1 /*
2  * Implementation of the Skein block functions.
3  * Source code author: Doug Whiting, 2008.
4  * This algorithm and source code is released to the public domain.
5  * Compile-time switches:
6  *  SKEIN_USE_ASM  -- set bits (256/512/1024) to select which
7  *                    versions use ASM code for block processing
8  *                    [default: use C for all block sizes]
9  */
10 /* Copyright 2013 Doug Whiting. This code is released to the public domain. */
11 
12 #include <sys/skein.h>
13 #include "skein_impl.h"
14 #include <sys/isa_defs.h>	/* for _ILP32 */
15 
16 #ifndef	SKEIN_USE_ASM
17 #define	SKEIN_USE_ASM	(0)	/* default is all C code (no ASM) */
18 #endif
19 
20 #ifndef	SKEIN_LOOP
21 /*
22  * The low-level checksum routines use a lot of stack space. On systems where
23  * small stacks frame are enforced (like 32-bit kernel builds), do not unroll
24  * checksum calculations to save stack space.
25  *
26  * Even with no loops unrolled, we still can exceed the 1k stack frame limit
27  * in Skein1024_Process_Block() (it hits 1272 bytes on ARM32).  We can
28  * safely ignore it though, since that the checksum functions will be called
29  * from a worker thread that won't be using much stack.  That's why we have
30  * the #pragma here to ignore the warning.
31  */
32 #if defined(_ILP32) || defined(__powerpc)	/* Assume small stack */
33 #if defined(__GNUC__) && !defined(__clang__)
34 #pragma GCC diagnostic ignored "-Wframe-larger-than="
35 #endif
36 /*
37  * We're running on 32-bit, don't unroll loops to save stack frame space
38  *
39  * Due to the ways the calculations on SKEIN_LOOP are done in
40  * Skein_*_Process_Block(), a value of 111 disables unrolling loops
41  * in any of those functions.
42  */
43 #define	SKEIN_LOOP 111
44 #else
45 /* We're compiling with large stacks */
46 #define	SKEIN_LOOP 001		/* default: unroll 256 and 512, but not 1024 */
47 #endif
48 #endif
49 
50 /* some useful definitions for code here */
51 #define	BLK_BITS	(WCNT*64)
52 #define	KW_TWK_BASE	(0)
53 #define	KW_KEY_BASE	(3)
54 #define	ks		(kw + KW_KEY_BASE)
55 #define	ts		(kw + KW_TWK_BASE)
56 
57 /* no debugging in Illumos version */
58 #define	DebugSaveTweak(ctx)
59 
60 /* Skein_256 */
61 #if	!(SKEIN_USE_ASM & 256)
62 void
63 Skein_256_Process_Block(Skein_256_Ctxt_t *ctx, const uint8_t *blkPtr,
64     size_t blkCnt, size_t byteCntAdd)
65 {
66 	enum {
67 		WCNT = SKEIN_256_STATE_WORDS
68 	};
69 #undef  RCNT
70 #define	RCNT  (SKEIN_256_ROUNDS_TOTAL / 8)
71 
72 #ifdef	SKEIN_LOOP		/* configure how much to unroll the loop */
73 #define	SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
74 #else
75 #define	SKEIN_UNROLL_256 (0)
76 #endif
77 
78 #if	SKEIN_UNROLL_256
79 #if	(RCNT % SKEIN_UNROLL_256)
80 #error "Invalid SKEIN_UNROLL_256"	/* sanity check on unroll count */
81 #endif
82 	size_t r;
83 	/* key schedule words : chaining vars + tweak + "rotation" */
84 	uint64_t kw[WCNT + 4 + RCNT * 2];
85 #else
86 	uint64_t kw[WCNT + 4];	/* key schedule words : chaining vars + tweak */
87 #endif
88 	/* local copy of context vars, for speed */
89 	uint64_t X0, X1, X2, X3;
90 	uint64_t w[WCNT];		/* local copy of input block */
91 #ifdef	SKEIN_DEBUG
