1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2016, 2017 Intel Corporation.
26  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
27  */
28 
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  * 	Device vdevs
34  * 		disk=(path=..., devid=...)
35  * 		file=(path=...)
36  *
37  * 	Group vdevs
38  * 		raidz[1|2]=(...)
39  * 		mirror=(...)
40  *
41  * 	Hot spares
42  *
43  * While the underlying implementation supports it, group vdevs cannot contain
44  * other group vdevs.  All userland verification of devices is contained within
45  * this file.  If successful, the nvlist returned can be passed directly to the
46  * kernel; we've done as much verification as possible in userland.
47  *
48  * Hot spares are a special case, and passed down as an array of disk vdevs, at
49  * the same level as the root of the vdev tree.
50  *
51  * The only function exported by this file is 'make_root_vdev'.  The
52  * function performs several passes:
53  *
54  * 	1. Construct the vdev specification.  Performs syntax validation and
55  *         makes sure each device is valid.
56  * 	2. Check for devices in use.  Using libblkid to make sure that no
57  *         devices are also in use.  Some can be overridden using the 'force'
58  *         flag, others cannot.
59  * 	3. Check for replication errors if the 'force' flag is not specified.
60  *         validates that the replication level is consistent across the
61  *         entire pool.
62  * 	4. Call libzfs to label any whole disks with an EFI label.
63  */
64 
65 #include <assert.h>
66 #include <ctype.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libintl.h>
70 #include <libnvpair.h>
71 #include <libzutil.h>
72 #include <limits.h>
73 #include <sys/spa.h>
74 #include <stdio.h>
75 #include <string.h>
76 #include <unistd.h>
77 #include "zpool_util.h"
78 #include <sys/zfs_context.h>
79 #include <sys/stat.h>
80 
81 /*
82  * For any given vdev specification, we can have multiple errors.  The
83  * vdev_error() function keeps track of whether we have seen an error yet, and
84  * prints out a header if its the first error we've seen.
85  */
86 boolean_t error_seen;
87 boolean_t is_force;
88 
89 /*PRINTFLIKE1*/
90 void
91 vdev_error(const char *fmt, ...)
92 {
93 	va_list ap;
94 
95 	if (!error_seen) {
96 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
97 		if (!is_force)
98 			(void) fprintf(stderr, gettext("use '-f' to override "
99 			    "the following errors:\n"));
100 		else
101 			(void) fprintf(stderr, gettext("the following errors "
102 			    "must be manually repaired:\n"));
103 		error_seen = B_TRUE;
104 	}
105 
106 	va_start(ap, fmt);
107 	(void) vfprintf(stderr, fmt, ap);
108 	va_end(ap);
109 }
110 
111 /*
112  * Check that a file is valid.  All we can do in this case is check that it's
113  * not in use by another pool, and not in use by swap.
114  */
115 int
116 check_file(const char *file, boolean_t force, boolean_t isspare)
117 {
118 	char  *name;
119 	int fd;
120 	int ret = 0;
121 	pool_state_t state;
122 	boolean_t inuse;
123 
124 	if ((fd = open(file, O_RDONLY)) < 0)
125 		return (0);
126 
127 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
128 		const char *desc;
129 
130 		switch (state) {
131 		case POOL_STATE_ACTIVE:
132 			desc = gettext("active");
133 			break;
134 
135 		case POOL_STATE_EXPORTED:
136 			desc = gettext("exported");
137 			break;
138 
139 		case POOL_STATE_POTENTIALLY_ACTIVE:
140 			desc = gettext("potentially active");
141 			break;
142 
143 		default:
144 			desc = gettext("unknown");
145 			break;
146 		}
147 
148 		/*
149 		 * Allow hot spares to be shared between pools.
150 		 */
151 		if (state == POOL_STATE_SPARE && isspare) {
152 			free(name);
153 			(void) close(fd);
154 			return (0);
155 		}
156 
157 		if (state == POOL_STATE_ACTIVE ||
158 		    state == POOL_STATE_SPARE || !force) {
159 			switch (state) {
160 			case POOL_STATE_SPARE:
161 				vdev_error(gettext("%s is reserved as a hot "
162 				    "spare for pool %s\n"), file, name);
163 				break;
164 			default:
165 				vdev_error(gettext("%s is part of %s pool "
166 				    "'%s'\n"), file, desc, name);
167 				break;
168 			}
169 			ret = -1;
170 		}
171 
172 		free(name);
173 	}
174 
175 	(void) close(fd);
176 	return (ret);
177 }
178 
179 /*
180  * This may be a shorthand device path or it could be total gibberish.
181  * Check to see if it is a known device available in zfs_vdev_paths.
182  * As part of this check, see if we've been given an entire disk
183  * (minus the slice number).
184  */
185 static int
186 is_shorthand_path(const char *arg, char *path, size_t path_size,
187     struct stat64 *statbuf, boolean_t *wholedisk)
188 {
189 	int error;
190 
191 	error = zfs_resolve_shortname(arg, path, path_size);
192 	if (error == 0) {
193 		*wholedisk = zfs_dev_is_whole_disk(path);
194 		if (*wholedisk || (stat64(path, statbuf) == 0))
195 			return (0);
196 	}
197 
198 	strlcpy(path, arg, path_size);
199 	memset(statbuf, 0, sizeof (*statbuf));
200 	*wholedisk = B_FALSE;
201 
202 	return (error);
203 }
204 
205 /*
206  * Determine if the given path is a hot spare within the given configuration.
207  * If no configuration is given we rely solely on the label.
208  */
209 static boolean_t
210 is_spare(nvlist_t *config, const char *path)
211 {
212 	int fd;
213 	pool_state_t state;
214 	char *name = NULL;
215 	nvlist_t *label;
216 	uint64_t guid, spareguid;
217 	nvlist_t *nvroot;
218 	nvlist_t **spares;
219 	uint_t i, nspares;
220 	boolean_t inuse;
221 
222 	if (zpool_is_draid_spare(path))
223 		return (B_TRUE);
224 
225 	if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
226 		return (B_FALSE);
227 
228 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
229 	    !inuse ||
230 	    state != POOL_STATE_SPARE ||
231 	    zpool_read_label(fd, &label, NULL) != 0) {
232 		free(name);
233 		(void) close(fd);
234 		return (B_FALSE);
235 	}
236 	free(name);
237 	(void) close(fd);
238 
239 	if (config == NULL) {
240 		nvlist_free(label);
241 		return (B_TRUE);
242 	}
243 
244 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
245 	nvlist_free(label);
246 
247 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
248 	    &nvroot) == 0);
249 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
250 	    &spares, &nspares) == 0) {
251 		for (i = 0; i < nspares; i++) {
252 			verify(nvlist_lookup_uint64(spares[i],
253 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
254 			if (spareguid == guid)
255 				return (B_TRUE);
256 		}
257 	}
258 
259 	return (B_FALSE);
260 }
261 
262 /*
263  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
264  * device, fill in the device id to make a complete nvlist.  Valid forms for a
265  * leaf vdev are:
266  *
267  *	/dev/xxx	Complete disk path
268  *	/xxx		Full path to file
269  *	xxx		Shorthand for <zfs_vdev_paths>/xxx
270  *	draid*		Virtual dRAID spare
271  */
272 static nvlist_t *
273 make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary)
274 {
275 	char path[MAXPATHLEN];
276 	struct stat64 statbuf;
277 	nvlist_t *vdev = NULL;
278 	char *type = NULL;
279 	boolean_t wholedisk = B_FALSE;
280 	uint64_t ashift = 0;
281 	int err;
282 
283 	/*
284 	 * Determine what type of vdev this is, and put the full path into
285 	 * 'path'.  We detect whether this is a device of file afterwards by
286 	 * checking the st_mode of the file.
