1 /*
2  * Argon2 source code package
3  *
4  * Written by Daniel Dinu and Dmitry Khovratovich, 2015
5  *
6  * This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
7  *
8  * You should have received a copy of the CC0 Public Domain Dedication along
9  * with
10  * this software. If not, see
11  * <http://creativecommons.org/publicdomain/zero/1.0/>.
12  */
13 
14 #include <stdint.h>
15 #include <stdlib.h>
16 #include <string.h>
17 
18 #include "argon2-core.h"
19 #include "argon2.h"
20 #include "blamka-round-ref.h"
21 #include "private/common.h"
22 
23 static void
24 fill_block(const block *prev_block, const block *ref_block, block *next_block)
25 {
26     block    blockR, block_tmp;
27     unsigned i;
28 
29     copy_block(&blockR, ref_block);
30     xor_block(&blockR, prev_block);
31     copy_block(&block_tmp, &blockR);
32     /* Now blockR = ref_block + prev_block and bloc_tmp = ref_block + prev_block
33        Apply Blake2 on columns of 64-bit words: (0,1,...,15), then
34        (16,17,..31)... finally (112,113,...127) */
35     for (i = 0; i < 8; ++i) {
36         BLAKE2_ROUND_NOMSG(
37             blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2],
38             blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5],
39             blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8],
40             blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11],
41             blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14],
42             blockR.v[16 * i + 15]);
43     }
44 
45     /* Apply Blake2 on rows of 64-bit words: (0,1,16,17,...112,113), then
46        (2,3,18,19,...,114,115).. finally (14,15,30,31,...,126,127) */
47     for (i = 0; i < 8; i++) {
48         BLAKE2_ROUND_NOMSG(
49             blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16],
50             blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33],
51             blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64],
52             blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81],
53             blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112],
54             blockR.v[2 * i + 113]);
55     }
56 
57     copy_block(next_block, &block_tmp);
58     xor_block(next_block, &blockR);
59 }
60 
61 static void
62 fill_block_with_xor(const block *prev_block, const block *ref_block,
63                     block *next_block)
64 {
65     block    blockR, block_tmp;
66     unsigned i;
67 
68     copy_block(&blockR, ref_block);
69     xor_block(&blockR, prev_block);
70     copy_block(&block_tmp, &blockR);
71     xor_block(&block_tmp,
72               next_block); /* Saving the next block contents for XOR over */
73     /* Now blockR = ref_block + prev_block and bloc_tmp = ref_block + prev_block
74      * + next_block */
75     /* Apply Blake2 on columns of 64-bit words: (0,1,...,15) , then
76        (16,17,..31)... finally (112,113,...127) */
77     for (i = 0; i < 8; ++i) {
78         BLAKE2_ROUND_NOMSG(
79             blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2],
80             blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5],
81             blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8],
82             blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11],
83             blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14],
84             blockR.v[16 * i + 15]);
85     }
86 
87     /* Apply Blake2 on rows of 64-bit words: (0,1,16,17,...112,113), then
88        (2,3,18,19,...,114,115).. finally (14,15,30,31,...,126,127) */
89     for (i = 0; i < 8; i++) {
90         BLAKE2_ROUND_NOMSG(
91             blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16],
92             blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33],
93             blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64],
94             blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81],
95             blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112],
96             blockR.v[2 * i + 113]);
97     }
98 
99     copy_block(next_block, &block_tmp);
100     xor_block(next_block, &blockR);
101 }
102 
103 /*
104  * Generate pseudo-random values to reference blocks in the segment and puts
105  * them into the array
106  * @param instance Pointer to the current instance
107  * @param position Pointer to the current position
108  * @param pseudo_rands Pointer to the array of 64-bit values
109  * @pre pseudo_rands must point to @a instance->segment_length allocated values
110  */
111 static void
112 generate_addresses(const argon2_instance_t *instance,
