1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15 
16 /*
17  * Copyright (c) 2017, Datto, Inc. All rights reserved.
18  */
19 
20 #include <sys/zio_crypt.h>
21 #include <sys/dmu.h>
22 #include <sys/dmu_objset.h>
23 #include <sys/dnode.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zil.h>
27 #include <sys/sha2.h>
28 #include <sys/hkdf.h>
29 
30 /*
31  * This file is responsible for handling all of the details of generating
32  * encryption parameters and performing encryption and authentication.
33  *
34  * BLOCK ENCRYPTION PARAMETERS:
35  * Encryption /Authentication Algorithm Suite (crypt):
36  * The encryption algorithm, mode, and key length we are going to use. We
37  * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
38  * keys. All authentication is currently done with SHA512-HMAC.
39  *
40  * Plaintext:
41  * The unencrypted data that we want to encrypt.
42  *
43  * Initialization Vector (IV):
44  * An initialization vector for the encryption algorithms. This is used to
45  * "tweak" the encryption algorithms so that two blocks of the same data are
46  * encrypted into different ciphertext outputs, thus obfuscating block patterns.
47  * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
48  * never reused with the same encryption key. This value is stored unencrypted
49  * and must simply be provided to the decryption function. We use a 96 bit IV
50  * (as recommended by NIST) for all block encryption. For non-dedup blocks we
51  * derive the IV randomly. The first 64 bits of the IV are stored in the second
52  * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
53  * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
54  * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
55  * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
56  * level 0 blocks is the number of allocated dnodes in that block. The on-disk
57  * format supports at most 2^15 slots per L0 dnode block, because the maximum
58  * block size is 16MB (2^24). In either case, for level 0 blocks this number
59  * will still be smaller than UINT32_MAX so it is safe to store the IV in the
60  * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
61  * for the dnode code.
62  *
63  * Master key:
64  * This is the most important secret data of an encrypted dataset. It is used
65  * along with the salt to generate that actual encryption keys via HKDF. We
66  * do not use the master key to directly encrypt any data because there are
67  * theoretical limits on how much data can actually be safely encrypted with
68  * any encryption mode. The master key is stored encrypted on disk with the
69  * user's wrapping key. Its length is determined by the encryption algorithm.
70  * For details on how this is stored see the block comment in dsl_crypt.c
71  *
72  * Salt:
73  * Used as an input to the HKDF function, along with the master key. We use a
74  * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
75  * can be used for encrypting many blocks, so we cache the current salt and the
76  * associated derived key in zio_crypt_t so we do not need to derive it again
77  * needlessly.
78  *
79  * Encryption Key:
80  * A secret binary key, generated from an HKDF function used to encrypt and
81  * decrypt data.
82  *
83  * Message Authentication Code (MAC)
84  * The MAC is an output of authenticated encryption modes such as AES-GCM and
85  * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
86  * data on disk and return garbage to the application. Effectively, it is a
87  * checksum that can not be reproduced by an attacker. We store the MAC in the
88  * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
89  * regular checksum of the ciphertext which can be used for scrubbing.
90  *
91  * OBJECT AUTHENTICATION:
92  * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
93  * they contain some info that always needs to be readable. To prevent this
94  * data from being altered, we authenticate this data using SHA512-HMAC. This
95  * will produce a MAC (similar to the one produced via encryption) which can
96  * be used to verify the object was not modified. HMACs do not require key
97  * rotation or IVs, so we can keep up to the full 3 copies of authenticated
98  * data.
99  *
100  * ZIL ENCRYPTION:
101  * ZIL blocks have their bp written to disk ahead of the associated data, so we
102  * cannot store the MAC there as we normally do. For these blocks the MAC is
103  * stored in the embedded checksum within the zil_chain_t header. The salt and
104  * IV are generated for the block on bp allocation instead of at encryption
105  * time. In addition, ZIL blocks have some pieces that must be left in plaintext
106  * for claiming even though all of the sensitive user data still needs to be
107  * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
108  * pieces of the block need to be encrypted. All data that is not encrypted is
109  * authenticated using the AAD mechanisms that the supported encryption modes
110  * provide for. In order to preserve the semantics of the ZIL for encrypted
111  * datasets, the ZIL is not protected at the objset level as described below.
112  *
113  * DNODE ENCRYPTION:
114  * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
115  * in plaintext for scrubbing and claiming, but the bonus buffers might contain
116  * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
117  * which pieces of the block need to be encrypted. For more details about
118  * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
119  *
120  * OBJECT SET AUTHENTICATION:
121  * Up to this point, everything we have encrypted and authenticated has been
122  * at level 0 (or -2 for the ZIL). If we did not do any further work the
123  * on-disk format would be susceptible to attacks that deleted or rearranged
124  * the order of level 0 blocks. Ideally, the cleanest solution would be to
125  * maintain a tree of authentication MACs going up the bp tree. However, this
126  * presents a problem for raw sends. Send files do not send information about
127  * indirect blocks so there would be no convenient way to transfer the MACs and
128  * they cannot be recalculated on the receive side without the master key which
129  * would defeat one of the purposes of raw sends in the first place. Instead,
130  * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
131  * from the level below. We also include some portable fields from blk_prop such
132  * as the lsize and compression algorithm to prevent the data from being
133  * misinterpreted.
134  *
135  * At the objset level, we maintain 2 separate 256 bit MACs in the
136  * objset_phys_t. The first one is "portable" and is the logical root of the
137  * MAC tree maintained in the metadnode's bps. The second, is "local" and is
138  * used as the root MAC for the user accounting objects, which are also not
139  * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
140  * of the send file. The useraccounting code ensures that the useraccounting
141  * info is not present upon a receive, so the local MAC can simply be cleared
142  * out at that time. For more info about objset_phys_t authentication, see
143  * zio_crypt_do_objset_hmacs().
144  *
145  * CONSIDERATIONS FOR DEDUP:
146  * In order for dedup to work, blocks that we want to dedup with one another
147  * need to use the same IV and encryption key, so that they will have the same
148  * ciphertext. Normally, one should never reuse an IV with the same encryption
149  * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
150  * blocks. In this case, however, since we are using the same plaintext as
151  * well all that we end up with is a duplicate of the original ciphertext we
152  * already had. As a result, an attacker with read access to the raw disk will
153  * be able to tell which blocks are the same but this information is given away
154  * by dedup anyway. In order to get the same IVs and encryption keys for
155  * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
156  * here so that a reproducible checksum of the plaintext is never available to
157  * the attacker. The HMAC key is kept alongside the master key, encrypted on
158  * disk. The first 64 bits of the HMAC are used in place of the random salt, and
159  * the next 96 bits are used as the IV. As a result of this mechanism, dedup
160  * will only work within a clone family since encrypted dedup requires use of
161  * the same master and HMAC keys.
162  */
163 
164 /*
165  * After encrypting many blocks with the same key we may start to run up
166  * against the theoretical limits of how much data can securely be encrypted
167  * with a single key using the supported encryption modes. The most obvious
168  * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
169  * the more IVs we generate (which both GCM and CCM modes strictly forbid).
170  * This risk actually grows surprisingly quickly over time according to the
171  * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
172  * generated n IVs with a cryptographically secure RNG, the approximate
173  * probability p(n) of a collision is given as:
174  *
175  * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
176  *
177  * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
178  *
179  * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
180  * we must not write more than 398,065,730 blocks with the same encryption key.
181  * Therefore, we rotate our keys after 400,000,000 blocks have been written by
182  * generating a new random 64 bit salt for our HKDF encryption key generation
183  * function.
184  */
185 #define	ZFS_KEY_MAX_SALT_USES_DEFAULT	400000000
186 #define	ZFS_CURRENT_MAX_SALT_USES	\
187 	(MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
188 unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
189 
190 /*
191  * Set to a nonzero value to cause zio_do_crypt_uio() to fail 1/this many
192  * calls, to test decryption error handling code paths.
