1 /*
2  * Copyright (c) 2013 Qualcomm Atheros, Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10  * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14  * PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "opt_ah.h"
18 
19 #include "ah.h"
20 #include "ah_internal.h"
21 #include "ah_devid.h"
22 #ifdef AH_DEBUG
23 #include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24 #endif
25 
26 #include "ar9300/ar9300.h"
27 #include "ar9300/ar9300reg.h"
28 #include "ar9300/ar9300phy.h"
29 #include "ar9300/ar9300desc.h"
30 
31 static u_int32_t ar9300_read_loc_timer(struct ath_hal *ah);
32 
33 void
34 ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
35 {
36     struct ath_hal_9300 *ahp = AH9300(ah);
37     *hangs = 0;
38 
39     if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
40         *hangs |= HAL_RIFS_BB_HANG_WAR;
41     }
42     if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
43         *hangs |= HAL_DFS_BB_HANG_WAR;
44     }
45     if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
46         == HAL_OK)
47     {
48         *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
49     }
50     if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
51         *hangs |= HAL_MAC_HANG_WAR;
52     }
53     if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
54         == HAL_OK)
55     {
56         *hangs |= HAL_PHYRESTART_CLR_WAR;
57     }
58 
59     ahp->ah_hang_wars = *hangs;
60 }
61 
62 /*
63  * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
64  * HT20, HT40, fast-clock, turbo mode, etc.
65  */
66 static u_int
67 ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
68 {
69 #if 0
70     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
71 
72     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
73         return (ath_hal_mac_usec(ah, clks) / 2);
74     } else {
75         return (ath_hal_mac_usec(ah, clks));
76     }
77 #endif
78     return (ath_hal_mac_usec(ah, clks));
79 }
80 
81 u_int
82 ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
83 {
84 #if 0
85     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
86 
87     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
88         return (ath_hal_mac_clks(ah, usecs) * 2);
89     } else {
90         return (ath_hal_mac_clks(ah, usecs));
91     }
92 #endif
93     return (ath_hal_mac_clks(ah, usecs));
94 }
95 
96 void
97 ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
98 {
99     struct ath_hal_9300 *ahp = AH9300(ah);
100 
101     OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
102 }
103 
104 HAL_BOOL
105 ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
106 {
107     struct ath_hal_9300 *ahp = AH9300(ah);
108 
109     OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
110     return AH_TRUE;
111 }
112 
113 void
114 ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
115 {
116     struct ath_hal_9300 *ahp = AH9300(ah);
117 
118     OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
119 }
120 
121 HAL_BOOL
122 ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
123 {
124     struct ath_hal_9300 *ahp = AH9300(ah);
125 
126     /* save it since it must be rewritten on reset */
127     OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
128 
129     OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
130     OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
131     return AH_TRUE;
132 }
133 
134 /*
135  * Attempt to change the cards operating regulatory domain to the given value
136  * Returns: A_EINVAL for an unsupported regulatory domain.
137  *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
138  */
139 HAL_BOOL
140 ar9300_set_regulatory_domain(struct ath_hal *ah,
141         u_int16_t reg_domain, HAL_STATUS *status)
142 {
143     HAL_STATUS ecode;
144 
145     if (AH_PRIVATE(ah)->ah_currentRD == 0) {
146         AH_PRIVATE(ah)->ah_currentRD = reg_domain;
147         return AH_TRUE;
148     }
149     ecode = HAL_EIO;
150 
151 #if 0
152 bad:
153 #endif
154     if (status) {
155         *status = ecode;
156     }
157     return AH_FALSE;
158 }
159 
160 /*
161  * Return the wireless modes (a,b,g,t) supported by hardware.
162  *
163  * This value is what is actually supported by the hardware
164  * and is unaffected by regulatory/country code settings.
165  *
166  */
167 u_int
168 ar9300_get_wireless_modes(struct ath_hal *ah)
169 {
170     return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
171 }
172 
173 /*
174  * Set the interrupt and GPIO values so the ISR can disable RF
175  * on a switch signal.  Assumes GPIO port and interrupt polarity
176  * are set prior to call.
177  */
178 void
179 ar9300_enable_rf_kill(struct ath_hal *ah)
180 {
181     /* TODO - can this really be above the hal on the GPIO interface for
182      * TODO - the client only?
183      */
184     struct ath_hal_9300    *ahp = AH9300(ah);
185 
186     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
187     	/* Check RF kill GPIO before set/clear RFSILENT bits. */
188     	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
189             OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
190                            AR_RFSILENT_FORCE);
191             OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
192         }
193         else {
194             OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
195                            AR_RFSILENT_FORCE);
196             OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
197         }
198     }
199     else {
200         /* Connect rfsilent_bb_l to baseband */
201         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
202             AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
203 
204         /* Set input mux for rfsilent_bb_l to GPIO #0 */
205         OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206             AR_GPIO_INPUT_MUX2_RFSILENT);
207         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
208             (ahp->ah_gpio_select & 0x0f) << 4);
209 
210         /*
211          * Configure the desired GPIO port for input and
212          * enable baseband rf silence
213          */
214         ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
215         OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
216     }
217 
218     /*
219      * If radio disable switch connection to GPIO bit x is enabled
220      * program GPIO interrupt.
221      * If rfkill bit on eeprom is 1, setupeeprommap routine has already
222      * verified that it is a later version of eeprom, it has a place for
223      * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
224      * connection is present.
225      */
226      /*
227       * RFKill uses polling not interrupt,
228       * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
229       */
230     if (ath_hal_hasrfkill_int(ah)) {
231         if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
232             /* switch already closed, set to interrupt upon open */
233             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
234         } else {
235             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
236         }
237     }
238 }
239 
240 /*
241  * Change the LED blinking pattern to correspond to the connectivity
242  */
243 void
244 ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
245 {
246     static const u_int32_t ledbits[8] = {
247         AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
248         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
249         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
250         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
251         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
252         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
253         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
254         AR_CFG_LED_ASSOC_NONE,
255     };
256 
257     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
258 }
259 
260 /*
261  * Sets the Power LED on the cardbus without affecting the Network LED.
262  */
263 void
264 ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
265 {
266     u_int32_t    val;
267 
268     val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
269     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
270 }
271 
272 /*
273  * Sets the Network LED on the cardbus without affecting the Power LED.
274  */
275 void
276 ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
277 {
278     u_int32_t    val;
279 
280     val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
281     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
282 }
283 
284 /*
285  * Change association related fields programmed into the hardware.
286  * Writing a valid BSSID to the hardware effectively enables the hardware
287  * to synchronize its TSF to the correct beacons and receive frames coming
288  * from that BSSID. It is called by the SME JOIN operation.
289  */
290 void
291 ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
292     u_int16_t assoc_id)
293 {
294     struct ath_hal_9300 *ahp = AH9300(ah);
295 
296     /* save bssid and assoc_id for restore on reset */
297     OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
298     ahp->ah_assoc_id = assoc_id;
299 
300     OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
301     OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
302                                  ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
303 }
304 
305 /*
306  * Get the current hardware tsf for stamlme
307  */
308 u_int64_t
309 ar9300_get_tsf64(struct ath_hal *ah)
310 {
311     u_int64_t tsf;
312 
313     /* XXX sync multi-word read? */
314     tsf = OS_REG_READ(ah, AR_TSF_U32);
315     tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
316     return tsf;
317 }
318 
319 void
320 ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
321 {
322     OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
323     OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
324 }
325 
326 /*
327  * Get the current hardware tsf for stamlme
328  */
329 u_int32_t
330 ar9300_get_tsf32(struct ath_hal *ah)
331 {
332     return OS_REG_READ(ah, AR_TSF_L32);
333 }
334 
335 u_int32_t
336 ar9300_get_tsf2_32(struct ath_hal *ah)
337 {
338     return OS_REG_READ(ah, AR_TSF2_L32);
339 }
340 
341 /*
342  * Reset the current hardware tsf for stamlme.
343  */
344 void
345 ar9300_reset_tsf(struct ath_hal *ah)
346 {
347     int count;
348 
349     count = 0;
350     while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
351         count++;
352         if (count > 10) {
353             HALDEBUG(ah, HAL_DEBUG_RESET,
354                 "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
355             break;
356         }
357         OS_DELAY(10);
358     }
359     OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
360 }
361 
362 /*
363  * Set or clear hardware basic rate bit
364  * Set hardware basic rate set if basic rate is found
365  * and basic rate is equal or less than 2Mbps
366  */
367 void
368 ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
369 {
370     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
371     u_int32_t reg;
372     u_int8_t xset;
373     int i;
374 
375     if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
376         return;
377     }
378     xset = 0;
379     for (i = 0; i < rs->rs_count; i++) {
380         u_int8_t rset = rs->rs_rates[i];
381         /* Basic rate defined? */
382         if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
383             xset = rset;
384         }
385     }
386     /*
387      * Set the h/w bit to reflect whether or not the basic
388      * rate is found to be equal or less than 2Mbps.
389      */
390     reg = OS_REG_READ(ah, AR_STA_ID1);
391     if (xset && xset / 2 <= 2) {
392         OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
393     } else {
394         OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
395     }
396 }
397 
398 /*
399  * Grab a semi-random value from hardware registers - may not
400  * change often
401  */
402 u_int32_t
403 ar9300_get_random_seed(struct ath_hal *ah)
404 {
405     u_int32_t nf;
406 
407     nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
408     if (nf & 0x100) {
409         nf = 0 - ((nf ^ 0x1ff) + 1);
410     }
411     return (OS_REG_READ(ah, AR_TSF_U32) ^
412         OS_REG_READ(ah, AR_TSF_L32) ^ nf);
413 }
414 
415 /*
416  * Detect if our card is present
417  */
418 HAL_BOOL
419 ar9300_detect_card_present(struct ath_hal *ah)
420 {
421     u_int16_t mac_version, mac_rev;
422     u_int32_t v;
423 
424     /*
425      * Read the Silicon Revision register and compare that
426      * to what we read at attach time.  If the same, we say
427      * a card/device is present.
428      */
429     v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
430     if (v == 0xFF) {
431         /* new SREV format */
432         v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
433         /*
434          * Include 6-bit Chip Type (masked to 0) to differentiate
435          * from pre-Sowl versions
436          */
437         mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
438         mac_rev = MS(v, AR_SREV_REVISION2);
439     } else {
440         mac_version = MS(v, AR_SREV_VERSION);
441         mac_rev = v & AR_SREV_REVISION;
442     }
443     return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
444             AH_PRIVATE(ah)->ah_macRev == mac_rev);
445 }
446 
447 /*
448  * Update MIB Counters
449  */
450 void
451 ar9300_update_mib_mac_stats(struct ath_hal *ah)
452 {
453     struct ath_hal_9300 *ahp = AH9300(ah);
454     HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
455 
456     stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
457     stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
458     stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
459     stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
460     stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
461 }
462 
463 void
464 ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
465 {
466     struct ath_hal_9300 *ahp = AH9300(ah);
467     HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
468 
469     stats->ackrcv_bad = istats->ackrcv_bad;
470     stats->rts_bad    = istats->rts_bad;
471     stats->fcs_bad    = istats->fcs_bad;
472     stats->rts_good   = istats->rts_good;
473     stats->beacons    = istats->beacons;
474 }
475 
476 /*
477  * Detect if the HW supports spreading a CCK signal on channel 14
478  */
479 HAL_BOOL
480 ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
481 {
482     return AH_TRUE;
483 }
484 
485 /*
486  * Get the rssi of frame curently being received.
487  */
488 u_int32_t
489 ar9300_get_cur_rssi(struct ath_hal *ah)
490 {
491     /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
492     /* get combined RSSI */
493     return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
494 }
495 
496 #if ATH_GEN_RANDOMNESS
497 /*
498  * Get the rssi value from BB on ctl chain0.
499  */
500 u_int32_t
501 ar9300_get_rssi_chain0(struct ath_hal *ah)
502 {
503     /* get ctl chain0 RSSI */
504     return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
505 }
506 #endif
507 
508 u_int
509 ar9300_get_def_antenna(struct ath_hal *ah)
510 {
511     return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
512 }
513 
514 /* Setup coverage class */
515 void
516 ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
517 {
518 }
519 
520 void
521 ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
522 {
523     OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
524 }
525 
526 HAL_BOOL
527 ar9300_set_antenna_switch(struct ath_hal *ah,
528     HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
529     u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
530 {
531     struct ath_hal_9300 *ahp = AH9300(ah);
532 
533     /*
534      * Owl does not support diversity or changing antennas.
535      *
536      * Instead this API and function are defined differently for AR9300.
537      * To support Tablet PC's, this interface allows the system
538      * to dramatically reduce the TX power on a particular chain.
539      *
540      * Based on the value of (redefined) diversity_control, the
541      * reset code will decrease power on chain 0 or chain 1/2.
542      *
543      * Based on the value of bit 0 of antenna_switch_swap,
544      * the mapping between OID call and chain is defined as:
545      *  0:  map A -> 0, B -> 1;
546      *  1:  map A -> 1, B -> 0;
547      *
548      * NOTE:
549      *   The devices that use this OID should use a tx_chain_mask and
550      *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
551      *   used in order to ensure an active transmit antenna.  This
552      *   API will allow the host to turn off the only transmitting
553      *   antenna to ensure the antenna closest to the user's body is
554      *   powered-down.
