(ah))) {
873             *result |= AH_ENT_RTSCTS_DELIM_WAR;
874         }
875         return HAL_OK;
876     case HAL_CAP_LDPCWAR:
877         /* WAR for RIFS+LDPC issue is required for all chips currently
878          * supported by ar9300 HAL.
879          */
880         return HAL_OK;
881     case HAL_CAP_ENABLE_APM:
882         *result = p_cap->halApmEnable;
883         return HAL_OK;
884     case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
885         return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
886     case HAL_CAP_PCIE_LCR_OFFSET:
887         *result = p_cap->hal_pcie_lcr_offset;
888         return HAL_OK;
889     case HAL_CAP_SMARTANTENNA:
890         /* FIXME A request is pending with h/w team to add feature bit in
891          * caldata to detect if board has smart antenna or not, once added
892          * we need to fix his piece of code to read and return value without
893          * any compile flags
894          */
895 #if UMAC_SUPPORT_SMARTANTENNA
896         /* enable smart antenna for  Peacock, Wasp and scorpion
897            for future chips need to modify */
898         if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
899             return HAL_OK;
900         } else {
901             return HAL_ENOTSUPP;
902         }
903 #else
904         return HAL_ENOTSUPP;
905 #endif
906 
907 #ifdef ATH_TRAFFIC_FAST_RECOVER
908     case HAL_CAP_TRAFFIC_FAST_RECOVER:
909         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
910             return HAL_OK;
911         } else {
912             return HAL_ENOTSUPP;
913         }
914 #endif
915 
916     /* FreeBSD ANI */
917     case HAL_CAP_INTMIT:            /* interference mitigation */
918             switch (capability) {
919             case HAL_CAP_INTMIT_PRESENT:            /* hardware capability */
920                     return HAL_OK;
921             case HAL_CAP_INTMIT_ENABLE:
922                     return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
923                             HAL_OK : HAL_ENXIO;
924             case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
925             case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
926 //            case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
927             case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
928             case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
929                     ani = ar9300_ani_get_current_state(ah);
930                     if (ani == AH_NULL)
931                             return HAL_ENXIO;
932                     switch (capability) {
933                     /* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
934                     case 2: *result = ani->ofdm_noise_immunity_level; break;
935                     case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
936  //                   case 4: *result = ani->cck_weak_sig_threshold; break;
937                     case 5: *result = ani->firstep_level; break;
938                     case 6: *result = ani->spur_immunity_level; break;
939                     }
940                     return HAL_OK;
941             }
942             return HAL_EINVAL;
943     default:
944         return ath_hal_getcapability(ah, type, capability, result);
945     }
946 }
947 
948 HAL_BOOL
949 ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
950         u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
951 {
952     struct ath_hal_9300 *ahp = AH9300(ah);
953     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
954     u_int32_t v;
955 
956     switch (type) {
957     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
958         if (! p_cap->halTkipMicTxRxKeySupport)
959             return AH_FALSE;
960 
961         if (setting)
962             ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
963         else
964             ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
965 
966         OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
967         return AH_TRUE;
968 
969     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
970         if (setting) {
971             ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
972         } else {
973             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
974         }
975         return AH_TRUE;
976     case HAL_CAP_DIVERSITY:
977         v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
978         if (setting) {
979             v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
980         } else {
981             v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
982         }
983         OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
984         return AH_TRUE;
985     case HAL_CAP_DIAG:              /* hardware diagnostic support */
986         /*
987          * NB: could split this up into virtual capabilities,
988          *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
989          *     seems worth the additional complexity.
990          */
991 #ifdef AH_DEBUG
992         AH_PRIVATE(ah)->ah_diagreg = setting;
993 #else
994         AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
995 #endif
996         OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
997         return AH_TRUE;
998     case HAL_CAP_TPC:
999         ah->ah_config.ath_hal_desc_tpc = (setting != 0);
1000         return AH_TRUE;
1001     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
1002         if (setting) {
1003             ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
1004         } else {
1005             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1006         }
1007         return AH_TRUE;
1008     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
1009         if (p_cap->halTsfAddSupport) {
1010             if (setting) {
1011                 ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
1012             } else {
1013                 ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
1014             }
1015             return AH_TRUE;
1016         }
1017         return AH_FALSE;
1018 
1019     /* FreeBSD interrupt mitigation / ANI */
1020     case HAL_CAP_INTMIT: {          /* interference mitigation */
1021             /* This maps the public ANI commands to the internal ANI commands */
1022             /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1023             static const HAL_ANI_CMD cmds[] = {
1024                     HAL_ANI_PRESENT,
1025                     HAL_ANI_MODE,
1026                     HAL_ANI_NOISE_IMMUNITY_LEVEL,
1027                     HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1028                     HAL_ANI_CCK_WEAK_SIGNAL_THR,
1029                     HAL_ANI_FIRSTEP_LEVEL,
1030                     HAL_ANI_SPUR_IMMUNITY_LEVEL,
1031             };
1032 #define N(a)    (sizeof(a) / sizeof(a[0]))
1033             return capability < N(cmds) ?
1034                     ar9300_ani_control(ah, cmds[capability], setting) :
1035                     AH_FALSE;
1036 #undef N
1037     }
1038 
1039     case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
1040         ahp->rx_buf_size = setting & AR_DATABUF_MASK;
1041         OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
1042         return AH_TRUE;
1043 
1044         /* fall thru... */
1045     default:
1046         return ath_hal_setcapability(ah, type, capability, setting, status);
1047     }
1048 }
1049 
1050 #ifdef AH_DEBUG
1051 static void
1052 ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1053 {
1054     u_int32_t i = 0;
1055 
1056     /* Read 0x80d0 to trigger pcie analyzer */
1057     HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1058         "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1059 
1060     if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1061         struct ath_hal_9300 *ahp = AH9300(ah);
1062         u_int32_t tf, rf, rc, cc;
1063 
1064         tf = OS_REG_READ(ah, AR_TFCNT);
1065         rf = OS_REG_READ(ah, AR_RFCNT);
1066         rc = OS_REG_READ(ah, AR_RCCNT);
1067         cc = OS_REG_READ(ah, AR_CCCNT);
1068 
1069         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1070             "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1071         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1072             "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1073         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1074             "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1075         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1076             "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1077 
1078         ahp->last_tf = tf;
1079         ahp->last_rf = rf;
1080         ahp->last_rc = rc;
1081         ahp->last_cc = cc;
1082 
1083         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1084             "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1085         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1086             "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1087         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1088             "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1089         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1090             "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1091         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1092             "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1093         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1094             "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1095         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1096             "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1097         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1098             "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1099     }
1100 
1101     if (args & HAL_DIAG_PRINT_REG_ALL) {
1102         for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1103             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1104                 i, OS_REG_READ(ah, i));
1105         }
1106 
1107         for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1108             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1109                 i, OS_REG_READ(ah, i));
1110         }
1111 
1112         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1113             "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1114 
1115         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1116             "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1117 
1118         for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1119             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1120                 i, OS_REG_READ(ah, i));
1121         }
1122 
1123         for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1124             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1125                 i, OS_REG_READ(ah, i));
1126         }
1127 
1128         for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1129             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1130                 i, OS_REG_READ(ah, i));
1131         }
1132 
1133         for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1134             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1135                 i, OS_REG_READ(ah, i));
1136         }
1137 
1138         for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1139             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1140                 i, OS_REG_READ(ah, i));
1141         }
1142 
1143         for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1144             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1145                 i, OS_REG_READ(ah, i));
1146         }
1147 
1148         for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1149             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1150                 i, OS_REG_READ(ah, i));
1151         }
1152 
1153         for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1154             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1155                 i, OS_REG_READ(ah, i));
1156         }
1157 
1158         for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1159             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1160                 i, OS_REG_READ(ah, i));
1161         }
1162 
1163         for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1164             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1165                 i, OS_REG_READ(ah, i));
1166         }
1167 
1168         for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1169             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1170                 i, OS_REG_READ(ah, i));
1171         }
1172     }
1173 }
1174 #endif
1175 
1176 HAL_BOOL
1177 ar9300_get_diag_state(struct ath_hal *ah, int request,
1178         const void *args, u_int32_t argsize,
1179         void **result, u_int32_t *resultsize)
1180 {
1181     struct ath_hal_9300 *ahp = AH9300(ah);
1182     struct ar9300_ani_state *ani;
1183 
1184     (void) ahp;
1185     if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1186         return AH_TRUE;
1187     }
1188     switch (request) {
1189 #ifdef AH_PRIVATE_DIAG
1190     case HAL_DIAG_EEPROM:
1191         *result = &ahp->ah_eeprom;
1192         *resultsize = sizeof(ar9300_eeprom_t);
1193         return AH_TRUE;
1194 
1195 #if 0   /* XXX - TODO */
1196     case HAL_DIAG_EEPROM_EXP_11A:
1197     case HAL_DIAG_EEPROM_EXP_11B:
1198     case HAL_DIAG_EEPROM_EXP_11G:
1199         pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1200         *result = pe->p_channels;
1201         *resultsize = (*result == AH_NULL) ? 0 :
1202             roundup(sizeof(u_int16_t) * pe->num_channels,
1203             sizeof(u_int32_t)) +
1204                 sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1205         return AH_TRUE;
1206 #endif
1207     case HAL_DIAG_RFGAIN:
1208         *result = &ahp->ah_gain_values;
1209         *resultsize = sizeof(GAIN_VALUES);
1210         return AH_TRUE;
1211     case HAL_DIAG_RFGAIN_CURSTEP:
1212         *result = (void *) ahp->ah_gain_values.curr_step;
1213         *resultsize = (*result == AH_NULL) ?
1214                 0 : sizeof(GAIN_OPTIMIZATION_STEP);
1215         return AH_TRUE;
1216 #if 0   /* XXX - TODO */
1217     case HAL_DIAG_PCDAC:
1218         *result = ahp->ah_pcdac_table;
1219         *resultsize = ahp->ah_pcdac_table_size;
1220         return AH_TRUE;
1221 #endif
1222     case HAL_DIAG_ANI_CURRENT:
1223 
1224         ani = ar9300_ani_get_current_state(ah);
1225         if (ani == AH_NULL)
1226             return AH_FALSE;
1227         /* Convert ar9300 HAL to FreeBSD HAL ANI state */
1228         /* XXX TODO: add all of these to the HAL ANI state structure */
1229         bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state));
1230         /* XXX should this be OFDM or CCK noise immunity level? */
1231         ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level;
1232         ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level;
1233         ahp->ext_ani_state.firstepLevel = ani->firstep_level;
1234         ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off;
1235         /* mrc_cck_off */
1236         /* cck_noise_immunity_level */
1237 
1238         ahp->ext_ani_state.listenTime = ani->listen_time;
1239 
1240         *result = &ahp->ext_ani_state;
1241         *resultsize = sizeof(ahp->ext_ani_state);
1242 #if 0
1243         *result = ar9300_ani_get_current_state(ah);
1244         *resultsize = (*result == AH_NULL) ?