193  */
194 uint64_t zio_decrypt_fail_fraction = 0;
195 
196 typedef struct blkptr_auth_buf {
197 	uint64_t bab_prop;			/* blk_prop - portable mask */
198 	uint8_t bab_mac[ZIO_DATA_MAC_LEN];	/* MAC from blk_cksum */
199 	uint64_t bab_pad;			/* reserved for future use */
200 } blkptr_auth_buf_t;
201 
202 zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
203 	{"",			ZC_TYPE_NONE,	0,	"inherit"},
204 	{"",			ZC_TYPE_NONE,	0,	"on"},
205 	{"",			ZC_TYPE_NONE,	0,	"off"},
206 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	16,	"aes-128-ccm"},
207 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	24,	"aes-192-ccm"},
208 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	32,	"aes-256-ccm"},
209 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	16,	"aes-128-gcm"},
210 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	24,	"aes-192-gcm"},
211 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	32,	"aes-256-gcm"}
212 };
213 
214 static void
215 zio_crypt_key_destroy_early(zio_crypt_key_t *key)
216 {
217 	rw_destroy(&key->zk_salt_lock);
218 
219 	/* free crypto templates */
220 	bzero(&key->zk_session, sizeof (key->zk_session));
221 
222 	/* zero out sensitive data */
223 	bzero(key, sizeof (zio_crypt_key_t));
224 }
225 
226 void
227 zio_crypt_key_destroy(zio_crypt_key_t *key)
228 {
229 
230 	freebsd_crypt_freesession(&key->zk_session);
231 	zio_crypt_key_destroy_early(key);
232 }
233 
234 int
235 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
236 {
237 	int ret;
238 	crypto_mechanism_t mech __unused;
239 	uint_t keydata_len;
240 	zio_crypt_info_t *ci = NULL;
241 
242 	ASSERT3P(key, !=, NULL);
243 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
244 
245 	ci = &zio_crypt_table[crypt];
246 	if (ci->ci_crypt_type != ZC_TYPE_GCM &&
247 	    ci->ci_crypt_type != ZC_TYPE_CCM)
248 		return (ENOTSUP);
249 
250 	keydata_len = zio_crypt_table[crypt].ci_keylen;
251 	bzero(key, sizeof (zio_crypt_key_t));
252 	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
253 
254 	/* fill keydata buffers and salt with random data */
255 	ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
256 	if (ret != 0)
257 		goto error;
258 
259 	ret = random_get_bytes(key->zk_master_keydata, keydata_len);
260 	if (ret != 0)
261 		goto error;
262 
263 	ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
264 	if (ret != 0)
265 		goto error;
266 
267 	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
268 	if (ret != 0)
269 		goto error;
270 
271 	/* derive the current key from the master key */
272 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
273 	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
274 	    keydata_len);
275 	if (ret != 0)
276 		goto error;
277 
278 	/* initialize keys for the ICP */
279 	key->zk_current_key.ck_format = CRYPTO_KEY_RAW;
280 	key->zk_current_key.ck_data = key->zk_current_keydata;
281 	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
282 
283 	key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW;
284 	key->zk_hmac_key.ck_data = &key->zk_hmac_key;
285 	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
286 
287 	ci = &zio_crypt_table[crypt];
288 	if (ci->ci_crypt_type != ZC_TYPE_GCM &&
289 	    ci->ci_crypt_type != ZC_TYPE_CCM)
290 		return (ENOTSUP);
291 
292 	ret = freebsd_crypt_newsession(&key->zk_session, ci,
293 	    &key->zk_current_key);
294 	if (ret)
295 		goto error;
296 
297 	key->zk_crypt = crypt;
298 	key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
299 	key->zk_salt_count = 0;
300 
301 	return (0);
302 
303 error:
304 	zio_crypt_key_destroy_early(key);
305 	return (ret);
306 }
307 
308 static int
309 zio_crypt_key_change_salt(zio_crypt_key_t *key)
310 {
311 	int ret = 0;
312 	uint8_t salt[ZIO_DATA_SALT_LEN];
313 	crypto_mechanism_t mech __unused;
314 
315 	uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
316 
317 	/* generate a new salt */
318 	ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
319 	if (ret != 0)
320 		goto error;
321 
322 	rw_enter(&key->zk_salt_lock, RW_WRITER);
323 
324 	/* someone beat us to the salt rotation, just unlock and return */
325 	if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
326 		goto out_unlock;
327 
328 	/* derive the current key from the master key and the new salt */
329 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
330 	    salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
331 	if (ret != 0)
332 		goto out_unlock;
333 
334 	/* assign the salt and reset the usage count */
335 	bcopy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
336 	key->zk_salt_count = 0;
337 
338 	freebsd_crypt_freesession(&key->zk_session);
339 	ret = freebsd_crypt_newsession(&key->zk_session,
340 	    &zio_crypt_table[key->zk_crypt], &key->zk_current_key);
341 	if (ret != 0)
342 		goto out_unlock;
343 
344 	rw_exit(&key->zk_salt_lock);
345 
346 	return (0);
347 
348 out_unlock:
349 	rw_exit(&key->zk_salt_lock);
350 error:
351 	return (ret);
352 }
353 
354 /* See comment above zfs_key_max_salt_uses definition for details */
355 int
356 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
357 {
358 	int ret;
359 	boolean_t salt_change;
360 
361 	rw_enter(&key->zk_salt_lock, RW_READER);
362 
363 	bcopy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
364 	salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
365 	    ZFS_CURRENT_MAX_SALT_USES);
366 
367 	rw_exit(&key->zk_salt_lock);
368 
369 	if (salt_change) {
370 		ret = zio_crypt_key_change_salt(key);
371 		if (ret != 0)
372 			goto error;
373 	}
374 
375 	return (0);
376 
377 error:
378 	return (ret);
379 }
380 
381 void *failed_decrypt_buf;
382 int failed_decrypt_size;
383 
384 /*
385  * This function handles all encryption and decryption in zfs. When
386  * encrypting it expects puio to reference the plaintext and cuio to
387  * reference the ciphertext. cuio must have enough space for the
388  * ciphertext + room for a MAC. datalen should be the length of the
389  * plaintext / ciphertext alone.
390  */
391 /*
392  * The implementation for FreeBSD's OpenCrypto.
393  *
394  * The big difference between ICP and FOC is that FOC uses a single
395  * buffer for input and output.  This means that (for AES-GCM, the
396  * only one supported right now) the source must be copied into the
397  * destination, and the destination must have the AAD, and the tag/MAC,
398  * already associated with it.  (Both implementations can use a uio.)
399  *
400  * Since the auth data is part of the iovec array, all we need to know
401  * is the length:  0 means there's no AAD.
402  *
403  */
404 static int
405 zio_do_crypt_uio_opencrypto(boolean_t encrypt, freebsd_crypt_session_t *sess,
406     uint64_t crypt, crypto_key_t *key, uint8_t *ivbuf, uint_t datalen,
407     zfs_uio_t *uio, uint_t auth_len)
408 {
409 	zio_crypt_info_t *ci;
410 	int ret;
411 
412 	ci = &zio_crypt_table[crypt];
413 	if (ci->ci_crypt_type != ZC_TYPE_GCM &&
414 	    ci->ci_crypt_type != ZC_TYPE_CCM)
415 		return (ENOTSUP);
416 
417 
418 	ret = freebsd_crypt_uio(encrypt, sess, ci, uio, key, ivbuf,
419 	    datalen, auth_len);
420 	if (ret != 0) {
421 #ifdef FCRYPTO_DEBUG
422 		printf("%s(%d):  Returning error %s\n",
423 		    __FUNCTION__, __LINE__, encrypt ? "EIO" : "ECKSUM");
424 #endif
425 		ret = SET_ERROR(encrypt ? EIO : ECKSUM);
426 	}
427 
428 	return (ret);
429 }
430 
431 int
432 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
433     uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
434 {
435 	int ret;
436 	uint64_t aad[3];
437 	/*
438 	 * With OpenCrypto in FreeBSD, the same buffer is used for
439 	 * input and output.  Also, the AAD (for AES-GMC at least)
440 	 * needs to logically go in front.