555      */
556     /*
557      * Set antenna control for use during reset sequence by
558      * ar9300_decrease_chain_power()
559      */
560     ahp->ah_diversity_control = settings;
561 
562     return AH_TRUE;
563 }
564 
565 HAL_BOOL
566 ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
567 {
568     return AH_TRUE;
569 }
570 
571 HAL_BOOL
572 ar9300_set_slot_time(struct ath_hal *ah, u_int us)
573 {
574     struct ath_hal_9300 *ahp = AH9300(ah);
575     if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
576         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
577         ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
578         return AH_FALSE;
579     } else {
580         /* convert to system clocks */
581         OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
582         ahp->ah_slot_time = us;
583         return AH_TRUE;
584     }
585 }
586 
587 HAL_BOOL
588 ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
589 {
590     struct ath_hal_9300 *ahp = AH9300(ah);
591 
592     if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
593         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
594         ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
595         return AH_FALSE;
596     } else {
597         /* convert to system clocks */
598         OS_REG_RMW_FIELD(ah,
599             AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
600         ahp->ah_ack_timeout = us;
601         return AH_TRUE;
602     }
603 }
604 
605 u_int
606 ar9300_get_ack_timeout(struct ath_hal *ah)
607 {
608     u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
609     return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
610 }
611 
612 HAL_STATUS
613 ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
614                  u_int32_t next_start, HAL_QUIET_FLAG flag)
615 {
616 #define	TU_TO_USEC(_tu)		((_tu) << 10)
617     HAL_STATUS status = HAL_EIO;
618     u_int32_t tsf = 0, j, next_start_us = 0;
619     if (flag & HAL_QUIET_ENABLE) {
620         for (j = 0; j < 2; j++) {
621             next_start_us = TU_TO_USEC(next_start);
622             tsf = OS_REG_READ(ah, AR_TSF_L32);
623             if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
624                 next_start_us += tsf;
625             }
626             if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
627                 next_start_us +=
628                     ah->ah_config.ah_sw_beacon_response_time;
629             }
630             OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
631             OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
632             OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
633             OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
634             OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
635             if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
636                 status = HAL_OK;
637                 break;
638             }
639             HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
640                 "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
641             /* TSF shouldn't count twice or reg access is taking forever */
642             HALASSERT(j < 1);
643         }
644     } else {
645         OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
646         status = HAL_OK;
647     }
648 
649     return status;
650 #undef	TU_TO_USEC
651 }
652 
653 //#ifdef ATH_SUPPORT_DFS
654 void
655 ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
656 {
657     uint32_t reg1, reg2;
658 
659     reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
660     reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
661     AH9300(ah)->ah_cac_quiet_enabled = enable;
662 
663     if (enable) {
664         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
665                      reg1 | AR_PCU_FORCE_QUIET_COLL);
666         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
667                      reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
668     } else {
669         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
670                      reg1 & ~AR_PCU_FORCE_QUIET_COLL);
671         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
672                      reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
673     }
674 }
675 //#endif /* ATH_SUPPORT_DFS */
676 
677 void
678 ar9300_set_pcu_config(struct ath_hal *ah)
679 {
680     ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
681 }
682 
683 HAL_STATUS
684 ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
685     u_int32_t capability, u_int32_t *result)
686 {
687     struct ath_hal_9300 *ahp = AH9300(ah);
688     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
689     struct ar9300_ani_state *ani;
690 
691     switch (type) {
692     case HAL_CAP_CIPHER:            /* cipher handled in hardware */
693         switch (capability) {
694         case HAL_CIPHER_AES_CCM:
695         case HAL_CIPHER_AES_OCB:
696         case HAL_CIPHER_TKIP:
697         case HAL_CIPHER_WEP:
698         case HAL_CIPHER_MIC:
699         case HAL_CIPHER_CLR:
700             return HAL_OK;
701         default:
702             return HAL_ENOTSUPP;
703         }
704     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
705         switch (capability) {
706         case 0:         /* hardware capability */
707             return HAL_OK;
708         case 1:
709             return (ahp->ah_sta_id1_defaults &
710                     AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
711         default:
712             return HAL_ENOTSUPP;
713         }
714     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
715         switch (capability) {
716         case 0: /* hardware capability */
717             return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
718         case 1: /* current setting */
719             return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
720                 HAL_ENXIO : HAL_OK;
721         default:
722             return HAL_ENOTSUPP;
723         }
724     case HAL_CAP_WME_TKIPMIC:
725         /* hardware can do TKIP MIC when WMM is turned on */
726         return HAL_OK;
727     case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
728         return HAL_OK;
729     case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
730         switch (capability) {
731         case 0:                 /* hardware capability */
732             return HAL_OK;
733         case 1:                 /* current setting */
734             return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
735                             AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
736                             HAL_OK : HAL_ENXIO;
737         }
738         return HAL_EINVAL;
739     case HAL_CAP_TPC:
740         switch (capability) {
741         case 0:                 /* hardware capability */
742             return HAL_OK;
743         case 1:
744             return ah->ah_config.ath_hal_desc_tpc ?
745                                HAL_OK : HAL_ENXIO;
746         }
747         return HAL_OK;
748     case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
749         return HAL_OK;
750     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
751         switch (capability) {
752         case 0:                 /* hardware capability */
753             return HAL_OK;
754         case 1:
755             if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
756                 /*
757                  * Owl and Merlin have problems in mcast key search.
758                  * Disable this cap. in Ad-hoc mode. see Bug 25776 and
759                  * 26802
760                  */
761                 return HAL_ENXIO;
762             } else {
763                 return (ahp->ah_sta_id1_defaults &
764                         AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
765             }
766         }
767         return HAL_EINVAL;
768     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
769         switch (capability) {
770         case 0:                 /* hardware capability */
771             return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
772         case 1:
773             return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
774                 HAL_OK : HAL_ENXIO;
775         }
776         return HAL_EINVAL;
777     case HAL_CAP_RFSILENT:      /* rfsilent support  */
778         if (capability == 3) {  /* rfkill interrupt */
779             /*
780              * XXX: Interrupt-based notification of RF Kill state
781              *      changes not working yet. Report that this feature
782              *      is not supported so that polling is used instead.
783              */
784             return (HAL_ENOTSUPP);
785         }
786         return ath_hal_getcapability(ah, type, capability, result);
787     case HAL_CAP_4ADDR_AGGR:
788         return HAL_OK;
789     case HAL_CAP_BB_RIFS_HANG:
790         return HAL_ENOTSUPP;
791     case HAL_CAP_BB_DFS_HANG:
792         return HAL_ENOTSUPP;
793     case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
794         /* Track chips that are known to have BB hangs related
795          * to rx_clear stuck low.
796          */
797         return HAL_ENOTSUPP;
798     case HAL_CAP_MAC_HANG:
799         /* Track chips that are known to have MAC hangs.
800          */
801         return HAL_OK;
802     case HAL_CAP_RIFS_RX_ENABLED:
803         /* Is RIFS RX currently enabled */
804         return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
805 #if 0
806     case HAL_CAP_ANT_CFG_2GHZ:
807         *result = p_cap->halNumAntCfg2Ghz;
808         return HAL_OK;
809     case HAL_CAP_ANT_CFG_5GHZ:
810         *result = p_cap->halNumAntCfg5Ghz;
811         return HAL_OK;
812     case HAL_CAP_RX_STBC:
813         *result = p_cap->hal_rx_stbc_support;
814         return HAL_OK;
815     case HAL_CAP_TX_STBC:
816         *result = p_cap->hal_tx_stbc_support;
817         return HAL_OK;
818 #endif
819     case HAL_CAP_LDPC:
820         *result = p_cap->halLDPCSupport;
821         return HAL_OK;
822     case HAL_CAP_DYNAMIC_SMPS:
823         return HAL_OK;
824     case HAL_CAP_DS:
825         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
826                 (p_cap->halTxChainMask & 0x3) != 0x3 ||
827                 (p_cap->halRxChainMask & 0x3) != 0x3) ?
828             HAL_ENOTSUPP : HAL_OK;
829     case HAL_CAP_TS:
830         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
831                 (p_cap->halTxChainMask & 0x7) != 0x7 ||
832                 (p_cap->halRxChainMask & 0x7) != 0x7) ?
833             HAL_ENOTSUPP : HAL_OK;
834     case HAL_CAP_OL_PWRCTRL:
835         return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
836             HAL_OK : HAL_ENOTSUPP;
837     case HAL_CAP_CRDC:
838 #if ATH_SUPPORT_CRDC
839         return (AR_SREV_WASP(ah) &&
840                 ah->ah_config.ath_hal_crdc_enable) ?
841                     HAL_OK : HAL_ENOTSUPP;
842 #else
843         return HAL_ENOTSUPP;
844 #endif
845 #if 0
846     case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
847         *result = (u_int32_t)(-1);
848         return HAL_OK;
849     case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
850         *result = (u_int32_t)(-1);
851         return HAL_OK;
852 #endif
853     case HAL_CAP_BB_PANIC_WATCHDOG:
854         return HAL_OK;
855     case HAL_CAP_PHYRESTART_CLR_WAR:
856         if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
857             (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
858         {
859             return HAL_OK;
860         }
861         else
862         {
863             return HAL_ENOTSUPP;
864         }
865     case HAL_CAP_ENTERPRISE_MODE:
866         *result = ahp->ah_enterprise_mode >> 16;
867         /*
868          * WAR for EV 77658 - Add delimiters to first sub-frame when using
869          * RTS/CTS with aggregation and non-enterprise Osprey.
870          *
871          * Bug fixed in AR9580/Peacock, Wasp1.1 and later
872          */
873         if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
874                 !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
875                 AR_SREV_WASP_10(ah))) {
876             *result |= AH_ENT_RTSCTS_DELIM_WAR;
877         }
878         return HAL_OK;
879     case HAL_CAP_LDPCWAR:
880         /* WAR for RIFS+LDPC issue is required for all chips currently
881          * supported by ar9300 HAL.
882          */
883         return HAL_OK;
884     case HAL_CAP_ENABLE_APM:
885         *result = p_cap->halApmEnable;
886         return HAL_OK;
887     case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
888         return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
889     case HAL_CAP_PCIE_LCR_OFFSET:
890         *result = p_cap->hal_pcie_lcr_offset;
891         return HAL_OK;
892     case HAL_CAP_SMARTANTENNA:
893         /* FIXME A request is pending with h/w team to add feature bit in
894          * caldata to detect if board has smart antenna or not, once added
895          * we need to fix his piece of code to read and return value without
896          * any compile flags
897          */
898 #if UMAC_SUPPORT_SMARTANTENNA
899         /* enable smart antenna for  Peacock, Wasp and scorpion
900            for future chips need to modify */
901         if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
902             return HAL_OK;
903         } else {
904             return HAL_ENOTSUPP;
905         }
906 #else
907         return HAL_ENOTSUPP;
908 #endif
909 
910 #ifdef ATH_TRAFFIC_FAST_RECOVER
911     case HAL_CAP_TRAFFIC_FAST_RECOVER:
912         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
913             return HAL_OK;
914         } else {
915             return HAL_ENOTSUPP;
916         }
917 #endif
918 
919     /* FreeBSD ANI */
920     case HAL_CAP_INTMIT:            /* interference mitigation */
921             switch (capability) {
922             case HAL_CAP_INTMIT_PRESENT:            /* hardware capability */
923                     return HAL_OK;
924             case HAL_CAP_INTMIT_ENABLE:
925                     return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
926                             HAL_OK : HAL_ENXIO;
927             case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
928             case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
929 //            case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
930             case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
931             case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
932                     ani = ar9300_ani_get_current_state(ah);
933                     if (ani == AH_NULL)
934                             return HAL_ENXIO;
935                     switch (capability) {
936                     /* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
937                     case 2: *result = ani->ofdm_noise_immunity_level; break;
938                     case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
939  //                   case 4: *result = ani->cck_weak_sig_threshold; break;
940                     case 5: *result = ani->firstep_level; break;
941                     case 6: *result = ani->spur_immunity_level; break;
942                     }
943                     return HAL_OK;
944             }
945             return HAL_EINVAL;
946     case HAL_CAP_ENFORCE_TXOP:
947         if (capability == 0)
948             return (HAL_OK);
949         if (capability != 1)
950             return (HAL_ENOTSUPP);
951         (*result) = !! (ahp->ah_misc_mode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
952         return (HAL_OK);
953     case HAL_CAP_TOA_LOCATIONING:
954         if (capability == 0)
955             return HAL_OK;
956         if (capability == 2) {
957             *result = ar9300_read_loc_timer(ah);
958             return (HAL_OK);
959         }
960         return HAL_ENOTSUPP;
961     default:
962         return ath_hal_getcapability(ah, type, capability, result);
963     }
964 }
965 
966 HAL_BOOL
967 ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
968         u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
969 {
970     struct ath_hal_9300 *ahp = AH9300(ah);
971     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
972     u_int32_t v;
973 
974     switch (type) {
975     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
976         if (! p_cap->halTkipMicTxRxKeySupport)
977             return AH_FALSE;
978 
979         if (setting)
980             ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
981         else
982             ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
983 
984         OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
985         return AH_TRUE;
986 
987     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
988         if (setting) {
989             ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
990         } else {
991             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
992         }
993         return AH_TRUE;
994     case HAL_CAP_DIVERSITY:
995         v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
996         if (setting) {
997             v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
998         } else {
999             v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1000         }
1001         OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
1002         return AH_TRUE;
1003     case HAL_CAP_DIAG:              /* hardware diagnostic support */
1004         /*
1005          * NB: could split this up into virtual capabilities,
1006          *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
1007          *     seems worth the additional complexity.