1245             0 : sizeof(struct ar9300_ani_state);
1246 #endif
1247         return AH_TRUE;
1248     case HAL_DIAG_ANI_STATS:
1249         *result = ar9300_ani_get_current_stats(ah);
1250         *resultsize = (*result == AH_NULL) ?
1251             0 : sizeof(HAL_ANI_STATS);
1252         return AH_TRUE;
1253     case HAL_DIAG_ANI_CMD:
1254         if (argsize != 2*sizeof(u_int32_t)) {
1255             return AH_FALSE;
1256         }
1257         ar9300_ani_control(
1258             ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1259         return AH_TRUE;
1260 #if 0
1261     case HAL_DIAG_TXCONT:
1262         /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1263         return AH_TRUE;
1264 #endif /* 0 */
1265 #endif /* AH_PRIVATE_DIAG */
1266     case HAL_DIAG_CHANNELS:
1267 #if 0
1268         *result = &(ahp->ah_priv.ah_channels[0]);
1269         *resultsize =
1270             sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1271 #endif
1272         return AH_TRUE;
1273 #ifdef AH_DEBUG
1274     case HAL_DIAG_PRINT_REG:
1275         ar9300_print_reg(ah, *((const u_int32_t *)args));
1276         return AH_TRUE;
1277 #endif
1278     default:
1279         break;
1280     }
1281 
1282     return AH_FALSE;
1283 }
1284 
1285 void
1286 ar9300_dma_reg_dump(struct ath_hal *ah)
1287 {
1288 #ifdef AH_DEBUG
1289 #define NUM_DMA_DEBUG_REGS  8
1290 #define NUM_QUEUES          10
1291 
1292     u_int32_t val[NUM_DMA_DEBUG_REGS];
1293     int       qcu_offset = 0, dcu_offset = 0;
1294     u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1295     int       i, j, k;
1296     int16_t nfarray[HAL_NUM_NF_READINGS];
1297 #ifdef	ATH_NF_PER_CHAN
1298     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1299 #endif	/* ATH_NF_PER_CHAN */
1300     HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1301 
1302      /* selecting DMA OBS 8 */
1303     OS_REG_WRITE(ah, AR_MACMISC,
1304         ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1305          (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1306 
1307     ath_hal_printf(ah, "Raw DMA Debug values:\n");
1308     for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1309         if (i % 4 == 0) {
1310             ath_hal_printf(ah, "\n");
1311         }
1312 
1313         val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1314         ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1315     }
1316 
1317     ath_hal_printf(ah, "\n\n");
1318     ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1319 
1320     for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1321         if (i == 8) {
1322             /* only 8 QCU entries in val[0] */
1323             qcu_offset = 0;
1324             qcu_base++;
1325         }
1326 
1327         if (i == 6) {
1328             /* only 6 DCU entries in val[4] */
1329             dcu_offset = 0;
1330             dcu_base++;
1331         }
1332 
1333         ath_hal_printf(ah,
1334             "%2d          %2x      %1x     %2x           %2x\n",
1335             i,
1336             (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1337             (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1338             val[2] & (0x7 << (i * 3)) >> (i * 3),
1339             (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1340     }
1341 
1342     ath_hal_printf(ah, "\n");
1343     ath_hal_printf(ah,
1344         "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1345         (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1346     ath_hal_printf(ah,
1347         "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1348         (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1349     ath_hal_printf(ah,
1350         "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1351         (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1352     ath_hal_printf(ah,
1353         "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1354         (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1355     ath_hal_printf(ah,
1356         "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1357         (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1358     ath_hal_printf(ah,
1359         "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1360         (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1361     ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1362     ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1363 
1364     ar9300_upload_noise_floor(ah, 1, nfarray);
1365     ath_hal_printf(ah, "2G:\n");
1366     ath_hal_printf(ah, "Min CCA Out:\n");
1367     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1368     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1369                    nfarray[0], nfarray[1], nfarray[2]);
1370     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1371                    nfarray[3], nfarray[4], nfarray[5]);
1372 
1373     ar9300_upload_noise_floor(ah, 0, nfarray);
1374     ath_hal_printf(ah, "5G:\n");
1375     ath_hal_printf(ah, "Min CCA Out:\n");
1376     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1377     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1378                    nfarray[0], nfarray[1], nfarray[2]);
1379     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1380                    nfarray[3], nfarray[4], nfarray[5]);
1381 
1382     for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1383         ath_hal_printf(ah, "%s Chain %d NF History:\n",
1384                        ((i < 3) ? "Control " : "Extension "), i%3);
1385         for (j = 0, k = h->base.curr_index;
1386              j < HAL_NF_CAL_HIST_LEN_FULL;
1387              j++, k++) {
1388             ath_hal_printf(ah, "Element %d: %d\n",
1389                 j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1390         }
1391         ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1392     }
1393 
1394     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1395     ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1396                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1397                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1398     reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1399     ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1400                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1401                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1402     ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1403                    MS(reg, AR_PHY_DESIRED_SZ_ADC),
1404                    MS(reg, AR_PHY_DESIRED_SZ_ADC));
1405     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1406     ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1407                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1408                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1409     reg = OS_REG_READ(ah, AR_PHY_AGC);
1410     ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1411                    MS(reg, AR_PHY_AGC_COARSE_HIGH),
1412                    MS(reg, AR_PHY_AGC_COARSE_HIGH));
1413     ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1414                    MS(reg, AR_PHY_AGC_COARSE_LOW),
1415                    MS(reg, AR_PHY_AGC_COARSE_LOW));
1416     ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1417                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1418                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1419     reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1420     ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1421                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1422     ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1423                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1424                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1425     ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1426                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1427                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1428     reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1429     ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1430                    MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1431     ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1432                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1433                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1434 
1435 
1436     /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1437     reg = OS_REG_READ(ah, 0xa360);
1438     reg &= ~0x00800000;
1439     OS_REG_WRITE(ah, 0xa360, reg);
1440 
1441     /* Step 2a: Set register 0xa364 to 0x1000 */
1442     reg = 0x1000;
1443     OS_REG_WRITE(ah, 0xa364, reg);
1444 
1445     /* Step 3a: Read bits 17:0 of register 0x9c20 */
1446     reg = OS_REG_READ(ah, 0x9c20);
1447     reg &= 0x0003ffff;
1448     ath_hal_printf(ah,
1449         "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1450         __func__, reg);
1451 
1452     /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1453     reg = OS_REG_READ(ah, 0xa360);
1454     reg &= ~0x00800000;
1455     OS_REG_WRITE(ah, 0xa360, reg);
1456 
1457     /* Step 2b: Set register 0xa364 to 0x1400 */
1458     reg = 0x1400;
1459     OS_REG_WRITE(ah, 0xa364, reg);
1460 
1461     /* Step 3b: Read bits 17:0 of register 0x9c20 */
1462     reg = OS_REG_READ(ah, 0x9c20);
1463     reg &= 0x0003ffff;
1464     ath_hal_printf(ah,
1465         "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1466         __func__, reg);
1467 
1468     /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1469     reg = OS_REG_READ(ah, 0xa360);
1470     reg &= ~0x00800000;
1471     OS_REG_WRITE(ah, 0xa360, reg);
1472 
1473     /* Step 2c: Set register 0xa364 to 0x3C00 */
1474     reg = 0x3c00;
1475     OS_REG_WRITE(ah, 0xa364, reg);
1476 
1477     /* Step 3c: Read bits 17:0 of register 0x9c20 */
1478     reg = OS_REG_READ(ah, 0x9c20);
1479     reg &= 0x0003ffff;
1480     ath_hal_printf(ah,
1481         "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1482         __func__, reg);
1483 
1484     /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1485     reg = OS_REG_READ(ah, 0xa360);
1486     reg &= ~0x001040000;
1487     OS_REG_WRITE(ah, 0xa360, reg);
1488 
1489     /* Step 2d: Set register 0xa364 to 0x5005D */
1490     reg = 0x5005D;
1491     OS_REG_WRITE(ah, 0xa364, reg);
1492 
1493     /* Step 3d: Read bits 17:0 of register 0xa368 */
1494     reg = OS_REG_READ(ah, 0xa368);
1495     reg &= 0x0003ffff;
1496     ath_hal_printf(ah,
1497         "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1498         __func__, reg);
1499 
1500     /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1501     reg = OS_REG_READ(ah, 0xa360);
1502     reg &= ~0x001040000;
1503     OS_REG_WRITE(ah, 0xa360, reg);
1504 
1505     /* Step 2e: Set register 0xa364 to 0x7005D */
1506     reg = 0x7005D;
1507     OS_REG_WRITE(ah, 0xa364, reg);
1508 
1509     /* Step 3e: Read bits 17:0 of register 0xa368 */
1510     reg = OS_REG_READ(ah, 0xa368);
1511     reg &= 0x0003ffff;
1512     ath_hal_printf(ah,
1513         "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1514        __func__, reg);
1515 
1516     /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1517     reg = OS_REG_READ(ah, 0xa360);
1518     reg &= ~0x001000000;
1519     reg |= 0x40000;
1520     OS_REG_WRITE(ah, 0xa360, reg);
1521 
1522     /* Step 2f: Set register 0xa364 to 0x3005D */
1523     reg = 0x3005D;
1524     OS_REG_WRITE(ah, 0xa364, reg);
1525 
1526     /* Step 3f: Read bits 17:0 of register 0xa368 */
1527     reg = OS_REG_READ(ah, 0xa368);
1528     reg &= 0x0003ffff;
1529     ath_hal_printf(ah,
1530         "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1531         __func__, reg);
1532 
1533     /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1534     reg = OS_REG_READ(ah, 0xa360);
1535     reg &= ~0x001000000;
1536     reg |= 0x40000;
1537     OS_REG_WRITE(ah, 0xa360, reg);
1538 
1539     /* Step 2g: Set register 0xa364 to 0x6005D */
1540     reg = 0x6005D;
1541     OS_REG_WRITE(ah, 0xa364, reg);
1542 
1543     /* Step 3g: Read bits 17:0 of register 0xa368 */
1544     reg = OS_REG_READ(ah, 0xa368);
1545     reg &= 0x0003ffff;
1546     ath_hal_printf(ah,
1547         "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1548         __func__, reg);
1549 #endif /* AH_DEBUG */
1550 }
1551 
1552 /*
1553  * Return the busy for rx_frame, rx_clear, and tx_frame
1554  */
1555 u_int32_t
1556 ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1557     u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1558 {
1559     struct ath_hal_9300 *ahp = AH9300(ah);
1560     u_int32_t good = 1;
1561 
1562     u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1563     u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1564     u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1565     u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1566 
1567     if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1568         /*
1569          * Cycle counter wrap (or initial call); it's not possible
1570          * to accurately calculate a value because the registers
1571          * right shift rather than wrap--so punt and return 0.