287 	 */
288 	if (arg[0] == '/') {
289 		/*
290 		 * Complete device or file path.  Exact type is determined by
291 		 * examining the file descriptor afterwards.  Symbolic links
292 		 * are resolved to their real paths to determine whole disk
293 		 * and S_ISBLK/S_ISREG type checks.  However, we are careful
294 		 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
295 		 * can leverage udev's persistent device labels.
296 		 */
297 		if (realpath(arg, path) == NULL) {
298 			(void) fprintf(stderr,
299 			    gettext("cannot resolve path '%s'\n"), arg);
300 			return (NULL);
301 		}
302 
303 		wholedisk = zfs_dev_is_whole_disk(path);
304 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
305 			(void) fprintf(stderr,
306 			    gettext("cannot open '%s': %s\n"),
307 			    path, strerror(errno));
308 			return (NULL);
309 		}
310 
311 		/* After whole disk check restore original passed path */
312 		strlcpy(path, arg, sizeof (path));
313 	} else if (zpool_is_draid_spare(arg)) {
314 		if (!is_primary) {
315 			(void) fprintf(stderr,
316 			    gettext("cannot open '%s': dRAID spares can only "
317 			    "be used to replace primary vdevs\n"), arg);
318 			return (NULL);
319 		}
320 
321 		wholedisk = B_TRUE;
322 		strlcpy(path, arg, sizeof (path));
323 		type = VDEV_TYPE_DRAID_SPARE;
324 	} else {
325 		err = is_shorthand_path(arg, path, sizeof (path),
326 		    &statbuf, &wholedisk);
327 		if (err != 0) {
328 			/*
329 			 * If we got ENOENT, then the user gave us
330 			 * gibberish, so try to direct them with a
331 			 * reasonable error message.  Otherwise,
332 			 * regurgitate strerror() since it's the best we
333 			 * can do.
334 			 */
335 			if (err == ENOENT) {
336 				(void) fprintf(stderr,
337 				    gettext("cannot open '%s': no such "
338 				    "device in %s\n"), arg, DISK_ROOT);
339 				(void) fprintf(stderr,
340 				    gettext("must be a full path or "
341 				    "shorthand device name\n"));
342 				return (NULL);
343 			} else {
344 				(void) fprintf(stderr,
345 				    gettext("cannot open '%s': %s\n"),
346 				    path, strerror(errno));
347 				return (NULL);
348 			}
349 		}
350 	}
351 
352 	if (type == NULL) {
353 		/*
354 		 * Determine whether this is a device or a file.
355 		 */
356 		if (wholedisk || S_ISBLK(statbuf.st_mode)) {
357 			type = VDEV_TYPE_DISK;
358 		} else if (S_ISREG(statbuf.st_mode)) {
359 			type = VDEV_TYPE_FILE;
360 		} else {
361 			fprintf(stderr, gettext("cannot use '%s': must "
362 			    "be a block device or regular file\n"), path);
363 			return (NULL);
364 		}
365 	}
366 
367 	/*
368 	 * Finally, we have the complete device or file, and we know that it is
369 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
370 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
371 	 */
372 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
373 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
374 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
375 
376 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
377 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
378 		    (uint64_t)wholedisk) == 0);
379 
380 	/*
381 	 * Override defaults if custom properties are provided.
382 	 */
383 	if (props != NULL) {
384 		char *value = NULL;
385 
386 		if (nvlist_lookup_string(props,
387 		    zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) {
388 			if (zfs_nicestrtonum(NULL, value, &ashift) != 0) {
389 				(void) fprintf(stderr,
390 				    gettext("ashift must be a number.\n"));
391 				return (NULL);
392 			}
393 			if (ashift != 0 &&
394 			    (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) {
395 				(void) fprintf(stderr,
396 				    gettext("invalid 'ashift=%" PRIu64 "' "
397 				    "property: only values between %" PRId32 " "
398 				    "and %" PRId32 " are allowed.\n"),
399 				    ashift, ASHIFT_MIN, ASHIFT_MAX);
400 				return (NULL);
401 			}
402 		}
403 	}
404 
405 	/*
406 	 * If the device is known to incorrectly report its physical sector
407 	 * size explicitly provide the known correct value.
408 	 */
409 	if (ashift == 0) {
410 		int sector_size;
411 
412 		if (check_sector_size_database(path, &sector_size) == B_TRUE)
413 			ashift = highbit64(sector_size) - 1;
414 	}
415 
416 	if (ashift > 0)
417 		(void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
418 
419 	return (vdev);
420 }
421 
422 /*
423  * Go through and verify the replication level of the pool is consistent.
424  * Performs the following checks:
425  *
426  * 	For the new spec, verifies that devices in mirrors and raidz are the
427  * 	same size.
428  *
429  * 	If the current configuration already has inconsistent replication
430  * 	levels, ignore any other potential problems in the new spec.
431  *
432  * 	Otherwise, make sure that the current spec (if there is one) and the new
433  * 	spec have consistent replication levels.
434  *
435  *	If there is no current spec (create), make sure new spec has at least
436  *	one general purpose vdev.
437  */
438 typedef struct replication_level {
439 	char *zprl_type;
440 	uint64_t zprl_children;
441 	uint64_t zprl_parity;
442 } replication_level_t;
443 
444 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
445 
446 /*
447  * N.B. For the purposes of comparing replication levels dRAID can be
448  * considered functionally equivalent to raidz.
449  */
450 static boolean_t
451 is_raidz_mirror(replication_level_t *a, replication_level_t *b,
452     replication_level_t **raidz, replication_level_t **mirror)
453 {
454 	if ((strcmp(a->zprl_type, "raidz") == 0 ||
455 	    strcmp(a->zprl_type, "draid") == 0) &&
456 	    strcmp(b->zprl_type, "mirror") == 0) {
457 		*raidz = a;
458 		*mirror = b;
459 		return (B_TRUE);
460 	}
461 	return (B_FALSE);
462 }
463 
464 /*
465  * Comparison for determining if dRAID and raidz where passed in either order.
466  */
467 static boolean_t
468 is_raidz_draid(replication_level_t *a, replication_level_t *b)
469 {
470 	if ((strcmp(a->zprl_type, "raidz") == 0 ||
471 	    strcmp(a->zprl_type, "draid") == 0) &&
472 	    (strcmp(b->zprl_type, "raidz") == 0 ||
473 	    strcmp(b->zprl_type, "draid") == 0)) {
474 		return (B_TRUE);
475 	}
476 
477 	return (B_FALSE);
478 }
479 
480 /*
481  * Given a list of toplevel vdevs, return the current replication level.  If
482  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
483  * an error message will be displayed for each self-inconsistent vdev.
484  */
485 static replication_level_t *
486 get_replication(nvlist_t *nvroot, boolean_t fatal)
487 {
488 	nvlist_t **top;
489 	uint_t t, toplevels;
490 	nvlist_t **child;
491 	uint_t c, children;
492 	nvlist_t *nv;
493 	char *type;
494 	replication_level_t lastrep = {0};
495 	replication_level_t rep;
496 	replication_level_t *ret;
497 	replication_level_t *raidz, *mirror;
498 	boolean_t dontreport;
499 
500 	ret = safe_malloc(sizeof (replication_level_t));
501 
502 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
503 	    &top, &toplevels) == 0);
504 
505 	for (t = 0; t < toplevels; t++) {
506 		uint64_t is_log = B_FALSE;
507 
508 		nv = top[t];
509 
510 		/*
511 		 * For separate logs we ignore the top level vdev replication
512 		 * constraints.
