1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM calibration section offset (in words) definitions */
42 	NVM_CALIB_SECTION = 0x2B8,
43 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44 
45 	/* NVM REGULATORY -Section offset (in words) definitions */
46 	NVM_CHANNELS_SDP = 0,
47 };
48 
49 enum ext_nvm_offsets {
50 	/* NVM HW-Section offset (in words) definitions */
51 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52 
53 	/* NVM SW-Section offset (in words) definitions */
54 	NVM_VERSION_EXT_NVM = 0,
55 	N_HW_ADDRS_FAMILY_8000 = 3,
56 
57 	/* NVM PHY_SKU-Section offset (in words) definitions */
58 	RADIO_CFG_FAMILY_EXT_NVM = 0,
59 	SKU_FAMILY_8000 = 2,
60 
61 	/* NVM REGULATORY -Section offset (in words) definitions */
62 	NVM_CHANNELS_EXTENDED = 0,
63 	NVM_LAR_OFFSET_OLD = 0x4C7,
64 	NVM_LAR_OFFSET = 0x507,
65 	NVM_LAR_ENABLED = 0x7,
66 };
67 
68 /* SKU Capabilities (actual values from NVM definition) */
69 enum nvm_sku_bits {
70 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
71 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
72 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
73 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
74 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
75 };
76 
77 /*
78  * These are the channel numbers in the order that they are stored in the NVM
79  */
80 static const u16 iwl_nvm_channels[] = {
81 	/* 2.4 GHz */
82 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 	/* 5 GHz */
84 	36, 40, 44, 48, 52, 56, 60, 64,
85 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 	149, 153, 157, 161, 165
87 };
88 
89 static const u16 iwl_ext_nvm_channels[] = {
90 	/* 2.4 GHz */
91 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 	/* 5 GHz */
93 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 	149, 153, 157, 161, 165, 169, 173, 177, 181
96 };
97 
98 static const u16 iwl_uhb_nvm_channels[] = {
99 	/* 2.4 GHz */
100 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 	/* 5 GHz */
102 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 	149, 153, 157, 161, 165, 169, 173, 177, 181,
105 	/* 6-7 GHz */
106 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110 };
111 
112 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
114 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
115 #define NUM_2GHZ_CHANNELS		14
116 #define NUM_5GHZ_CHANNELS		37
117 #define FIRST_2GHZ_HT_MINUS		5
118 #define LAST_2GHZ_HT_PLUS		9
119 #define N_HW_ADDR_MASK			0xF
120 
121 /* rate data (static) */
122 static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138 };
139 #define RATES_24_OFFS	0
140 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
141 #define RATES_52_OFFS	4
142 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
143 
144 /**
145  * enum iwl_nvm_channel_flags - channel flags in NVM
146  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148  * @NVM_CHANNEL_ACTIVE: active scanning allowed
149  * @NVM_CHANNEL_RADAR: radar detection required
150  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152  *	on same channel on 2.4 or same UNII band on 5.2
153  * @NVM_CHANNEL_UNIFORM: uniform spreading required
154  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159  */
160 enum iwl_nvm_channel_flags {
161 	NVM_CHANNEL_VALID		= BIT(0),
162 	NVM_CHANNEL_IBSS		= BIT(1),
163 	NVM_CHANNEL_ACTIVE		= BIT(3),
164 	NVM_CHANNEL_RADAR		= BIT(4),
165 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
166 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
167 	NVM_CHANNEL_UNIFORM		= BIT(7),
168 	NVM_CHANNEL_20MHZ		= BIT(8),
169 	NVM_CHANNEL_40MHZ		= BIT(9),
170 	NVM_CHANNEL_80MHZ		= BIT(10),
171 	NVM_CHANNEL_160MHZ		= BIT(11),
172 	NVM_CHANNEL_DC_HIGH		= BIT(12),
173 };
174 
175 /**
176  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
177  * domain.
178  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179  *	2.4Ghz band is allowed.
180  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181  *	5Ghz band is allowed.
182  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183  *	for this regulatory domain (valid only in 5Ghz).
184  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185  *	for this regulatory domain (valid only in 5Ghz).
186  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189  *	for this regulatory domain (valid only in 5Ghz).
190  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
191  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192  */
193 enum iwl_reg_capa_flags_v1 {
194 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
195 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
196 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
197 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
198 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
199 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
200 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
201 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
202 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
203 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
204 
205 /**
206  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207  * domain (version 2).
208  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209  *	disabled.
210  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211  *	2.4Ghz band is allowed.
212  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213  *	5Ghz band is allowed.
214  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215  *	for this regulatory domain (valid only in 5Ghz).
216  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217  *	for this regulatory domain (valid only in 5Ghz).
218  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221  *	126, 122) are disabled.
222  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223  *	for this regulatory domain (uvalid only in 5Ghz).
224  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225  */
226 enum iwl_reg_capa_flags_v2 {
227 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
228 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
229 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
230 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
231 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
232 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
233 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
234 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
235 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
236 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
237 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
238 
239 /**
240  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
241  * domain.
242  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
243  *	for this regulatory domain (valid only in 5Ghz).
244  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
245  *	for this regulatory domain (valid only in 5Ghz).
246  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
247  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
248  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
249  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
250  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
251  *	for this regulatory domain (valid only in 5GHz).
252  */
253 enum iwl_reg_capa_flags_v4 {
254 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
255 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
256 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
257 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
258 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
259 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
260 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
261 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
262 
263 /*
264 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
265 * MCC update command response.
266 */
267 #define REG_CAPA_V2_RESP_VER	6
268 
269 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
270  * MCC update command response.
271  */
272 #define REG_CAPA_V4_RESP_VER	8
273 
274 /**
275  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
276  * handling the different APIs of reg_capa_flags.
277  *
278  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
279  *	for this regulatory domain.
280  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
281  *	for this regulatory domain (valid only in 5 and 6 Ghz).
282  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
283  *	for this regulatory domain (valid only in 5 and 6 Ghz).
284  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
285  *	for this regulatory domain (valid only in 6 Ghz).
286  * @disable_11ax: 11ax is forbidden for this regulatory domain.
287  * @disable_11be: 11be is forbidden for this regulatory domain.
