xref: /freebsd/sys/contrib/dev/rtw88/pci.c (revision abcdc1b9)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #if defined(__FreeBSD__)
6 #define	LINUXKPI_PARAM_PREFIX	rtw88_pci_
7 #endif
8 
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include "main.h"
12 #include "pci.h"
13 #include "reg.h"
14 #include "tx.h"
15 #include "rx.h"
16 #include "fw.h"
17 #include "ps.h"
18 #include "debug.h"
19 #if defined(__FreeBSD__)
20 #include <linux/pm.h>
21 #endif
22 
23 static bool rtw_disable_msi;
24 static bool rtw_pci_disable_aspm;
25 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
26 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
27 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
28 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
29 
30 static u32 rtw_pci_tx_queue_idx_addr[] = {
31 	[RTW_TX_QUEUE_BK]	= RTK_PCI_TXBD_IDX_BKQ,
32 	[RTW_TX_QUEUE_BE]	= RTK_PCI_TXBD_IDX_BEQ,
33 	[RTW_TX_QUEUE_VI]	= RTK_PCI_TXBD_IDX_VIQ,
34 	[RTW_TX_QUEUE_VO]	= RTK_PCI_TXBD_IDX_VOQ,
35 	[RTW_TX_QUEUE_MGMT]	= RTK_PCI_TXBD_IDX_MGMTQ,
36 	[RTW_TX_QUEUE_HI0]	= RTK_PCI_TXBD_IDX_HI0Q,
37 	[RTW_TX_QUEUE_H2C]	= RTK_PCI_TXBD_IDX_H2CQ,
38 };
39 
40 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb,
41 			      enum rtw_tx_queue_type queue)
42 {
43 	switch (queue) {
44 	case RTW_TX_QUEUE_BCN:
45 		return TX_DESC_QSEL_BEACON;
46 	case RTW_TX_QUEUE_H2C:
47 		return TX_DESC_QSEL_H2C;
48 	case RTW_TX_QUEUE_MGMT:
49 		return TX_DESC_QSEL_MGMT;
50 	case RTW_TX_QUEUE_HI0:
51 		return TX_DESC_QSEL_HIGH;
52 	default:
53 		return skb->priority;
54 	}
55 };
56 
57 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
58 {
59 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
60 
61 #if defined(__linux__)
62 	return readb(rtwpci->mmap + addr);
63 #elif defined(__FreeBSD__)
64 	u8 val;
65 
66 	val = bus_read_1((struct resource *)rtwpci->mmap, addr);
67 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R08 (%#010x) -> %#04x\n", addr, val);
68 	return (val);
69 #endif
70 }
71 
72 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
73 {
74 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
75 
76 #if defined(__linux__)
77 	return readw(rtwpci->mmap + addr);
78 #elif defined(__FreeBSD__)
79 	u16 val;
80 
81 	val = bus_read_2((struct resource *)rtwpci->mmap, addr);
82 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R16 (%#010x) -> %#06x\n", addr, val);
83 	return (val);
84 #endif
85 }
86 
87 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
88 {
89 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
90 
91 #if defined(__linux__)
92 	return readl(rtwpci->mmap + addr);
93 #elif defined(__FreeBSD__)
94 	u32 val;
95 
96 	val = bus_read_4((struct resource *)rtwpci->mmap, addr);
97 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R32 (%#010x) -> %#010x\n", addr, val);
98 	return (val);
99 #endif
100 }
101 
102 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
103 {
104 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
105 
106 #if defined(__linux__)
107 	writeb(val, rtwpci->mmap + addr);
108 #elif defined(__FreeBSD__)
109 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W08 (%#010x) <- %#04x\n", addr, val);
110 	return (bus_write_1((struct resource *)rtwpci->mmap, addr, val));
111 #endif
112 }
113 
114 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
115 {
116 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
117 
118 #if defined(__linux__)
119 	writew(val, rtwpci->mmap + addr);
120 #elif defined(__FreeBSD__)
121 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W16 (%#010x) <- %#06x\n", addr, val);
122 	return (bus_write_2((struct resource *)rtwpci->mmap, addr, val));
123 #endif
124 }
125 
126 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
127 {
128 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
129 
130 #if defined(__linux__)
131 	writel(val, rtwpci->mmap + addr);
132 #elif defined(__FreeBSD__)
133 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W32 (%#010x) <- %#010x\n", addr, val);
134 	return (bus_write_4((struct resource *)rtwpci->mmap, addr, val));
135 #endif
136 }
137 
138 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
139 				      struct rtw_pci_tx_ring *tx_ring)
140 {
141 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
142 	struct rtw_pci_tx_data *tx_data;
143 	struct sk_buff *skb, *tmp;
144 	dma_addr_t dma;
145 
146 	/* free every skb remained in tx list */
147 	skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
148 		__skb_unlink(skb, &tx_ring->queue);
149 		tx_data = rtw_pci_get_tx_data(skb);
150 		dma = tx_data->dma;
151 
152 		dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
153 		dev_kfree_skb_any(skb);
154 	}
155 }
156 
157 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
158 				 struct rtw_pci_tx_ring *tx_ring)
159 {
160 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
161 	u8 *head = tx_ring->r.head;
162 	u32 len = tx_ring->r.len;
163 	int ring_sz = len * tx_ring->r.desc_size;
164 
165 	rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
166 
167 	/* free the ring itself */
168 	dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
169 	tx_ring->r.head = NULL;
170 }
171 
172 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
173 				      struct rtw_pci_rx_ring *rx_ring)
174 {
175 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
176 	struct sk_buff *skb;
177 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
178 	dma_addr_t dma;
179 	int i;
180 
181 	for (i = 0; i < rx_ring->r.len; i++) {
182 		skb = rx_ring->buf[i];
183 		if (!skb)
184 			continue;
185 
186 		dma = *((dma_addr_t *)skb->cb);
187 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
188 		dev_kfree_skb(skb);
189 		rx_ring->buf[i] = NULL;
190 	}
191 }
192 
193 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
194 				 struct rtw_pci_rx_ring *rx_ring)
195 {
196 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
197 	u8 *head = rx_ring->r.head;
198 	int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
199 
200 	rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
201 
202 	dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
203 }
204 
205 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
206 {
207 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
208 	struct rtw_pci_tx_ring *tx_ring;
209 	struct rtw_pci_rx_ring *rx_ring;
210 	int i;
211 
212 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
213 		tx_ring = &rtwpci->tx_rings[i];
214 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
215 	}
216 
217 	for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
218 		rx_ring = &rtwpci->rx_rings[i];
219 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
220 	}
221 }
222 
223 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
224 				struct rtw_pci_tx_ring *tx_ring,
225 				u8 desc_size, u32 len)
226 {
227 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
228 	int ring_sz = desc_size * len;
229 	dma_addr_t dma;
230 	u8 *head;
231 
232 	if (len > TRX_BD_IDX_MASK) {
233 		rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
234 		return -EINVAL;
235 	}
236 
237 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
238 	if (!head) {
239 		rtw_err(rtwdev, "failed to allocate tx ring\n");
240 		return -ENOMEM;
241 	}
242 
243 	skb_queue_head_init(&tx_ring->queue);
244 	tx_ring->r.head = head;
245 	tx_ring->r.dma = dma;
246 	tx_ring->r.len = len;
247 	tx_ring->r.desc_size = desc_size;
248 	tx_ring->r.wp = 0;
249 	tx_ring->r.rp = 0;
250 
251 	return 0;
252 }
253 
254 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
255 				 struct rtw_pci_rx_ring *rx_ring,
256 				 u32 idx, u32 desc_sz)
257 {
258 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
259 	struct rtw_pci_rx_buffer_desc *buf_desc;
260 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
261 	dma_addr_t dma;
262 
263 	if (!skb)
264 		return -EINVAL;
265 
266 	dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