513 		 */
514 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
515 		if (is_log)
516 			continue;
517 
518 		/* Ignore holes introduced by removing aux devices */
519 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
520 		if (strcmp(type, VDEV_TYPE_HOLE) == 0)
521 			continue;
522 
523 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
524 		    &child, &children) != 0) {
525 			/*
526 			 * This is a 'file' or 'disk' vdev.
527 			 */
528 			rep.zprl_type = type;
529 			rep.zprl_children = 1;
530 			rep.zprl_parity = 0;
531 		} else {
532 			int64_t vdev_size;
533 
534 			/*
535 			 * This is a mirror or RAID-Z vdev.  Go through and make
536 			 * sure the contents are all the same (files vs. disks),
537 			 * keeping track of the number of elements in the
538 			 * process.
539 			 *
540 			 * We also check that the size of each vdev (if it can
541 			 * be determined) is the same.
542 			 */
543 			rep.zprl_type = type;
544 			rep.zprl_children = 0;
545 
546 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 ||
547 			    strcmp(type, VDEV_TYPE_DRAID) == 0) {
548 				verify(nvlist_lookup_uint64(nv,
549 				    ZPOOL_CONFIG_NPARITY,
550 				    &rep.zprl_parity) == 0);
551 				assert(rep.zprl_parity != 0);
552 			} else {
553 				rep.zprl_parity = 0;
554 			}
555 
556 			/*
557 			 * The 'dontreport' variable indicates that we've
558 			 * already reported an error for this spec, so don't
559 			 * bother doing it again.
560 			 */
561 			type = NULL;
562 			dontreport = 0;
563 			vdev_size = -1LL;
564 			for (c = 0; c < children; c++) {
565 				nvlist_t *cnv = child[c];
566 				char *path;
567 				struct stat64 statbuf;
568 				int64_t size = -1LL;
569 				char *childtype;
570 				int fd, err;
571 
572 				rep.zprl_children++;
573 
574 				verify(nvlist_lookup_string(cnv,
575 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
576 
577 				/*
578 				 * If this is a replacing or spare vdev, then
579 				 * get the real first child of the vdev: do this
580 				 * in a loop because replacing and spare vdevs
581 				 * can be nested.
582 				 */
583 				while (strcmp(childtype,
584 				    VDEV_TYPE_REPLACING) == 0 ||
585 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
586 					nvlist_t **rchild;
587 					uint_t rchildren;
588 
589 					verify(nvlist_lookup_nvlist_array(cnv,
590 					    ZPOOL_CONFIG_CHILDREN, &rchild,
591 					    &rchildren) == 0);
592 					assert(rchildren == 2);
593 					cnv = rchild[0];
594 
595 					verify(nvlist_lookup_string(cnv,
596 					    ZPOOL_CONFIG_TYPE,
597 					    &childtype) == 0);
598 				}
599 
600 				verify(nvlist_lookup_string(cnv,
601 				    ZPOOL_CONFIG_PATH, &path) == 0);
602 
603 				/*
604 				 * If we have a raidz/mirror that combines disks
605 				 * with files, report it as an error.
606 				 */
607 				if (!dontreport && type != NULL &&
608 				    strcmp(type, childtype) != 0) {
609 					if (ret != NULL)
610 						free(ret);
611 					ret = NULL;
612 					if (fatal)
613 						vdev_error(gettext(
614 						    "mismatched replication "
615 						    "level: %s contains both "
616 						    "files and devices\n"),
617 						    rep.zprl_type);
618 					else
619 						return (NULL);
620 					dontreport = B_TRUE;
621 				}
622 
623 				/*
624 				 * According to stat(2), the value of 'st_size'
625 				 * is undefined for block devices and character
626 				 * devices.  But there is no effective way to
627 				 * determine the real size in userland.
628 				 *
629 				 * Instead, we'll take advantage of an
630 				 * implementation detail of spec_size().  If the
631 				 * device is currently open, then we (should)
632 				 * return a valid size.
633 				 *
634 				 * If we still don't get a valid size (indicated
635 				 * by a size of 0 or MAXOFFSET_T), then ignore
636 				 * this device altogether.
637 				 */
638 				if ((fd = open(path, O_RDONLY)) >= 0) {
639 					err = fstat64_blk(fd, &statbuf);
640 					(void) close(fd);
641 				} else {
642 					err = stat64(path, &statbuf);
643 				}
644 
645 				if (err != 0 ||
646 				    statbuf.st_size == 0 ||
647 				    statbuf.st_size == MAXOFFSET_T)
648 					continue;
649 
650 				size = statbuf.st_size;
651 
652 				/*
653 				 * Also make sure that devices and
654 				 * slices have a consistent size.  If
655 				 * they differ by a significant amount
656 				 * (~16MB) then report an error.
657 				 */
658 				if (!dontreport &&
659 				    (vdev_size != -1LL &&
660 				    (llabs(size - vdev_size) >
661 				    ZPOOL_FUZZ))) {
662 					if (ret != NULL)
663 						free(ret);
664 					ret = NULL;
665 					if (fatal)
666 						vdev_error(gettext(
667 						    "%s contains devices of "
668 						    "different sizes\n"),
669 						    rep.zprl_type);
670 					else
671 						return (NULL);
672 					dontreport = B_TRUE;
673 				}
674 
675 				type = childtype;
676 				vdev_size = size;
677 			}
678 		}
679 
680 		/*
681 		 * At this point, we have the replication of the last toplevel
682 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if it is
683 		 * different.
684 		 */
685 		if (lastrep.zprl_type != NULL) {
686 			if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) ||
687 			    is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) {
688 				/*
689 				 * Accepted raidz and mirror when they can
690 				 * handle the same number of disk failures.
691 				 */
692 				if (raidz->zprl_parity !=
693 				    mirror->zprl_children - 1) {
694 					if (ret != NULL)
695 						free(ret);
696 					ret = NULL;
697 					if (fatal)
698 						vdev_error(gettext(
699 						    "mismatched replication "
700 						    "level: "
701 						    "%s and %s vdevs with "
702 						    "different redundancy, "
703 						    "%llu vs. %llu (%llu-way) "
704 						    "are present\n"),
705 						    raidz->zprl_type,
706 						    mirror->zprl_type,
707 						    raidz->zprl_parity,
708 						    mirror->zprl_children - 1,
709 						    mirror->zprl_children);
710 					else
711 						return (NULL);
712 				}
713 			} else if (is_raidz_draid(&lastrep, &rep)) {
714 				/*
715 				 * Accepted raidz and draid when they can
716 				 * handle the same number of disk failures.