1008          */
1009 #ifdef AH_DEBUG
1010         AH_PRIVATE(ah)->ah_diagreg = setting;
1011 #else
1012         AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
1013 #endif
1014         OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
1015         return AH_TRUE;
1016     case HAL_CAP_TPC:
1017         ah->ah_config.ath_hal_desc_tpc = (setting != 0);
1018         return AH_TRUE;
1019     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
1020         if (setting) {
1021             ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
1022         } else {
1023             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1024         }
1025         return AH_TRUE;
1026     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
1027         if (p_cap->halTsfAddSupport) {
1028             if (setting) {
1029                 ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
1030             } else {
1031                 ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
1032             }
1033             return AH_TRUE;
1034         }
1035         return AH_FALSE;
1036 
1037     /* FreeBSD interrupt mitigation / ANI */
1038     case HAL_CAP_INTMIT: {          /* interference mitigation */
1039             /* This maps the public ANI commands to the internal ANI commands */
1040             /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1041             static const HAL_ANI_CMD cmds[] = {
1042                     HAL_ANI_PRESENT,
1043                     HAL_ANI_MODE,
1044                     HAL_ANI_NOISE_IMMUNITY_LEVEL,
1045                     HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1046                     HAL_ANI_CCK_WEAK_SIGNAL_THR,
1047                     HAL_ANI_FIRSTEP_LEVEL,
1048                     HAL_ANI_SPUR_IMMUNITY_LEVEL,
1049             };
1050 #define N(a)    (sizeof(a) / sizeof(a[0]))
1051             return capability < N(cmds) ?
1052                     ar9300_ani_control(ah, cmds[capability], setting) :
1053                     AH_FALSE;
1054 #undef N
1055     }
1056 
1057     case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
1058         ahp->rx_buf_size = setting & AR_DATABUF_MASK;
1059         OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
1060         return AH_TRUE;
1061 
1062     case HAL_CAP_ENFORCE_TXOP:
1063         if (capability != 1)
1064             return AH_FALSE;
1065         if (setting) {
1066             ahp->ah_misc_mode |= AR_PCU_TXOP_TBTT_LIMIT_ENA;
1067             OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1068         } else {
1069             ahp->ah_misc_mode &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
1070             OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1071         }
1072         return AH_TRUE;
1073 
1074     case HAL_CAP_TOA_LOCATIONING:
1075         if (capability == 0)
1076             return AH_TRUE;
1077         if (capability == 1) {
1078             ar9300_update_loc_ctl_reg(ah, setting);
1079             return AH_TRUE;
1080         }
1081         return AH_FALSE;
1082         /* fall thru... */
1083     default:
1084         return ath_hal_setcapability(ah, type, capability, setting, status);
1085     }
1086 }
1087 
1088 #ifdef AH_DEBUG
1089 static void
1090 ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1091 {
1092     u_int32_t i = 0;
1093 
1094     /* Read 0x80d0 to trigger pcie analyzer */
1095     HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1096         "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1097 
1098     if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1099         struct ath_hal_9300 *ahp = AH9300(ah);
1100         u_int32_t tf, rf, rc, cc;
1101 
1102         tf = OS_REG_READ(ah, AR_TFCNT);
1103         rf = OS_REG_READ(ah, AR_RFCNT);
1104         rc = OS_REG_READ(ah, AR_RCCNT);
1105         cc = OS_REG_READ(ah, AR_CCCNT);
1106 
1107         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1108             "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1109         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1110             "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1111         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1112             "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1113         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1114             "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1115 
1116         ahp->last_tf = tf;
1117         ahp->last_rf = rf;
1118         ahp->last_rc = rc;
1119         ahp->last_cc = cc;
1120 
1121         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1122             "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1123         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1124             "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1125         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1126             "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1127         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1128             "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1129         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1130             "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1131         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1132             "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1133         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1134             "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1135         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1136             "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1137     }
1138 
1139     if (args & HAL_DIAG_PRINT_REG_ALL) {
1140         for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1141             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1142                 i, OS_REG_READ(ah, i));
1143         }
1144 
1145         for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1146             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1147                 i, OS_REG_READ(ah, i));
1148         }
1149 
1150         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1151             "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1152 
1153         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1154             "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1155 
1156         for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1157             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1158                 i, OS_REG_READ(ah, i));
1159         }
1160 
1161         for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1162             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1163                 i, OS_REG_READ(ah, i));
1164         }
1165 
1166         for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1167             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1168                 i, OS_REG_READ(ah, i));
1169         }
1170 
1171         for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1172             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1173                 i, OS_REG_READ(ah, i));
1174         }
1175 
1176         for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1177             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1178                 i, OS_REG_READ(ah, i));
1179         }
1180 
1181         for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1182             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1183                 i, OS_REG_READ(ah, i));
1184         }
1185 
1186         for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1187             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1188                 i, OS_REG_READ(ah, i));
1189         }
1190 
1191         for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1192             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1193                 i, OS_REG_READ(ah, i));
1194         }
1195 
1196         for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1197             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1198                 i, OS_REG_READ(ah, i));
1199         }
1200 
1201         for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1202             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1203                 i, OS_REG_READ(ah, i));
1204         }
1205 
1206         for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1207             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1208                 i, OS_REG_READ(ah, i));
1209         }
1210     }
1211 }
1212 #endif
1213 
1214 HAL_BOOL
1215 ar9300_get_diag_state(struct ath_hal *ah, int request,
1216         const void *args, u_int32_t argsize,
1217         void **result, u_int32_t *resultsize)
1218 {
1219     struct ath_hal_9300 *ahp = AH9300(ah);
1220     struct ar9300_ani_state *ani;
1221 
1222     (void) ahp;
1223     if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1224         return AH_TRUE;
1225     }
1226     switch (request) {
1227 #ifdef AH_PRIVATE_DIAG
1228     case HAL_DIAG_EEPROM:
1229         *result = &ahp->ah_eeprom;
1230         *resultsize = sizeof(ar9300_eeprom_t);
1231         return AH_TRUE;
1232 
1233 #if 0   /* XXX - TODO */
1234     case HAL_DIAG_EEPROM_EXP_11A:
1235     case HAL_DIAG_EEPROM_EXP_11B:
1236     case HAL_DIAG_EEPROM_EXP_11G:
1237         pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1238         *result = pe->p_channels;
1239         *resultsize = (*result == AH_NULL) ? 0 :
1240             roundup(sizeof(u_int16_t) * pe->num_channels,
1241             sizeof(u_int32_t)) +
1242                 sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1243         return AH_TRUE;
1244 #endif
1245     case HAL_DIAG_RFGAIN:
1246         *result = &ahp->ah_gain_values;
1247         *resultsize = sizeof(GAIN_VALUES);
1248         return AH_TRUE;
1249     case HAL_DIAG_RFGAIN_CURSTEP:
1250         *result = (void *) ahp->ah_gain_values.curr_step;
1251         *resultsize = (*result == AH_NULL) ?
1252                 0 : sizeof(GAIN_OPTIMIZATION_STEP);
1253         return AH_TRUE;
1254 #if 0   /* XXX - TODO */
1255     case HAL_DIAG_PCDAC:
1256         *result = ahp->ah_pcdac_table;
1257         *resultsize = ahp->ah_pcdac_table_size;
1258         return AH_TRUE;
1259 #endif
1260     case HAL_DIAG_ANI_CURRENT:
1261 
1262         ani = ar9300_ani_get_current_state(ah);
1263         if (ani == AH_NULL)
1264             return AH_FALSE;
1265         /* Convert ar9300 HAL to FreeBSD HAL ANI state */
1266         /* XXX TODO: add all of these to the HAL ANI state structure */
1267         bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state));
1268         /* XXX should this be OFDM or CCK noise immunity level? */
1269         ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level;
1270         ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level;
1271         ahp->ext_ani_state.firstepLevel = ani->firstep_level;
1272         ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off;
1273         /* mrc_cck_off */
1274         /* cck_noise_immunity_level */
1275 
1276         ahp->ext_ani_state.listenTime = ani->listen_time;
1277 
1278         *result = &ahp->ext_ani_state;
1279         *resultsize = sizeof(ahp->ext_ani_state);
1280 #if 0
1281         *result = ar9300_ani_get_current_state(ah);
1282         *resultsize = (*result == AH_NULL) ?
1283             0 : sizeof(struct ar9300_ani_state);
1284 #endif
1285         return AH_TRUE;
1286     case HAL_DIAG_ANI_STATS:
1287         *result = ar9300_ani_get_current_stats(ah);
1288         *resultsize = (*result == AH_NULL) ?
1289             0 : sizeof(HAL_ANI_STATS);
1290         return AH_TRUE;
1291     case HAL_DIAG_ANI_CMD:
1292         if (argsize != 2*sizeof(u_int32_t)) {
1293             return AH_FALSE;
1294         }
1295         ar9300_ani_control(
1296             ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1297         return AH_TRUE;
1298 #if 0
1299     case HAL_DIAG_TXCONT:
1300         /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1301         return AH_TRUE;
1302 #endif /* 0 */
1303 #endif /* AH_PRIVATE_DIAG */
1304     case HAL_DIAG_CHANNELS:
1305 #if 0
1306         *result = &(ahp->ah_priv.ah_channels[0]);
1307         *resultsize =
1308             sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1309 #endif
1310         return AH_TRUE;
1311 #ifdef AH_DEBUG
1312     case HAL_DIAG_PRINT_REG:
1313         ar9300_print_reg(ah, *((const u_int32_t *)args));
1314         return AH_TRUE;
1315 #endif
1316     default:
1317         break;
1318     }
1319 
1320     return AH_FALSE;
1321 }
1322 
1323 void
1324 ar9300_dma_reg_dump(struct ath_hal *ah)
1325 {
1326 #ifdef AH_DEBUG
1327 #define NUM_DMA_DEBUG_REGS  8
1328 #define NUM_QUEUES          10
1329 
1330     u_int32_t val[NUM_DMA_DEBUG_REGS];
1331     int       qcu_offset = 0, dcu_offset = 0;
1332     u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1333     int       i, j, k;
1334     int16_t nfarray[HAL_NUM_NF_READINGS];
1335 #ifdef	ATH_NF_PER_CHAN
1336     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1337 #endif	/* ATH_NF_PER_CHAN */
1338     HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1339 
1340      /* selecting DMA OBS 8 */
1341     OS_REG_WRITE(ah, AR_MACMISC,
1342         ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1343          (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1344 
1345     ath_hal_printf(ah, "Raw DMA Debug values:\n");
1346     for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1347         if (i % 4 == 0) {
1348             ath_hal_printf(ah, "\n");
1349         }
1350 
1351         val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1352         ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1353     }
1354 
1355     ath_hal_printf(ah, "\n\n");
1356     ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1357 
1358     for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1359         if (i == 8) {
1360             /* only 8 QCU entries in val[0] */
1361             qcu_offset = 0;
1362             qcu_base++;
1363         }
1364 
1365         if (i == 6) {
1366             /* only 6 DCU entries in val[4] */
1367             dcu_offset = 0;
1368             dcu_base++;
1369         }
1370 
1371         ath_hal_printf(ah,
1372             "%2d          %2x      %1x     %2x           %2x\n",
1373             i,
1374             (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1375             (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1376             val[2] & (0x7 << (i * 3)) >> (i * 3),
1377             (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1378     }
1379 
1380     ath_hal_printf(ah, "\n");
1381     ath_hal_printf(ah,
1382         "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1383         (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1384     ath_hal_printf(ah,
1385         "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1386         (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1387     ath_hal_printf(ah,
1388         "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1389         (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1390     ath_hal_printf(ah,
1391         "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1392         (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1393     ath_hal_printf(ah,
1394         "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1395         (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1396     ath_hal_printf(ah,
1397         "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1398         (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1399     ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1400     ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1401 
1402     ar9300_upload_noise_floor(ah, 1, nfarray);
1403     ath_hal_printf(ah, "2G:\n");
1404     ath_hal_printf(ah, "Min CCA Out:\n");
1405     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1406     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1407                    nfarray[0], nfarray[1], nfarray[2]);
1408     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1409                    nfarray[3], nfarray[4], nfarray[5]);
1410 
1411     ar9300_upload_noise_floor(ah, 0, nfarray);
1412     ath_hal_printf(ah, "5G:\n");
1413     ath_hal_printf(ah, "Min CCA Out:\n");
1414     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1415     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1416                    nfarray[0], nfarray[1], nfarray[2]);
1417     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1418                    nfarray[3], nfarray[4], nfarray[5]);
1419 
1420     for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1421         ath_hal_printf(ah, "%s Chain %d NF History:\n",
1422                        ((i < 3) ? "Control " : "Extension "), i%3);
1423         for (j = 0, k = h->base.curr_index;
1424              j < HAL_NF_CAL_HIST_LEN_FULL;
1425              j++, k++) {
1426             ath_hal_printf(ah, "Element %d: %d\n",
1427                 j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1428         }
1429         ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1430     }
1431 
1432     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1433     ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1434                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1435                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1436     reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1437     ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1438                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1439                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1440     ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1441                    MS(reg, AR_PHY_DESIRED_SZ_ADC),
1442                    MS(reg, AR_PHY_DESIRED_SZ_ADC));
1443     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1444     ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1445                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1446                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1447     reg = OS_REG_READ(ah, AR_PHY_AGC);
1448     ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1449                    MS(reg, AR_PHY_AGC_COARSE_HIGH),
1450                    MS(reg, AR_PHY_AGC_COARSE_HIGH));
1451     ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1452                    MS(reg, AR_PHY_AGC_COARSE_LOW),
1453                    MS(reg, AR_PHY_AGC_COARSE_LOW));