267 	if (dma_mapping_error(&pdev->dev, dma))
268 		return -EBUSY;
269 
270 	*((dma_addr_t *)skb->cb) = dma;
271 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
272 						     idx * desc_sz);
273 	memset(buf_desc, 0, sizeof(*buf_desc));
274 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
275 	buf_desc->dma = cpu_to_le32(dma);
276 
277 	return 0;
278 }
279 
280 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
281 					struct rtw_pci_rx_ring *rx_ring,
282 					u32 idx, u32 desc_sz)
283 {
284 	struct device *dev = rtwdev->dev;
285 	struct rtw_pci_rx_buffer_desc *buf_desc;
286 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
287 
288 	dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
289 
290 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
291 						     idx * desc_sz);
292 	memset(buf_desc, 0, sizeof(*buf_desc));
293 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
294 	buf_desc->dma = cpu_to_le32(dma);
295 }
296 
297 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
298 				struct rtw_pci_rx_ring *rx_ring,
299 				u8 desc_size, u32 len)
300 {
301 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
302 	struct sk_buff *skb = NULL;
303 	dma_addr_t dma;
304 	u8 *head;
305 	int ring_sz = desc_size * len;
306 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
307 	int i, allocated;
308 	int ret = 0;
309 
310 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
311 	if (!head) {
312 		rtw_err(rtwdev, "failed to allocate rx ring\n");
313 		return -ENOMEM;
314 	}
315 	rx_ring->r.head = head;
316 
317 	for (i = 0; i < len; i++) {
318 		skb = dev_alloc_skb(buf_sz);
319 		if (!skb) {
320 			allocated = i;
321 			ret = -ENOMEM;
322 			goto err_out;
323 		}
324 
325 		memset(skb->data, 0, buf_sz);
326 		rx_ring->buf[i] = skb;
327 		ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
328 		if (ret) {
329 			allocated = i;
330 			dev_kfree_skb_any(skb);
331 			goto err_out;
332 		}
333 	}
334 
335 	rx_ring->r.dma = dma;
336 	rx_ring->r.len = len;
337 	rx_ring->r.desc_size = desc_size;
338 	rx_ring->r.wp = 0;
339 	rx_ring->r.rp = 0;
340 
341 	return 0;
342 
343 err_out:
344 	for (i = 0; i < allocated; i++) {
345 		skb = rx_ring->buf[i];
346 		if (!skb)
347 			continue;
348 		dma = *((dma_addr_t *)skb->cb);
349 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
350 		dev_kfree_skb_any(skb);
351 		rx_ring->buf[i] = NULL;
352 	}
353 	dma_free_coherent(&pdev->dev, ring_sz, head, dma);
354 
355 	rtw_err(rtwdev, "failed to init rx buffer\n");
356 
357 	return ret;
358 }
359 
360 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
361 {
362 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
363 	struct rtw_pci_tx_ring *tx_ring;
364 	struct rtw_pci_rx_ring *rx_ring;
365 	const struct rtw_chip_info *chip = rtwdev->chip;
366 	int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
367 	int tx_desc_size, rx_desc_size;
368 	u32 len;
369 	int ret;
370 
371 	tx_desc_size = chip->tx_buf_desc_sz;
372 
373 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
374 		tx_ring = &rtwpci->tx_rings[i];
375 		len = max_num_of_tx_queue(i);
376 		ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
377 		if (ret)
378 			goto out;
379 	}
380 
381 	rx_desc_size = chip->rx_buf_desc_sz;
382 
383 	for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
384 		rx_ring = &rtwpci->rx_rings[j];
385 		ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
386 					   RTK_MAX_RX_DESC_NUM);
387 		if (ret)
388 			goto out;
389 	}
390 
391 	return 0;
392 
393 out:
394 	tx_alloced = i;
395 	for (i = 0; i < tx_alloced; i++) {
396 		tx_ring = &rtwpci->tx_rings[i];
397 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
398 	}
399 
400 	rx_alloced = j;
401 	for (j = 0; j < rx_alloced; j++) {
402 		rx_ring = &rtwpci->rx_rings[j];
403 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
404 	}
405 
406 	return ret;
407 }
408 
409 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
410 {
411 	rtw_pci_free_trx_ring(rtwdev);
412 }
413 
414 static int rtw_pci_init(struct rtw_dev *rtwdev)
415 {
416 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
417 	int ret = 0;
418 
419 	rtwpci->irq_mask[0] = IMR_HIGHDOK |
420 			      IMR_MGNTDOK |
421 			      IMR_BKDOK |
422 			      IMR_BEDOK |
423 			      IMR_VIDOK |
424 			      IMR_VODOK |
425 			      IMR_ROK |
426 			      IMR_BCNDMAINT_E |
427 			      IMR_C2HCMD |
428 			      0;
429 	rtwpci->irq_mask[1] = IMR_TXFOVW |
430 			      0;
431 	rtwpci->irq_mask[3] = IMR_H2CDOK |
432 			      0;
433 	spin_lock_init(&rtwpci->irq_lock);
434 	spin_lock_init(&rtwpci->hwirq_lock);
435 	ret = rtw_pci_init_trx_ring(rtwdev);
436 
437 	return ret;
438 }
439 
440 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
441 {
442 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
443 	u32 len;
444 	u8 tmp;
445 	dma_addr_t dma;
446 
447 	tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
448 	rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
449 
450 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
451 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
452 
453 	if (!rtw_chip_wcpu_11n(rtwdev)) {
454 		len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
455 		dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
456 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
457 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
458 		rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
459 		rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
460 	}
461 
462 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
463 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
464 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
465 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
466 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
467 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
468 
469 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
470 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
471 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
472 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
473 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
474 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
475 
476 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
477 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
478 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
479 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
480 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
481 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
482 
483 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
484 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
485 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
486 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
487 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
488 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
489 
490 	len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
491 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
492 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
493 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
494 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
495 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
496 
497 	len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
498 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
499 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
500 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
501 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
502 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
503 
504 	len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
505 	dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
506 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
507 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