441 	 */
442 	zfs_uio_t cuio;
443 	struct uio cuio_s;
444 	iovec_t iovecs[4];
445 	uint64_t crypt = key->zk_crypt;
446 	uint_t enc_len, keydata_len, aad_len;
447 
448 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
449 	ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);
450 
451 	zfs_uio_init(&cuio, &cuio_s);
452 
453 	keydata_len = zio_crypt_table[crypt].ci_keylen;
454 
455 	/* generate iv for wrapping the master and hmac key */
456 	ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
457 	if (ret != 0)
458 		goto error;
459 
460 	/*
461 	 * Since we only support one buffer, we need to copy
462 	 * the plain text (source) to the cipher buffer (dest).
463 	 * We set iovecs[0] -- the authentication data -- below.
464 	 */
465 	bcopy((void*)key->zk_master_keydata, keydata_out, keydata_len);
466 	bcopy((void*)key->zk_hmac_keydata, hmac_keydata_out,
467 	    SHA512_HMAC_KEYLEN);
468 	iovecs[1].iov_base = keydata_out;
469 	iovecs[1].iov_len = keydata_len;
470 	iovecs[2].iov_base = hmac_keydata_out;
471 	iovecs[2].iov_len = SHA512_HMAC_KEYLEN;
472 	iovecs[3].iov_base = mac;
473 	iovecs[3].iov_len = WRAPPING_MAC_LEN;
474 
475 	/*
476 	 * Although we don't support writing to the old format, we do
477 	 * support rewrapping the key so that the user can move and
478 	 * quarantine datasets on the old format.
479 	 */
480 	if (key->zk_version == 0) {
481 		aad_len = sizeof (uint64_t);
482 		aad[0] = LE_64(key->zk_guid);
483 	} else {
484 		ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
485 		aad_len = sizeof (uint64_t) * 3;
486 		aad[0] = LE_64(key->zk_guid);
487 		aad[1] = LE_64(crypt);
488 		aad[2] = LE_64(key->zk_version);
489 	}
490 
491 	iovecs[0].iov_base = aad;
492 	iovecs[0].iov_len = aad_len;
493 	enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
494 
495 	GET_UIO_STRUCT(&cuio)->uio_iov = iovecs;
496 	zfs_uio_iovcnt(&cuio) = 4;
497 	zfs_uio_segflg(&cuio) = UIO_SYSSPACE;
498 
499 	/* encrypt the keys and store the resulting ciphertext and mac */
500 	ret = zio_do_crypt_uio_opencrypto(B_TRUE, NULL, crypt, cwkey,
501 	    iv, enc_len, &cuio, aad_len);
502 	if (ret != 0)
503 		goto error;
504 
505 	return (0);
506 
507 error:
508 	return (ret);
509 }
510 
511 int
512 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
513     uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
514     uint8_t *mac, zio_crypt_key_t *key)
515 {
516 	int ret;
517 	uint64_t aad[3];
518 	/*
519 	 * With OpenCrypto in FreeBSD, the same buffer is used for
520 	 * input and output.  Also, the AAD (for AES-GMC at least)
521 	 * needs to logically go in front.
522 	 */
523 	zfs_uio_t cuio;
524 	struct uio cuio_s;
525 	iovec_t iovecs[4];
526 	void *src, *dst;
527 	uint_t enc_len, keydata_len, aad_len;
528 
529 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
530 	ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);
531 
532 	keydata_len = zio_crypt_table[crypt].ci_keylen;
533 	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
534 
535 	zfs_uio_init(&cuio, &cuio_s);
536 
537 	/*
538 	 * Since we only support one buffer, we need to copy
539 	 * the encrypted buffer (source) to the plain buffer
540 	 * (dest).  We set iovecs[0] -- the authentication data --
541 	 * below.
542 	 */
543 	dst = key->zk_master_keydata;
544 	src = keydata;
545 
546 	bcopy(src, dst, keydata_len);
547 
548 	dst = key->zk_hmac_keydata;
549 	src = hmac_keydata;
550 	bcopy(src, dst, SHA512_HMAC_KEYLEN);
551 
552 	iovecs[1].iov_base = key->zk_master_keydata;
553 	iovecs[1].iov_len = keydata_len;
554 	iovecs[2].iov_base = key->zk_hmac_keydata;
555 	iovecs[2].iov_len = SHA512_HMAC_KEYLEN;
556 	iovecs[3].iov_base = mac;
557 	iovecs[3].iov_len = WRAPPING_MAC_LEN;
558 
559 	if (version == 0) {
560 		aad_len = sizeof (uint64_t);
561 		aad[0] = LE_64(guid);
562 	} else {
563 		ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
564 		aad_len = sizeof (uint64_t) * 3;
565 		aad[0] = LE_64(guid);
566 		aad[1] = LE_64(crypt);
567 		aad[2] = LE_64(version);
568 	}
569 
570 	enc_len = keydata_len + SHA512_HMAC_KEYLEN;
571 	iovecs[0].iov_base = aad;
572 	iovecs[0].iov_len = aad_len;
573 
574 	GET_UIO_STRUCT(&cuio)->uio_iov = iovecs;
575 	zfs_uio_iovcnt(&cuio) = 4;
576 	zfs_uio_segflg(&cuio) = UIO_SYSSPACE;
577 
578 	/* decrypt the keys and store the result in the output buffers */
579 	ret = zio_do_crypt_uio_opencrypto(B_FALSE, NULL, crypt, cwkey,
580 	    iv, enc_len, &cuio, aad_len);
581 
582 	if (ret != 0)
583 		goto error;
584 
585 	/* generate a fresh salt */
586 	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
587 	if (ret != 0)
588 		goto error;
589 
590 	/* derive the current key from the master key */
591 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
592 	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
593 	    keydata_len);
594 	if (ret != 0)
595 		goto error;
596 
597 	/* initialize keys for ICP */
598 	key->zk_current_key.ck_format = CRYPTO_KEY_RAW;
599 	key->zk_current_key.ck_data = key->zk_current_keydata;
600 	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
601 
602 	key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW;
603 	key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
604 	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
605 
606 	ret = freebsd_crypt_newsession(&key->zk_session,
607 	    &zio_crypt_table[crypt], &key->zk_current_key);
608 	if (ret != 0)
609 		goto error;
610 
611 	key->zk_crypt = crypt;
612 	key->zk_version = version;
613 	key->zk_guid = guid;
614 	key->zk_salt_count = 0;
615 
616 	return (0);
617 
618 error:
619 	zio_crypt_key_destroy_early(key);
620 	return (ret);
621 }
622 
623 int
624 zio_crypt_generate_iv(uint8_t *ivbuf)
625 {
626 	int ret;
627 
628 	/* randomly generate the IV */
629 	ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
630 	if (ret != 0)
631 		goto error;
632 
633 	return (0);
634 
635 error:
636 	bzero(ivbuf, ZIO_DATA_IV_LEN);
637 	return (ret);
638 }
639 
640 int
641 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
642     uint8_t *digestbuf, uint_t digestlen)
643 {
644 	uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
645 
646 	ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
647 
648 	crypto_mac(&key->zk_hmac_key, data, datalen,
649 	    raw_digestbuf, SHA512_DIGEST_LENGTH);
650 
651 	bcopy(raw_digestbuf, digestbuf, digestlen);
652 
653 	return (0);
654 }
655 
656 int
657 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
658     uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
659 {
660 	int ret;
661 	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
662 
663 	ret = zio_crypt_do_hmac(key, data, datalen,
664 	    digestbuf, SHA512_DIGEST_LENGTH);
665 	if (ret != 0)
666 		return (ret);
667 
668 	bcopy(digestbuf, salt, ZIO_DATA_SALT_LEN);
669 	bcopy(digestbuf + ZIO_DATA_SALT_LEN, ivbuf, ZIO_DATA_IV_LEN);
670 
671 	return (0);
672 }
673 
674 /*
675  * The following functions are used to encode and decode encryption parameters
676  * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
677  * byte strings, which normally means that these strings would not need to deal
678  * with byteswapping at all. However, both blkptr_t and zil_header_t may be
679  * byteswapped by lower layers and so we must "undo" that byteswap here upon
680  * decoding and encoding in a non-native byteorder. These functions require
681  * that the byteorder bit is correct before being called.