1572          */
1573         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1574             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1575         good = 0;
1576     } else {
1577         u_int32_t cc_d = cc - ahp->ah_cycles;
1578         u_int32_t rc_d = rc - ahp->ah_rx_clear;
1579         u_int32_t rf_d = rf - ahp->ah_rx_frame;
1580         u_int32_t tf_d = tf - ahp->ah_tx_frame;
1581 
1582         if (cc_d != 0) {
1583             *rxc_pcnt = rc_d * 100 / cc_d;
1584             *rxf_pcnt = rf_d * 100 / cc_d;
1585             *txf_pcnt = tf_d * 100 / cc_d;
1586         } else {
1587             good = 0;
1588         }
1589     }
1590 
1591     ahp->ah_cycles = cc;
1592     ahp->ah_rx_frame = rf;
1593     ahp->ah_rx_clear = rc;
1594     ahp->ah_tx_frame = tf;
1595 
1596     return good;
1597 }
1598 
1599 /*
1600  * Return approximation of extension channel busy over an time interval
1601  * 0% (clear) -> 100% (busy)
1602  * -1 for invalid estimate
1603  */
1604 uint32_t
1605 ar9300_get_11n_ext_busy(struct ath_hal *ah)
1606 {
1607     /*
1608      * Overflow condition to check before multiplying to get %
1609      * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1610      */
1611 #define OVERFLOW_LIMIT  0x28F5C28
1612 #define ERROR_CODE      -1
1613 
1614     struct ath_hal_9300 *ahp = AH9300(ah);
1615     u_int32_t busy = 0; /* percentage */
1616     int8_t busyper = 0;
1617     u_int32_t cycle_count, ctl_busy, ext_busy;
1618 
1619     /* cycle_count will always be the first to wrap; therefore, read it last
1620      * This sequence of reads is not atomic, and MIB counter wrap
1621      * could happen during it ?
1622      */
1623     ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1624     ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1625     cycle_count = OS_REG_READ(ah, AR_CCCNT);
1626 
1627     if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1628         (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1629     {
1630         /*
1631          * Cycle counter wrap (or initial call); it's not possible
1632          * to accurately calculate a value because the registers
1633          * right shift rather than wrap--so punt and return 0.
1634          */
1635         busyper = ERROR_CODE;
1636         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1637             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1638     } else {
1639         u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1640         u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1641 
1642         /*
1643          * Compute extension channel busy percentage
1644          * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1645          * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1646          * Will never happen, since (ext_busy_delta < cycle_delta) always,
1647          * and shift necessitated by large ext_busy_delta.
1648          * Due to timing difference to read the registers and counter overflow,
1649          * it may still happen that cycle_delta >> 7 = 0.
1650          *
1651          */
1652         if (cycle_delta) {
1653             if (ext_busy_delta > OVERFLOW_LIMIT) {
1654                 if (cycle_delta >> 7) {
1655                     busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1656                 } else {
1657                     busyper = ERROR_CODE;
1658                 }
1659             } else {
1660                 busy = (ext_busy_delta * 100) / cycle_delta;
1661             }
1662         } else {
1663             busyper = ERROR_CODE;
1664         }
1665 
1666         if (busy > 100) {
1667             busy = 100;
1668         }
1669         if ( busyper != ERROR_CODE ) {
1670             busyper = busy;
1671         }
1672     }
1673 
1674     ahp->ah_cycle_count = cycle_count;
1675     ahp->ah_ctl_busy = ctl_busy;
1676     ahp->ah_ext_busy = ext_busy;
1677 
1678     return busyper;
1679 #undef OVERFLOW_LIMIT
1680 #undef ERROR_CODE
1681 }
1682 
1683 /* BB Panic Watchdog declarations */
1684 #define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1685 #define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1686 
1687 void
1688 ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1689 {
1690 #define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1691     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1692     u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1693     u_int32_t val, idle_count;
1694 
1695     if (idle_tmo_ms != 0) {
1696         /* enable IRQ, disable chip-reset for BB panic */
1697         val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1698             AR_PHY_BB_PANIC_CNTL2_MASK;
1699         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1700             (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1701         /* bound limit to 10 secs */
1702         if (idle_tmo_ms > 10000) {
1703             idle_tmo_ms = 10000;
1704         }
1705         if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1706             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1707         } else {
1708             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1709         }
1710         /*
1711          * enable panic in non-IDLE mode,
1712          * disable in IDLE mode,
1713          * set idle time-out
1714          */
1715 
1716         // EV92527 : Enable IDLE mode panic
1717 
1718         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1719                      AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1720                      AR_PHY_BB_PANIC_IDLE_ENABLE |
1721                      (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1722                      (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1723     } else {
1724         /* disable IRQ, disable chip-reset for BB panic */
1725         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1726             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1727             ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1728         /* disable panic in non-IDLE mode, disable in IDLE mode */
1729         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1730             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1731             ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1732     }
1733 
1734     HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1735              __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1736 #undef HAL_BB_PANIC_IDLE_TIME_OUT
1737 }
1738 
1739 
1740 void
1741 ar9300_handle_bb_panic(struct ath_hal *ah)
1742 {
1743     u_int32_t status;
1744     /*
1745      * we want to avoid printing in ISR context so we save
1746      * panic watchdog status to be printed later in DPC context
1747      */
1748     AH9300(ah)->ah_bb_panic_last_status = status =
1749         OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1750     /*
1751      * panic watchdog timer should reset on status read
1752      * but to make sure we write 0 to the watchdog status bit
1753      */
1754     OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1755 }
1756 
1757 int
1758 ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1759 {
1760     bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1761 
1762     /*
1763      * For signature 04000539 do not print anything.
1764      * This is a very common occurence as a compromise between
1765      * BB Panic and AH_FALSE detects (EV71009). It indicates
1766      * radar hang, which can be cleared by reprogramming
1767      * radar related register and does not requre a chip reset
1768      */
1769 
1770     /* Suppress BB Status mesg following signature */
1771     switch (bb_panic->status) {
1772         case 0x04000539:
1773         case 0x04008009:
1774         case 0x04000b09:
1775         case 0x1300000a:
1776         return -1;
1777     }
1778 
1779     bb_panic->tsf = ar9300_get_tsf32(ah);
1780     bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1781     bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1782     bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1783     bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1784     bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1785     bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1786     bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1787     bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1788     bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1789     bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1790     bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1791     bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1792     bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1793     bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1794                                         &bb_panic->rxc_pcnt,
1795                                         &bb_panic->rxf_pcnt,
1796                                         &bb_panic->txf_pcnt);
1797 
1798     if (ah->ah_config.ath_hal_show_bb_panic) {
1799         ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1800             "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1801         ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1802             "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1803             bb_panic->wd, bb_panic->det, bb_panic->rdar,
1804             bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1805             bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1806         ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1807             bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1808         ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1809             bb_panic->phy_gen_ctrl);
1810         if (bb_panic->cycles) {
1811             ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1812                 "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1813                 bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1814         }
1815         ath_hal_printf(ah, "==== BB update: done ====\n\n");
1816     }
1817 
1818     return 0; //The returned data will be stored for athstats to retrieve it
1819 }
1820 
1821 /* set the reason for HAL reset */
1822 void
1823 ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1824 {
1825     AH9300(ah)->ah_reset_reason = resetreason;
1826 }
1827 
1828 /*
1829  * Configure 20/40 operation
1830  *
1831  * 20/40 = joint rx clear (control and extension)
1832  * 20    = rx clear (control)
1833  *
1834  * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1835  *         when changing from 20/40 => 20 only
1836  */
1837 void
1838 ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1839 {
1840     u_int32_t macmode;
1841 
1842     /* Configure MAC for 20/40 operation */
1843     if (mode == HAL_HT_MACMODE_2040 &&
1844         !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1845         macmode = AR_2040_JOINED_RX_CLEAR;
1846     } else {
1847         macmode = 0;
1848     }
1849     OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1850 }
1851 
1852 /*
1853  * Get Rx clear (control/extension channel)
1854  *
1855  * Returns active low (busy) for ctrl/ext channel
1856  * Owl 2.0
1857  */
1858 HAL_HT_RXCLEAR
1859 ar9300_get_11n_rx_clear(struct ath_hal *ah)
1860 {
1861     HAL_HT_RXCLEAR rxclear = 0;
1862     u_int32_t val;
1863 
1864     val = OS_REG_READ(ah, AR_DIAG_SW);
1865 
1866     /* control channel */
1867     if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1868         rxclear |= HAL_RX_CLEAR_CTL_LOW;
1869     }
1870     /* extension channel */
1871     if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1872         rxclear |= HAL_RX_CLEAR_EXT_LOW;
1873     }
1874     return rxclear;
1875 }
1876 
1877 /*
1878  * Set Rx clear (control/extension channel)
1879  *
1880  * Useful for forcing the channel to appear busy for
1881  * debugging/diagnostics
1882  * Owl 2.0
1883  */
1884 void
1885 ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1886 {
1887     /* control channel */
1888     if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1889         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1890     } else {
1891         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1892     }
1893     /* extension channel */
1894     if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1895         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1896     } else {
1897         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1898     }
1899 }
1900 
1901 
1902 /*
1903  * HAL support code for force ppm tracking workaround.
1904  */
1905 
1906 u_int32_t
1907 ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1908 {
1909     u_int32_t retval;
1910     u_int32_t off1;
1911     u_int32_t off2;
1912 
1913     if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1914         off1 = 0x2000;
1915         off2 = 0x1000;
1916     } else {
1917         off1 = 0x1000;
1918         off2 = 0x2000;
1919     }
1920 
1921     retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1922              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1923              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1924 
1925     return retval;
1926 }
1927 
1928 u_int32_t
1929 ar9300_ppm_force(struct ath_hal *ah)
1930 {
1931     u_int32_t data_fine;
1932     u_int32_t data4;
1933     //u_int32_t off1;
1934     //u_int32_t off2;
1935     HAL_BOOL signed_val = AH_FALSE;
1936 
1937 //    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1938 //        off1 = 0x2000;
1939 //        off2 = 0x1000;
1940 //    } else {
1941 //        off1 = 0x1000;
1942 //        off2 = 0x2000;
1943 //    }
1944     data_fine =
1945         AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1946         OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1947 
1948     /*
1949      * bit [11-0] is new ppm value. bit 11 is the signed bit.