717 				 */
718 				if (lastrep.zprl_parity != rep.zprl_parity) {
719 					if (ret != NULL)
720 						free(ret);
721 					ret = NULL;
722 					if (fatal)
723 						vdev_error(gettext(
724 						    "mismatched replication "
725 						    "level: %s and %s vdevs "
726 						    "with different "
727 						    "redundancy, %llu vs. "
728 						    "%llu are present\n"),
729 						    lastrep.zprl_type,
730 						    rep.zprl_type,
731 						    lastrep.zprl_parity,
732 						    rep.zprl_parity);
733 					else
734 						return (NULL);
735 				}
736 			} else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
737 			    0) {
738 				if (ret != NULL)
739 					free(ret);
740 				ret = NULL;
741 				if (fatal)
742 					vdev_error(gettext(
743 					    "mismatched replication level: "
744 					    "both %s and %s vdevs are "
745 					    "present\n"),
746 					    lastrep.zprl_type, rep.zprl_type);
747 				else
748 					return (NULL);
749 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
750 				if (ret)
751 					free(ret);
752 				ret = NULL;
753 				if (fatal)
754 					vdev_error(gettext(
755 					    "mismatched replication level: "
756 					    "both %llu and %llu device parity "
757 					    "%s vdevs are present\n"),
758 					    lastrep.zprl_parity,
759 					    rep.zprl_parity,
760 					    rep.zprl_type);
761 				else
762 					return (NULL);
763 			} else if (lastrep.zprl_children != rep.zprl_children) {
764 				if (ret)
765 					free(ret);
766 				ret = NULL;
767 				if (fatal)
768 					vdev_error(gettext(
769 					    "mismatched replication level: "
770 					    "both %llu-way and %llu-way %s "
771 					    "vdevs are present\n"),
772 					    lastrep.zprl_children,
773 					    rep.zprl_children,
774 					    rep.zprl_type);
775 				else
776 					return (NULL);
777 			}
778 		}
779 		lastrep = rep;
780 	}
781 
782 	if (ret != NULL)
783 		*ret = rep;
784 
785 	return (ret);
786 }
787 
788 /*
789  * Check the replication level of the vdev spec against the current pool.  Calls
790  * get_replication() to make sure the new spec is self-consistent.  If the pool
791  * has a consistent replication level, then we ignore any errors.  Otherwise,
792  * report any difference between the two.
793  */
794 static int
795 check_replication(nvlist_t *config, nvlist_t *newroot)
796 {
797 	nvlist_t **child;
798 	uint_t	children;
799 	replication_level_t *current = NULL, *new;
800 	replication_level_t *raidz, *mirror;
801 	int ret;
802 
803 	/*
804 	 * If we have a current pool configuration, check to see if it's
805 	 * self-consistent.  If not, simply return success.
806 	 */
807 	if (config != NULL) {
808 		nvlist_t *nvroot;
809 
810 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
811 		    &nvroot) == 0);
812 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
813 			return (0);
814 	}
815 	/*
816 	 * for spares there may be no children, and therefore no
817 	 * replication level to check
818 	 */
819 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
820 	    &child, &children) != 0) || (children == 0)) {
821 		free(current);
822 		return (0);
823 	}
824 
825 	/*
826 	 * If all we have is logs then there's no replication level to check.
827 	 */
828 	if (num_logs(newroot) == children) {
829 		free(current);
830 		return (0);
831 	}
832 
833 	/*
834 	 * Get the replication level of the new vdev spec, reporting any
835 	 * inconsistencies found.
836 	 */
837 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
838 		free(current);
839 		return (-1);
840 	}
841 
842 	/*
843 	 * Check to see if the new vdev spec matches the replication level of
844 	 * the current pool.
845 	 */
846 	ret = 0;
847 	if (current != NULL) {
848 		if (is_raidz_mirror(current, new, &raidz, &mirror) ||
849 		    is_raidz_mirror(new, current, &raidz, &mirror)) {
850 			if (raidz->zprl_parity != mirror->zprl_children - 1) {
851 				vdev_error(gettext(
852 				    "mismatched replication level: pool and "
853 				    "new vdev with different redundancy, %s "
854 				    "and %s vdevs, %llu vs. %llu (%llu-way)\n"),
855 				    raidz->zprl_type,
856 				    mirror->zprl_type,
857 				    raidz->zprl_parity,
858 				    mirror->zprl_children - 1,
859 				    mirror->zprl_children);
860 				ret = -1;
861 			}
862 		} else if (strcmp(current->zprl_type, new->zprl_type) != 0) {
863 			vdev_error(gettext(
864 			    "mismatched replication level: pool uses %s "
865 			    "and new vdev is %s\n"),
866 			    current->zprl_type, new->zprl_type);
867 			ret = -1;
868 		} else if (current->zprl_parity != new->zprl_parity) {
869 			vdev_error(gettext(
870 			    "mismatched replication level: pool uses %llu "
871 			    "device parity and new vdev uses %llu\n"),
872 			    current->zprl_parity, new->zprl_parity);
873 			ret = -1;
874 		} else if (current->zprl_children != new->zprl_children) {
875 			vdev_error(gettext(
876 			    "mismatched replication level: pool uses %llu-way "
877 			    "%s and new vdev uses %llu-way %s\n"),
878 			    current->zprl_children, current->zprl_type,
879 			    new->zprl_children, new->zprl_type);
880 			ret = -1;
881 		}
882 	}
883 
884 	free(new);
885 	if (current != NULL)
886 		free(current);
887 
888 	return (ret);
889 }
890 
891 static int
892 zero_label(char *path)
893 {
894 	const int size = 4096;
895 	char buf[size];
896 	int err, fd;
897 
898 	if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
899 		(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
900 		    path, strerror(errno));
901 		return (-1);
902 	}
903 
904 	memset(buf, 0, size);
905 	err = write(fd, buf, size);
906 	(void) fdatasync(fd);
907 	(void) close(fd);
908 
909 	if (err == -1) {
910 		(void) fprintf(stderr, gettext("cannot zero first %d bytes "
911 		    "of '%s': %s\n"), size, path, strerror(errno));
912 		return (-1);
913 	}
914 
915 	if (err != size) {
916 		(void) fprintf(stderr, gettext("could only zero %d/%d bytes "
917 		    "of '%s'\n"), err, size, path);
918 		return (-1);
919 	}
920 
921 	return (0);
922 }
923 
924 /*
925  * Go through and find any whole disks in the vdev specification, labelling them
926  * as appropriate.  When constructing the vdev spec, we were unable to open this
927  * device in order to provide a devid.  Now that we have labelled the disk and
928  * know that slice 0 is valid, we can construct the devid now.
929  *
930  * If the disk was already labeled with an EFI label, we will have gotten the
931  * devid already (because we were able to open the whole disk).  Otherwise, we
932  * need to get the devid after we label the disk.
933  */
934 static int
935 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
936 {
937 	nvlist_t **child;
938 	uint_t c, children;
939 	char *type, *path;
940 	char devpath[MAXPATHLEN];
941 	char udevpath[MAXPATHLEN];
942 	uint64_t wholedisk;
943 	struct stat64 statbuf;
944 	int is_exclusive = 0;
945 	int fd;
946 	int ret;
947 
948 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
949 
950 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
951 	    &child, &children) != 0) {
952 
953 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
954 			return (0);
955 
956 		/*
957 		 * We have a disk device.  If this is a whole disk write
958 		 * out the efi partition table, otherwise write zero's to
959 		 * the first 4k of the partition.  This is to ensure that
960 		 * libblkid will not misidentify the partition due to a
961 		 * magic value left by the previous filesystem.
