1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
25  */
26 
27 #include <assert.h>
28 #include <fcntl.h>
29 #include <libgen.h>
30 #include <poll.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <sys/crypto/icp.h>
35 #include <sys/processor.h>
36 #include <sys/rrwlock.h>
37 #include <sys/spa.h>
38 #include <sys/stat.h>
39 #include <sys/systeminfo.h>
40 #include <sys/time.h>
41 #include <sys/utsname.h>
42 #include <sys/zfs_context.h>
43 #include <sys/zfs_onexit.h>
44 #include <sys/zfs_vfsops.h>
45 #include <sys/zstd/zstd.h>
46 #include <sys/zvol.h>
47 #include <zfs_fletcher.h>
48 #include <zlib.h>
49 
50 /*
51  * Emulation of kernel services in userland.
52  */
53 
54 uint64_t physmem;
55 char hw_serial[HW_HOSTID_LEN];
56 struct utsname hw_utsname;
57 
58 /* If set, all blocks read will be copied to the specified directory. */
59 char *vn_dumpdir = NULL;
60 
61 /* this only exists to have its address taken */
62 struct proc p0;
63 
64 /*
65  * =========================================================================
66  * threads
67  * =========================================================================
68  *
69  * TS_STACK_MIN is dictated by the minimum allowed pthread stack size.  While
70  * TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for
71  * the expected stack depth while small enough to avoid exhausting address
72  * space with high thread counts.
73  */
74 #define	TS_STACK_MIN	MAX(PTHREAD_STACK_MIN, 32768)
75 #define	TS_STACK_MAX	(256 * 1024)
76 
77 /*ARGSUSED*/
78 kthread_t *
79 zk_thread_create(void (*func)(void *), void *arg, size_t stksize, int state)
80 {
81 	pthread_attr_t attr;
82 	pthread_t tid;
83 	char *stkstr;
84 	int detachstate = PTHREAD_CREATE_DETACHED;
85 
86 	VERIFY0(pthread_attr_init(&attr));
87 
88 	if (state & TS_JOINABLE)
89 		detachstate = PTHREAD_CREATE_JOINABLE;
90 
91 	VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
92 
93 	/*
94 	 * We allow the default stack size in user space to be specified by
95 	 * setting the ZFS_STACK_SIZE environment variable.  This allows us
96 	 * the convenience of observing and debugging stack overruns in
97 	 * user space.  Explicitly specified stack sizes will be honored.
98 	 * The usage of ZFS_STACK_SIZE is discussed further in the
99 	 * ENVIRONMENT VARIABLES sections of the ztest(1) man page.
100 	 */
101 	if (stksize == 0) {
102 		stkstr = getenv("ZFS_STACK_SIZE");
103 
104 		if (stkstr == NULL)
105 			stksize = TS_STACK_MAX;
106 		else
107 			stksize = MAX(atoi(stkstr), TS_STACK_MIN);
108 	}
109 
110 	VERIFY3S(stksize, >, 0);
111 	stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
112 
113 	/*
114 	 * If this ever fails, it may be because the stack size is not a
115 	 * multiple of system page size.
116 	 */
117 	VERIFY0(pthread_attr_setstacksize(&attr, stksize));
118 	VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
119 
120 	VERIFY0(pthread_create(&tid, &attr, (void *(*)(void *))func, arg));
121 	VERIFY0(pthread_attr_destroy(&attr));
122 
123 	return ((void *)(uintptr_t)tid);
124 }
125 
126 /*
127  * =========================================================================
128  * kstats
129  * =========================================================================
130  */
131 /*ARGSUSED*/
132 kstat_t *
133 kstat_create(const char *module, int instance, const char *name,
134     const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
135 {
136 	return (NULL);
137 }
138 
139 /*ARGSUSED*/
140 void
141 kstat_install(kstat_t *ksp)
142 {}
143 