113                    const argon2_position_t *position, uint64_t *pseudo_rands)
114 {
115     block    zero_block, input_block, address_block, tmp_block;
116     uint32_t i;
117 
118     init_block_value(&zero_block, 0);
119     init_block_value(&input_block, 0);
120 
121     if (instance != NULL && position != NULL) {
122         input_block.v[0] = position->pass;
123         input_block.v[1] = position->lane;
124         input_block.v[2] = position->slice;
125         input_block.v[3] = instance->memory_blocks;
126         input_block.v[4] = instance->passes;
127         input_block.v[5] = instance->type;
128 
129         for (i = 0; i < instance->segment_length; ++i) {
130             if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
131                 input_block.v[6]++;
132                 init_block_value(&tmp_block, 0);
133                 init_block_value(&address_block, 0);
134                 fill_block_with_xor(&zero_block, &input_block, &tmp_block);
135                 fill_block_with_xor(&zero_block, &tmp_block, &address_block);
136             }
137 
138             pseudo_rands[i] = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
139         }
140     }
141 }
142 
143 void
144 fill_segment_ref(const argon2_instance_t *instance, argon2_position_t position)
145 {
146     block    *ref_block = NULL, *curr_block = NULL;
147     /* Pseudo-random values that determine the reference block position */
148     uint64_t *pseudo_rands = NULL;
149     uint64_t  pseudo_rand, ref_index, ref_lane;
150     uint32_t  prev_offset, curr_offset;
151     uint32_t  starting_index;
152     uint32_t  i;
153     int       data_independent_addressing = 1;
154 
155     if (instance == NULL) {
156         return;
157     }
158 
159     if (instance->type == Argon2_id &&
160         (position.pass != 0 || position.slice >= ARGON2_SYNC_POINTS / 2)) {
161         data_independent_addressing = 0;
162     }
163 
164     pseudo_rands = instance->pseudo_rands;
165 
166     if (data_independent_addressing) {
167         generate_addresses(instance, &position, pseudo_rands);
168     }
169 
170     starting_index = 0;
171 
172     if ((0 == position.pass) && (0 == position.slice)) {
173         starting_index = 2; /* we have already generated the first two blocks */
174     }
175 
176     /* Offset of the current block */
177     curr_offset = position.lane * instance->lane_length +
178                   position.slice * instance->segment_length + starting_index;
179 
180     if (0 == curr_offset % instance->lane_length) {
181         /* Last block in this lane */
182         prev_offset = curr_offset + instance->lane_length - 1;
183     } else {
184         /* Previous block */
185         prev_offset = curr_offset - 1;
186     }
187 
188     for (i = starting_index; i < instance->segment_length;
189          ++i, ++curr_offset, ++prev_offset) {
190         /*1.1 Rotating prev_offset if needed */
191         if (curr_offset % instance->lane_length == 1) {
192             prev_offset = curr_offset - 1;
193         }
194 
195         /* 1.2 Computing the index of the reference block */
196         /* 1.2.1 Taking pseudo-random value from the previous block */
197         if (data_independent_addressing) {
198 #pragma warning(push)
199 #pragma warning(disable : 6385)
200             pseudo_rand = pseudo_rands[i];
201 #pragma warning(pop)
202         } else {
203             pseudo_rand = instance->region->memory[prev_offset].v[0];
204         }
205 
206         /* 1.2.2 Computing the lane of the reference block */
207         ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
208 
209         if ((position.pass == 0) && (position.slice == 0)) {
210             /* Can not reference other lanes yet */
211             ref_lane = position.lane;
212         }
213 
214         /* 1.2.3 Computing the number of possible reference block within the
215          * lane.
216          */
217         position.index = i;
218         ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
219                                 ref_lane == position.lane);
220 
221         /* 2 Creating a new block */
222         ref_block = instance->region->memory +
223                     instance->lane_length * ref_lane + ref_index;
224         curr_block = instance->region->memory + curr_offset;
225         if (position.pass != 0) {
226             fill_block_with_xor(instance->region->memory + prev_offset,
227                                 ref_block, curr_block);
228         } else {
229             fill_block(instance->region->memory + prev_offset, ref_block,
230                        curr_block);
231         }
232     }
233 }
234