1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24  * All rights reserved.
25  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
28  */
29 
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/sysmacros.h>
37 #include <sys/kmem.h>
38 #include <sys/acl.h>
39 #include <sys/vnode.h>
40 #include <sys/vfs.h>
41 #include <sys/mntent.h>
42 #include <sys/mount.h>
43 #include <sys/cmn_err.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/zfs_vnops.h>
46 #include <sys/zfs_dir.h>
47 #include <sys/zil.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/dmu.h>
50 #include <sys/dsl_prop.h>
51 #include <sys/dsl_dataset.h>
52 #include <sys/dsl_deleg.h>
53 #include <sys/spa.h>
54 #include <sys/zap.h>
55 #include <sys/sa.h>
56 #include <sys/sa_impl.h>
57 #include <sys/policy.h>
58 #include <sys/atomic.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/zfs_ctldir.h>
61 #include <sys/zfs_fuid.h>
62 #include <sys/sunddi.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/dsl_dir.h>
65 #include <sys/jail.h>
66 #include <sys/osd.h>
67 #include <ufs/ufs/quota.h>
68 #include <sys/zfs_quota.h>
69 
70 #include "zfs_comutil.h"
71 
72 #ifndef	MNTK_VMSETSIZE_BUG
73 #define	MNTK_VMSETSIZE_BUG	0
74 #endif
75 #ifndef	MNTK_NOMSYNC
76 #define	MNTK_NOMSYNC	8
77 #endif
78 
79 struct mtx zfs_debug_mtx;
80 MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
81 
82 SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
83 
84 int zfs_super_owner;
85 SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
86 	"File system owners can perform privileged operation on file systems");
87 
88 int zfs_debug_level;
89 SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RWTUN, &zfs_debug_level, 0,
90 	"Debug level");
91 
92 struct zfs_jailparam {
93 	int mount_snapshot;
94 };
95 
96 static struct zfs_jailparam zfs_jailparam0 = {
97 	.mount_snapshot = 0,
98 };
99 
100 static int zfs_jailparam_slot;
101 
102 SYSCTL_JAIL_PARAM_SYS_NODE(zfs, CTLFLAG_RW, "Jail ZFS parameters");
103 SYSCTL_JAIL_PARAM(_zfs, mount_snapshot, CTLTYPE_INT | CTLFLAG_RW, "I",
104 	"Allow mounting snapshots in the .zfs directory for unjailed datasets");
105 
106 SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
107 static int zfs_version_acl = ZFS_ACL_VERSION;
108 SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
109 	"ZFS_ACL_VERSION");
110 static int zfs_version_spa = SPA_VERSION;
111 SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
112 	"SPA_VERSION");
113 static int zfs_version_zpl = ZPL_VERSION;
114 SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
115 	"ZPL_VERSION");
116 
117 #if __FreeBSD_version >= 1400018
118 static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg,
119     bool *mp_busy);
120 #else
121 static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg);
122 #endif
123 static int zfs_mount(vfs_t *vfsp);
124 static int zfs_umount(vfs_t *vfsp, int fflag);
125 static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
126 static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
127 static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
128 static int zfs_sync(vfs_t *vfsp, int waitfor);
129 #if __FreeBSD_version >= 1300098
130 static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp,
131     struct ucred **credanonp, int *numsecflavors, int *secflavors);
132 #else
133 static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
134     struct ucred **credanonp, int *numsecflavors, int **secflavors);
135 #endif
136 static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
137 static void zfs_freevfs(vfs_t *vfsp);
138 
139 struct vfsops zfs_vfsops = {
140 	.vfs_mount =		zfs_mount,
141 	.vfs_unmount =		zfs_umount,
142 #if __FreeBSD_version >= 1300049
143 	.vfs_root =		vfs_cache_root,
144 	.vfs_cachedroot = zfs_root,
145 #else
146 	.vfs_root =		zfs_root,
147 #endif
148 	.vfs_statfs =		zfs_statfs,
149 	.vfs_vget =		zfs_vget,
150 	.vfs_sync =		zfs_sync,
151 	.vfs_checkexp =		zfs_checkexp,
152 	.vfs_fhtovp =		zfs_fhtovp,
153 	.vfs_quotactl =		zfs_quotactl,
154 };
155 
156 #ifdef VFCF_CROSS_COPY_FILE_RANGE
157 VFS_SET(zfs_vfsops, zfs,
158     VFCF_DELEGADMIN | VFCF_JAIL | VFCF_CROSS_COPY_FILE_RANGE);
159 #else
160 VFS_SET(zfs_vfsops, zfs, VFCF_DELEGADMIN | VFCF_JAIL);
161 #endif
162 
163 /*
164  * We need to keep a count of active fs's.
165  * This is necessary to prevent our module
166  * from being unloaded after a umount -f
167  */
168 static uint32_t	zfs_active_fs_count = 0;
169 
170 int
171 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
172     char *setpoint)
173 {
174 	int error;
175 	zfsvfs_t *zfvp;
176 	vfs_t *vfsp;
177 	objset_t *os;
178 	uint64_t tmp = *val;
179 
180 	error = dmu_objset_from_ds(ds, &os);
181 	if (error != 0)
182 		return (error);
183 
184 	error = getzfsvfs_impl(os, &zfvp);
185 	if (error != 0)
186 		return (error);
187 	if (zfvp == NULL)
188 		return (ENOENT);
189 	vfsp = zfvp->z_vfs;
190 	switch (zfs_prop) {
191 	case ZFS_PROP_ATIME:
192 		if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL))
193 			tmp = 0;
194 		if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL))
195 			tmp = 1;
196 		break;
197 	case ZFS_PROP_DEVICES:
198 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
199 			tmp = 0;
200 		if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL))
201 			tmp = 1;
202 		break;
203 	case ZFS_PROP_EXEC:
204 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
205 			tmp = 0;
206 		if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL))
207 			tmp = 1;
208 		break;
209 	case ZFS_PROP_SETUID:
210 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
211 			tmp = 0;
212 		if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL))
213 			tmp = 1;
214 		break;
215 	case ZFS_PROP_READONLY:
216 		if (vfs_optionisset(vfsp, MNTOPT_RW, NULL))
217 			tmp = 0;
218 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
219 			tmp = 1;
220 		break;
221 	case ZFS_PROP_XATTR:
222 		if (zfvp->z_flags & ZSB_XATTR)
223 			tmp = zfvp->z_xattr;
224 		break;
225 	case ZFS_PROP_NBMAND:
226 		if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL))
227 			tmp = 0;
228 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
229 			tmp = 1;
230 		break;
231 	default:
232 		vfs_unbusy(vfsp);
233 		return (ENOENT);
234 	}
235 
236 	vfs_unbusy(vfsp);
237 	if (tmp != *val) {
238 		if (setpoint)
239 			(void) strcpy(setpoint, "temporary");
240 		*val = tmp;
241 	}
242 	return (0);
243 }
244 
245 static int
246 zfs_getquota(zfsvfs_t *zfsvfs, uid_t id, int isgroup, struct dqblk64 *dqp)
247 {
248 	int error = 0;
249 	char buf[32];
250 	uint64_t usedobj, quotaobj;
251 	uint64_t quota, used = 0;
252 	timespec_t now;
253 
254 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
255 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
256 
257 	if (quotaobj == 0 || zfsvfs->z_replay) {
258 		error = ENOENT;
259 		goto done;
260 	}
261 	(void) sprintf(buf, "%llx", (longlong_t)id);
262 	if ((error = zap_lookup(zfsvfs->z_os, quotaobj,
263 	    buf, sizeof (quota), 1, &quota)) != 0) {
264 		dprintf("%s(%d): quotaobj lookup failed\n",
265 		    __FUNCTION__, __LINE__);
266 		goto done;
267 	}
268 	/*
269 	 * quota(8) uses bsoftlimit as "quoota", and hardlimit as "limit".
270 	 * So we set them to be the same.
271 	 */
272 	dqp->dqb_bsoftlimit = dqp->dqb_bhardlimit = btodb(quota);
273 	error = zap_lookup(zfsvfs->z_os, usedobj, buf, sizeof (used), 1, &used);
274 	if (error && error != ENOENT) {
275 		dprintf("%s(%d):  usedobj failed; %d\n",
276 		    __FUNCTION__, __LINE__, error);
277 		goto done;
278 	}
279 	dqp->dqb_curblocks = btodb(used);
280 	dqp->dqb_ihardlimit = dqp->dqb_isoftlimit = 0;
281 	vfs_timestamp(&now);
282 	/*
283 	 * Setting this to 0 causes FreeBSD quota(8) to print
284 	 * the number of days since the epoch, which isn't
285 	 * particularly useful.
286 	 */
287 	dqp->dqb_btime = dqp->dqb_itime = now.tv_sec;
288 done:
289 	return (error);
290 }
291 
292 static int
293 #if __FreeBSD_version >= 1400018
294 zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg, bool *mp_busy)
295 #else
296 zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg)
297 #endif
298 {
299 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
300 	struct thread *td;
301 	int cmd, type, error = 0;
302 	int bitsize;
303 	zfs_userquota_prop_t quota_type;
304 	struct dqblk64 dqblk = { 0 };
305 
306 	td = curthread;
307 	cmd = cmds >> SUBCMDSHIFT;
308 	type = cmds & SUBCMDMASK;
309 
310 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
311 		return (error);
312 	if (id == -1) {
313 		switch (type) {
314 		case USRQUOTA:
315 			id = td->td_ucred->cr_ruid;
316 			break;
317 		case GRPQUOTA:
318 			id = td->td_ucred->cr_rgid;
319 			break;
320 		default:
321 			error = EINVAL;
322 #if __FreeBSD_version < 1400018
323 			if (cmd == Q_QUOTAON || cmd == Q_QUOTAOFF)
324 				vfs_unbusy(vfsp);
325 #endif
326 			goto done;
327 		}
328 	}
329 	/*
330 	 * Map BSD type to:
331 	 * ZFS_PROP_USERUSED,
332 	 * ZFS_PROP_USERQUOTA,
333 	 * ZFS_PROP_GROUPUSED,
334 	 * ZFS_PROP_GROUPQUOTA
335 	 */
336 	switch (cmd) {
337 	case Q_SETQUOTA:
338 	case Q_SETQUOTA32:
339 		if (type == USRQUOTA)
340 			quota_type = ZFS_PROP_USERQUOTA;
341 		else if (type == GRPQUOTA)
342 			quota_type = ZFS_PROP_GROUPQUOTA;
343 		else
344 			error = EINVAL;
345 		break;
346 	case Q_GETQUOTA:
347 	case Q_GETQUOTA32:
348 		if (type == USRQUOTA)
349 			quota_type = ZFS_PROP_USERUSED;
350 		else if (type == GRPQUOTA)
351 			quota_type = ZFS_PROP_GROUPUSED;
352 		else
353 			error = EINVAL;
354 		break;
355 	}
356 
357 	/*
358 	 * Depending on the cmd, we may need to get
359 	 * the ruid and domain (see fuidstr_to_sid?),
360 	 * the fuid (how?), or other information.