144 /*ARGSUSED*/
145 void
146 kstat_delete(kstat_t *ksp)
147 {}
148 
149 /*ARGSUSED*/
150 void
151 kstat_waitq_enter(kstat_io_t *kiop)
152 {}
153 
154 /*ARGSUSED*/
155 void
156 kstat_waitq_exit(kstat_io_t *kiop)
157 {}
158 
159 /*ARGSUSED*/
160 void
161 kstat_runq_enter(kstat_io_t *kiop)
162 {}
163 
164 /*ARGSUSED*/
165 void
166 kstat_runq_exit(kstat_io_t *kiop)
167 {}
168 
169 /*ARGSUSED*/
170 void
171 kstat_waitq_to_runq(kstat_io_t *kiop)
172 {}
173 
174 /*ARGSUSED*/
175 void
176 kstat_runq_back_to_waitq(kstat_io_t *kiop)
177 {}
178 
179 void
180 kstat_set_raw_ops(kstat_t *ksp,
181     int (*headers)(char *buf, size_t size),
182     int (*data)(char *buf, size_t size, void *data),
183     void *(*addr)(kstat_t *ksp, loff_t index))
184 {}
185 
186 /*
187  * =========================================================================
188  * mutexes
189  * =========================================================================
190  */
191 
192 void
193 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
194 {
195 	VERIFY0(pthread_mutex_init(&mp->m_lock, NULL));
196 	memset(&mp->m_owner, 0, sizeof (pthread_t));
197 }
198 
199 void
200 mutex_destroy(kmutex_t *mp)
201 {
202 	VERIFY0(pthread_mutex_destroy(&mp->m_lock));
203 }
204 
205 void
206 mutex_enter(kmutex_t *mp)
207 {
208 	VERIFY0(pthread_mutex_lock(&mp->m_lock));
209 	mp->m_owner = pthread_self();
210 }
211 
212 int
213 mutex_tryenter(kmutex_t *mp)
214 {
215 	int error;
216 
217 	error = pthread_mutex_trylock(&mp->m_lock);
218 	if (error == 0) {
219 		mp->m_owner = pthread_self();
220 		return (1);
221 	} else {
222 		VERIFY3S(error, ==, EBUSY);
223 		return (0);
224 	}
225 }
226 
227 void
228 mutex_exit(kmutex_t *mp)
229 {
230 	memset(&mp->m_owner, 0, sizeof (pthread_t));
231 	VERIFY0(pthread_mutex_unlock(&mp->m_lock));
232 }
233 
234 /*
235  * =========================================================================
236  * rwlocks
237  * =========================================================================
238  */
239 
240 void
241 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
242 {
243 	VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL));
244 	rwlp->rw_readers = 0;
245 	rwlp->rw_owner = 0;
246 }
247 
248 void
249 rw_destroy(krwlock_t *rwlp)
250 {
251 	VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock));
252 }
253 
254 void
255 rw_enter(krwlock_t *rwlp, krw_t rw)
256 {
257 	if (rw == RW_READER) {
258 		VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock));
259 		atomic_inc_uint(&rwlp->rw_readers);
260 	} else {
261 		VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock));
262 		rwlp->rw_owner = pthread_self();
263 	}
264 }
265 
266 void
267 rw_exit(krwlock_t *rwlp)
268 {
269 	if (RW_READ_HELD(rwlp))
270 		atomic_dec_uint(&rwlp->rw_readers);
271 	else
272 		rwlp->rw_owner = 0;
273 
274 	VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock));
275 }
276 
277 int
278 rw_tryenter(krwlock_t *rwlp, krw_t rw)
279 {
280 	int error;
281 
282 	if (rw == RW_READER)
283 		error = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
284 	else
285 		error = pthread_rwlock_trywrlock(&rwlp->rw_lock);
286 
287 	if (error == 0) {
288 		if (rw == RW_READER)
289 			atomic_inc_uint(&rwlp->rw_readers);
290 		else
291 			rwlp->rw_owner = pthread_self();
292 
293 		return (1);
294 	}
295 
296 	VERIFY3S(error, ==, EBUSY);
297 
298 	return (0);
299 }
300 
301 /* ARGSUSED */
302 uint32_t
303 zone_get_hostid(void *zonep)
304 {
305 	/*
306 	 * We're emulating the system's hostid in userland.