1454     ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1455                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1456                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1457     reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1458     ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1459                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1460     ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1461                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1462                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1463     ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1464                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1465                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1466     reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1467     ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1468                    MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1469     ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1470                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1471                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1472 
1473 
1474     /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1475     reg = OS_REG_READ(ah, 0xa360);
1476     reg &= ~0x00800000;
1477     OS_REG_WRITE(ah, 0xa360, reg);
1478 
1479     /* Step 2a: Set register 0xa364 to 0x1000 */
1480     reg = 0x1000;
1481     OS_REG_WRITE(ah, 0xa364, reg);
1482 
1483     /* Step 3a: Read bits 17:0 of register 0x9c20 */
1484     reg = OS_REG_READ(ah, 0x9c20);
1485     reg &= 0x0003ffff;
1486     ath_hal_printf(ah,
1487         "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1488         __func__, reg);
1489 
1490     /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1491     reg = OS_REG_READ(ah, 0xa360);
1492     reg &= ~0x00800000;
1493     OS_REG_WRITE(ah, 0xa360, reg);
1494 
1495     /* Step 2b: Set register 0xa364 to 0x1400 */
1496     reg = 0x1400;
1497     OS_REG_WRITE(ah, 0xa364, reg);
1498 
1499     /* Step 3b: Read bits 17:0 of register 0x9c20 */
1500     reg = OS_REG_READ(ah, 0x9c20);
1501     reg &= 0x0003ffff;
1502     ath_hal_printf(ah,
1503         "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1504         __func__, reg);
1505 
1506     /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1507     reg = OS_REG_READ(ah, 0xa360);
1508     reg &= ~0x00800000;
1509     OS_REG_WRITE(ah, 0xa360, reg);
1510 
1511     /* Step 2c: Set register 0xa364 to 0x3C00 */
1512     reg = 0x3c00;
1513     OS_REG_WRITE(ah, 0xa364, reg);
1514 
1515     /* Step 3c: Read bits 17:0 of register 0x9c20 */
1516     reg = OS_REG_READ(ah, 0x9c20);
1517     reg &= 0x0003ffff;
1518     ath_hal_printf(ah,
1519         "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1520         __func__, reg);
1521 
1522     /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1523     reg = OS_REG_READ(ah, 0xa360);
1524     reg &= ~0x001040000;
1525     OS_REG_WRITE(ah, 0xa360, reg);
1526 
1527     /* Step 2d: Set register 0xa364 to 0x5005D */
1528     reg = 0x5005D;
1529     OS_REG_WRITE(ah, 0xa364, reg);
1530 
1531     /* Step 3d: Read bits 17:0 of register 0xa368 */
1532     reg = OS_REG_READ(ah, 0xa368);
1533     reg &= 0x0003ffff;
1534     ath_hal_printf(ah,
1535         "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1536         __func__, reg);
1537 
1538     /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1539     reg = OS_REG_READ(ah, 0xa360);
1540     reg &= ~0x001040000;
1541     OS_REG_WRITE(ah, 0xa360, reg);
1542 
1543     /* Step 2e: Set register 0xa364 to 0x7005D */
1544     reg = 0x7005D;
1545     OS_REG_WRITE(ah, 0xa364, reg);
1546 
1547     /* Step 3e: Read bits 17:0 of register 0xa368 */
1548     reg = OS_REG_READ(ah, 0xa368);
1549     reg &= 0x0003ffff;
1550     ath_hal_printf(ah,
1551         "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1552        __func__, reg);
1553 
1554     /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1555     reg = OS_REG_READ(ah, 0xa360);
1556     reg &= ~0x001000000;
1557     reg |= 0x40000;
1558     OS_REG_WRITE(ah, 0xa360, reg);
1559 
1560     /* Step 2f: Set register 0xa364 to 0x3005D */
1561     reg = 0x3005D;
1562     OS_REG_WRITE(ah, 0xa364, reg);
1563 
1564     /* Step 3f: Read bits 17:0 of register 0xa368 */
1565     reg = OS_REG_READ(ah, 0xa368);
1566     reg &= 0x0003ffff;
1567     ath_hal_printf(ah,
1568         "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1569         __func__, reg);
1570 
1571     /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1572     reg = OS_REG_READ(ah, 0xa360);
1573     reg &= ~0x001000000;
1574     reg |= 0x40000;
1575     OS_REG_WRITE(ah, 0xa360, reg);
1576 
1577     /* Step 2g: Set register 0xa364 to 0x6005D */
1578     reg = 0x6005D;
1579     OS_REG_WRITE(ah, 0xa364, reg);
1580 
1581     /* Step 3g: Read bits 17:0 of register 0xa368 */
1582     reg = OS_REG_READ(ah, 0xa368);
1583     reg &= 0x0003ffff;
1584     ath_hal_printf(ah,
1585         "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1586         __func__, reg);
1587 #endif /* AH_DEBUG */
1588 }
1589 
1590 /*
1591  * Return the busy for rx_frame, rx_clear, and tx_frame
1592  */
1593 u_int32_t
1594 ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1595     u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1596 {
1597     struct ath_hal_9300 *ahp = AH9300(ah);
1598     u_int32_t good = 1;
1599 
1600     u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1601     u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1602     u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1603     u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1604 
1605     if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1606         /*
1607          * Cycle counter wrap (or initial call); it's not possible
1608          * to accurately calculate a value because the registers
1609          * right shift rather than wrap--so punt and return 0.
1610          */
1611         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1612             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1613         good = 0;
1614     } else {
1615         u_int32_t cc_d = cc - ahp->ah_cycles;
1616         u_int32_t rc_d = rc - ahp->ah_rx_clear;
1617         u_int32_t rf_d = rf - ahp->ah_rx_frame;
1618         u_int32_t tf_d = tf - ahp->ah_tx_frame;
1619 
1620         if (cc_d != 0) {
1621             *rxc_pcnt = rc_d * 100 / cc_d;
1622             *rxf_pcnt = rf_d * 100 / cc_d;
1623             *txf_pcnt = tf_d * 100 / cc_d;
1624         } else {
1625             good = 0;
1626         }
1627     }
1628 
1629     ahp->ah_cycles = cc;
1630     ahp->ah_rx_frame = rf;
1631     ahp->ah_rx_clear = rc;
1632     ahp->ah_tx_frame = tf;
1633 
1634     return good;
1635 }
1636 
1637 /*
1638  * Return approximation of extension channel busy over an time interval
1639  * 0% (clear) -> 100% (busy)
1640  * -1 for invalid estimate
1641  */
1642 uint32_t
1643 ar9300_get_11n_ext_busy(struct ath_hal *ah)
1644 {
1645     /*
1646      * Overflow condition to check before multiplying to get %
1647      * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1648      */
1649 #define OVERFLOW_LIMIT  0x28F5C28
1650 #define ERROR_CODE      -1
1651 
1652     struct ath_hal_9300 *ahp = AH9300(ah);
1653     u_int32_t busy = 0; /* percentage */
1654     int8_t busyper = 0;
1655     u_int32_t cycle_count, ctl_busy, ext_busy;
1656 
1657     /* cycle_count will always be the first to wrap; therefore, read it last
1658      * This sequence of reads is not atomic, and MIB counter wrap
1659      * could happen during it ?
1660      */
1661     ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1662     ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1663     cycle_count = OS_REG_READ(ah, AR_CCCNT);
1664 
1665     if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1666         (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1667     {
1668         /*
1669          * Cycle counter wrap (or initial call); it's not possible
1670          * to accurately calculate a value because the registers
1671          * right shift rather than wrap--so punt and return 0.
1672          */
1673         busyper = ERROR_CODE;
1674         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1675             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1676     } else {
1677         u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1678         u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1679 
1680         /*
1681          * Compute extension channel busy percentage
1682          * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1683          * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1684          * Will never happen, since (ext_busy_delta < cycle_delta) always,
1685          * and shift necessitated by large ext_busy_delta.
1686          * Due to timing difference to read the registers and counter overflow,
1687          * it may still happen that cycle_delta >> 7 = 0.
1688          *
1689          */
1690         if (cycle_delta) {
1691             if (ext_busy_delta > OVERFLOW_LIMIT) {
1692                 if (cycle_delta >> 7) {
1693                     busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1694                 } else {
1695                     busyper = ERROR_CODE;
1696                 }
1697             } else {
1698                 busy = (ext_busy_delta * 100) / cycle_delta;
1699             }
1700         } else {
1701             busyper = ERROR_CODE;
1702         }
1703 
1704         if (busy > 100) {
1705             busy = 100;
1706         }
1707         if ( busyper != ERROR_CODE ) {
1708             busyper = busy;
1709         }
1710     }
1711 
1712     ahp->ah_cycle_count = cycle_count;
1713     ahp->ah_ctl_busy = ctl_busy;
1714     ahp->ah_ext_busy = ext_busy;
1715 
1716     return busyper;
1717 #undef OVERFLOW_LIMIT
1718 #undef ERROR_CODE
1719 }
1720 
1721 /* BB Panic Watchdog declarations */
1722 #define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1723 #define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1724 
1725 void
1726 ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1727 {
1728 #define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1729     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1730     u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1731     u_int32_t val, idle_count;
1732 
1733     if (idle_tmo_ms != 0) {
1734         /* enable IRQ, disable chip-reset for BB panic */
1735         val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1736             AR_PHY_BB_PANIC_CNTL2_MASK;
1737         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1738             (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1739         /* bound limit to 10 secs */
1740         if (idle_tmo_ms > 10000) {
1741             idle_tmo_ms = 10000;
1742         }
1743         if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1744             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1745         } else {
1746             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1747         }
1748         /*
1749          * enable panic in non-IDLE mode,
1750          * disable in IDLE mode,
1751          * set idle time-out
1752          */
1753 
1754         // EV92527 : Enable IDLE mode panic
1755 
1756         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1757                      AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1758                      AR_PHY_BB_PANIC_IDLE_ENABLE |
1759                      (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1760                      (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1761     } else {
1762         /* disable IRQ, disable chip-reset for BB panic */
1763         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1764             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1765             ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1766         /* disable panic in non-IDLE mode, disable in IDLE mode */
1767         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1768             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1769             ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1770     }
1771 
1772     HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1773              __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1774 #undef HAL_BB_PANIC_IDLE_TIME_OUT
1775 }
1776 
1777 
1778 void
1779 ar9300_handle_bb_panic(struct ath_hal *ah)
1780 {
1781     u_int32_t status;
1782     /*
1783      * we want to avoid printing in ISR context so we save
1784      * panic watchdog status to be printed later in DPC context
1785      */
1786     AH9300(ah)->ah_bb_panic_last_status = status =
1787         OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1788     /*
1789      * panic watchdog timer should reset on status read
1790      * but to make sure we write 0 to the watchdog status bit
1791      */
1792     OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1793 }
1794 
1795 int
1796 ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1797 {
1798     bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1799 
1800     /*
1801      * For signature 04000539 do not print anything.
1802      * This is a very common occurence as a compromise between
1803      * BB Panic and AH_FALSE detects (EV71009). It indicates
1804      * radar hang, which can be cleared by reprogramming
1805      * radar related register and does not requre a chip reset
1806      */
1807 
1808     /* Suppress BB Status mesg following signature */
1809     switch (bb_panic->status) {
1810         case 0x04000539:
1811         case 0x04008009:
1812         case 0x04000b09:
1813         case 0x1300000a:
1814         return -1;
1815     }
1816 
1817     bb_panic->tsf = ar9300_get_tsf32(ah);
1818     bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1819     bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1820     bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1821     bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1822     bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1823     bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1824     bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1825     bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1826     bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1827     bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1828     bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1829     bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1830     bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1831     bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1832                                         &bb_panic->rxc_pcnt,
1833                                         &bb_panic->rxf_pcnt,
1834                                         &bb_panic->txf_pcnt);
1835 
1836     if (ah->ah_config.ath_hal_show_bb_panic) {
1837         ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1838             "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1839         ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1840             "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1841             bb_panic->wd, bb_panic->det, bb_panic->rdar,
1842             bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1843             bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1844         ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1845             bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1846         ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1847             bb_panic->phy_gen_ctrl);
1848         if (bb_panic->cycles) {
1849             ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1850                 "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1851                 bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1852         }
1853         ath_hal_printf(ah, "==== BB update: done ====\n\n");
1854     }
1855 
1856     return 0; //The returned data will be stored for athstats to retrieve it
1857 }
1858 
1859 /* set the reason for HAL reset */
1860 void
1861 ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1862 {
1863     AH9300(ah)->ah_reset_reason = resetreason;
1864 }
1865 
1866 /*
1867  * Configure 20/40 operation
1868  *
1869  * 20/40 = joint rx clear (control and extension)
1870  * 20    = rx clear (control)
1871  *
1872  * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1873  *         when changing from 20/40 => 20 only
1874  */
1875 void
1876 ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1877 {
1878     u_int32_t macmode;
1879 
1880     /* Configure MAC for 20/40 operation */
1881     if (mode == HAL_HT_MACMODE_2040 &&
1882         !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1883         macmode = AR_2040_JOINED_RX_CLEAR;
1884     } else {
1885         macmode = 0;
1886     }
1887     OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1888 }
1889 
1890 /*
1891  * Get Rx clear (control/extension channel)
1892  *
1893  * Returns active low (busy) for ctrl/ext channel
1894  * Owl 2.0
1895  */
1896 HAL_HT_RXCLEAR
1897 ar9300_get_11n_rx_clear(struct ath_hal *ah)
1898 {
1899     HAL_HT_RXCLEAR rxclear = 0;
1900     u_int32_t val;
1901 
1902     val = OS_REG_READ(ah, AR_DIAG_SW);
1903 
1904     /* control channel */
1905     if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1906         rxclear |= HAL_RX_CLEAR_CTL_LOW;
1907     }
1908     /* extension channel */
1909     if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1910         rxclear |= HAL_RX_CLEAR_EXT_LOW;
1911     }
1912     return rxclear;
1913 }
1914 
1915 /*
1916  * Set Rx clear (control/extension channel)
1917  *
1918  * Useful for forcing the channel to appear busy for
1919  * debugging/diagnostics
1920  * Owl 2.0
1921  */
1922 void
1923 ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1924 {
1925     /* control channel */
1926     if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1927         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1928     } else {
1929         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1930     }
1931     /* extension channel */
1932     if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1933         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1934     } else {
1935         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1936     }
1937 }
1938 
1939 
1940 /*
1941  * HAL support code for force ppm tracking workaround.
