1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2016, 2017 Intel Corporation.
26  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
27  */
28 
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  * 	Device vdevs
34  * 		disk=(path=..., devid=...)
35  * 		file=(path=...)
36  *
37  * 	Group vdevs
38  * 		raidz[1|2]=(...)
39  * 		mirror=(...)
40  *
41  * 	Hot spares
42  *
43  * While the underlying implementation supports it, group vdevs cannot contain
44  * other group vdevs.  All userland verification of devices is contained within
45  * this file.  If successful, the nvlist returned can be passed directly to the
46  * kernel; we've done as much verification as possible in userland.
47  *
48  * Hot spares are a special case, and passed down as an array of disk vdevs, at
49  * the same level as the root of the vdev tree.
50  *
51  * The only function exported by this file is 'make_root_vdev'.  The
52  * function performs several passes:
53  *
54  * 	1. Construct the vdev specification.  Performs syntax validation and
55  *         makes sure each device is valid.
56  * 	2. Check for devices in use.  Using libblkid to make sure that no
57  *         devices are also in use.  Some can be overridden using the 'force'
58  *         flag, others cannot.
59  * 	3. Check for replication errors if the 'force' flag is not specified.
60  *         validates that the replication level is consistent across the
61  *         entire pool.
62  * 	4. Call libzfs to label any whole disks with an EFI label.
63  */
64 
65 #include <assert.h>
66 #include <ctype.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libintl.h>
70 #include <libnvpair.h>
71 #include <libzutil.h>
72 #include <limits.h>
73 #include <sys/spa.h>
74 #include <stdio.h>
75 #include <string.h>
76 #include <unistd.h>
77 #include "zpool_util.h"
78 #include <sys/zfs_context.h>
79 #include <sys/stat.h>
80 
81 /*
82  * For any given vdev specification, we can have multiple errors.  The
83  * vdev_error() function keeps track of whether we have seen an error yet, and
84  * prints out a header if its the first error we've seen.
85  */
86 boolean_t error_seen;
87 boolean_t is_force;
88 
89 void
90 vdev_error(const char *fmt, ...)
91 {
92 	va_list ap;
93 
94 	if (!error_seen) {
95 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
96 		if (!is_force)
97 			(void) fprintf(stderr, gettext("use '-f' to override "
98 			    "the following errors:\n"));
99 		else
100 			(void) fprintf(stderr, gettext("the following errors "
101 			    "must be manually repaired:\n"));
102 		error_seen = B_TRUE;
103 	}
104 
105 	va_start(ap, fmt);
106 	(void) vfprintf(stderr, fmt, ap);
107 	va_end(ap);
108 }
109 
110 /*
111  * Check that a file is valid.  All we can do in this case is check that it's
112  * not in use by another pool, and not in use by swap.
113  */
114 int
115 check_file_generic(const char *file, boolean_t force, boolean_t isspare)
116 {
117 	char  *name;
118 	int fd;
119 	int ret = 0;
120 	pool_state_t state;
121 	boolean_t inuse;
122 
123 	if ((fd = open(file, O_RDONLY)) < 0)
124 		return (0);
125 
126 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
127 		const char *desc;
128 
129 		switch (state) {
130 		case POOL_STATE_ACTIVE:
131 			desc = gettext("active");
132 			break;
133 
134 		case POOL_STATE_EXPORTED:
135 			desc = gettext("exported");
136 			break;
137 
138 		case POOL_STATE_POTENTIALLY_ACTIVE:
139 			desc = gettext("potentially active");
140 			break;
141 
142 		default:
143 			desc = gettext("unknown");
144 			break;
145 		}
146 
147 		/*
148 		 * Allow hot spares to be shared between pools.
149 		 */
150 		if (state == POOL_STATE_SPARE && isspare) {
151 			free(name);
152 			(void) close(fd);
153 			return (0);
154 		}
155 
156 		if (state == POOL_STATE_ACTIVE ||
157 		    state == POOL_STATE_SPARE || !force) {
158 			switch (state) {
159 			case POOL_STATE_SPARE:
160 				vdev_error(gettext("%s is reserved as a hot "
161 				    "spare for pool %s\n"), file, name);
162 				break;
163 			default:
164 				vdev_error(gettext("%s is part of %s pool "
165 				    "'%s'\n"), file, desc, name);
166 				break;
167 			}
168 			ret = -1;
169 		}
170 
171 		free(name);
172 	}
173 
174 	(void) close(fd);
175 	return (ret);
176 }
177 
178 /*
179  * This may be a shorthand device path or it could be total gibberish.
180  * Check to see if it is a known device available in zfs_vdev_paths.
181  * As part of this check, see if we've been given an entire disk
182  * (minus the slice number).
183  */
184 static int
185 is_shorthand_path(const char *arg, char *path, size_t path_size,
186     struct stat64 *statbuf, boolean_t *wholedisk)
187 {
188 	int error;
189 
190 	error = zfs_resolve_shortname(arg, path, path_size);
191 	if (error == 0) {
192 		*wholedisk = zfs_dev_is_whole_disk(path);
193 		if (*wholedisk || (stat64(path, statbuf) == 0))
194 			return (0);
195 	}
196 
197 	strlcpy(path, arg, path_size);
198 	memset(statbuf, 0, sizeof (*statbuf));
199 	*wholedisk = B_FALSE;
200 
201 	return (error);
202 }
203 
204 /*
205  * Determine if the given path is a hot spare within the given configuration.
206  * If no configuration is given we rely solely on the label.
207  */
208 static boolean_t
209 is_spare(nvlist_t *config, const char *path)
210 {
211 	int fd;
212 	pool_state_t state;
213 	char *name = NULL;
214 	nvlist_t *label;
215 	uint64_t guid, spareguid;
216 	nvlist_t *nvroot;
217 	nvlist_t **spares;
218 	uint_t i, nspares;
219 	boolean_t inuse;
220 
221 	if (zpool_is_draid_spare(path))
222 		return (B_TRUE);
223 
224 	if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
225 		return (B_FALSE);
226 
227 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
228 	    !inuse ||
229 	    state != POOL_STATE_SPARE ||
230 	    zpool_read_label(fd, &label, NULL) != 0) {
231 		free(name);
232 		(void) close(fd);
233 		return (B_FALSE);
234 	}
235 	free(name);
236 	(void) close(fd);
237 
238 	if (config == NULL) {
239 		nvlist_free(label);
240 		return (B_TRUE);
241 	}
242 
243 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
244 	nvlist_free(label);
245 
246 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
247 	    &nvroot) == 0);
248 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
249 	    &spares, &nspares) == 0) {
250 		for (i = 0; i < nspares; i++) {
251 			verify(nvlist_lookup_uint64(spares[i],
252 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
253 			if (spareguid == guid)
254 				return (B_TRUE);
255 		}
256 	}
257 
258 	return (B_FALSE);
259 }
260 
261 /*
262  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
263  * device, fill in the device id to make a complete nvlist.  Valid forms for a
264  * leaf vdev are:
265  *
266  *	/dev/xxx	Complete disk path
267  *	/xxx		Full path to file
268  *	xxx		Shorthand for <zfs_vdev_paths>/xxx
269  *	draid*		Virtual dRAID spare
270  */
271 static nvlist_t *
272 make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary)
273 {
274 	char path[MAXPATHLEN];
275 	struct stat64 statbuf;
276 	nvlist_t *vdev = NULL;
277 	const char *type = NULL;
278 	boolean_t wholedisk = B_FALSE;
279 	uint64_t ashift = 0;
280 	int err;
281 
282 	/*
283 	 * Determine what type of vdev this is, and put the full path into
284 	 * 'path'.  We detect whether this is a device of file afterwards by
285 	 * checking the st_mode of the file.