288  */
289 struct iwl_reg_capa {
290 	bool allow_40mhz;
291 	bool allow_80mhz;
292 	bool allow_160mhz;
293 	bool allow_320mhz;
294 	bool disable_11ax;
295 	bool disable_11be;
296 };
297 
298 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
299 					       int chan, u32 flags)
300 {
301 #define CHECK_AND_PRINT_I(x)	\
302 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
303 
304 	if (!(flags & NVM_CHANNEL_VALID)) {
305 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
306 			      chan, flags);
307 		return;
308 	}
309 
310 	/* Note: already can print up to 101 characters, 110 is the limit! */
311 	IWL_DEBUG_DEV(dev, level,
312 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
313 		      chan, flags,
314 		      CHECK_AND_PRINT_I(VALID),
315 		      CHECK_AND_PRINT_I(IBSS),
316 		      CHECK_AND_PRINT_I(ACTIVE),
317 		      CHECK_AND_PRINT_I(RADAR),
318 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
319 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
320 		      CHECK_AND_PRINT_I(UNIFORM),
321 		      CHECK_AND_PRINT_I(20MHZ),
322 		      CHECK_AND_PRINT_I(40MHZ),
323 		      CHECK_AND_PRINT_I(80MHZ),
324 		      CHECK_AND_PRINT_I(160MHZ),
325 		      CHECK_AND_PRINT_I(DC_HIGH));
326 #undef CHECK_AND_PRINT_I
327 }
328 
329 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
330 				 u32 nvm_flags, const struct iwl_cfg *cfg)
331 {
332 	u32 flags = IEEE80211_CHAN_NO_HT40;
333 
334 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
335 		if (ch_num <= LAST_2GHZ_HT_PLUS)
336 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
337 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
338 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
339 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
340 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
341 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
342 		else
343 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
344 	}
345 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
346 		flags |= IEEE80211_CHAN_NO_80MHZ;
347 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
348 		flags |= IEEE80211_CHAN_NO_160MHZ;
349 
350 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
351 		flags |= IEEE80211_CHAN_NO_IR;
352 
353 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
354 		flags |= IEEE80211_CHAN_NO_IR;
355 
356 	if (nvm_flags & NVM_CHANNEL_RADAR)
357 		flags |= IEEE80211_CHAN_RADAR;
358 
359 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
360 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
361 
362 	/* Set the GO concurrent flag only in case that NO_IR is set.
363 	 * Otherwise it is meaningless
364 	 */
365 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
366 	    (flags & IEEE80211_CHAN_NO_IR))
367 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
368 
369 	return flags;
370 }
371 
372 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
373 {
374 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
375 		return NL80211_BAND_6GHZ;
376 	}
377 
378 	if (ch_idx >= NUM_2GHZ_CHANNELS)
379 		return NL80211_BAND_5GHZ;
380 	return NL80211_BAND_2GHZ;
381 }
382 
383 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
384 				struct iwl_nvm_data *data,
385 				const void * const nvm_ch_flags,
386 				u32 sbands_flags, bool v4)
387 {
388 	int ch_idx;
389 	int n_channels = 0;
390 	struct ieee80211_channel *channel;
391 	u32 ch_flags;
392 	int num_of_ch;
393 	const u16 *nvm_chan;
394 
395 	if (cfg->uhb_supported) {
396 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
397 		nvm_chan = iwl_uhb_nvm_channels;
398 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
399 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
400 		nvm_chan = iwl_ext_nvm_channels;
401 	} else {
402 		num_of_ch = IWL_NVM_NUM_CHANNELS;
403 		nvm_chan = iwl_nvm_channels;
404 	}
405 
406 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
407 		enum nl80211_band band =
408 			iwl_nl80211_band_from_channel_idx(ch_idx);
409 
410 		if (v4)
411 			ch_flags =
412 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
413 		else
414 			ch_flags =
415 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
416 
417 		if (band == NL80211_BAND_5GHZ &&
418 		    !data->sku_cap_band_52ghz_enable)
419 			continue;
420 
421 		/* workaround to disable wide channels in 5GHz */
422 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
423 		    band == NL80211_BAND_5GHZ) {
424 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
425 				     NVM_CHANNEL_80MHZ |
426 				     NVM_CHANNEL_160MHZ);
427 		}
428 
429 		if (ch_flags & NVM_CHANNEL_160MHZ)
430 			data->vht160_supported = true;
431 
432 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
433 		    !(ch_flags & NVM_CHANNEL_VALID)) {
434 			/*
435 			 * Channels might become valid later if lar is
436 			 * supported, hence we still want to add them to
437 			 * the list of supported channels to cfg80211.
438 			 */
439 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 						    nvm_chan[ch_idx], ch_flags);
441 			continue;
442 		}
443 
444 		channel = &data->channels[n_channels];
445 		n_channels++;
446 
447 		channel->hw_value = nvm_chan[ch_idx];
448 		channel->band = band;
449 		channel->center_freq =
450 			ieee80211_channel_to_frequency(
451 				channel->hw_value, channel->band);
452 
453 		/* Initialize regulatory-based run-time data */
454 
455 		/*
456 		 * Default value - highest tx power value.  max_power
457 		 * is not used in mvm, and is used for backwards compatibility
458 		 */
459 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
460 
461 		/* don't put limitations in case we're using LAR */
462 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
463 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
464 							       ch_idx, band,
465 							       ch_flags, cfg);
466 		else
467 			channel->flags = 0;
468 
469 		/* TODO: Don't put limitations on UHB devices as we still don't
470 		 * have NVM for them
471 		 */
472 		if (cfg->uhb_supported)
473 			channel->flags = 0;
474 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
475 					    channel->hw_value, ch_flags);
476 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
477 				 channel->hw_value, channel->max_power);
478 	}
479 
480 	return n_channels;
481 }
482 
483 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
484 				  struct iwl_nvm_data *data,
485 				  struct ieee80211_sta_vht_cap *vht_cap,
486 				  u8 tx_chains, u8 rx_chains)
487 {
488 	const struct iwl_cfg *cfg = trans->cfg;
489 	int num_rx_ants = num_of_ant(rx_chains);
490 	int num_tx_ants = num_of_ant(tx_chains);
491 
492 	vht_cap->vht_supported = true;
493 
494 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
495 		       IEEE80211_VHT_CAP_RXSTBC_1 |
496 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
497 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
498 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
499 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
500 
501 	if (!trans->cfg->ht_params->stbc)
502 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
503 
504 	if (data->vht160_supported)
505 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
506 				IEEE80211_VHT_CAP_SHORT_GI_160;
507 
508 	if (cfg->vht_mu_mimo_supported)
509 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
510 
511 	if (cfg->ht_params->ldpc)
512 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
513 
514 	if (data->sku_cap_mimo_disabled) {
515 		num_rx_ants = 1;
516 		num_tx_ants = 1;
517 	}
518 
519 	if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
520 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
521 	else
522 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
523 
524 	switch (iwlwifi_mod_params.amsdu_size) {
525 	case IWL_AMSDU_DEF:
526 		if (trans->trans_cfg->mq_rx_supported)
527 			vht_cap->cap |=
528 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
529 		else
530 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
531 		break;
532 	case IWL_AMSDU_2K:
533 		if (trans->trans_cfg->mq_rx_supported)
534 			vht_cap->cap |=
535 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
536 		else
537 			WARN(1, "RB size of 2K is not supported by this device\n");
538 		break;
539 	case IWL_AMSDU_4K:
540 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
541 		break;
542 	case IWL_AMSDU_8K:
543 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
544 		break;
545 	case IWL_AMSDU_12K:
546 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
547 		break;
548 	default:
549 		break;
550 	}
551 
552 	vht_cap->vht_mcs.rx_mcs_map =
553 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
554 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
555 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
556 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
557 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
558 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
559 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
560 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
561 
562 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
563 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
564 		/* this works because NOT_SUPPORTED == 3 */
565 		vht_cap->vht_mcs.rx_mcs_map |=
566 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
567 	}
568 
569 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
570 
571 	vht_cap->vht_mcs.tx_highest |=
572 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
573 }
574 
575 static const u8 iwl_vendor_caps[] = {
576 	0xdd,			/* vendor element */
577 	0x06,			/* length */
578 	0x00, 0x17, 0x35,	/* Intel OUI */
579 	0x08,			/* type (Intel Capabilities) */
580 	/* followed by 16 bits of capabilities */
581 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
582 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
583 	0x00
584 };
585 
586 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
587 	{
588 		.types_mask = BIT(NL80211_IFTYPE_STATION),
589 		.he_cap = {
590 			.has_he = true,
591 			.he_cap_elem = {
592 				.mac_cap_info[0] =
593 					IEEE80211_HE_MAC_CAP0_HTC_HE,
594 				.mac_cap_info[1] =
595 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
596 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
597 				.mac_cap_info[2] =
598 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
599 				.mac_cap_info[3] =
600 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
601 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
602 				.mac_cap_info[4] =
603 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
604 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
605 				.mac_cap_info[5] =
606 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
607 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
608 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
609 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
610 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
611 				.phy_cap_info[1] =
612 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
613 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
614 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
615 				.phy_cap_info[2] =
616 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
617 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
618 				.phy_cap_info[3] =
619 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
620 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
621 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
622 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
623 				.phy_cap_info[4] =
624 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
625 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
626 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
627 				.phy_cap_info[6] =
628 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
629 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
630 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
631 				.phy_cap_info[7] =
632 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
633 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
634 				.phy_cap_info[8] =
635 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
636 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
637 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
638 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
639 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
640 				.phy_cap_info[9] =
641 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
642 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
643 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
644 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
645 				.phy_cap_info[10] =
646 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
647 			},
648 			/*
649 			 * Set default Tx/Rx HE MCS NSS Support field.