307 	 */
308 	return (strtoul(hw_serial, NULL, 10));
309 }
310 
311 int
312 rw_tryupgrade(krwlock_t *rwlp)
313 {
314 	return (0);
315 }
316 
317 /*
318  * =========================================================================
319  * condition variables
320  * =========================================================================
321  */
322 
323 void
324 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
325 {
326 	VERIFY0(pthread_cond_init(cv, NULL));
327 }
328 
329 void
330 cv_destroy(kcondvar_t *cv)
331 {
332 	VERIFY0(pthread_cond_destroy(cv));
333 }
334 
335 void
336 cv_wait(kcondvar_t *cv, kmutex_t *mp)
337 {
338 	memset(&mp->m_owner, 0, sizeof (pthread_t));
339 	VERIFY0(pthread_cond_wait(cv, &mp->m_lock));
340 	mp->m_owner = pthread_self();
341 }
342 
343 int
344 cv_wait_sig(kcondvar_t *cv, kmutex_t *mp)
345 {
346 	cv_wait(cv, mp);
347 	return (1);
348 }
349 
350 int
351 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
352 {
353 	int error;
354 	struct timeval tv;
355 	struct timespec ts;
356 	clock_t delta;
357 
358 	delta = abstime - ddi_get_lbolt();
359 	if (delta <= 0)
360 		return (-1);
361 
362 	VERIFY(gettimeofday(&tv, NULL) == 0);
363 
364 	ts.tv_sec = tv.tv_sec + delta / hz;
365 	ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz);
366 	if (ts.tv_nsec >= NANOSEC) {
367 		ts.tv_sec++;
368 		ts.tv_nsec -= NANOSEC;
369 	}
370 
371 	memset(&mp->m_owner, 0, sizeof (pthread_t));
372 	error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
373 	mp->m_owner = pthread_self();
374 
375 	if (error == ETIMEDOUT)
376 		return (-1);
377 
378 	VERIFY0(error);
379 
380 	return (1);
381 }
382 
383 /*ARGSUSED*/
384 int
385 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
386     int flag)
387 {
388 	int error;
389 	struct timeval tv;
390 	struct timespec ts;
391 	hrtime_t delta;
392 
393 	ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
394 
395 	delta = tim;
396 	if (flag & CALLOUT_FLAG_ABSOLUTE)
397 		delta -= gethrtime();
398 
399 	if (delta <= 0)
400 		return (-1);
401 
402 	VERIFY0(gettimeofday(&tv, NULL));
403 
404 	ts.tv_sec = tv.tv_sec + delta / NANOSEC;
405 	ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC);
406 	if (ts.tv_nsec >= NANOSEC) {
407 		ts.tv_sec++;
408 		ts.tv_nsec -= NANOSEC;
409 	}
410 
411 	memset(&mp->m_owner, 0, sizeof (pthread_t));
412 	error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
413 	mp->m_owner = pthread_self();
414 
415 	if (error == ETIMEDOUT)
416 		return (-1);
417 
418 	VERIFY0(error);
419 
420 	return (1);
421 }
422 
423 void
424 cv_signal(kcondvar_t *cv)
425 {
426 	VERIFY0(pthread_cond_signal(cv));
427 }
428 
429 void
430 cv_broadcast(kcondvar_t *cv)
431 {
432 	VERIFY0(pthread_cond_broadcast(cv));
433 }
434 
435 /*
436  * =========================================================================
437  * procfs list
438  * =========================================================================
439  */
440 
441 void
442 seq_printf(struct seq_file *m, const char *fmt, ...)
443 {}
444 
445 void
446 procfs_list_install(const char *module,
447     const char *submodule,
448     const char *name,
449     mode_t mode,
450     procfs_list_t *procfs_list,
451     int (*show)(struct seq_file *f, void *p),
452     int (*show_header)(struct seq_file *f),
453     int (*clear)(procfs_list_t *procfs_list),
454     size_t procfs_list_node_off)
455 {
456 	mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL);
457 	list_create(&procfs_list->pl_list,
458 	    procfs_list_node_off + sizeof (procfs_list_node_t),
459 	    procfs_list_node_off + offsetof(procfs_list_node_t, pln_link));
460 	procfs_list->pl_next_id = 1;
461 	procfs_list->pl_node_offset = procfs_list_node_off;
462 }
463 
464 void
465 procfs_list_uninstall(procfs_list_t *procfs_list)
466 {}
467 
468 void
469 procfs_list_destroy(procfs_list_t *procfs_list)
470 {
471 	ASSERT(list_is_empty(&procfs_list->pl_list));
472 	list_destroy(&procfs_list->pl_list);
473 	mutex_destroy(&procfs_list->pl_lock);
474 }
475 
476 #define	NODE_ID(procfs_list, obj) \
477 		(((procfs_list_node_t *)(((char *)obj) + \
478 		(procfs_list)->pl_node_offset))->pln_id)
479 
480 void
481 procfs_list_add(procfs_list_t *procfs_list, void *p)
482 {
483 	ASSERT(MUTEX_HELD(&procfs_list->pl_lock));
484 	NODE_ID(procfs_list, p) = procfs_list->pl_next_id++;
485 	list_insert_tail(&procfs_list->pl_list, p);
486 }
487 
488 /*
489  * =========================================================================
490  * vnode operations
491  * =========================================================================
492  */
493 
494 /*
495  * =========================================================================
496  * Figure out which debugging statements to print
497  * =========================================================================
498  */
499 
500 static char *dprintf_string;
501 static int dprintf_print_all;
502 
503 int
504 dprintf_find_string(const char *string)
505 {
506 	char *tmp_str = dprintf_string;
507 	int len = strlen(string);
508 
509 	/*
510 	 * Find out if this is a string we want to print.