962 		 */
963 		verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
964 		verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
965 		    &wholedisk));
966 
967 		if (!wholedisk) {
968 			/*
969 			 * Update device id string for mpath nodes (Linux only)
970 			 */
971 			if (is_mpath_whole_disk(path))
972 				update_vdev_config_dev_strs(nv);
973 
974 			if (!is_spare(NULL, path))
975 				(void) zero_label(path);
976 			return (0);
977 		}
978 
979 		if (realpath(path, devpath) == NULL) {
980 			ret = errno;
981 			(void) fprintf(stderr,
982 			    gettext("cannot resolve path '%s'\n"), path);
983 			return (ret);
984 		}
985 
986 		/*
987 		 * Remove any previously existing symlink from a udev path to
988 		 * the device before labeling the disk.  This ensures that
989 		 * only newly created links are used.  Otherwise there is a
990 		 * window between when udev deletes and recreates the link
991 		 * during which access attempts will fail with ENOENT.
992 		 */
993 		strlcpy(udevpath, path, MAXPATHLEN);
994 		(void) zfs_append_partition(udevpath, MAXPATHLEN);
995 
996 		fd = open(devpath, O_RDWR|O_EXCL);
997 		if (fd == -1) {
998 			if (errno == EBUSY)
999 				is_exclusive = 1;
1000 #ifdef __FreeBSD__
1001 			if (errno == EPERM)
1002 				is_exclusive = 1;
1003 #endif
1004 		} else {
1005 			(void) close(fd);
1006 		}
1007 
1008 		/*
1009 		 * If the partition exists, contains a valid spare label,
1010 		 * and is opened exclusively there is no need to partition
1011 		 * it.  Hot spares have already been partitioned and are
1012 		 * held open exclusively by the kernel as a safety measure.
1013 		 *
1014 		 * If the provided path is for a /dev/disk/ device its
1015 		 * symbolic link will be removed, partition table created,
1016 		 * and then block until udev creates the new link.
1017 		 */
1018 		if (!is_exclusive && !is_spare(NULL, udevpath)) {
1019 			char *devnode = strrchr(devpath, '/') + 1;
1020 
1021 			ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
1022 			if (ret == 0) {
1023 				ret = lstat64(udevpath, &statbuf);
1024 				if (ret == 0 && S_ISLNK(statbuf.st_mode))
1025 					(void) unlink(udevpath);
1026 			}
1027 
1028 			/*
1029 			 * When labeling a pool the raw device node name
1030 			 * is provided as it appears under /dev/.
1031 			 */
1032 			if (zpool_label_disk(g_zfs, zhp, devnode) == -1)
1033 				return (-1);
1034 
1035 			/*
1036 			 * Wait for udev to signal the device is available
1037 			 * by the provided path.
1038 			 */
1039 			ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
1040 			if (ret) {
1041 				(void) fprintf(stderr,
1042 				    gettext("missing link: %s was "
1043 				    "partitioned but %s is missing\n"),
1044 				    devnode, udevpath);
1045 				return (ret);
1046 			}
1047 
1048 			ret = zero_label(udevpath);
1049 			if (ret)
1050 				return (ret);
1051 		}
1052 
1053 		/*
1054 		 * Update the path to refer to the partition.  The presence of
1055 		 * the 'whole_disk' field indicates to the CLI that we should
1056 		 * chop off the partition number when displaying the device in
1057 		 * future output.
1058 		 */
1059 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
1060 
1061 		/*
1062 		 * Update device id strings for whole disks (Linux only)
1063 		 */
1064 		update_vdev_config_dev_strs(nv);
1065 
1066 		return (0);
1067 	}
1068 
1069 	for (c = 0; c < children; c++)
1070 		if ((ret = make_disks(zhp, child[c])) != 0)
1071 			return (ret);
1072 
1073 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1074 	    &child, &children) == 0)
1075 		for (c = 0; c < children; c++)
1076 			if ((ret = make_disks(zhp, child[c])) != 0)
1077 				return (ret);
1078 
1079 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1080 	    &child, &children) == 0)
1081 		for (c = 0; c < children; c++)
1082 			if ((ret = make_disks(zhp, child[c])) != 0)
1083 				return (ret);
1084 
1085 	return (0);
1086 }
1087 
1088 /*
1089  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1090  * the majority of this task.
1091  */
1092 static boolean_t
1093 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1094     boolean_t replacing, boolean_t isspare)
1095 {
1096 	nvlist_t **child;
1097 	uint_t c, children;
1098 	char *type, *path;
1099 	int ret = 0;
1100 	char buf[MAXPATHLEN];
1101 	uint64_t wholedisk = B_FALSE;
1102 	boolean_t anyinuse = B_FALSE;
1103 
1104 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1105 
1106 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1107 	    &child, &children) != 0) {
1108 
1109 		verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1110 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1111 			verify(!nvlist_lookup_uint64(nv,
1112 			    ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1113 
1114 		/*
1115 		 * As a generic check, we look to see if this is a replace of a
1116 		 * hot spare within the same pool.  If so, we allow it
1117 		 * regardless of what libblkid or zpool_in_use() says.
1118 		 */
1119 		if (replacing) {
1120 			(void) strlcpy(buf, path, sizeof (buf));
1121 			if (wholedisk) {
1122 				ret = zfs_append_partition(buf,  sizeof (buf));
1123 				if (ret == -1)
1124 					return (-1);
1125 			}
1126 
1127 			if (is_spare(config, buf))
1128 				return (B_FALSE);
1129 		}
1130 
1131 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1132 			ret = check_device(path, force, isspare, wholedisk);
1133 
1134 		else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1135 			ret = check_file(path, force, isspare);
1136 
1137 		return (ret != 0);
1138 	}
1139 
1140 	for (c = 0; c < children; c++)
1141 		if (is_device_in_use(config, child[c], force, replacing,
1142 		    B_FALSE))
1143 			anyinuse = B_TRUE;
1144 
1145 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1146 	    &child, &children) == 0)
1147 		for (c = 0; c < children; c++)
1148 			if (is_device_in_use(config, child[c], force, replacing,
1149 			    B_TRUE))
1150 				anyinuse = B_TRUE;
1151 
1152 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1153 	    &child, &children) == 0)
1154 		for (c = 0; c < children; c++)
1155 			if (is_device_in_use(config, child[c], force, replacing,
1156 			    B_FALSE))
1157 				anyinuse = B_TRUE;
1158 
1159 	return (anyinuse);
1160 }
1161 
1162 /*
1163  * Returns the parity level extracted from a raidz or draid type.
1164  * If the parity cannot be determined zero is returned.
1165  */
1166 static int
1167 get_parity(const char *type)
1168 {
1169 	long parity = 0;
1170 	const char *p;
1171 
1172 	if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) {
1173 		p = type + strlen(VDEV_TYPE_RAIDZ);
1174 
1175 		if (*p == '\0') {
1176 			/* when unspecified default to single parity */
1177 			return (1);
1178 		} else if (*p == '0') {
1179 			/* no zero prefixes allowed */
1180 			return (0);
1181 		} else {
1182 			/* 0-3, no suffixes allowed */
1183 			char *end;
1184 			errno = 0;
1185 			parity = strtol(p, &end, 10);
1186 			if (errno != 0 || *end != '\0' ||
1187 			    parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) {
1188 				return (0);
1189 			}
1190 		}
1191 	} else if (strncmp(type, VDEV_TYPE_DRAID,
1192 	    strlen(VDEV_TYPE_DRAID)) == 0) {
1193 		p = type + strlen(VDEV_TYPE_DRAID);
1194 
1195 		if (*p == '\0' || *p == ':') {
1196 			/* when unspecified default to single parity */
1197 			return (1);
1198 		} else if (*p == '0') {
1199 			/* no zero prefixes allowed */
1200 			return (0);
1201 		} else {
1202 			/* 0-3, allowed suffixes: '\0' or ':' */
1203 			char *end;
1204 			errno = 0;
1205 			parity = strtol(p, &end, 10);
1206 			if (errno != 0 ||
1207 			    parity < 1 || parity > VDEV_DRAID_MAXPARITY ||
1208 			    (*end != '\0' && *end != ':')) {
1209 				return (0);
1210 			}
1211 		}
1212 	}
1213 
1214 	return ((int)parity);
1215 }
1216 
1217 /*
1218  * Assign the minimum and maximum number of devices allowed for
1219  * the specified type.  On error NULL is returned, otherwise the
1220  * type prefix is returned (raidz, mirror, etc).
