1 /*
2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3  *  Copyright (C) 2007 The Regents of the University of California.
4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6  *  UCRL-CODE-235197
7  *
8  *  This file is part of the SPL, Solaris Porting Layer.
9  *
10  *  The SPL is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or (at your
13  *  option) any later version.
14  *
15  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include <linux/percpu_compat.h>
25 #include <sys/kmem.h>
26 #include <sys/kmem_cache.h>
27 #include <sys/taskq.h>
28 #include <sys/timer.h>
29 #include <sys/vmem.h>
30 #include <sys/wait.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/prefetch.h>
34 
35 /*
36  * Within the scope of spl-kmem.c file the kmem_cache_* definitions
37  * are removed to allow access to the real Linux slab allocator.
38  */
39 #undef kmem_cache_destroy
40 #undef kmem_cache_create
41 #undef kmem_cache_alloc
42 #undef kmem_cache_free
43 
44 
45 /*
46  * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
47  * with smp_mb__{before,after}_atomic() because they were redundant. This is
48  * only used inside our SLAB allocator, so we implement an internal wrapper
49  * here to give us smp_mb__{before,after}_atomic() on older kernels.
50  */
51 #ifndef smp_mb__before_atomic
52 #define	smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
53 #endif
54 
55 #ifndef smp_mb__after_atomic
56 #define	smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
57 #endif
58 
59 /* BEGIN CSTYLED */
60 /*
61  * Cache magazines are an optimization designed to minimize the cost of
62  * allocating memory.  They do this by keeping a per-cpu cache of recently
63  * freed objects, which can then be reallocated without taking a lock. This
64  * can improve performance on highly contended caches.  However, because
65  * objects in magazines will prevent otherwise empty slabs from being
66  * immediately released this may not be ideal for low memory machines.
67  *
68  * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
69  * magazine size.  When this value is set to 0 the magazine size will be
70  * automatically determined based on the object size.  Otherwise magazines
71  * will be limited to 2-256 objects per magazine (i.e per cpu).  Magazines
72  * may never be entirely disabled in this implementation.
73  */
74 static unsigned int spl_kmem_cache_magazine_size = 0;
75 module_param(spl_kmem_cache_magazine_size, uint, 0444);
76 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
77 	"Default magazine size (2-256), set automatically (0)");
78 
79 static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
80 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
81 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
82 
83 static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
84 module_param(spl_kmem_cache_max_size, uint, 0644);
85 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
86 
87 /*
88  * For small objects the Linux slab allocator should be used to make the most
89  * efficient use of the memory.  However, large objects are not supported by
90  * the Linux slab and therefore the SPL implementation is preferred.  A cutoff
91  * of 16K was determined to be optimal for architectures using 4K pages and
92  * to also work well on architecutres using larger 64K page sizes.
93  */
94 static unsigned int spl_kmem_cache_slab_limit = 16384;
95 module_param(spl_kmem_cache_slab_limit, uint, 0644);
96 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
97 	"Objects less than N bytes use the Linux slab");
98 
99 /*
100  * The number of threads available to allocate new slabs for caches.  This
101  * should not need to be tuned but it is available for performance analysis.
102  */
103 static unsigned int spl_kmem_cache_kmem_threads = 4;
104 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
105 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
106 	"Number of spl_kmem_cache threads");
107 /* END CSTYLED */
108 
109 /*
110  * Slab allocation interfaces
111  *
112  * While the Linux slab implementation was inspired by the Solaris
113  * implementation I cannot use it to emulate the Solaris APIs.  I
114  * require two features which are not provided by the Linux slab.
115  *
116  * 1) Constructors AND destructors.  Recent versions of the Linux
117  *    kernel have removed support for destructors.  This is a deal
118  *    breaker for the SPL which contains particularly expensive
119  *    initializers for mutex's, condition variables, etc.  We also
120  *    require a minimal level of cleanup for these data types unlike
121  *    many Linux data types which do need to be explicitly destroyed.