1950      * So check value from bit[10:0].
1951      * Now get the abs val of the ppm value read in bit[0:11].
1952      * After that do bound check on abs value.
1953      * if value is off limit, CAP the value and and restore signed bit.
1954      */
1955     if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1956     {
1957         /* get the positive value */
1958         data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1959         signed_val = AH_TRUE;
1960     }
1961     if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
1962     {
1963         HALDEBUG(ah, HAL_DEBUG_REGIO,
1964             "%s Correcting ppm out of range %x\n",
1965             __func__, (data_fine & 0x7ff));
1966         data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
1967     }
1968     /*
1969      * Restore signed value if changed above.
1970      * Use typecast to avoid compilation errors
1971      */
1972     if (signed_val) {
1973         data_fine = (-(int32_t)data_fine) &
1974             AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1975     }
1976 
1977     /* write value */
1978     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
1979         ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
1980     OS_REG_WRITE(ah, AR_PHY_TIMING2,
1981         data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
1982 
1983     return data_fine;
1984 }
1985 
1986 void
1987 ar9300_ppm_un_force(struct ath_hal *ah)
1988 {
1989     u_int32_t data4;
1990 
1991     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
1992     OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
1993 }
1994 
1995 u_int32_t
1996 ar9300_ppm_arm_trigger(struct ath_hal *ah)
1997 {
1998     u_int32_t val;
1999     u_int32_t ret;
2000 
2001     val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
2002     ret = OS_REG_READ(ah, AR_TSF_L32);
2003     OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
2004         val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
2005 
2006     /* return low word of TSF at arm time */
2007     return ret;
2008 }
2009 
2010 int
2011 ar9300_ppm_get_trigger(struct ath_hal *ah)
2012 {
2013     if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
2014         AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
2015     {
2016         /* has not triggered yet, return AH_FALSE */
2017         return 0;
2018     }
2019 
2020     /* else triggered, return AH_TRUE */
2021     return 1;
2022 }
2023 
2024 void
2025 ar9300_mark_phy_inactive(struct ath_hal *ah)
2026 {
2027     OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2028 }
2029 
2030 /* DEBUG */
2031 u_int32_t
2032 ar9300_ppm_get_force_state(struct ath_hal *ah)
2033 {
2034     return
2035         OS_REG_READ(ah, AR_PHY_TIMING2) &
2036         (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2037 }
2038 
2039 /*
2040  * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
2041  */
2042 HAL_BOOL
2043 ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
2044 {
2045     /*
2046      * XXX FreeBSD todo: reimplement this
2047      */
2048 #if 0
2049     p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2050     p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2051     p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2052     p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2053     p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
2054                            p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
2055     p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
2056                            p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
2057 #endif
2058     return AH_FALSE;
2059 }
2060 
2061 void
2062 ar9300_clear_mib_counters(struct ath_hal *ah)
2063 {
2064     u_int32_t reg_val;
2065 
2066     reg_val = OS_REG_READ(ah, AR_MIBC);
2067     OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
2068     OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
2069 }
2070 
2071 
2072 /* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2073 HAL_BOOL
2074 ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2075 {
2076     struct ath_hal_9300 *ahp = AH9300(ah);
2077     HAL_CHANNEL_INTERNAL *ichan =
2078       ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2079     HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2080     u_int32_t tmp = 0;
2081 
2082     if (enable) {
2083         if (ahp->ah_rifs_enabled == AH_TRUE) {
2084             return AH_TRUE;
2085         }
2086 
2087         OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2088         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2089                      ahp->ah_rifs_reg[1]);
2090 
2091         ahp->ah_rifs_enabled = AH_TRUE;
2092         OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2093     } else {
2094         if (ahp->ah_rifs_enabled == AH_TRUE) {
2095             ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2096                                               AR_PHY_SEARCH_START_DELAY);
2097             ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2098         }
2099         /* Change rifs init delay to 0 */
2100         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2101                      (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2102         tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2103         if (is_chan_2g) {
2104             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2105                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2106             } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2107                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2108             }
2109         } else {
2110             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2111                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2112             } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2113                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2114             }
2115         }
2116 
2117         ahp->ah_rifs_enabled = AH_FALSE;
2118     }
2119     return AH_TRUE;
2120 
2121 } /* ar9300_set_rifs_delay () */
2122 
2123 /* Set the current RIFS Rx setting */
2124 HAL_BOOL
2125 ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2126 {
2127     /* Non-Owl 11n chips */
2128     if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2129         if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2130             return ar9300_set_rifs_delay(ah, enable);
2131         }
2132         return AH_FALSE;
2133     }
2134 
2135     return AH_TRUE;
2136 } /* ar9300_set_11n_rx_rifs () */
2137 
2138 static hal_mac_hangs_t
2139 ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2140   hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2141 {
2142     int i = 0;
2143     hal_mac_hangs_t found_hangs = 0;
2144 
2145     if (hangs & dcu_chain_state) {
2146         for (i = 0; i < 6; i++) {
2147             if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2148                  hang_check.dcu_chain_state)
2149             {
2150                 found_hangs |= dcu_chain_state;
2151                 *dcu_chain = i;
2152             }
2153         }
2154         for (i = 0; i < 4; i++) {
2155             if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2156                   hang_check.dcu_chain_state)
2157             {
2158                 found_hangs |= dcu_chain_state;
2159                 *dcu_chain = i + 6;
2160             }
2161         }
2162     }
2163 
2164     if (hangs & dcu_complete_state) {
2165         if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2166             found_hangs |= dcu_complete_state;
2167         }
2168     }
2169 
2170     return found_hangs;
2171 
2172 } /* end - ar9300_compare_dbg_hang */
2173 
2174 #define NUM_STATUS_READS 50
2175 HAL_BOOL
2176 ar9300_detect_mac_hang(struct ath_hal *ah)
2177 {
2178     struct ath_hal_9300 *ahp = AH9300(ah);
2179     mac_dbg_regs_t mac_dbg;
2180     hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2181     hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2182     int i = 0;
2183     u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2184 
2185     if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2186         return AH_FALSE;
2187     }
2188 
2189     OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2190 
2191     mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2192     mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2193     mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2194 
2195     HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2196             mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2197             mac_dbg.dma_dbg_6);
2198 
2199     if (hang_sig1 !=
2200             ar9300_compare_dbg_hang(ah, mac_dbg,
2201                  hang_sig1_val, hang_sig1, &dcu_chain))
2202     {
2203         HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2204         return AH_FALSE;
2205     }
2206 
2207     shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2208     shift_val *= 5;
2209 
2210     for (i = 1; i <= NUM_STATUS_READS; i++) {
2211         if (dcu_chain < 6) {
2212             mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2213             current_dcu_chain_state =
2214                      ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2215         } else {
2216             mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2217             current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2218         }
2219         mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2220 
2221         if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2222             || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2223             return AH_FALSE;
2224         }
2225     }
2226     HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2227              ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2228     ahp->ah_hang[MAC_HANG_SIG1]++;
2229     return AH_TRUE;
2230 
2231 } /* end - ar9300_detect_mac_hang */
2232 
2233 /* Determine if the baseband is hung by reading the Observation Bus Register */
2234 HAL_BOOL
2235 ar9300_detect_bb_hang(struct ath_hal *ah)
2236 {
2237 #define N(a) (sizeof(a) / sizeof(a[0]))
2238     struct ath_hal_9300 *ahp = AH9300(ah);
2239     u_int32_t hang_sig = 0;
2240     int i = 0;
2241     /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2242      *
2243      * 4 known BB hang signatures -
2244      * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2245      * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2246      * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2247      * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2248      *     Rx State (bits 20-24) is 0x7.
2249      */
2250     hal_hw_hang_check_t hang_list [] =
2251     {
2252      /* Offset        Reg Value   Reg Mask    Hang Offset */
2253        {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2254        {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2255        {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2256        {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2257     };
2258 
2259     if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2260                                HAL_DFS_BB_HANG_WAR |
2261                                HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2262         return AH_FALSE;
2263     }
2264 
2265     hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2266     for (i = 1; i <= NUM_STATUS_READS; i++) {
2267         if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2268             return AH_FALSE;
2269         }
2270     }
2271 
2272     for (i = 0; i < N(hang_list); i++) {
2273         if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2274             ahp->ah_hang[hang_list[i].hang_offset]++;
2275             HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2276                      "sig3count=%d sig4count=%d\n", __func__,
2277                      ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2278                      ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2279             return AH_TRUE;
2280         }
2281     }
2282 
2283     HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2284                               "<0x806c>=0x%x\n", __func__, hang_sig);
2285 
2286     return AH_FALSE;
2287 
2288 #undef N
2289 } /* end - ar9300_detect_bb_hang () */
2290 
2291 #undef NUM_STATUS_READS
2292 
2293 HAL_STATUS
2294 ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2295 {
2296     struct ath_hal_9300     *ahp = AH9300(ah);
2297     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2298     HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2299     const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2300     u_int16_t               ant_config;
2301     u_int32_t               hal_num_ant_config;
2302 
2303     hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2304         p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2305 
2306     if (cfg < hal_num_ant_config) {
2307         if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2308             OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2309             return HAL_OK;
2310         }
2311     }
2312 
2313     return HAL_EINVAL;
2314 }
2315 
2316 /*
2317  * Functions to get/set DCS mode
2318  */
2319 void
2320 ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2321 {
2322     AH9300(ah)->ah_dcs_enable = mode;
2323 }
2324 
2325 u_int32_t
2326 ar9300_get_dcs_mode(struct ath_hal *ah)
2327 {
2328     return AH9300(ah)->ah_dcs_enable;
2329 }
2330 
2331 #if ATH_BT_COEX
2332 void
2333 ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2334 {
2335     struct ath_hal_9300 *ahp = AH9300(ah);
2336 
2337     ahp->ah_bt_module = btinfo->bt_module;
2338     ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2339     ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2340     ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2341     ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2342     ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2343     ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2344     ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2345 }
2346 
2347 void
2348 ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2349 {
2350     struct ath_hal_9300 *ahp = AH9300(ah);
2351     HAL_BOOL rx_clear_polarity;
2352 
2353     /*
2354      * For Kiwi and Osprey, the polarity of rx_clear is active high.