511 	 * String format: file1.c,function_name1,file2.c,file3.c
512 	 */
513 
514 	while (tmp_str != NULL) {
515 		if (strncmp(tmp_str, string, len) == 0 &&
516 		    (tmp_str[len] == ',' || tmp_str[len] == '\0'))
517 			return (1);
518 		tmp_str = strchr(tmp_str, ',');
519 		if (tmp_str != NULL)
520 			tmp_str++; /* Get rid of , */
521 	}
522 	return (0);
523 }
524 
525 void
526 dprintf_setup(int *argc, char **argv)
527 {
528 	int i, j;
529 
530 	/*
531 	 * Debugging can be specified two ways: by setting the
532 	 * environment variable ZFS_DEBUG, or by including a
533 	 * "debug=..."  argument on the command line.  The command
534 	 * line setting overrides the environment variable.
535 	 */
536 
537 	for (i = 1; i < *argc; i++) {
538 		int len = strlen("debug=");
539 		/* First look for a command line argument */
540 		if (strncmp("debug=", argv[i], len) == 0) {
541 			dprintf_string = argv[i] + len;
542 			/* Remove from args */
543 			for (j = i; j < *argc; j++)
544 				argv[j] = argv[j+1];
545 			argv[j] = NULL;
546 			(*argc)--;
547 		}
548 	}
549 
550 	if (dprintf_string == NULL) {
551 		/* Look for ZFS_DEBUG environment variable */
552 		dprintf_string = getenv("ZFS_DEBUG");
553 	}
554 
555 	/*
556 	 * Are we just turning on all debugging?
557 	 */
558 	if (dprintf_find_string("on"))
559 		dprintf_print_all = 1;
560 
561 	if (dprintf_string != NULL)
562 		zfs_flags |= ZFS_DEBUG_DPRINTF;
563 }
564 
565 /*
566  * =========================================================================
567  * debug printfs
568  * =========================================================================
569  */
570 void
571 __dprintf(boolean_t dprint, const char *file, const char *func,
572     int line, const char *fmt, ...)
573 {
574 	const char *newfile;
575 	va_list adx;
576 
577 	/*
578 	 * Get rid of annoying "../common/" prefix to filename.
579 	 */
580 	newfile = strrchr(file, '/');
581 	if (newfile != NULL) {
582 		newfile = newfile + 1; /* Get rid of leading / */
583 	} else {
584 		newfile = file;
585 	}
586 
587 	if (dprint) {
588 		/* dprintf messages are printed immediately */
589 
590 		if (!dprintf_print_all &&
591 		    !dprintf_find_string(newfile) &&
592 		    !dprintf_find_string(func))
593 			return;
594 
595 		/* Print out just the function name if requested */
596 		flockfile(stdout);
597 		if (dprintf_find_string("pid"))
598 			(void) printf("%d ", getpid());
599 		if (dprintf_find_string("tid"))
600 			(void) printf("%ju ",
601 			    (uintmax_t)(uintptr_t)pthread_self());
602 		if (dprintf_find_string("cpu"))
603 			(void) printf("%u ", getcpuid());
604 		if (dprintf_find_string("time"))
605 			(void) printf("%llu ", gethrtime());
606 		if (dprintf_find_string("long"))
607 			(void) printf("%s, line %d: ", newfile, line);
608 		(void) printf("dprintf: %s: ", func);
609 		va_start(adx, fmt);
610 		(void) vprintf(fmt, adx);
611 		va_end(adx);
612 		funlockfile(stdout);
613 	} else {
614 		/* zfs_dbgmsg is logged for dumping later */
615 		size_t size;
616 		char *buf;
617 		int i;
618 
619 		size = 1024;
620 		buf = umem_alloc(size, UMEM_NOFAIL);
621 		i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func);
622 
623 		if (i < size) {
624 			va_start(adx, fmt);
625 			(void) vsnprintf(buf + i, size - i, fmt, adx);
626 			va_end(adx);
627 		}
628 
629 		__zfs_dbgmsg(buf);
630 
631 		umem_free(buf, size);
632 	}
633 }
634 
635 /*
636  * =========================================================================
637  * cmn_err() and panic()
638  * =========================================================================
639  */
640 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
641 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
642 
643 void
644 vpanic(const char *fmt, va_list adx)
645 {
646 	(void) fprintf(stderr, "error: ");
647 	(void) vfprintf(stderr, fmt, adx);
648 	(void) fprintf(stderr, "\n");
649 
650 	abort();	/* think of it as a "user-level crash dump" */
651 }
652 
653 void
654 panic(const char *fmt, ...)
655 {
656 	va_list adx;
657 
658 	va_start(adx, fmt);
659 	vpanic(fmt, adx);
660 	va_end(adx);
661 }
662 
663 void
664 vcmn_err(int ce, const char *fmt, va_list adx)
665 {
666 	if (ce == CE_PANIC)
667 		vpanic(fmt, adx);
668 	if (ce != CE_NOTE) {	/* suppress noise in userland stress testing */
669 		(void) fprintf(stderr, "%s", ce_prefix[ce]);
670 		(void) vfprintf(stderr, fmt, adx);
671 		(void) fprintf(stderr, "%s", ce_suffix[ce]);
672 	}
673 }
674 
675 /*PRINTFLIKE2*/
676 void
677 cmn_err(int ce, const char *fmt, ...)