286 	 */
287 	if (arg[0] == '/') {
288 		/*
289 		 * Complete device or file path.  Exact type is determined by
290 		 * examining the file descriptor afterwards.  Symbolic links
291 		 * are resolved to their real paths to determine whole disk
292 		 * and S_ISBLK/S_ISREG type checks.  However, we are careful
293 		 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
294 		 * can leverage udev's persistent device labels.
295 		 */
296 		if (realpath(arg, path) == NULL) {
297 			(void) fprintf(stderr,
298 			    gettext("cannot resolve path '%s'\n"), arg);
299 			return (NULL);
300 		}
301 
302 		wholedisk = zfs_dev_is_whole_disk(path);
303 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
304 			(void) fprintf(stderr,
305 			    gettext("cannot open '%s': %s\n"),
306 			    path, strerror(errno));
307 			return (NULL);
308 		}
309 
310 		/* After whole disk check restore original passed path */
311 		strlcpy(path, arg, sizeof (path));
312 	} else if (zpool_is_draid_spare(arg)) {
313 		if (!is_primary) {
314 			(void) fprintf(stderr,
315 			    gettext("cannot open '%s': dRAID spares can only "
316 			    "be used to replace primary vdevs\n"), arg);
317 			return (NULL);
318 		}
319 
320 		wholedisk = B_TRUE;
321 		strlcpy(path, arg, sizeof (path));
322 		type = VDEV_TYPE_DRAID_SPARE;
323 	} else {
324 		err = is_shorthand_path(arg, path, sizeof (path),
325 		    &statbuf, &wholedisk);
326 		if (err != 0) {
327 			/*
328 			 * If we got ENOENT, then the user gave us
329 			 * gibberish, so try to direct them with a
330 			 * reasonable error message.  Otherwise,
331 			 * regurgitate strerror() since it's the best we
332 			 * can do.
333 			 */
334 			if (err == ENOENT) {
335 				(void) fprintf(stderr,
336 				    gettext("cannot open '%s': no such "
337 				    "device in %s\n"), arg, DISK_ROOT);
338 				(void) fprintf(stderr,
339 				    gettext("must be a full path or "
340 				    "shorthand device name\n"));
341 				return (NULL);
342 			} else {
343 				(void) fprintf(stderr,
344 				    gettext("cannot open '%s': %s\n"),
345 				    path, strerror(errno));
346 				return (NULL);
347 			}
348 		}
349 	}
350 
351 	if (type == NULL) {
352 		/*
353 		 * Determine whether this is a device or a file.
354 		 */
355 		if (wholedisk || S_ISBLK(statbuf.st_mode)) {
356 			type = VDEV_TYPE_DISK;
357 		} else if (S_ISREG(statbuf.st_mode)) {
358 			type = VDEV_TYPE_FILE;
359 		} else {
360 			fprintf(stderr, gettext("cannot use '%s': must "
361 			    "be a block device or regular file\n"), path);
362 			return (NULL);
363 		}
364 	}
365 
366 	/*
367 	 * Finally, we have the complete device or file, and we know that it is
368 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
369 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
370 	 */
371 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
372 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
373 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
374 
375 	/* Lookup and add the enclosure sysfs path (if exists) */
376 	update_vdev_config_dev_sysfs_path(vdev, path,
377 	    ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
378 
379 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
380 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
381 		    (uint64_t)wholedisk) == 0);
382 
383 	/*
384 	 * Override defaults if custom properties are provided.
385 	 */
386 	if (props != NULL) {
387 		const char *value = NULL;
388 
389 		if (nvlist_lookup_string(props,
390 		    zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) {
391 			if (zfs_nicestrtonum(NULL, value, &ashift) != 0) {
392 				(void) fprintf(stderr,
393 				    gettext("ashift must be a number.\n"));
394 				return (NULL);
395 			}
396 			if (ashift != 0 &&
397 			    (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) {
398 				(void) fprintf(stderr,
399 				    gettext("invalid 'ashift=%" PRIu64 "' "
400 				    "property: only values between %" PRId32 " "
401 				    "and %" PRId32 " are allowed.\n"),
402 				    ashift, ASHIFT_MIN, ASHIFT_MAX);
403 				return (NULL);
404 			}
405 		}
406 	}
407 
408 	/*
409 	 * If the device is known to incorrectly report its physical sector
410 	 * size explicitly provide the known correct value.
411 	 */
412 	if (ashift == 0) {
413 		int sector_size;
414 
415 		if (check_sector_size_database(path, &sector_size) == B_TRUE)
416 			ashift = highbit64(sector_size) - 1;
417 	}
418 
419 	if (ashift > 0)
420 		(void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
421 
422 	return (vdev);
423 }
424 
425 /*
426  * Go through and verify the replication level of the pool is consistent.
427  * Performs the following checks:
428  *
429  * 	For the new spec, verifies that devices in mirrors and raidz are the
430  * 	same size.
431  *
432  * 	If the current configuration already has inconsistent replication
433  * 	levels, ignore any other potential problems in the new spec.
434  *
435  * 	Otherwise, make sure that the current spec (if there is one) and the new
436  * 	spec have consistent replication levels.
437  *
438  *	If there is no current spec (create), make sure new spec has at least
439  *	one general purpose vdev.
440  */
441 typedef struct replication_level {
442 	const char *zprl_type;
443 	uint64_t zprl_children;
444 	uint64_t zprl_parity;
445 } replication_level_t;
446 
447 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
448 
449 /*
450  * N.B. For the purposes of comparing replication levels dRAID can be
451  * considered functionally equivalent to raidz.
452  */
453 static boolean_t
454 is_raidz_mirror(replication_level_t *a, replication_level_t *b,
455     replication_level_t **raidz, replication_level_t **mirror)
456 {
457 	if ((strcmp(a->zprl_type, "raidz") == 0 ||
458 	    strcmp(a->zprl_type, "draid") == 0) &&
459 	    strcmp(b->zprl_type, "mirror") == 0) {
460 		*raidz = a;
461 		*mirror = b;
462 		return (B_TRUE);
463 	}
464 	return (B_FALSE);
465 }
466 
467 /*
468  * Comparison for determining if dRAID and raidz where passed in either order.
469  */
470 static boolean_t
471 is_raidz_draid(replication_level_t *a, replication_level_t *b)
472 {
473 	if ((strcmp(a->zprl_type, "raidz") == 0 ||
474 	    strcmp(a->zprl_type, "draid") == 0) &&
475 	    (strcmp(b->zprl_type, "raidz") == 0 ||
476 	    strcmp(b->zprl_type, "draid") == 0)) {
477 		return (B_TRUE);
478 	}
479 
480 	return (B_FALSE);
481 }
482 
483 /*
484  * Given a list of toplevel vdevs, return the current replication level.  If
485  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
486  * an error message will be displayed for each self-inconsistent vdev.
487  */
488 static replication_level_t *
489 get_replication(nvlist_t *nvroot, boolean_t fatal)
490 {
491 	nvlist_t **top;
492 	uint_t t, toplevels;
493 	nvlist_t **child;
494 	uint_t c, children;
495 	nvlist_t *nv;
496 	const char *type;
497 	replication_level_t lastrep = {0};
498 	replication_level_t rep;
499 	replication_level_t *ret;
500 	replication_level_t *raidz, *mirror;
501 	boolean_t dontreport;
502 
503 	ret = safe_malloc(sizeof (replication_level_t));
504 
505 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
506 	    &top, &toplevels) == 0);
507 
508 	for (t = 0; t < toplevels; t++) {
509 		uint64_t is_log = B_FALSE;
510 
511 		nv = top[t];
512 
513 		/*
514 		 * For separate logs we ignore the top level vdev replication
515 		 * constraints.