92 	/* use for debugging (help compiler put Xn in registers) */
93 	const uint64_t *Xptr[4];
94 	Xptr[0] = &X0;
95 	Xptr[1] = &X1;
96 	Xptr[2] = &X2;
97 	Xptr[3] = &X3;
98 #endif
99 	Skein_assert(blkCnt != 0);	/* never call with blkCnt == 0! */
100 	ts[0] = ctx->h.T[0];
101 	ts[1] = ctx->h.T[1];
102 	do {
103 		/*
104 		 * this implementation only supports 2**64 input bytes
105 		 * (no carry out here)
106 		 */
107 		ts[0] += byteCntAdd;	/* update processed length */
108 
109 		/* precompute the key schedule for this block */
110 		ks[0] = ctx->X[0];
111 		ks[1] = ctx->X[1];
112 		ks[2] = ctx->X[2];
113 		ks[3] = ctx->X[3];
114 		ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
115 
116 		ts[2] = ts[0] ^ ts[1];
117 
118 		/* get input block in little-endian format */
119 		Skein_Get64_LSB_First(w, blkPtr, WCNT);
120 		DebugSaveTweak(ctx);
121 		Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
122 
123 		X0 = w[0] + ks[0];	/* do the first full key injection */
124 		X1 = w[1] + ks[1] + ts[0];
125 		X2 = w[2] + ks[2] + ts[1];
126 		X3 = w[3] + ks[3];
127 
128 		Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
129 		    Xptr);	/* show starting state values */
130 
131 		blkPtr += SKEIN_256_BLOCK_BYTES;
132 
133 		/* run the rounds */
134 
135 #define	Round256(p0, p1, p2, p3, ROT, rNum)                          \
136 	X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
137 	X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
138 
139 #if	SKEIN_UNROLL_256 == 0
140 #define	R256(p0, p1, p2, p3, ROT, rNum)		/* fully unrolled */	\
141 	Round256(p0, p1, p2, p3, ROT, rNum)		\
142 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
143 
144 #define	I256(R)								\
145 	X0 += ks[((R) + 1) % 5]; /* inject the key schedule value */ \
146 	X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3];			\
147 	X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3];			\
148 	X3 += ks[((R) + 4) % 5] + (R) + 1;			\
149 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
150 #else				/* looping version */
151 #define	R256(p0, p1, p2, p3, ROT, rNum)                             \
152 	Round256(p0, p1, p2, p3, ROT, rNum)                             \
153 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
154 
155 #define	I256(R)								\
156 	X0 += ks[r + (R) + 0];	/* inject the key schedule value */	\
157 	X1 += ks[r + (R) + 1] + ts[r + (R) + 0];			\
158 	X2 += ks[r + (R) + 2] + ts[r + (R) + 1];			\
159 	X3 += ks[r + (R) + 3] + r + (R);				\
160 	ks[r + (R) + 4] = ks[r + (R) - 1];   /* rotate key schedule */	\
161 	ts[r + (R) + 2] = ts[r + (R) - 1];			\
162 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
163 
164 		/* loop through it */
165 		for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256)
166 #endif
167 		{
168 #define	R256_8_rounds(R)                         \
169 	R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1);  \
170 	R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2);  \
171 	R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3);  \
172 	R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4);  \
173 	I256(2 * (R));                           \
174 	R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5);  \