361 	 * Create fuid using zfs_fuid_create(zfsvfs, id,
362 	 * ZFS_OWNER or ZFS_GROUP, cr, &fuidp)?
363 	 * I think I can use just the id?
364 	 *
365 	 * Look at zfs_id_overquota() to look up a quota.
366 	 * zap_lookup(something, quotaobj, fuidstring,
367 	 *     sizeof (long long), 1, &quota)
368 	 *
369 	 * See zfs_set_userquota() to set a quota.
370 	 */
371 	if ((uint32_t)type >= MAXQUOTAS) {
372 		error = EINVAL;
373 		goto done;
374 	}
375 
376 	switch (cmd) {
377 	case Q_GETQUOTASIZE:
378 		bitsize = 64;
379 		error = copyout(&bitsize, arg, sizeof (int));
380 		break;
381 	case Q_QUOTAON:
382 		// As far as I can tell, you can't turn quotas on or off on zfs
383 		error = 0;
384 #if __FreeBSD_version < 1400018
385 		vfs_unbusy(vfsp);
386 #endif
387 		break;
388 	case Q_QUOTAOFF:
389 		error = ENOTSUP;
390 #if __FreeBSD_version < 1400018
391 		vfs_unbusy(vfsp);
392 #endif
393 		break;
394 	case Q_SETQUOTA:
395 		error = copyin(arg, &dqblk, sizeof (dqblk));
396 		if (error == 0)
397 			error = zfs_set_userquota(zfsvfs, quota_type,
398 			    "", id, dbtob(dqblk.dqb_bhardlimit));
399 		break;
400 	case Q_GETQUOTA:
401 		error = zfs_getquota(zfsvfs, id, type == GRPQUOTA, &dqblk);
402 		if (error == 0)
403 			error = copyout(&dqblk, arg, sizeof (dqblk));
404 		break;
405 	default:
406 		error = EINVAL;
407 		break;
408 	}
409 done:
410 	zfs_exit(zfsvfs, FTAG);
411 	return (error);
412 }
413 
414 
415 boolean_t
416 zfs_is_readonly(zfsvfs_t *zfsvfs)
417 {
418 	return (!!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY));
419 }
420 
421 static int
422 zfs_sync(vfs_t *vfsp, int waitfor)
423 {
424 
425 	/*
426 	 * Data integrity is job one.  We don't want a compromised kernel
427 	 * writing to the storage pool, so we never sync during panic.
428 	 */
429 	if (panicstr)
430 		return (0);
431 
432 	/*
433 	 * Ignore the system syncher.  ZFS already commits async data
434 	 * at zfs_txg_timeout intervals.
435 	 */
436 	if (waitfor == MNT_LAZY)
437 		return (0);
438 
439 	if (vfsp != NULL) {
440 		/*
441 		 * Sync a specific filesystem.
442 		 */
443 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
444 		dsl_pool_t *dp;
445 		int error;
446 
447 		if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
448 			return (error);
449 		dp = dmu_objset_pool(zfsvfs->z_os);
450 
451 		/*
452 		 * If the system is shutting down, then skip any
453 		 * filesystems which may exist on a suspended pool.
454 		 */
455 		if (rebooting && spa_suspended(dp->dp_spa)) {
456 			zfs_exit(zfsvfs, FTAG);
457 			return (0);
458 		}
459 
460 		if (zfsvfs->z_log != NULL)
461 			zil_commit(zfsvfs->z_log, 0);
462 
463 		zfs_exit(zfsvfs, FTAG);
464 	} else {
465 		/*
466 		 * Sync all ZFS filesystems.  This is what happens when you
467 		 * run sync(8).  Unlike other filesystems, ZFS honors the
468 		 * request by waiting for all pools to commit all dirty data.
469 		 */
470 		spa_sync_allpools();
471 	}
472 
473 	return (0);
474 }
475 
476 static void
477 atime_changed_cb(void *arg, uint64_t newval)
478 {
479 	zfsvfs_t *zfsvfs = arg;
480 
481 	if (newval == TRUE) {
482 		zfsvfs->z_atime = TRUE;
483 		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
484 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
485 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
486 	} else {
487 		zfsvfs->z_atime = FALSE;
488 		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
489 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
490 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
491 	}
492 }
493 
494 static void
495 xattr_changed_cb(void *arg, uint64_t newval)
496 {
497 	zfsvfs_t *zfsvfs = arg;
498 
499 	if (newval == ZFS_XATTR_OFF) {
500 		zfsvfs->z_flags &= ~ZSB_XATTR;
501 	} else {
502 		zfsvfs->z_flags |= ZSB_XATTR;
503 
504 		if (newval == ZFS_XATTR_SA)
505 			zfsvfs->z_xattr_sa = B_TRUE;
506 		else
507 			zfsvfs->z_xattr_sa = B_FALSE;
508 	}
509 }
510 
511 static void
512 blksz_changed_cb(void *arg, uint64_t newval)
513 {
514 	zfsvfs_t *zfsvfs = arg;
515 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
516 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
517 	ASSERT(ISP2(newval));
518 
519 	zfsvfs->z_max_blksz = newval;
520 	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
521 }
522 
523 static void
524 readonly_changed_cb(void *arg, uint64_t newval)
525 {
526 	zfsvfs_t *zfsvfs = arg;
527 
528 	if (newval) {
529 		/* XXX locking on vfs_flag? */
530 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
531 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
532 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
533 	} else {
534 		/* XXX locking on vfs_flag? */
535 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
536 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
537 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
538 	}
539 }
540 
541 static void
542 setuid_changed_cb(void *arg, uint64_t newval)
543 {
544 	zfsvfs_t *zfsvfs = arg;
545 
546 	if (newval == FALSE) {
547 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
548 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
549 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
550 	} else {
551 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
552 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
553 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
554 	}
555 }
556 
557 static void
558 exec_changed_cb(void *arg, uint64_t newval)
559 {
560 	zfsvfs_t *zfsvfs = arg;
561 
562 	if (newval == FALSE) {
563 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
564 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
565 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
566 	} else {
567 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
568 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
569 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
570 	}
571 }
572 
573 /*
574  * The nbmand mount option can be changed at mount time.
575  * We can't allow it to be toggled on live file systems or incorrect
576  * behavior may be seen from cifs clients
577  *
578  * This property isn't registered via dsl_prop_register(), but this callback
579  * will be called when a file system is first mounted
580  */
581 static void
582 nbmand_changed_cb(void *arg, uint64_t newval)
583 {
584 	zfsvfs_t *zfsvfs = arg;
585 	if (newval == FALSE) {
586 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
587 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
588 	} else {
589 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
590 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
591 	}
592 }
593 
594 static void
595 snapdir_changed_cb(void *arg, uint64_t newval)
596 {
597 	zfsvfs_t *zfsvfs = arg;
598 
599 	zfsvfs->z_show_ctldir = newval;
600 }
601 
602 static void
603 acl_mode_changed_cb(void *arg, uint64_t newval)
604 {
605 	zfsvfs_t *zfsvfs = arg;
606 
607 	zfsvfs->z_acl_mode = newval;
608 }
609 
610 static void
611 acl_inherit_changed_cb(void *arg, uint64_t newval)
612 {
613 	zfsvfs_t *zfsvfs = arg;
614 
615 	zfsvfs->z_acl_inherit = newval;
616 }
617 
618 static void
619 acl_type_changed_cb(void *arg, uint64_t newval)
620 {
621 	zfsvfs_t *zfsvfs = arg;
622 
623 	zfsvfs->z_acl_type = newval;
624 }
625 
626 static int
627 zfs_register_callbacks(vfs_t *vfsp)
628 {
629 	struct dsl_dataset *ds = NULL;
630 	objset_t *os = NULL;
631 	zfsvfs_t *zfsvfs = NULL;
632 	uint64_t nbmand;
633 	boolean_t readonly = B_FALSE;
634 	boolean_t do_readonly = B_FALSE;
635 	boolean_t setuid = B_FALSE;
636 	boolean_t do_setuid = B_FALSE;
637 	boolean_t exec = B_FALSE;
638 	boolean_t do_exec = B_FALSE;
639 	boolean_t xattr = B_FALSE;
640 	boolean_t atime = B_FALSE;
641 	boolean_t do_atime = B_FALSE;
642 	boolean_t do_xattr = B_FALSE;
643 	int error = 0;
644 
645 	ASSERT3P(vfsp, !=, NULL);
646 	zfsvfs = vfsp->vfs_data;
647 	ASSERT3P(zfsvfs, !=, NULL);
648 	os = zfsvfs->z_os;
649 
650 	/*
651 	 * This function can be called for a snapshot when we update snapshot's
652 	 * mount point, which isn't really supported.
653 	 */
654 	if (dmu_objset_is_snapshot(os))
655 		return (EOPNOTSUPP);
656 
657 	/*
658 	 * The act of registering our callbacks will destroy any mount
659 	 * options we may have.  In order to enable temporary overrides
660 	 * of mount options, we stash away the current values and
661 	 * restore them after we register the callbacks.
662 	 */
663 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
664 	    !spa_writeable(dmu_objset_spa(os))) {
665 		readonly = B_TRUE;
666 		do_readonly = B_TRUE;
667 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
668 		readonly = B_FALSE;
669 		do_readonly = B_TRUE;
670 	}
671 	if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
672 		setuid = B_FALSE;
673 		do_setuid = B_TRUE;
674 	} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
675 		setuid = B_TRUE;
676 		do_setuid = B_TRUE;
677 	}
678 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
679 		exec = B_FALSE;
680 		do_exec = B_TRUE;
681 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
682 		exec = B_TRUE;
683 		do_exec = B_TRUE;
684 	}
685 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
686 		zfsvfs->z_xattr = xattr = ZFS_XATTR_OFF;
687 		do_xattr = B_TRUE;
688 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
689 		zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR;
690 		do_xattr = B_TRUE;
691 	} else if (vfs_optionisset(vfsp, MNTOPT_DIRXATTR, NULL)) {
692 		zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR;
693 		do_xattr = B_TRUE;
694 	} else if (vfs_optionisset(vfsp, MNTOPT_SAXATTR, NULL)) {
695 		zfsvfs->z_xattr = xattr = ZFS_XATTR_SA;
696 		do_xattr = B_TRUE;
697 	}
698 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
699 		atime = B_FALSE;
700 		do_atime = B_TRUE;
701 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
702 		atime = B_TRUE;
703 		do_atime = B_TRUE;
704 	}
705 
706 	/*
707 	 * We need to enter pool configuration here, so that we can use
708 	 * dsl_prop_get_int_ds() to handle the special nbmand property below.