122  *
123  * 2) Virtual address space backed slab.  Callers of the Solaris slab
124  *    expect it to work well for both small are very large allocations.
125  *    Because of memory fragmentation the Linux slab which is backed
126  *    by kmalloc'ed memory performs very badly when confronted with
127  *    large numbers of large allocations.  Basing the slab on the
128  *    virtual address space removes the need for contiguous pages
129  *    and greatly improve performance for large allocations.
130  *
131  * For these reasons, the SPL has its own slab implementation with
132  * the needed features.  It is not as highly optimized as either the
133  * Solaris or Linux slabs, but it should get me most of what is
134  * needed until it can be optimized or obsoleted by another approach.
135  *
136  * One serious concern I do have about this method is the relatively
137  * small virtual address space on 32bit arches.  This will seriously
138  * constrain the size of the slab caches and their performance.
139  */
140 
141 struct list_head spl_kmem_cache_list;   /* List of caches */
142 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
143 static taskq_t *spl_kmem_cache_taskq;   /* Task queue for aging / reclaim */
144 
145 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
146 
147 static void *
148 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
149 {
150 	gfp_t lflags = kmem_flags_convert(flags);
151 	void *ptr;
152 
153 	ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
154 
155 	/* Resulting allocated memory will be page aligned */
156 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
157 
158 	return (ptr);
159 }
160 
161 static void
162 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
163 {
164 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
165 
166 	/*
167 	 * The Linux direct reclaim path uses this out of band value to
168 	 * determine if forward progress is being made.  Normally this is
169 	 * incremented by kmem_freepages() which is part of the various
170 	 * Linux slab implementations.  However, since we are using none
171 	 * of that infrastructure we are responsible for incrementing it.
172 	 */
173 	if (current->reclaim_state)
174 #ifdef	HAVE_RECLAIM_STATE_RECLAIMED
175 		current->reclaim_state->reclaimed += size >> PAGE_SHIFT;
176 #else
177 		current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
178 #endif
179 	vfree(ptr);
180 }
181 
182 /*
183  * Required space for each aligned sks.
184  */
185 static inline uint32_t
186 spl_sks_size(spl_kmem_cache_t *skc)
187 {
188 	return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
189 	    skc->skc_obj_align, uint32_t));
190 }
191 
192 /*
193  * Required space for each aligned object.
194  */
195 static inline uint32_t
196 spl_obj_size(spl_kmem_cache_t *skc)
197 {
198 	uint32_t align = skc->skc_obj_align;
199 
200 	return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
201 	    P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
202 }
203 
204 uint64_t
205 spl_kmem_cache_inuse(kmem_cache_t *cache)
206 {
207 	return (cache->skc_obj_total);
208 }
209 EXPORT_SYMBOL(spl_kmem_cache_inuse);
210 
211 uint64_t
212 spl_kmem_cache_entry_size(kmem_cache_t *cache)
213 {
214 	return (cache->skc_obj_size);
215 }
216 EXPORT_SYMBOL(spl_kmem_cache_entry_size);
217 
218 /*
219  * Lookup the spl_kmem_object_t for an object given that object.
220  */
221 static inline spl_kmem_obj_t *
222 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
223 {
224 	return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
225 	    skc->skc_obj_align, uint32_t));
226 }
227 
228 /*
229  * It's important that we pack the spl_kmem_obj_t structure and the
230  * actual objects in to one large address space to minimize the number
231  * of calls to the allocator.  It is far better to do a few large
232  * allocations and then subdivide it ourselves.  Now which allocator
233  * we use requires balancing a few trade offs.
234  *
235  * For small objects we use kmem_alloc() because as long as you are
236  * only requesting a small number of pages (ideally just one) its cheap.
237  * However, when you start requesting multiple pages with kmem_alloc()
238  * it gets increasingly expensive since it requires contiguous pages.