650 			 * Indicate support for up to 2 spatial streams and all
651 			 * MCS, without any special cases
652 			 */
653 			.he_mcs_nss_supp = {
654 				.rx_mcs_80 = cpu_to_le16(0xfffa),
655 				.tx_mcs_80 = cpu_to_le16(0xfffa),
656 				.rx_mcs_160 = cpu_to_le16(0xfffa),
657 				.tx_mcs_160 = cpu_to_le16(0xfffa),
658 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
659 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
660 			},
661 			/*
662 			 * Set default PPE thresholds, with PPET16 set to 0,
663 			 * PPET8 set to 7
664 			 */
665 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
666 		},
667 		.eht_cap = {
668 			.has_eht = true,
669 			.eht_cap_elem = {
670 				.mac_cap_info[0] =
671 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
672 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
673 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
674 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
675 				.phy_cap_info[0] =
676 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
677 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
678 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
679 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
680 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
681 				.phy_cap_info[1] =
682 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
683 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
684 				.phy_cap_info[3] =
685 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
686 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
687 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
688 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
689 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
690 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
691 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
692 
693 				.phy_cap_info[4] =
694 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
695 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
696 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
697 				.phy_cap_info[5] =
698 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
699 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
700 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
701 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
702 				.phy_cap_info[6] =
703 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
704 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
705 				.phy_cap_info[8] =
706 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
707 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
708 			},
709 
710 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
711 			 * Rx - note we don't set the only_20mhz, but due to this
712 			 * being a union, it gets set correctly anyway.
713 			 */
714 			.eht_mcs_nss_supp = {
715 				.bw._80 = {
716 					.rx_tx_mcs9_max_nss = 0x22,
717 					.rx_tx_mcs11_max_nss = 0x22,
718 					.rx_tx_mcs13_max_nss = 0x22,
719 				},
720 				.bw._160 = {
721 					.rx_tx_mcs9_max_nss = 0x22,
722 					.rx_tx_mcs11_max_nss = 0x22,
723 					.rx_tx_mcs13_max_nss = 0x22,
724 				},
725 				.bw._320 = {
726 					.rx_tx_mcs9_max_nss = 0x22,
727 					.rx_tx_mcs11_max_nss = 0x22,
728 					.rx_tx_mcs13_max_nss = 0x22,
729 				},
730 			},
731 
732 			/*
733 			 * PPE thresholds for NSS = 2, and RU index bitmap set
734 			 * to 0xc.
735 			 */
736 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
737 		},
738 	},
739 	{
740 		.types_mask = BIT(NL80211_IFTYPE_AP),
741 		.he_cap = {
742 			.has_he = true,
743 			.he_cap_elem = {
744 				.mac_cap_info[0] =
745 					IEEE80211_HE_MAC_CAP0_HTC_HE,
746 				.mac_cap_info[1] =
747 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
748 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
749 				.mac_cap_info[3] =
750 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
751 				.phy_cap_info[1] =
752 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
753 				.phy_cap_info[2] =
754 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
755 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
756 				.phy_cap_info[3] =
757 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
758 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
759 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
760 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
761 				.phy_cap_info[6] =
762 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
763 				.phy_cap_info[7] =
764 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
765 				.phy_cap_info[8] =
766 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
767 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
768 				.phy_cap_info[9] =
769 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
770 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
771 			},
772 			/*
773 			 * Set default Tx/Rx HE MCS NSS Support field.
774 			 * Indicate support for up to 2 spatial streams and all
775 			 * MCS, without any special cases
776 			 */
777 			.he_mcs_nss_supp = {
778 				.rx_mcs_80 = cpu_to_le16(0xfffa),
779 				.tx_mcs_80 = cpu_to_le16(0xfffa),
780 				.rx_mcs_160 = cpu_to_le16(0xfffa),
781 				.tx_mcs_160 = cpu_to_le16(0xfffa),
782 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
783 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
784 			},
785 			/*
786 			 * Set default PPE thresholds, with PPET16 set to 0,
787 			 * PPET8 set to 7
788 			 */
789 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
790 		},
791 		.eht_cap = {
792 			.has_eht = true,
793 			.eht_cap_elem = {
794 				.mac_cap_info[0] =
795 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
796 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
797 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
798 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
799 				.phy_cap_info[0] =
800 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
801 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
802 				.phy_cap_info[5] =
803 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
804 			},
805 
806 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
807 			 * Rx - note we don't set the only_20mhz, but due to this
808 			 * being a union, it gets set correctly anyway.
809 			 */
810 			.eht_mcs_nss_supp = {
811 				.bw._80 = {
812 					.rx_tx_mcs9_max_nss = 0x22,
813 					.rx_tx_mcs11_max_nss = 0x22,
814 					.rx_tx_mcs13_max_nss = 0x22,
815 				},
816 				.bw._160 = {
817 					.rx_tx_mcs9_max_nss = 0x22,
818 					.rx_tx_mcs11_max_nss = 0x22,
819 					.rx_tx_mcs13_max_nss = 0x22,
820 				},
821 				.bw._320 = {
822 					.rx_tx_mcs9_max_nss = 0x22,
823 					.rx_tx_mcs11_max_nss = 0x22,
824 					.rx_tx_mcs13_max_nss = 0x22,
825 				},
826 			},
827 
828 			/*
829 			 * PPE thresholds for NSS = 2, and RU index bitmap set
830 			 * to 0xc.