709 	 * dsl_prop_get_integer() can not be used, because it has to acquire
710 	 * spa_namespace_lock and we can not do that because we already hold
711 	 * z_teardown_lock.  The problem is that spa_write_cachefile() is called
712 	 * with spa_namespace_lock held and the function calls ZFS vnode
713 	 * operations to write the cache file and thus z_teardown_lock is
714 	 * acquired after spa_namespace_lock.
715 	 */
716 	ds = dmu_objset_ds(os);
717 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
718 
719 	/*
720 	 * nbmand is a special property.  It can only be changed at
721 	 * mount time.
722 	 *
723 	 * This is weird, but it is documented to only be changeable
724 	 * at mount time.
725 	 */
726 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
727 		nbmand = B_FALSE;
728 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
729 		nbmand = B_TRUE;
730 	} else if ((error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand)) != 0) {
731 		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
732 		return (error);
733 	}
734 
735 	/*
736 	 * Register property callbacks.
737 	 *
738 	 * It would probably be fine to just check for i/o error from
739 	 * the first prop_register(), but I guess I like to go
740 	 * overboard...
741 	 */
742 	error = dsl_prop_register(ds,
743 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
744 	error = error ? error : dsl_prop_register(ds,
745 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
746 	error = error ? error : dsl_prop_register(ds,
747 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
748 	error = error ? error : dsl_prop_register(ds,
749 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
750 	error = error ? error : dsl_prop_register(ds,
751 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
752 	error = error ? error : dsl_prop_register(ds,
753 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
754 	error = error ? error : dsl_prop_register(ds,
755 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
756 	error = error ? error : dsl_prop_register(ds,
757 	    zfs_prop_to_name(ZFS_PROP_ACLTYPE), acl_type_changed_cb, zfsvfs);
758 	error = error ? error : dsl_prop_register(ds,
759 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
760 	error = error ? error : dsl_prop_register(ds,
761 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
762 	    zfsvfs);
763 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
764 	if (error)
765 		goto unregister;
766 
767 	/*
768 	 * Invoke our callbacks to restore temporary mount options.
769 	 */
770 	if (do_readonly)
771 		readonly_changed_cb(zfsvfs, readonly);
772 	if (do_setuid)
773 		setuid_changed_cb(zfsvfs, setuid);
774 	if (do_exec)
775 		exec_changed_cb(zfsvfs, exec);
776 	if (do_xattr)
777 		xattr_changed_cb(zfsvfs, xattr);
778 	if (do_atime)
779 		atime_changed_cb(zfsvfs, atime);
780 
781 	nbmand_changed_cb(zfsvfs, nbmand);
782 
783 	return (0);
784 
785 unregister:
786 	dsl_prop_unregister_all(ds, zfsvfs);
787 	return (error);
788 }
789 
790 /*
791  * Associate this zfsvfs with the given objset, which must be owned.
792  * This will cache a bunch of on-disk state from the objset in the
793  * zfsvfs.
794  */
795 static int
796 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
797 {
798 	int error;
799 	uint64_t val;
800 
801 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
802 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
803 	zfsvfs->z_os = os;
804 
805 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
806 	if (error != 0)
807 		return (error);
808 	if (zfsvfs->z_version >
809 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
810 		(void) printf("Can't mount a version %lld file system "
811 		    "on a version %lld pool\n. Pool must be upgraded to mount "
812 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
813 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
814 		return (SET_ERROR(ENOTSUP));
815 	}
816 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
817 	if (error != 0)
818 		return (error);
819 	zfsvfs->z_norm = (int)val;
820 
821 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
822 	if (error != 0)
823 		return (error);
824 	zfsvfs->z_utf8 = (val != 0);
825 
826 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
827 	if (error != 0)
828 		return (error);
829 	zfsvfs->z_case = (uint_t)val;
830 
831 	error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val);
832 	if (error != 0)
833 		return (error);
834 	zfsvfs->z_acl_type = (uint_t)val;
835 
836 	/*
837 	 * Fold case on file systems that are always or sometimes case
838 	 * insensitive.
839 	 */
840 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
841 	    zfsvfs->z_case == ZFS_CASE_MIXED)
842 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
843 
844 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
845 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
846 
847 	uint64_t sa_obj = 0;
848 	if (zfsvfs->z_use_sa) {
849 		/* should either have both of these objects or none */
850 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
851 		    &sa_obj);
852 		if (error != 0)
853 			return (error);
854 
855 		error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
856 		if (error == 0 && val == ZFS_XATTR_SA)
857 			zfsvfs->z_xattr_sa = B_TRUE;
858 	}
859 
860 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
861 	    &zfsvfs->z_attr_table);
862 	if (error != 0)
863 		return (error);
864 
865 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
866 		sa_register_update_callback(os, zfs_sa_upgrade);
867 
868 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
869 	    &zfsvfs->z_root);
870 	if (error != 0)
871 		return (error);
872 	ASSERT3U(zfsvfs->z_root, !=, 0);
873 
874 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
875 	    &zfsvfs->z_unlinkedobj);
876 	if (error != 0)
877 		return (error);
878 
879 	error = zap_lookup(os, MASTER_NODE_OBJ,
880 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
881 	    8, 1, &zfsvfs->z_userquota_obj);
882 	if (error == ENOENT)
883 		zfsvfs->z_userquota_obj = 0;
884 	else if (error != 0)
885 		return (error);
886 
887 	error = zap_lookup(os, MASTER_NODE_OBJ,
888 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
889 	    8, 1, &zfsvfs->z_groupquota_obj);
890 	if (error == ENOENT)
891 		zfsvfs->z_groupquota_obj = 0;
892 	else if (error != 0)
893 		return (error);
894 
895 	error = zap_lookup(os, MASTER_NODE_OBJ,
896 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
897 	    8, 1, &zfsvfs->z_projectquota_obj);
898 	if (error == ENOENT)
899 		zfsvfs->z_projectquota_obj = 0;
900 	else if (error != 0)
901 		return (error);
902 
903 	error = zap_lookup(os, MASTER_NODE_OBJ,
904 	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
905 	    8, 1, &zfsvfs->z_userobjquota_obj);
906 	if (error == ENOENT)
907 		zfsvfs->z_userobjquota_obj = 0;
908 	else if (error != 0)
909 		return (error);
910 
911 	error = zap_lookup(os, MASTER_NODE_OBJ,
912 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
913 	    8, 1, &zfsvfs->z_groupobjquota_obj);
914 	if (error == ENOENT)
915 		zfsvfs->z_groupobjquota_obj = 0;
916 	else if (error != 0)
917 		return (error);
918 
919 	error = zap_lookup(os, MASTER_NODE_OBJ,
920 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
921 	    8, 1, &zfsvfs->z_projectobjquota_obj);
922 	if (error == ENOENT)
923 		zfsvfs->z_projectobjquota_obj = 0;
924 	else if (error != 0)
925 		return (error);
926 
927 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
928 	    &zfsvfs->z_fuid_obj);
929 	if (error == ENOENT)
930 		zfsvfs->z_fuid_obj = 0;
931 	else if (error != 0)
932 		return (error);
933 
934 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
935 	    &zfsvfs->z_shares_dir);
936 	if (error == ENOENT)
937 		zfsvfs->z_shares_dir = 0;
938 	else if (error != 0)
939 		return (error);
940 
941 	/*
942 	 * Only use the name cache if we are looking for a
943 	 * name on a file system that does not require normalization
944 	 * or case folding.  We can also look there if we happen to be
945 	 * on a non-normalizing, mixed sensitivity file system IF we
946 	 * are looking for the exact name (which is always the case on
947 	 * FreeBSD).
948 	 */
949 	zfsvfs->z_use_namecache = !zfsvfs->z_norm ||
950 	    ((zfsvfs->z_case == ZFS_CASE_MIXED) &&
951 	    !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER));
952 
953 	return (0);
954 }
955 
956 taskq_t *zfsvfs_taskq;
957 
958 static void
959 zfsvfs_task_unlinked_drain(void *context, int pending __unused)
960 {
961 
962 	zfs_unlinked_drain((zfsvfs_t *)context);
963 }
964 
965 int
966 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
967 {
968 	objset_t *os;
969 	zfsvfs_t *zfsvfs;
970 	int error;
971 	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
972 
973 	/*
974 	 * XXX: Fix struct statfs so this isn't necessary!
975 	 *
976 	 * The 'osname' is used as the filesystem's special node, which means
977 	 * it must fit in statfs.f_mntfromname, or else it can't be
978 	 * enumerated, so libzfs_mnttab_find() returns NULL, which causes
979 	 * 'zfs unmount' to think it's not mounted when it is.
980 	 */
981 	if (strlen(osname) >= MNAMELEN)
982 		return (SET_ERROR(ENAMETOOLONG));
983 
984 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
985 
986 	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs,
987 	    &os);
988 	if (error != 0) {
989 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
990 		return (error);
991 	}
992 
993 	error = zfsvfs_create_impl(zfvp, zfsvfs, os);
994 
995 	return (error);
996 }
997 
998 
999 int
1000 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
1001 {
1002 	int error;
1003 
1004 	zfsvfs->z_vfs = NULL;
1005 	zfsvfs->z_parent = zfsvfs;
1006 
1007 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1008 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1009 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1010 	    offsetof(znode_t, z_link_node));
1011 	TASK_INIT(&zfsvfs->z_unlinked_drain_task, 0,
1012 	    zfsvfs_task_unlinked_drain, zfsvfs);
1013 	ZFS_TEARDOWN_INIT(zfsvfs);
1014 	ZFS_TEARDOWN_INACTIVE_INIT(zfsvfs);
1015 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1016 	for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1017 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1018 
1019 	error = zfsvfs_init(zfsvfs, os);
1020 	if (error != 0) {
1021 		dmu_objset_disown(os, B_TRUE, zfsvfs);
1022 		*zfvp = NULL;
1023 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
1024 		return (error);
1025 	}
1026 
1027 	*zfvp = zfsvfs;
1028 	return (0);
1029 }
1030 
1031 static int
1032 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1033 {
1034 	int error;
1035 
1036 	/*
1037 	 * Check for a bad on-disk format version now since we
1038 	 * lied about owning the dataset readonly before.