682  */
683 void
684 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
685 {
686 	uint64_t val64;
687 	uint32_t val32;
688 
689 	ASSERT(BP_IS_ENCRYPTED(bp));
690 
691 	if (!BP_SHOULD_BYTESWAP(bp)) {
692 		bcopy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
693 		bcopy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
694 		bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
695 		BP_SET_IV2(bp, val32);
696 	} else {
697 		bcopy(salt, &val64, sizeof (uint64_t));
698 		bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
699 
700 		bcopy(iv, &val64, sizeof (uint64_t));
701 		bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
702 
703 		bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
704 		BP_SET_IV2(bp, BSWAP_32(val32));
705 	}
706 }
707 
708 void
709 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
710 {
711 	uint64_t val64;
712 	uint32_t val32;
713 
714 	ASSERT(BP_IS_PROTECTED(bp));
715 
716 	/* for convenience, so callers don't need to check */
717 	if (BP_IS_AUTHENTICATED(bp)) {
718 		bzero(salt, ZIO_DATA_SALT_LEN);
719 		bzero(iv, ZIO_DATA_IV_LEN);
720 		return;
721 	}
722 
723 	if (!BP_SHOULD_BYTESWAP(bp)) {
724 		bcopy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
725 		bcopy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
726 
727 		val32 = (uint32_t)BP_GET_IV2(bp);
728 		bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
729 	} else {
730 		val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
731 		bcopy(&val64, salt, sizeof (uint64_t));
732 
733 		val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
734 		bcopy(&val64, iv, sizeof (uint64_t));
735 
736 		val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
737 		bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
738 	}
739 }
740 
741 void
742 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
743 {
744 	uint64_t val64;
745 
746 	ASSERT(BP_USES_CRYPT(bp));
747 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
748 
749 	if (!BP_SHOULD_BYTESWAP(bp)) {
750 		bcopy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
751 		bcopy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
752 		    sizeof (uint64_t));
753 	} else {
754 		bcopy(mac, &val64, sizeof (uint64_t));
755 		bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
756 
757 		bcopy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
758 		bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
759 	}
760 }
761 
762 void
763 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
764 {
765 	uint64_t val64;
766 
767 	ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
768 
769 	/* for convenience, so callers don't need to check */
770 	if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
771 		bzero(mac, ZIO_DATA_MAC_LEN);
772 		return;
773 	}
774 
775 	if (!BP_SHOULD_BYTESWAP(bp)) {
776 		bcopy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
777 		bcopy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
778 		    sizeof (uint64_t));
779 	} else {
780 		val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
781 		bcopy(&val64, mac, sizeof (uint64_t));
782 
783 		val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
784 		bcopy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
785 	}
786 }
787 
788 void
789 zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
790 {
791 	zil_chain_t *zilc = data;
792 
793 	bcopy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
794 	bcopy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
795 	    sizeof (uint64_t));
796 }
797 
798 void
799 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
800 {
801 	/*
802 	 * The ZIL MAC is embedded in the block it protects, which will
803 	 * not have been byteswapped by the time this function has been called.
804 	 * As a result, we don't need to worry about byteswapping the MAC.
805 	 */
806 	const zil_chain_t *zilc = data;
807 
808 	bcopy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
809 	bcopy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
810 	    sizeof (uint64_t));
811 }
812 
813 /*
814  * This routine takes a block of dnodes (src_abd) and copies only the bonus
815  * buffers to the same offsets in the dst buffer. datalen should be the size
816  * of both the src_abd and the dst buffer (not just the length of the bonus
817  * buffers).
818  */
819 void
820 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
821 {
822 	uint_t i, max_dnp = datalen >> DNODE_SHIFT;
823 	uint8_t *src;
824 	dnode_phys_t *dnp, *sdnp, *ddnp;
825 
826 	src = abd_borrow_buf_copy(src_abd, datalen);
827 
828 	sdnp = (dnode_phys_t *)src;
829 	ddnp = (dnode_phys_t *)dst;
830 
831 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
832 		dnp = &sdnp[i];
833 		if (dnp->dn_type != DMU_OT_NONE &&
834 		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
835 		    dnp->dn_bonuslen != 0) {
836 			bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]),
837 			    DN_MAX_BONUS_LEN(dnp));
838 		}
839 	}
840 
841 	abd_return_buf(src_abd, src, datalen);
842 }
843 
844 /*
845  * This function decides what fields from blk_prop are included in
846  * the on-disk various MAC algorithms.
847  */
848 static void
849 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
850 {
851 	int avoidlint = SPA_MINBLOCKSIZE;
852 	/*
853 	 * Version 0 did not properly zero out all non-portable fields
854 	 * as it should have done. We maintain this code so that we can
855 	 * do read-only imports of pools on this version.
856 	 */
857 	if (version == 0) {
858 		BP_SET_DEDUP(bp, 0);
859 		BP_SET_CHECKSUM(bp, 0);
860 		BP_SET_PSIZE(bp, avoidlint);
861 		return;
862 	}
863 
864 	ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
865 
866 	/*
867 	 * The hole_birth feature might set these fields even if this bp
868 	 * is a hole. We zero them out here to guarantee that raw sends
869 	 * will function with or without the feature.
870 	 */
871 	if (BP_IS_HOLE(bp)) {
872 		bp->blk_prop = 0ULL;
873 		return;
874 	}
875 
876 	/*
877 	 * At L0 we want to verify these fields to ensure that data blocks
878 	 * can not be reinterpreted. For instance, we do not want an attacker
879 	 * to trick us into returning raw lz4 compressed data to the user
880 	 * by modifying the compression bits. At higher levels, we cannot
881 	 * enforce this policy since raw sends do not convey any information
882 	 * about indirect blocks, so these values might be different on the
883 	 * receive side. Fortunately, this does not open any new attack
884 	 * vectors, since any alterations that can be made to a higher level
885 	 * bp must still verify the correct order of the layer below it.
886 	 */
887 	if (BP_GET_LEVEL(bp) != 0) {
888 		BP_SET_BYTEORDER(bp, 0);
889 		BP_SET_COMPRESS(bp, 0);
890 
891 		/*
892 		 * psize cannot be set to zero or it will trigger
893 		 * asserts, but the value doesn't really matter as
894 		 * long as it is constant.
895 		 */
896 		BP_SET_PSIZE(bp, avoidlint);
897 	}
898 
899 	BP_SET_DEDUP(bp, 0);
900 	BP_SET_CHECKSUM(bp, 0);
901 }
902 
903 static void
904 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
905     blkptr_auth_buf_t *bab, uint_t *bab_len)
906 {
907 	blkptr_t tmpbp = *bp;
908 
909 	if (should_bswap)
910 		byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
911 
912 	ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
913 	ASSERT0(BP_IS_EMBEDDED(&tmpbp));
914 
915 	zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
916 
917 	/*
918 	 * We always MAC blk_prop in LE to ensure portability. This
919 	 * must be done after decoding the mac, since the endianness
920 	 * will get zero'd out here.