831 			 */
832 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
833 		},
834 	},
835 };
836 
837 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
838 				  struct iwl_nvm_data *data,
839 				  struct ieee80211_supported_band *sband,
840 				  u8 tx_chains, u8 rx_chains)
841 {
842 	struct ieee80211_sta_ht_cap ht_cap;
843 	struct ieee80211_sta_vht_cap vht_cap = {};
844 	struct ieee80211_sband_iftype_data *iftype_data;
845 	u16 he_6ghz_capa = 0;
846 	u32 exp;
847 	int i;
848 
849 	if (sband->band != NL80211_BAND_6GHZ)
850 		return;
851 
852 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
853 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
854 			     tx_chains, rx_chains);
855 	WARN_ON(!ht_cap.ht_supported);
856 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
857 	WARN_ON(!vht_cap.vht_supported);
858 
859 	he_6ghz_capa |=
860 		u16_encode_bits(ht_cap.ampdu_density,
861 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
862 	exp = u32_get_bits(vht_cap.cap,
863 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
864 	he_6ghz_capa |=
865 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
866 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
867 	he_6ghz_capa |=
868 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
869 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
870 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
871 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
872 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
873 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
874 
875 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
876 
877 	/* we know it's writable - we set it before ourselves */
878 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
879 	for (i = 0; i < sband->n_iftype_data; i++)
880 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
881 }
882 
883 static void
884 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
885 			 struct iwl_nvm_data *data,
886 			 struct ieee80211_supported_band *sband,
887 			 struct ieee80211_sband_iftype_data *iftype_data,
888 			 u8 tx_chains, u8 rx_chains,
889 			 const struct iwl_fw *fw)
890 {
891 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
892 	bool no_320;
893 
894 	no_320 = !trans->trans_cfg->integrated &&
895 		 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB;
896 
897 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
898 		iftype_data->eht_cap.has_eht = false;
899 
900 	/* Advertise an A-MPDU exponent extension based on
901 	 * operating band
902 	 */
903 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
904 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
905 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
906 	else if (sband->band != NL80211_BAND_2GHZ)
907 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
908 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
909 	else
910 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
911 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
912 
913 	switch (sband->band) {
914 	case NL80211_BAND_2GHZ:
915 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
916 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
917 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
918 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
919 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
920 		break;
921 	case NL80211_BAND_6GHZ:
922 		if (!no_320) {
923 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
924 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
925 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
926 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
927 		}
928 		fallthrough;
929 	case NL80211_BAND_5GHZ:
930 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
931 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
932 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
933 		break;
934 	default:
935 		WARN_ON(1);
936 		break;
937 	}
938 
939 	if ((tx_chains & rx_chains) == ANT_AB) {
940 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
941 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
942 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
943 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
944 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
945 		if (!is_ap) {
946 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
947 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
948 
949 			if (iftype_data->eht_cap.has_eht) {
950 				/*
951 				 * Set the number of sounding dimensions for each
952 				 * bandwidth to 1 to indicate the maximal supported
953 				 * value of TXVECTOR parameter NUM_STS of 2
954 				 */
955 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
956 
957 				/*
958 				 * Set the MAX NC to 1 to indicate sounding feedback of
959 				 * 2 supported by the beamfomee.
960 				 */
961 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
962 			}
963 		}
964 	} else {
965 		if (iftype_data->eht_cap.has_eht) {
966 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
967 				&iftype_data->eht_cap.eht_mcs_nss_supp;
968 
969 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
970 		}
971 
972 		if (!is_ap) {
973 			/* If not 2x2, we need to indicate 1x1 in the
974 			 * Midamble RX Max NSTS - but not for AP mode
975 			 */
976 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
977 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
978 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
979 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
980 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
981 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
982 		}
983 	}
984 
985 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
986 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
987 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
988 
989 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
990 	case IWL_CFG_RF_TYPE_GF:
991 	case IWL_CFG_RF_TYPE_MR:
992 	case IWL_CFG_RF_TYPE_MS:
993 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
994 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
995 		if (!is_ap)
996 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
997 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
998 		break;
999 	}
1000 
1001 	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1002 	    iftype_data->eht_cap.has_eht) {
1003 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1004 			~(IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
1005 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1006 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1007 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1008 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1009 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1010 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1011 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1012 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1013 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK);
1014 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1015 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1016 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1017 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1018 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1019 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1020 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1021 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1022 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1023 			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1024 	}
1025 
1026 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1027 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1028 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1029 
1030 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1031 	    !is_ap) {
1032 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1033 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1034 	}
1035 
1036 	if (!trans->cfg->ht_params->stbc) {
1037 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1038 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1039 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1040 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1041 	}
1042 }
1043 
1044 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1045 				 struct iwl_nvm_data *data,
1046 				 struct ieee80211_supported_band *sband,
1047 				 u8 tx_chains, u8 rx_chains,
1048 				 const struct iwl_fw *fw)
1049 {
1050 	struct ieee80211_sband_iftype_data *iftype_data;
1051 	int i;
1052 
1053 	/* should only initialize once */
1054 	if (WARN_ON(sband->iftype_data))
1055 		return;
1056 
1057 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1058 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1059 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1060 
1061 	switch (sband->band) {
1062 	case NL80211_BAND_2GHZ:
1063 		iftype_data = data->iftd.low;
1064 		break;
1065 	case NL80211_BAND_5GHZ:
1066 		iftype_data = data->iftd.high;
1067 		break;
1068 	case NL80211_BAND_6GHZ:
1069 		iftype_data = data->iftd.uhb;
1070 		break;
1071 	default:
1072 		WARN_ON(1);
1073 		return;
1074 	}
1075 
1076 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1077 