1039 	 */
1040 	if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
1041 	    dmu_objset_incompatible_encryption_version(zfsvfs->z_os))
1042 		return (SET_ERROR(EROFS));
1043 
1044 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1045 	if (error)
1046 		return (error);
1047 
1048 	/*
1049 	 * If we are not mounting (ie: online recv), then we don't
1050 	 * have to worry about replaying the log as we blocked all
1051 	 * operations out since we closed the ZIL.
1052 	 */
1053 	if (mounting) {
1054 		boolean_t readonly;
1055 
1056 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
1057 		error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
1058 		if (error)
1059 			return (error);
1060 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
1061 		    &zfsvfs->z_kstat.dk_zil_sums);
1062 
1063 		/*
1064 		 * During replay we remove the read only flag to
1065 		 * allow replays to succeed.
1066 		 */
1067 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1068 		if (readonly != 0) {
1069 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1070 		} else {
1071 			dsl_dir_t *dd;
1072 			zap_stats_t zs;
1073 
1074 			if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
1075 			    &zs) == 0) {
1076 				dataset_kstats_update_nunlinks_kstat(
1077 				    &zfsvfs->z_kstat, zs.zs_num_entries);
1078 				dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1079 				    "num_entries in unlinked set: %llu",
1080 				    (u_longlong_t)zs.zs_num_entries);
1081 			}
1082 
1083 			zfs_unlinked_drain(zfsvfs);
1084 			dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
1085 			dd->dd_activity_cancelled = B_FALSE;
1086 		}
1087 
1088 		/*
1089 		 * Parse and replay the intent log.
1090 		 *
1091 		 * Because of ziltest, this must be done after
1092 		 * zfs_unlinked_drain().  (Further note: ziltest
1093 		 * doesn't use readonly mounts, where
1094 		 * zfs_unlinked_drain() isn't called.)  This is because
1095 		 * ziltest causes spa_sync() to think it's committed,
1096 		 * but actually it is not, so the intent log contains
1097 		 * many txg's worth of changes.
1098 		 *
1099 		 * In particular, if object N is in the unlinked set in
1100 		 * the last txg to actually sync, then it could be
1101 		 * actually freed in a later txg and then reallocated
1102 		 * in a yet later txg.  This would write a "create
1103 		 * object N" record to the intent log.  Normally, this
1104 		 * would be fine because the spa_sync() would have
1105 		 * written out the fact that object N is free, before
1106 		 * we could write the "create object N" intent log
1107 		 * record.
1108 		 *
1109 		 * But when we are in ziltest mode, we advance the "open
1110 		 * txg" without actually spa_sync()-ing the changes to
1111 		 * disk.  So we would see that object N is still
1112 		 * allocated and in the unlinked set, and there is an
1113 		 * intent log record saying to allocate it.
1114 		 */
1115 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1116 			if (zil_replay_disable) {
1117 				zil_destroy(zfsvfs->z_log, B_FALSE);
1118 			} else {
1119 				boolean_t use_nc = zfsvfs->z_use_namecache;
1120 				zfsvfs->z_use_namecache = B_FALSE;
1121 				zfsvfs->z_replay = B_TRUE;
1122 				zil_replay(zfsvfs->z_os, zfsvfs,
1123 				    zfs_replay_vector);
1124 				zfsvfs->z_replay = B_FALSE;
1125 				zfsvfs->z_use_namecache = use_nc;
1126 			}
1127 		}
1128 
1129 		/* restore readonly bit */
1130 		if (readonly != 0)
1131 			zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
1132 	} else {
1133 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
1134 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
1135 		    &zfsvfs->z_kstat.dk_zil_sums);
1136 	}
1137 
1138 	/*
1139 	 * Set the objset user_ptr to track its zfsvfs.
1140 	 */
1141 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1142 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1143 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1144 
1145 	return (0);
1146 }
1147 
1148 void
1149 zfsvfs_free(zfsvfs_t *zfsvfs)
1150 {
1151 	int i;
1152 
1153 	zfs_fuid_destroy(zfsvfs);
1154 
1155 	mutex_destroy(&zfsvfs->z_znodes_lock);
1156 	mutex_destroy(&zfsvfs->z_lock);
1157 	ASSERT3U(zfsvfs->z_nr_znodes, ==, 0);
1158 	list_destroy(&zfsvfs->z_all_znodes);
1159 	ZFS_TEARDOWN_DESTROY(zfsvfs);
1160 	ZFS_TEARDOWN_INACTIVE_DESTROY(zfsvfs);
1161 	rw_destroy(&zfsvfs->z_fuid_lock);
1162 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1163 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1164 	dataset_kstats_destroy(&zfsvfs->z_kstat);
1165 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1166 }
1167 
1168 static void
1169 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1170 {
1171 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1172 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1173 }
1174 
1175 static int
1176 zfs_domount(vfs_t *vfsp, char *osname)
1177 {
1178 	uint64_t recordsize, fsid_guid;
1179 	int error = 0;
1180 	zfsvfs_t *zfsvfs;
1181 
1182 	ASSERT3P(vfsp, !=, NULL);
1183 	ASSERT3P(osname, !=, NULL);
1184 
1185 	error = zfsvfs_create(osname, vfsp->mnt_flag & MNT_RDONLY, &zfsvfs);
1186 	if (error)
1187 		return (error);
1188 	zfsvfs->z_vfs = vfsp;
1189 
1190 	if ((error = dsl_prop_get_integer(osname,
1191 	    "recordsize", &recordsize, NULL)))
1192 		goto out;
1193 	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1194 	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1195 
1196 	vfsp->vfs_data = zfsvfs;
1197 	vfsp->mnt_flag |= MNT_LOCAL;
1198 	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1199 	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1200 	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1201 	/*
1202 	 * This can cause a loss of coherence between ARC and page cache
1203 	 * on ZoF - unclear if the problem is in FreeBSD or ZoF
1204 	 */
1205 	vfsp->mnt_kern_flag |= MNTK_NO_IOPF;	/* vn_io_fault can be used */
1206 	vfsp->mnt_kern_flag |= MNTK_NOMSYNC;
1207 	vfsp->mnt_kern_flag |= MNTK_VMSETSIZE_BUG;
1208 
1209 #if defined(_KERNEL) && !defined(KMEM_DEBUG)
1210 	vfsp->mnt_kern_flag |= MNTK_FPLOOKUP;
1211 #endif
1212 	/*
1213 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1214 	 * separates our fsid from any other filesystem types, and a
1215 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1216 	 * all objsets open on this system, provided by unique_create().
1217 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1218 	 * because that's where other Solaris filesystems put it.
1219 	 */
1220 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1221 	ASSERT3U((fsid_guid & ~((1ULL << 56) - 1)), ==, 0);
1222 	vfsp->vfs_fsid.val[0] = fsid_guid;
1223 	vfsp->vfs_fsid.val[1] = ((fsid_guid >> 32) << 8) |
1224 	    (vfsp->mnt_vfc->vfc_typenum & 0xFF);
1225 
1226 	/*
1227 	 * Set features for file system.
1228 	 */
1229 	zfs_set_fuid_feature(zfsvfs);
1230 
1231 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1232 		uint64_t pval;
1233 
1234 		atime_changed_cb(zfsvfs, B_FALSE);
1235 		readonly_changed_cb(zfsvfs, B_TRUE);
1236 		if ((error = dsl_prop_get_integer(osname,
1237 		    "xattr", &pval, NULL)))
1238 			goto out;
1239 		xattr_changed_cb(zfsvfs, pval);
1240 		if ((error = dsl_prop_get_integer(osname,
1241 		    "acltype", &pval, NULL)))
1242 			goto out;
1243 		acl_type_changed_cb(zfsvfs, pval);
1244 		zfsvfs->z_issnap = B_TRUE;
1245 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1246 
1247 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1248 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1249 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1250 	} else {
1251 		if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1252 			goto out;
1253 	}
1254 
1255 	vfs_mountedfrom(vfsp, osname);
1256 
1257 	if (!zfsvfs->z_issnap)
1258 		zfsctl_create(zfsvfs);
1259 out:
1260 	if (error) {
1261 		dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1262 		zfsvfs_free(zfsvfs);
1263 	} else {
1264 		atomic_inc_32(&zfs_active_fs_count);
1265 	}
1266 
1267 	return (error);
1268 }
1269 
1270 static void
1271 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1272 {
1273 	objset_t *os = zfsvfs->z_os;
1274 
1275 	if (!dmu_objset_is_snapshot(os))
1276 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1277 }
1278 
1279 static int
1280 getpoolname(const char *osname, char *poolname)
1281 {
1282 	char *p;
1283 
1284 	p = strchr(osname, '/');
1285 	if (p == NULL) {
1286 		if (strlen(osname) >= MAXNAMELEN)
1287 			return (ENAMETOOLONG);
1288 		(void) strcpy(poolname, osname);
1289 	} else {
1290 		if (p - osname >= MAXNAMELEN)
1291 			return (ENAMETOOLONG);
1292 		(void) strlcpy(poolname, osname, p - osname + 1);
1293 	}
1294 	return (0);
1295 }
1296 
1297 static void
1298 fetch_osname_options(char *name, bool *checkpointrewind)
1299 {
1300 
1301 	if (name[0] == '!') {
1302 		*checkpointrewind = true;
1303 		memmove(name, name + 1, strlen(name));
1304 	} else {
1305 		*checkpointrewind = false;
1306 	}
1307 }
1308 
1309 static int
1310 zfs_mount(vfs_t *vfsp)
1311 {
1312 	kthread_t	*td = curthread;
1313 	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1314 	cred_t		*cr = td->td_ucred;
1315 	char		*osname;
1316 	int		error = 0;
1317 	int		canwrite;
1318 	bool		checkpointrewind, isctlsnap = false;
1319 
1320 	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1321 		return (SET_ERROR(EINVAL));
1322 
1323 	/*
1324 	 * If full-owner-access is enabled and delegated administration is
1325 	 * turned on, we must set nosuid.
1326 	 */
1327 	if (zfs_super_owner &&
1328 	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1329 		secpolicy_fs_mount_clearopts(cr, vfsp);
1330 	}
1331 
1332 	fetch_osname_options(osname, &checkpointrewind);
1333 	isctlsnap = (mvp != NULL && zfsctl_is_node(mvp) &&
1334 	    strchr(osname, '@') != NULL);
1335 
1336 	/*
1337 	 * Check for mount privilege?
1338 	 *
1339 	 * If we don't have privilege then see if
1340 	 * we have local permission to allow it
1341 	 */
1342 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1343 	if (error && isctlsnap) {
1344 		secpolicy_fs_mount_clearopts(cr, vfsp);
1345 	} else if (error) {
1346 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1347 			goto out;
1348 
1349 		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1350 			vattr_t		vattr;
1351 
1352 			/*
1353 			 * Make sure user is the owner of the mount point
1354 			 * or has sufficient privileges.
