1 /*
2  * Argon2 source code package
3  *
4  * Written by Daniel Dinu and Dmitry Khovratovich, 2015
5  *
6  * This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
7  *
8  * You should have received a copy of the CC0 Public Domain Dedication along
9  * with
10  * this software. If not, see
11  * <http://creativecommons.org/publicdomain/zero/1.0/>.
12  */
13 
14 #include <stdint.h>
15 #include <stdlib.h>
16 #include <string.h>
17 
18 #include "argon2-core.h"
19 #include "argon2.h"
20 #include "private/common.h"
21 #include "private/sse2_64_32.h"
22 
23 #if defined(HAVE_EMMINTRIN_H) && defined(HAVE_TMMINTRIN_H)
24 
25 # ifdef __GNUC__
26 #  pragma GCC target("sse2")
27 #  pragma GCC target("ssse3")
28 # endif
29 
30 # ifdef _MSC_VER
31 #  include <intrin.h> /* for _mm_set_epi64x */
32 # endif
33 # include <emmintrin.h>
34 # include <tmmintrin.h>
35 
36 # include "blamka-round-ssse3.h"
37 
38 static void
39 fill_block(__m128i *state, const uint8_t *ref_block, uint8_t *next_block)
40 {
41     __m128i  block_XY[ARGON2_OWORDS_IN_BLOCK];
42     uint32_t i;
43 
44     for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
45         block_XY[i] = state[i] = _mm_xor_si128(
46             state[i], _mm_loadu_si128((__m128i const *) (&ref_block[16 * i])));
47     }
48 
49     for (i = 0; i < 8; ++i) {
50         BLAKE2_ROUND(state[8 * i + 0], state[8 * i + 1], state[8 * i + 2],
51                      state[8 * i + 3], state[8 * i + 4], state[8 * i + 5],
52                      state[8 * i + 6], state[8 * i + 7]);
53     }
54 
55     for (i = 0; i < 8; ++i) {
56         BLAKE2_ROUND(state[8 * 0 + i], state[8 * 1 + i], state[8 * 2 + i],
57                      state[8 * 3 + i], state[8 * 4 + i], state[8 * 5 + i],
58                      state[8 * 6 + i], state[8 * 7 + i]);
59     }
60 
61     for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
62         state[i] = _mm_xor_si128(state[i], block_XY[i]);
63         _mm_storeu_si128((__m128i *) (&next_block[16 * i]), state[i]);
64     }
65 }
66 
67 static void
68 fill_block_with_xor(__m128i *state, const uint8_t *ref_block,
69                     uint8_t *next_block)
70 {
71     __m128i  block_XY[ARGON2_OWORDS_IN_BLOCK];
72     uint32_t i;
73 
74     for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
75         state[i] = _mm_xor_si128(
76             state[i], _mm_loadu_si128((__m128i const *) (&ref_block[16 * i])));
77         block_XY[i] = _mm_xor_si128(
78             state[i], _mm_loadu_si128((__m128i const *) (&next_block[16 * i])));
79     }
80 
81     for (i = 0; i < 8; ++i) {
82         BLAKE2_ROUND(state[8 * i + 0], state[8 * i + 1], state[8 * i + 2],
83                      state[8 * i + 3], state[8 * i + 4], state[8 * i + 5],
84                      state[8 * i + 6], state[8 * i + 7]);
85     }
86 
87     for (i = 0; i < 8; ++i) {
88         BLAKE2_ROUND(state[8 * 0 + i], state[8 * 1 + i], state[8 * 2 + i],
89                      state[8 * 3 + i], state[8 * 4 + i], state[8 * 5 + i],
90                      state[8 * 6 + i], state[8 * 7 + i]);
91     }
92 
93     for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
94         state[i] = _mm_xor_si128(state[i], block_XY[i]);
95         _mm_storeu_si128((__m128i *) (&next_block[16 * i]), state[i]);
96     }
97 }
98 
99 static void
100 generate_addresses(const argon2_instance_t *instance,
101                    const argon2_position_t *position, uint64_t *pseudo_rands)
102 {
103     block    address_block, input_block, tmp_block;
104     uint32_t i;
105 
106     init_block_value(&address_block, 0);
107     init_block_value(&input_block, 0);
108 
109     if (instance != NULL && position != NULL) {
110         input_block.v[0] = position->pass;
111         input_block.v[1] = position->lane;
112         input_block.v[2] = position->slice;
113         input_block.v[3] = instance->memory_blocks;
114         input_block.v[4] = instance->passes;
115         input_block.v[5] = instance->type;
116 
117         for (i = 0; i < instance->segment_length; ++i) {
118             if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
119                 /* Temporary zero-initialized blocks */
120                 __m128i zero_block[ARGON2_OWORDS_IN_BLOCK];
121                 __m128i zero2_block[ARGON2_OWORDS_IN_BLOCK];
122 
123                 memset(zero_block, 0, sizeof(zero_block));
124                 memset(zero2_block, 0, sizeof(zero2_block));