921 	 */
922 	zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
923 	bab->bab_prop = LE_64(tmpbp.blk_prop);
924 	bab->bab_pad = 0ULL;
925 
926 	/* version 0 did not include the padding */
927 	*bab_len = sizeof (blkptr_auth_buf_t);
928 	if (version == 0)
929 		*bab_len -= sizeof (uint64_t);
930 }
931 
932 static int
933 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
934     boolean_t should_bswap, blkptr_t *bp)
935 {
936 	uint_t bab_len;
937 	blkptr_auth_buf_t bab;
938 
939 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
940 	crypto_mac_update(ctx, &bab, bab_len);
941 
942 	return (0);
943 }
944 
945 static void
946 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
947     boolean_t should_bswap, blkptr_t *bp)
948 {
949 	uint_t bab_len;
950 	blkptr_auth_buf_t bab;
951 
952 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
953 	SHA2Update(ctx, &bab, bab_len);
954 }
955 
956 static void
957 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
958     boolean_t should_bswap, blkptr_t *bp)
959 {
960 	uint_t bab_len;
961 	blkptr_auth_buf_t bab;
962 
963 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
964 	bcopy(&bab, *aadp, bab_len);
965 	*aadp += bab_len;
966 	*aad_len += bab_len;
967 }
968 
969 static int
970 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
971     boolean_t should_bswap, dnode_phys_t *dnp)
972 {
973 	int ret, i;
974 	dnode_phys_t *adnp;
975 	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
976 	uint8_t tmp_dncore[offsetof(dnode_phys_t, dn_blkptr)];
977 
978 	/* authenticate the core dnode (masking out non-portable bits) */
979 	bcopy(dnp, tmp_dncore, sizeof (tmp_dncore));
980 	adnp = (dnode_phys_t *)tmp_dncore;
981 	if (le_bswap) {
982 		adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
983 		adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
984 		adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
985 		adnp->dn_used = BSWAP_64(adnp->dn_used);
986 	}
987 	adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
988 	adnp->dn_used = 0;
989 
990 	crypto_mac_update(ctx, adnp, sizeof (tmp_dncore));
991 
992 	for (i = 0; i < dnp->dn_nblkptr; i++) {
993 		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
994 		    should_bswap, &dnp->dn_blkptr[i]);
995 		if (ret != 0)
996 			goto error;
997 	}
998 
999 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1000 		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1001 		    should_bswap, DN_SPILL_BLKPTR(dnp));
1002 		if (ret != 0)
1003 			goto error;
1004 	}
1005 
1006 	return (0);
1007 
1008 error:
1009 	return (ret);
1010 }
1011 
1012 /*
1013  * objset_phys_t blocks introduce a number of exceptions to the normal
1014  * authentication process. objset_phys_t's contain 2 separate HMACS for
1015  * protecting the integrity of their data. The portable_mac protects the
1016  * metadnode. This MAC can be sent with a raw send and protects against
1017  * reordering of data within the metadnode. The local_mac protects the user
1018  * accounting objects which are not sent from one system to another.
1019  *
1020  * In addition, objset blocks are the only blocks that can be modified and
1021  * written to disk without the key loaded under certain circumstances. During
1022  * zil_claim() we need to be able to update the zil_header_t to complete
1023  * claiming log blocks and during raw receives we need to write out the
1024  * portable_mac from the send file. Both of these actions are possible
1025  * because these fields are not protected by either MAC so neither one will
1026  * need to modify the MACs without the key. However, when the modified blocks
1027  * are written out they will be byteswapped into the host machine's native
1028  * endianness which will modify fields protected by the MAC. As a result, MAC
1029  * calculation for objset blocks works slightly differently from other block
1030  * types. Where other block types MAC the data in whatever endianness is
1031  * written to disk, objset blocks always MAC little endian version of their
1032  * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1033  * and le_bswap indicates whether a byteswap is needed to get this block
1034  * into little endian format.
1035  */
1036 /* ARGSUSED */
1037 int
1038 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1039     boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1040 {
1041 	int ret;
1042 	struct hmac_ctx hash_ctx;
1043 	struct hmac_ctx *ctx = &hash_ctx;
1044 	objset_phys_t *osp = data;
1045 	uint64_t intval;
1046 	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1047 	uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1048 	uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
1049 
1050 
1051 	/* calculate the portable MAC from the portable fields and metadnode */
1052 	crypto_mac_init(ctx, &key->zk_hmac_key);
1053 
1054 	/* add in the os_type */
1055 	intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1056 	crypto_mac_update(ctx, &intval, sizeof (uint64_t));
1057 
1058 	/* add in the portable os_flags */
1059 	intval = osp->os_flags;
1060 	if (should_bswap)
1061 		intval = BSWAP_64(intval);
1062 	intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1063 	if (!ZFS_HOST_BYTEORDER)
1064 		intval = BSWAP_64(intval);
1065 
1066 	crypto_mac_update(ctx, &intval, sizeof (uint64_t));
1067 
1068 	/* add in fields from the metadnode */
1069 	ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1070 	    should_bswap, &osp->os_meta_dnode);
1071 	if (ret)
1072 		goto error;
1073 
1074 	crypto_mac_final(ctx, raw_portable_mac, SHA512_DIGEST_LENGTH);
1075 
1076 	bcopy(raw_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN);
1077 
1078 	/*
1079 	 * The local MAC protects the user, group and project accounting.
1080 	 * If these objects are not present, the local MAC is zeroed out.
1081 	 */
1082 	if ((datalen >= OBJSET_PHYS_SIZE_V3 &&
1083 	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1084 	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
1085 	    osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
1086 	    (datalen >= OBJSET_PHYS_SIZE_V2 &&
1087 	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1088 	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
1089 	    (datalen <= OBJSET_PHYS_SIZE_V1)) {
1090 		bzero(local_mac, ZIO_OBJSET_MAC_LEN);
1091 		return (0);
1092 	}
1093 
1094 	/* calculate the local MAC from the userused and groupused dnodes */
1095 	crypto_mac_init(ctx, &key->zk_hmac_key);
1096 
1097 	/* add in the non-portable os_flags */
1098 	intval = osp->os_flags;
1099 	if (should_bswap)
1100 		intval = BSWAP_64(intval);
1101 	intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1102 	if (!ZFS_HOST_BYTEORDER)
1103 		intval = BSWAP_64(intval);
1104 
1105 	crypto_mac_update(ctx, &intval, sizeof (uint64_t));
1106 
1107 	/* XXX check dnode type ... */
1108 	/* add in fields from the user accounting dnodes */
1109 	if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
1110 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1111 		    should_bswap, &osp->os_userused_dnode);
1112 		if (ret)
1113 			goto error;
1114 	}
1115 
1116 	if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
1117 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1118 		    should_bswap, &osp->os_groupused_dnode);
1119 		if (ret)
1120 			goto error;
1121 	}
1122 
1123 	if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
1124 	    datalen >= OBJSET_PHYS_SIZE_V3) {
1125 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1126 		    should_bswap, &osp->os_projectused_dnode);
1127 		if (ret)
1128 			goto error;
1129 	}
1130 
1131 	crypto_mac_final(ctx, raw_local_mac, SHA512_DIGEST_LENGTH);
1132 
1133 	bcopy(raw_local_mac, local_mac, ZIO_OBJSET_MAC_LEN);
1134 
1135 	return (0);
1136 
1137 error:
1138 	bzero(portable_mac, ZIO_OBJSET_MAC_LEN);
1139 	bzero(local_mac, ZIO_OBJSET_MAC_LEN);
1140 	return (ret);
1141 }
1142 
1143 static void
1144 zio_crypt_destroy_uio(zfs_uio_t *uio)
1145 {
1146 	if (GET_UIO_STRUCT(uio)->uio_iov)
1147 		kmem_free(GET_UIO_STRUCT(uio)->uio_iov,
1148 		    zfs_uio_iovcnt(uio) * sizeof (iovec_t));
1149 }
1150 
1151 /*
1152  * This function parses an uncompressed indirect block and returns a checksum
1153  * of all the portable fields from all of the contained bps. The portable
1154  * fields are the MAC and all of the fields from blk_prop except for the dedup,
1155  * checksum, and psize bits. For an explanation of the purpose of this, see
1156  * the comment block on object set authentication.