1942  */
1943 
1944 u_int32_t
1945 ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1946 {
1947     u_int32_t retval;
1948     u_int32_t off1;
1949     u_int32_t off2;
1950 
1951     if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1952         off1 = 0x2000;
1953         off2 = 0x1000;
1954     } else {
1955         off1 = 0x1000;
1956         off2 = 0x2000;
1957     }
1958 
1959     retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1960              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1961              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1962 
1963     return retval;
1964 }
1965 
1966 u_int32_t
1967 ar9300_ppm_force(struct ath_hal *ah)
1968 {
1969     u_int32_t data_fine;
1970     u_int32_t data4;
1971     //u_int32_t off1;
1972     //u_int32_t off2;
1973     HAL_BOOL signed_val = AH_FALSE;
1974 
1975 //    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1976 //        off1 = 0x2000;
1977 //        off2 = 0x1000;
1978 //    } else {
1979 //        off1 = 0x1000;
1980 //        off2 = 0x2000;
1981 //    }
1982     data_fine =
1983         AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1984         OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1985 
1986     /*
1987      * bit [11-0] is new ppm value. bit 11 is the signed bit.
1988      * So check value from bit[10:0].
1989      * Now get the abs val of the ppm value read in bit[0:11].
1990      * After that do bound check on abs value.
1991      * if value is off limit, CAP the value and and restore signed bit.
1992      */
1993     if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1994     {
1995         /* get the positive value */
1996         data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1997         signed_val = AH_TRUE;
1998     }
1999     if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
2000     {
2001         HALDEBUG(ah, HAL_DEBUG_REGIO,
2002             "%s Correcting ppm out of range %x\n",
2003             __func__, (data_fine & 0x7ff));
2004         data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
2005     }
2006     /*
2007      * Restore signed value if changed above.
2008      * Use typecast to avoid compilation errors
2009      */
2010     if (signed_val) {
2011         data_fine = (-(int32_t)data_fine) &
2012             AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
2013     }
2014 
2015     /* write value */
2016     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
2017         ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2018     OS_REG_WRITE(ah, AR_PHY_TIMING2,
2019         data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
2020 
2021     return data_fine;
2022 }
2023 
2024 void
2025 ar9300_ppm_un_force(struct ath_hal *ah)
2026 {
2027     u_int32_t data4;
2028 
2029     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
2030     OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
2031 }
2032 
2033 u_int32_t
2034 ar9300_ppm_arm_trigger(struct ath_hal *ah)
2035 {
2036     u_int32_t val;
2037     u_int32_t ret;
2038 
2039     val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
2040     ret = OS_REG_READ(ah, AR_TSF_L32);
2041     OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
2042         val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
2043 
2044     /* return low word of TSF at arm time */
2045     return ret;
2046 }
2047 
2048 int
2049 ar9300_ppm_get_trigger(struct ath_hal *ah)
2050 {
2051     if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
2052         AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
2053     {
2054         /* has not triggered yet, return AH_FALSE */
2055         return 0;
2056     }
2057 
2058     /* else triggered, return AH_TRUE */
2059     return 1;
2060 }
2061 
2062 void
2063 ar9300_mark_phy_inactive(struct ath_hal *ah)
2064 {
2065     OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2066 }
2067 
2068 /* DEBUG */
2069 u_int32_t
2070 ar9300_ppm_get_force_state(struct ath_hal *ah)
2071 {
2072     return
2073         OS_REG_READ(ah, AR_PHY_TIMING2) &
2074         (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2075 }
2076 
2077 /*
2078  * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
2079  */
2080 HAL_BOOL
2081 ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
2082 {
2083     /*
2084      * XXX FreeBSD todo: reimplement this
2085      */
2086 #if 0
2087     p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2088     p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2089     p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2090     p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2091     p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
2092                            p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
2093     p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
2094                            p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
2095 #endif
2096     return AH_FALSE;
2097 }
2098 
2099 void
2100 ar9300_clear_mib_counters(struct ath_hal *ah)
2101 {
2102     u_int32_t reg_val;
2103 
2104     reg_val = OS_REG_READ(ah, AR_MIBC);
2105     OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
2106     OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
2107 }
2108 
2109 
2110 /* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2111 HAL_BOOL
2112 ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2113 {
2114     struct ath_hal_9300 *ahp = AH9300(ah);
2115     HAL_CHANNEL_INTERNAL *ichan =
2116       ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2117     HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2118     u_int32_t tmp = 0;
2119 
2120     if (enable) {
2121         if (ahp->ah_rifs_enabled == AH_TRUE) {
2122             return AH_TRUE;
2123         }
2124 
2125         OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2126         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2127                      ahp->ah_rifs_reg[1]);
2128 
2129         ahp->ah_rifs_enabled = AH_TRUE;
2130         OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2131     } else {
2132         if (ahp->ah_rifs_enabled == AH_TRUE) {
2133             ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2134                                               AR_PHY_SEARCH_START_DELAY);
2135             ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2136         }
2137         /* Change rifs init delay to 0 */
2138         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2139                      (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2140         tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2141         if (is_chan_2g) {
2142             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2143                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2144             } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2145                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2146             }
2147         } else {
2148             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2149                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2150             } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2151                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2152             }
2153         }
2154 
2155         ahp->ah_rifs_enabled = AH_FALSE;
2156     }
2157     return AH_TRUE;
2158 
2159 } /* ar9300_set_rifs_delay () */
2160 
2161 /* Set the current RIFS Rx setting */
2162 HAL_BOOL
2163 ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2164 {
2165     /* Non-Owl 11n chips */
2166     if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2167         if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2168             return ar9300_set_rifs_delay(ah, enable);
2169         }
2170         return AH_FALSE;
2171     }
2172 
2173     return AH_TRUE;
2174 } /* ar9300_set_11n_rx_rifs () */
2175 
2176 static hal_mac_hangs_t
2177 ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2178   hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2179 {
2180     int i = 0;
2181     hal_mac_hangs_t found_hangs = 0;
2182 
2183     if (hangs & dcu_chain_state) {
2184         for (i = 0; i < 6; i++) {
2185             if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2186                  hang_check.dcu_chain_state)
2187             {
2188                 found_hangs |= dcu_chain_state;
2189                 *dcu_chain = i;
2190             }
2191         }
2192         for (i = 0; i < 4; i++) {
2193             if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2194                   hang_check.dcu_chain_state)
2195             {
2196                 found_hangs |= dcu_chain_state;
2197                 *dcu_chain = i + 6;
2198             }
2199         }
2200     }
2201 
2202     if (hangs & dcu_complete_state) {
2203         if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2204             found_hangs |= dcu_complete_state;
2205         }
2206     }
2207 
2208     return found_hangs;
2209 
2210 } /* end - ar9300_compare_dbg_hang */
2211 
2212 #define NUM_STATUS_READS 50
2213 HAL_BOOL
2214 ar9300_detect_mac_hang(struct ath_hal *ah)
2215 {
2216     struct ath_hal_9300 *ahp = AH9300(ah);
2217     mac_dbg_regs_t mac_dbg;
2218     hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2219     hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2220     int i = 0;
2221     u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2222 
2223     if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2224         return AH_FALSE;
2225     }
2226 
2227     OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2228 
2229     mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2230     mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2231     mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2232 
2233     HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2234             mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2235             mac_dbg.dma_dbg_6);
2236 
2237     if (hang_sig1 !=
2238             ar9300_compare_dbg_hang(ah, mac_dbg,
2239                  hang_sig1_val, hang_sig1, &dcu_chain))
2240     {
2241         HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2242         return AH_FALSE;
2243     }
2244 
2245     shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2246     shift_val *= 5;
2247 
2248     for (i = 1; i <= NUM_STATUS_READS; i++) {
2249         if (dcu_chain < 6) {
2250             mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2251             current_dcu_chain_state =
2252                      ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2253         } else {
2254             mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2255             current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2256         }
2257         mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2258 
2259         if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2260             || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2261             return AH_FALSE;
2262         }
2263     }
2264     HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2265              ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2266     ahp->ah_hang[MAC_HANG_SIG1]++;
2267     return AH_TRUE;
2268 
2269 } /* end - ar9300_detect_mac_hang */
2270 
2271 /* Determine if the baseband is hung by reading the Observation Bus Register */
2272 HAL_BOOL
2273 ar9300_detect_bb_hang(struct ath_hal *ah)
2274 {
2275 #define N(a) (sizeof(a) / sizeof(a[0]))
2276     struct ath_hal_9300 *ahp = AH9300(ah);
2277     u_int32_t hang_sig = 0;
2278     int i = 0;
2279     /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2280      *
2281      * 4 known BB hang signatures -
2282      * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2283      * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2284      * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2285      * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2286      *     Rx State (bits 20-24) is 0x7.
2287      */
2288     hal_hw_hang_check_t hang_list [] =
2289     {
2290      /* Offset        Reg Value   Reg Mask    Hang Offset */
2291        {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2292        {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2293        {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2294        {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2295     };
2296 
2297     if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2298                                HAL_DFS_BB_HANG_WAR |
2299                                HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2300         return AH_FALSE;
2301     }
2302 
2303     hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2304     for (i = 1; i <= NUM_STATUS_READS; i++) {
2305         if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2306             return AH_FALSE;
2307         }
2308     }
2309 
2310     for (i = 0; i < N(hang_list); i++) {
2311         if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2312             ahp->ah_hang[hang_list[i].hang_offset]++;
2313             HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2314                      "sig3count=%d sig4count=%d\n", __func__,
2315                      ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2316                      ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2317             return AH_TRUE;
2318         }
2319     }
2320 
2321     HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2322                               "<0x806c>=0x%x\n", __func__, hang_sig);
2323 
2324     return AH_FALSE;
2325 
2326 #undef N
2327 } /* end - ar9300_detect_bb_hang () */
2328 
2329 #undef NUM_STATUS_READS
2330 
2331 HAL_STATUS
2332 ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2333 {
2334     struct ath_hal_9300     *ahp = AH9300(ah);
2335     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2336     HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2337     const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2338     u_int16_t               ant_config;
2339     u_int32_t               hal_num_ant_config;
2340 
2341     hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2342         p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2343 
2344     if (cfg < hal_num_ant_config) {
2345         if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2346             OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2347             return HAL_OK;
2348         }
2349     }
2350 
2351     return HAL_EINVAL;
2352 }
2353 
2354 /*
2355  * Functions to get/set DCS mode
2356  */
2357 void
2358 ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2359 {
2360     AH9300(ah)->ah_dcs_enable = mode;
2361 }
2362 
2363 u_int32_t
2364 ar9300_get_dcs_mode(struct ath_hal *ah)
2365 {
2366     return AH9300(ah)->ah_dcs_enable;
2367 }
2368 
2369 #if ATH_BT_COEX
2370 void
2371 ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2372 {
2373     struct ath_hal_9300 *ahp = AH9300(ah);
2374 
2375     ahp->ah_bt_module = btinfo->bt_module;
2376     ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2377     ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2378     ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2379     ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2380     ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2381     ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2382     ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2383 }
2384 
2385 void
2386 ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2387 {
2388     struct ath_hal_9300 *ahp = AH9300(ah);
2389     HAL_BOOL rx_clear_polarity;
2390 
2391     /*
2392      * For Kiwi and Osprey, the polarity of rx_clear is active high.