508 	rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
509 	rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
510 
511 	/* reset read/write point */
512 	rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
513 
514 	/* reset H2C Queue index in a single write */
515 	if (rtw_chip_wcpu_11ac(rtwdev))
516 		rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
517 				BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
518 }
519 
520 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
521 {
522 	rtw_pci_reset_buf_desc(rtwdev);
523 }
524 
525 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
526 				     struct rtw_pci *rtwpci, bool exclude_rx)
527 {
528 	unsigned long flags;
529 	u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
530 
531 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
532 
533 	rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
534 	rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
535 	if (rtw_chip_wcpu_11ac(rtwdev))
536 		rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
537 
538 	rtwpci->irq_enabled = true;
539 
540 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
541 }
542 
543 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
544 				      struct rtw_pci *rtwpci)
545 {
546 	unsigned long flags;
547 
548 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
549 
550 	if (!rtwpci->irq_enabled)
551 		goto out;
552 
553 	rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
554 	rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
555 	if (rtw_chip_wcpu_11ac(rtwdev))
556 		rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
557 
558 	rtwpci->irq_enabled = false;
559 
560 out:
561 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
562 }
563 
564 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
565 {
566 	/* reset dma and rx tag */
567 	rtw_write32_set(rtwdev, RTK_PCI_CTRL,
568 			BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
569 	rtwpci->rx_tag = 0;
570 }
571 
572 static int rtw_pci_setup(struct rtw_dev *rtwdev)
573 {
574 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
575 
576 	rtw_pci_reset_trx_ring(rtwdev);
577 	rtw_pci_dma_reset(rtwdev, rtwpci);
578 
579 	return 0;
580 }
581 
582 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
583 {
584 	struct rtw_pci_tx_ring *tx_ring;
585 	enum rtw_tx_queue_type queue;
586 
587 	rtw_pci_reset_trx_ring(rtwdev);
588 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
589 		tx_ring = &rtwpci->tx_rings[queue];
590 		rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
591 	}
592 }
593 
594 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
595 {
596 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
597 
598 	if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
599 		return;
600 
601 	napi_enable(&rtwpci->napi);
602 }
603 
604 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
605 {
606 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
607 
608 	if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
609 		return;
610 
611 	napi_synchronize(&rtwpci->napi);
612 	napi_disable(&rtwpci->napi);
613 }
614 
615 static int rtw_pci_start(struct rtw_dev *rtwdev)
616 {
617 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
618 
619 	rtw_pci_napi_start(rtwdev);
620 
621 	spin_lock_bh(&rtwpci->irq_lock);
622 	rtwpci->running = true;
623 	rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
624 	spin_unlock_bh(&rtwpci->irq_lock);
625 
626 	return 0;
627 }
628 
629 static void rtw_pci_stop(struct rtw_dev *rtwdev)
630 {
631 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
632 	struct pci_dev *pdev = rtwpci->pdev;
633 
634 	spin_lock_bh(&rtwpci->irq_lock);
635 	rtwpci->running = false;
636 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
637 	spin_unlock_bh(&rtwpci->irq_lock);
638 
639 	synchronize_irq(pdev->irq);
640 	rtw_pci_napi_stop(rtwdev);
641 
642 	spin_lock_bh(&rtwpci->irq_lock);
643 	rtw_pci_dma_release(rtwdev, rtwpci);
644 	spin_unlock_bh(&rtwpci->irq_lock);
645 }
646 
647 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
648 {
649 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
650 	struct rtw_pci_tx_ring *tx_ring;
651 	enum rtw_tx_queue_type queue;
652 	bool tx_empty = true;
653 
654 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
655 		goto enter_deep_ps;
656 
657 	lockdep_assert_held(&rtwpci->irq_lock);
658 
659 	/* Deep PS state is not allowed to TX-DMA */
660 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
661 		/* BCN queue is rsvd page, does not have DMA interrupt
662 		 * H2C queue is managed by firmware
663 		 */
664 		if (queue == RTW_TX_QUEUE_BCN ||
665 		    queue == RTW_TX_QUEUE_H2C)
666 			continue;
667 
668 		tx_ring = &rtwpci->tx_rings[queue];
669 
670 		/* check if there is any skb DMAing */
671 		if (skb_queue_len(&tx_ring->queue)) {
672 			tx_empty = false;
673 			break;
674 		}
675 	}
676 
677 	if (!tx_empty) {
678 		rtw_dbg(rtwdev, RTW_DBG_PS,
679 			"TX path not empty, cannot enter deep power save state\n");
680 		return;
681 	}
682 enter_deep_ps:
683 	set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
684 	rtw_power_mode_change(rtwdev, true);
685 }
686 
687 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
688 {
689 #if defined(__linux__)
690 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
691 
692 	lockdep_assert_held(&rtwpci->irq_lock);
693 #elif defined(__FreeBSD__)
694 	lockdep_assert_held(&((struct rtw_pci *)rtwdev->priv)->irq_lock);
695 #endif
696 
697 	if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
698 		rtw_power_mode_change(rtwdev, false);
699 }
700 
701 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
702 {
703 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
704 
705 	spin_lock_bh(&rtwpci->irq_lock);
706 
707 	if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
708 		rtw_pci_deep_ps_enter(rtwdev);
709 
710 	if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
711 		rtw_pci_deep_ps_leave(rtwdev);
712 
713 	spin_unlock_bh(&rtwpci->irq_lock);
714 }
715 
716 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
717 				      struct rtw_pci_tx_ring *ring)
718 {
719 	struct sk_buff *prev = skb_dequeue(&ring->queue);
720 	struct rtw_pci_tx_data *tx_data;
721 	dma_addr_t dma;
722 
723 	if (!prev)
724 		return;
725 
726 	tx_data = rtw_pci_get_tx_data(prev);
727 	dma = tx_data->dma;
728 	dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
729 	dev_kfree_skb_any(prev);
730 }
731 
732 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
733 			      struct rtw_pci_rx_ring *rx_ring,
734 			      u32 idx)
735 {
736 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
737 	const struct rtw_chip_info *chip = rtwdev->chip;
738 	struct rtw_pci_rx_buffer_desc *buf_desc;
739 	u32 desc_sz = chip->rx_buf_desc_sz;
740 	u16 total_pkt_size;
741 
742 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
743 						     idx * desc_sz);
744 	total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
745 
746 	/* rx tag mismatch, throw a warning */
747 	if (total_pkt_size != rtwpci->rx_tag)
748 		rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
749 
750 	rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
751 }
752 
753 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
754 {
755 	u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
756 	u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
757 
758 	return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
759 }
760 
761 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
762 {
763 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
764 	struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
765 	u32 cur_rp;
766 	u8 i;
767 
768 	/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
769 	 * bit dynamic, it's hard to define a reasonable fixed total timeout to
770 	 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
771 	 * polling times, so we just use for loop with udelay here.