1157  */
1158 static int
1159 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1160     uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
1161 {
1162 	blkptr_t *bp;
1163 	int i, epb = datalen >> SPA_BLKPTRSHIFT;
1164 	SHA2_CTX ctx;
1165 	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
1166 
1167 	/* checksum all of the MACs from the layer below */
1168 	SHA2Init(SHA512, &ctx);
1169 	for (i = 0, bp = buf; i < epb; i++, bp++) {
1170 		zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1171 		    byteswap, bp);
1172 	}
1173 	SHA2Final(digestbuf, &ctx);
1174 
1175 	if (generate) {
1176 		bcopy(digestbuf, cksum, ZIO_DATA_MAC_LEN);
1177 		return (0);
1178 	}
1179 
1180 	if (bcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0) {
1181 #ifdef FCRYPTO_DEBUG
1182 		printf("%s(%d): Setting ECKSUM\n", __FUNCTION__, __LINE__);
1183 #endif
1184 		return (SET_ERROR(ECKSUM));
1185 	}
1186 	return (0);
1187 }
1188 
1189 int
1190 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
1191     uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1192 {
1193 	int ret;
1194 
1195 	/*
1196 	 * Unfortunately, callers of this function will not always have
1197 	 * easy access to the on-disk format version. This info is
1198 	 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1199 	 * is expected to be verifiable even when the key isn't loaded.
1200 	 * Here, instead of doing a ZAP lookup for the version for each
1201 	 * zio, we simply try both existing formats.
1202 	 */
1203 	ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1204 	    datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1205 	if (ret == ECKSUM) {
1206 		ASSERT(!generate);
1207 		ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1208 		    buf, datalen, 0, byteswap, cksum);
1209 	}
1210 
1211 	return (ret);
1212 }
1213 
1214 int
1215 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1216     uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1217 {
1218 	int ret;
1219 	void *buf;
1220 
1221 	buf = abd_borrow_buf_copy(abd, datalen);
1222 	ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1223 	    byteswap, cksum);
1224 	abd_return_buf(abd, buf, datalen);
1225 
1226 	return (ret);
1227 }
1228 
1229 /*
1230  * Special case handling routine for encrypting / decrypting ZIL blocks.
1231  * We do not check for the older ZIL chain because the encryption feature
1232  * was not available before the newer ZIL chain was introduced. The goal
1233  * here is to encrypt everything except the blkptr_t of a lr_write_t and
1234  * the zil_chain_t header. Everything that is not encrypted is authenticated.
1235  */
1236 /*
1237  * The OpenCrypto used in FreeBSD does not use separate source and
1238  * destination buffers; instead, the same buffer is used.  Further, to
1239  * accommodate some of the drivers, the authbuf needs to be logically before
1240  * the data.  This means that we need to copy the source to the destination,
1241  * and set up an extra iovec_t at the beginning to handle the authbuf.
1242  * It also means we'll only return one zfs_uio_t.
1243  */
1244 
1245 /* ARGSUSED */
1246 static int
1247 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1248     uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
1249     zfs_uio_t *out_uio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1250     boolean_t *no_crypt)
1251 {
1252 	uint8_t *aadbuf = zio_buf_alloc(datalen);
1253 	uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1254 	iovec_t *dst_iovecs;
1255 	zil_chain_t *zilc;
1256 	lr_t *lr;
1257 	uint64_t txtype, lr_len;
1258 	uint_t crypt_len, nr_iovecs, vec;
1259 	uint_t aad_len = 0, total_len = 0;
1260 
1261 	if (encrypt) {
1262 		src = plainbuf;
1263 		dst = cipherbuf;
1264 	} else {
1265 		src = cipherbuf;
1266 		dst = plainbuf;
1267 	}
1268 	bcopy(src, dst, datalen);
1269 
1270 	/* Find the start and end record of the log block. */
1271 	zilc = (zil_chain_t *)src;
1272 	slrp = src + sizeof (zil_chain_t);
1273 	aadp = aadbuf;
1274 	blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1275 
1276 	/*
1277 	 * Calculate the number of encrypted iovecs we will need.
1278 	 */
1279 
1280 	/* We need at least two iovecs -- one for the AAD, one for the MAC. */
1281 	nr_iovecs = 2;
1282 
1283 	for (; slrp < blkend; slrp += lr_len) {
1284 		lr = (lr_t *)slrp;
1285 
1286 		if (byteswap) {
1287 			txtype = BSWAP_64(lr->lrc_txtype);
1288 			lr_len = BSWAP_64(lr->lrc_reclen);
1289 		} else {
1290 			txtype = lr->lrc_txtype;
1291 			lr_len = lr->lrc_reclen;
1292 		}
1293 
1294 		nr_iovecs++;
1295 		if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1296 			nr_iovecs++;
1297 	}
1298 
1299 	dst_iovecs = kmem_alloc(nr_iovecs * sizeof (iovec_t), KM_SLEEP);
1300 
1301 	/*
1302 	 * Copy the plain zil header over and authenticate everything except
1303 	 * the checksum that will store our MAC. If we are writing the data
1304 	 * the embedded checksum will not have been calculated yet, so we don't
1305 	 * authenticate that.
1306 	 */
1307 	bcopy(src, aadp, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1308 	aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1309 	aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1310 
1311 	slrp = src + sizeof (zil_chain_t);
1312 	dlrp = dst + sizeof (zil_chain_t);
1313 
1314 	/*
1315 	 * Loop over records again, filling in iovecs.
1316 	 */
1317 
1318 	/* The first iovec will contain the authbuf. */
1319 	vec = 1;
1320 
1321 	for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1322 		lr = (lr_t *)slrp;
1323 
1324 		if (!byteswap) {
1325 			txtype = lr->lrc_txtype;
1326 			lr_len = lr->lrc_reclen;
1327 		} else {
1328 			txtype = BSWAP_64(lr->lrc_txtype);
1329 			lr_len = BSWAP_64(lr->lrc_reclen);
1330 		}
1331 
1332 		/* copy the common lr_t */
1333 		bcopy(slrp, dlrp, sizeof (lr_t));
1334 		bcopy(slrp, aadp, sizeof (lr_t));
1335 		aadp += sizeof (lr_t);
1336 		aad_len += sizeof (lr_t);
1337 
1338 		/*
1339 		 * If this is a TX_WRITE record we want to encrypt everything
1340 		 * except the bp if exists. If the bp does exist we want to
1341 		 * authenticate it.
1342 		 */
1343 		if (txtype == TX_WRITE) {
1344 			crypt_len = sizeof (lr_write_t) -
1345 			    sizeof (lr_t) - sizeof (blkptr_t);
1346 			dst_iovecs[vec].iov_base = (char *)dlrp +
1347 			    sizeof (lr_t);
1348 			dst_iovecs[vec].iov_len = crypt_len;
1349 
1350 			/* copy the bp now since it will not be encrypted */
1351 			bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1352 			    dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1353 			    sizeof (blkptr_t));
1354 			bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1355 			    aadp, sizeof (blkptr_t));
1356 			aadp += sizeof (blkptr_t);
1357 			aad_len += sizeof (blkptr_t);
1358 			vec++;
1359 			total_len += crypt_len;
1360 
1361 			if (lr_len != sizeof (lr_write_t)) {
1362 				crypt_len = lr_len - sizeof (lr_write_t);
1363 				dst_iovecs[vec].iov_base = (char *)
1364 				    dlrp + sizeof (lr_write_t);
1365 				dst_iovecs[vec].iov_len = crypt_len;
1366 				vec++;
1367 				total_len += crypt_len;
1368 			}
1369 		} else {
1370 			crypt_len = lr_len - sizeof (lr_t);
1371 			dst_iovecs[vec].iov_base = (char *)dlrp +
1372 			    sizeof (lr_t);
1373 			dst_iovecs[vec].iov_len = crypt_len;
1374 			vec++;
1375 			total_len += crypt_len;
1376 		}
1377 	}
1378 
1379 	/* The last iovec will contain the MAC. */
1380 	ASSERT3U(vec, ==, nr_iovecs - 1);
1381 
1382 	/* AAD */
1383 	dst_iovecs[0].iov_base = aadbuf;
1384 	dst_iovecs[0].iov_len = aad_len;
1385 	/* MAC */
1386 	dst_iovecs[vec].iov_base = 0;
1387 	dst_iovecs[vec].iov_len = 0;
1388 
1389 	*no_crypt = (vec == 1);
1390 	*enc_len = total_len;
1391 	*authbuf = aadbuf;
1392 	*auth_len = aad_len;
1393 	GET_UIO_STRUCT(out_uio)->uio_iov = dst_iovecs;
1394 	zfs_uio_iovcnt(out_uio) = nr_iovecs;
1395 
1396 	return (0);
1397 }
1398 
1399 /*
1400  * Special case handling routine for encrypting / decrypting dnode blocks.