239  * For this reason we shift to vmem_alloc() for slabs of large objects
240  * which removes the need for contiguous pages.  We do not use
241  * vmem_alloc() in all cases because there is significant locking
242  * overhead in __get_vm_area_node().  This function takes a single
243  * global lock when acquiring an available virtual address range which
244  * serializes all vmem_alloc()'s for all slab caches.  Using slightly
245  * different allocation functions for small and large objects should
246  * give us the best of both worlds.
247  *
248  * +------------------------+
249  * | spl_kmem_slab_t --+-+  |
250  * | skc_obj_size    <-+ |  |
251  * | spl_kmem_obj_t      |  |
252  * | skc_obj_size    <---+  |
253  * | spl_kmem_obj_t      |  |
254  * | ...                 v  |
255  * +------------------------+
256  */
257 static spl_kmem_slab_t *
258 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
259 {
260 	spl_kmem_slab_t *sks;
261 	void *base;
262 	uint32_t obj_size;
263 
264 	base = kv_alloc(skc, skc->skc_slab_size, flags);
265 	if (base == NULL)
266 		return (NULL);
267 
268 	sks = (spl_kmem_slab_t *)base;
269 	sks->sks_magic = SKS_MAGIC;
270 	sks->sks_objs = skc->skc_slab_objs;
271 	sks->sks_age = jiffies;
272 	sks->sks_cache = skc;
273 	INIT_LIST_HEAD(&sks->sks_list);
274 	INIT_LIST_HEAD(&sks->sks_free_list);
275 	sks->sks_ref = 0;
276 	obj_size = spl_obj_size(skc);
277 
278 	for (int i = 0; i < sks->sks_objs; i++) {
279 		void *obj = base + spl_sks_size(skc) + (i * obj_size);
280 
281 		ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
282 		spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
283 		sko->sko_addr = obj;
284 		sko->sko_magic = SKO_MAGIC;
285 		sko->sko_slab = sks;
286 		INIT_LIST_HEAD(&sko->sko_list);
287 		list_add_tail(&sko->sko_list, &sks->sks_free_list);
288 	}
289 
290 	return (sks);
291 }
292 
293 /*
294  * Remove a slab from complete or partial list, it must be called with
295  * the 'skc->skc_lock' held but the actual free must be performed
296  * outside the lock to prevent deadlocking on vmem addresses.
297  */
298 static void
299 spl_slab_free(spl_kmem_slab_t *sks,
300     struct list_head *sks_list, struct list_head *sko_list)
301 {
302 	spl_kmem_cache_t *skc;
303 
304 	ASSERT(sks->sks_magic == SKS_MAGIC);
305 	ASSERT(sks->sks_ref == 0);
306 
307 	skc = sks->sks_cache;
308 	ASSERT(skc->skc_magic == SKC_MAGIC);
309 
310 	/*
311 	 * Update slab/objects counters in the cache, then remove the
312 	 * slab from the skc->skc_partial_list.  Finally add the slab
313 	 * and all its objects in to the private work lists where the
314 	 * destructors will be called and the memory freed to the system.
315 	 */
316 	skc->skc_obj_total -= sks->sks_objs;
317 	skc->skc_slab_total--;
318 	list_del(&sks->sks_list);
319 	list_add(&sks->sks_list, sks_list);
320 	list_splice_init(&sks->sks_free_list, sko_list);
321 }
322 
323 /*
324  * Reclaim empty slabs at the end of the partial list.
325  */
326 static void
327 spl_slab_reclaim(spl_kmem_cache_t *skc)
328 {
329 	spl_kmem_slab_t *sks = NULL, *m = NULL;
330 	spl_kmem_obj_t *sko = NULL, *n = NULL;
331 	LIST_HEAD(sks_list);
332 	LIST_HEAD(sko_list);
333 
334 	/*
335 	 * Empty slabs and objects must be moved to a private list so they
336 	 * can be safely freed outside the spin lock.  All empty slabs are
337 	 * at the end of skc->skc_partial_list, therefore once a non-empty
338 	 * slab is found we can stop scanning.