125                 init_block_value(&address_block, 0);
126                 init_block_value(&tmp_block, 0);
127                 /* Increasing index counter */
128                 input_block.v[6]++;
129                 /* First iteration of G */
130                 fill_block_with_xor(zero_block, (uint8_t *) &input_block.v,
131                                     (uint8_t *) &tmp_block.v);
132                 /* Second iteration of G */
133                 fill_block_with_xor(zero2_block, (uint8_t *) &tmp_block.v,
134                                     (uint8_t *) &address_block.v);
135             }
136 
137             pseudo_rands[i] = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
138         }
139     }
140 }
141 
142 void
143 fill_segment_ssse3(const argon2_instance_t *instance,
144                    argon2_position_t        position)
145 {
146     block    *ref_block = NULL, *curr_block = NULL;
147     uint64_t  pseudo_rand, ref_index, ref_lane;
148     uint32_t  prev_offset, curr_offset;
149     uint32_t  starting_index, i;
150     __m128i   state[ARGON2_OWORDS_IN_BLOCK];
151     int       data_independent_addressing = 1;
152 
153     /* Pseudo-random values that determine the reference block position */
154     uint64_t *pseudo_rands = NULL;
155 
156     if (instance == NULL) {
157         return;
158     }
159 
160     if (instance->type == Argon2_id &&
161         (position.pass != 0 || position.slice >= ARGON2_SYNC_POINTS / 2)) {
162         data_independent_addressing = 0;
163     }
164 
165     pseudo_rands = instance->pseudo_rands;
166 
167     if (data_independent_addressing) {
168         generate_addresses(instance, &position, pseudo_rands);
169     }
170 
171     starting_index = 0;
172 
173     if ((0 == position.pass) && (0 == position.slice)) {
174         starting_index = 2; /* we have already generated the first two blocks */
175     }
176 
177     /* Offset of the current block */
178     curr_offset = position.lane * instance->lane_length +
179                   position.slice * instance->segment_length + starting_index;
180 
181     if (0 == curr_offset % instance->lane_length) {
182         /* Last block in this lane */
183         prev_offset = curr_offset + instance->lane_length - 1;
184     } else {
185         /* Previous block */
186         prev_offset = curr_offset - 1;
187     }
188 
189     memcpy(state, ((instance->region->memory + prev_offset)->v),
190            ARGON2_BLOCK_SIZE);
191 
192     for (i = starting_index; i < instance->segment_length;
193          ++i, ++curr_offset, ++prev_offset) {
194         /*1.1 Rotating prev_offset if needed */
195         if (curr_offset % instance->lane_length == 1) {
196             prev_offset = curr_offset - 1;
197         }
198 
199         /* 1.2 Computing the index of the reference block */
200         /* 1.2.1 Taking pseudo-random value from the previous block */
201         if (data_independent_addressing) {
202 #pragma warning(push)
203 #pragma warning(disable : 6385)
204             pseudo_rand = pseudo_rands[i];
205 #pragma warning(pop)
206         } else {
207             pseudo_rand = instance->region->memory[prev_offset].v[0];
208         }
209 
210         /* 1.2.2 Computing the lane of the reference block */
211         ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
212 
213         if ((position.pass == 0) && (position.slice == 0)) {
214             /* Can not reference other lanes yet */
215             ref_lane = position.lane;
216         }
217 
218         /* 1.2.3 Computing the number of possible reference block within the
219          * lane.
220          */
221         position.index = i;
222         ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
223                                 ref_lane == position.lane);
224 
225         /* 2 Creating a new block */
226         ref_block = instance->region->memory +
227                     instance->lane_length * ref_lane + ref_index;
228         curr_block = instance->region->memory + curr_offset;
229         if (position.pass != 0) {
230             fill_block_with_xor(state, (uint8_t *) ref_block->v,
231                                 (uint8_t *) curr_block->v);
232         } else {
233             fill_block(state, (uint8_t *) ref_block->v,
234                        (uint8_t *) curr_block->v);
235         }
236     }
237 }
238 #endif
239