1401  */
1402 static int
1403 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1404     uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1405     zfs_uio_t *puio, zfs_uio_t *out_uio, uint_t *enc_len, uint8_t **authbuf,
1406     uint_t *auth_len, boolean_t *no_crypt)
1407 {
1408 	uint8_t *aadbuf = zio_buf_alloc(datalen);
1409 	uint8_t *src, *dst, *aadp;
1410 	dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1411 	iovec_t *dst_iovecs;
1412 	uint_t nr_iovecs, crypt_len, vec;
1413 	uint_t aad_len = 0, total_len = 0;
1414 	uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1415 
1416 	if (encrypt) {
1417 		src = plainbuf;
1418 		dst = cipherbuf;
1419 	} else {
1420 		src = cipherbuf;
1421 		dst = plainbuf;
1422 	}
1423 	bcopy(src, dst, datalen);
1424 
1425 	sdnp = (dnode_phys_t *)src;
1426 	ddnp = (dnode_phys_t *)dst;
1427 	aadp = aadbuf;
1428 
1429 	/*
1430 	 * Count the number of iovecs we will need to do the encryption by
1431 	 * counting the number of bonus buffers that need to be encrypted.
1432 	 */
1433 
1434 	/* We need at least two iovecs -- one for the AAD, one for the MAC. */
1435 	nr_iovecs = 2;
1436 
1437 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1438 		/*
1439 		 * This block may still be byteswapped. However, all of the
1440 		 * values we use are either uint8_t's (for which byteswapping
1441 		 * is a noop) or a * != 0 check, which will work regardless
1442 		 * of whether or not we byteswap.
1443 		 */
1444 		if (sdnp[i].dn_type != DMU_OT_NONE &&
1445 		    DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1446 		    sdnp[i].dn_bonuslen != 0) {
1447 			nr_iovecs++;
1448 		}
1449 	}
1450 
1451 	dst_iovecs = kmem_alloc(nr_iovecs * sizeof (iovec_t), KM_SLEEP);
1452 
1453 	/*
1454 	 * Iterate through the dnodes again, this time filling in the uios
1455 	 * we allocated earlier. We also concatenate any data we want to
1456 	 * authenticate onto aadbuf.
1457 	 */
1458 
1459 	/* The first iovec will contain the authbuf. */
1460 	vec = 1;
1461 
1462 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1463 		dnp = &sdnp[i];
1464 
1465 		/* copy over the core fields and blkptrs (kept as plaintext) */
1466 		bcopy(dnp, &ddnp[i], (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1467 
1468 		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1469 			bcopy(DN_SPILL_BLKPTR(dnp), DN_SPILL_BLKPTR(&ddnp[i]),
1470 			    sizeof (blkptr_t));
1471 		}
1472 
1473 		/*
1474 		 * Handle authenticated data. We authenticate everything in
1475 		 * the dnode that can be brought over when we do a raw send.
1476 		 * This includes all of the core fields as well as the MACs
1477 		 * stored in the bp checksums and all of the portable bits
1478 		 * from blk_prop. We include the dnode padding here in case it
1479 		 * ever gets used in the future. Some dn_flags and dn_used are
1480 		 * not portable so we mask those out values out of the
1481 		 * authenticated data.
1482 		 */
1483 		crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1484 		bcopy(dnp, aadp, crypt_len);
1485 		adnp = (dnode_phys_t *)aadp;
1486 		adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1487 		adnp->dn_used = 0;
1488 		aadp += crypt_len;
1489 		aad_len += crypt_len;
1490 
1491 		for (j = 0; j < dnp->dn_nblkptr; j++) {
1492 			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1493 			    version, byteswap, &dnp->dn_blkptr[j]);
1494 		}
1495 
1496 		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1497 			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1498 			    version, byteswap, DN_SPILL_BLKPTR(dnp));
1499 		}
1500 
1501 		/*
1502 		 * If this bonus buffer needs to be encrypted, we prepare an
1503 		 * iovec_t. The encryption / decryption functions will fill
1504 		 * this in for us with the encrypted or decrypted data.
1505 		 * Otherwise we add the bonus buffer to the authenticated
1506 		 * data buffer and copy it over to the destination. The
1507 		 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1508 		 * we can guarantee alignment with the AES block size
1509 		 * (128 bits).
1510 		 */
1511 		crypt_len = DN_MAX_BONUS_LEN(dnp);
1512 		if (dnp->dn_type != DMU_OT_NONE &&
1513 		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1514 		    dnp->dn_bonuslen != 0) {
1515 			dst_iovecs[vec].iov_base = DN_BONUS(&ddnp[i]);
1516 			dst_iovecs[vec].iov_len = crypt_len;
1517 
1518 			vec++;
1519 			total_len += crypt_len;
1520 		} else {
1521 			bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]), crypt_len);
1522 			bcopy(DN_BONUS(dnp), aadp, crypt_len);
1523 			aadp += crypt_len;
1524 			aad_len += crypt_len;
1525 		}
1526 	}
1527 
1528 	/* The last iovec will contain the MAC. */
1529 	ASSERT3U(vec, ==, nr_iovecs - 1);
1530 
1531 	/* AAD */
1532 	dst_iovecs[0].iov_base = aadbuf;
1533 	dst_iovecs[0].iov_len = aad_len;
1534 	/* MAC */
1535 	dst_iovecs[vec].iov_base = 0;
1536 	dst_iovecs[vec].iov_len = 0;
1537 
1538 	*no_crypt = (vec == 1);
1539 	*enc_len = total_len;
1540 	*authbuf = aadbuf;
1541 	*auth_len = aad_len;
1542 	GET_UIO_STRUCT(out_uio)->uio_iov = dst_iovecs;
1543 	zfs_uio_iovcnt(out_uio) = nr_iovecs;
1544 
1545 	return (0);
1546 }
1547 
1548 /* ARGSUSED */
1549 static int
1550 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1551     uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *out_uio,
1552     uint_t *enc_len)
1553 {
1554 	int ret;
1555 	uint_t nr_plain = 1, nr_cipher = 2;
1556 	iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1557 	void *src, *dst;
1558 
1559 	cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
1560 	    KM_SLEEP);
1561 	if (!cipher_iovecs) {
1562 		ret = SET_ERROR(ENOMEM);
1563 		goto error;
1564 	}
1565 	bzero(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1566 
1567 	if (encrypt) {
1568 		src = plainbuf;
1569 		dst = cipherbuf;
1570 	} else {
1571 		src = cipherbuf;
1572 		dst = plainbuf;
1573 	}
1574 	bcopy(src, dst, datalen);
1575 	cipher_iovecs[0].iov_base = dst;
1576 	cipher_iovecs[0].iov_len = datalen;
1577 
1578 	*enc_len = datalen;
1579 	GET_UIO_STRUCT(out_uio)->uio_iov = cipher_iovecs;
1580 	zfs_uio_iovcnt(out_uio) = nr_cipher;
1581 
1582 	return (0);
1583 
1584 error:
1585 	if (plain_iovecs != NULL)
1586 		kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1587 	if (cipher_iovecs != NULL)
1588 		kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1589 
1590 	*enc_len = 0;
1591 	GET_UIO_STRUCT(out_uio)->uio_iov = NULL;
1592 	zfs_uio_iovcnt(out_uio) = 0;
1593 
1594 	return (ret);
1595 }
1596 
1597 /*
1598  * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1599  * that they can be used for encryption and decryption by zio_do_crypt_uio().
1600  * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1601  * requiring special handling to parse out pieces that are to be encrypted. The
1602  * authbuf is used by these special cases to store additional authenticated
1603  * data (AAD) for the encryption modes.