1221  */
1222 static const char *
1223 is_grouping(const char *type, int *mindev, int *maxdev)
1224 {
1225 	int nparity;
1226 
1227 	if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 ||
1228 	    strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) {
1229 		nparity = get_parity(type);
1230 		if (nparity == 0)
1231 			return (NULL);
1232 		if (mindev != NULL)
1233 			*mindev = nparity + 1;
1234 		if (maxdev != NULL)
1235 			*maxdev = 255;
1236 
1237 		if (strncmp(type, VDEV_TYPE_RAIDZ,
1238 		    strlen(VDEV_TYPE_RAIDZ)) == 0) {
1239 			return (VDEV_TYPE_RAIDZ);
1240 		} else {
1241 			return (VDEV_TYPE_DRAID);
1242 		}
1243 	}
1244 
1245 	if (maxdev != NULL)
1246 		*maxdev = INT_MAX;
1247 
1248 	if (strcmp(type, "mirror") == 0) {
1249 		if (mindev != NULL)
1250 			*mindev = 2;
1251 		return (VDEV_TYPE_MIRROR);
1252 	}
1253 
1254 	if (strcmp(type, "spare") == 0) {
1255 		if (mindev != NULL)
1256 			*mindev = 1;
1257 		return (VDEV_TYPE_SPARE);
1258 	}
1259 
1260 	if (strcmp(type, "log") == 0) {
1261 		if (mindev != NULL)
1262 			*mindev = 1;
1263 		return (VDEV_TYPE_LOG);
1264 	}
1265 
1266 	if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 ||
1267 	    strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1268 		if (mindev != NULL)
1269 			*mindev = 1;
1270 		return (type);
1271 	}
1272 
1273 	if (strcmp(type, "cache") == 0) {
1274 		if (mindev != NULL)
1275 			*mindev = 1;
1276 		return (VDEV_TYPE_L2CACHE);
1277 	}
1278 
1279 	return (NULL);
1280 }
1281 
1282 /*
1283  * Extract the configuration parameters encoded in the dRAID type and
1284  * use them to generate a dRAID configuration.  The expected format is:
1285  *
1286  * draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>]
1287  *
1288  * The intent is to be able to generate a good configuration when no
1289  * additional information is provided.  The only mandatory component
1290  * of the 'type' is the 'draid' prefix.  If a value is not provided
1291  * then reasonable defaults are used.  The optional components may
1292  * appear in any order but the d/s/c suffix is required.
1293  *
1294  * Valid inputs:
1295  * - data:     number of data devices per group (1-255)
1296  * - parity:   number of parity blocks per group (1-3)
1297  * - spares:   number of distributed spare (0-100)
1298  * - children: total number of devices (1-255)
1299  *
1300  * Examples:
1301  * - zpool create tank draid <devices...>
1302  * - zpool create tank draid2:8d:51c:2s <devices...>
1303  */
1304 static int
1305 draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children)
1306 {
1307 	uint64_t nparity = 1;
1308 	uint64_t nspares = 0;
1309 	uint64_t ndata = UINT64_MAX;
1310 	uint64_t ngroups = 1;
1311 	long value;
1312 
1313 	if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0)
1314 		return (EINVAL);
1315 
1316 	nparity = (uint64_t)get_parity(type);
1317 	if (nparity == 0)
1318 		return (EINVAL);
1319 
1320 	char *p = (char *)type;
1321 	while ((p = strchr(p, ':')) != NULL) {
1322 		char *end;
1323 
1324 		p = p + 1;
1325 		errno = 0;
1326 
1327 		if (!isdigit(p[0])) {
1328 			(void) fprintf(stderr, gettext("invalid dRAID "
1329 			    "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1330 			    type);
1331 			return (EINVAL);
1332 		}
1333 
1334 		/* Expected non-zero value with c/d/s suffix */
1335 		value = strtol(p, &end, 10);
1336 		char suffix = tolower(*end);
1337 		if (errno != 0 ||
1338 		    (suffix != 'c' && suffix != 'd' && suffix != 's')) {
1339 			(void) fprintf(stderr, gettext("invalid dRAID "
1340 			    "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1341 			    type);
1342 			return (EINVAL);
1343 		}
1344 
1345 		if (suffix == 'c') {
1346 			if ((uint64_t)value != children) {
1347 				fprintf(stderr,
1348 				    gettext("invalid number of dRAID children; "
1349 				    "%llu required but %llu provided\n"),
1350 				    (u_longlong_t)value,
1351 				    (u_longlong_t)children);
1352 				return (EINVAL);
1353 			}
1354 		} else if (suffix == 'd') {
1355 			ndata = (uint64_t)value;
1356 		} else if (suffix == 's') {
1357 			nspares = (uint64_t)value;
1358 		} else {
1359 			verify(0); /* Unreachable */
1360 		}
1361 	}
1362 
1363 	/*
1364 	 * When a specific number of data disks is not provided limit a
1365 	 * redundancy group to 8 data disks.  This value was selected to
1366 	 * provide a reasonable tradeoff between capacity and performance.
1367 	 */
1368 	if (ndata == UINT64_MAX) {
1369 		if (children > nspares + nparity) {
1370 			ndata = MIN(children - nspares - nparity, 8);
1371 		} else {
1372 			fprintf(stderr, gettext("request number of "
1373 			    "distributed spares %llu and parity level %llu\n"
1374 			    "leaves no disks available for data\n"),
1375 			    (u_longlong_t)nspares, (u_longlong_t)nparity);
1376 			return (EINVAL);
1377 		}
1378 	}
1379 
1380 	/* Verify the maximum allowed group size is never exceeded. */
1381 	if (ndata == 0 || (ndata + nparity > children - nspares)) {
1382 		fprintf(stderr, gettext("requested number of dRAID data "
1383 		    "disks per group %llu is too high,\nat most %llu disks "
1384 		    "are available for data\n"), (u_longlong_t)ndata,
1385 		    (u_longlong_t)(children - nspares - nparity));
1386 		return (EINVAL);
1387 	}
1388 
1389 	if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
1390 		fprintf(stderr,
1391 		    gettext("invalid dRAID parity level %llu; must be "
1392 		    "between 1 and %d\n"), (u_longlong_t)nparity,
1393 		    VDEV_DRAID_MAXPARITY);
1394 		return (EINVAL);
1395 	}
1396 
1397 	/*
1398 	 * Verify the requested number of spares can be satisfied.
1399 	 * An arbitrary limit of 100 distributed spares is applied.