175 	R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6);  \
176 	R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7);  \
177 	R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8);  \
178 	I256(2 * (R) + 1);
179 
180 			R256_8_rounds(0);
181 
182 #define	R256_Unroll_R(NN) \
183 	((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
184 	(SKEIN_UNROLL_256 > (NN)))
185 
186 #if	R256_Unroll_R(1)
187 			R256_8_rounds(1);
188 #endif
189 #if	R256_Unroll_R(2)
190 			R256_8_rounds(2);
191 #endif
192 #if	R256_Unroll_R(3)
193 			R256_8_rounds(3);
194 #endif
195 #if	R256_Unroll_R(4)
196 			R256_8_rounds(4);
197 #endif
198 #if	R256_Unroll_R(5)
199 			R256_8_rounds(5);
200 #endif
201 #if	R256_Unroll_R(6)
202 			R256_8_rounds(6);
203 #endif
204 #if	R256_Unroll_R(7)
205 			R256_8_rounds(7);
206 #endif
207 #if	R256_Unroll_R(8)
208 			R256_8_rounds(8);
209 #endif
210 #if	R256_Unroll_R(9)
211 			R256_8_rounds(9);
212 #endif
213 #if	R256_Unroll_R(10)
214 			R256_8_rounds(10);
215 #endif
216 #if	R256_Unroll_R(11)
217 			R256_8_rounds(11);
218 #endif
219 #if	R256_Unroll_R(12)
220 			R256_8_rounds(12);
221 #endif
222 #if	R256_Unroll_R(13)
223 			R256_8_rounds(13);
224 #endif
225 #if	R256_Unroll_R(14)
226 			R256_8_rounds(14);
227 #endif
228 #if	(SKEIN_UNROLL_256 > 14)
229 #error  "need more unrolling in Skein_256_Process_Block"
230 #endif
231 		}
232 		/*
233 		 * do the final "feedforward" xor, update context chaining vars
234 		 */
235 		ctx->X[0] = X0 ^ w[0];
236 		ctx->X[1] = X1 ^ w[1];
237 		ctx->X[2] = X2 ^ w[2];
238 		ctx->X[3] = X3 ^ w[3];
239 
240 		Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
241 
242 		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
243 	} while (--blkCnt);
244 	ctx->h.T[0] = ts[0];
245 	ctx->h.T[1] = ts[1];
246 }
247 
248 #if	defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
249 size_t
250 Skein_256_Process_Block_CodeSize(void)
251 {
252 	return ((uint8_t *)Skein_256_Process_Block_CodeSize) -
253 	    ((uint8_t *)Skein_256_Process_Block);
254 }
255 
256 uint_t
257 Skein_256_Unroll_Cnt(void)
258 {
259 	return (SKEIN_UNROLL_256);
260 }
261 #endif
262 #endif
263 
264 /* Skein_512 */
265 #if	!(SKEIN_USE_ASM & 512)
266 void
267 Skein_512_Process_Block(Skein_512_Ctxt_t *ctx, const uint8_t *blkPtr,
268     size_t blkCnt, size_t byteCntAdd)
269 {
270 	enum {
271 		WCNT = SKEIN_512_STATE_WORDS
272 	};
273 #undef  RCNT
274 #define	RCNT  (SKEIN_512_ROUNDS_TOTAL / 8)
275 
276 #ifdef	SKEIN_LOOP		/* configure how much to unroll the loop */
277 #define	SKEIN_UNROLL_512 (((SKEIN_LOOP) / 10) % 10)
278 #else
279 #define	SKEIN_UNROLL_512 (0)
280 #endif
281 
282 #if	SKEIN_UNROLL_512
283 #if	(RCNT % SKEIN_UNROLL_512)
284 #error "Invalid SKEIN_UNROLL_512"	/* sanity check on unroll count */
285 #endif
286 	size_t r;
287 	/* key schedule words : chaining vars + tweak + "rotation" */
288 	uint64_t kw[WCNT + 4 + RCNT * 2];
289 #else
290 	uint64_t kw[WCNT + 4];	/* key schedule words : chaining vars + tweak */
291 #endif
292 	/* local copy of vars, for speed */
293 	uint64_t X0, X1, X2, X3, X4, X5, X6, X7;
294 	uint64_t w[WCNT];		/* local copy of input block */
295 #ifdef	SKEIN_DEBUG
296 	/* use for debugging (help compiler put Xn in registers) */