339 	 */
340 	spin_lock(&skc->skc_lock);
341 	list_for_each_entry_safe_reverse(sks, m,
342 	    &skc->skc_partial_list, sks_list) {
343 
344 		if (sks->sks_ref > 0)
345 			break;
346 
347 		spl_slab_free(sks, &sks_list, &sko_list);
348 	}
349 	spin_unlock(&skc->skc_lock);
350 
351 	/*
352 	 * The following two loops ensure all the object destructors are run,
353 	 * and the slabs themselves are freed.  This is all done outside the
354 	 * skc->skc_lock since this allows the destructor to sleep, and
355 	 * allows us to perform a conditional reschedule when a freeing a
356 	 * large number of objects and slabs back to the system.
357 	 */
358 
359 	list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
360 		ASSERT(sko->sko_magic == SKO_MAGIC);
361 	}
362 
363 	list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
364 		ASSERT(sks->sks_magic == SKS_MAGIC);
365 		kv_free(skc, sks, skc->skc_slab_size);
366 	}
367 }
368 
369 static spl_kmem_emergency_t *
370 spl_emergency_search(struct rb_root *root, void *obj)
371 {
372 	struct rb_node *node = root->rb_node;
373 	spl_kmem_emergency_t *ske;
374 	unsigned long address = (unsigned long)obj;
375 
376 	while (node) {
377 		ske = container_of(node, spl_kmem_emergency_t, ske_node);
378 
379 		if (address < ske->ske_obj)
380 			node = node->rb_left;
381 		else if (address > ske->ske_obj)
382 			node = node->rb_right;
383 		else
384 			return (ske);
385 	}
386 
387 	return (NULL);
388 }
389 
390 static int
391 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
392 {
393 	struct rb_node **new = &(root->rb_node), *parent = NULL;
394 	spl_kmem_emergency_t *ske_tmp;
395 	unsigned long address = ske->ske_obj;
396 
397 	while (*new) {
398 		ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
399 
400 		parent = *new;
401 		if (address < ske_tmp->ske_obj)
402 			new = &((*new)->rb_left);
403 		else if (address > ske_tmp->ske_obj)
404 			new = &((*new)->rb_right);
405 		else
406 			return (0);
407 	}
408 
409 	rb_link_node(&ske->ske_node, parent, new);
410 	rb_insert_color(&ske->ske_node, root);
411 
412 	return (1);
413 }
414 
415 /*
416  * Allocate a single emergency object and track it in a red black tree.
417  */
418 static int
419 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
420 {
421 	gfp_t lflags = kmem_flags_convert(flags);
422 	spl_kmem_emergency_t *ske;
423 	int order = get_order(skc->skc_obj_size);
424 	int empty;
425 
426 	/* Last chance use a partial slab if one now exists */
427 	spin_lock(&skc->skc_lock);
428 	empty = list_empty(&skc->skc_partial_list);
429 	spin_unlock(&skc->skc_lock);
430 	if (!empty)
431 		return (-EEXIST);
432 
433 	ske = kmalloc(sizeof (*ske), lflags);
434 	if (ske == NULL)
435 		return (-ENOMEM);
436 
437 	ske->ske_obj = __get_free_pages(lflags, order);
438 	if (ske->ske_obj == 0) {
439 		kfree(ske);
440 		return (-ENOMEM);
441 	}
442 
443 	spin_lock(&skc->skc_lock);
444 	empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
445 	if (likely(empty)) {
446 		skc->skc_obj_total++;
447 		skc->skc_obj_emergency++;
448 		if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
449 			skc->skc_obj_emergency_max = skc->skc_obj_emergency;
450 	}
451 	spin_unlock(&skc->skc_lock);
452 
453 	if (unlikely(!empty)) {
454 		free_pages(ske->ske_obj, order);
455 		kfree(ske);
456 		return (-EINVAL);
457 	}
458 
459 	*obj = (void *)ske->ske_obj;
460 
461 	return (0);
462 }
463 
464 /*
465  * Locate the passed object in the red black tree and free it.