1355 			 */
1356 
1357 			vattr.va_mask = AT_UID;
1358 
1359 			vn_lock(mvp, LK_SHARED | LK_RETRY);
1360 			if (VOP_GETATTR(mvp, &vattr, cr)) {
1361 				VOP_UNLOCK1(mvp);
1362 				goto out;
1363 			}
1364 
1365 			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1366 			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1367 				VOP_UNLOCK1(mvp);
1368 				goto out;
1369 			}
1370 			VOP_UNLOCK1(mvp);
1371 		}
1372 
1373 		secpolicy_fs_mount_clearopts(cr, vfsp);
1374 	}
1375 
1376 	/*
1377 	 * Refuse to mount a filesystem if we are in a local zone and the
1378 	 * dataset is not visible.
1379 	 */
1380 	if (!INGLOBALZONE(curproc) &&
1381 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1382 		boolean_t mount_snapshot = B_FALSE;
1383 
1384 		/*
1385 		 * Snapshots may be mounted in .zfs for unjailed datasets
1386 		 * if allowed by the jail param zfs.mount_snapshot.
1387 		 */
1388 		if (isctlsnap) {
1389 			struct prison *pr;
1390 			struct zfs_jailparam *zjp;
1391 
1392 			pr = curthread->td_ucred->cr_prison;
1393 			mtx_lock(&pr->pr_mtx);
1394 			zjp = osd_jail_get(pr, zfs_jailparam_slot);
1395 			mtx_unlock(&pr->pr_mtx);
1396 			if (zjp && zjp->mount_snapshot)
1397 				mount_snapshot = B_TRUE;
1398 		}
1399 		if (!mount_snapshot) {
1400 			error = SET_ERROR(EPERM);
1401 			goto out;
1402 		}
1403 	}
1404 
1405 	vfsp->vfs_flag |= MNT_NFS4ACLS;
1406 
1407 	/*
1408 	 * When doing a remount, we simply refresh our temporary properties
1409 	 * according to those options set in the current VFS options.
1410 	 */
1411 	if (vfsp->vfs_flag & MS_REMOUNT) {
1412 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
1413 
1414 		/*
1415 		 * Refresh mount options with z_teardown_lock blocking I/O while
1416 		 * the filesystem is in an inconsistent state.
1417 		 * The lock also serializes this code with filesystem
1418 		 * manipulations between entry to zfs_suspend_fs() and return
1419 		 * from zfs_resume_fs().
1420 		 */
1421 		ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1422 		zfs_unregister_callbacks(zfsvfs);
1423 		error = zfs_register_callbacks(vfsp);
1424 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1425 		goto out;
1426 	}
1427 
1428 	/* Initial root mount: try hard to import the requested root pool. */
1429 	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1430 	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1431 		char pname[MAXNAMELEN];
1432 
1433 		error = getpoolname(osname, pname);
1434 		if (error == 0)
1435 			error = spa_import_rootpool(pname, checkpointrewind);
1436 		if (error)
1437 			goto out;
1438 	}
1439 	DROP_GIANT();
1440 	error = zfs_domount(vfsp, osname);
1441 	PICKUP_GIANT();
1442 
1443 out:
1444 	return (error);
1445 }
1446 
1447 static int
1448 zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1449 {
1450 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1451 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1452 	int error;
1453 
1454 	statp->f_version = STATFS_VERSION;
1455 
1456 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1457 		return (error);
1458 
1459 	dmu_objset_space(zfsvfs->z_os,
1460 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1461 
1462 	/*
1463 	 * The underlying storage pool actually uses multiple block sizes.
1464 	 * We report the fragsize as the smallest block size we support,
1465 	 * and we report our blocksize as the filesystem's maximum blocksize.
1466 	 */
1467 	statp->f_bsize = SPA_MINBLOCKSIZE;
1468 	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1469 
1470 	/*
1471 	 * The following report "total" blocks of various kinds in the
1472 	 * file system, but reported in terms of f_frsize - the
1473 	 * "fragment" size.
1474 	 */
1475 
1476 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1477 	statp->f_bfree = availbytes / statp->f_bsize;
1478 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1479 
1480 	/*
1481 	 * statvfs() should really be called statufs(), because it assumes
1482 	 * static metadata.  ZFS doesn't preallocate files, so the best
1483 	 * we can do is report the max that could possibly fit in f_files,
1484 	 * and that minus the number actually used in f_ffree.
1485 	 * For f_ffree, report the smaller of the number of object available
1486 	 * and the number of blocks (each object will take at least a block).
1487 	 */
1488 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1489 	statp->f_files = statp->f_ffree + usedobjs;
1490 
1491 	/*
1492 	 * We're a zfs filesystem.
1493 	 */
1494 	strlcpy(statp->f_fstypename, "zfs",
1495 	    sizeof (statp->f_fstypename));
1496 
1497 	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1498 	    sizeof (statp->f_mntfromname));
1499 	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1500 	    sizeof (statp->f_mntonname));
1501 
1502 	statp->f_namemax = MAXNAMELEN - 1;
1503 
1504 	zfs_exit(zfsvfs, FTAG);
1505 	return (0);
1506 }
1507 
1508 static int
1509 zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1510 {
1511 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1512 	znode_t *rootzp;
1513 	int error;
1514 
1515 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1516 		return (error);
1517 
1518 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1519 	if (error == 0)
1520 		*vpp = ZTOV(rootzp);
1521 
1522 	zfs_exit(zfsvfs, FTAG);
1523 
1524 	if (error == 0) {
1525 		error = vn_lock(*vpp, flags);
1526 		if (error != 0) {
1527 			VN_RELE(*vpp);
1528 			*vpp = NULL;
1529 		}
1530 	}
1531 	return (error);
1532 }
1533 
1534 /*
1535  * Teardown the zfsvfs::z_os.
1536  *
1537  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1538  * and 'z_teardown_inactive_lock' held.
1539  */
1540 static int
1541 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1542 {
1543 	znode_t	*zp;
1544 	dsl_dir_t *dd;
1545 
1546 	/*
1547 	 * If someone has not already unmounted this file system,
1548 	 * drain the zrele_taskq to ensure all active references to the
1549 	 * zfsvfs_t have been handled only then can it be safely destroyed.
1550 	 */
1551 	if (zfsvfs->z_os) {
1552 		/*
1553 		 * If we're unmounting we have to wait for the list to
1554 		 * drain completely.
1555 		 *
1556 		 * If we're not unmounting there's no guarantee the list
1557 		 * will drain completely, but zreles run from the taskq
1558 		 * may add the parents of dir-based xattrs to the taskq
1559 		 * so we want to wait for these.
1560 		 *
1561 		 * We can safely read z_nr_znodes without locking because the
1562 		 * VFS has already blocked operations which add to the
1563 		 * z_all_znodes list and thus increment z_nr_znodes.
1564 		 */
1565 		int round = 0;
1566 		while (zfsvfs->z_nr_znodes > 0) {
1567 			taskq_wait_outstanding(dsl_pool_zrele_taskq(
1568 			    dmu_objset_pool(zfsvfs->z_os)), 0);
1569 			if (++round > 1 && !unmounting)
1570 				break;
1571 		}
1572 	}
1573 	ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1574 
1575 	if (!unmounting) {
1576 		/*
1577 		 * We purge the parent filesystem's vfsp as the parent
1578 		 * filesystem and all of its snapshots have their vnode's
1579 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1580 		 * 'z_parent' is self referential for non-snapshots.
1581 		 */
1582 #ifdef FREEBSD_NAMECACHE
1583 #if __FreeBSD_version >= 1300117
1584 		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1585 #else
1586 		cache_purgevfs(zfsvfs->z_parent->z_vfs, true);
1587 #endif
1588 #endif
1589 	}
1590 
1591 	/*
1592 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1593 	 * threads are blocked as zil_close can call zfs_inactive.
1594 	 */
1595 	if (zfsvfs->z_log) {
1596 		zil_close(zfsvfs->z_log);
1597 		zfsvfs->z_log = NULL;
1598 	}
1599 
1600 	ZFS_TEARDOWN_INACTIVE_ENTER_WRITE(zfsvfs);
1601 
1602 	/*
1603 	 * If we are not unmounting (ie: online recv) and someone already
1604 	 * unmounted this file system while we were doing the switcheroo,
1605 	 * or a reopen of z_os failed then just bail out now.
1606 	 */
1607 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1608 		ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
1609 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1610 		return (SET_ERROR(EIO));
1611 	}
1612 
1613 	/*
1614 	 * At this point there are no vops active, and any new vops will
1615 	 * fail with EIO since we have z_teardown_lock for writer (only
1616 	 * relevant for forced unmount).
1617 	 *
1618 	 * Release all holds on dbufs.
1619 	 */
1620 	mutex_enter(&zfsvfs->z_znodes_lock);
1621 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1622 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1623 		if (zp->z_sa_hdl != NULL) {
1624 			zfs_znode_dmu_fini(zp);
1625 		}
1626 	}
1627 	mutex_exit(&zfsvfs->z_znodes_lock);
1628 
1629 	/*
1630 	 * If we are unmounting, set the unmounted flag and let new vops
1631 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1632 	 * other vops will fail with EIO.
1633 	 */
1634 	if (unmounting) {
1635 		zfsvfs->z_unmounted = B_TRUE;
1636 		ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
1637 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1638 	}
1639 
1640 	/*
1641 	 * z_os will be NULL if there was an error in attempting to reopen
1642 	 * zfsvfs, so just return as the properties had already been
1643 	 * unregistered and cached data had been evicted before.
1644 	 */
1645 	if (zfsvfs->z_os == NULL)
1646 		return (0);
1647 
1648 	/*
1649 	 * Unregister properties.
1650 	 */
1651 	zfs_unregister_callbacks(zfsvfs);
1652 
1653 	/*
1654 	 * Evict cached data
1655 	 */
1656 	if (!zfs_is_readonly(zfsvfs))
1657 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1658 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1659 	dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
1660 	dsl_dir_cancel_waiters(dd);
1661 
1662 	return (0);
1663 }
1664 
1665 static int
1666 zfs_umount(vfs_t *vfsp, int fflag)
1667 {
1668 	kthread_t *td = curthread;
1669 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1670 	objset_t *os;
1671 	cred_t *cr = td->td_ucred;
1672 	int ret;
1673 
1674 	ret = secpolicy_fs_unmount(cr, vfsp);
1675 	if (ret) {
1676 		if (dsl_deleg_access((char *)vfsp->vfs_resource,
1677 		    ZFS_DELEG_PERM_MOUNT, cr))
1678 			return (ret);
1679 	}
1680 
1681 	/*
1682 	 * Unmount any snapshots mounted under .zfs before unmounting the
1683 	 * dataset itself.