2393      * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2394      */
2395     rx_clear_polarity = !btconf->bt_rxclear_polarity;
2396 
2397     ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2398         SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2399         SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2400         SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2401         SM(btconf->bt_mode, AR_BT_MODE) |
2402         SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2403         SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2404         SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2405         SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2406 
2407     ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2408 
2409     if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2410         /* Enable ACK to go out even though BT has higher priority. */
2411         ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2412     }
2413 }
2414 
2415 void
2416 ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2417 {
2418     struct ath_hal_9300 *ahp = AH9300(ah);
2419 
2420     /* clear the old value, then set the new value */
2421     ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2422     ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2423 }
2424 
2425 void
2426 ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2427 {
2428     struct ath_hal_9300 *ahp = AH9300(ah);
2429 
2430     ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2431     ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2432     ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2433     ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2434 
2435     switch (stomp_type) {
2436     case HAL_BT_COEX_STOMP_ALL:
2437         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2438         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2439         break;
2440     case HAL_BT_COEX_STOMP_LOW:
2441         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2442         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2443         break;
2444     case HAL_BT_COEX_STOMP_ALL_FORCE:
2445         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2446         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2447         break;
2448     case HAL_BT_COEX_STOMP_LOW_FORCE:
2449         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2450         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2451         break;
2452     case HAL_BT_COEX_STOMP_NONE:
2453     case HAL_BT_COEX_NO_STOMP:
2454         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2455         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2456         break;
2457     default:
2458         /* There is a force_weight from registry */
2459         ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2460         ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2461         break;
2462     }
2463 }
2464 
2465 void
2466 ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2467 {
2468     struct ath_hal_9300 *ahp = AH9300(ah);
2469 
2470     /* clear the old value, then set the new value */
2471     ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2472     ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2473 }
2474 
2475 static void
2476 ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2477 {
2478     struct ath_hal_9300 *ahp = AH9300(ah);
2479 #if ATH_ANT_DIV_COMB
2480     //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2481     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2482 #endif
2483 
2484     HALDEBUG(ah, HAL_DEBUG_BT_COEX, "%s: called, value=%d\n", __func__, value);
2485 
2486     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2487     {
2488         if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2489         {
2490             /* Config antenna diversity */
2491 #if ATH_ANT_DIV_COMB
2492             ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2493 #endif
2494         }
2495     }
2496 }
2497 
2498 
2499 void
2500 ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2501     u_int32_t value)
2502 {
2503     struct ath_hal_9300 *ahp = AH9300(ah);
2504     struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2505 
2506     switch (type) {
2507         case HAL_BT_COEX_SET_ACK_PWR:
2508             if (value) {
2509                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2510             } else {
2511                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2512             }
2513             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2514                 ahpriv->ah_extraTxPow, 0);
2515             break;
2516 
2517         case HAL_BT_COEX_ANTENNA_DIVERSITY:
2518             if (AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
2519                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2520                 if (value) {
2521                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2522                 }
2523                 else {
2524                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2525                 }
2526                 ar9300_bt_coex_antenna_diversity(ah, value);
2527             }
2528             break;
2529         case HAL_BT_COEX_LOWER_TX_PWR:
2530             if (value) {
2531                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2532             }
2533             else {
2534                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2535             }
2536             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2537                                       ahpriv->ah_extraTxPow, 0);
2538             break;
2539 #if ATH_SUPPORT_MCI
2540         case HAL_BT_COEX_MCI_MAX_TX_PWR:
2541             if ((ah->ah_config.ath_hal_mci_config &
2542                  ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2543             {
2544                 if (value) {
2545                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2546                     ahp->ah_mci_concur_tx_en = AH_TRUE;
2547                 }
2548                 else {
2549                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2550                     ahp->ah_mci_concur_tx_en = AH_FALSE;
2551                 }
2552                 ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2553                                           ahpriv->ah_extraTxPow, 0);
2554             }
2555             HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2556                      ahp->ah_mci_concur_tx_en);
2557             break;
2558         case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2559             if (value) {
2560                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2561             }
2562             else {
2563                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2564             }
2565             break;
2566 #endif
2567         default:
2568             break;
2569     }
2570 }
2571 
2572 void
2573 ar9300_bt_coex_disable(struct ath_hal *ah)
2574 {
2575     struct ath_hal_9300 *ahp = AH9300(ah);
2576 
2577     /* Always drive rx_clear_external output as 0 */
2578     ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2579         HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2580 
2581     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2582         OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2583         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2584     }
2585 
2586     OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2587     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2588     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2589     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2590     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2591     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2592     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2593     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2594 
2595     ahp->ah_bt_coex_enabled = AH_FALSE;
2596 }
2597 
2598 int
2599 ar9300_bt_coex_enable(struct ath_hal *ah)
2600 {
2601     struct ath_hal_9300 *ahp = AH9300(ah);
2602 
2603     /* Program coex mode and weight registers to actually enable coex */
2604     OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2605     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2606     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2607     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2608     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2609     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2610     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2611     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2612 
2613     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2614         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2615     } else {
2616         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2617     }
2618 
2619     OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2620     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2621         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2622     } else {
2623         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2624     }
2625 
2626     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2627         /* For 3-wire, configure the desired GPIO port for rx_clear */
2628         ath_hal_gpioCfgOutput(ah,
2629             ahp->ah_wlan_active_gpio_select,
2630             HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2631     }
2632     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2633         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2634     {
2635         /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2636         ath_hal_gpioCfgOutput(ah,
2637             ahp->ah_wlan_active_gpio_select,
2638             HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2639     }
2640 
2641     /*
2642      * Enable a weak pull down on BT_ACTIVE.
2643      * When BT device is disabled, BT_ACTIVE might be floating.
2644      */
2645     OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2646         (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2647         (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2648 
2649     ahp->ah_bt_coex_enabled = AH_TRUE;
2650 
2651     return 0;
2652 }
2653 
2654 u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2655 {
2656     return 0;
2657 }
2658 
2659 u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2660 {
2661     return bOn;
2662 }
2663 
2664 void
2665 ar9300_init_bt_coex(struct ath_hal *ah)
2666 {
2667     struct ath_hal_9300 *ahp = AH9300(ah);
2668 
2669     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2670         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2671                    (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2672                     AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2673 
2674         /*
2675          * Set input mux for bt_prority_async and
2676          * bt_active_async to GPIO pins
2677          */
2678         OS_REG_RMW_FIELD(ah,
2679             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2680             AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2681             ahp->ah_bt_active_gpio_select);
2682         OS_REG_RMW_FIELD(ah,
2683             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2684             AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2685             ahp->ah_bt_priority_gpio_select);
2686 
2687         /* Configure the desired GPIO ports for input */
2688         ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2689         ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2690 
2691         if (ahp->ah_bt_coex_enabled) {
2692             ar9300_bt_coex_enable(ah);
2693         } else {
2694             ar9300_bt_coex_disable(ah);
2695         }
2696     }
2697     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2698         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2699     {
2700         /* 2-wire */
2701         if (ahp->ah_bt_coex_enabled) {
2702             /* Connect bt_active_async to baseband */
2703             OS_REG_CLR_BIT(ah,
2704                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2705                 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2706                  AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2707             OS_REG_SET_BIT(ah,
2708                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2709                 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2710 
2711             /*
2712              * Set input mux for bt_prority_async and
2713              * bt_active_async to GPIO pins
2714              */
2715             OS_REG_RMW_FIELD(ah,
2716                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2717                 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2718                 ahp->ah_bt_active_gpio_select);
2719 
2720             /* Configure the desired GPIO ports for input */
2721             ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2722 
2723             /* Enable coexistence on initialization */
2724             ar9300_bt_coex_enable(ah);
2725         }
2726     }
2727 #if ATH_SUPPORT_MCI
2728     else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2729         if (ahp->ah_bt_coex_enabled) {
2730             ar9300_mci_bt_coex_enable(ah);
2731         }
2732         else {
2733             ar9300_mci_bt_coex_disable(ah);
2734         }
2735     }
2736 #endif /* ATH_SUPPORT_MCI */
2737 }
2738 
2739 #endif /* ATH_BT_COEX */
2740 
2741 HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2742 {
2743     u_int32_t val;
2744     int wasp_mm_rev;
2745 
2746 #define AR_SOC_RST_REVISION_ID      0xB8060090
2747 #define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2748     wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2749             AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2750             AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2751 #undef AR_SOC_RST_REVISION_ID
2752 #undef REG_READ
2753 
2754     /*
2755      * Azimuth (ProxySTA) Mode is only supported correctly by
2756      * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2757      *
2758      * Enable this feature for Scorpion at this time. The silicon
2759      * still needs to be validated.
2760      */
2761     if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2762         !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2763         !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2764           ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2765            (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2766             wasp_mm_rev >= 0 /* 1 */))))
2767     {
2768         HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2769                 "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2770                 __func__, AH_PRIVATE((ah))->ah_macVersion,
2771                 AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2772         return HAL_ENOTSUPP;
2773     }
2774 
2775     OS_REG_WRITE(ah,
2776         AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2777 
2778     /* turn on mode bit[24] for proxy sta */
2779     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2780         OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2781 
2782     val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2783     if (enable) {
2784         val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2785                AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2786                AR_AZIMUTH_BA_USES_AD1;
2787         /* turn off filter pass hold (bit 9) */
2788         val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2789     } else {
2790         val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2791                  AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2792                  AR_AZIMUTH_BA_USES_AD1);
2793     }
2794     OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2795 
2796     /* enable promiscous mode */
2797     OS_REG_WRITE(ah, AR_RX_FILTER,
2798         OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2799     /* enable promiscous in azimuth mode */
2800     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2801     OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2802 
2803     /* turn on filter pass hold (bit 9) */
2804     OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2805         OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2806 
2807     return HAL_OK;
2808 }
2809 
2810 #if 0
2811 void ar9300_mat_enable(struct ath_hal *ah, int enable)
2812 {
2813     /*
2814      * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2815      * mitigation and turn on key search always for better performance.
2816      */
2817     struct ath_hal_9300 *ahp = AH9300(ah);
2818     struct ath_hal_private *ap = AH_PRIVATE(ah);
2819 
2820     ahp->ah_intr_mitigation_rx = !enable;
2821     if (ahp->ah_intr_mitigation_rx) {
2822         /*
2823          * Enable Interrupt Mitigation for Rx.
2824          * If no build-specific limits for the rx interrupt mitigation
2825          * timer have been specified, use conservative defaults.
2826          */
2827         #ifndef AH_RIMT_VAL_LAST
2828             #define AH_RIMT_LAST_MICROSEC 500
2829         #endif
2830         #ifndef AH_RIMT_VAL_FIRST
2831             #define AH_RIMT_FIRST_MICROSEC 2000
2832         #endif
2833         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2834         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2835     } else {
2836         OS_REG_WRITE(ah, AR_RIMT, 0);
2837     }
2838 
2839     ahp->ah_enable_keysearch_always = !!enable;
2840     ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2841 }
2842 #endif
2843 
2844 void ar9300_enable_tpc(struct ath_hal *ah)
2845 {
2846     u_int32_t val = 0;
2847 
2848     ah->ah_config.ath_hal_desc_tpc = 1;
2849 
2850     /* Enable TPC */
2851     OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2852 
2853     /*
2854      * Disable per chain power reduction since we are already
2855      * accounting for this in our calculations
2856      */
2857     val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2858     if (AR_SREV_WASP(ah)) {
2859         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2860                          val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2861     } else {
2862         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2863                          val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2864     }
2865 }
2866 
2867 
2868 /*
2869  * ar9300_force_tsf_sync
2870  * This function forces the TSF sync to the given bssid, this is implemented
2871  * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2872  * mode of operation, where we sync the TSF to RootAP TSF values
2873  */
2874 void
2875 ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2876     u_int16_t assoc_id)
2877 {
2878     ar9300_set_operating_mode(ah, HAL_M_STA);
2879     ar9300_write_associd(ah, bssid, assoc_id);
2880 }
2881 
2882 void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2883 {
2884     struct ath_hal_9300 *ahp = AH9300(ah);
2885     u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2886     u_int32_t           temp_powertx_rate9_reg_val;
2887     int8_t              olpc_power_offset = 0;
2888     int8_t              tmp_olpc_val = 0;
2889     HAL_RSSI_TX_POWER   old_greentx_status;
2890     u_int8_t            target_power_val_t[ar9300_rate_size];
2891     int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2892 
2893     if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2894         !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2895         return;
2896     }
2897 
2898     old_greentx_status = AH9300(ah)->green_tx_status;
2899     if (ahp->ah_hw_green_tx_enable) {
2900         tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2901         tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2902     } else {
2903         tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2904         tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2905     }
2906 
2907     if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2908         && (rssi > tmp_rss1_thr1))
2909     {
2910         if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2911             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2912         }
2913     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2914         && (rssi > tmp_rss1_thr2))
2915     {
2916         if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2917             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2918         }
2919     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2920         if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2921             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2922         }
2923     }
2924 
2925     /* If status is not change, don't do anything */
2926     if (old_greentx_status == AH9300(ah)->green_tx_status) {
2927         return;
2928     }
2929 
2930     /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2931     if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2932         && AR_SREV_POSEIDON(ah))
2933     {
2934         if (ahp->ah_hw_green_tx_enable) {
2935             switch (AH9300(ah)->green_tx_status) {
2936             case HAL_RSSI_TX_POWER_SHORT:
2937                 /* 1. TxPower Config */
2938                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2939                     sizeof(target_power_val_t));
2940                 /* 1.1 Store OLPC Delta Calibration Offset*/
2941                 olpc_power_offset = 0;
2942                 /* 2. Store OB/DB */
2943                 /* 3. Store TPC settting */
2944                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2945                                     SM(14, AR_TPC_CTS) |
2946                                     SM(14, AR_TPC_CHIRP) |
2947                                     SM(14, AR_TPC_RPT));
2948                 /* 4. Store BB_powertx_rate9 value */
2949                 temp_powertx_rate9_reg_val =
2950                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2951                 break;
2952             case HAL_RSSI_TX_POWER_MIDDLE:
2953                 /* 1. TxPower Config */
2954                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2955                     sizeof(target_power_val_t));
2956                 /* 1.1 Store OLPC Delta Calibration Offset*/
2957                 olpc_power_offset = 0;
2958                 /* 2. Store OB/DB */
2959                 /* 3. Store TPC settting */
2960                 temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2961                                     SM(18, AR_TPC_CTS) |
2962                                     SM(18, AR_TPC_CHIRP) |
2963                                     SM(18, AR_TPC_RPT));
2964                 /* 4. Store BB_powertx_rate9 value */
2965                 temp_powertx_rate9_reg_val =
2966                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2967                 break;
2968             case HAL_RSSI_TX_POWER_LONG:
2969             default:
2970                 /* 1. TxPower Config */
2971                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2972                     sizeof(target_power_val_t));
2973                 /* 1.1 Store OLPC Delta Calibration Offset*/
2974                 olpc_power_offset = 0;
2975                 /* 2. Store OB/DB1/DB2 */
2976                 /* 3. Store TPC settting */
2977                 temp_tcp_reg_val =
2978                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2979                 /* 4. Store BB_powertx_rate9 value */
2980                 temp_powertx_rate9_reg_val =
2981                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2982                 break;
2983             }
2984         } else {
2985             switch (AH9300(ah)->green_tx_status) {
2986             case HAL_RSSI_TX_POWER_SHORT:
2987                 /* 1. TxPower Config */
2988                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2989                     sizeof(target_power_val_t));
2990                 /* 1.1 Store OLPC Delta Calibration Offset*/
2991                 olpc_power_offset =
2992                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2993                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2994                 /* 2. Store OB/DB */
2995                 temp_obdb_reg_val =
2996                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2997                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2998                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2999                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3000                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3001                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3002                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3003                     AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3004                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3005                     AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3006                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3007                     AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3008                 /* 3. Store TPC settting */
3009                 temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
3010                                     SM(6, AR_TPC_CTS) |
3011                                     SM(6, AR_TPC_CHIRP) |
3012                                     SM(6, AR_TPC_RPT));
3013                 /* 4. Store BB_powertx_rate9 value */
3014                 temp_powertx_rate9_reg_val =
3015                     WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
3016                 break;
3017             case HAL_RSSI_TX_POWER_MIDDLE:
3018                 /* 1. TxPower Config */
3019                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
3020                     sizeof(target_power_val_t));
3021                 /* 1.1 Store OLPC Delta Calibration Offset*/
3022                 olpc_power_offset =
3023                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
3024                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3025                 /* 2. Store OB/DB */
3026                 temp_obdb_reg_val =
3027                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3028                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3029                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3030                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3031                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3032                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3033                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3034                         AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3035                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3036                         AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3037                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3038                         AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3039                 /* 3. Store TPC settting */
3040                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
3041                                     SM(14, AR_TPC_CTS) |
3042                                     SM(14, AR_TPC_CHIRP) |
3043                                     SM(14, AR_TPC_RPT));
3044                 /* 4. Store BB_powertx_rate9 value */
3045                 temp_powertx_rate9_reg_val =
3046                     WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
3047                 break;
3048             case HAL_RSSI_TX_POWER_LONG:
3049             default:
3050                 /* 1. TxPower Config */
3051                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3052                     sizeof(target_power_val_t));
3053                 /* 1.1 Store OLPC Delta Calibration Offset*/
3054                 olpc_power_offset =
3055                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
3056                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3057                 /* 2. Store OB/DB1/DB2 */
3058                 temp_obdb_reg_val =
3059                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3060                 /* 3. Store TPC settting */
3061                 temp_tcp_reg_val =
3062                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3063                 /* 4. Store BB_powertx_rate9 value */
3064                 temp_powertx_rate9_reg_val =
3065                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3066                 break;
3067             }
3068         }
3069         /* 1.1 Do OLPC Delta Calibration Offset */
3070         tmp_olpc_val =
3071             (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
3072         tmp_olpc_val += olpc_power_offset;
3073         OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
3074             (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
3075             AR_PHY_TPC_OLPC_GAIN_DELTA);
3076 
3077         /* 1.2 TxPower Config */
3078         ar9300_transmit_power_reg_write(ah, target_power_val_t);
3079         /* 2. Config OB/DB */
3080         if (!ahp->ah_hw_green_tx_enable) {
3081             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
3082         }
3083         /* 3. config TPC settting */
3084         OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
3085         /* 4. config BB_powertx_rate9 value */
3086         OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
3087     }
3088 }
3089 
3090 #if 0
3091 void
3092 ar9300_get_vow_stats(
3093     struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
3094 {
3095     if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
3096         p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
3097     }
3098     if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
3099         p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
3100     }
3101     if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
3102         p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
3103     }
3104     if (vow_reg_flags & AR_REG_CYCLE_CNT) {
3105         p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
3106     }
3107     if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
3108         p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
3109     }
3110 }
3111 #endif
3112 
3113 /*
3114  * ar9300_is_skip_paprd_by_greentx
3115  *
3116  * This function check if we need to skip PAPRD tuning
3117  * when GreenTx in specific state.