466  */
467 static int
468 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
469 {
470 	spl_kmem_emergency_t *ske;
471 	int order = get_order(skc->skc_obj_size);
472 
473 	spin_lock(&skc->skc_lock);
474 	ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
475 	if (ske) {
476 		rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
477 		skc->skc_obj_emergency--;
478 		skc->skc_obj_total--;
479 	}
480 	spin_unlock(&skc->skc_lock);
481 
482 	if (ske == NULL)
483 		return (-ENOENT);
484 
485 	free_pages(ske->ske_obj, order);
486 	kfree(ske);
487 
488 	return (0);
489 }
490 
491 /*
492  * Release objects from the per-cpu magazine back to their slab.  The flush
493  * argument contains the max number of entries to remove from the magazine.
494  */
495 static void
496 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
497 {
498 	spin_lock(&skc->skc_lock);
499 
500 	ASSERT(skc->skc_magic == SKC_MAGIC);
501 	ASSERT(skm->skm_magic == SKM_MAGIC);
502 
503 	int count = MIN(flush, skm->skm_avail);
504 	for (int i = 0; i < count; i++)
505 		spl_cache_shrink(skc, skm->skm_objs[i]);
506 
507 	skm->skm_avail -= count;
508 	memmove(skm->skm_objs, &(skm->skm_objs[count]),
509 	    sizeof (void *) * skm->skm_avail);
510 
511 	spin_unlock(&skc->skc_lock);
512 }
513 
514 /*
515  * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
516  * When on-slab we want to target spl_kmem_cache_obj_per_slab.  However,
517  * for very small objects we may end up with more than this so as not
518  * to waste space in the minimal allocation of a single page.
519  */
520 static int
521 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
522 {
523 	uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
524 
525 	sks_size = spl_sks_size(skc);
526 	obj_size = spl_obj_size(skc);
527 	max_size = (spl_kmem_cache_max_size * 1024 * 1024);
528 	tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
529 
530 	if (tgt_size <= max_size) {
531 		tgt_objs = (tgt_size - sks_size) / obj_size;
532 	} else {
533 		tgt_objs = (max_size - sks_size) / obj_size;
534 		tgt_size = (tgt_objs * obj_size) + sks_size;
535 	}
536 
537 	if (tgt_objs == 0)
538 		return (-ENOSPC);
539 
540 	*objs = tgt_objs;
541 	*size = tgt_size;
542 
543 	return (0);
544 }
545 
546 /*
547  * Make a guess at reasonable per-cpu magazine size based on the size of
548  * each object and the cost of caching N of them in each magazine.  Long
549  * term this should really adapt based on an observed usage heuristic.
550  */
551 static int
552 spl_magazine_size(spl_kmem_cache_t *skc)
553 {
554 	uint32_t obj_size = spl_obj_size(skc);
555 	int size;
556 
557 	if (spl_kmem_cache_magazine_size > 0)
558 		return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
559 
560 	/* Per-magazine sizes below assume a 4Kib page size */
561 	if (obj_size > (PAGE_SIZE * 256))
562 		size = 4;  /* Minimum 4Mib per-magazine */
563 	else if (obj_size > (PAGE_SIZE * 32))
564 		size = 16; /* Minimum 2Mib per-magazine */
565 	else if (obj_size > (PAGE_SIZE))
566 		size = 64; /* Minimum 256Kib per-magazine */
567 	else if (obj_size > (PAGE_SIZE / 4))
568 		size = 128; /* Minimum 128Kib per-magazine */
569 	else
570 		size = 256;
571 
572 	return (size);
573 }
574 
575 /*
576  * Allocate a per-cpu magazine to associate with a specific core.
577  */
578 static spl_kmem_magazine_t *
579 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
580 {
581 	spl_kmem_magazine_t *skm;
582 	int size = sizeof (spl_kmem_magazine_t) +
583 	    sizeof (void *) * skc->skc_mag_size;
584 
585 	skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
586 	if (skm) {
587 		skm->skm_magic = SKM_MAGIC;
588 		skm->skm_avail = 0;
589 		skm->skm_size = skc->skc_mag_size;
590 		skm->skm_refill = skc->skc_mag_refill;
591 		skm->skm_cache = skc;
592 		skm->skm_cpu = cpu;
593 	}
594 
595 	return (skm);
596 }
597 
598 /*
599  * Free a per-cpu magazine associated with a specific core.