2355      * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2356      */
2357     rx_clear_polarity = !btconf->bt_rxclear_polarity;
2358 
2359     ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2360         SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2361         SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2362         SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2363         SM(btconf->bt_mode, AR_BT_MODE) |
2364         SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2365         SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2366         SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2367         SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2368 
2369     ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2370 
2371     if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2372         /* Enable ACK to go out even though BT has higher priority. */
2373         ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2374     }
2375 }
2376 
2377 void
2378 ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2379 {
2380     struct ath_hal_9300 *ahp = AH9300(ah);
2381 
2382     /* clear the old value, then set the new value */
2383     ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2384     ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2385 }
2386 
2387 void
2388 ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2389 {
2390     struct ath_hal_9300 *ahp = AH9300(ah);
2391 
2392     ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2393     ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2394     ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2395     ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2396 
2397     switch (stomp_type) {
2398     case HAL_BT_COEX_STOMP_ALL:
2399         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2400         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2401         break;
2402     case HAL_BT_COEX_STOMP_LOW:
2403         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2404         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2405         break;
2406     case HAL_BT_COEX_STOMP_ALL_FORCE:
2407         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2408         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2409         break;
2410     case HAL_BT_COEX_STOMP_LOW_FORCE:
2411         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2412         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2413         break;
2414     case HAL_BT_COEX_STOMP_NONE:
2415     case HAL_BT_COEX_NO_STOMP:
2416         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2417         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2418         break;
2419     default:
2420         /* There is a force_weight from registry */
2421         ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2422         ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2423         break;
2424     }
2425 }
2426 
2427 void
2428 ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2429 {
2430     struct ath_hal_9300 *ahp = AH9300(ah);
2431 
2432     /* clear the old value, then set the new value */
2433     ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2434     ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2435 }
2436 
2437 static void
2438 ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2439 {
2440     struct ath_hal_9300 *ahp = AH9300(ah);
2441 #if ATH_ANT_DIV_COMB
2442     //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2443     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2444 #endif
2445 
2446     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2447     {
2448         if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2449         {
2450             /* Config antenna diversity */
2451 #if ATH_ANT_DIV_COMB
2452             ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2453 #endif
2454         }
2455     }
2456 }
2457 
2458 
2459 void
2460 ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2461     u_int32_t value)
2462 {
2463     struct ath_hal_9300 *ahp = AH9300(ah);
2464     struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2465 
2466     switch (type) {
2467         case HAL_BT_COEX_SET_ACK_PWR:
2468             if (value) {
2469                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2470             } else {
2471                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2472             }
2473             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2474                 ahpriv->ah_extraTxPow, 0);
2475             break;
2476 
2477         case HAL_BT_COEX_ANTENNA_DIVERSITY:
2478             if (AR_SREV_POSEIDON(ah)) {
2479                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2480                 if (value) {
2481                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2482                 }
2483                 else {
2484                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2485                 }
2486                 ar9300_bt_coex_antenna_diversity(ah, value);
2487             }
2488             break;
2489         case HAL_BT_COEX_LOWER_TX_PWR:
2490             if (value) {
2491                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2492             }
2493             else {
2494                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2495             }
2496             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2497                                       ahpriv->ah_extraTxPow, 0);
2498             break;
2499 #if ATH_SUPPORT_MCI
2500         case HAL_BT_COEX_MCI_MAX_TX_PWR:
2501             if ((ah->ah_config.ath_hal_mci_config &
2502                  ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2503             {
2504                 if (value) {
2505                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2506                     ahp->ah_mci_concur_tx_en = AH_TRUE;
2507                 }
2508                 else {
2509                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2510                     ahp->ah_mci_concur_tx_en = AH_FALSE;
2511                 }
2512                 ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2513                                           ahpriv->ah_extraTxPow, 0);
2514             }
2515             HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2516                      ahp->ah_mci_concur_tx_en);
2517             break;
2518         case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2519             if (value) {
2520                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2521             }
2522             else {
2523                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2524             }
2525             break;
2526 #endif
2527         default:
2528             break;
2529     }
2530 }
2531 
2532 void
2533 ar9300_bt_coex_disable(struct ath_hal *ah)
2534 {
2535     struct ath_hal_9300 *ahp = AH9300(ah);
2536 
2537     /* Always drive rx_clear_external output as 0 */
2538     ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2539         HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2540 
2541     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2542         OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2543         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2544     }
2545 
2546     OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2547     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2548     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2549     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2550     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2551     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2552     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2553     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2554 
2555     ahp->ah_bt_coex_enabled = AH_FALSE;
2556 }
2557 
2558 int
2559 ar9300_bt_coex_enable(struct ath_hal *ah)
2560 {
2561     struct ath_hal_9300 *ahp = AH9300(ah);
2562 
2563     /* Program coex mode and weight registers to actually enable coex */
2564     OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2565     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2566     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2567     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2568     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2569     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2570     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2571     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2572 
2573     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2574         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2575     } else {
2576         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2577     }
2578 
2579     OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2580     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2581         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2582     } else {
2583         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2584     }
2585 
2586     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2587         /* For 3-wire, configure the desired GPIO port for rx_clear */
2588         ath_hal_gpioCfgOutput(ah,
2589             ahp->ah_wlan_active_gpio_select,
2590             HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2591     }
2592     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2593         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2594     {
2595         /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2596         ath_hal_gpioCfgOutput(ah,
2597             ahp->ah_wlan_active_gpio_select,
2598             HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2599     }
2600 
2601     /*
2602      * Enable a weak pull down on BT_ACTIVE.
2603      * When BT device is disabled, BT_ACTIVE might be floating.
2604      */
2605     OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2606         (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2607         (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2608 
2609     ahp->ah_bt_coex_enabled = AH_TRUE;
2610 
2611     return 0;
2612 }
2613 
2614 u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2615 {
2616     return 0;
2617 }
2618 
2619 u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2620 {
2621     return bOn;
2622 }
2623 
2624 void
2625 ar9300_init_bt_coex(struct ath_hal *ah)
2626 {
2627     struct ath_hal_9300 *ahp = AH9300(ah);
2628 
2629     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2630         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2631                    (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2632                     AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2633 
2634         /*
2635          * Set input mux for bt_prority_async and
2636          * bt_active_async to GPIO pins
2637          */
2638         OS_REG_RMW_FIELD(ah,
2639             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2640             AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2641             ahp->ah_bt_active_gpio_select);
2642         OS_REG_RMW_FIELD(ah,
2643             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2644             AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2645             ahp->ah_bt_priority_gpio_select);
2646 
2647         /* Configure the desired GPIO ports for input */
2648         ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2649         ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2650 
2651         if (ahp->ah_bt_coex_enabled) {
2652             ar9300_bt_coex_enable(ah);
2653         } else {
2654             ar9300_bt_coex_disable(ah);
2655         }
2656     }
2657     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2658         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2659     {
2660         /* 2-wire */
2661         if (ahp->ah_bt_coex_enabled) {
2662             /* Connect bt_active_async to baseband */
2663             OS_REG_CLR_BIT(ah,
2664                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2665                 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2666                  AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2667             OS_REG_SET_BIT(ah,
2668                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2669                 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2670 
2671             /*
2672              * Set input mux for bt_prority_async and
2673              * bt_active_async to GPIO pins
2674              */
2675             OS_REG_RMW_FIELD(ah,
2676                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2677                 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2678                 ahp->ah_bt_active_gpio_select);
2679 
2680             /* Configure the desired GPIO ports for input */
2681             ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2682 
2683             /* Enable coexistence on initialization */
2684             ar9300_bt_coex_enable(ah);
2685         }
2686     }
2687 #if ATH_SUPPORT_MCI
2688     else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2689         if (ahp->ah_bt_coex_enabled) {
2690             ar9300_mci_bt_coex_enable(ah);
2691         }
2692         else {
2693             ar9300_mci_bt_coex_disable(ah);
2694         }
2695     }
2696 #endif /* ATH_SUPPORT_MCI */
2697 }
2698 
2699 #endif /* ATH_BT_COEX */
2700 
2701 HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2702 {
2703     u_int32_t val;
2704     int wasp_mm_rev;
2705 
2706 #define AR_SOC_RST_REVISION_ID      0xB8060090
2707 #define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2708     wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2709             AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2710             AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2711 #undef AR_SOC_RST_REVISION_ID
2712 #undef REG_READ
2713 
2714     /*
2715      * Azimuth (ProxySTA) Mode is only supported correctly by
2716      * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2717      *
2718      * Enable this feature for Scorpion at this time. The silicon
2719      * still needs to be validated.
2720      */
2721     if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2722         !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2723         !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2724           ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2725            (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2726             wasp_mm_rev >= 0 /* 1 */))))
2727     {
2728         HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2729                 "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2730                 __func__, AH_PRIVATE((ah))->ah_macVersion,
2731                 AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2732         return HAL_ENOTSUPP;
2733     }
2734 
2735     OS_REG_WRITE(ah,
2736         AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2737 
2738     /* turn on mode bit[24] for proxy sta */
2739     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2740         OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2741 
2742     val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2743     if (enable) {
2744         val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2745                AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2746                AR_AZIMUTH_BA_USES_AD1;
2747         /* turn off filter pass hold (bit 9) */
2748         val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2749     } else {
2750         val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2751                  AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2752                  AR_AZIMUTH_BA_USES_AD1);
2753     }
2754     OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2755 
2756     /* enable promiscous mode */
2757     OS_REG_WRITE(ah, AR_RX_FILTER,
2758         OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2759     /* enable promiscous in azimuth mode */
2760     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2761     OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2762 
2763     /* turn on filter pass hold (bit 9) */
2764     OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2765         OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2766 
2767     return HAL_OK;
2768 }
2769 
2770 #if 0
2771 void ar9300_mat_enable(struct ath_hal *ah, int enable)
2772 {
2773     /*
2774      * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2775      * mitigation and turn on key search always for better performance.
2776      */
2777     struct ath_hal_9300 *ahp = AH9300(ah);
2778     struct ath_hal_private *ap = AH_PRIVATE(ah);
2779 
2780     ahp->ah_intr_mitigation_rx = !enable;
2781     if (ahp->ah_intr_mitigation_rx) {
2782         /*
2783          * Enable Interrupt Mitigation for Rx.
2784          * If no build-specific limits for the rx interrupt mitigation
2785          * timer have been specified, use conservative defaults.