678 {
679 	va_list adx;
680 
681 	va_start(adx, fmt);
682 	vcmn_err(ce, fmt, adx);
683 	va_end(adx);
684 }
685 
686 /*
687  * =========================================================================
688  * misc routines
689  * =========================================================================
690  */
691 
692 void
693 delay(clock_t ticks)
694 {
695 	(void) poll(0, 0, ticks * (1000 / hz));
696 }
697 
698 /*
699  * Find highest one bit set.
700  * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
701  * The __builtin_clzll() function is supported by both GCC and Clang.
702  */
703 int
704 highbit64(uint64_t i)
705 {
706 	if (i == 0)
707 	return (0);
708 
709 	return (NBBY * sizeof (uint64_t) - __builtin_clzll(i));
710 }
711 
712 /*
713  * Find lowest one bit set.
714  * Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
715  * The __builtin_ffsll() function is supported by both GCC and Clang.
716  */
717 int
718 lowbit64(uint64_t i)
719 {
720 	if (i == 0)
721 		return (0);
722 
723 	return (__builtin_ffsll(i));
724 }
725 
726 const char *random_path = "/dev/random";
727 const char *urandom_path = "/dev/urandom";
728 static int random_fd = -1, urandom_fd = -1;
729 
730 void
731 random_init(void)
732 {
733 	VERIFY((random_fd = open(random_path, O_RDONLY | O_CLOEXEC)) != -1);
734 	VERIFY((urandom_fd = open(urandom_path, O_RDONLY | O_CLOEXEC)) != -1);
735 }
736 
737 void
738 random_fini(void)
739 {
740 	close(random_fd);
741 	close(urandom_fd);
742 
743 	random_fd = -1;
744 	urandom_fd = -1;
745 }
746 
747 static int
748 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
749 {
750 	size_t resid = len;
751 	ssize_t bytes;
752 
753 	ASSERT(fd != -1);
754 
755 	while (resid != 0) {
756 		bytes = read(fd, ptr, resid);
757 		ASSERT3S(bytes, >=, 0);
758 		ptr += bytes;
759 		resid -= bytes;
760 	}
761 
762 	return (0);
763 }
764 
765 int
766 random_get_bytes(uint8_t *ptr, size_t len)
767 {
768 	return (random_get_bytes_common(ptr, len, random_fd));
769 }
770 
771 int
772 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
773 {
774 	return (random_get_bytes_common(ptr, len, urandom_fd));
775 }
776 
777 int
778 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
779 {
780 	char *end;
781 
782 	*result = strtoul(hw_serial, &end, base);
783 	if (*result == 0)
784 		return (errno);
785 	return (0);
786 }
787 
788 int
789 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
790 {
791 	char *end;
792 
793 	*result = strtoull(str, &end, base);
794 	if (*result == 0)
795 		return (errno);
796 	return (0);
797 }
798 
799 utsname_t *
800 utsname(void)
801 {
802 	return (&hw_utsname);
803 }
804 
805 /*
806  * =========================================================================
807  * kernel emulation setup & teardown
808  * =========================================================================
809  */
810 static int
811 umem_out_of_memory(void)
812 {
813 	char errmsg[] = "out of memory -- generating core dump\n";
814 
815 	(void) fprintf(stderr, "%s", errmsg);
816 	abort();
817 	return (0);
818 }
819 
820 void
821 kernel_init(int mode)
822 {
823 	extern uint_t rrw_tsd_key;
824 
825 	umem_nofail_callback(umem_out_of_memory);
826 
827 	physmem = sysconf(_SC_PHYS_PAGES);
828 
829 	dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
830 	    (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
831 
832 	(void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
833 	    (mode & SPA_MODE_WRITE) ? get_system_hostid() : 0);
834 
835 	random_init();
836 
837 	VERIFY0(uname(&hw_utsname));
838 
839 	system_taskq_init();
840 	icp_init();
841 
842 	zstd_init();
843 
844 	spa_init((spa_mode_t)mode);
845 
846 	fletcher_4_init();
847 
848 	tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
849 }
850 
851 void
852 kernel_fini(void)
853 {
854 	fletcher_4_fini();
855 	spa_fini();
856 
857 	zstd_fini();
858 
859 	icp_fini();
860 	system_taskq_fini();
861 
862 	random_fini();
863 }
864 
865 uid_t
866 crgetuid(cred_t *cr)
867 {
868 	return (0);
869 }
870 
871 uid_t
872 crgetruid(cred_t *cr)
873 {
874 	return (0);
875 }
876 
877 gid_t
878 crgetgid(cred_t *cr)
879 {
880 	return (0);
881 }
882 
883 int
884 crgetngroups(cred_t *cr)
885 {
886 	return (0);
887 }
888 
889 gid_t *
890 crgetgroups(cred_t *cr)
891 {
892 	return (NULL);
893 }
894 
895 int