516 		 */
517 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
518 		if (is_log)
519 			continue;
520 
521 		/*
522 		 * Ignore holes introduced by removing aux devices, along
523 		 * with indirect vdevs introduced by previously removed
524 		 * vdevs.
525 		 */
526 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
527 		if (strcmp(type, VDEV_TYPE_HOLE) == 0 ||
528 		    strcmp(type, VDEV_TYPE_INDIRECT) == 0)
529 			continue;
530 
531 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
532 		    &child, &children) != 0) {
533 			/*
534 			 * This is a 'file' or 'disk' vdev.
535 			 */
536 			rep.zprl_type = type;
537 			rep.zprl_children = 1;
538 			rep.zprl_parity = 0;
539 		} else {
540 			int64_t vdev_size;
541 
542 			/*
543 			 * This is a mirror or RAID-Z vdev.  Go through and make
544 			 * sure the contents are all the same (files vs. disks),
545 			 * keeping track of the number of elements in the
546 			 * process.
547 			 *
548 			 * We also check that the size of each vdev (if it can
549 			 * be determined) is the same.
550 			 */
551 			rep.zprl_type = type;
552 			rep.zprl_children = 0;
553 
554 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 ||
555 			    strcmp(type, VDEV_TYPE_DRAID) == 0) {
556 				verify(nvlist_lookup_uint64(nv,
557 				    ZPOOL_CONFIG_NPARITY,
558 				    &rep.zprl_parity) == 0);
559 				assert(rep.zprl_parity != 0);
560 			} else {
561 				rep.zprl_parity = 0;
562 			}
563 
564 			/*
565 			 * The 'dontreport' variable indicates that we've
566 			 * already reported an error for this spec, so don't
567 			 * bother doing it again.
568 			 */
569 			type = NULL;
570 			dontreport = 0;
571 			vdev_size = -1LL;
572 			for (c = 0; c < children; c++) {
573 				nvlist_t *cnv = child[c];
574 				const char *path;
575 				struct stat64 statbuf;
576 				int64_t size = -1LL;
577 				const char *childtype;
578 				int fd, err;
579 
580 				rep.zprl_children++;
581 
582 				verify(nvlist_lookup_string(cnv,
583 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
584 
585 				/*
586 				 * If this is a replacing or spare vdev, then
587 				 * get the real first child of the vdev: do this
588 				 * in a loop because replacing and spare vdevs
589 				 * can be nested.
590 				 */
591 				while (strcmp(childtype,
592 				    VDEV_TYPE_REPLACING) == 0 ||
593 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
594 					nvlist_t **rchild;
595 					uint_t rchildren;
596 
597 					verify(nvlist_lookup_nvlist_array(cnv,
598 					    ZPOOL_CONFIG_CHILDREN, &rchild,
599 					    &rchildren) == 0);
600 					assert(rchildren == 2);
601 					cnv = rchild[0];
602 
603 					verify(nvlist_lookup_string(cnv,
604 					    ZPOOL_CONFIG_TYPE,
605 					    &childtype) == 0);
606 				}
607 
608 				verify(nvlist_lookup_string(cnv,
609 				    ZPOOL_CONFIG_PATH, &path) == 0);
610 
611 				/*
612 				 * If we have a raidz/mirror that combines disks
613 				 * with files, report it as an error.
614 				 */
615 				if (!dontreport && type != NULL &&
616 				    strcmp(type, childtype) != 0) {
617 					if (ret != NULL)
618 						free(ret);
619 					ret = NULL;
620 					if (fatal)
621 						vdev_error(gettext(
622 						    "mismatched replication "
623 						    "level: %s contains both "
624 						    "files and devices\n"),
625 						    rep.zprl_type);
626 					else
627 						return (NULL);
628 					dontreport = B_TRUE;
629 				}
630 
631 				/*
632 				 * According to stat(2), the value of 'st_size'
633 				 * is undefined for block devices and character
634 				 * devices.  But there is no effective way to
635 				 * determine the real size in userland.
636 				 *
637 				 * Instead, we'll take advantage of an
638 				 * implementation detail of spec_size().  If the
639 				 * device is currently open, then we (should)
640 				 * return a valid size.
641 				 *
642 				 * If we still don't get a valid size (indicated
643 				 * by a size of 0 or MAXOFFSET_T), then ignore
644 				 * this device altogether.
645 				 */
646 				if ((fd = open(path, O_RDONLY)) >= 0) {
647 					err = fstat64_blk(fd, &statbuf);
648 					(void) close(fd);
649 				} else {
650 					err = stat64(path, &statbuf);
651 				}
652 
653 				if (err != 0 ||
654 				    statbuf.st_size == 0 ||
655 				    statbuf.st_size == MAXOFFSET_T)
656 					continue;
657 
658 				size = statbuf.st_size;
659 
660 				/*
661 				 * Also make sure that devices and
662 				 * slices have a consistent size.  If
663 				 * they differ by a significant amount
664 				 * (~16MB) then report an error.
665 				 */
666 				if (!dontreport &&
667 				    (vdev_size != -1LL &&
668 				    (llabs(size - vdev_size) >
669 				    ZPOOL_FUZZ))) {
670 					if (ret != NULL)
671 						free(ret);
672 					ret = NULL;
673 					if (fatal)
674 						vdev_error(gettext(
675 						    "%s contains devices of "
676 						    "different sizes\n"),
677 						    rep.zprl_type);
678 					else
679 						return (NULL);
680 					dontreport = B_TRUE;
681 				}
682 
683 				type = childtype;
684 				vdev_size = size;
685 			}
686 		}
687 
688 		/*
689 		 * At this point, we have the replication of the last toplevel
690 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if it is
691 		 * different.
692 		 */
693 		if (lastrep.zprl_type != NULL) {
694 			if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) ||
695 			    is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) {
696 				/*
697 				 * Accepted raidz and mirror when they can
698 				 * handle the same number of disk failures.
699 				 */
700 				if (raidz->zprl_parity !=
701 				    mirror->zprl_children - 1) {
702 					if (ret != NULL)
703 						free(ret);
704 					ret = NULL;
705 					if (fatal)
706 						vdev_error(gettext(
707 						    "mismatched replication "
708 						    "level: "
709 						    "%s and %s vdevs with "
710 						    "different redundancy, "
711 						    "%llu vs. %llu (%llu-way) "
712 						    "are present\n"),
713 						    raidz->zprl_type,
714 						    mirror->zprl_type,
715 						    (u_longlong_t)
716 						    raidz->zprl_parity,
717 						    (u_longlong_t)
718 						    mirror->zprl_children - 1,
719 						    (u_longlong_t)
720 						    mirror->zprl_children);
721 					else
722 						return (NULL);
723 				}
724 			} else if (is_raidz_draid(&lastrep, &rep)) {
725 				/*
726 				 * Accepted raidz and draid when they can
727 				 * handle the same number of disk failures.