3118  */
3119 HAL_BOOL
3120 ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3121 {
3122     if (AR_SREV_POSEIDON(ah) &&
3123         ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3124         ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3125          (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3126     {
3127         return AH_TRUE;
3128     }
3129     return AH_FALSE;
3130 }
3131 
3132 void
3133 ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3134 {
3135     unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3136     unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3137     unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3138     unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3139     unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3140     struct ath_hal_9300 *ahp = AH9300(ah);
3141 
3142     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3143         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3144                              AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3145         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3146                              AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3147         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3148                              AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3149         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3150                              AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3151         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3152                              AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3153     }
3154 }
3155 
3156 void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3157 {
3158     struct ath_hal_9300 *ahp = AH9300(ah);
3159 
3160     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3161         if ((value == 0) || (value == 1)) {
3162             OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3163                              AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3164         }
3165     }
3166 }
3167 
3168 void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3169 {
3170     OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3171 }
3172 
3173 int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3174 {
3175     int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3176 
3177     /* RSSI format is 8.4.  Ignore lowest four bits */
3178     val = val >> 4;
3179     return val;
3180 }
3181 
3182 void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3183                                         u_int32_t rssi_threshold)
3184 {
3185     struct ath_hal_9300 *ahp = AH9300(ah);
3186 
3187     OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3188 
3189     /* save value for restoring after chip reset */
3190     ahp->ah_beacon_rssi_threshold = rssi_threshold;
3191 }
3192 
3193 void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3194 {
3195     OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3196 }
3197 
3198 void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3199 {
3200     if (on) {
3201         OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3202                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3203     }
3204     else {
3205         OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3206                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3207     }
3208 }
3209 /*
3210  * Gets the contents of the specified key cache entry.
3211  */
3212 HAL_BOOL
3213 ar9300_print_keycache(struct ath_hal *ah)
3214 {
3215 
3216     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3217     u_int32_t key0, key1, key2, key3, key4;
3218     u_int32_t mac_hi, mac_lo;
3219     u_int16_t entry = 0;
3220     u_int32_t valid = 0;
3221     u_int32_t key_type;
3222 
3223     ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3224 
3225     for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3226         key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3227         key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3228         key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3229         key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3230         key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3231 
3232         key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3233 
3234         mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3235         mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3236 
3237         if (mac_hi & AR_KEYTABLE_VALID) {
3238             valid = 1;
3239         } else {
3240             valid = 0;
3241         }
3242 
3243         if ((mac_hi != 0) && (mac_lo != 0)) {
3244             mac_hi &= ~0x8000;
3245             mac_hi <<= 1;
3246             mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3247             mac_lo <<= 1;
3248         }
3249 
3250         ath_hal_printf(ah,
3251             "%03d    "
3252             "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3253             "   %02d     %02d    "
3254             "%02x:%02x:%02x:%02x:%02x:%02x \n",
3255             entry,
3256             (key0 << 24) >> 24, (key0 << 16) >> 24,
3257             (key0 << 8) >> 24, key0 >> 24,
3258             (key1 << 24) >> 24, (key1 << 16) >> 24,
3259             //(key1 << 8) >> 24, key1 >> 24,
3260             (key2 << 24) >> 24, (key2 << 16) >> 24,
3261             (key2 << 8) >> 24, key2 >> 24,
3262             (key3 << 24) >> 24, (key3 << 16) >> 24,
3263             //(key3 << 8) >> 24, key3 >> 24,
3264             (key4 << 24) >> 24, (key4 << 16) >> 24,
3265             (key4 << 8) >> 24, key4 >> 24,
3266             valid, key_type,
3267             (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3268             (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3269     }
3270 
3271     return AH_TRUE;
3272 }
3273 
3274 /* enable/disable smart antenna mode */
3275 HAL_BOOL
3276 ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3277 {
3278     struct ath_hal_9300 *ahp = AH9300(ah);
3279 
3280     if (enable) {
3281         OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3282     } else {
3283         OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3284     }
3285 
3286     /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3287      * and swcom2 with 0
3288      * FIXME Ideally these registers need to be made read from caldata.
3289      * Until the calibration team gets them, keep them along with board
3290      * configuration.
3291      */
3292     if (enable && AR_SREV_SCORPION(ah) &&
3293            (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3294 
3295        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3296        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3297     }
3298 
3299     ahp->ah_smartantenna_enable = enable;
3300     return 1;
3301 }
3302 
3303 #ifdef ATH_TX99_DIAG
3304 #ifndef ATH_SUPPORT_HTC
3305 void
3306 ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3307     u_int32_t txpower)
3308 {
3309 #define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3310     static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3311     int32_t i;
3312 
3313     /* The max power is limited to 63 */
3314     if (txpower <= AR9300_MAX_RATE_POWER) {
3315         for (i = 0; i < ar9300_rate_size; i++) {
3316             p_pwr_array[i] = txpower;
3317         }
3318     } else {
3319         for (i = 0; i < ar9300_rate_size; i++) {
3320             p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3321         }
3322     }
3323 
3324     OS_REG_WRITE(ah, 0xa458, 0);
3325 
3326     /* Write the OFDM power per rate set */
3327     /* 6 (LSB), 9, 12, 18 (MSB) */
3328     OS_REG_WRITE(ah, 0xa3c0,
3329         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3330           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3331           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3332           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3333     );
3334     /* 24 (LSB), 36, 48, 54 (MSB) */
3335     OS_REG_WRITE(ah, 0xa3c4,
3336         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3337           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3338           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3339           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3340     );
3341 
3342     /* Write the CCK power per rate set */
3343     /* 1L (LSB), reserved, 2L, 2S (MSB) */
3344     OS_REG_WRITE(ah, 0xa3c8,
3345         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3346           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3347           /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3348           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3349     );
3350     /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3351     OS_REG_WRITE(ah, 0xa3cc,
3352         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3353           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3354           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3355           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3356     );
3357 
3358     /* Write the HT20 power per rate set */
3359     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3360     OS_REG_WRITE(ah, 0xa3d0,
3361         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3362           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3363           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3364           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3365     );
3366 
3367     /* 6 (LSB), 7, 12, 13 (MSB) */
3368     OS_REG_WRITE(ah, 0xa3d4,
3369         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3370           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3371           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3372           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3373     );
3374 
3375     /* 14 (LSB), 15, 20, 21 */
3376     OS_REG_WRITE(ah, 0xa3e4,
3377         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3378           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3379           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3380           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3381     );
3382 
3383     /* Mixed HT20 and HT40 rates */
3384     /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3385     OS_REG_WRITE(ah, 0xa3e8,
3386         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3387           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3388           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3389           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3390     );
3391 
3392     /* Write the HT40 power per rate set */
3393     /* correct PAR difference between HT40 and HT20/LEGACY */
3394     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3395     OS_REG_WRITE(ah, 0xa3d8,
3396         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3397           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3398           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3399           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3400     );
3401 
3402     /* 6 (LSB), 7, 12, 13 (MSB) */
3403     OS_REG_WRITE(ah, 0xa3dc,
3404         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3405           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3406           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3407           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3408     );
3409 
3410     /* 14 (LSB), 15, 20, 21 */
3411     OS_REG_WRITE(ah, 0xa3ec,
3412         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3413           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3414           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3415           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3416     );
3417 #undef PWR_MAS
3418 }
3419 
3420 void
3421 ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3422 {
3423     if (tx_chainmask == 0x5) {
3424         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3425             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3426     }
3427     OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3428     OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3429 
3430     OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3431     if (tx_chainmask == 0x5) {
3432         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3433             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3434     }
3435 }
3436 
3437 void
3438 ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3439     int chtype)
3440 {
3441     OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3442     OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3443     OS_REG_WRITE(ah, 0xa350,
3444         (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3445 
3446     /* 11G mode */
3447     if (!chtype) {
3448         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3449             OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3450         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3451             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3452                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3453             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3454                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3455                         | (0x1 << 26)  | (0x7 << 24))
3456                         & ~(0x1 << 22));
3457         } else {
3458             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3459                 OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3460             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3461                 (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3462                         | (0x1 << 26)  | (0x7 << 24))
3463                         & ~(0x1 << 22));
3464         }
3465 
3466         /* chain zero */
3467         if ((tx_chain_mask & 0x01) == 0x01) {
3468             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3469                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3470                       | (0x1 << 31) | (0x5 << 15)
3471                       | (0x3 << 9)) & ~(0x1 << 27)
3472                       & ~(0x1 << 12));
3473             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3474                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3475                       | (0x1 << 12) | (0x1 << 10)
3476                       | (0x1 << 9)  | (0x1 << 8)
3477                       | (0x1 << 7)) & ~(0x1 << 11));
3478             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3479                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3480                       | (0x1 << 29) | (0x1 << 25)
3481                       | (0x1 << 23) | (0x1 << 19)
3482                       | (0x1 << 10) | (0x1 << 9)
3483                       | (0x1 << 8)  | (0x1 << 3))
3484                       & ~(0x1 << 28)& ~(0x1 << 24)
3485                       & ~(0x1 << 22)& ~(0x1 << 7));
3486             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3487                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3488                       | (0x1 << 23))& ~(0x1 << 21));
3489             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3490                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3491                       | (0x1 << 12) | (0x1 << 10)
3492                       | (0x1 << 9)  | (0x1 << 8)
3493                       | (0x1 << 6)  | (0x1 << 5)
3494                       | (0x1 << 4)  | (0x1 << 3)
3495                       | (0x1 << 2));
3496             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3497                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3498         }
3499         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3500             /* chain one */
3501             if ((tx_chain_mask & 0x02) == 0x02 ) {
3502                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3503                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3504                           | (0x1 << 31) | (0x5 << 15)
3505                           | (0x3 << 9)) & ~(0x1 << 27)
3506                           & ~(0x1 << 12));
3507                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3508                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3509                           | (0x1 << 12) | (0x1 << 10)
3510                           | (0x1 << 9)  | (0x1 << 8)
3511                           | (0x1 << 7)) & ~(0x1 << 11));
3512                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3513                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3514                           | (0x1 << 29) | (0x1 << 25)
3515                           | (0x1 << 23) | (0x1 << 19)
3516                           | (0x1 << 10) | (0x1 << 9)
3517                           | (0x1 << 8)  | (0x1 << 3))
3518                           & ~(0x1 << 28)& ~(0x1 << 24)
3519                           & ~(0x1 << 22)& ~(0x1 << 7));
3520                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3521                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3522                           | (0x1 << 23))& ~(0x1 << 21));
3523                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3524                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3525                           | (0x1 << 12) | (0x1 << 10)
3526                           | (0x1 << 9)  | (0x1 << 8)
3527                           | (0x1 << 6)  | (0x1 << 5)
3528                           | (0x1 << 4)  | (0x1 << 3)
3529                           | (0x1 << 2));
3530                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3531                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3532             }
3533         }
3534         if (AR_SREV_OSPREY(ah)) {
3535             /* chain two */
3536             if ((tx_chain_mask & 0x04) == 0x04 ) {
3537                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3538                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3539                           | (0x1 << 31) | (0x5 << 15)
3540                           | (0x3 << 9)) & ~(0x1 << 27)
3541                           & ~(0x1 << 12));
3542                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3543                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3544                           | (0x1 << 12) | (0x1 << 10)
3545                           | (0x1 << 9)  | (0x1 << 8)
3546                           | (0x1 << 7)) & ~(0x1 << 11));
3547                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3548                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3549                           | (0x1 << 29) | (0x1 << 25)
3550                           | (0x1 << 23) | (0x1 << 19)
3551                           | (0x1 << 10) | (0x1 << 9)
3552                           | (0x1 << 8)  | (0x1 << 3))
3553                           & ~(0x1 << 28)& ~(0x1 << 24)
3554                           & ~(0x1 << 22)& ~(0x1 << 7));