1078 	sband->iftype_data = iftype_data;
1079 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_eht_capa);
1080 
1081 	for (i = 0; i < sband->n_iftype_data; i++)
1082 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1083 					 tx_chains, rx_chains, fw);
1084 
1085 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1086 }
1087 
1088 static void iwl_init_sbands(struct iwl_trans *trans,
1089 			    struct iwl_nvm_data *data,
1090 			    const void *nvm_ch_flags, u8 tx_chains,
1091 			    u8 rx_chains, u32 sbands_flags, bool v4,
1092 			    const struct iwl_fw *fw)
1093 {
1094 	struct device *dev = trans->dev;
1095 	const struct iwl_cfg *cfg = trans->cfg;
1096 	int n_channels;
1097 	int n_used = 0;
1098 	struct ieee80211_supported_band *sband;
1099 
1100 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1101 					  sbands_flags, v4);
1102 	sband = &data->bands[NL80211_BAND_2GHZ];
1103 	sband->band = NL80211_BAND_2GHZ;
1104 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1105 	sband->n_bitrates = N_RATES_24;
1106 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1107 					  NL80211_BAND_2GHZ);
1108 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1109 			     tx_chains, rx_chains);
1110 
1111 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1112 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1113 				     fw);
1114 
1115 	sband = &data->bands[NL80211_BAND_5GHZ];
1116 	sband->band = NL80211_BAND_5GHZ;
1117 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1118 	sband->n_bitrates = N_RATES_52;
1119 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1120 					  NL80211_BAND_5GHZ);
1121 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1122 			     tx_chains, rx_chains);
1123 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1124 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1125 				      tx_chains, rx_chains);
1126 
1127 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1128 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1129 				     fw);
1130 
1131 	/* 6GHz band. */
1132 	sband = &data->bands[NL80211_BAND_6GHZ];
1133 	sband->band = NL80211_BAND_6GHZ;
1134 	/* use the same rates as 5GHz band */
1135 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1136 	sband->n_bitrates = N_RATES_52;
1137 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1138 					  NL80211_BAND_6GHZ);
1139 
1140 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1141 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1142 				     fw);
1143 	else
1144 		sband->n_channels = 0;
1145 	if (n_channels != n_used)
1146 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1147 			    n_used, n_channels);
1148 }
1149 
1150 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1151 		       const __le16 *phy_sku)
1152 {
1153 	if (cfg->nvm_type != IWL_NVM_EXT)
1154 		return le16_to_cpup(nvm_sw + SKU);
1155 
1156 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1157 }
1158 
1159 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1160 {
1161 	if (cfg->nvm_type != IWL_NVM_EXT)
1162 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1163 	else
1164 		return le32_to_cpup((const __le32 *)(nvm_sw +
1165 						     NVM_VERSION_EXT_NVM));
1166 }
1167 
1168 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1169 			     const __le16 *phy_sku)
1170 {
1171 	if (cfg->nvm_type != IWL_NVM_EXT)
1172 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1173 
1174 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1175 
1176 }
1177 
1178 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1179 {
1180 	int n_hw_addr;
1181 
1182 	if (cfg->nvm_type != IWL_NVM_EXT)
1183 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1184 
1185 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1186 
1187 	return n_hw_addr & N_HW_ADDR_MASK;
1188 }
1189 
1190 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1191 			      struct iwl_nvm_data *data,
1192 			      u32 radio_cfg)
1193 {
1194 	if (cfg->nvm_type != IWL_NVM_EXT) {
1195 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1196 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1197 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1198 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1199 		return;
1200 	}
1201 
1202 	/* set the radio configuration for family 8000 */
1203 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1204 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1205 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1206 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1207 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1208 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1209 }
1210 
1211 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1212 {
1213 	const u8 *hw_addr;
1214 
1215 	hw_addr = (const u8 *)&mac_addr0;
1216 	dest[0] = hw_addr[3];
1217 	dest[1] = hw_addr[2];
1218 	dest[2] = hw_addr[1];
1219 	dest[3] = hw_addr[0];
1220 
1221 	hw_addr = (const u8 *)&mac_addr1;
1222 	dest[4] = hw_addr[1];
1223 	dest[5] = hw_addr[0];
1224 }
1225 
1226 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1227 					struct iwl_nvm_data *data)
1228 {
1229 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1230 						  CSR_MAC_ADDR0_STRAP(trans)));
1231 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1232 						  CSR_MAC_ADDR1_STRAP(trans)));
1233 
1234 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1235 	/*
1236 	 * If the OEM fused a valid address, use it instead of the one in the
1237 	 * OTP
1238 	 */
1239 	if (is_valid_ether_addr(data->hw_addr))
1240 		return;
1241 
1242 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1243 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1244 
1245 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1246 }
1247 
1248 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1249 					   const struct iwl_cfg *cfg,
1250 					   struct iwl_nvm_data *data,
1251 					   const __le16 *mac_override,
1252 					   const __be16 *nvm_hw)
1253 {
1254 	const u8 *hw_addr;
1255 
1256 	if (mac_override) {
1257 		static const u8 reserved_mac[] = {
1258 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1259 		};
1260 
1261 		hw_addr = (const u8 *)(mac_override +
1262 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1263 
1264 		/*
1265 		 * Store the MAC address from MAO section.
1266 		 * No byte swapping is required in MAO section
1267 		 */
1268 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1269 
1270 		/*
1271 		 * Force the use of the OTP MAC address in case of reserved MAC
1272 		 * address in the NVM, or if address is given but invalid.
1273 		 */
1274 		if (is_valid_ether_addr(data->hw_addr) &&
1275 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1276 			return;
1277 
1278 		IWL_ERR(trans,
1279 			"mac address from nvm override section is not valid\n");
1280 	}
1281 
1282 	if (nvm_hw) {
1283 		/* read the mac address from WFMP registers */
1284 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1285 						WFMP_MAC_ADDR_0));
1286 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1287 						WFMP_MAC_ADDR_1));
1288 
1289 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1290 
1291 		return;
1292 	}
1293 
1294 	IWL_ERR(trans, "mac address is not found\n");
1295 }
1296 
1297 static int iwl_set_hw_address(struct iwl_trans *trans,
1298 			      const struct iwl_cfg *cfg,
1299 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1300 			      const __le16 *mac_override)
1301 {
1302 	if (cfg->mac_addr_from_csr) {
1303 		iwl_set_hw_address_from_csr(trans, data);
1304 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1305 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1306 
1307 		/* The byte order is little endian 16 bit, meaning 214365 */
1308 		data->hw_addr[0] = hw_addr[1];
1309 		data->hw_addr[1] = hw_addr[0];
1310 		data->hw_addr[2] = hw_addr[3];
1311 		data->hw_addr[3] = hw_addr[2];
1312 		data->hw_addr[4] = hw_addr[5];
1313 		data->hw_addr[5] = hw_addr[4];
1314 	} else {
1315 		iwl_set_hw_address_family_8000(trans, cfg, data,
1316 					       mac_override, nvm_hw);
1317 	}
1318 
1319 	if (!is_valid_ether_addr(data->hw_addr)) {
1320 		IWL_ERR(trans, "no valid mac address was found\n");
1321 		return -EINVAL;
1322 	}
1323 
1324 	if (!trans->csme_own)
1325 #if defined(__linux__)
1326 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1327 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1328 #elif defined(__FreeBSD__)
1329 		IWL_INFO(trans, "base HW address: %6D, OTP minor version: 0x%x\n",
1330 			 data->hw_addr, ":", iwl_read_prph(trans, REG_OTP_MINOR));
1331 #endif
1332 
1333 	return 0;
1334 }
1335 
1336 static bool
1337 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1338 			const __be16 *nvm_hw)
1339 {
1340 	/*
1341 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1342 	 * some 7000-family OTPs erroneously allow wide channels in
1343 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1344 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1345 	 * 9.  In those cases, we need to force-disable wide channels
1346 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1347 	 * to use them.
1348 	 */
1349 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1350 		/*
1351 		 * Unlike the other sections in the NVM, the hw
1352 		 * section uses big-endian.