728 				 */
729 				if (lastrep.zprl_parity != rep.zprl_parity) {
730 					if (ret != NULL)
731 						free(ret);
732 					ret = NULL;
733 					if (fatal)
734 						vdev_error(gettext(
735 						    "mismatched replication "
736 						    "level: %s and %s vdevs "
737 						    "with different "
738 						    "redundancy, %llu vs. "
739 						    "%llu are present\n"),
740 						    lastrep.zprl_type,
741 						    rep.zprl_type,
742 						    (u_longlong_t)
743 						    lastrep.zprl_parity,
744 						    (u_longlong_t)
745 						    rep.zprl_parity);
746 					else
747 						return (NULL);
748 				}
749 			} else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
750 			    0) {
751 				if (ret != NULL)
752 					free(ret);
753 				ret = NULL;
754 				if (fatal)
755 					vdev_error(gettext(
756 					    "mismatched replication level: "
757 					    "both %s and %s vdevs are "
758 					    "present\n"),
759 					    lastrep.zprl_type, rep.zprl_type);
760 				else
761 					return (NULL);
762 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
763 				if (ret)
764 					free(ret);
765 				ret = NULL;
766 				if (fatal)
767 					vdev_error(gettext(
768 					    "mismatched replication level: "
769 					    "both %llu and %llu device parity "
770 					    "%s vdevs are present\n"),
771 					    (u_longlong_t)
772 					    lastrep.zprl_parity,
773 					    (u_longlong_t)rep.zprl_parity,
774 					    rep.zprl_type);
775 				else
776 					return (NULL);
777 			} else if (lastrep.zprl_children != rep.zprl_children) {
778 				if (ret)
779 					free(ret);
780 				ret = NULL;
781 				if (fatal)
782 					vdev_error(gettext(
783 					    "mismatched replication level: "
784 					    "both %llu-way and %llu-way %s "
785 					    "vdevs are present\n"),
786 					    (u_longlong_t)
787 					    lastrep.zprl_children,
788 					    (u_longlong_t)
789 					    rep.zprl_children,
790 					    rep.zprl_type);
791 				else
792 					return (NULL);
793 			}
794 		}
795 		lastrep = rep;
796 	}
797 
798 	if (ret != NULL)
799 		*ret = rep;
800 
801 	return (ret);
802 }
803 
804 /*
805  * Check the replication level of the vdev spec against the current pool.  Calls
806  * get_replication() to make sure the new spec is self-consistent.  If the pool
807  * has a consistent replication level, then we ignore any errors.  Otherwise,
808  * report any difference between the two.
809  */
810 static int
811 check_replication(nvlist_t *config, nvlist_t *newroot)
812 {
813 	nvlist_t **child;
814 	uint_t	children;
815 	replication_level_t *current = NULL, *new;
816 	replication_level_t *raidz, *mirror;
817 	int ret;
818 
819 	/*
820 	 * If we have a current pool configuration, check to see if it's
821 	 * self-consistent.  If not, simply return success.
822 	 */
823 	if (config != NULL) {
824 		nvlist_t *nvroot;
825 
826 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
827 		    &nvroot) == 0);
828 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
829 			return (0);
830 	}
831 	/*
832 	 * for spares there may be no children, and therefore no
833 	 * replication level to check
834 	 */
835 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
836 	    &child, &children) != 0) || (children == 0)) {
837 		free(current);
838 		return (0);
839 	}
840 
841 	/*
842 	 * If all we have is logs then there's no replication level to check.
843 	 */
844 	if (num_logs(newroot) == children) {
845 		free(current);
846 		return (0);
847 	}
848 
849 	/*
850 	 * Get the replication level of the new vdev spec, reporting any
851 	 * inconsistencies found.
852 	 */
853 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
854 		free(current);
855 		return (-1);
856 	}
857 
858 	/*
859 	 * Check to see if the new vdev spec matches the replication level of
860 	 * the current pool.
861 	 */
862 	ret = 0;
863 	if (current != NULL) {
864 		if (is_raidz_mirror(current, new, &raidz, &mirror) ||
865 		    is_raidz_mirror(new, current, &raidz, &mirror)) {
866 			if (raidz->zprl_parity != mirror->zprl_children - 1) {
867 				vdev_error(gettext(
868 				    "mismatched replication level: pool and "
869 				    "new vdev with different redundancy, %s "
870 				    "and %s vdevs, %llu vs. %llu (%llu-way)\n"),
871 				    raidz->zprl_type,
872 				    mirror->zprl_type,
873 				    (u_longlong_t)raidz->zprl_parity,
874 				    (u_longlong_t)mirror->zprl_children - 1,
875 				    (u_longlong_t)mirror->zprl_children);
876 				ret = -1;
877 			}
878 		} else if (strcmp(current->zprl_type, new->zprl_type) != 0) {
879 			vdev_error(gettext(
880 			    "mismatched replication level: pool uses %s "
881 			    "and new vdev is %s\n"),
882 			    current->zprl_type, new->zprl_type);
883 			ret = -1;
884 		} else if (current->zprl_parity != new->zprl_parity) {
885 			vdev_error(gettext(
886 			    "mismatched replication level: pool uses %llu "
887 			    "device parity and new vdev uses %llu\n"),
888 			    (u_longlong_t)current->zprl_parity,
889 			    (u_longlong_t)new->zprl_parity);
890 			ret = -1;
891 		} else if (current->zprl_children != new->zprl_children) {
892 			vdev_error(gettext(
893 			    "mismatched replication level: pool uses %llu-way "
894 			    "%s and new vdev uses %llu-way %s\n"),
895 			    (u_longlong_t)current->zprl_children,
896 			    current->zprl_type,
897 			    (u_longlong_t)new->zprl_children,
898 			    new->zprl_type);
899 			ret = -1;
900 		}
901 	}
902 
903 	free(new);
904 	if (current != NULL)
905 		free(current);
906 
907 	return (ret);
908 }
909 
910 static int
911 zero_label(const char *path)
912 {
913 	const int size = 4096;
914 	char buf[size];
915 	int err, fd;
916 
917 	if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
918 		(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
919 		    path, strerror(errno));
920 		return (-1);
921 	}
922 
923 	memset(buf, 0, size);
924 	err = write(fd, buf, size);
925 	(void) fdatasync(fd);
926 	(void) close(fd);
927 
928 	if (err == -1) {
929 		(void) fprintf(stderr, gettext("cannot zero first %d bytes "
930 		    "of '%s': %s\n"), size, path, strerror(errno));
931 		return (-1);
932 	}
933 
934 	if (err != size) {
935 		(void) fprintf(stderr, gettext("could only zero %d/%d bytes "
936 		    "of '%s'\n"), err, size, path);
937 		return (-1);
938 	}
939 
940 	return (0);
941 }
942 
943 static void
944 lines_to_stderr(char *lines[], int lines_cnt)
945 {
946 	int i;
947 	for (i = 0; i < lines_cnt; i++) {
948 		fprintf(stderr, "%s\n", lines[i]);
949 	}
950 }
951 
952 /*
953  * Go through and find any whole disks in the vdev specification, labelling them
954  * as appropriate.  When constructing the vdev spec, we were unable to open this
955  * device in order to provide a devid.  Now that we have labelled the disk and
956  * know that slice 0 is valid, we can construct the devid now.
957  *
958  * If the disk was already labeled with an EFI label, we will have gotten the
959  * devid already (because we were able to open the whole disk).  Otherwise, we
960  * need to get the devid after we label the disk.
961  */
962 static int
963 make_disks(zpool_handle_t *zhp, nvlist_t *nv, boolean_t replacing)
964 {
965 	nvlist_t **child;
966 	uint_t c, children;
967 	const char *type, *path;
968 	char devpath[MAXPATHLEN];
969 	char udevpath[MAXPATHLEN];
970 	uint64_t wholedisk;
971 	struct stat64 statbuf;
972 	int is_exclusive = 0;
973 	int fd;
974 	int ret;
975 
976 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
977 
978 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
979 	    &child, &children) != 0) {
980 
981 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
982 			return (0);
983 
984 		/*
985 		 * We have a disk device.  If this is a whole disk write
986 		 * out the efi partition table, otherwise write zero's to
987 		 * the first 4k of the partition.  This is to ensure that
988 		 * libblkid will not misidentify the partition due to a
989 		 * magic value left by the previous filesystem.