1604  */
1605 static int
1606 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1607     uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1608     uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
1609     uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
1610 {
1611 	int ret;
1612 	iovec_t *mac_iov;
1613 
1614 	ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1615 
1616 	/* route to handler */
1617 	switch (ot) {
1618 	case DMU_OT_INTENT_LOG:
1619 		ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1620 		    datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1621 		    no_crypt);
1622 		break;
1623 	case DMU_OT_DNODE:
1624 		ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1625 		    cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1626 		    auth_len, no_crypt);
1627 		break;
1628 	default:
1629 		ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1630 		    datalen, puio, cuio, enc_len);
1631 		*authbuf = NULL;
1632 		*auth_len = 0;
1633 		*no_crypt = B_FALSE;
1634 		break;
1635 	}
1636 
1637 	if (ret != 0)
1638 		goto error;
1639 
1640 	/* populate the uios */
1641 	zfs_uio_segflg(cuio) = UIO_SYSSPACE;
1642 
1643 	mac_iov =
1644 	    ((iovec_t *)&(GET_UIO_STRUCT(cuio)->
1645 	    uio_iov[zfs_uio_iovcnt(cuio) - 1]));
1646 	mac_iov->iov_base = (void *)mac;
1647 	mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1648 
1649 	return (0);
1650 
1651 error:
1652 	return (ret);
1653 }
1654 
1655 void *failed_decrypt_buf;
1656 int faile_decrypt_size;
1657 
1658 /*
1659  * Primary encryption / decryption entrypoint for zio data.
1660  */
1661 int
1662 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
1663     dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
1664     uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
1665     boolean_t *no_crypt)
1666 {
1667 	int ret;
1668 	boolean_t locked = B_FALSE;
1669 	uint64_t crypt = key->zk_crypt;
1670 	uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1671 	uint_t enc_len, auth_len;
1672 	zfs_uio_t puio, cuio;
1673 	struct uio puio_s, cuio_s;
1674 	uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1675 	crypto_key_t tmp_ckey, *ckey = NULL;
1676 	freebsd_crypt_session_t *tmpl = NULL;
1677 	uint8_t *authbuf = NULL;
1678 
1679 
1680 	zfs_uio_init(&puio, &puio_s);
1681 	zfs_uio_init(&cuio, &cuio_s);
1682 	bzero(GET_UIO_STRUCT(&puio), sizeof (struct uio));
1683 	bzero(GET_UIO_STRUCT(&cuio), sizeof (struct uio));
1684 
1685 #ifdef FCRYPTO_DEBUG
1686 	printf("%s(%s, %p, %p, %d, %p, %p, %u, %s, %p, %p, %p)\n",
1687 	    __FUNCTION__,
1688 	    encrypt ? "encrypt" : "decrypt",
1689 	    key, salt, ot, iv, mac, datalen,
1690 	    byteswap ? "byteswap" : "native_endian", plainbuf,
1691 	    cipherbuf, no_crypt);
1692 
1693 	printf("\tkey = {");
1694 	for (int i = 0; i < key->zk_current_key.ck_length/8; i++)
1695 		printf("%02x ", ((uint8_t *)key->zk_current_key.ck_data)[i]);
1696 	printf("}\n");
1697 #endif
1698 	/* create uios for encryption */
1699 	ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1700 	    cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1701 	    &authbuf, &auth_len, no_crypt);
1702 	if (ret != 0)
1703 		return (ret);
1704 
1705 	/*
1706 	 * If the needed key is the current one, just use it. Otherwise we
1707 	 * need to generate a temporary one from the given salt + master key.
1708 	 * If we are encrypting, we must return a copy of the current salt
1709 	 * so that it can be stored in the blkptr_t.
1710 	 */
1711 	rw_enter(&key->zk_salt_lock, RW_READER);
1712 	locked = B_TRUE;
1713 
1714 	if (bcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1715 		ckey = &key->zk_current_key;
1716 		tmpl = &key->zk_session;
1717 	} else {
1718 		rw_exit(&key->zk_salt_lock);
1719 		locked = B_FALSE;
1720 
1721 		ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1722 		    salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1723 		if (ret != 0)
1724 			goto error;
1725 		tmp_ckey.ck_format = CRYPTO_KEY_RAW;
1726 		tmp_ckey.ck_data = enc_keydata;
1727 		tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
1728 
1729 		ckey = &tmp_ckey;
1730 		tmpl = NULL;
1731 	}
1732 
1733 	/* perform the encryption / decryption */
1734 	ret = zio_do_crypt_uio_opencrypto(encrypt, tmpl, key->zk_crypt,
1735 	    ckey, iv, enc_len, &cuio, auth_len);
1736 	if (ret != 0)
1737 		goto error;
1738 	if (locked) {
1739 		rw_exit(&key->zk_salt_lock);
1740 		locked = B_FALSE;
1741 	}
1742 
1743 	if (authbuf != NULL)
1744 		zio_buf_free(authbuf, datalen);
1745 	if (ckey == &tmp_ckey)
1746 		bzero(enc_keydata, keydata_len);
1747 	zio_crypt_destroy_uio(&puio);
1748 	zio_crypt_destroy_uio(&cuio);
1749 
1750 	return (0);
1751 
1752 error:
1753 	if (!encrypt) {
1754 		if (failed_decrypt_buf != NULL)
1755 			kmem_free(failed_decrypt_buf, failed_decrypt_size);
1756 		failed_decrypt_buf = kmem_alloc(datalen, KM_SLEEP);
1757 		failed_decrypt_size = datalen;
1758 		bcopy(cipherbuf, failed_decrypt_buf, datalen);
1759 	}
1760 	if (locked)
1761 		rw_exit(&key->zk_salt_lock);
1762 	if (authbuf != NULL)
1763 		zio_buf_free(authbuf, datalen);
1764 	if (ckey == &tmp_ckey)
1765 		bzero(enc_keydata, keydata_len);
1766 	zio_crypt_destroy_uio(&puio);
1767 	zio_crypt_destroy_uio(&cuio);
1768 	return (SET_ERROR(ret));
1769 }
1770 
1771 /*
1772  * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
1773  * linear buffers.
1774  */
1775 int
1776 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
1777     boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
1778     uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
1779 {
1780 	int ret;
1781 	void *ptmp, *ctmp;
1782 
1783 	if (encrypt) {
1784 		ptmp = abd_borrow_buf_copy(pabd, datalen);
1785 		ctmp = abd_borrow_buf(cabd, datalen);
1786 	} else {
1787 		ptmp = abd_borrow_buf(pabd, datalen);
1788 		ctmp = abd_borrow_buf_copy(cabd, datalen);
1789 	}
1790 
1791 	ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
1792 	    datalen, ptmp, ctmp, no_crypt);
1793 	if (ret != 0)
1794 		goto error;
1795 
1796 	if (encrypt) {
1797 		abd_return_buf(pabd, ptmp, datalen);
1798 		abd_return_buf_copy(cabd, ctmp, datalen);
1799 	} else {
1800 		abd_return_buf_copy(pabd, ptmp, datalen);
1801 		abd_return_buf(cabd, ctmp, datalen);
1802 	}
1803 
1804 	return (0);
1805 
1806 error:
1807 	if (encrypt) {
1808 		abd_return_buf(pabd, ptmp, datalen);
1809 		abd_return_buf_copy(cabd, ctmp, datalen);
1810 	} else {
1811 		abd_return_buf_copy(pabd, ptmp, datalen);
1812 		abd_return_buf(cabd, ctmp, datalen);
1813 	}
1814 
1815 	return (SET_ERROR(ret));
1816 }
1817 
1818 #if defined(_KERNEL) && defined(HAVE_SPL)
1819 /* BEGIN CSTYLED */
1820 module_param(zfs_key_max_salt_uses, ulong, 0644);
1821 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
1822 	"can be used for generating encryption keys before it is rotated");
1823 /* END CSTYLED */
1824 #endif
1825