1353 		 */
1354 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1355 		u8 sku = (subsystem_id & 0x1e) >> 1;
1356 
1357 		if (sku == 5 || sku == 9) {
1358 			IWL_DEBUG_EEPROM(trans->dev,
1359 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1360 					 subsystem_id, sku);
1361 			return true;
1362 		}
1363 	}
1364 
1365 	return false;
1366 }
1367 
1368 struct iwl_nvm_data *
1369 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1370 		       const struct iwl_mei_nvm *mei_nvm,
1371 		       const struct iwl_fw *fw)
1372 {
1373 	struct iwl_nvm_data *data;
1374 	u32 sbands_flags = 0;
1375 	u8 rx_chains = fw->valid_rx_ant;
1376 	u8 tx_chains = fw->valid_rx_ant;
1377 
1378 	if (cfg->uhb_supported)
1379 		data = kzalloc(struct_size(data, channels,
1380 					   IWL_NVM_NUM_CHANNELS_UHB),
1381 					   GFP_KERNEL);
1382 	else
1383 		data = kzalloc(struct_size(data, channels,
1384 					   IWL_NVM_NUM_CHANNELS_EXT),
1385 					   GFP_KERNEL);
1386 	if (!data)
1387 		return NULL;
1388 
1389 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1390 		     IWL_NVM_NUM_CHANNELS_UHB);
1391 	data->nvm_version = mei_nvm->nvm_version;
1392 
1393 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1394 	if (data->valid_tx_ant)
1395 		tx_chains &= data->valid_tx_ant;
1396 	if (data->valid_rx_ant)
1397 		rx_chains &= data->valid_rx_ant;
1398 
1399 	data->sku_cap_mimo_disabled = false;
1400 	data->sku_cap_band_24ghz_enable = true;
1401 	data->sku_cap_band_52ghz_enable = true;
1402 	data->sku_cap_11n_enable =
1403 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1404 	data->sku_cap_11ac_enable = true;
1405 	data->sku_cap_11ax_enable =
1406 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1407 
1408 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1409 
1410 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1411 	/* If no valid mac address was found - bail out */
1412 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1413 		kfree(data);
1414 		return NULL;
1415 	}
1416 
1417 	if (data->lar_enabled &&
1418 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1419 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1420 
1421 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1422 			sbands_flags, true, fw);
1423 
1424 	return data;
1425 }
1426 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1427 
1428 struct iwl_nvm_data *
1429 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1430 		   const struct iwl_fw *fw,
1431 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1432 		   const __le16 *nvm_calib, const __le16 *regulatory,
1433 		   const __le16 *mac_override, const __le16 *phy_sku,
1434 		   u8 tx_chains, u8 rx_chains)
1435 {
1436 	struct iwl_nvm_data *data;
1437 	bool lar_enabled;
1438 	u32 sku, radio_cfg;
1439 	u32 sbands_flags = 0;
1440 	u16 lar_config;
1441 	const __le16 *ch_section;
1442 
1443 	if (cfg->uhb_supported)
1444 		data = kzalloc(struct_size(data, channels,
1445 					   IWL_NVM_NUM_CHANNELS_UHB),
1446 					   GFP_KERNEL);
1447 	else if (cfg->nvm_type != IWL_NVM_EXT)
1448 		data = kzalloc(struct_size(data, channels,
1449 					   IWL_NVM_NUM_CHANNELS),
1450 					   GFP_KERNEL);
1451 	else
1452 		data = kzalloc(struct_size(data, channels,
1453 					   IWL_NVM_NUM_CHANNELS_EXT),
1454 					   GFP_KERNEL);
1455 	if (!data)
1456 		return NULL;
1457 
1458 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1459 
1460 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1461 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1462 	if (data->valid_tx_ant)
1463 		tx_chains &= data->valid_tx_ant;
1464 	if (data->valid_rx_ant)
1465 		rx_chains &= data->valid_rx_ant;
1466 
1467 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1468 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1469 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1470 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1471 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1472 		data->sku_cap_11n_enable = false;
1473 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1474 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1475 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1476 
1477 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1478 
1479 	if (cfg->nvm_type != IWL_NVM_EXT) {
1480 		/* Checking for required sections */
1481 		if (!nvm_calib) {
1482 			IWL_ERR(trans,
1483 				"Can't parse empty Calib NVM sections\n");
1484 			kfree(data);
1485 			return NULL;
1486 		}
1487 
1488 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1489 			     &regulatory[NVM_CHANNELS_SDP] :
1490 			     &nvm_sw[NVM_CHANNELS];
1491 
1492 		/* in family 8000 Xtal calibration values moved to OTP */
1493 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1494 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1495 		lar_enabled = true;
1496 	} else {
1497 		u16 lar_offset = data->nvm_version < 0xE39 ?
1498 				 NVM_LAR_OFFSET_OLD :
1499 				 NVM_LAR_OFFSET;
1500 
1501 		lar_config = le16_to_cpup(regulatory + lar_offset);
1502 		data->lar_enabled = !!(lar_config &
1503 				       NVM_LAR_ENABLED);
1504 		lar_enabled = data->lar_enabled;
1505 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1506 	}
1507 
1508 	/* If no valid mac address was found - bail out */
1509 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1510 		kfree(data);
1511 		return NULL;
1512 	}
1513 
1514 	if (lar_enabled &&
1515 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1516 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1517 
1518 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1519 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1520 
1521 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1522 			sbands_flags, false, fw);
1523 	data->calib_version = 255;
1524 
1525 	return data;
1526 }
1527 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1528 
1529 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1530 				       int ch_idx, u16 nvm_flags,
1531 				       struct iwl_reg_capa reg_capa,
1532 				       const struct iwl_cfg *cfg)
1533 {
1534 	u32 flags = NL80211_RRF_NO_HT40;
1535 
1536 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1537 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1538 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1539 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1540 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1541 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1542 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1543 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1544 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1545 		else
1546 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1547 	}
1548 
1549 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1550 		flags |= NL80211_RRF_NO_80MHZ;
1551 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1552 		flags |= NL80211_RRF_NO_160MHZ;
1553 
1554 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1555 		flags |= NL80211_RRF_NO_IR;
1556 
1557 	if (nvm_flags & NVM_CHANNEL_RADAR)
1558 		flags |= NL80211_RRF_DFS;
1559 
1560 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1561 		flags |= NL80211_RRF_NO_OUTDOOR;
1562 
1563 	/* Set the GO concurrent flag only in case that NO_IR is set.