1400 	 */
1401 	if (nspares > 100 || nspares > (children - (ndata + nparity))) {
1402 		fprintf(stderr,
1403 		    gettext("invalid number of dRAID spares %llu; additional "
1404 		    "disks would be required\n"), (u_longlong_t)nspares);
1405 		return (EINVAL);
1406 	}
1407 
1408 	/* Verify the requested number children is sufficient. */
1409 	if (children < (ndata + nparity + nspares)) {
1410 		fprintf(stderr, gettext("%llu disks were provided, but at "
1411 		    "least %llu disks are required for this config\n"),
1412 		    (u_longlong_t)children,
1413 		    (u_longlong_t)(ndata + nparity + nspares));
1414 	}
1415 
1416 	if (children > VDEV_DRAID_MAX_CHILDREN) {
1417 		fprintf(stderr, gettext("%llu disks were provided, but "
1418 		    "dRAID only supports up to %u disks"),
1419 		    (u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN);
1420 	}
1421 
1422 	/*
1423 	 * Calculate the minimum number of groups required to fill a slice.
1424 	 * This is the LCM of the stripe width (ndata + nparity) and the
1425 	 * number of data drives (children - nspares).
1426 	 */
1427 	while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1428 		ngroups++;
1429 
1430 	/* Store the basic dRAID configuration. */
1431 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity);
1432 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1433 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1434 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1435 
1436 	return (0);
1437 }
1438 
1439 /*
1440  * Construct a syntactically valid vdev specification,
1441  * and ensure that all devices and files exist and can be opened.
1442  * Note: we don't bother freeing anything in the error paths
1443  * because the program is just going to exit anyway.
1444  */
1445 static nvlist_t *
1446 construct_spec(nvlist_t *props, int argc, char **argv)
1447 {
1448 	nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1449 	int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1450 	const char *type, *fulltype;
1451 	boolean_t is_log, is_special, is_dedup, is_spare;
1452 	boolean_t seen_logs;
1453 
1454 	top = NULL;
1455 	toplevels = 0;
1456 	spares = NULL;
1457 	l2cache = NULL;
1458 	nspares = 0;
1459 	nlogs = 0;
1460 	nl2cache = 0;
1461 	is_log = is_special = is_dedup = is_spare = B_FALSE;
1462 	seen_logs = B_FALSE;
1463 	nvroot = NULL;
1464 
1465 	while (argc > 0) {
1466 		fulltype = argv[0];
1467 		nv = NULL;
1468 
1469 		/*
1470 		 * If it's a mirror, raidz, or draid the subsequent arguments
1471 		 * are its leaves -- until we encounter the next mirror,
1472 		 * raidz or draid.
1473 		 */
1474 		if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) {
1475 			nvlist_t **child = NULL;
1476 			int c, children = 0;
1477 
1478 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1479 				if (spares != NULL) {
1480 					(void) fprintf(stderr,
1481 					    gettext("invalid vdev "
1482 					    "specification: 'spare' can be "
1483 					    "specified only once\n"));
1484 					goto spec_out;
1485 				}
1486 				is_spare = B_TRUE;
1487 				is_log = is_special = is_dedup = B_FALSE;
1488 			}
1489 
1490 			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1491 				if (seen_logs) {
1492 					(void) fprintf(stderr,
1493 					    gettext("invalid vdev "
1494 					    "specification: 'log' can be "
1495 					    "specified only once\n"));
1496 					goto spec_out;
1497 				}
1498 				seen_logs = B_TRUE;
1499 				is_log = B_TRUE;
1500 				is_special = is_dedup = is_spare = B_FALSE;
1501 				argc--;
1502 				argv++;
1503 				/*
1504 				 * A log is not a real grouping device.
1505 				 * We just set is_log and continue.
1506 				 */
1507 				continue;
1508 			}
1509 
1510 			if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
1511 				is_special = B_TRUE;
1512 				is_log = is_dedup = is_spare = B_FALSE;
1513 				argc--;
1514 				argv++;
1515 				continue;
1516 			}
1517 
1518 			if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1519 				is_dedup = B_TRUE;
1520 				is_log = is_special = is_spare = B_FALSE;
1521 				argc--;
1522 				argv++;
1523 				continue;
1524 			}
1525 
1526 			if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1527 				if (l2cache != NULL) {
1528 					(void) fprintf(stderr,
1529 					    gettext("invalid vdev "
1530 					    "specification: 'cache' can be "
1531 					    "specified only once\n"));
1532 					goto spec_out;
1533 				}
1534 				is_log = is_special = B_FALSE;
1535 				is_dedup = is_spare = B_FALSE;
1536 			}
1537 
1538 			if (is_log || is_special || is_dedup) {
1539 				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1540 					(void) fprintf(stderr,
1541 					    gettext("invalid vdev "
1542 					    "specification: unsupported '%s' "
1543 					    "device: %s\n"), is_log ? "log" :
1544 					    "special", type);
1545 					goto spec_out;
1546 				}
1547 				nlogs++;
1548 			}
1549 
1550 			for (c = 1; c < argc; c++) {
1551 				if (is_grouping(argv[c], NULL, NULL) != NULL)
1552 					break;
1553 
1554 				children++;
1555 				child = realloc(child,
1556 				    children * sizeof (nvlist_t *));
1557 				if (child == NULL)
1558 					zpool_no_memory();
1559 				if ((nv = make_leaf_vdev(props, argv[c],
1560 				    !(is_log || is_special || is_dedup ||
1561 				    is_spare))) == NULL) {
1562 					for (c = 0; c < children - 1; c++)
1563 						nvlist_free(child[c]);
1564 					free(child);
1565 					goto spec_out;
1566 				}
1567 
1568 				child[children - 1] = nv;
1569 			}
1570 
1571 			if (children < mindev) {
1572 				(void) fprintf(stderr, gettext("invalid vdev "
1573 				    "specification: %s requires at least %d "
1574 				    "devices\n"), argv[0], mindev);
1575 				for (c = 0; c < children; c++)
1576 					nvlist_free(child[c]);
1577 				free(child);
1578 				goto spec_out;
1579 			}
1580 
1581 			if (children > maxdev) {
1582 				(void) fprintf(stderr, gettext("invalid vdev "
1583 				    "specification: %s supports no more than "
1584 				    "%d devices\n"), argv[0], maxdev);
1585 				for (c = 0; c < children; c++)
1586 					nvlist_free(child[c]);
1587 				free(child);
1588 				goto spec_out;
1589 			}
1590 
1591 			argc -= c;
1592 			argv += c;
1593 
1594 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1595 				spares = child;
1596 				nspares = children;
1597 				continue;
1598 			} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1599 				l2cache = child;
1600 				nl2cache = children;
1601 				continue;
1602 			} else {
1603 				/* create a top-level vdev with children */
1604 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1605 				    0) == 0);
1606 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1607 				    type) == 0);
1608 				verify(nvlist_add_uint64(nv,
1609 				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1610 				if (is_log) {
1611 					verify(nvlist_add_string(nv,
1612 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1613 					    VDEV_ALLOC_BIAS_LOG) == 0);
1614 				}
1615 				if (is_special) {
1616 					verify(nvlist_add_string(nv,
1617 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1618 					    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1619 				}
1620 				if (is_dedup) {
1621 					verify(nvlist_add_string(nv,
1622 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1623 					    VDEV_ALLOC_BIAS_DEDUP) == 0);
1624 				}
1625 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1626 					verify(nvlist_add_uint64(nv,
1627 					    ZPOOL_CONFIG_NPARITY,
1628 					    mindev - 1) == 0);
1629 				}
1630 				if (strcmp(type, VDEV_TYPE_DRAID) == 0) {
1631 					if (draid_config_by_type(nv,
1632 					    fulltype, children) != 0) {
1633 						for (c = 0; c < children; c++)
1634 							nvlist_free(child[c]);
1635 						free(child);
1636 						goto spec_out;
1637 					}
1638 				}
1639 				verify(nvlist_add_nvlist_array(nv,
1640 				    ZPOOL_CONFIG_CHILDREN, child,
1641 				    children) == 0);
1642 
1643 				for (c = 0; c < children; c++)
1644 					nvlist_free(child[c]);
1645 				free(child);
1646 			}
1647 		} else {
1648 			/*
1649 			 * We have a device.  Pass off to make_leaf_vdev() to
1650 			 * construct the appropriate nvlist describing the vdev.