990 		 */
991 		verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
992 		verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
993 		    &wholedisk));
994 
995 		if (!wholedisk) {
996 			/*
997 			 * Update device id string for mpath nodes (Linux only)
998 			 */
999 			if (is_mpath_whole_disk(path))
1000 				update_vdev_config_dev_strs(nv);
1001 
1002 			if (!is_spare(NULL, path))
1003 				(void) zero_label(path);
1004 			return (0);
1005 		}
1006 
1007 		if (realpath(path, devpath) == NULL) {
1008 			ret = errno;
1009 			(void) fprintf(stderr,
1010 			    gettext("cannot resolve path '%s'\n"), path);
1011 			return (ret);
1012 		}
1013 
1014 		/*
1015 		 * Remove any previously existing symlink from a udev path to
1016 		 * the device before labeling the disk.  This ensures that
1017 		 * only newly created links are used.  Otherwise there is a
1018 		 * window between when udev deletes and recreates the link
1019 		 * during which access attempts will fail with ENOENT.
1020 		 */
1021 		strlcpy(udevpath, path, MAXPATHLEN);
1022 		(void) zfs_append_partition(udevpath, MAXPATHLEN);
1023 
1024 		fd = open(devpath, O_RDWR|O_EXCL);
1025 		if (fd == -1) {
1026 			if (errno == EBUSY)
1027 				is_exclusive = 1;
1028 #ifdef __FreeBSD__
1029 			if (errno == EPERM)
1030 				is_exclusive = 1;
1031 #endif
1032 		} else {
1033 			(void) close(fd);
1034 		}
1035 
1036 		/*
1037 		 * If the partition exists, contains a valid spare label,
1038 		 * and is opened exclusively there is no need to partition
1039 		 * it.  Hot spares have already been partitioned and are
1040 		 * held open exclusively by the kernel as a safety measure.
1041 		 *
1042 		 * If the provided path is for a /dev/disk/ device its
1043 		 * symbolic link will be removed, partition table created,
1044 		 * and then block until udev creates the new link.
1045 		 */
1046 		if (!is_exclusive && !is_spare(NULL, udevpath)) {
1047 			char *devnode = strrchr(devpath, '/') + 1;
1048 			char **lines = NULL;
1049 			int lines_cnt = 0;
1050 
1051 			ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
1052 			if (ret == 0) {
1053 				ret = lstat64(udevpath, &statbuf);
1054 				if (ret == 0 && S_ISLNK(statbuf.st_mode))
1055 					(void) unlink(udevpath);
1056 			}
1057 
1058 			/*
1059 			 * When labeling a pool the raw device node name
1060 			 * is provided as it appears under /dev/.
1061 			 *
1062 			 * Note that 'zhp' will be NULL when we're creating a
1063 			 * pool.
1064 			 */
1065 			if (zpool_prepare_and_label_disk(g_zfs, zhp, devnode,
1066 			    nv, zhp == NULL ? "create" :
1067 			    replacing ? "replace" : "add", &lines,
1068 			    &lines_cnt) != 0) {
1069 				(void) fprintf(stderr,
1070 				    gettext(
1071 				    "Error preparing/labeling disk.\n"));
1072 				if (lines_cnt > 0) {
1073 					(void) fprintf(stderr,
1074 					gettext("zfs_prepare_disk output:\n"));
1075 					lines_to_stderr(lines, lines_cnt);
1076 				}
1077 
1078 				libzfs_free_str_array(lines, lines_cnt);
1079 				return (-1);
1080 			}
1081 			libzfs_free_str_array(lines, lines_cnt);
1082 
1083 			/*
1084 			 * Wait for udev to signal the device is available
1085 			 * by the provided path.
1086 			 */
1087 			ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
1088 			if (ret) {
1089 				(void) fprintf(stderr,
1090 				    gettext("missing link: %s was "
1091 				    "partitioned but %s is missing\n"),
1092 				    devnode, udevpath);
1093 				return (ret);
1094 			}
1095 
1096 			ret = zero_label(udevpath);
1097 			if (ret)
1098 				return (ret);
1099 		}
1100 
1101 		/*
1102 		 * Update the path to refer to the partition.  The presence of
1103 		 * the 'whole_disk' field indicates to the CLI that we should
1104 		 * chop off the partition number when displaying the device in
1105 		 * future output.
1106 		 */
1107 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
1108 
1109 		/*
1110 		 * Update device id strings for whole disks (Linux only)
1111 		 */
1112 		update_vdev_config_dev_strs(nv);
1113 
1114 		return (0);
1115 	}
1116 
1117 	for (c = 0; c < children; c++)
1118 		if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1119 			return (ret);
1120 
1121 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1122 	    &child, &children) == 0)
1123 		for (c = 0; c < children; c++)
1124 			if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1125 				return (ret);
1126 
1127 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1128 	    &child, &children) == 0)
1129 		for (c = 0; c < children; c++)
1130 			if ((ret = make_disks(zhp, child[c], replacing)) != 0)
1131 				return (ret);
1132 
1133 	return (0);
1134 }
1135 
1136 /*
1137  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1138  * the majority of this task.
1139  */
1140 static boolean_t
1141 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1142     boolean_t replacing, boolean_t isspare)
1143 {
1144 	nvlist_t **child;
1145 	uint_t c, children;
1146 	const char *type, *path;
1147 	int ret = 0;
1148 	char buf[MAXPATHLEN];
1149 	uint64_t wholedisk = B_FALSE;
1150 	boolean_t anyinuse = B_FALSE;
1151 
1152 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1153 
1154 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1155 	    &child, &children) != 0) {
1156 
1157 		verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1158 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1159 			verify(!nvlist_lookup_uint64(nv,
1160 			    ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1161 
1162 		/*
1163 		 * As a generic check, we look to see if this is a replace of a
1164 		 * hot spare within the same pool.  If so, we allow it
1165 		 * regardless of what libblkid or zpool_in_use() says.
1166 		 */
1167 		if (replacing) {
1168 			(void) strlcpy(buf, path, sizeof (buf));
1169 			if (wholedisk) {
1170 				ret = zfs_append_partition(buf,  sizeof (buf));
1171 				if (ret == -1)
1172 					return (-1);
1173 			}
1174 
1175 			if (is_spare(config, buf))
1176 				return (B_FALSE);
1177 		}
1178 
1179 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1180 			ret = check_device(path, force, isspare, wholedisk);
1181 
1182 		else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1183 			ret = check_file(path, force, isspare);
1184 
1185 		return (ret != 0);
1186 	}
1187 
1188 	for (c = 0; c < children; c++)
1189 		if (is_device_in_use(config, child[c], force, replacing,
1190 		    B_FALSE))
1191 			anyinuse = B_TRUE;
1192 
1193 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1194 	    &child, &children) == 0)
1195 		for (c = 0; c < children; c++)
1196 			if (is_device_in_use(config, child[c], force, replacing,
1197 			    B_TRUE))
1198 				anyinuse = B_TRUE;
1199 
1200 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1201 	    &child, &children) == 0)
1202 		for (c = 0; c < children; c++)
1203 			if (is_device_in_use(config, child[c], force, replacing,
1204 			    B_FALSE))
1205 				anyinuse = B_TRUE;
1206 
1207 	return (anyinuse);
1208 }
1209 
1210 /*
1211  * Returns the parity level extracted from a raidz or draid type.
1212  * If the parity cannot be determined zero is returned.