600  */
601 static void
602 spl_magazine_free(spl_kmem_magazine_t *skm)
603 {
604 	ASSERT(skm->skm_magic == SKM_MAGIC);
605 	ASSERT(skm->skm_avail == 0);
606 	kfree(skm);
607 }
608 
609 /*
610  * Create all pre-cpu magazines of reasonable sizes.
611  */
612 static int
613 spl_magazine_create(spl_kmem_cache_t *skc)
614 {
615 	int i = 0;
616 
617 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
618 
619 	skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
620 	    num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
621 	skc->skc_mag_size = spl_magazine_size(skc);
622 	skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
623 
624 	for_each_possible_cpu(i) {
625 		skc->skc_mag[i] = spl_magazine_alloc(skc, i);
626 		if (!skc->skc_mag[i]) {
627 			for (i--; i >= 0; i--)
628 				spl_magazine_free(skc->skc_mag[i]);
629 
630 			kfree(skc->skc_mag);
631 			return (-ENOMEM);
632 		}
633 	}
634 
635 	return (0);
636 }
637 
638 /*
639  * Destroy all pre-cpu magazines.
640  */
641 static void
642 spl_magazine_destroy(spl_kmem_cache_t *skc)
643 {
644 	spl_kmem_magazine_t *skm;
645 	int i = 0;
646 
647 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
648 
649 	for_each_possible_cpu(i) {
650 		skm = skc->skc_mag[i];
651 		spl_cache_flush(skc, skm, skm->skm_avail);
652 		spl_magazine_free(skm);
653 	}
654 
655 	kfree(skc->skc_mag);
656 }
657 
658 /*
659  * Create a object cache based on the following arguments:
660  * name		cache name
661  * size		cache object size
662  * align	cache object alignment
663  * ctor		cache object constructor
664  * dtor		cache object destructor
665  * reclaim	cache object reclaim
666  * priv		cache private data for ctor/dtor/reclaim
667  * vmp		unused must be NULL
668  * flags
669  *	KMC_KVMEM       Force kvmem backed SPL cache
670  *	KMC_SLAB        Force Linux slab backed cache
671  *	KMC_NODEBUG	Disable debugging (unsupported)
672  */
673 spl_kmem_cache_t *
674 spl_kmem_cache_create(const char *name, size_t size, size_t align,
675     spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
676     void *priv, void *vmp, int flags)
677 {
678 	gfp_t lflags = kmem_flags_convert(KM_SLEEP);
679 	spl_kmem_cache_t *skc;
680 	int rc;
681 
682 	/*
683 	 * Unsupported flags
684 	 */
685 	ASSERT(vmp == NULL);
686 	ASSERT(reclaim == NULL);
687 
688 	might_sleep();
689 
690 	skc = kzalloc(sizeof (*skc), lflags);
691 	if (skc == NULL)
692 		return (NULL);
693 
694 	skc->skc_magic = SKC_MAGIC;
695 	skc->skc_name_size = strlen(name) + 1;
696 	skc->skc_name = kmalloc(skc->skc_name_size, lflags);
697 	if (skc->skc_name == NULL) {
698 		kfree(skc);
699 		return (NULL);
700 	}
701 	strlcpy(skc->skc_name, name, skc->skc_name_size);
702 
703 	skc->skc_ctor = ctor;
704 	skc->skc_dtor = dtor;
705 	skc->skc_private = priv;
706 	skc->skc_vmp = vmp;
707 	skc->skc_linux_cache = NULL;
708 	skc->skc_flags = flags;
709 	skc->skc_obj_size = size;
710 	skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
711 	atomic_set(&skc->skc_ref, 0);
712 
713 	INIT_LIST_HEAD(&skc->skc_list);
714 	INIT_LIST_HEAD(&skc->skc_complete_list);
715 	INIT_LIST_HEAD(&skc->skc_partial_list);
716 	skc->skc_emergency_tree = RB_ROOT;
717 	spin_lock_init(&skc->skc_lock);
718 	init_waitqueue_head(&skc->skc_waitq);
719 	skc->skc_slab_fail = 0;
720 	skc->skc_slab_create = 0;
721 	skc->skc_slab_destroy = 0;
722 	skc->skc_slab_total = 0;
723 	skc->skc_slab_alloc = 0;
724 	skc->skc_slab_max = 0;
725 	skc->skc_obj_total = 0;
726 	skc->skc_obj_alloc = 0;
727 	skc->skc_obj_max = 0;
728 	skc->skc_obj_deadlock = 0;
729 	skc->skc_obj_emergency = 0;
730 	skc->skc_obj_emergency_max = 0;
731 
732 	rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0,
733 	    GFP_KERNEL);
734 	if (rc != 0) {
735 		kfree(skc);
736 		return (NULL);
737 	}
738 
739 	/*
740 	 * Verify the requested alignment restriction is sane.