297 	const uint64_t *Xptr[8];
298 	Xptr[0] = &X0;
299 	Xptr[1] = &X1;
300 	Xptr[2] = &X2;
301 	Xptr[3] = &X3;
302 	Xptr[4] = &X4;
303 	Xptr[5] = &X5;
304 	Xptr[6] = &X6;
305 	Xptr[7] = &X7;
306 #endif
307 
308 	Skein_assert(blkCnt != 0);	/* never call with blkCnt == 0! */
309 	ts[0] = ctx->h.T[0];
310 	ts[1] = ctx->h.T[1];
311 	do {
312 		/*
313 		 * this implementation only supports 2**64 input bytes
314 		 * (no carry out here)
315 		 */
316 		ts[0] += byteCntAdd;	/* update processed length */
317 
318 		/* precompute the key schedule for this block */
319 		ks[0] = ctx->X[0];
320 		ks[1] = ctx->X[1];
321 		ks[2] = ctx->X[2];
322 		ks[3] = ctx->X[3];
323 		ks[4] = ctx->X[4];
324 		ks[5] = ctx->X[5];
325 		ks[6] = ctx->X[6];
326 		ks[7] = ctx->X[7];
327 		ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
328 		    ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
329 
330 		ts[2] = ts[0] ^ ts[1];
331 
332 		/* get input block in little-endian format */
333 		Skein_Get64_LSB_First(w, blkPtr, WCNT);
334 		DebugSaveTweak(ctx);
335 		Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
336 
337 		X0 = w[0] + ks[0];	/* do the first full key injection */
338 		X1 = w[1] + ks[1];
339 		X2 = w[2] + ks[2];
340 		X3 = w[3] + ks[3];
341 		X4 = w[4] + ks[4];
342 		X5 = w[5] + ks[5] + ts[0];
343 		X6 = w[6] + ks[6] + ts[1];
344 		X7 = w[7] + ks[7];
345 
346 		blkPtr += SKEIN_512_BLOCK_BYTES;
347 
348 		Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
349 		    Xptr);
350 		/* run the rounds */
351 #define	Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)		\
352 	X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
353 	X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
354 	X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
355 	X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;
356 
357 #if	SKEIN_UNROLL_512 == 0
358 #define	R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)	/* unrolled */	\
359 	Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)		\
360 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
361 
362 #define	I512(R)								\
363 	X0 += ks[((R) + 1) % 9];	/* inject the key schedule value */\
364 	X1 += ks[((R) + 2) % 9];					\
365 	X2 += ks[((R) + 3) % 9];					\
366 	X3 += ks[((R) + 4) % 9];					\
367 	X4 += ks[((R) + 5) % 9];					\
368 	X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3];			\
369 	X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3];			\
370 	X7 += ks[((R) + 8) % 9] + (R) + 1;				\
371 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
372 #else				/* looping version */
373 #define	R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)			\
374 	Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)		\
375 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
376 
377 #define	I512(R)								\
378 	X0 += ks[r + (R) + 0];	/* inject the key schedule value */	\
379 	X1 += ks[r + (R) + 1];						\
380 	X2 += ks[r + (R) + 2];						\
381 	X3 += ks[r + (R) + 3];						\
382 	X4 += ks[r + (R) + 4];						\
383 	X5 += ks[r + (R) + 5] + ts[r + (R) + 0];			\
384 	X6 += ks[r + (R) + 6] + ts[r + (R) + 1];			\
385 	X7 += ks[r + (R) + 7] + r + (R);				\