896 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
897 {
898 	return (0);
899 }
900 
901 int
902 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
903 {
904 	return (0);
905 }
906 
907 int
908 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
909 {
910 	return (0);
911 }
912 
913 int
914 secpolicy_zfs(const cred_t *cr)
915 {
916 	return (0);
917 }
918 
919 int
920 secpolicy_zfs_proc(const cred_t *cr, proc_t *proc)
921 {
922 	return (0);
923 }
924 
925 ksiddomain_t *
926 ksid_lookupdomain(const char *dom)
927 {
928 	ksiddomain_t *kd;
929 
930 	kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
931 	kd->kd_name = spa_strdup(dom);
932 	return (kd);
933 }
934 
935 void
936 ksiddomain_rele(ksiddomain_t *ksid)
937 {
938 	spa_strfree(ksid->kd_name);
939 	umem_free(ksid, sizeof (ksiddomain_t));
940 }
941 
942 char *
943 kmem_vasprintf(const char *fmt, va_list adx)
944 {
945 	char *buf = NULL;
946 	va_list adx_copy;
947 
948 	va_copy(adx_copy, adx);
949 	VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
950 	va_end(adx_copy);
951 
952 	return (buf);
953 }
954 
955 char *
956 kmem_asprintf(const char *fmt, ...)
957 {
958 	char *buf = NULL;
959 	va_list adx;
960 
961 	va_start(adx, fmt);
962 	VERIFY(vasprintf(&buf, fmt, adx) != -1);
963 	va_end(adx);
964 
965 	return (buf);
966 }
967 
968 /* ARGSUSED */
969 int
970 zfs_onexit_fd_hold(int fd, minor_t *minorp)
971 {
972 	*minorp = 0;
973 	return (0);
974 }
975 
976 /* ARGSUSED */
977 void
978 zfs_onexit_fd_rele(int fd)
979 {
980 }
981 
982 /* ARGSUSED */
983 int
984 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
985     uint64_t *action_handle)
986 {
987 	return (0);
988 }
989 
990 fstrans_cookie_t
991 spl_fstrans_mark(void)
992 {
993 	return ((fstrans_cookie_t)0);
994 }
995 
996 void
997 spl_fstrans_unmark(fstrans_cookie_t cookie)
998 {
999 }
1000 
1001 int
1002 __spl_pf_fstrans_check(void)
1003 {
1004 	return (0);
1005 }
1006 
1007 int
1008 kmem_cache_reap_active(void)
1009 {
1010 	return (0);
1011 }
1012 
1013 void *zvol_tag = "zvol_tag";
1014 
1015 void
1016 zvol_create_minor(const char *name)
1017 {
1018 }
1019 
1020 void
1021 zvol_create_minors_recursive(const char *name)
1022 {
1023 }
1024 
1025 void
1026 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1027 {
1028 }
1029 
1030 void
1031 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname,
1032     boolean_t async)
1033 {
1034 }
1035 
1036 /*
1037  * Open file
1038  *
1039  * path - fully qualified path to file
1040  * flags - file attributes O_READ / O_WRITE / O_EXCL
1041  * fpp - pointer to return file pointer
1042  *
1043  * Returns 0 on success underlying error on failure.
1044  */
1045 int
1046 zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp)
1047 {
1048 	int fd = -1;
1049 	int dump_fd = -1;
1050 	int err;
1051 	int old_umask = 0;
1052 	zfs_file_t *fp;
1053 	struct stat64 st;
1054 
1055 	if (!(flags & O_CREAT) && stat64(path, &st) == -1)
1056 		return (errno);
1057 
1058 	if (!(flags & O_CREAT) && S_ISBLK(st.st_mode))
1059 		flags |= O_DIRECT;
1060 
1061 	if (flags & O_CREAT)
1062 		old_umask = umask(0);
1063 
1064 	fd = open64(path, flags, mode);
1065 	if (fd == -1)
1066 		return (errno);
1067 
1068 	if (flags & O_CREAT)
1069 		(void) umask(old_umask);
1070 
1071 	if (vn_dumpdir != NULL) {
1072 		char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL);
1073 		char *inpath = basename((char *)(uintptr_t)path);
1074 
1075 		(void) snprintf(dumppath, MAXPATHLEN,
1076 		    "%s/%s", vn_dumpdir, inpath);
1077 		dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
1078 		umem_free(dumppath, MAXPATHLEN);
1079 		if (dump_fd == -1) {
1080 			err = errno;
1081 			close(fd);
1082 			return (err);
1083 		}
1084 	} else {
1085 		dump_fd = -1;
1086 	}
1087 
1088 	(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
1089 
1090 	fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL);
1091 	fp->f_fd = fd;
1092 	fp->f_dump_fd = dump_fd;
1093 	*fpp = fp;
1094 
1095 	return (0);
1096 }
1097 
1098 void
1099 zfs_file_close(zfs_file_t *fp)
1100 {
1101 	close(fp->f_fd);
1102 	if (fp->f_dump_fd != -1)
1103 		close(fp->f_dump_fd);
1104 
1105 	umem_free(fp, sizeof (zfs_file_t));
1106 }
1107 
1108 /*
1109  * Stateful write - use os internal file pointer to determine where to
1110  * write and update on successful completion.