741 	 */
742 	if (align) {
743 		VERIFY(ISP2(align));
744 		VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
745 		VERIFY3U(align, <=, PAGE_SIZE);
746 		skc->skc_obj_align = align;
747 	}
748 
749 	/*
750 	 * When no specific type of slab is requested (kmem, vmem, or
751 	 * linuxslab) then select a cache type based on the object size
752 	 * and default tunables.
753 	 */
754 	if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
755 		if (spl_kmem_cache_slab_limit &&
756 		    size <= (size_t)spl_kmem_cache_slab_limit) {
757 			/*
758 			 * Objects smaller than spl_kmem_cache_slab_limit can
759 			 * use the Linux slab for better space-efficiency.
760 			 */
761 			skc->skc_flags |= KMC_SLAB;
762 		} else {
763 			/*
764 			 * All other objects are considered large and are
765 			 * placed on kvmem backed slabs.
766 			 */
767 			skc->skc_flags |= KMC_KVMEM;
768 		}
769 	}
770 
771 	/*
772 	 * Given the type of slab allocate the required resources.
773 	 */
774 	if (skc->skc_flags & KMC_KVMEM) {
775 		rc = spl_slab_size(skc,
776 		    &skc->skc_slab_objs, &skc->skc_slab_size);
777 		if (rc)
778 			goto out;
779 
780 		rc = spl_magazine_create(skc);
781 		if (rc)
782 			goto out;
783 	} else {
784 		unsigned long slabflags = 0;
785 
786 		if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE))
787 			goto out;
788 
789 #if defined(SLAB_USERCOPY)
790 		/*
791 		 * Required for PAX-enabled kernels if the slab is to be
792 		 * used for copying between user and kernel space.
793 		 */
794 		slabflags |= SLAB_USERCOPY;
795 #endif
796 
797 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
798 		/*
799 		 * Newer grsec patchset uses kmem_cache_create_usercopy()
800 		 * instead of SLAB_USERCOPY flag
801 		 */
802 		skc->skc_linux_cache = kmem_cache_create_usercopy(
803 		    skc->skc_name, size, align, slabflags, 0, size, NULL);
804 #else
805 		skc->skc_linux_cache = kmem_cache_create(
806 		    skc->skc_name, size, align, slabflags, NULL);
807 #endif
808 		if (skc->skc_linux_cache == NULL)
809 			goto out;
810 	}
811 
812 	down_write(&spl_kmem_cache_sem);
813 	list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
814 	up_write(&spl_kmem_cache_sem);
815 
816 	return (skc);
817 out:
818 	kfree(skc->skc_name);
819 	percpu_counter_destroy(&skc->skc_linux_alloc);
820 	kfree(skc);
821 	return (NULL);
822 }
823 EXPORT_SYMBOL(spl_kmem_cache_create);
824 
825 /*
826  * Register a move callback for cache defragmentation.