1564 	 * Otherwise it is meaningless
1565 	 */
1566 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1567 	    (flags & NL80211_RRF_NO_IR))
1568 		flags |= NL80211_RRF_GO_CONCURRENT;
1569 
1570 	/*
1571 	 * reg_capa is per regulatory domain so apply it for every channel
1572 	 */
1573 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1574 		if (!reg_capa.allow_40mhz)
1575 			flags |= NL80211_RRF_NO_HT40;
1576 
1577 		if (!reg_capa.allow_80mhz)
1578 			flags |= NL80211_RRF_NO_80MHZ;
1579 
1580 		if (!reg_capa.allow_160mhz)
1581 			flags |= NL80211_RRF_NO_160MHZ;
1582 
1583 		if (!reg_capa.allow_320mhz)
1584 			flags |= NL80211_RRF_NO_320MHZ;
1585 	}
1586 
1587 	if (reg_capa.disable_11ax)
1588 		flags |= NL80211_RRF_NO_HE;
1589 
1590 	if (reg_capa.disable_11be)
1591 		flags |= NL80211_RRF_NO_EHT;
1592 
1593 	return flags;
1594 }
1595 
1596 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1597 {
1598 	struct iwl_reg_capa reg_capa = {};
1599 
1600 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1601 		reg_capa.allow_40mhz = true;
1602 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1603 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1604 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1605 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1606 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1607 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1608 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1609 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1610 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1611 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1612 	} else {
1613 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1614 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1615 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1616 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1617 	}
1618 	return reg_capa;
1619 }
1620 
1621 struct ieee80211_regdomain *
1622 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1623 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1624 		       u16 geo_info, u32 cap, u8 resp_ver)
1625 {
1626 	int ch_idx;
1627 	u16 ch_flags;
1628 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1629 	const u16 *nvm_chan;
1630 	struct ieee80211_regdomain *regd, *copy_rd;
1631 	struct ieee80211_reg_rule *rule;
1632 	enum nl80211_band band;
1633 	int center_freq, prev_center_freq = 0;
1634 	int valid_rules = 0;
1635 	bool new_rule;
1636 	int max_num_ch;
1637 	struct iwl_reg_capa reg_capa;
1638 
1639 	if (cfg->uhb_supported) {
1640 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1641 		nvm_chan = iwl_uhb_nvm_channels;
1642 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1643 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1644 		nvm_chan = iwl_ext_nvm_channels;
1645 	} else {
1646 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1647 		nvm_chan = iwl_nvm_channels;
1648 	}
1649 
1650 	if (num_of_ch > max_num_ch) {
1651 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1652 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1653 			      num_of_ch, max_num_ch);
1654 		num_of_ch = max_num_ch;
1655 	}
1656 
1657 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1658 		return ERR_PTR(-EINVAL);
1659 
1660 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1661 		      num_of_ch);
1662 
1663 	/* build a regdomain rule for every valid channel */
1664 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1665 	if (!regd)
1666 		return ERR_PTR(-ENOMEM);
1667 
1668 	/* set alpha2 from FW. */
1669 	regd->alpha2[0] = fw_mcc >> 8;
1670 	regd->alpha2[1] = fw_mcc & 0xff;
1671 
1672 	/* parse regulatory capability flags */
1673 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1674 
1675 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1676 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1677 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1678 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1679 							     band);
1680 		new_rule = false;
1681 
1682 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1683 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1684 						    nvm_chan[ch_idx], ch_flags);
1685 			continue;
1686 		}
1687 
1688 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1689 							     ch_flags, reg_capa,
1690 							     cfg);
1691 
1692 		/* we can't continue the same rule */
1693 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1694 		    center_freq - prev_center_freq > 20) {
1695 			valid_rules++;
1696 			new_rule = true;
1697 		}
1698 
1699 		rule = &regd->reg_rules[valid_rules - 1];
1700 
1701 		if (new_rule)
1702 			rule->freq_range.start_freq_khz =
1703 						MHZ_TO_KHZ(center_freq - 10);
1704 
1705 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1706 
1707 		/* this doesn't matter - not used by FW */
1708 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1709 		rule->power_rule.max_eirp =
1710 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1711 
1712 		rule->flags = reg_rule_flags;
1713 
1714 		/* rely on auto-calculation to merge BW of contiguous chans */
1715 		rule->flags |= NL80211_RRF_AUTO_BW;
1716 		rule->freq_range.max_bandwidth_khz = 0;
1717 
1718 		prev_center_freq = center_freq;
1719 		prev_reg_rule_flags = reg_rule_flags;
1720 
1721 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1722 					    nvm_chan[ch_idx], ch_flags);
1723 
1724 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1725 		    band == NL80211_BAND_2GHZ)
1726 			continue;
1727 
1728 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1729 	}
1730 
1731 	/*
1732 	 * Certain firmware versions might report no valid channels
1733 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1734 	 * running. We'll get out of this situation later when the
1735 	 * rfkill is removed and we update the regdomain again, but
1736 	 * since cfg80211 doesn't accept an empty regdomain, add a
1737 	 * dummy (unusable) rule here in this case so we can init.
1738 	 */
1739 	if (!valid_rules) {
1740 		valid_rules = 1;
1741 		rule = &regd->reg_rules[valid_rules - 1];
1742 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1743 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1744 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1745 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1746 		rule->power_rule.max_eirp =
1747 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1748 	}
1749 
1750 	regd->n_reg_rules = valid_rules;
1751 
1752 	/*
1753 	 * Narrow down regdom for unused regulatory rules to prevent hole
1754 	 * between reg rules to wmm rules.
1755 	 */
1756 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1757 			  GFP_KERNEL);
1758 	if (!copy_rd)
1759 		copy_rd = ERR_PTR(-ENOMEM);
1760 
1761 	kfree(regd);
1762 	return copy_rd;
1763 }
1764 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1765 
1766 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1767 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1768 #define MAX_NVM_FILE_LEN	16384
1769 
1770 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1771 		    unsigned int len)
1772 {
1773 #define IWL_4165_DEVICE_ID	0x5501
1774 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1775 
1776 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1777 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1778 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1779 		/* OTP 0x52 bug work around: it's a 1x1 device */
1780 		data[3] = ANT_B | (ANT_B << 4);
1781 }
1782 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1783 
1784 /*
1785  * Reads external NVM from a file into mvm->nvm_sections
1786  *
1787  * HOW TO CREATE THE NVM FILE FORMAT:
1788  * ------------------------------
1789  * 1. create hex file, format:
1790  *      3800 -> header
1791  *      0000 -> header
1792  *      5a40 -> data
1793  *
1794  *   rev - 6 bit (word1)
1795  *   len - 10 bit (word1)
1796  *   id - 4 bit (word2)
1797  *   rsv - 12 bit (word2)
1798  *
1799  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1800  *
1801  * 3. create binary file from the hex file
1802  *
1803  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1804  */
1805 int iwl_read_external_nvm(struct iwl_trans *trans,
1806 			  const char *nvm_file_name,
1807 			  struct iwl_nvm_section *nvm_sections)
1808 {
1809 	int ret, section_size;
1810 	u16 section_id;
1811 	const struct firmware *fw_entry;
1812 	const struct {
1813 		__le16 word1;
1814 		__le16 word2;
1815 		u8 data[];
1816 	} *file_sec;
1817 	const u8 *eof;
1818 	u8 *temp;
1819 	int max_section_size;
1820 	const __le32 *dword_buff;
1821 
1822 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1823 #define NVM_WORD2_ID(x) (x >> 12)
1824 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1825 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1826 #define NVM_HEADER_0	(0x2A504C54)
1827 #define NVM_HEADER_1	(0x4E564D2A)
1828 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1829 
1830 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1831 
1832 	/* Maximal size depends on NVM version */
1833 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1834 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1835 	else
1836 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1837 
1838 	/*
1839 	 * Obtain NVM image via request_firmware. Since we already used
1840 	 * request_firmware_nowait() for the firmware binary load and only
1841 	 * get here after that we assume the NVM request can be satisfied
1842 	 * synchronously.