1651 			 */
1652 			if ((nv = make_leaf_vdev(props, argv[0], !(is_log ||
1653 			    is_special || is_dedup || is_spare))) == NULL)
1654 				goto spec_out;
1655 
1656 			verify(nvlist_add_uint64(nv,
1657 			    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1658 			if (is_log) {
1659 				verify(nvlist_add_string(nv,
1660 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1661 				    VDEV_ALLOC_BIAS_LOG) == 0);
1662 				nlogs++;
1663 			}
1664 
1665 			if (is_special) {
1666 				verify(nvlist_add_string(nv,
1667 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1668 				    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1669 			}
1670 			if (is_dedup) {
1671 				verify(nvlist_add_string(nv,
1672 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1673 				    VDEV_ALLOC_BIAS_DEDUP) == 0);
1674 			}
1675 			argc--;
1676 			argv++;
1677 		}
1678 
1679 		toplevels++;
1680 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1681 		if (top == NULL)
1682 			zpool_no_memory();
1683 		top[toplevels - 1] = nv;
1684 	}
1685 
1686 	if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1687 		(void) fprintf(stderr, gettext("invalid vdev "
1688 		    "specification: at least one toplevel vdev must be "
1689 		    "specified\n"));
1690 		goto spec_out;
1691 	}
1692 
1693 	if (seen_logs && nlogs == 0) {
1694 		(void) fprintf(stderr, gettext("invalid vdev specification: "
1695 		    "log requires at least 1 device\n"));
1696 		goto spec_out;
1697 	}
1698 
1699 	/*
1700 	 * Finally, create nvroot and add all top-level vdevs to it.
1701 	 */
1702 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1703 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1704 	    VDEV_TYPE_ROOT) == 0);
1705 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1706 	    top, toplevels) == 0);
1707 	if (nspares != 0)
1708 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1709 		    spares, nspares) == 0);
1710 	if (nl2cache != 0)
1711 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1712 		    l2cache, nl2cache) == 0);
1713 
1714 spec_out:
1715 	for (t = 0; t < toplevels; t++)
1716 		nvlist_free(top[t]);
1717 	for (t = 0; t < nspares; t++)
1718 		nvlist_free(spares[t]);
1719 	for (t = 0; t < nl2cache; t++)
1720 		nvlist_free(l2cache[t]);
1721 
1722 	free(spares);
1723 	free(l2cache);
1724 	free(top);
1725 
1726 	return (nvroot);
1727 }
1728 
1729 nvlist_t *
1730 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1731     splitflags_t flags, int argc, char **argv)
1732 {
1733 	nvlist_t *newroot = NULL, **child;
1734 	uint_t c, children;
1735 
1736 	if (argc > 0) {
1737 		if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1738 			(void) fprintf(stderr, gettext("Unable to build a "
1739 			    "pool from the specified devices\n"));
1740 			return (NULL);
1741 		}
1742 
1743 		if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1744 			nvlist_free(newroot);
1745 			return (NULL);
1746 		}
1747 
1748 		/* avoid any tricks in the spec */
1749 		verify(nvlist_lookup_nvlist_array(newroot,
1750 		    ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1751 		for (c = 0; c < children; c++) {
1752 			char *path;
1753 			const char *type;
1754 			int min, max;
1755 
1756 			verify(nvlist_lookup_string(child[c],
1757 			    ZPOOL_CONFIG_PATH, &path) == 0);
1758 			if ((type = is_grouping(path, &min, &max)) != NULL) {
1759 				(void) fprintf(stderr, gettext("Cannot use "
1760 				    "'%s' as a device for splitting\n"), type);
1761 				nvlist_free(newroot);
1762 				return (NULL);
1763 			}
1764 		}
1765 	}
1766 
1767 	if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1768 		nvlist_free(newroot);
1769 		return (NULL);
1770 	}
1771 
1772 	return (newroot);
1773 }
1774 
1775 static int
1776 num_normal_vdevs(nvlist_t *nvroot)
1777 {
1778 	nvlist_t **top;
1779 	uint_t t, toplevels, normal = 0;
1780 
1781 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1782 	    &top, &toplevels) == 0);
1783 
1784 	for (t = 0; t < toplevels; t++) {
1785 		uint64_t log = B_FALSE;
1786 
1787 		(void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log);
1788 		if (log)
1789 			continue;
1790 		if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS))
1791 			continue;
1792 
1793 		normal++;
1794 	}
1795 
1796 	return (normal);
1797 }
1798 
1799 /*
1800  * Get and validate the contents of the given vdev specification.  This ensures
1801  * that the nvlist returned is well-formed, that all the devices exist, and that
1802  * they are not currently in use by any other known consumer.  The 'poolconfig'
1803  * parameter is the current configuration of the pool when adding devices
1804  * existing pool, and is used to perform additional checks, such as changing the
1805  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1806  * new pool.  The 'force' flag controls whether devices should be forcefully
1807  * added, even if they appear in use.
1808  */
1809 nvlist_t *
1810 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1811     boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1812 {
1813 	nvlist_t *newroot;
1814 	nvlist_t *poolconfig = NULL;
1815 	is_force = force;
1816 
1817 	/*
1818 	 * Construct the vdev specification.  If this is successful, we know
1819 	 * that we have a valid specification, and that all devices can be
1820 	 * opened.
1821 	 */
1822 	if ((newroot = construct_spec(props, argc, argv)) == NULL)
1823 		return (NULL);
1824 
1825 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
1826 		nvlist_free(newroot);
1827 		return (NULL);
1828 	}
1829 
1830 	/*
1831 	 * Validate each device to make sure that it's not shared with another
1832 	 * subsystem.  We do this even if 'force' is set, because there are some
1833 	 * uses (such as a dedicated dump device) that even '-f' cannot
1834 	 * override.
1835 	 */
1836 	if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1837 		nvlist_free(newroot);
1838 		return (NULL);
1839 	}
1840 
1841 	/*
1842 	 * Check the replication level of the given vdevs and report any errors
1843 	 * found.  We include the existing pool spec, if any, as we need to
1844 	 * catch changes against the existing replication level.
1845 	 */
1846 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1847 		nvlist_free(newroot);
1848 		return (NULL);
1849 	}
1850 
1851 	/*
1852 	 * On pool create the new vdev spec must have one normal vdev.
1853 	 */
1854 	if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) {
1855 		vdev_error(gettext("at least one general top-level vdev must "
1856 		    "be specified\n"));
1857 		nvlist_free(newroot);
1858 		return (NULL);
1859 	}
1860 
1861 	/*
1862 	 * Run through the vdev specification and label any whole disks found.
1863 	 */
1864 	if (!dryrun && make_disks(zhp, newroot) != 0) {
1865 		nvlist_free(newroot);
1866 		return (NULL);
1867 	}
1868 
1869 	return (newroot);
1870 }
1871