772 	 */
773 	for (i = 0; i < 30; i++) {
774 		cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
775 		if (cur_rp == ring->r.wp)
776 			return;
777 
778 		udelay(1);
779 	}
780 
781 	if (!drop)
782 		rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
783 }
784 
785 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
786 				   bool drop)
787 {
788 	u8 q;
789 
790 	for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
791 		/* Unnecessary to flush BCN, H2C and HI tx queues. */
792 		if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C ||
793 		    q == RTW_TX_QUEUE_HI0)
794 			continue;
795 
796 		if (pci_queues & BIT(q))
797 			__pci_flush_queue(rtwdev, q, drop);
798 	}
799 }
800 
801 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
802 {
803 	u32 pci_queues = 0;
804 	u8 i;
805 
806 	/* If all of the hardware queues are requested to flush,
807 	 * flush all of the pci queues.
808 	 */
809 	if (queues == BIT(rtwdev->hw->queues) - 1) {
810 		pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
811 	} else {
812 		for (i = 0; i < rtwdev->hw->queues; i++)
813 			if (queues & BIT(i))
814 				pci_queues |= BIT(rtw_tx_ac_to_hwq(i));
815 	}
816 
817 	__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
818 }
819 
820 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev,
821 				      enum rtw_tx_queue_type queue)
822 {
823 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
824 	struct rtw_pci_tx_ring *ring;
825 	u32 bd_idx;
826 
827 	ring = &rtwpci->tx_rings[queue];
828 	bd_idx = rtw_pci_tx_queue_idx_addr[queue];
829 
830 	spin_lock_bh(&rtwpci->irq_lock);
831 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
832 		rtw_pci_deep_ps_leave(rtwdev);
833 	rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
834 	spin_unlock_bh(&rtwpci->irq_lock);
835 }
836 
837 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
838 {
839 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
840 	enum rtw_tx_queue_type queue;
841 
842 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
843 		if (test_and_clear_bit(queue, rtwpci->tx_queued))
844 			rtw_pci_tx_kick_off_queue(rtwdev, queue);
845 }
846 
847 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
848 				 struct rtw_tx_pkt_info *pkt_info,
849 				 struct sk_buff *skb,
850 				 enum rtw_tx_queue_type queue)
851 {
852 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
853 	const struct rtw_chip_info *chip = rtwdev->chip;
854 	struct rtw_pci_tx_ring *ring;
855 	struct rtw_pci_tx_data *tx_data;
856 	dma_addr_t dma;
857 	u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
858 	u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
859 	u32 size;
860 	u32 psb_len;
861 	u8 *pkt_desc;
862 	struct rtw_pci_tx_buffer_desc *buf_desc;
863 
864 	ring = &rtwpci->tx_rings[queue];
865 
866 	size = skb->len;
867 
868 	if (queue == RTW_TX_QUEUE_BCN)
869 		rtw_pci_release_rsvd_page(rtwpci, ring);
870 	else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
871 		return -ENOSPC;
872 
873 	pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
874 	memset(pkt_desc, 0, tx_pkt_desc_sz);
875 	pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
876 	rtw_tx_fill_tx_desc(pkt_info, skb);
877 	dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
878 			     DMA_TO_DEVICE);
879 	if (dma_mapping_error(&rtwpci->pdev->dev, dma))
880 		return -EBUSY;
881 
882 	/* after this we got dma mapped, there is no way back */
883 	buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
884 	memset(buf_desc, 0, tx_buf_desc_sz);
885 	psb_len = (skb->len - 1) / 128 + 1;
886 	if (queue == RTW_TX_QUEUE_BCN)
887 		psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
888 
889 	buf_desc[0].psb_len = cpu_to_le16(psb_len);
890 	buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
891 	buf_desc[0].dma = cpu_to_le32(dma);
892 	buf_desc[1].buf_size = cpu_to_le16(size);
893 	buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
894 
895 	tx_data = rtw_pci_get_tx_data(skb);
896 	tx_data->dma = dma;
897 	tx_data->sn = pkt_info->sn;
898 
899 	spin_lock_bh(&rtwpci->irq_lock);
900 
901 	skb_queue_tail(&ring->queue, skb);
902 
903 	if (queue == RTW_TX_QUEUE_BCN)
904 		goto out_unlock;
905 
906 	/* update write-index, and kick it off later */
907 	set_bit(queue, rtwpci->tx_queued);
908 	if (++ring->r.wp >= ring->r.len)
909 		ring->r.wp = 0;
910 
911 out_unlock:
912 	spin_unlock_bh(&rtwpci->irq_lock);
913 
914 	return 0;
915 }
916 
917 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
918 					u32 size)
919 {
920 	struct sk_buff *skb;
921 	struct rtw_tx_pkt_info pkt_info = {0};
922 	u8 reg_bcn_work;
923 	int ret;
924 
925 	skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
926 	if (!skb)
927 		return -ENOMEM;
928 
929 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
930 	if (ret) {
931 #if defined(__FreeBSD__)
932 		dev_kfree_skb_any(skb);
933 #endif
934 		rtw_err(rtwdev, "failed to write rsvd page data\n");
935 		return ret;
936 	}
937 
938 	/* reserved pages go through beacon queue */
939 	reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
940 	reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
941 	rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
942 
943 	return 0;
944 }
945 
946 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
947 {
948 	struct sk_buff *skb;
949 	struct rtw_tx_pkt_info pkt_info = {0};
950 	int ret;
951 
952 	skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
953 	if (!skb)
954 		return -ENOMEM;
955 
956 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
957 	if (ret) {
958 #if defined(__FreeBSD__)
959 		dev_kfree_skb_any(skb);
960 #endif
961 		rtw_err(rtwdev, "failed to write h2c data\n");
962 		return ret;
963 	}
964 
965 	rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
966 
967 	return 0;
968 }
969 
970 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
971 			    struct rtw_tx_pkt_info *pkt_info,
972 			    struct sk_buff *skb)
973 {
974 	enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
975 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
976 	struct rtw_pci_tx_ring *ring;
977 	int ret;
978 
979 	ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
980 	if (ret)
981 		return ret;
982 
983 	ring = &rtwpci->tx_rings[queue];
984 	spin_lock_bh(&rtwpci->irq_lock);
985 	if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
986 		ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
987 		ring->queue_stopped = true;
988 	}
989 	spin_unlock_bh(&rtwpci->irq_lock);
990 
991 	return 0;
992 }
993 
994 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
995 			   u8 hw_queue)
996 {
997 	struct ieee80211_hw *hw = rtwdev->hw;
998 	struct ieee80211_tx_info *info;
999 	struct rtw_pci_tx_ring *ring;
1000 	struct rtw_pci_tx_data *tx_data;
1001 	struct sk_buff *skb;