1684 	 */
1685 	if (zfsvfs->z_ctldir != NULL) {
1686 		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1687 			return (ret);
1688 	}
1689 
1690 	if (fflag & MS_FORCE) {
1691 		/*
1692 		 * Mark file system as unmounted before calling
1693 		 * vflush(FORCECLOSE). This way we ensure no future vnops
1694 		 * will be called and risk operating on DOOMED vnodes.
1695 		 */
1696 		ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1697 		zfsvfs->z_unmounted = B_TRUE;
1698 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1699 	}
1700 
1701 	/*
1702 	 * Flush all the files.
1703 	 */
1704 	ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1705 	if (ret != 0)
1706 		return (ret);
1707 	while (taskqueue_cancel(zfsvfs_taskq->tq_queue,
1708 	    &zfsvfs->z_unlinked_drain_task, NULL) != 0)
1709 		taskqueue_drain(zfsvfs_taskq->tq_queue,
1710 		    &zfsvfs->z_unlinked_drain_task);
1711 
1712 	VERIFY0(zfsvfs_teardown(zfsvfs, B_TRUE));
1713 	os = zfsvfs->z_os;
1714 
1715 	/*
1716 	 * z_os will be NULL if there was an error in
1717 	 * attempting to reopen zfsvfs.
1718 	 */
1719 	if (os != NULL) {
1720 		/*
1721 		 * Unset the objset user_ptr.
1722 		 */
1723 		mutex_enter(&os->os_user_ptr_lock);
1724 		dmu_objset_set_user(os, NULL);
1725 		mutex_exit(&os->os_user_ptr_lock);
1726 
1727 		/*
1728 		 * Finally release the objset
1729 		 */
1730 		dmu_objset_disown(os, B_TRUE, zfsvfs);
1731 	}
1732 
1733 	/*
1734 	 * We can now safely destroy the '.zfs' directory node.
1735 	 */
1736 	if (zfsvfs->z_ctldir != NULL)
1737 		zfsctl_destroy(zfsvfs);
1738 	zfs_freevfs(vfsp);
1739 
1740 	return (0);
1741 }
1742 
1743 static int
1744 zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
1745 {
1746 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1747 	znode_t		*zp;
1748 	int 		err;
1749 
1750 	/*
1751 	 * zfs_zget() can't operate on virtual entries like .zfs/ or
1752 	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
1753 	 * This will make NFS to switch to LOOKUP instead of using VGET.
1754 	 */
1755 	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
1756 	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
1757 		return (EOPNOTSUPP);
1758 
1759 	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1760 		return (err);
1761 	err = zfs_zget(zfsvfs, ino, &zp);
1762 	if (err == 0 && zp->z_unlinked) {
1763 		vrele(ZTOV(zp));
1764 		err = EINVAL;
1765 	}
1766 	if (err == 0)
1767 		*vpp = ZTOV(zp);
1768 	zfs_exit(zfsvfs, FTAG);
1769 	if (err == 0) {
1770 		err = vn_lock(*vpp, flags);
1771 		if (err != 0)
1772 			vrele(*vpp);
1773 	}
1774 	if (err != 0)
1775 		*vpp = NULL;
1776 	return (err);
1777 }
1778 
1779 static int
1780 #if __FreeBSD_version >= 1300098
1781 zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp,
1782     struct ucred **credanonp, int *numsecflavors, int *secflavors)
1783 #else
1784 zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
1785     struct ucred **credanonp, int *numsecflavors, int **secflavors)
1786 #endif
1787 {
1788 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1789 
1790 	/*
1791 	 * If this is regular file system vfsp is the same as
1792 	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
1793 	 * zfsvfs->z_parent->z_vfs represents parent file system
1794 	 * which we have to use here, because only this file system
1795 	 * has mnt_export configured.
1796 	 */
1797 	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
1798 	    credanonp, numsecflavors, secflavors));
1799 }
1800 
1801 _Static_assert(sizeof (struct fid) >= SHORT_FID_LEN,
1802 	"struct fid bigger than SHORT_FID_LEN");
1803 _Static_assert(sizeof (struct fid) >= LONG_FID_LEN,
1804 	"struct fid bigger than LONG_FID_LEN");
1805 
1806 static int
1807 zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
1808 {
1809 	struct componentname cn;
1810 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1811 	znode_t		*zp;
1812 	vnode_t		*dvp;
1813 	uint64_t	object = 0;
1814 	uint64_t	fid_gen = 0;
1815 	uint64_t	setgen = 0;
1816 	uint64_t	gen_mask;
1817 	uint64_t	zp_gen;
1818 	int 		i, err;
1819 
1820 	*vpp = NULL;
1821 
1822 	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1823 		return (err);
1824 
1825 	/*
1826 	 * On FreeBSD we can get snapshot's mount point or its parent file
1827 	 * system mount point depending if snapshot is already mounted or not.
1828 	 */
1829 	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
1830 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1831 		uint64_t	objsetid = 0;
1832 
1833 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1834 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1835 
1836 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1837 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1838 
1839 		zfs_exit(zfsvfs, FTAG);
1840 
1841 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1842 		if (err)
1843 			return (SET_ERROR(EINVAL));
1844 		if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1845 			return (err);
1846 	}
1847 
1848 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1849 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1850 
1851 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1852 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1853 
1854 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1855 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1856 	} else {
1857 		zfs_exit(zfsvfs, FTAG);
1858 		return (SET_ERROR(EINVAL));
1859 	}
1860 
1861 	if (fidp->fid_len == LONG_FID_LEN && setgen != 0) {
1862 		zfs_exit(zfsvfs, FTAG);
1863 		dprintf("snapdir fid: fid_gen (%llu) and setgen (%llu)\n",
1864 		    (u_longlong_t)fid_gen, (u_longlong_t)setgen);
1865 		return (SET_ERROR(EINVAL));
1866 	}
1867 
1868 	/*
1869 	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
1870 	 * directory tree. If the object == zfsvfs->z_shares_dir, then
1871 	 * we are in the .zfs/shares directory tree.
1872 	 */
1873 	if ((fid_gen == 0 &&
1874 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
1875 	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
1876 		zfs_exit(zfsvfs, FTAG);
1877 		VERIFY0(zfsctl_root(zfsvfs, LK_SHARED, &dvp));
1878 		if (object == ZFSCTL_INO_SNAPDIR) {
1879 			cn.cn_nameptr = "snapshot";
1880 			cn.cn_namelen = strlen(cn.cn_nameptr);
1881 			cn.cn_nameiop = LOOKUP;
1882 			cn.cn_flags = ISLASTCN | LOCKLEAF;
1883 			cn.cn_lkflags = flags;
1884 			VERIFY0(VOP_LOOKUP(dvp, vpp, &cn));
1885 			vput(dvp);
1886 		} else if (object == zfsvfs->z_shares_dir) {
1887 			/*
1888 			 * XXX This branch must not be taken,
1889 			 * if it is, then the lookup below will
1890 			 * explode.
1891 			 */
1892 			cn.cn_nameptr = "shares";
1893 			cn.cn_namelen = strlen(cn.cn_nameptr);
1894 			cn.cn_nameiop = LOOKUP;
1895 			cn.cn_flags = ISLASTCN;
1896 			cn.cn_lkflags = flags;
1897 			VERIFY0(VOP_LOOKUP(dvp, vpp, &cn));
1898 			vput(dvp);
1899 		} else {
1900 			*vpp = dvp;
1901 		}
1902 		return (err);
1903 	}
1904 
1905 	gen_mask = -1ULL >> (64 - 8 * i);
1906 
1907 	dprintf("getting %llu [%llu mask %llx]\n", (u_longlong_t)object,
1908 	    (u_longlong_t)fid_gen,
1909 	    (u_longlong_t)gen_mask);
1910 	if ((err = zfs_zget(zfsvfs, object, &zp))) {
1911 		zfs_exit(zfsvfs, FTAG);
1912 		return (err);
1913 	}
1914 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1915 	    sizeof (uint64_t));
1916 	zp_gen = zp_gen & gen_mask;
1917 	if (zp_gen == 0)
1918 		zp_gen = 1;
1919 	if (zp->z_unlinked || zp_gen != fid_gen) {
1920 		dprintf("znode gen (%llu) != fid gen (%llu)\n",
1921 		    (u_longlong_t)zp_gen, (u_longlong_t)fid_gen);
1922 		vrele(ZTOV(zp));
1923 		zfs_exit(zfsvfs, FTAG);
1924 		return (SET_ERROR(EINVAL));
1925 	}
1926 
1927 	*vpp = ZTOV(zp);
1928 	zfs_exit(zfsvfs, FTAG);
1929 	err = vn_lock(*vpp, flags);
1930 	if (err == 0)
1931 		vnode_create_vobject(*vpp, zp->z_size, curthread);
1932 	else
1933 		*vpp = NULL;
1934 	return (err);
1935 }
1936 
1937 /*
1938  * Block out VOPs and close zfsvfs_t::z_os
1939  *
1940  * Note, if successful, then we return with the 'z_teardown_lock' and
1941  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
1942  * dataset and objset intact so that they can be atomically handed off during
1943  * a subsequent rollback or recv operation and the resume thereafter.
1944  */
1945 int
1946 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1947 {
1948 	int error;
1949 
1950 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1951 		return (error);
1952 
1953 	return (0);
1954 }
1955 
1956 /*
1957  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
1958  * is an invariant across any of the operations that can be performed while the
1959  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
1960  * are the same: the relevant objset and associated dataset are owned by
1961  * zfsvfs, held, and long held on entry.
1962  */
1963 int
1964 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1965 {
1966 	int err;
1967 	znode_t *zp;
1968 
1969 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1970 	ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs));
1971 
1972 	/*
1973 	 * We already own this, so just update the objset_t, as the one we
1974 	 * had before may have been evicted.
1975 	 */
1976 	objset_t *os;
1977 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1978 	VERIFY(dsl_dataset_long_held(ds));
1979 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1980 	dsl_pool_config_enter(dp, FTAG);
1981 	VERIFY0(dmu_objset_from_ds(ds, &os));
1982 	dsl_pool_config_exit(dp, FTAG);
1983 
1984 	err = zfsvfs_init(zfsvfs, os);
1985 	if (err != 0)
1986 		goto bail;
1987 
1988 	ds->ds_dir->dd_activity_cancelled = B_FALSE;
1989 	VERIFY0(zfsvfs_setup(zfsvfs, B_FALSE));
1990 
1991 	zfs_set_fuid_feature(zfsvfs);
1992 
1993 	/*
1994 	 * Attempt to re-establish all the active znodes with
1995 	 * their dbufs.  If a zfs_rezget() fails, then we'll let
1996 	 * any potential callers discover that via zfs_enter_verify_zp
1997 	 * when they try to use their znode.