386 	ks[r + (R)+8] = ks[r + (R) - 1];	/* rotate key schedule */\
387 	ts[r + (R)+2] = ts[r + (R) - 1];				\
388 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
389 
390 		/* loop through it */
391 		for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512)
392 #endif				/* end of looped code definitions */
393 		{
394 #define	R512_8_rounds(R)	/* do 8 full rounds */			\
395 	R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1);		\
396 	R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2);		\
397 	R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3);		\
398 	R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4);		\
399 	I512(2 * (R));							\
400 	R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5);		\
401 	R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6);		\
402 	R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7);		\
403 	R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8);		\
404 	I512(2*(R) + 1);		/* and key injection */
405 
406 			R512_8_rounds(0);
407 
408 #define	R512_Unroll_R(NN) \
409 	((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL / 8 > (NN)) || \
410 	(SKEIN_UNROLL_512 > (NN)))
411 
412 #if	R512_Unroll_R(1)
413 			R512_8_rounds(1);
414 #endif
415 #if	R512_Unroll_R(2)
416 			R512_8_rounds(2);
417 #endif
418 #if	R512_Unroll_R(3)
419 			R512_8_rounds(3);
420 #endif
421 #if	R512_Unroll_R(4)
422 			R512_8_rounds(4);
423 #endif
424 #if	R512_Unroll_R(5)
425 			R512_8_rounds(5);
426 #endif
427 #if	R512_Unroll_R(6)
428 			R512_8_rounds(6);
429 #endif
430 #if	R512_Unroll_R(7)
431 			R512_8_rounds(7);
432 #endif
433 #if	R512_Unroll_R(8)
434 			R512_8_rounds(8);
435 #endif
436 #if	R512_Unroll_R(9)
437 			R512_8_rounds(9);
438 #endif
439 #if	R512_Unroll_R(10)
440 			R512_8_rounds(10);
441 #endif
442 #if	R512_Unroll_R(11)
443 			R512_8_rounds(11);
444 #endif
445 #if	R512_Unroll_R(12)
446 			R512_8_rounds(12);
447 #endif
448 #if	R512_Unroll_R(13)
449 			R512_8_rounds(13);
450 #endif
451 #if	R512_Unroll_R(14)
452 			R512_8_rounds(14);
453 #endif
454 #if	(SKEIN_UNROLL_512 > 14)
455 #error "need more unrolling in Skein_512_Process_Block"
456 #endif
457 		}
458 
459 		/*
460 		 * do the final "feedforward" xor, update context chaining vars
461 		 */
462 		ctx->X[0] = X0 ^ w[0];
463 		ctx->X[1] = X1 ^ w[1];
464 		ctx->X[2] = X2 ^ w[2];
465 		ctx->X[3] = X3 ^ w[3];
466 		ctx->X[4] = X4 ^ w[4];
467 		ctx->X[5] = X5 ^ w[5];
468 		ctx->X[6] = X6 ^ w[6];
469 		ctx->X[7] = X7 ^ w[7];
470 		Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
471 
472 		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
473 	} while (--blkCnt);
474 	ctx->h.T[0] = ts[0];
475 	ctx->h.T[1] = ts[1];
476 }
477 
478 #if	defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
479 size_t
480 Skein_512_Process_Block_CodeSize(void)
481 {
482 	return ((uint8_t *)Skein_512_Process_Block_CodeSize) -
483 	    ((uint8_t *)Skein_512_Process_Block);
484 }
485 
486 uint_t
487 Skein_512_Unroll_Cnt(void)
488 {
489 	return (SKEIN_UNROLL_512);
490 }
491 #endif
492 #endif
493 
494 /*  Skein1024 */
495 #if	!(SKEIN_USE_ASM & 1024)
496 void
497 Skein1024_Process_Block(Skein1024_Ctxt_t *ctx, const uint8_t *blkPtr,
498     size_t blkCnt, size_t byteCntAdd)