1002 	u32 count;
1003 	u32 bd_idx_addr;
1004 	u32 bd_idx, cur_rp, rp_idx;
1005 	u16 q_map;
1006 
1007 	ring = &rtwpci->tx_rings[hw_queue];
1008 
1009 	bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
1010 	bd_idx = rtw_read32(rtwdev, bd_idx_addr);
1011 	cur_rp = bd_idx >> 16;
1012 	cur_rp &= TRX_BD_IDX_MASK;
1013 	rp_idx = ring->r.rp;
1014 	if (cur_rp >= ring->r.rp)
1015 		count = cur_rp - ring->r.rp;
1016 	else
1017 		count = ring->r.len - (ring->r.rp - cur_rp);
1018 
1019 	while (count--) {
1020 		skb = skb_dequeue(&ring->queue);
1021 		if (!skb) {
1022 			rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
1023 				count, hw_queue, bd_idx, ring->r.rp, cur_rp);
1024 			break;
1025 		}
1026 		tx_data = rtw_pci_get_tx_data(skb);
1027 		dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
1028 				 DMA_TO_DEVICE);
1029 
1030 		/* just free command packets from host to card */
1031 		if (hw_queue == RTW_TX_QUEUE_H2C) {
1032 			dev_kfree_skb_irq(skb);
1033 			continue;
1034 		}
1035 
1036 		if (ring->queue_stopped &&
1037 		    avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
1038 			q_map = skb_get_queue_mapping(skb);
1039 			ieee80211_wake_queue(hw, q_map);
1040 			ring->queue_stopped = false;
1041 		}
1042 
1043 		if (++rp_idx >= ring->r.len)
1044 			rp_idx = 0;
1045 
1046 		skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
1047 
1048 		info = IEEE80211_SKB_CB(skb);
1049 
1050 		/* enqueue to wait for tx report */
1051 		if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
1052 			rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
1053 			continue;
1054 		}
1055 
1056 		/* always ACK for others, then they won't be marked as drop */
1057 		if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1058 			info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1059 		else
1060 			info->flags |= IEEE80211_TX_STAT_ACK;
1061 
1062 		ieee80211_tx_info_clear_status(info);
1063 		ieee80211_tx_status_irqsafe(hw, skb);
1064 	}
1065 
1066 	ring->r.rp = cur_rp;
1067 }
1068 
1069 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1070 {
1071 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1072 	struct napi_struct *napi = &rtwpci->napi;
1073 
1074 	napi_schedule(napi);
1075 }
1076 
1077 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1078 				     struct rtw_pci *rtwpci)
1079 {
1080 	struct rtw_pci_rx_ring *ring;
1081 	int count = 0;
1082 	u32 tmp, cur_wp;
1083 
1084 	ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1085 	tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1086 	cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1087 	if (cur_wp >= ring->r.wp)
1088 		count = cur_wp - ring->r.wp;
1089 	else
1090 		count = ring->r.len - (ring->r.wp - cur_wp);
1091 
1092 	return count;
1093 }
1094 
1095 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1096 			   u8 hw_queue, u32 limit)
1097 {
1098 	const struct rtw_chip_info *chip = rtwdev->chip;
1099 	struct napi_struct *napi = &rtwpci->napi;
1100 	struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1101 	struct rtw_rx_pkt_stat pkt_stat;
1102 	struct ieee80211_rx_status rx_status;
1103 	struct sk_buff *skb, *new;
1104 	u32 cur_rp = ring->r.rp;
1105 	u32 count, rx_done = 0;
1106 	u32 pkt_offset;
1107 	u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1108 	u32 buf_desc_sz = chip->rx_buf_desc_sz;
1109 	u32 new_len;
1110 	u8 *rx_desc;
1111 	dma_addr_t dma;
1112 
1113 	count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1114 	count = min(count, limit);
1115 
1116 	while (count--) {
1117 		rtw_pci_dma_check(rtwdev, ring, cur_rp);
1118 		skb = ring->buf[cur_rp];
1119 		dma = *((dma_addr_t *)skb->cb);
1120 		dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1121 					DMA_FROM_DEVICE);
1122 		rx_desc = skb->data;
1123 		chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1124 
1125 		/* offset from rx_desc to payload */
1126 		pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1127 			     pkt_stat.shift;
1128 
1129 		/* allocate a new skb for this frame,
1130 		 * discard the frame if none available
1131 		 */
1132 		new_len = pkt_stat.pkt_len + pkt_offset;
1133 		new = dev_alloc_skb(new_len);
1134 		if (WARN_ONCE(!new, "rx routine starvation\n"))
1135 			goto next_rp;
1136 
1137 		/* put the DMA data including rx_desc from phy to new skb */
1138 		skb_put_data(new, skb->data, new_len);
1139 
1140 		if (pkt_stat.is_c2h) {
1141 			rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1142 		} else {
1143 			/* remove rx_desc */
1144 			skb_pull(new, pkt_offset);
1145 
1146 			rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1147 			memcpy(new->cb, &rx_status, sizeof(rx_status));
1148 			ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1149 			rx_done++;
1150 		}
1151 
1152 next_rp:
1153 		/* new skb delivered to mac80211, re-enable original skb DMA */
1154 		rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1155 					    buf_desc_sz);
1156 
1157 		/* host read next element in ring */
1158 		if (++cur_rp >= ring->r.len)
1159 			cur_rp = 0;
1160 	}
1161 
1162 	ring->r.rp = cur_rp;
1163 	/* 'rp', the last position we have read, is seen as previous posistion
1164 	 * of 'wp' that is used to calculate 'count' next time.
1165 	 */
1166 	ring->r.wp = cur_rp;
1167 	rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1168 
1169 	return rx_done;
1170 }
1171 
1172 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1173 				   struct rtw_pci *rtwpci, u32 *irq_status)
1174 {
1175 	unsigned long flags;
1176 
1177 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1178 
1179 	irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1180 	irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1181 	if (rtw_chip_wcpu_11ac(rtwdev))
1182 		irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1183 	else
1184 		irq_status[3] = 0;
1185 	irq_status[0] &= rtwpci->irq_mask[0];
1186 	irq_status[1] &= rtwpci->irq_mask[1];
1187 	irq_status[3] &= rtwpci->irq_mask[3];
1188 	rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1189 	rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1190 	if (rtw_chip_wcpu_11ac(rtwdev))
1191 		rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1192 
1193 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1194 }
1195 
1196 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1197 {
1198 	struct rtw_dev *rtwdev = dev;
1199 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1200 
1201 	/* disable RTW PCI interrupt to avoid more interrupts before the end of
1202 	 * thread function
1203 	 *
1204 	 * disable HIMR here to also avoid new HISR flag being raised before
1205 	 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1206 	 * are cleared, the edge-triggered interrupt will not be generated when
1207 	 * a new HISR flag is set.