1998 	 */
1999 	mutex_enter(&zfsvfs->z_znodes_lock);
2000 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2001 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2002 		(void) zfs_rezget(zp);
2003 	}
2004 	mutex_exit(&zfsvfs->z_znodes_lock);
2005 
2006 bail:
2007 	/* release the VOPs */
2008 	ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
2009 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
2010 
2011 	if (err) {
2012 		/*
2013 		 * Since we couldn't setup the sa framework, try to force
2014 		 * unmount this file system.
2015 		 */
2016 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
2017 			vfs_ref(zfsvfs->z_vfs);
2018 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2019 		}
2020 	}
2021 	return (err);
2022 }
2023 
2024 static void
2025 zfs_freevfs(vfs_t *vfsp)
2026 {
2027 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2028 
2029 	zfsvfs_free(zfsvfs);
2030 
2031 	atomic_dec_32(&zfs_active_fs_count);
2032 }
2033 
2034 #ifdef __i386__
2035 static int desiredvnodes_backup;
2036 #include <sys/vmmeter.h>
2037 
2038 
2039 #include <vm/vm_page.h>
2040 #include <vm/vm_object.h>
2041 #include <vm/vm_kern.h>
2042 #include <vm/vm_map.h>
2043 #endif
2044 
2045 static void
2046 zfs_vnodes_adjust(void)
2047 {
2048 #ifdef __i386__
2049 	int newdesiredvnodes;
2050 
2051 	desiredvnodes_backup = desiredvnodes;
2052 
2053 	/*
2054 	 * We calculate newdesiredvnodes the same way it is done in
2055 	 * vntblinit(). If it is equal to desiredvnodes, it means that
2056 	 * it wasn't tuned by the administrator and we can tune it down.
2057 	 */
2058 	newdesiredvnodes = min(maxproc + vm_cnt.v_page_count / 4, 2 *
2059 	    vm_kmem_size / (5 * (sizeof (struct vm_object) +
2060 	    sizeof (struct vnode))));
2061 	if (newdesiredvnodes == desiredvnodes)
2062 		desiredvnodes = (3 * newdesiredvnodes) / 4;
2063 #endif
2064 }
2065 
2066 static void
2067 zfs_vnodes_adjust_back(void)
2068 {
2069 
2070 #ifdef __i386__
2071 	desiredvnodes = desiredvnodes_backup;
2072 #endif
2073 }
2074 
2075 void
2076 zfs_init(void)
2077 {
2078 
2079 	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2080 
2081 	/*
2082 	 * Initialize .zfs directory structures
2083 	 */
2084 	zfsctl_init();
2085 
2086 	/*
2087 	 * Initialize znode cache, vnode ops, etc...
2088 	 */
2089 	zfs_znode_init();
2090 
2091 	/*
2092 	 * Reduce number of vnodes. Originally number of vnodes is calculated
2093 	 * with UFS inode in mind. We reduce it here, because it's too big for
2094 	 * ZFS/i386.
2095 	 */
2096 	zfs_vnodes_adjust();
2097 
2098 	dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2099 
2100 	zfsvfs_taskq = taskq_create("zfsvfs", 1, minclsyspri, 0, 0, 0);
2101 }
2102 
2103 void
2104 zfs_fini(void)
2105 {
2106 	taskq_destroy(zfsvfs_taskq);
2107 	zfsctl_fini();
2108 	zfs_znode_fini();
2109 	zfs_vnodes_adjust_back();
2110 }
2111 
2112 int
2113 zfs_busy(void)
2114 {
2115 	return (zfs_active_fs_count != 0);
2116 }
2117 
2118 /*
2119  * Release VOPs and unmount a suspended filesystem.
2120  */
2121 int
2122 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
2123 {
2124 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
2125 	ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs));
2126 
2127 	/*
2128 	 * We already own this, so just hold and rele it to update the
2129 	 * objset_t, as the one we had before may have been evicted.
2130 	 */
2131 	objset_t *os;
2132 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
2133 	VERIFY(dsl_dataset_long_held(ds));
2134 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
2135 	dsl_pool_config_enter(dp, FTAG);
2136 	VERIFY0(dmu_objset_from_ds(ds, &os));
2137 	dsl_pool_config_exit(dp, FTAG);
2138 	zfsvfs->z_os = os;
2139 
2140 	/* release the VOPs */
2141 	ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
2142 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
2143 
2144 	/*
2145 	 * Try to force unmount this file system.
2146 	 */
2147 	(void) zfs_umount(zfsvfs->z_vfs, 0);
2148 	zfsvfs->z_unmounted = B_TRUE;
2149 	return (0);
2150 }
2151 
2152 int
2153 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2154 {
2155 	int error;
2156 	objset_t *os = zfsvfs->z_os;
2157 	dmu_tx_t *tx;
2158 
2159 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2160 		return (SET_ERROR(EINVAL));
2161 
2162 	if (newvers < zfsvfs->z_version)
2163 		return (SET_ERROR(EINVAL));
2164 
2165 	if (zfs_spa_version_map(newvers) >
2166 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2167 		return (SET_ERROR(ENOTSUP));
2168 
2169 	tx = dmu_tx_create(os);
2170 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2171 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2172 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2173 		    ZFS_SA_ATTRS);
2174 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2175 	}
2176 	error = dmu_tx_assign(tx, TXG_WAIT);
2177 	if (error) {
2178 		dmu_tx_abort(tx);
2179 		return (error);
2180 	}
2181 
2182 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2183 	    8, 1, &newvers, tx);
2184 
2185 	if (error) {
2186 		dmu_tx_commit(tx);
2187 		return (error);
2188 	}
2189 
2190 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2191 		uint64_t sa_obj;
2192 
2193 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2194 		    SPA_VERSION_SA);
2195 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2196 		    DMU_OT_NONE, 0, tx);
2197 
2198 		error = zap_add(os, MASTER_NODE_OBJ,
2199 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2200 		ASSERT0(error);
2201 
2202 		VERIFY0(sa_set_sa_object(os, sa_obj));
2203 		sa_register_update_callback(os, zfs_sa_upgrade);
2204 	}
2205 
2206 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2207 	    "from %ju to %ju", (uintmax_t)zfsvfs->z_version,
2208 	    (uintmax_t)newvers);
2209 	dmu_tx_commit(tx);
2210 
2211 	zfsvfs->z_version = newvers;
2212 	os->os_version = newvers;
2213 
2214 	zfs_set_fuid_feature(zfsvfs);
2215 
2216 	return (0);
2217 }
2218 
2219 /*
2220  * Read a property stored within the master node.
2221  */
2222 int
2223 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2224 {
2225 	uint64_t *cached_copy = NULL;
2226 
2227 	/*
2228 	 * Figure out where in the objset_t the cached copy would live, if it
2229 	 * is available for the requested property.
2230 	 */
2231 	if (os != NULL) {
2232 		switch (prop) {
2233 		case ZFS_PROP_VERSION:
2234 			cached_copy = &os->os_version;
2235 			break;
2236 		case ZFS_PROP_NORMALIZE:
2237 			cached_copy = &os->os_normalization;
2238 			break;
2239 		case ZFS_PROP_UTF8ONLY:
2240 			cached_copy = &os->os_utf8only;
2241 			break;
2242 		case ZFS_PROP_CASE:
2243 			cached_copy = &os->os_casesensitivity;
2244 			break;
2245 		default:
2246 			break;
2247 		}
2248 	}
2249 	if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
2250 		*value = *cached_copy;
2251 		return (0);
2252 	}
2253 
2254 	/*
2255 	 * If the property wasn't cached, look up the file system's value for
2256 	 * the property. For the version property, we look up a slightly
2257 	 * different string.
2258 	 */
2259 	const char *pname;
2260 	int error = ENOENT;
2261 	if (prop == ZFS_PROP_VERSION) {
2262 		pname = ZPL_VERSION_STR;
2263 	} else {
2264 		pname = zfs_prop_to_name(prop);
2265 	}
2266 
2267 	if (os != NULL) {
2268 		ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
2269 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2270 	}
2271 
2272 	if (error == ENOENT) {
2273 		/* No value set, use the default value */
2274 		switch (prop) {
2275 		case ZFS_PROP_VERSION:
2276 			*value = ZPL_VERSION;
2277 			break;
2278 		case ZFS_PROP_NORMALIZE:
2279 		case ZFS_PROP_UTF8ONLY:
2280 			*value = 0;
2281 			break;
2282 		case ZFS_PROP_CASE:
2283 			*value = ZFS_CASE_SENSITIVE;
2284 			break;
2285 		case ZFS_PROP_ACLTYPE:
2286 			*value = ZFS_ACLTYPE_NFSV4;
2287 			break;
2288 		default:
2289 			return (error);
2290 		}
2291 		error = 0;
2292 	}
2293 
2294 	/*
2295 	 * If one of the methods for getting the property value above worked,
2296 	 * copy it into the objset_t's cache.
2297 	 */
2298 	if (error == 0 && cached_copy != NULL) {
2299 		*cached_copy = *value;
2300 	}
2301 
2302 	return (error);
2303 }
2304 
2305 /*
2306  * Return true if the corresponding vfs's unmounted flag is set.
2307  * Otherwise return false.
2308  * If this function returns true we know VFS unmount has been initiated.
2309  */
2310 boolean_t
2311 zfs_get_vfs_flag_unmounted(objset_t *os)
2312 {
2313 	zfsvfs_t *zfvp;
2314 	boolean_t unmounted = B_FALSE;
2315 
2316 	ASSERT3U(dmu_objset_type(os), ==, DMU_OST_ZFS);
2317 
2318 	mutex_enter(&os->os_user_ptr_lock);
2319 	zfvp = dmu_objset_get_user(os);
2320 	if (zfvp != NULL && zfvp->z_vfs != NULL &&
2321 	    (zfvp->z_vfs->mnt_kern_flag & MNTK_UNMOUNT))
2322 		unmounted = B_TRUE;
2323 	mutex_exit(&os->os_user_ptr_lock);
2324 
2325 	return (unmounted);
2326 }
2327 
2328 #ifdef _KERNEL
2329 void
2330 zfsvfs_update_fromname(const char *oldname, const char *newname)
2331 {
2332 	char tmpbuf[MAXPATHLEN];
2333 	struct mount *mp;
2334 	char *fromname;
2335 	size_t oldlen;
2336 
2337 	oldlen = strlen(oldname);
2338 
2339 	mtx_lock(&mountlist_mtx);
2340 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2341 		fromname = mp->mnt_stat.f_mntfromname;
2342 		if (strcmp(fromname, oldname) == 0) {
2343 			(void) strlcpy(fromname, newname,
2344 			    sizeof (mp->mnt_stat.f_mntfromname));
2345 			continue;
2346 		}
2347 		if (strncmp(fromname, oldname, oldlen) == 0 &&
2348 		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2349 			(void) snprintf(tmpbuf, sizeof (tmpbuf), "%s%s",
2350 			    newname, fromname + oldlen);
2351 			(void) strlcpy(fromname, tmpbuf,
2352 			    sizeof (mp->mnt_stat.f_mntfromname));
2353 			continue;
2354 		}
2355 	}
2356 	mtx_unlock(&mountlist_mtx);
2357 }
2358 #endif
2359 
2360 /*
2361  * Find a prison with ZFS info.