1213  */
1214 static int
1215 get_parity(const char *type)
1216 {
1217 	long parity = 0;
1218 	const char *p;
1219 
1220 	if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) {
1221 		p = type + strlen(VDEV_TYPE_RAIDZ);
1222 
1223 		if (*p == '\0') {
1224 			/* when unspecified default to single parity */
1225 			return (1);
1226 		} else if (*p == '0') {
1227 			/* no zero prefixes allowed */
1228 			return (0);
1229 		} else {
1230 			/* 0-3, no suffixes allowed */
1231 			char *end;
1232 			errno = 0;
1233 			parity = strtol(p, &end, 10);
1234 			if (errno != 0 || *end != '\0' ||
1235 			    parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) {
1236 				return (0);
1237 			}
1238 		}
1239 	} else if (strncmp(type, VDEV_TYPE_DRAID,
1240 	    strlen(VDEV_TYPE_DRAID)) == 0) {
1241 		p = type + strlen(VDEV_TYPE_DRAID);
1242 
1243 		if (*p == '\0' || *p == ':') {
1244 			/* when unspecified default to single parity */
1245 			return (1);
1246 		} else if (*p == '0') {
1247 			/* no zero prefixes allowed */
1248 			return (0);
1249 		} else {
1250 			/* 0-3, allowed suffixes: '\0' or ':' */
1251 			char *end;
1252 			errno = 0;
1253 			parity = strtol(p, &end, 10);
1254 			if (errno != 0 ||
1255 			    parity < 1 || parity > VDEV_DRAID_MAXPARITY ||
1256 			    (*end != '\0' && *end != ':')) {
1257 				return (0);
1258 			}
1259 		}
1260 	}
1261 
1262 	return ((int)parity);
1263 }
1264 
1265 /*
1266  * Assign the minimum and maximum number of devices allowed for
1267  * the specified type.  On error NULL is returned, otherwise the
1268  * type prefix is returned (raidz, mirror, etc).
1269  */
1270 static const char *
1271 is_grouping(const char *type, int *mindev, int *maxdev)
1272 {
1273 	int nparity;
1274 
1275 	if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 ||
1276 	    strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) {
1277 		nparity = get_parity(type);
1278 		if (nparity == 0)
1279 			return (NULL);
1280 		if (mindev != NULL)
1281 			*mindev = nparity + 1;
1282 		if (maxdev != NULL)
1283 			*maxdev = 255;
1284 
1285 		if (strncmp(type, VDEV_TYPE_RAIDZ,
1286 		    strlen(VDEV_TYPE_RAIDZ)) == 0) {
1287 			return (VDEV_TYPE_RAIDZ);
1288 		} else {
1289 			return (VDEV_TYPE_DRAID);
1290 		}
1291 	}
1292 
1293 	if (maxdev != NULL)
1294 		*maxdev = INT_MAX;
1295 
1296 	if (strcmp(type, "mirror") == 0) {
1297 		if (mindev != NULL)
1298 			*mindev = 2;
1299 		return (VDEV_TYPE_MIRROR);
1300 	}
1301 
1302 	if (strcmp(type, "spare") == 0) {
1303 		if (mindev != NULL)
1304 			*mindev = 1;
1305 		return (VDEV_TYPE_SPARE);
1306 	}
1307 
1308 	if (strcmp(type, "log") == 0) {
1309 		if (mindev != NULL)
1310 			*mindev = 1;
1311 		return (VDEV_TYPE_LOG);
1312 	}
1313 
1314 	if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 ||
1315 	    strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1316 		if (mindev != NULL)
1317 			*mindev = 1;
1318 		return (type);
1319 	}
1320 
1321 	if (strcmp(type, "cache") == 0) {
1322 		if (mindev != NULL)
1323 			*mindev = 1;
1324 		return (VDEV_TYPE_L2CACHE);
1325 	}
1326 
1327 	return (NULL);
1328 }
1329 
1330 /*
1331  * Extract the configuration parameters encoded in the dRAID type and
1332  * use them to generate a dRAID configuration.  The expected format is:
1333  *
1334  * draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>]
1335  *
1336  * The intent is to be able to generate a good configuration when no
1337  * additional information is provided.  The only mandatory component
1338  * of the 'type' is the 'draid' prefix.  If a value is not provided
1339  * then reasonable defaults are used.  The optional components may
1340  * appear in any order but the d/s/c suffix is required.
1341  *
1342  * Valid inputs:
1343  * - data:     number of data devices per group (1-255)
1344  * - parity:   number of parity blocks per group (1-3)
1345  * - spares:   number of distributed spare (0-100)
1346  * - children: total number of devices (1-255)
1347  *
1348  * Examples:
1349  * - zpool create tank draid <devices...>
1350  * - zpool create tank draid2:8d:51c:2s <devices...>
1351  */
1352 static int
1353 draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children)
1354 {
1355 	uint64_t nparity = 1;
1356 	uint64_t nspares = 0;
1357 	uint64_t ndata = UINT64_MAX;
1358 	uint64_t ngroups = 1;
1359 	long value;
1360 
1361 	if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0)
1362 		return (EINVAL);
1363 
1364 	nparity = (uint64_t)get_parity(type);
1365 	if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
1366 		fprintf(stderr,
1367 		    gettext("invalid dRAID parity level %llu; must be "
1368 		    "between 1 and %d\n"), (u_longlong_t)nparity,
1369 		    VDEV_DRAID_MAXPARITY);
1370 		return (EINVAL);
1371 	}
1372 
1373 	char *p = (char *)type;
1374 	while ((p = strchr(p, ':')) != NULL) {
1375 		char *end;
1376 
1377 		p = p + 1;
1378 		errno = 0;
1379 
1380 		if (!isdigit(p[0])) {
1381 			(void) fprintf(stderr, gettext("invalid dRAID "
1382 			    "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1383 			    type);
1384 			return (EINVAL);
1385 		}
1386 
1387 		/* Expected non-zero value with c/d/s suffix */
1388 		value = strtol(p, &end, 10);
1389 		char suffix = tolower(*end);
1390 		if (errno != 0 ||
1391 		    (suffix != 'c' && suffix != 'd' && suffix != 's')) {
1392 			(void) fprintf(stderr, gettext("invalid dRAID "
1393 			    "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1394 			    type);
1395 			return (EINVAL);
1396 		}
1397 
1398 		if (suffix == 'c') {
1399 			if ((uint64_t)value != children) {
1400 				fprintf(stderr,
1401 				    gettext("invalid number of dRAID children; "
1402 				    "%llu required but %llu provided\n"),
1403 				    (u_longlong_t)value,
1404 				    (u_longlong_t)children);
1405 				return (EINVAL);
1406 			}
1407 		} else if (suffix == 'd') {
1408 			ndata = (uint64_t)value;
1409 		} else if (suffix == 's') {
1410 			nspares = (uint64_t)value;
1411 		} else {
1412 			verify(0); /* Unreachable */
1413 		}
1414 	}
1415 
1416 	/*
1417 	 * When a specific number of data disks is not provided limit a
1418 	 * redundancy group to 8 data disks.  This value was selected to
1419 	 * provide a reasonable tradeoff between capacity and performance.
1420 	 */
1421 	if (ndata == UINT64_MAX) {
1422 		if (children > nspares + nparity) {
1423 			ndata = MIN(children - nspares - nparity, 8);
1424 		} else {
1425 			fprintf(stderr, gettext("request number of "
1426 			    "distributed spares %llu and parity level %llu\n"
1427 			    "leaves no disks available for data\n"),
1428 			    (u_longlong_t)nspares, (u_longlong_t)nparity);
1429 			return (EINVAL);
1430 		}
1431 	}
1432 
1433 	/* Verify the maximum allowed group size is never exceeded. */
1434 	if (ndata == 0 || (ndata + nparity > children - nspares)) {
1435 		fprintf(stderr, gettext("requested number of dRAID data "
1436 		    "disks per group %llu is too high,\nat most %llu disks "
1437 		    "are available for data\n"), (u_longlong_t)ndata,
1438 		    (u_longlong_t)(children - nspares - nparity));
1439 		return (EINVAL);
1440 	}
1441 
1442 	/*
1443 	 * Verify the requested number of spares can be satisfied.
1444 	 * An arbitrary limit of 100 distributed spares is applied.