1208 	 */
1209 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1210 
1211 	return IRQ_WAKE_THREAD;
1212 }
1213 
1214 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1215 {
1216 	struct rtw_dev *rtwdev = dev;
1217 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1218 	u32 irq_status[4];
1219 	bool rx = false;
1220 
1221 	spin_lock_bh(&rtwpci->irq_lock);
1222 	rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1223 
1224 	if (irq_status[0] & IMR_MGNTDOK)
1225 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1226 	if (irq_status[0] & IMR_HIGHDOK)
1227 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1228 	if (irq_status[0] & IMR_BEDOK)
1229 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1230 	if (irq_status[0] & IMR_BKDOK)
1231 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1232 	if (irq_status[0] & IMR_VODOK)
1233 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1234 	if (irq_status[0] & IMR_VIDOK)
1235 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1236 	if (irq_status[3] & IMR_H2CDOK)
1237 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1238 	if (irq_status[0] & IMR_ROK) {
1239 		rtw_pci_rx_isr(rtwdev);
1240 		rx = true;
1241 	}
1242 	if (unlikely(irq_status[0] & IMR_C2HCMD))
1243 		rtw_fw_c2h_cmd_isr(rtwdev);
1244 
1245 	/* all of the jobs for this interrupt have been done */
1246 	if (rtwpci->running)
1247 		rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1248 	spin_unlock_bh(&rtwpci->irq_lock);
1249 
1250 	return IRQ_HANDLED;
1251 }
1252 
1253 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1254 			      struct pci_dev *pdev)
1255 {
1256 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1257 	unsigned long len;
1258 	u8 bar_id = 2;
1259 	int ret;
1260 
1261 	ret = pci_request_regions(pdev, KBUILD_MODNAME);
1262 	if (ret) {
1263 		rtw_err(rtwdev, "failed to request pci regions\n");
1264 		return ret;
1265 	}
1266 
1267 #if defined(__FreeBSD__)
1268 	ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1269 	if (ret) {
1270 		rtw_err(rtwdev, "failed to set dma mask to 32-bit\n");
1271 		goto err_release_regions;
1272 	}
1273 
1274 	ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1275 	if (ret) {
1276 		rtw_err(rtwdev, "failed to set consistent dma mask to 32-bit\n");
1277 		goto err_release_regions;
1278 	}
1279 #endif
1280 
1281 	len = pci_resource_len(pdev, bar_id);
1282 #if defined(__FreeBSD__)
1283 	linuxkpi_pcim_want_to_use_bus_functions(pdev);
1284 #endif
1285 	rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1286 	if (!rtwpci->mmap) {
1287 		pci_release_regions(pdev);
1288 		rtw_err(rtwdev, "failed to map pci memory\n");
1289 		return -ENOMEM;
1290 	}
1291 
1292 	return 0;
1293 #if defined(__FreeBSD__)
1294 err_release_regions:
1295 	pci_release_regions(pdev);
1296 	return ret;
1297 #endif
1298 }
1299 
1300 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1301 				 struct pci_dev *pdev)
1302 {
1303 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1304 
1305 	if (rtwpci->mmap) {
1306 		pci_iounmap(pdev, rtwpci->mmap);
1307 		pci_release_regions(pdev);
1308 	}
1309 }
1310 
1311 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1312 {
1313 	u16 write_addr;
1314 	u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1315 	u8 flag;
1316 	u8 cnt;
1317 
1318 	write_addr = addr & BITS_DBI_ADDR_MASK;
1319 	write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1320 	rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1321 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1322 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1323 
1324 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1325 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1326 		if (flag == 0)
1327 			return;
1328 
1329 		udelay(10);
1330 	}
1331 
1332 	WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1333 }
1334 
1335 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1336 {
1337 	u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1338 	u8 flag;
1339 	u8 cnt;
1340 
1341 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1342 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1343 
1344 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1345 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1346 		if (flag == 0) {
1347 			read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1348 			*value = rtw_read8(rtwdev, read_addr);
1349 			return 0;
1350 		}
1351 
1352 		udelay(10);
1353 	}
1354 
1355 	WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1356 	return -EIO;
1357 }
1358 
1359 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1360 {
1361 	u8 page;
1362 	u8 wflag;
1363 	u8 cnt;
1364 
1365 	rtw_write16(rtwdev, REG_MDIO_V1, data);
1366 
1367 	page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1368 	page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1369 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1370 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1371 	rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1372 
1373 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1374 		wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1375 					BIT_MDIO_WFLAG_V1);
1376 		if (wflag == 0)
1377 			return;
1378 
1379 		udelay(10);
1380 	}
1381 
1382 	WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1383 }
1384 
1385 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1386 {
1387 	u8 value;
1388 	int ret;
1389 
1390 	if (rtw_pci_disable_aspm)
1391 		return;
1392 
1393 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1394 	if (ret) {
1395 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1396 		return;
1397 	}
1398 
1399 	if (enable)
1400 		value |= BIT_CLKREQ_SW_EN;
1401 	else
1402 		value &= ~BIT_CLKREQ_SW_EN;
1403 
1404 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1405 }
1406 
1407 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
1408 {
1409 	u8 value;
1410 	int ret;
1411 
1412 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1413 	if (ret) {
1414 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1415 		return;
1416 	}
1417 
1418 	if (enable)
1419 		value &= ~BIT_CLKREQ_N_PAD;
1420 	else
1421 		value |= BIT_CLKREQ_N_PAD;
1422 
1423 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1424 }
1425 
1426 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1427 {
1428 	u8 value;
1429 	int ret;
1430 
1431 	if (rtw_pci_disable_aspm)
1432 		return;
1433 
1434 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1435 	if (ret) {
1436 		rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1437 		return;
1438 	}
1439 
1440 	if (enable)
1441 		value |= BIT_L1_SW_EN;
1442 	else
1443 		value &= ~BIT_L1_SW_EN;
1444 
1445 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1446 }
1447 
1448 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1449 {
1450 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1451 
1452 	/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1453 	 * only be enabled when host supports it.
1454 	 *
1455 	 * And ASPM mechanism should be enabled when driver/firmware enters
1456 	 * power save mode, without having heavy traffic. Because we've
1457 	 * experienced some inter-operability issues that the link tends
1458 	 * to enter L1 state on the fly even when driver is having high
1459 	 * throughput. This is probably because the ASPM behavior slightly
1460 	 * varies from different SOC.
1461 	 */
1462 	if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
1463 		return;
1464 
1465 	if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
1466 	    (!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
1467 		rtw_pci_aspm_set(rtwdev, enter);
1468 }
1469 
1470 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1471 {
1472 	const struct rtw_chip_info *chip = rtwdev->chip;
1473 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1474 	struct pci_dev *pdev = rtwpci->pdev;
1475 	u16 link_ctrl;
1476 	int ret;
1477 
1478 	/* RTL8822CE has enabled REFCLK auto calibration, it does not need
1479 	 * to add clock delay to cover the REFCLK timing gap.
1480 	 */
1481 	if (chip->id == RTW_CHIP_TYPE_8822C)
1482 		rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1483 
1484 	/* Though there is standard PCIE configuration space to set the
1485 	 * link control register, but by Realtek's design, driver should
1486 	 * check if host supports CLKREQ/ASPM to enable the HW module.
1487 	 *
1488 	 * These functions are implemented by two HW modules associated,
1489 	 * one is responsible to access PCIE configuration space to
1490 	 * follow the host settings, and another is in charge of doing
1491 	 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1492 	 * the host does not support it, and due to some reasons or wrong
1493 	 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1494 	 * loss if HW misbehaves on the link.