2362  * Return the ZFS info and the (locked) prison.
2363  */
2364 static struct zfs_jailparam *
2365 zfs_jailparam_find(struct prison *spr, struct prison **prp)
2366 {
2367 	struct prison *pr;
2368 	struct zfs_jailparam *zjp;
2369 
2370 	for (pr = spr; ; pr = pr->pr_parent) {
2371 		mtx_lock(&pr->pr_mtx);
2372 		if (pr == &prison0) {
2373 			zjp = &zfs_jailparam0;
2374 			break;
2375 		}
2376 		zjp = osd_jail_get(pr, zfs_jailparam_slot);
2377 		if (zjp != NULL)
2378 			break;
2379 		mtx_unlock(&pr->pr_mtx);
2380 	}
2381 	*prp = pr;
2382 
2383 	return (zjp);
2384 }
2385 
2386 /*
2387  * Ensure a prison has its own ZFS info.  If zjpp is non-null, point it to the
2388  * ZFS info and lock the prison.
2389  */
2390 static void
2391 zfs_jailparam_alloc(struct prison *pr, struct zfs_jailparam **zjpp)
2392 {
2393 	struct prison *ppr;
2394 	struct zfs_jailparam *zjp, *nzjp;
2395 	void **rsv;
2396 
2397 	/* If this prison already has ZFS info, return that. */
2398 	zjp = zfs_jailparam_find(pr, &ppr);
2399 	if (ppr == pr)
2400 		goto done;
2401 
2402 	/*
2403 	 * Allocate a new info record.  Then check again, in case something
2404 	 * changed during the allocation.
2405 	 */
2406 	mtx_unlock(&ppr->pr_mtx);
2407 	nzjp = malloc(sizeof (struct zfs_jailparam), M_PRISON, M_WAITOK);
2408 	rsv = osd_reserve(zfs_jailparam_slot);
2409 	zjp = zfs_jailparam_find(pr, &ppr);
2410 	if (ppr == pr) {
2411 		free(nzjp, M_PRISON);
2412 		osd_free_reserved(rsv);
2413 		goto done;
2414 	}
2415 	/* Inherit the initial values from the ancestor. */
2416 	mtx_lock(&pr->pr_mtx);
2417 	(void) osd_jail_set_reserved(pr, zfs_jailparam_slot, rsv, nzjp);
2418 	(void) memcpy(nzjp, zjp, sizeof (*zjp));
2419 	zjp = nzjp;
2420 	mtx_unlock(&ppr->pr_mtx);
2421 done:
2422 	if (zjpp != NULL)
2423 		*zjpp = zjp;
2424 	else
2425 		mtx_unlock(&pr->pr_mtx);
2426 }
2427 
2428 /*
2429  * Jail OSD methods for ZFS VFS info.
2430  */
2431 static int
2432 zfs_jailparam_create(void *obj, void *data)
2433 {
2434 	struct prison *pr = obj;
2435 	struct vfsoptlist *opts = data;
2436 	int jsys;
2437 
2438 	if (vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys)) == 0 &&
2439 	    jsys == JAIL_SYS_INHERIT)
2440 		return (0);
2441 	/*
2442 	 * Inherit a prison's initial values from its parent
2443 	 * (different from JAIL_SYS_INHERIT which also inherits changes).
2444 	 */
2445 	zfs_jailparam_alloc(pr, NULL);
2446 	return (0);
2447 }
2448 
2449 static int
2450 zfs_jailparam_get(void *obj, void *data)
2451 {
2452 	struct prison *ppr, *pr = obj;
2453 	struct vfsoptlist *opts = data;
2454 	struct zfs_jailparam *zjp;
2455 	int jsys, error;
2456 
2457 	zjp = zfs_jailparam_find(pr, &ppr);
2458 	jsys = (ppr == pr) ? JAIL_SYS_NEW : JAIL_SYS_INHERIT;
2459 	error = vfs_setopt(opts, "zfs", &jsys, sizeof (jsys));
2460 	if (error != 0 && error != ENOENT)
2461 		goto done;
2462 	if (jsys == JAIL_SYS_NEW) {
2463 		error = vfs_setopt(opts, "zfs.mount_snapshot",
2464 		    &zjp->mount_snapshot, sizeof (zjp->mount_snapshot));
2465 		if (error != 0 && error != ENOENT)
2466 			goto done;
2467 	} else {
2468 		/*
2469 		 * If this prison is inheriting its ZFS info, report
2470 		 * empty/zero parameters.
2471 		 */
2472 		static int mount_snapshot = 0;
2473 
2474 		error = vfs_setopt(opts, "zfs.mount_snapshot",
2475 		    &mount_snapshot, sizeof (mount_snapshot));
2476 		if (error != 0 && error != ENOENT)
2477 			goto done;
2478 	}
2479 	error = 0;
2480 done:
2481 	mtx_unlock(&ppr->pr_mtx);
2482 	return (error);
2483 }
2484 
2485 static int
2486 zfs_jailparam_set(void *obj, void *data)
2487 {
2488 	struct prison *pr = obj;
2489 	struct prison *ppr;
2490 	struct vfsoptlist *opts = data;
2491 	int error, jsys, mount_snapshot;
2492 
2493 	/* Set the parameters, which should be correct. */
2494 	error = vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys));
2495 	if (error == ENOENT)
2496 		jsys = -1;
2497 	error = vfs_copyopt(opts, "zfs.mount_snapshot", &mount_snapshot,
2498 	    sizeof (mount_snapshot));
2499 	if (error == ENOENT)
2500 		mount_snapshot = -1;
2501 	else
2502 		jsys = JAIL_SYS_NEW;
2503 	switch (jsys) {
2504 	case JAIL_SYS_NEW:
2505 	{
2506 		/* "zfs=new" or "zfs.*": the prison gets its own ZFS info. */
2507 		struct zfs_jailparam *zjp;
2508 
2509 		/*
2510 		 * A child jail cannot have more permissions than its parent
2511 		 */
2512 		if (pr->pr_parent != &prison0) {
2513 			zjp = zfs_jailparam_find(pr->pr_parent, &ppr);
2514 			mtx_unlock(&ppr->pr_mtx);
2515 			if (zjp->mount_snapshot < mount_snapshot) {
2516 				return (EPERM);
2517 			}
2518 		}
2519 		zfs_jailparam_alloc(pr, &zjp);
2520 		if (mount_snapshot != -1)
2521 			zjp->mount_snapshot = mount_snapshot;
2522 		mtx_unlock(&pr->pr_mtx);
2523 		break;
2524 	}
2525 	case JAIL_SYS_INHERIT:
2526 		/* "zfs=inherit": inherit the parent's ZFS info. */
2527 		mtx_lock(&pr->pr_mtx);
2528 		osd_jail_del(pr, zfs_jailparam_slot);
2529 		mtx_unlock(&pr->pr_mtx);
2530 		break;
2531 	case -1:
2532 		/*
2533 		 * If the setting being changed is not ZFS related
2534 		 * then do nothing.
2535 		 */
2536 		break;
2537 	}
2538 
2539 	return (0);
2540 }
2541 
2542 static int
2543 zfs_jailparam_check(void *obj __unused, void *data)
2544 {
2545 	struct vfsoptlist *opts = data;
2546 	int error, jsys, mount_snapshot;
2547 
2548 	/* Check that the parameters are correct. */
2549 	error = vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys));
2550 	if (error != ENOENT) {
2551 		if (error != 0)
2552 			return (error);
2553 		if (jsys != JAIL_SYS_NEW && jsys != JAIL_SYS_INHERIT)
2554 			return (EINVAL);
2555 	}
2556 	error = vfs_copyopt(opts, "zfs.mount_snapshot", &mount_snapshot,
2557 	    sizeof (mount_snapshot));
2558 	if (error != ENOENT) {
2559 		if (error != 0)
2560 			return (error);
2561 		if (mount_snapshot != 0 && mount_snapshot != 1)
2562 			return (EINVAL);
2563 	}
2564 	return (0);
2565 }
2566 
2567 static void
2568 zfs_jailparam_destroy(void *data)
2569 {
2570 
2571 	free(data, M_PRISON);
2572 }
2573 
2574 static void
2575 zfs_jailparam_sysinit(void *arg __unused)
2576 {
2577 	struct prison *pr;
2578 	osd_method_t  methods[PR_MAXMETHOD] = {
2579 		[PR_METHOD_CREATE] = zfs_jailparam_create,
2580 		[PR_METHOD_GET] = zfs_jailparam_get,
2581 		[PR_METHOD_SET] = zfs_jailparam_set,
2582 		[PR_METHOD_CHECK] = zfs_jailparam_check,
2583 	};
2584 
2585 	zfs_jailparam_slot = osd_jail_register(zfs_jailparam_destroy, methods);
2586 	/* Copy the defaults to any existing prisons. */
2587 	sx_slock(&allprison_lock);
2588 	TAILQ_FOREACH(pr, &allprison, pr_list)
2589 		zfs_jailparam_alloc(pr, NULL);
2590 	sx_sunlock(&allprison_lock);
2591 }
2592 
2593 static void
2594 zfs_jailparam_sysuninit(void *arg __unused)
2595 {
2596 
2597 	osd_jail_deregister(zfs_jailparam_slot);
2598 }
2599 
2600 SYSINIT(zfs_jailparam_sysinit, SI_SUB_DRIVERS, SI_ORDER_ANY,
2601 	zfs_jailparam_sysinit, NULL);
2602 SYSUNINIT(zfs_jailparam_sysuninit, SI_SUB_DRIVERS, SI_ORDER_ANY,
2603 	zfs_jailparam_sysuninit, NULL);
2604