2786          */
2787         #ifndef AH_RIMT_VAL_LAST
2788             #define AH_RIMT_LAST_MICROSEC 500
2789         #endif
2790         #ifndef AH_RIMT_VAL_FIRST
2791             #define AH_RIMT_FIRST_MICROSEC 2000
2792         #endif
2793         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2794         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2795     } else {
2796         OS_REG_WRITE(ah, AR_RIMT, 0);
2797     }
2798 
2799     ahp->ah_enable_keysearch_always = !!enable;
2800     ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2801 }
2802 #endif
2803 
2804 void ar9300_enable_tpc(struct ath_hal *ah)
2805 {
2806     u_int32_t val = 0;
2807 
2808     ah->ah_config.ath_hal_desc_tpc = 1;
2809 
2810     /* Enable TPC */
2811     OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2812 
2813     /*
2814      * Disable per chain power reduction since we are already
2815      * accounting for this in our calculations
2816      */
2817     val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2818     if (AR_SREV_WASP(ah)) {
2819         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2820                          val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2821     } else {
2822         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2823                          val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2824     }
2825 }
2826 
2827 
2828 /*
2829  * ar9300_force_tsf_sync
2830  * This function forces the TSF sync to the given bssid, this is implemented
2831  * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2832  * mode of operation, where we sync the TSF to RootAP TSF values
2833  */
2834 void
2835 ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2836     u_int16_t assoc_id)
2837 {
2838     ar9300_set_operating_mode(ah, HAL_M_STA);
2839     ar9300_write_associd(ah, bssid, assoc_id);
2840 }
2841 
2842 void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2843 {
2844     struct ath_hal_9300 *ahp = AH9300(ah);
2845     u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2846     u_int32_t           temp_powertx_rate9_reg_val;
2847     int8_t              olpc_power_offset = 0;
2848     int8_t              tmp_olpc_val = 0;
2849     HAL_RSSI_TX_POWER   old_greentx_status;
2850     u_int8_t            target_power_val_t[ar9300_rate_size];
2851     int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2852 
2853     if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2854         !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2855         return;
2856     }
2857 
2858     old_greentx_status = AH9300(ah)->green_tx_status;
2859     if (ahp->ah_hw_green_tx_enable) {
2860         tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2861         tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2862     } else {
2863         tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2864         tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2865     }
2866 
2867     if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2868         && (rssi > tmp_rss1_thr1))
2869     {
2870         if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2871             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2872         }
2873     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2874         && (rssi > tmp_rss1_thr2))
2875     {
2876         if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2877             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2878         }
2879     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2880         if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2881             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2882         }
2883     }
2884 
2885     /* If status is not change, don't do anything */
2886     if (old_greentx_status == AH9300(ah)->green_tx_status) {
2887         return;
2888     }
2889 
2890     /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2891     if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2892         && AR_SREV_POSEIDON(ah))
2893     {
2894         if (ahp->ah_hw_green_tx_enable) {
2895             switch (AH9300(ah)->green_tx_status) {
2896             case HAL_RSSI_TX_POWER_SHORT:
2897                 /* 1. TxPower Config */
2898                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2899                     sizeof(target_power_val_t));
2900                 /* 1.1 Store OLPC Delta Calibration Offset*/
2901                 olpc_power_offset = 0;
2902                 /* 2. Store OB/DB */
2903                 /* 3. Store TPC settting */
2904                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2905                                     SM(14, AR_TPC_CTS) |
2906                                     SM(14, AR_TPC_CHIRP) |
2907                                     SM(14, AR_TPC_RPT));
2908                 /* 4. Store BB_powertx_rate9 value */
2909                 temp_powertx_rate9_reg_val =
2910                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2911                 break;
2912             case HAL_RSSI_TX_POWER_MIDDLE:
2913                 /* 1. TxPower Config */
2914                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2915                     sizeof(target_power_val_t));
2916                 /* 1.1 Store OLPC Delta Calibration Offset*/
2917                 olpc_power_offset = 0;
2918                 /* 2. Store OB/DB */
2919                 /* 3. Store TPC settting */
2920                 temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2921                                     SM(18, AR_TPC_CTS) |
2922                                     SM(18, AR_TPC_CHIRP) |
2923                                     SM(18, AR_TPC_RPT));
2924                 /* 4. Store BB_powertx_rate9 value */
2925                 temp_powertx_rate9_reg_val =
2926                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2927                 break;
2928             case HAL_RSSI_TX_POWER_LONG:
2929             default:
2930                 /* 1. TxPower Config */
2931                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2932                     sizeof(target_power_val_t));
2933                 /* 1.1 Store OLPC Delta Calibration Offset*/
2934                 olpc_power_offset = 0;
2935                 /* 2. Store OB/DB1/DB2 */
2936                 /* 3. Store TPC settting */
2937                 temp_tcp_reg_val =
2938                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2939                 /* 4. Store BB_powertx_rate9 value */
2940                 temp_powertx_rate9_reg_val =
2941                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2942                 break;
2943             }
2944         } else {
2945             switch (AH9300(ah)->green_tx_status) {
2946             case HAL_RSSI_TX_POWER_SHORT:
2947                 /* 1. TxPower Config */
2948                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2949                     sizeof(target_power_val_t));
2950                 /* 1.1 Store OLPC Delta Calibration Offset*/
2951                 olpc_power_offset =
2952                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2953                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2954                 /* 2. Store OB/DB */
2955                 temp_obdb_reg_val =
2956                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2957                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2958                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2959                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2960                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2961                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2962                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2963                     AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2964                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2965                     AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2966                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2967                     AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2968                 /* 3. Store TPC settting */
2969                 temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
2970                                     SM(6, AR_TPC_CTS) |
2971                                     SM(6, AR_TPC_CHIRP) |
2972                                     SM(6, AR_TPC_RPT));
2973                 /* 4. Store BB_powertx_rate9 value */
2974                 temp_powertx_rate9_reg_val =
2975                     WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
2976                 break;
2977             case HAL_RSSI_TX_POWER_MIDDLE:
2978                 /* 1. TxPower Config */
2979                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
2980                     sizeof(target_power_val_t));
2981                 /* 1.1 Store OLPC Delta Calibration Offset*/
2982                 olpc_power_offset =
2983                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
2984                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2985                 /* 2. Store OB/DB */
2986                 temp_obdb_reg_val =
2987                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2988                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2989                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2990                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2991                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2992                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2993                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2994                         AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2995                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2996                         AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2997                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
2998                         AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2999                 /* 3. Store TPC settting */
3000                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
3001                                     SM(14, AR_TPC_CTS) |
3002                                     SM(14, AR_TPC_CHIRP) |
3003                                     SM(14, AR_TPC_RPT));
3004                 /* 4. Store BB_powertx_rate9 value */
3005                 temp_powertx_rate9_reg_val =
3006                     WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
3007                 break;
3008             case HAL_RSSI_TX_POWER_LONG:
3009             default:
3010                 /* 1. TxPower Config */
3011                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3012                     sizeof(target_power_val_t));
3013                 /* 1.1 Store OLPC Delta Calibration Offset*/
3014                 olpc_power_offset =
3015                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
3016                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3017                 /* 2. Store OB/DB1/DB2 */
3018                 temp_obdb_reg_val =
3019                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3020                 /* 3. Store TPC settting */
3021                 temp_tcp_reg_val =
3022                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3023                 /* 4. Store BB_powertx_rate9 value */
3024                 temp_powertx_rate9_reg_val =
3025                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3026                 break;
3027             }
3028         }
3029         /* 1.1 Do OLPC Delta Calibration Offset */
3030         tmp_olpc_val =
3031             (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
3032         tmp_olpc_val += olpc_power_offset;
3033         OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
3034             (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
3035             AR_PHY_TPC_OLPC_GAIN_DELTA);
3036 
3037         /* 1.2 TxPower Config */
3038         ar9300_transmit_power_reg_write(ah, target_power_val_t);
3039         /* 2. Config OB/DB */
3040         if (!ahp->ah_hw_green_tx_enable) {
3041             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
3042         }
3043         /* 3. config TPC settting */
3044         OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
3045         /* 4. config BB_powertx_rate9 value */
3046         OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
3047     }
3048 }
3049 
3050 #if 0
3051 void
3052 ar9300_get_vow_stats(
3053     struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
3054 {
3055     if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
3056         p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
3057     }
3058     if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
3059         p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
3060     }
3061     if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
3062         p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
3063     }
3064     if (vow_reg_flags & AR_REG_CYCLE_CNT) {
3065         p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
3066     }
3067     if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
3068         p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
3069     }
3070 }
3071 #endif
3072 
3073 /*
3074  * ar9300_is_skip_paprd_by_greentx
3075  *
3076  * This function check if we need to skip PAPRD tuning
3077  * when GreenTx in specific state.
3078  */
3079 HAL_BOOL
3080 ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3081 {
3082     if (AR_SREV_POSEIDON(ah) &&
3083         ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3084         ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3085          (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3086     {
3087         return AH_TRUE;
3088     }
3089     return AH_FALSE;
3090 }
3091 
3092 void
3093 ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3094 {
3095     unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3096     unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3097     unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3098     unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3099     unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3100     struct ath_hal_9300 *ahp = AH9300(ah);
3101 
3102     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3103         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3104                              AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3105         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3106                              AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3107         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3108                              AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3109         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3110                              AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3111         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3112                              AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3113     }
3114 }
3115 
3116 void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3117 {
3118     struct ath_hal_9300 *ahp = AH9300(ah);
3119 
3120     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3121         if ((value == 0) || (value == 1)) {
3122             OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3123                              AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3124         }
3125     }
3126 }
3127 
3128 void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3129 {
3130     OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3131 }
3132 
3133 int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3134 {
3135     int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3136 
3137     /* RSSI format is 8.4.  Ignore lowest four bits */
3138     val = val >> 4;
3139     return val;
3140 }
3141 
3142 void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3143                                         u_int32_t rssi_threshold)
3144 {
3145     struct ath_hal_9300 *ahp = AH9300(ah);
3146 
3147     OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3148 
3149     /* save value for restoring after chip reset */
3150     ahp->ah_beacon_rssi_threshold = rssi_threshold;
3151 }
3152 
3153 void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3154 {
3155     OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3156 }
3157 
3158 void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3159 {
3160     if (on) {
3161         OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3162                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3163     }
3164     else {
3165         OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3166                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3167     }
3168 }
3169 /*
3170  * Gets the contents of the specified key cache entry.