1495 	 *
1496 	 * Hence it's designed that driver should first check the PCIE
1497 	 * configuration space is sync'ed and enabled, then driver can turn
1498 	 * on the other module that is actually working on the mechanism.
1499 	 */
1500 	ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1501 	if (ret) {
1502 		rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1503 		return;
1504 	}
1505 
1506 	if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1507 		rtw_pci_clkreq_set(rtwdev, true);
1508 
1509 	rtwpci->link_ctrl = link_ctrl;
1510 }
1511 
1512 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1513 {
1514 	const struct rtw_chip_info *chip = rtwdev->chip;
1515 
1516 	switch (chip->id) {
1517 	case RTW_CHIP_TYPE_8822C:
1518 		if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1519 			rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1520 					 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1521 		break;
1522 	default:
1523 		break;
1524 	}
1525 }
1526 
1527 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1528 {
1529 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1530 	const struct rtw_chip_info *chip = rtwdev->chip;
1531 	struct pci_dev *pdev = rtwpci->pdev;
1532 	const struct rtw_intf_phy_para *para;
1533 	u16 cut;
1534 	u16 value;
1535 	u16 offset;
1536 	int i;
1537 	int ret;
1538 
1539 	cut = BIT(0) << rtwdev->hal.cut_version;
1540 
1541 	for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1542 		para = &chip->intf_table->gen1_para[i];
1543 		if (!(para->cut_mask & cut))
1544 			continue;
1545 		if (para->offset == 0xffff)
1546 			break;
1547 		offset = para->offset;
1548 		value = para->value;
1549 		if (para->ip_sel == RTW_IP_SEL_PHY)
1550 			rtw_mdio_write(rtwdev, offset, value, true);
1551 		else
1552 			rtw_dbi_write8(rtwdev, offset, value);
1553 	}
1554 
1555 	for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1556 		para = &chip->intf_table->gen2_para[i];
1557 		if (!(para->cut_mask & cut))
1558 			continue;
1559 		if (para->offset == 0xffff)
1560 			break;
1561 		offset = para->offset;
1562 		value = para->value;
1563 		if (para->ip_sel == RTW_IP_SEL_PHY)
1564 			rtw_mdio_write(rtwdev, offset, value, false);
1565 		else
1566 			rtw_dbi_write8(rtwdev, offset, value);
1567 	}
1568 
1569 	rtw_pci_link_cfg(rtwdev);
1570 
1571 	/* Disable 8821ce completion timeout by default */
1572 	if (chip->id == RTW_CHIP_TYPE_8821C) {
1573 		ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
1574 					       PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
1575 		if (ret)
1576 			rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
1577 				ret);
1578 	}
1579 }
1580 
1581 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1582 {
1583 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1584 	struct rtw_dev *rtwdev = hw->priv;
1585 	const struct rtw_chip_info *chip = rtwdev->chip;
1586 	struct rtw_efuse *efuse = &rtwdev->efuse;
1587 
1588 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1589 		rtw_pci_clkreq_pad_low(rtwdev, true);
1590 	return 0;
1591 }
1592 
1593 static int __maybe_unused rtw_pci_resume(struct device *dev)
1594 {
1595 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1596 	struct rtw_dev *rtwdev = hw->priv;
1597 	const struct rtw_chip_info *chip = rtwdev->chip;
1598 	struct rtw_efuse *efuse = &rtwdev->efuse;
1599 
1600 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1601 		rtw_pci_clkreq_pad_low(rtwdev, false);
1602 	return 0;
1603 }
1604 
1605 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1606 EXPORT_SYMBOL(rtw_pm_ops);
1607 
1608 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1609 {
1610 	int ret;
1611 
1612 	ret = pci_enable_device(pdev);
1613 	if (ret) {
1614 		rtw_err(rtwdev, "failed to enable pci device\n");
1615 		return ret;
1616 	}
1617 
1618 	pci_set_master(pdev);
1619 	pci_set_drvdata(pdev, rtwdev->hw);
1620 	SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1621 
1622 	return 0;
1623 }
1624 
1625 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1626 {
1627 	pci_disable_device(pdev);
1628 }
1629 
1630 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1631 {
1632 	struct rtw_pci *rtwpci;
1633 	int ret;
1634 
1635 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1636 	rtwpci->pdev = pdev;
1637 
1638 	/* after this driver can access to hw registers */
1639 	ret = rtw_pci_io_mapping(rtwdev, pdev);
1640 	if (ret) {
1641 		rtw_err(rtwdev, "failed to request pci io region\n");
1642 		goto err_out;
1643 	}
1644 
1645 	ret = rtw_pci_init(rtwdev);
1646 	if (ret) {
1647 		rtw_err(rtwdev, "failed to allocate pci resources\n");
1648 		goto err_io_unmap;
1649 	}
1650 
1651 	return 0;
1652 
1653 err_io_unmap:
1654 	rtw_pci_io_unmapping(rtwdev, pdev);
1655 
1656 err_out:
1657 	return ret;
1658 }
1659 
1660 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1661 {
1662 	rtw_pci_deinit(rtwdev);
1663 	rtw_pci_io_unmapping(rtwdev, pdev);
1664 }
1665 
1666 static struct rtw_hci_ops rtw_pci_ops = {
1667 	.tx_write = rtw_pci_tx_write,
1668 	.tx_kick_off = rtw_pci_tx_kick_off,
1669 	.flush_queues = rtw_pci_flush_queues,
1670 	.setup = rtw_pci_setup,
1671 	.start = rtw_pci_start,
1672 	.stop = rtw_pci_stop,
1673 	.deep_ps = rtw_pci_deep_ps,
1674 	.link_ps = rtw_pci_link_ps,
1675 	.interface_cfg = rtw_pci_interface_cfg,
1676 
1677 	.read8 = rtw_pci_read8,
1678 	.read16 = rtw_pci_read16,
1679 	.read32 = rtw_pci_read32,
1680 	.write8 = rtw_pci_write8,
1681 	.write16 = rtw_pci_write16,
1682 	.write32 = rtw_pci_write32,
1683 	.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1684 	.write_data_h2c = rtw_pci_write_data_h2c,
1685 };
1686 
1687 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1688 {
1689 	unsigned int flags = PCI_IRQ_LEGACY;
1690 	int ret;
1691 
1692 	if (!rtw_disable_msi)
1693 		flags |= PCI_IRQ_MSI;
1694 
1695 	ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1696 	if (ret < 0) {
1697 		rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1698 		return ret;
1699 	}
1700 
1701 	ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1702 					rtw_pci_interrupt_handler,
1703 					rtw_pci_interrupt_threadfn,
1704 					IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1705 	if (ret) {
1706 		rtw_err(rtwdev, "failed to request irq %d\n", ret);
1707 		pci_free_irq_vectors(pdev);
1708 	}
1709 
1710 	return ret;
1711 }
1712 
1713 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1714 {
1715 	devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1716 	pci_free_irq_vectors(pdev);
1717 }
1718 
1719 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1720 {
1721 	struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1722 	struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1723 					      priv);
1724 	int work_done = 0;
1725 
1726 	if (rtwpci->rx_no_aspm)
1727 		rtw_pci_link_ps(rtwdev, false);
1728 
1729 	while (work_done < budget) {
1730 		u32 work_done_once;
1731 
1732 		work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1733 						 budget - work_done);
1734 		if (work_done_once == 0)
1735 			break;
1736 		work_done += work_done_once;
1737 	}
1738 	if (work_done < budget) {
1739 		napi_complete_done(napi, work_done);
1740 		spin_lock_bh(&rtwpci->irq_lock);
1741 		if (rtwpci->running)
1742 			rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1743 		spin_unlock_bh(&rtwpci->irq_lock);
1744 		/* When ISR happens during polling and before napi_complete
1745 		 * while no further data is received. Data on the dma_ring will
1746 		 * not be processed immediately. Check whether dma ring is
1747 		 * empty and perform napi_schedule accordingly.