499 {
500 	/* do it in C, always looping (unrolled is bigger AND slower!) */
501 	enum {
502 		WCNT = SKEIN1024_STATE_WORDS
503 	};
504 #undef  RCNT
505 #define	RCNT  (SKEIN1024_ROUNDS_TOTAL/8)
506 
507 #ifdef	SKEIN_LOOP		/* configure how much to unroll the loop */
508 #define	SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
509 #else
510 #define	SKEIN_UNROLL_1024 (0)
511 #endif
512 
513 #if	(SKEIN_UNROLL_1024 != 0)
514 #if	(RCNT % SKEIN_UNROLL_1024)
515 #error "Invalid SKEIN_UNROLL_1024"	/* sanity check on unroll count */
516 #endif
517 	size_t r;
518 	/* key schedule words : chaining vars + tweak + "rotation" */
519 	uint64_t kw[WCNT + 4 + RCNT * 2];
520 #else
521 	uint64_t kw[WCNT + 4];	/* key schedule words : chaining vars + tweak */
522 #endif
523 
524 	/* local copy of vars, for speed */
525 	uint64_t X00, X01, X02, X03, X04, X05, X06, X07, X08, X09, X10, X11,
526 	    X12, X13, X14, X15;
527 	uint64_t w[WCNT];		/* local copy of input block */
528 #ifdef	SKEIN_DEBUG
529 	/* use for debugging (help compiler put Xn in registers) */
530 	const uint64_t *Xptr[16];
531 	Xptr[0] = &X00;
532 	Xptr[1] = &X01;
533 	Xptr[2] = &X02;
534 	Xptr[3] = &X03;
535 	Xptr[4] = &X04;
536 	Xptr[5] = &X05;
537 	Xptr[6] = &X06;
538 	Xptr[7] = &X07;
539 	Xptr[8] = &X08;
540 	Xptr[9] = &X09;
541 	Xptr[10] = &X10;
542 	Xptr[11] = &X11;
543 	Xptr[12] = &X12;
544 	Xptr[13] = &X13;
545 	Xptr[14] = &X14;
546 	Xptr[15] = &X15;
547 #endif
548 
549 	Skein_assert(blkCnt != 0);	/* never call with blkCnt == 0! */
550 	ts[0] = ctx->h.T[0];
551 	ts[1] = ctx->h.T[1];
552 	do {
553 		/*
554 		 * this implementation only supports 2**64 input bytes
555 		 * (no carry out here)
556 		 */
557 		ts[0] += byteCntAdd;	/* update processed length */
558 
559 		/* precompute the key schedule for this block */
560 		ks[0] = ctx->X[0];
561 		ks[1] = ctx->X[1];
562 		ks[2] = ctx->X[2];
563 		ks[3] = ctx->X[3];
564 		ks[4] = ctx->X[4];
565 		ks[5] = ctx->X[5];
566 		ks[6] = ctx->X[6];
567 		ks[7] = ctx->X[7];
568 		ks[8] = ctx->X[8];
569 		ks[9] = ctx->X[9];
570 		ks[10] = ctx->X[10];
571 		ks[11] = ctx->X[11];
572 		ks[12] = ctx->X[12];
573 		ks[13] = ctx->X[13];
574 		ks[14] = ctx->X[14];
575 		ks[15] = ctx->X[15];
576 		ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
577 		    ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
578 		    ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
579 		    ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
580 
581 		ts[2] = ts[0] ^ ts[1];
582 
583 		/* get input block in little-endian format */
584 		Skein_Get64_LSB_First(w, blkPtr, WCNT);
585 		DebugSaveTweak(ctx);
586 		Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
587 
588 		X00 = w[0] + ks[0];	/* do the first full key injection */
589 		X01 = w[1] + ks[1];
590 		X02 = w[2] + ks[2];
591 		X03 = w[3] + ks[3];
592 		X04 = w[4] + ks[4];
593 		X05 = w[5] + ks[5];
594 		X06 = w[6] + ks[6];
595 		X07 = w[7] + ks[7];
596 		X08 = w[8] + ks[8];
597 		X09 = w[9] + ks[9];
598 		X10 = w[10] + ks[10];
599 		X11 = w[11] + ks[11];
600 		X12 = w[12] + ks[12];
601 		X13 = w[13] + ks[13] + ts[0];
602 		X14 = w[14] + ks[14] + ts[1];
603 		X15 = w[15] + ks[15];
604 