1445 	 */
1446 	if (nspares > 100 || nspares > (children - (ndata + nparity))) {
1447 		fprintf(stderr,
1448 		    gettext("invalid number of dRAID spares %llu; additional "
1449 		    "disks would be required\n"), (u_longlong_t)nspares);
1450 		return (EINVAL);
1451 	}
1452 
1453 	/* Verify the requested number children is sufficient. */
1454 	if (children < (ndata + nparity + nspares)) {
1455 		fprintf(stderr, gettext("%llu disks were provided, but at "
1456 		    "least %llu disks are required for this config\n"),
1457 		    (u_longlong_t)children,
1458 		    (u_longlong_t)(ndata + nparity + nspares));
1459 	}
1460 
1461 	if (children > VDEV_DRAID_MAX_CHILDREN) {
1462 		fprintf(stderr, gettext("%llu disks were provided, but "
1463 		    "dRAID only supports up to %u disks"),
1464 		    (u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN);
1465 	}
1466 
1467 	/*
1468 	 * Calculate the minimum number of groups required to fill a slice.
1469 	 * This is the LCM of the stripe width (ndata + nparity) and the
1470 	 * number of data drives (children - nspares).
1471 	 */
1472 	while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1473 		ngroups++;
1474 
1475 	/* Store the basic dRAID configuration. */
1476 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity);
1477 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1478 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1479 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1480 
1481 	return (0);
1482 }
1483 
1484 /*
1485  * Construct a syntactically valid vdev specification,
1486  * and ensure that all devices and files exist and can be opened.
1487  * Note: we don't bother freeing anything in the error paths
1488  * because the program is just going to exit anyway.
1489  */
1490 static nvlist_t *
1491 construct_spec(nvlist_t *props, int argc, char **argv)
1492 {
1493 	nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1494 	int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1495 	const char *type, *fulltype;
1496 	boolean_t is_log, is_special, is_dedup, is_spare;
1497 	boolean_t seen_logs;
1498 
1499 	top = NULL;
1500 	toplevels = 0;
1501 	spares = NULL;
1502 	l2cache = NULL;
1503 	nspares = 0;
1504 	nlogs = 0;
1505 	nl2cache = 0;
1506 	is_log = is_special = is_dedup = is_spare = B_FALSE;
1507 	seen_logs = B_FALSE;
1508 	nvroot = NULL;
1509 
1510 	while (argc > 0) {
1511 		fulltype = argv[0];
1512 		nv = NULL;
1513 
1514 		/*
1515 		 * If it's a mirror, raidz, or draid the subsequent arguments
1516 		 * are its leaves -- until we encounter the next mirror,
1517 		 * raidz or draid.
1518 		 */
1519 		if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) {
1520 			nvlist_t **child = NULL;
1521 			int c, children = 0;
1522 
1523 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1524 				if (spares != NULL) {
1525 					(void) fprintf(stderr,
1526 					    gettext("invalid vdev "
1527 					    "specification: 'spare' can be "
1528 					    "specified only once\n"));
1529 					goto spec_out;
1530 				}
1531 				is_spare = B_TRUE;
1532 				is_log = is_special = is_dedup = B_FALSE;
1533 			}
1534 
1535 			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1536 				if (seen_logs) {
1537 					(void) fprintf(stderr,
1538 					    gettext("invalid vdev "
1539 					    "specification: 'log' can be "
1540 					    "specified only once\n"));
1541 					goto spec_out;
1542 				}
1543 				seen_logs = B_TRUE;
1544 				is_log = B_TRUE;
1545 				is_special = is_dedup = is_spare = B_FALSE;
1546 				argc--;
1547 				argv++;
1548 				/*
1549 				 * A log is not a real grouping device.
1550 				 * We just set is_log and continue.
1551 				 */
1552 				continue;
1553 			}
1554 
1555 			if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
1556 				is_special = B_TRUE;
1557 				is_log = is_dedup = is_spare = B_FALSE;
1558 				argc--;
1559 				argv++;
1560 				continue;
1561 			}
1562 
1563 			if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1564 				is_dedup = B_TRUE;
1565 				is_log = is_special = is_spare = B_FALSE;
1566 				argc--;
1567 				argv++;
1568 				continue;
1569 			}
1570 
1571 			if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1572 				if (l2cache != NULL) {
1573 					(void) fprintf(stderr,
1574 					    gettext("invalid vdev "
1575 					    "specification: 'cache' can be "
1576 					    "specified only once\n"));
1577 					goto spec_out;
1578 				}
1579 				is_log = is_special = B_FALSE;
1580 				is_dedup = is_spare = B_FALSE;
1581 			}
1582 
1583 			if (is_log || is_special || is_dedup) {
1584 				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1585 					(void) fprintf(stderr,
1586 					    gettext("invalid vdev "
1587 					    "specification: unsupported '%s' "
1588 					    "device: %s\n"), is_log ? "log" :
1589 					    "special", type);
1590 					goto spec_out;
1591 				}
1592 				nlogs++;
1593 			}
1594 
1595 			for (c = 1; c < argc; c++) {
1596 				if (is_grouping(argv[c], NULL, NULL) != NULL)
1597 					break;
1598 
1599 				children++;
1600 				child = realloc(child,
1601 				    children * sizeof (nvlist_t *));
1602 				if (child == NULL)
1603 					zpool_no_memory();
1604 				if ((nv = make_leaf_vdev(props, argv[c],
1605 				    !(is_log || is_special || is_dedup ||
1606 				    is_spare))) == NULL) {
1607 					for (c = 0; c < children - 1; c++)
1608 						nvlist_free(child[c]);
1609 					free(child);
1610 					goto spec_out;
1611 				}
1612 
1613 				child[children - 1] = nv;
1614 			}
1615 
1616 			if (children < mindev) {
1617 				(void) fprintf(stderr, gettext("invalid vdev "
1618 				    "specification: %s requires at least %d "
1619 				    "devices\n"), argv[0], mindev);
1620 				for (c = 0; c < children; c++)
1621 					nvlist_free(child[c]);
1622 				free(child);
1623 				goto spec_out;
1624 			}
1625 
1626 			if (children > maxdev) {
1627 				(void) fprintf(stderr, gettext("invalid vdev "
1628 				    "specification: %s supports no more than "
1629 				    "%d devices\n"), argv[0], maxdev);
1630 				for (c = 0; c < children; c++)
1631 					nvlist_free(child[c]);
1632 				free(child);
1633 				goto spec_out;
1634 			}
1635 
1636 			argc -= c;
1637 			argv += c;
1638 
1639 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1640 				spares = child;
1641 				nspares = children;
1642 				continue;
1643 			} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1644 				l2cache = child;
1645 				nl2cache = children;
1646 				continue;
1647 			} else {
1648 				/* create a top-level vdev with children */
1649 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1650 				    0) == 0);
1651 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1652 				    type) == 0);
1653 				verify(nvlist_add_uint64(nv,
1654 				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1655 				if (is_log) {
1656 					verify(nvlist_add_string(nv,
1657 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1658 					    VDEV_ALLOC_BIAS_LOG) == 0);
1659 				}
1660 				if (is_special) {
1661 					verify(nvlist_add_string(nv,
1662 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1663 					    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1664 				}
1665 				if (is_dedup) {
1666 					verify(nvlist_add_string(nv,
1667 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1668 					    VDEV_ALLOC_BIAS_DEDUP) == 0);
1669 				}
1670 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1671 					verify(nvlist_add_uint64(nv,
1672 					    ZPOOL_CONFIG_NPARITY,
1673 					    mindev - 1) == 0);
1674 				}
1675 				if (strcmp(type, VDEV_TYPE_DRAID) == 0) {
1676 					if (draid_config_by_type(nv,
1677 					    fulltype, children) != 0) {
1678 						for (c = 0; c < children; c++)
1679 							nvlist_free(child[c]);
1680 						free(child);
1681 						goto spec_out;
1682 					}
1683 				}
1684 				verify(nvlist_add_nvlist_array(nv,
1685 				    ZPOOL_CONFIG_CHILDREN,
1686 				    (const nvlist_t **)child, children) == 0);
1687 
1688 				for (c = 0; c < children; c++)
1689 					nvlist_free(child[c]);
1690 				free(child);
1691 			}
1692 		} else {
1693 			/*
1694 			 * We have a device.  Pass off to make_leaf_vdev() to
1695 			 * construct the appropriate nvlist describing the vdev.