1843 	 */
1844 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1845 	if (ret) {
1846 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1847 			nvm_file_name, ret);
1848 		return ret;
1849 	}
1850 
1851 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1852 		 nvm_file_name, fw_entry->size);
1853 
1854 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1855 		IWL_ERR(trans, "NVM file too large\n");
1856 		ret = -EINVAL;
1857 		goto out;
1858 	}
1859 
1860 	eof = fw_entry->data + fw_entry->size;
1861 	dword_buff = (const __le32 *)fw_entry->data;
1862 
1863 	/* some NVM file will contain a header.
1864 	 * The header is identified by 2 dwords header as follow:
1865 	 * dword[0] = 0x2A504C54
1866 	 * dword[1] = 0x4E564D2A
1867 	 *
1868 	 * This header must be skipped when providing the NVM data to the FW.
1869 	 */
1870 	if (fw_entry->size > NVM_HEADER_SIZE &&
1871 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1872 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1873 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1874 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1875 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1876 			 le32_to_cpu(dword_buff[3]));
1877 
1878 		/* nvm file validation, dword_buff[2] holds the file version */
1879 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1880 		    trans->hw_rev_step == SILICON_C_STEP &&
1881 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1882 			ret = -EFAULT;
1883 			goto out;
1884 		}
1885 	} else {
1886 		file_sec = (const void *)fw_entry->data;
1887 	}
1888 
1889 	while (true) {
1890 		if (file_sec->data > eof) {
1891 			IWL_ERR(trans,
1892 				"ERROR - NVM file too short for section header\n");
1893 			ret = -EINVAL;
1894 			break;
1895 		}
1896 
1897 		/* check for EOF marker */
1898 		if (!file_sec->word1 && !file_sec->word2) {
1899 			ret = 0;
1900 			break;
1901 		}
1902 
1903 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1904 			section_size =
1905 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1906 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1907 		} else {
1908 			section_size = 2 * EXT_NVM_WORD2_LEN(
1909 						le16_to_cpu(file_sec->word2));
1910 			section_id = EXT_NVM_WORD1_ID(
1911 						le16_to_cpu(file_sec->word1));
1912 		}
1913 
1914 		if (section_size > max_section_size) {
1915 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1916 				section_size);
1917 			ret = -EINVAL;
1918 			break;
1919 		}
1920 
1921 		if (!section_size) {
1922 			IWL_ERR(trans, "ERROR - section empty\n");
1923 			ret = -EINVAL;
1924 			break;
1925 		}
1926 
1927 		if (file_sec->data + section_size > eof) {
1928 			IWL_ERR(trans,
1929 				"ERROR - NVM file too short for section (%d bytes)\n",
1930 				section_size);
1931 			ret = -EINVAL;
1932 			break;
1933 		}
1934 
1935 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1936 			 "Invalid NVM section ID %d\n", section_id)) {
1937 			ret = -EINVAL;
1938 			break;
1939 		}
1940 
1941 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1942 		if (!temp) {
1943 			ret = -ENOMEM;
1944 			break;
1945 		}
1946 
1947 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1948 
1949 		kfree(nvm_sections[section_id].data);
1950 		nvm_sections[section_id].data = temp;
1951 		nvm_sections[section_id].length = section_size;
1952 
1953 		/* advance to the next section */
1954 		file_sec = (const void *)(file_sec->data + section_size);
1955 	}
1956 out:
1957 	release_firmware(fw_entry);
1958 	return ret;
1959 }
1960 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1961 
1962 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1963 				 const struct iwl_fw *fw)
1964 {
1965 	struct iwl_nvm_get_info cmd = {};
1966 	struct iwl_nvm_data *nvm;
1967 	struct iwl_host_cmd hcmd = {
1968 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1969 		.data = { &cmd, },
1970 		.len = { sizeof(cmd) },
1971 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1972 	};
1973 	int  ret;
1974 	bool empty_otp;
1975 	u32 mac_flags;
1976 	u32 sbands_flags = 0;
1977 	/*
1978 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1979 	 * in v3, except for the channel profile part of the
1980 	 * regulatory.  So we can just access the new struct, with the
1981 	 * exception of the latter.
1982 	 */
1983 	struct iwl_nvm_get_info_rsp *rsp;
1984 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1985 	bool v4 = fw_has_api(&fw->ucode_capa,
1986 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1987 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1988 	void *channel_profile;
1989 
1990 	ret = iwl_trans_send_cmd(trans, &hcmd);
1991 	if (ret)
1992 		return ERR_PTR(ret);
1993 
1994 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1995 		 "Invalid payload len in NVM response from FW %d",
1996 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1997 		ret = -EINVAL;
1998 		goto out;
1999 	}
2000 
2001 	rsp = (void *)hcmd.resp_pkt->data;
2002 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2003 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2004 	if (empty_otp)
2005 		IWL_INFO(trans, "OTP is empty\n");
2006 
2007 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2008 	if (!nvm) {
2009 		ret = -ENOMEM;
2010 		goto out;
2011 	}
2012 
2013 	iwl_set_hw_address_from_csr(trans, nvm);
2014 	/* TODO: if platform NVM has MAC address - override it here */
2015 
2016 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2017 		IWL_ERR(trans, "no valid mac address was found\n");
2018 		ret = -EINVAL;
2019 		goto err_free;
2020 	}
2021 
2022 #if defined(__linux__)
2023 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2024 #elif defined(__FreeBSD__)
2025 	IWL_INFO(trans, "base HW address: %6D\n", nvm->hw_addr, ":");
2026 #endif
2027 
2028 	/* Initialize general data */
2029 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2030 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2031 	if (nvm->n_hw_addrs == 0)
2032 		IWL_WARN(trans,
2033 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2034 			 empty_otp);
2035 
2036 	/* Initialize MAC sku data */
2037 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2038 	nvm->sku_cap_11ac_enable =
2039 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2040 	nvm->sku_cap_11n_enable =
2041 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2042 	nvm->sku_cap_11ax_enable =
2043 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2044 	nvm->sku_cap_band_24ghz_enable =
2045 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2046 	nvm->sku_cap_band_52ghz_enable =
2047 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2048 	nvm->sku_cap_mimo_disabled =
2049 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2050 	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
2051 		nvm->sku_cap_11be_enable = true;
2052 
2053 	/* Initialize PHY sku data */
2054 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2055 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2056 
2057 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2058 	    fw_has_capa(&fw->ucode_capa,
2059 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2060 		nvm->lar_enabled = true;
2061 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2062 	}
2063 
2064 	rsp_v3 = (void *)rsp;
2065 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2066 			  (void *)rsp_v3->regulatory.channel_profile;
2067 
2068 	iwl_init_sbands(trans, nvm,
2069 			channel_profile,
2070 			nvm->valid_tx_ant & fw->valid_tx_ant,
2071 			nvm->valid_rx_ant & fw->valid_rx_ant,
2072 			sbands_flags, v4, fw);
2073 
2074 	iwl_free_resp(&hcmd);
2075 	return nvm;
2076 
2077 err_free:
2078 	kfree(nvm);
2079 out:
2080 	iwl_free_resp(&hcmd);
2081 	return ERR_PTR(ret);
2082 }
2083 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2084