605 		Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
606 		    Xptr);
607 
608 #define	Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC,	\
609 	pD, pE, pF, ROT, rNum)						\
610 	X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
611 	X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
612 	X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
613 	X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;\
614 	X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8;\
615 	X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA;\
616 	X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC;\
617 	X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE;
618 
619 #if	SKEIN_UNROLL_1024 == 0
620 #define	R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD,	\
621 	pE, pF, ROT, rn)						\
622 	Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC,	\
623 	pD, pE, pF, ROT, rn)						\
624 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr);
625 
626 #define	I1024(R)							\
627 	X00 += ks[((R) + 1) % 17];	/* inject the key schedule value */\
628 	X01 += ks[((R) + 2) % 17];					\
629 	X02 += ks[((R) + 3) % 17];					\
630 	X03 += ks[((R) + 4) % 17];					\
631 	X04 += ks[((R) + 5) % 17];					\
632 	X05 += ks[((R) + 6) % 17];					\
633 	X06 += ks[((R) + 7) % 17];					\
634 	X07 += ks[((R) + 8) % 17];					\
635 	X08 += ks[((R) + 9) % 17];					\
636 	X09 += ks[((R) + 10) % 17];					\
637 	X10 += ks[((R) + 11) % 17];					\
638 	X11 += ks[((R) + 12) % 17];					\
639 	X12 += ks[((R) + 13) % 17];					\
640 	X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3];			\
641 	X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3];			\
642 	X15 += ks[((R) + 16) % 17] + (R) +1;				\
643 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
644 #else				/* looping version */
645 #define	R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD,	\
646 	pE, pF, ROT, rn)						\
647 	Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC,	\
648 	pD, pE, pF, ROT, rn)						\
649 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr);
650 
651 #define	I1024(R)							\
652 	X00 += ks[r + (R) + 0];	/* inject the key schedule value */	\
653 	X01 += ks[r + (R) + 1];						\
654 	X02 += ks[r + (R) + 2];						\
655 	X03 += ks[r + (R) + 3];						\
656 	X04 += ks[r + (R) + 4];						\
657 	X05 += ks[r + (R) + 5];						\
658 	X06 += ks[r + (R) + 6];						\
659 	X07 += ks[r + (R) + 7];						\
660 	X08 += ks[r + (R) + 8];						\
661 	X09 += ks[r + (R) + 9];						\
662 	X10 += ks[r + (R) + 10];					\
663 	X11 += ks[r + (R) + 11];					\
664 	X12 += ks[r + (R) + 12];					\
665 	X13 += ks[r + (R) + 13] + ts[r + (R) + 0];			\
666 	X14 += ks[r + (R) + 14] + ts[r + (R) + 1];			\
667 	X15 += ks[r + (R) + 15] +  r + (R);				\
668 	ks[r + (R) + 16] = ks[r + (R) - 1];	/* rotate key schedule */\
669 	ts[r + (R) + 2] = ts[r + (R) - 1];				\
670 	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
671 
672 		/* loop through it */
673 		for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024)
674 #endif
675 		{
676 #define	R1024_8_rounds(R)	/* do 8 full rounds */			\
677 	R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13,	\
678 	    14, 15, R1024_0, 8 * (R) + 1);				\