1696 			 */
1697 			if ((nv = make_leaf_vdev(props, argv[0], !(is_log ||
1698 			    is_special || is_dedup || is_spare))) == NULL)
1699 				goto spec_out;
1700 
1701 			verify(nvlist_add_uint64(nv,
1702 			    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1703 			if (is_log) {
1704 				verify(nvlist_add_string(nv,
1705 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1706 				    VDEV_ALLOC_BIAS_LOG) == 0);
1707 				nlogs++;
1708 			}
1709 
1710 			if (is_special) {
1711 				verify(nvlist_add_string(nv,
1712 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1713 				    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1714 			}
1715 			if (is_dedup) {
1716 				verify(nvlist_add_string(nv,
1717 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1718 				    VDEV_ALLOC_BIAS_DEDUP) == 0);
1719 			}
1720 			argc--;
1721 			argv++;
1722 		}
1723 
1724 		toplevels++;
1725 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1726 		if (top == NULL)
1727 			zpool_no_memory();
1728 		top[toplevels - 1] = nv;
1729 	}
1730 
1731 	if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1732 		(void) fprintf(stderr, gettext("invalid vdev "
1733 		    "specification: at least one toplevel vdev must be "
1734 		    "specified\n"));
1735 		goto spec_out;
1736 	}
1737 
1738 	if (seen_logs && nlogs == 0) {
1739 		(void) fprintf(stderr, gettext("invalid vdev specification: "
1740 		    "log requires at least 1 device\n"));
1741 		goto spec_out;
1742 	}
1743 
1744 	/*
1745 	 * Finally, create nvroot and add all top-level vdevs to it.
1746 	 */
1747 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1748 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1749 	    VDEV_TYPE_ROOT) == 0);
1750 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1751 	    (const nvlist_t **)top, toplevels) == 0);
1752 	if (nspares != 0)
1753 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1754 		    (const nvlist_t **)spares, nspares) == 0);
1755 	if (nl2cache != 0)
1756 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1757 		    (const nvlist_t **)l2cache, nl2cache) == 0);
1758 
1759 spec_out:
1760 	for (t = 0; t < toplevels; t++)
1761 		nvlist_free(top[t]);
1762 	for (t = 0; t < nspares; t++)
1763 		nvlist_free(spares[t]);
1764 	for (t = 0; t < nl2cache; t++)
1765 		nvlist_free(l2cache[t]);
1766 
1767 	free(spares);
1768 	free(l2cache);
1769 	free(top);
1770 
1771 	return (nvroot);
1772 }
1773 
1774 nvlist_t *
1775 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1776     splitflags_t flags, int argc, char **argv)
1777 {
1778 	nvlist_t *newroot = NULL, **child;
1779 	uint_t c, children;
1780 
1781 	if (argc > 0) {
1782 		if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1783 			(void) fprintf(stderr, gettext("Unable to build a "
1784 			    "pool from the specified devices\n"));
1785 			return (NULL);
1786 		}
1787 
1788 		if (!flags.dryrun && make_disks(zhp, newroot, B_FALSE) != 0) {
1789 			nvlist_free(newroot);
1790 			return (NULL);
1791 		}
1792 
1793 		/* avoid any tricks in the spec */
1794 		verify(nvlist_lookup_nvlist_array(newroot,
1795 		    ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1796 		for (c = 0; c < children; c++) {
1797 			const char *path;
1798 			const char *type;
1799 			int min, max;
1800 
1801 			verify(nvlist_lookup_string(child[c],
1802 			    ZPOOL_CONFIG_PATH, &path) == 0);
1803 			if ((type = is_grouping(path, &min, &max)) != NULL) {
1804 				(void) fprintf(stderr, gettext("Cannot use "
1805 				    "'%s' as a device for splitting\n"), type);
1806 				nvlist_free(newroot);
1807 				return (NULL);
1808 			}
1809 		}
1810 	}
1811 
1812 	if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1813 		nvlist_free(newroot);
1814 		return (NULL);
1815 	}
1816 
1817 	return (newroot);
1818 }
1819 
1820 static int
1821 num_normal_vdevs(nvlist_t *nvroot)
1822 {
1823 	nvlist_t **top;
1824 	uint_t t, toplevels, normal = 0;
1825 
1826 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1827 	    &top, &toplevels) == 0);
1828 
1829 	for (t = 0; t < toplevels; t++) {
1830 		uint64_t log = B_FALSE;
1831 
1832 		(void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log);
1833 		if (log)
1834 			continue;
1835 		if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS))
1836 			continue;
1837 
1838 		normal++;
1839 	}
1840 
1841 	return (normal);
1842 }
1843 
1844 /*
1845  * Get and validate the contents of the given vdev specification.  This ensures
1846  * that the nvlist returned is well-formed, that all the devices exist, and that
1847  * they are not currently in use by any other known consumer.  The 'poolconfig'
1848  * parameter is the current configuration of the pool when adding devices
1849  * existing pool, and is used to perform additional checks, such as changing the
1850  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1851  * new pool.  The 'force' flag controls whether devices should be forcefully
1852  * added, even if they appear in use.
1853  */
1854 nvlist_t *
1855 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1856     boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1857 {
1858 	nvlist_t *newroot;
1859 	nvlist_t *poolconfig = NULL;
1860 	is_force = force;
1861 
1862 	/*
1863 	 * Construct the vdev specification.  If this is successful, we know
1864 	 * that we have a valid specification, and that all devices can be
1865 	 * opened.
1866 	 */
1867 	if ((newroot = construct_spec(props, argc, argv)) == NULL)
1868 		return (NULL);
1869 
1870 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
1871 		nvlist_free(newroot);
1872 		return (NULL);
1873 	}
1874 
1875 	/*
1876 	 * Validate each device to make sure that it's not shared with another
1877 	 * subsystem.  We do this even if 'force' is set, because there are some
1878 	 * uses (such as a dedicated dump device) that even '-f' cannot
1879 	 * override.
1880 	 */
1881 	if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1882 		nvlist_free(newroot);
1883 		return (NULL);
1884 	}
1885 
1886 	/*
1887 	 * Check the replication level of the given vdevs and report any errors
1888 	 * found.  We include the existing pool spec, if any, as we need to
1889 	 * catch changes against the existing replication level.
1890 	 */
1891 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1892 		nvlist_free(newroot);
1893 		return (NULL);
1894 	}
1895 
1896 	/*
1897 	 * On pool create the new vdev spec must have one normal vdev.
1898 	 */
1899 	if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) {
1900 		vdev_error(gettext("at least one general top-level vdev must "
1901 		    "be specified\n"));
1902 		nvlist_free(newroot);
1903 		return (NULL);
1904 	}
1905 
1906 	/*
1907 	 * Run through the vdev specification and label any whole disks found.
1908 	 */
1909 	if (!dryrun && make_disks(zhp, newroot, replacing) != 0) {
1910 		nvlist_free(newroot);
1911 		return (NULL);
1912 	}
1913 
1914 	return (newroot);
1915 }
1916