1111  *
1112  * fp -  pointer to file (pipe, socket, etc) to write to
1113  * buf - buffer to write
1114  * count - # of bytes to write
1115  * resid -  pointer to count of unwritten bytes  (if short write)
1116  *
1117  * Returns 0 on success errno on failure.
1118  */
1119 int
1120 zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid)
1121 {
1122 	ssize_t rc;
1123 
1124 	rc = write(fp->f_fd, buf, count);
1125 	if (rc < 0)
1126 		return (errno);
1127 
1128 	if (resid) {
1129 		*resid = count - rc;
1130 	} else if (rc != count) {
1131 		return (EIO);
1132 	}
1133 
1134 	return (0);
1135 }
1136 
1137 /*
1138  * Stateless write - os internal file pointer is not updated.
1139  *
1140  * fp -  pointer to file (pipe, socket, etc) to write to
1141  * buf - buffer to write
1142  * count - # of bytes to write
1143  * off - file offset to write to (only valid for seekable types)
1144  * resid -  pointer to count of unwritten bytes
1145  *
1146  * Returns 0 on success errno on failure.
1147  */
1148 int
1149 zfs_file_pwrite(zfs_file_t *fp, const void *buf,
1150     size_t count, loff_t pos, ssize_t *resid)
1151 {
1152 	ssize_t rc, split, done;
1153 	int sectors;
1154 
1155 	/*
1156 	 * To simulate partial disk writes, we split writes into two
1157 	 * system calls so that the process can be killed in between.
1158 	 * This is used by ztest to simulate realistic failure modes.
1159 	 */
1160 	sectors = count >> SPA_MINBLOCKSHIFT;
1161 	split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT;
1162 	rc = pwrite64(fp->f_fd, buf, split, pos);
1163 	if (rc != -1) {
1164 		done = rc;
1165 		rc = pwrite64(fp->f_fd, (char *)buf + split,
1166 		    count - split, pos + split);
1167 	}
1168 #ifdef __linux__
1169 	if (rc == -1 && errno == EINVAL) {
1170 		/*
1171 		 * Under Linux, this most likely means an alignment issue
1172 		 * (memory or disk) due to O_DIRECT, so we abort() in order
1173 		 * to catch the offender.
1174 		 */
1175 		abort();
1176 	}
1177 #endif
1178 
1179 	if (rc < 0)
1180 		return (errno);
1181 
1182 	done += rc;
1183 
1184 	if (resid) {
1185 		*resid = count - done;
1186 	} else if (done != count) {
1187 		return (EIO);
1188 	}
1189 
1190 	return (0);
1191 }
1192 
1193 /*
1194  * Stateful read - use os internal file pointer to determine where to
1195  * read and update on successful completion.
1196  *
1197  * fp -  pointer to file (pipe, socket, etc) to read from
1198  * buf - buffer to write
1199  * count - # of bytes to read
1200  * resid -  pointer to count of unread bytes (if short read)
1201  *
1202  * Returns 0 on success errno on failure.
1203  */
1204 int
1205 zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid)
1206 {
1207 	int rc;
1208 
1209 	rc = read(fp->f_fd, buf, count);
1210 	if (rc < 0)
1211 		return (errno);
1212 
1213 	if (resid) {
1214 		*resid = count - rc;
1215 	} else if (rc != count) {
1216 		return (EIO);
1217 	}
1218 
1219 	return (0);
1220 }
1221 
1222 /*
1223  * Stateless read - os internal file pointer is not updated.
1224  *
1225  * fp -  pointer to file (pipe, socket, etc) to read from
1226  * buf - buffer to write
1227  * count - # of bytes to write
1228  * off - file offset to read from (only valid for seekable types)
1229  * resid -  pointer to count of unwritten bytes (if short write)
1230  *
1231  * Returns 0 on success errno on failure.
1232  */
1233 int
1234 zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off,
1235     ssize_t *resid)
1236 {
1237 	ssize_t rc;
1238 
1239 	rc = pread64(fp->f_fd, buf, count, off);
1240 	if (rc < 0) {
1241 #ifdef __linux__
1242 		/*
1243 		 * Under Linux, this most likely means an alignment issue
1244 		 * (memory or disk) due to O_DIRECT, so we abort() in order to
1245 		 * catch the offender.