679 	R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05,	\
680 	    08, 01, R1024_1, 8 * (R) + 2);				\
681 	R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11,	\
682 	    10, 09, R1024_2, 8 * (R) + 3);				\
683 	R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03,	\
684 	    12, 07, R1024_3, 8 * (R) + 4);				\
685 	I1024(2 * (R));							\
686 	R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13,	\
687 	    14, 15, R1024_4, 8 * (R) + 5);				\
688 	R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05,	\
689 	    08, 01, R1024_5, 8 * (R) + 6);				\
690 	R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11,	\
691 	    10, 09, R1024_6, 8 * (R) + 7);				\
692 	R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03,	\
693 	    12, 07, R1024_7, 8 * (R) + 8);				\
694 	I1024(2 * (R) + 1);
695 
696 			R1024_8_rounds(0);
697 
698 #define	R1024_Unroll_R(NN)						\
699 	((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) ||	\
700 	(SKEIN_UNROLL_1024 > (NN)))
701 
702 #if	R1024_Unroll_R(1)
703 			R1024_8_rounds(1);
704 #endif
705 #if	R1024_Unroll_R(2)
706 			R1024_8_rounds(2);
707 #endif
708 #if	R1024_Unroll_R(3)
709 			R1024_8_rounds(3);
710 #endif
711 #if	R1024_Unroll_R(4)
712 			R1024_8_rounds(4);
713 #endif
714 #if	R1024_Unroll_R(5)
715 			R1024_8_rounds(5);
716 #endif
717 #if	R1024_Unroll_R(6)
718 			R1024_8_rounds(6);
719 #endif
720 #if	R1024_Unroll_R(7)
721 			R1024_8_rounds(7);
722 #endif
723 #if	R1024_Unroll_R(8)
724 			R1024_8_rounds(8);
725 #endif
726 #if	R1024_Unroll_R(9)
727 			R1024_8_rounds(9);
728 #endif
729 #if	R1024_Unroll_R(10)
730 			R1024_8_rounds(10);
731 #endif
732 #if	R1024_Unroll_R(11)
733 			R1024_8_rounds(11);
734 #endif
735 #if	R1024_Unroll_R(12)
736 			R1024_8_rounds(12);
737 #endif
738 #if	R1024_Unroll_R(13)
739 			R1024_8_rounds(13);
740 #endif
741 #if	R1024_Unroll_R(14)
742 			R1024_8_rounds(14);
743 #endif
744 #if	(SKEIN_UNROLL_1024 > 14)
745 #error  "need more unrolling in Skein_1024_Process_Block"
746 #endif
747 		}
748 		/*
749 		 * do the final "feedforward" xor, update context chaining vars
750 		 */
751 
752 		ctx->X[0] = X00 ^ w[0];
753 		ctx->X[1] = X01 ^ w[1];
754 		ctx->X[2] = X02 ^ w[2];
755 		ctx->X[3] = X03 ^ w[3];
756 		ctx->X[4] = X04 ^ w[4];
757 		ctx->X[5] = X05 ^ w[5];
758 		ctx->X[6] = X06 ^ w[6];
759 		ctx->X[7] = X07 ^ w[7];
760 		ctx->X[8] = X08 ^ w[8];
761 		ctx->X[9] = X09 ^ w[9];
762 		ctx->X[10] = X10 ^ w[10];
763 		ctx->X[11] = X11 ^ w[11];
764 		ctx->X[12] = X12 ^ w[12];
765 		ctx->X[13] = X13 ^ w[13];
766 		ctx->X[14] = X14 ^ w[14];
767 		ctx->X[15] = X15 ^ w[15];
768 
769 		Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
770 
771 		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
772 		blkPtr += SKEIN1024_BLOCK_BYTES;
773 	} while (--blkCnt);
774 	ctx->h.T[0] = ts[0];
775 	ctx->h.T[1] = ts[1];
776 }
777 
778 #if	defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
779 size_t
780 Skein1024_Process_Block_CodeSize(void)
781 {
782 	return ((uint8_t *)Skein1024_Process_Block_CodeSize) -
783 	    ((uint8_t *)Skein1024_Process_Block);
784 }
785 
786 uint_t
787 Skein1024_Unroll_Cnt(void)
788 {
789 	return (SKEIN_UNROLL_1024);
790 }
791 #endif
792 #endif
793