3171  */
3172 HAL_BOOL
3173 ar9300_print_keycache(struct ath_hal *ah)
3174 {
3175 
3176     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3177     u_int32_t key0, key1, key2, key3, key4;
3178     u_int32_t mac_hi, mac_lo;
3179     u_int16_t entry = 0;
3180     u_int32_t valid = 0;
3181     u_int32_t key_type;
3182 
3183     ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3184 
3185     for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3186         key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3187         key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3188         key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3189         key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3190         key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3191 
3192         key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3193 
3194         mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3195         mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3196 
3197         if (mac_hi & AR_KEYTABLE_VALID) {
3198             valid = 1;
3199         } else {
3200             valid = 0;
3201         }
3202 
3203         if ((mac_hi != 0) && (mac_lo != 0)) {
3204             mac_hi &= ~0x8000;
3205             mac_hi <<= 1;
3206             mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3207             mac_lo <<= 1;
3208         }
3209 
3210         ath_hal_printf(ah,
3211             "%03d    "
3212             "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3213             "   %02d     %02d    "
3214             "%02x:%02x:%02x:%02x:%02x:%02x \n",
3215             entry,
3216             (key0 << 24) >> 24, (key0 << 16) >> 24,
3217             (key0 << 8) >> 24, key0 >> 24,
3218             (key1 << 24) >> 24, (key1 << 16) >> 24,
3219             //(key1 << 8) >> 24, key1 >> 24,
3220             (key2 << 24) >> 24, (key2 << 16) >> 24,
3221             (key2 << 8) >> 24, key2 >> 24,
3222             (key3 << 24) >> 24, (key3 << 16) >> 24,
3223             //(key3 << 8) >> 24, key3 >> 24,
3224             (key4 << 24) >> 24, (key4 << 16) >> 24,
3225             (key4 << 8) >> 24, key4 >> 24,
3226             valid, key_type,
3227             (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3228             (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3229     }
3230 
3231     return AH_TRUE;
3232 }
3233 
3234 /* enable/disable smart antenna mode */
3235 HAL_BOOL
3236 ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3237 {
3238     struct ath_hal_9300 *ahp = AH9300(ah);
3239 
3240     if (enable) {
3241         OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3242     } else {
3243         OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3244     }
3245 
3246     /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3247      * and swcom2 with 0
3248      * FIXME Ideally these registers need to be made read from caldata.
3249      * Until the calibration team gets them, keep them along with board
3250      * configuration.
3251      */
3252     if (enable && AR_SREV_SCORPION(ah) &&
3253            (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3254 
3255        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3256        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3257     }
3258 
3259     ahp->ah_smartantenna_enable = enable;
3260     return 1;
3261 }
3262 
3263 #ifdef ATH_TX99_DIAG
3264 #ifndef ATH_SUPPORT_HTC
3265 void
3266 ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3267     u_int32_t txpower)
3268 {
3269 #define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3270     static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3271     int32_t i;
3272 
3273     /* The max power is limited to 63 */
3274     if (txpower <= AR9300_MAX_RATE_POWER) {
3275         for (i = 0; i < ar9300_rate_size; i++) {
3276             p_pwr_array[i] = txpower;
3277         }
3278     } else {
3279         for (i = 0; i < ar9300_rate_size; i++) {
3280             p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3281         }
3282     }
3283 
3284     OS_REG_WRITE(ah, 0xa458, 0);
3285 
3286     /* Write the OFDM power per rate set */
3287     /* 6 (LSB), 9, 12, 18 (MSB) */
3288     OS_REG_WRITE(ah, 0xa3c0,
3289         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3290           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3291           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3292           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3293     );
3294     /* 24 (LSB), 36, 48, 54 (MSB) */
3295     OS_REG_WRITE(ah, 0xa3c4,
3296         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3297           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3298           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3299           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3300     );
3301 
3302     /* Write the CCK power per rate set */
3303     /* 1L (LSB), reserved, 2L, 2S (MSB) */
3304     OS_REG_WRITE(ah, 0xa3c8,
3305         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3306           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3307           /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3308           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3309     );
3310     /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3311     OS_REG_WRITE(ah, 0xa3cc,
3312         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3313           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3314           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3315           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3316     );
3317 
3318     /* Write the HT20 power per rate set */
3319     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3320     OS_REG_WRITE(ah, 0xa3d0,
3321         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3322           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3323           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3324           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3325     );
3326 
3327     /* 6 (LSB), 7, 12, 13 (MSB) */
3328     OS_REG_WRITE(ah, 0xa3d4,
3329         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3330           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3331           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3332           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3333     );
3334 
3335     /* 14 (LSB), 15, 20, 21 */
3336     OS_REG_WRITE(ah, 0xa3e4,
3337         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3338           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3339           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3340           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3341     );
3342 
3343     /* Mixed HT20 and HT40 rates */
3344     /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3345     OS_REG_WRITE(ah, 0xa3e8,
3346         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3347           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3348           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3349           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3350     );
3351 
3352     /* Write the HT40 power per rate set */
3353     /* correct PAR difference between HT40 and HT20/LEGACY */
3354     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3355     OS_REG_WRITE(ah, 0xa3d8,
3356         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3357           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3358           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3359           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3360     );
3361 
3362     /* 6 (LSB), 7, 12, 13 (MSB) */
3363     OS_REG_WRITE(ah, 0xa3dc,
3364         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3365           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3366           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3367           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3368     );
3369 
3370     /* 14 (LSB), 15, 20, 21 */
3371     OS_REG_WRITE(ah, 0xa3ec,
3372         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3373           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3374           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3375           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3376     );
3377 #undef PWR_MAS
3378 }
3379 
3380 void
3381 ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3382 {
3383     if (tx_chainmask == 0x5) {
3384         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3385             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3386     }
3387     OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3388     OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3389 
3390     OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3391     if (tx_chainmask == 0x5) {
3392         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3393             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3394     }
3395 }
3396 
3397 void
3398 ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3399     int chtype)
3400 {
3401     OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3402     OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3403     OS_REG_WRITE(ah, 0xa350,
3404         (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3405 
3406     /* 11G mode */
3407     if (!chtype) {
3408         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3409             OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3410         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3411             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3412                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3413             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3414                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3415                         | (0x1 << 26)  | (0x7 << 24))
3416                         & ~(0x1 << 22));
3417         } else {
3418             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3419                 OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3420             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3421                 (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3422                         | (0x1 << 26)  | (0x7 << 24))
3423                         & ~(0x1 << 22));
3424         }
3425 
3426         /* chain zero */
3427         if ((tx_chain_mask & 0x01) == 0x01) {
3428             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3429                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3430                       | (0x1 << 31) | (0x5 << 15)
3431                       | (0x3 << 9)) & ~(0x1 << 27)
3432                       & ~(0x1 << 12));
3433             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3434                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3435                       | (0x1 << 12) | (0x1 << 10)
3436                       | (0x1 << 9)  | (0x1 << 8)
3437                       | (0x1 << 7)) & ~(0x1 << 11));
3438             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3439                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3440                       | (0x1 << 29) | (0x1 << 25)
3441                       | (0x1 << 23) | (0x1 << 19)
3442                       | (0x1 << 10) | (0x1 << 9)
3443                       | (0x1 << 8)  | (0x1 << 3))
3444                       & ~(0x1 << 28)& ~(0x1 << 24)
3445                       & ~(0x1 << 22)& ~(0x1 << 7));
3446             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3447                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3448                       | (0x1 << 23))& ~(0x1 << 21));
3449             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3450                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3451                       | (0x1 << 12) | (0x1 << 10)
3452                       | (0x1 << 9)  | (0x1 << 8)
3453                       | (0x1 << 6)  | (0x1 << 5)
3454                       | (0x1 << 4)  | (0x1 << 3)
3455                       | (0x1 << 2));
3456             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3457                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3458         }
3459         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3460             /* chain one */
3461             if ((tx_chain_mask & 0x02) == 0x02 ) {
3462                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3463                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3464                           | (0x1 << 31) | (0x5 << 15)
3465                           | (0x3 << 9)) & ~(0x1 << 27)
3466                           & ~(0x1 << 12));
3467                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3468                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3469                           | (0x1 << 12) | (0x1 << 10)
3470                           | (0x1 << 9)  | (0x1 << 8)
3471                           | (0x1 << 7)) & ~(0x1 << 11));
3472                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3473                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3474                           | (0x1 << 29) | (0x1 << 25)
3475                           | (0x1 << 23) | (0x1 << 19)
3476                           | (0x1 << 10) | (0x1 << 9)
3477                           | (0x1 << 8)  | (0x1 << 3))
3478                           & ~(0x1 << 28)& ~(0x1 << 24)
3479                           & ~(0x1 << 22)& ~(0x1 << 7));
3480                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3481                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3482                           | (0x1 << 23))& ~(0x1 << 21));
3483                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3484                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3485                           | (0x1 << 12) | (0x1 << 10)
3486                           | (0x1 << 9)  | (0x1 << 8)
3487                           | (0x1 << 6)  | (0x1 << 5)
3488                           | (0x1 << 4)  | (0x1 << 3)
3489                           | (0x1 << 2));
3490                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3491                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3492             }
3493         }
3494         if (AR_SREV_OSPREY(ah)) {
3495             /* chain two */
3496             if ((tx_chain_mask & 0x04) == 0x04 ) {
3497                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3498                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3499                           | (0x1 << 31) | (0x5 << 15)
3500                           | (0x3 << 9)) & ~(0x1 << 27)
3501                           & ~(0x1 << 12));
3502                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3503                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3504                           | (0x1 << 12) | (0x1 << 10)
3505                           | (0x1 << 9)  | (0x1 << 8)
3506                           | (0x1 << 7)) & ~(0x1 << 11));
3507                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3508                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3509                           | (0x1 << 29) | (0x1 << 25)
3510                           | (0x1 << 23) | (0x1 << 19)
3511                           | (0x1 << 10) | (0x1 << 9)
3512                           | (0x1 << 8)  | (0x1 << 3))
3513                           & ~(0x1 << 28)& ~(0x1 << 24)
3514                           & ~(0x1 << 22)& ~(0x1 << 7));
3515                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3516                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3517                           | (0x1 << 23))& ~(0x1 << 21));
3518                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3519                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3520                           | (0x1 << 12) | (0x1 << 10)
3521                           | (0x1 << 9)  | (0x1 << 8)
3522                           | (0x1 << 6)  | (0x1 << 5)
3523                           | (0x1 << 4)  | (0x1 << 3)
3524                           | (0x1 << 2));
3525                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3526                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3527             }
3528         }
3529 
3530         OS_REG_WRITE(ah, 0xa28c, 0x11111);
3531         OS_REG_WRITE(ah, 0xa288, 0x111);
3532     } else {
3533         /* chain zero */
3534         if ((tx_chain_mask & 0x01) == 0x01) {
3535             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3536                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3537                       | (0x1 << 31) | (0x1 << 27)
3538                       | (0x3 << 23) | (0x1 << 19)
3539                       | (0x1 << 15) | (0x3 << 9))
3540                       & ~(0x1 << 12));
3541             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3542                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3543                       | (0x1 << 12) | (0x1 << 10)
3544                       | (0x1 << 9)  | (0x1 << 8)
3545                       | (0x1 << 7)  | (0x1 << 3)
3546                       | (0x1 << 2)  | (0x1 << 1))