1748 		 */
1749 		if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1750 			napi_schedule(napi);
1751 	}
1752 	if (rtwpci->rx_no_aspm)
1753 		rtw_pci_link_ps(rtwdev, true);
1754 
1755 	return work_done;
1756 }
1757 
1758 static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
1759 {
1760 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1761 
1762 	init_dummy_netdev(&rtwpci->netdev);
1763 	netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
1764 }
1765 
1766 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1767 {
1768 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1769 
1770 	rtw_pci_napi_stop(rtwdev);
1771 	netif_napi_del(&rtwpci->napi);
1772 }
1773 
1774 int rtw_pci_probe(struct pci_dev *pdev,
1775 		  const struct pci_device_id *id)
1776 {
1777 	struct pci_dev *bridge = pci_upstream_bridge(pdev);
1778 	struct ieee80211_hw *hw;
1779 	struct rtw_dev *rtwdev;
1780 	struct rtw_pci *rtwpci;
1781 	int drv_data_size;
1782 	int ret;
1783 
1784 	drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1785 	hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1786 	if (!hw) {
1787 		dev_err(&pdev->dev, "failed to allocate hw\n");
1788 		return -ENOMEM;
1789 	}
1790 
1791 	rtwdev = hw->priv;
1792 	rtwdev->hw = hw;
1793 	rtwdev->dev = &pdev->dev;
1794 	rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1795 	rtwdev->hci.ops = &rtw_pci_ops;
1796 	rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1797 
1798 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1799 	atomic_set(&rtwpci->link_usage, 1);
1800 
1801 	ret = rtw_core_init(rtwdev);
1802 	if (ret)
1803 		goto err_release_hw;
1804 
1805 	rtw_dbg(rtwdev, RTW_DBG_PCI,
1806 		"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1807 		pdev->vendor, pdev->device, pdev->revision);
1808 
1809 	ret = rtw_pci_claim(rtwdev, pdev);
1810 	if (ret) {
1811 		rtw_err(rtwdev, "failed to claim pci device\n");
1812 		goto err_deinit_core;
1813 	}
1814 
1815 	ret = rtw_pci_setup_resource(rtwdev, pdev);
1816 	if (ret) {
1817 		rtw_err(rtwdev, "failed to setup pci resources\n");
1818 		goto err_pci_declaim;
1819 	}
1820 
1821 	rtw_pci_napi_init(rtwdev);
1822 
1823 	ret = rtw_chip_info_setup(rtwdev);
1824 	if (ret) {
1825 		rtw_err(rtwdev, "failed to setup chip information\n");
1826 		goto err_destroy_pci;
1827 	}
1828 
1829 	/* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
1830 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
1831 		rtwpci->rx_no_aspm = true;
1832 
1833 	rtw_pci_phy_cfg(rtwdev);
1834 
1835 	ret = rtw_register_hw(rtwdev, hw);
1836 	if (ret) {
1837 		rtw_err(rtwdev, "failed to register hw\n");
1838 		goto err_destroy_pci;
1839 	}
1840 
1841 	ret = rtw_pci_request_irq(rtwdev, pdev);
1842 	if (ret) {
1843 		ieee80211_unregister_hw(hw);
1844 		goto err_destroy_pci;
1845 	}
1846 
1847 	return 0;
1848 
1849 err_destroy_pci:
1850 	rtw_pci_napi_deinit(rtwdev);
1851 	rtw_pci_destroy(rtwdev, pdev);
1852 
1853 err_pci_declaim:
1854 	rtw_pci_declaim(rtwdev, pdev);
1855 
1856 err_deinit_core:
1857 	rtw_core_deinit(rtwdev);
1858 
1859 err_release_hw:
1860 	ieee80211_free_hw(hw);
1861 
1862 	return ret;
1863 }
1864 EXPORT_SYMBOL(rtw_pci_probe);
1865 
1866 void rtw_pci_remove(struct pci_dev *pdev)
1867 {
1868 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1869 	struct rtw_dev *rtwdev;
1870 	struct rtw_pci *rtwpci;
1871 
1872 	if (!hw)
1873 		return;
1874 
1875 	rtwdev = hw->priv;
1876 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1877 
1878 	rtw_unregister_hw(rtwdev, hw);
1879 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1880 	rtw_pci_napi_deinit(rtwdev);
1881 	rtw_pci_destroy(rtwdev, pdev);
1882 	rtw_pci_declaim(rtwdev, pdev);
1883 	rtw_pci_free_irq(rtwdev, pdev);
1884 	rtw_core_deinit(rtwdev);
1885 	ieee80211_free_hw(hw);
1886 }
1887 EXPORT_SYMBOL(rtw_pci_remove);
1888 
1889 void rtw_pci_shutdown(struct pci_dev *pdev)
1890 {
1891 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1892 	struct rtw_dev *rtwdev;
1893 	const struct rtw_chip_info *chip;
1894 
1895 	if (!hw)
1896 		return;
1897 
1898 	rtwdev = hw->priv;
1899 	chip = rtwdev->chip;
1900 
1901 	if (chip->ops->shutdown)
1902 		chip->ops->shutdown(rtwdev);
1903 
1904 	pci_set_power_state(pdev, PCI_D3hot);
1905 }
1906 EXPORT_SYMBOL(rtw_pci_shutdown);
1907 
1908 MODULE_AUTHOR("Realtek Corporation");
1909 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
1910 MODULE_LICENSE("Dual BSD/GPL");
1911 #if defined(__FreeBSD__)
1912 MODULE_VERSION(rtw_pci, 1);
1913 MODULE_DEPEND(rtw_pci, linuxkpi, 1, 1, 1);
1914 MODULE_DEPEND(rtw_pci, linuxkpi_wlan, 1, 1, 1);
1915 #ifdef CONFIG_RTW88_DEBUGFS
1916 MODULE_DEPEND(rtw_pci, lindebugfs, 1, 1, 1);
1917 #endif
1918 #endif
1919