3555                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3556                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3557                           | (0x1 << 23))& ~(0x1 << 21));
3558                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3559                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3560                           | (0x1 << 12) | (0x1 << 10)
3561                           | (0x1 << 9)  | (0x1 << 8)
3562                           | (0x1 << 6)  | (0x1 << 5)
3563                           | (0x1 << 4)  | (0x1 << 3)
3564                           | (0x1 << 2));
3565                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3566                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3567             }
3568         }
3569 
3570         OS_REG_WRITE(ah, 0xa28c, 0x11111);
3571         OS_REG_WRITE(ah, 0xa288, 0x111);
3572     } else {
3573         /* chain zero */
3574         if ((tx_chain_mask & 0x01) == 0x01) {
3575             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3576                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3577                       | (0x1 << 31) | (0x1 << 27)
3578                       | (0x3 << 23) | (0x1 << 19)
3579                       | (0x1 << 15) | (0x3 << 9))
3580                       & ~(0x1 << 12));
3581             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3582                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3583                       | (0x1 << 12) | (0x1 << 10)
3584                       | (0x1 << 9)  | (0x1 << 8)
3585                       | (0x1 << 7)  | (0x1 << 3)
3586                       | (0x1 << 2)  | (0x1 << 1))
3587                       & ~(0x1 << 11)& ~(0x1 << 0));
3588             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3589                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3590                       | (0x1 << 29) | (0x1 << 25)
3591                       | (0x1 << 23) | (0x1 << 19)
3592                       | (0x1 << 10) | (0x1 << 9)
3593                       | (0x1 << 8)  | (0x1 << 3))
3594                       & ~(0x1 << 28)& ~(0x1 << 24)
3595                       & ~(0x1 << 22)& ~(0x1 << 7));
3596             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3597                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3598                       | (0x1 << 23))& ~(0x1 << 21));
3599             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3600                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3601                       | (0x3 << 3)  | (0x3 << 0));
3602             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3603                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3604                       | (0x3 << 29) | (0x3 << 26)
3605                       | (0x2 << 23) | (0x2 << 20)
3606                       | (0x2 << 17))& ~(0x1 << 14));
3607             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3608                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3609                       | (0x1 << 12) | (0x1 << 10)
3610                       | (0x1 << 9)  | (0x1 << 8)
3611                       | (0x1 << 6)  | (0x1 << 5)
3612                       | (0x1 << 4)  | (0x1 << 3)
3613                       | (0x1 << 2));
3614             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3615                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3616             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3617                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3618                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3619                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3620                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3621                           | (0x1 << 26) | (0x7 << 24)
3622                           | (0x3 << 22));
3623             } else {
3624                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3625                     OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3626                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3627                     OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3628                           | (0x1 << 26) | (0x7 << 24)
3629                           | (0x3 << 22));
3630             }
3631 
3632             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3633                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3634                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3635                           | (0x1 << 3)  | (0x1 << 2)
3636                           | (0x1 << 1)) & ~(0x1 << 0));
3637                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3638                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3639                           | (0x1 << 19) | (0x1 << 3));
3640                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3641                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3642             }
3643             if (AR_SREV_OSPREY(ah)) {
3644                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3645                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3646                           | (0x1 << 3)  | (0x1 << 2)
3647                           | (0x1 << 1)) & ~(0x1 << 0));
3648                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3649                     OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3650                           | (0x1 << 19) | (0x1 << 3));
3651                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3652                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3653             }
3654         }
3655         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3656             /* chain one */
3657             if ((tx_chain_mask & 0x02) == 0x02 ) {
3658                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3659                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3660                           | (0x1 << 3)  | (0x1 << 2)
3661                           | (0x1 << 1)) & ~(0x1 << 0));
3662                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3663                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3664                           | (0x1 << 19) | (0x1 << 3));
3665                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3666                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3667                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3668                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3669                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3670                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3671                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3672                               | (0x1 << 26) | (0x7 << 24)
3673                               | (0x3 << 22));
3674                 } else {
3675                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3676                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3677                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3678                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3679                               | (0x1 << 26) | (0x7 << 24)
3680                               | (0x3 << 22));
3681                 }
3682 
3683                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3684                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3685                           | (0x1 << 31) | (0x1 << 27)
3686                           | (0x3 << 23) | (0x1 << 19)
3687                           | (0x1 << 15) | (0x3 << 9))
3688                           & ~(0x1 << 12));
3689                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3690                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3691                           | (0x1 << 12) | (0x1 << 10)
3692                           | (0x1 << 9)  | (0x1 << 8)
3693                           | (0x1 << 7)  | (0x1 << 3)
3694                           | (0x1 << 2)  | (0x1 << 1))
3695                           & ~(0x1 << 11)& ~(0x1 << 0));
3696                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3697                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3698                           | (0x1 << 29) | (0x1 << 25)
3699                           | (0x1 << 23) | (0x1 << 19)
3700                           | (0x1 << 10) | (0x1 << 9)
3701                           | (0x1 << 8)  | (0x1 << 3))
3702                           & ~(0x1 << 28)& ~(0x1 << 24)
3703                           & ~(0x1 << 22)& ~(0x1 << 7));
3704                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3705                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3706                           | (0x1 << 23))& ~(0x1 << 21));
3707                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3708                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3709                           | (0x3 << 3)  | (0x3 << 0));
3710                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3711                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3712                           | (0x3 << 29) | (0x3 << 26)
3713                           | (0x2 << 23) | (0x2 << 20)
3714                           | (0x2 << 17))& ~(0x1 << 14));
3715                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3716                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3717                           | (0x1 << 12) | (0x1 << 10)
3718                           | (0x1 << 9)  | (0x1 << 8)
3719                           | (0x1 << 6)  | (0x1 << 5)
3720                           | (0x1 << 4)  | (0x1 << 3)
3721                           | (0x1 << 2));
3722                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3723                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3724 
3725                 if (AR_SREV_OSPREY(ah)) {
3726                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3727                         (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3728                               | (0x1 << 3)  | (0x1 << 2)
3729                               | (0x1 << 1)) & ~(0x1 << 0));
3730                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3731                         OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3732                               | (0x1 << 19) | (0x1 << 3));
3733                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3734                         OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3735                 }
3736             }
3737         }
3738         if (AR_SREV_OSPREY(ah)) {
3739             /* chain two */
3740             if ((tx_chain_mask & 0x04) == 0x04 ) {
3741                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3742                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3743                           | (0x1 << 3)  | (0x1 << 2)
3744                           | (0x1 << 1)) & ~(0x1 << 0));
3745                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3746                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3747                           | (0x1 << 19) | (0x1 << 3));
3748                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3749                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3750                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3751                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3752                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3753                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3754                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3755                               | (0x1 << 26) | (0x7 << 24)
3756                               | (0x3 << 22));
3757                 } else {
3758                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3759                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3760                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3761                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3762                               | (0x1 << 26) | (0x7 << 24)
3763                               | (0x3 << 22));
3764                 }
3765 
3766                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3767                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3768                           | (0x1 << 3)  | (0x1 << 2)
3769                           | (0x1 << 1)) & ~(0x1 << 0));
3770                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3771                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3772                           | (0x1 << 19) | (0x1 << 3));
3773                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3774                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3775 
3776                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3777                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3778                           | (0x1 << 31) | (0x1 << 27)
3779                           | (0x3 << 23) | (0x1 << 19)
3780                           | (0x1 << 15) | (0x3 << 9))
3781                           & ~(0x1 << 12));
3782                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3783                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3784                           | (0x1 << 12) | (0x1 << 10)
3785                           | (0x1 << 9)  | (0x1 << 8)
3786                           | (0x1 << 7)  | (0x1 << 3)
3787                           | (0x1 << 2)  | (0x1 << 1))
3788                           & ~(0x1 << 11)& ~(0x1 << 0));
3789                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3790                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3791                           | (0x1 << 29) | (0x1 << 25)
3792                           | (0x1 << 23) | (0x1 << 19)
3793                           | (0x1 << 10) | (0x1 << 9)
3794                           | (0x1 << 8)  | (0x1 << 3))
3795                           & ~(0x1 << 28)& ~(0x1 << 24)
3796                           & ~(0x1 << 22)& ~(0x1 << 7));
3797                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3798                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3799                           | (0x1 << 23))& ~(0x1 << 21));
3800                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3801                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3802                           | (0x3 << 3)  | (0x3 << 0));
3803                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3804                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3805                           | (0x3 << 29) | (0x3 << 26)
3806                           | (0x2 << 23) | (0x2 << 20)
3807                           | (0x2 << 17))& ~(0x1 << 14));
3808                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3809                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3810                           | (0x1 << 12) | (0x1 << 10)
3811                           | (0x1 << 9)  | (0x1 << 8)
3812                           | (0x1 << 6)  | (0x1 << 5)
3813                           | (0x1 << 4)  | (0x1 << 3)
3814                           | (0x1 << 2));
3815                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3816                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3817             }
3818         }
3819 
3820         OS_REG_WRITE(ah, 0xa28c, 0x22222);
3821         OS_REG_WRITE(ah, 0xa288, 0x222);
3822     }
3823 }
3824 
3825 void
3826 ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3827 {
3828     u_int32_t val;
3829     u_int32_t qnum = (u_int32_t)data;
3830 
3831     /* Disable AGC to A2 */
3832     OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3833     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3834 
3835     OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3836     /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3837     OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3838     OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3839     OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3840     /* 200 ok for HT20, 400 ok for HT40 */
3841     OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3842     OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3843 
3844     /* set QCU modes to early termination */
3845     val = OS_REG_READ(ah, AR_QMISC(qnum));
3846     OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3847 }
3848 
3849 void
3850 ar9300_tx99_stop(struct ath_hal *ah)
3851 {
3852     /* this should follow the setting of start */
3853     OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3854     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3855 }
3856 #endif /* ATH_TX99_DIAG */
3857 #endif /* ATH_SUPPORT_HTC */
3858 
3859 HAL_BOOL
3860 ar9300Get3StreamSignature(struct ath_hal *ah)
3861 {
3862     return AH_FALSE;
3863 }
3864 
3865 HAL_BOOL
3866 ar9300ForceVCS(struct ath_hal *ah)
3867 {
3868    return AH_FALSE;
3869 }
3870 
3871 HAL_BOOL
3872 ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3873 {
3874    return AH_FALSE;
3875 }
3876 
3877 static u_int32_t
3878 ar9300_read_loc_timer(struct ath_hal *ah)
3879 {
3880 
3881     return OS_REG_READ(ah, AR_LOC_TIMER_REG);
3882 }
3883 
3884 HAL_BOOL
3885 ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
3886 {
3887     struct ath_hal_9300 *ahp = AH9300(ah);
3888     ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
3889     u_int8_t *ctl_index;
3890     u_int32_t offset = 0;
3891 
3892     if (!ctl_array)
3893         return AH_FALSE;
3894 
3895     /* copy 2G ctl freqbin and power data */
3896     ctl_index = p_eep_data->ctl_index_2g;
3897     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
3898                 OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G +     /* ctl_freqbin_2G */
3899                 OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));  /* ctl_power_data_2g */
3900     offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
3901             ( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
3902 
3903 
3904     /* copy 2G ctl freqbin and power data */
3905     ctl_index = p_eep_data->ctl_index_5g;
3906     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
3907                 OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G +     /* ctl_freqbin_5G */
3908                 OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G));  /* ctl_power_data_5g */
3909 
3910     return AH_FALSE;
3911 }
3912 
3913 void
3914 ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
3915 {
3916     struct ath_hal_9300 *ahp = AH9300(ah);
3917 
3918     /* optional txchainmask should be subset of primary txchainmask */
3919     if ((mask & ahp->ah_tx_chainmask) != mask) {
3920         ahp->ah_tx_chainmaskopt = 0;
3921         ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
3922         return;
3923     }
3924 
3925     ahp->ah_tx_chainmaskopt = mask;
3926 }
3927