3547                       & ~(0x1 << 11)& ~(0x1 << 0));
3548             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3549                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3550                       | (0x1 << 29) | (0x1 << 25)
3551                       | (0x1 << 23) | (0x1 << 19)
3552                       | (0x1 << 10) | (0x1 << 9)
3553                       | (0x1 << 8)  | (0x1 << 3))
3554                       & ~(0x1 << 28)& ~(0x1 << 24)
3555                       & ~(0x1 << 22)& ~(0x1 << 7));
3556             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3557                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3558                       | (0x1 << 23))& ~(0x1 << 21));
3559             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3560                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3561                       | (0x3 << 3)  | (0x3 << 0));
3562             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3563                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3564                       | (0x3 << 29) | (0x3 << 26)
3565                       | (0x2 << 23) | (0x2 << 20)
3566                       | (0x2 << 17))& ~(0x1 << 14));
3567             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3568                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3569                       | (0x1 << 12) | (0x1 << 10)
3570                       | (0x1 << 9)  | (0x1 << 8)
3571                       | (0x1 << 6)  | (0x1 << 5)
3572                       | (0x1 << 4)  | (0x1 << 3)
3573                       | (0x1 << 2));
3574             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3575                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3576             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3577                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3578                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3579                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3580                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3581                           | (0x1 << 26) | (0x7 << 24)
3582                           | (0x3 << 22));
3583             } else {
3584                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3585                     OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3586                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3587                     OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3588                           | (0x1 << 26) | (0x7 << 24)
3589                           | (0x3 << 22));
3590             }
3591 
3592             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3593                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3594                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3595                           | (0x1 << 3)  | (0x1 << 2)
3596                           | (0x1 << 1)) & ~(0x1 << 0));
3597                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3598                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3599                           | (0x1 << 19) | (0x1 << 3));
3600                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3601                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3602             }
3603             if (AR_SREV_OSPREY(ah)) {
3604                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3605                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3606                           | (0x1 << 3)  | (0x1 << 2)
3607                           | (0x1 << 1)) & ~(0x1 << 0));
3608                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3609                     OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3610                           | (0x1 << 19) | (0x1 << 3));
3611                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3612                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3613             }
3614         }
3615         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3616             /* chain one */
3617             if ((tx_chain_mask & 0x02) == 0x02 ) {
3618                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3619                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3620                           | (0x1 << 3)  | (0x1 << 2)
3621                           | (0x1 << 1)) & ~(0x1 << 0));
3622                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3623                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3624                           | (0x1 << 19) | (0x1 << 3));
3625                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3626                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3627                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3628                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3629                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3630                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3631                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3632                               | (0x1 << 26) | (0x7 << 24)
3633                               | (0x3 << 22));
3634                 } else {
3635                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3636                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3637                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3638                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3639                               | (0x1 << 26) | (0x7 << 24)
3640                               | (0x3 << 22));
3641                 }
3642 
3643                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3644                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3645                           | (0x1 << 31) | (0x1 << 27)
3646                           | (0x3 << 23) | (0x1 << 19)
3647                           | (0x1 << 15) | (0x3 << 9))
3648                           & ~(0x1 << 12));
3649                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3650                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3651                           | (0x1 << 12) | (0x1 << 10)
3652                           | (0x1 << 9)  | (0x1 << 8)
3653                           | (0x1 << 7)  | (0x1 << 3)
3654                           | (0x1 << 2)  | (0x1 << 1))
3655                           & ~(0x1 << 11)& ~(0x1 << 0));
3656                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3657                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3658                           | (0x1 << 29) | (0x1 << 25)
3659                           | (0x1 << 23) | (0x1 << 19)
3660                           | (0x1 << 10) | (0x1 << 9)
3661                           | (0x1 << 8)  | (0x1 << 3))
3662                           & ~(0x1 << 28)& ~(0x1 << 24)
3663                           & ~(0x1 << 22)& ~(0x1 << 7));
3664                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3665                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3666                           | (0x1 << 23))& ~(0x1 << 21));
3667                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3668                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3669                           | (0x3 << 3)  | (0x3 << 0));
3670                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3671                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3672                           | (0x3 << 29) | (0x3 << 26)
3673                           | (0x2 << 23) | (0x2 << 20)
3674                           | (0x2 << 17))& ~(0x1 << 14));
3675                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3676                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3677                           | (0x1 << 12) | (0x1 << 10)
3678                           | (0x1 << 9)  | (0x1 << 8)
3679                           | (0x1 << 6)  | (0x1 << 5)
3680                           | (0x1 << 4)  | (0x1 << 3)
3681                           | (0x1 << 2));
3682                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3683                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3684 
3685                 if (AR_SREV_OSPREY(ah)) {
3686                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3687                         (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3688                               | (0x1 << 3)  | (0x1 << 2)
3689                               | (0x1 << 1)) & ~(0x1 << 0));
3690                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3691                         OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3692                               | (0x1 << 19) | (0x1 << 3));
3693                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3694                         OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3695                 }
3696             }
3697         }
3698         if (AR_SREV_OSPREY(ah)) {
3699             /* chain two */
3700             if ((tx_chain_mask & 0x04) == 0x04 ) {
3701                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3702                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3703                           | (0x1 << 3)  | (0x1 << 2)
3704                           | (0x1 << 1)) & ~(0x1 << 0));
3705                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3706                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3707                           | (0x1 << 19) | (0x1 << 3));
3708                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3709                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3710                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3711                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3712                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3713                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3714                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3715                               | (0x1 << 26) | (0x7 << 24)
3716                               | (0x3 << 22));
3717                 } else {
3718                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3719                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3720                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3721                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3722                               | (0x1 << 26) | (0x7 << 24)
3723                               | (0x3 << 22));
3724                 }
3725 
3726                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3727                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3728                           | (0x1 << 3)  | (0x1 << 2)
3729                           | (0x1 << 1)) & ~(0x1 << 0));
3730                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3731                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3732                           | (0x1 << 19) | (0x1 << 3));
3733                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3734                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3735 
3736                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3737                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3738                           | (0x1 << 31) | (0x1 << 27)
3739                           | (0x3 << 23) | (0x1 << 19)
3740                           | (0x1 << 15) | (0x3 << 9))
3741                           & ~(0x1 << 12));
3742                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3743                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3744                           | (0x1 << 12) | (0x1 << 10)
3745                           | (0x1 << 9)  | (0x1 << 8)
3746                           | (0x1 << 7)  | (0x1 << 3)
3747                           | (0x1 << 2)  | (0x1 << 1))
3748                           & ~(0x1 << 11)& ~(0x1 << 0));
3749                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3750                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3751                           | (0x1 << 29) | (0x1 << 25)
3752                           | (0x1 << 23) | (0x1 << 19)
3753                           | (0x1 << 10) | (0x1 << 9)
3754                           | (0x1 << 8)  | (0x1 << 3))
3755                           & ~(0x1 << 28)& ~(0x1 << 24)
3756                           & ~(0x1 << 22)& ~(0x1 << 7));
3757                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3758                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3759                           | (0x1 << 23))& ~(0x1 << 21));
3760                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3761                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3762                           | (0x3 << 3)  | (0x3 << 0));
3763                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3764                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3765                           | (0x3 << 29) | (0x3 << 26)
3766                           | (0x2 << 23) | (0x2 << 20)
3767                           | (0x2 << 17))& ~(0x1 << 14));
3768                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3769                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3770                           | (0x1 << 12) | (0x1 << 10)
3771                           | (0x1 << 9)  | (0x1 << 8)
3772                           | (0x1 << 6)  | (0x1 << 5)
3773                           | (0x1 << 4)  | (0x1 << 3)
3774                           | (0x1 << 2));
3775                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3776                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3777             }
3778         }
3779 
3780         OS_REG_WRITE(ah, 0xa28c, 0x22222);
3781         OS_REG_WRITE(ah, 0xa288, 0x222);
3782     }
3783 }
3784 
3785 void
3786 ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3787 {
3788     u_int32_t val;
3789     u_int32_t qnum = (u_int32_t)data;
3790 
3791     /* Disable AGC to A2 */
3792     OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3793     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3794 
3795     OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3796     /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3797     OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3798     OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3799     OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3800     /* 200 ok for HT20, 400 ok for HT40 */
3801     OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3802     OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3803 
3804     /* set QCU modes to early termination */
3805     val = OS_REG_READ(ah, AR_QMISC(qnum));
3806     OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3807 }
3808 
3809 void
3810 ar9300_tx99_stop(struct ath_hal *ah)
3811 {
3812     /* this should follow the setting of start */
3813     OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3814     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3815 }
3816 #endif /* ATH_TX99_DIAG */
3817 #endif /* ATH_SUPPORT_HTC */
3818 
3819 HAL_BOOL
3820 ar9300Get3StreamSignature(struct ath_hal *ah)
3821 {
3822     return AH_FALSE;
3823 }
3824 
3825 HAL_BOOL
3826 ar9300ForceVCS(struct ath_hal *ah)
3827 {
3828    return AH_FALSE;
3829 }
3830 
3831 HAL_BOOL
3832 ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3833 {
3834    return AH_FALSE;
3835 }
3836 
3837 HAL_BOOL
3838 ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
3839 {
3840     struct ath_hal_9300 *ahp = AH9300(ah);
3841     ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
3842     u_int8_t *ctl_index;
3843     u_int32_t offset = 0;
3844 
3845     if (!ctl_array)
3846         return AH_FALSE;
3847 
3848     /* copy 2G ctl freqbin and power data */
3849     ctl_index = p_eep_data->ctl_index_2g;
3850     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
3851                 OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G +     /* ctl_freqbin_2G */
3852                 OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));  /* ctl_power_data_2g */
3853     offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
3854             ( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
3855 
3856 
3857     /* copy 2G ctl freqbin and power data */
3858     ctl_index = p_eep_data->ctl_index_5g;
3859     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
3860                 OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G +     /* ctl_freqbin_5G */
3861                 OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G));  /* ctl_power_data_5g */
3862 
3863     return AH_FALSE;
3864 }
3865 
3866 void
3867 ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
3868 {
3869     struct ath_hal_9300 *ahp = AH9300(ah);
3870 
3871     /* optional txchainmask should be subset of primary txchainmask */
3872     if ((mask & ahp->ah_tx_chainmask) != mask) {
3873         ahp->ah_tx_chainmaskopt = 0;
3874         ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
3875         return;
3876     }
3877 
3878     ahp->ah_tx_chainmaskopt = mask;
3879 }
3880