1246 		 */
1247 		if (errno == EINVAL)
1248 			abort();
1249 #endif
1250 		return (errno);
1251 	}
1252 
1253 	if (fp->f_dump_fd != -1) {
1254 		int status;
1255 
1256 		status = pwrite64(fp->f_dump_fd, buf, rc, off);
1257 		ASSERT(status != -1);
1258 	}
1259 
1260 	if (resid) {
1261 		*resid = count - rc;
1262 	} else if (rc != count) {
1263 		return (EIO);
1264 	}
1265 
1266 	return (0);
1267 }
1268 
1269 /*
1270  * lseek - set / get file pointer
1271  *
1272  * fp -  pointer to file (pipe, socket, etc) to read from
1273  * offp - value to seek to, returns current value plus passed offset
1274  * whence - see man pages for standard lseek whence values
1275  *
1276  * Returns 0 on success errno on failure (ESPIPE for non seekable types)
1277  */
1278 int
1279 zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence)
1280 {
1281 	loff_t rc;
1282 
1283 	rc = lseek(fp->f_fd, *offp, whence);
1284 	if (rc < 0)
1285 		return (errno);
1286 
1287 	*offp = rc;
1288 
1289 	return (0);
1290 }
1291 
1292 /*
1293  * Get file attributes
1294  *
1295  * filp - file pointer
1296  * zfattr - pointer to file attr structure
1297  *
1298  * Currently only used for fetching size and file mode
1299  *
1300  * Returns 0 on success or error code of underlying getattr call on failure.
1301  */
1302 int
1303 zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr)
1304 {
1305 	struct stat64 st;
1306 
1307 	if (fstat64_blk(fp->f_fd, &st) == -1)
1308 		return (errno);
1309 
1310 	zfattr->zfa_size = st.st_size;
1311 	zfattr->zfa_mode = st.st_mode;
1312 
1313 	return (0);
1314 }
1315 
1316 /*
1317  * Sync file to disk
1318  *
1319  * filp - file pointer
1320  * flags - O_SYNC and or O_DSYNC
1321  *
1322  * Returns 0 on success or error code of underlying sync call on failure.
1323  */
1324 int
1325 zfs_file_fsync(zfs_file_t *fp, int flags)
1326 {
1327 	int rc;
1328 
1329 	rc = fsync(fp->f_fd);
1330 	if (rc < 0)
1331 		return (errno);
1332 
1333 	return (0);
1334 }
1335 
1336 /*
1337  * fallocate - allocate or free space on disk
1338  *
1339  * fp - file pointer
1340  * mode (non-standard options for hole punching etc)
1341  * offset - offset to start allocating or freeing from
1342  * len - length to free / allocate
1343  *
1344  * OPTIONAL
1345  */
1346 int
1347 zfs_file_fallocate(zfs_file_t *fp, int mode, loff_t offset, loff_t len)
1348 {
1349 #ifdef __linux__
1350 	return (fallocate(fp->f_fd, mode, offset, len));
1351 #else
1352 	return (EOPNOTSUPP);
1353 #endif
1354 }
1355 
1356 /*
1357  * Request current file pointer offset
1358  *
1359  * fp - pointer to file
1360  *
1361  * Returns current file offset.
1362  */
1363 loff_t
1364 zfs_file_off(zfs_file_t *fp)
1365 {
1366 	return (lseek(fp->f_fd, SEEK_CUR, 0));
1367 }
1368 
1369 /*
1370  * unlink file
1371  *
1372  * path - fully qualified file path
1373  *
1374  * Returns 0 on success.
1375  *
1376  * OPTIONAL
1377  */
1378 int
1379 zfs_file_unlink(const char *path)
1380 {
1381 	return (remove(path));
1382 }
1383 
1384 /*
1385  * Get reference to file pointer
1386  *
1387  * fd - input file descriptor
1388  * fpp - pointer to file pointer
1389  *
1390  * Returns 0 on success EBADF on failure.
1391  * Unsupported in user space.
1392  */
1393 int
1394 zfs_file_get(int fd, zfs_file_t **fpp)
1395 {
1396 	abort();
1397 
1398 	return (EOPNOTSUPP);
1399 }
1400 
1401 /*
1402  * Drop reference to file pointer
1403  *
1404  * fd - input file descriptor
1405  *
1406  * Unsupported in user space.
1407  */
1408 void
1409 zfs_file_put(int fd)
1410 {
1411 	abort();
1412 }
1413 
1414 void
1415 zfsvfs_update_fromname(const char *oldname, const char *newname)
1416 {
1417 }
1418