827  * XXX: Unimplemented but harmless to stub out for now.
828  */
829 void
830 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
831     kmem_cbrc_t (move)(void *, void *, size_t, void *))
832 {
833 	ASSERT(move != NULL);
834 }
835 EXPORT_SYMBOL(spl_kmem_cache_set_move);
836 
837 /*
838  * Destroy a cache and all objects associated with the cache.
839  */
840 void
841 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
842 {
843 	DECLARE_WAIT_QUEUE_HEAD(wq);
844 	taskqid_t id;
845 
846 	ASSERT(skc->skc_magic == SKC_MAGIC);
847 	ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
848 
849 	down_write(&spl_kmem_cache_sem);
850 	list_del_init(&skc->skc_list);
851 	up_write(&spl_kmem_cache_sem);
852 
853 	/* Cancel any and wait for any pending delayed tasks */
854 	VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
855 
856 	spin_lock(&skc->skc_lock);
857 	id = skc->skc_taskqid;
858 	spin_unlock(&skc->skc_lock);
859 
860 	taskq_cancel_id(spl_kmem_cache_taskq, id);
861 
862 	/*
863 	 * Wait until all current callers complete, this is mainly
864 	 * to catch the case where a low memory situation triggers a
865 	 * cache reaping action which races with this destroy.
866 	 */
867 	wait_event(wq, atomic_read(&skc->skc_ref) == 0);
868 
869 	if (skc->skc_flags & KMC_KVMEM) {
870 		spl_magazine_destroy(skc);
871 		spl_slab_reclaim(skc);
872 	} else {
873 		ASSERT(skc->skc_flags & KMC_SLAB);
874 		kmem_cache_destroy(skc->skc_linux_cache);
875 	}
876 
877 	spin_lock(&skc->skc_lock);
878 
879 	/*
880 	 * Validate there are no objects in use and free all the
881 	 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
882 	 */
883 	ASSERT3U(skc->skc_slab_alloc, ==, 0);
884 	ASSERT3U(skc->skc_obj_alloc, ==, 0);
885 	ASSERT3U(skc->skc_slab_total, ==, 0);
886 	ASSERT3U(skc->skc_obj_total, ==, 0);
887 	ASSERT3U(skc->skc_obj_emergency, ==, 0);
888 	ASSERT(list_empty(&skc->skc_complete_list));
889 
890 	ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
891 	percpu_counter_destroy(&skc->skc_linux_alloc);
892 
893 	spin_unlock(&skc->skc_lock);
894 
895 	kfree(skc->skc_name);
896 	kfree(skc);
897 }
898 EXPORT_SYMBOL(spl_kmem_cache_destroy);
899 
900 /*
901  * Allocate an object from a slab attached to the cache.  This is used to
902  * repopulate the per-cpu magazine caches in batches when they run low.
903  */
904 static void *
905 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
906 {
907 	spl_kmem_obj_t *sko;
908 
909 	ASSERT(skc->skc_magic == SKC_MAGIC);
910 	ASSERT(sks->sks_magic == SKS_MAGIC);
911 
912 	sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
913 	ASSERT(sko->sko_magic == SKO_MAGIC);
914 	ASSERT(sko->sko_addr != NULL);
915 
916 	/* Remove from sks_free_list */
917 	list_del_init(&sko->sko_list);
918 
919 	sks->sks_age = jiffies;
920 	sks->sks_ref++;
921 	skc->skc_obj_alloc++;
922 
923 	/* Track max obj usage statistics */
924 	if (skc->skc_obj_alloc > skc->skc_obj_max)
925 		skc->skc_obj_max = skc->skc_obj_alloc;
926 
927 	/* Track max slab usage statistics */
928 	if (sks->sks_ref == 1) {
929 		skc->skc_slab_alloc++;
930 
931 		if (skc->skc_slab_alloc > skc->skc_slab_max)
932 			skc->skc_slab_max = skc->skc_slab_alloc;
933 	}
934 
935 	return (sko->sko_addr);
936 }
937 
938 /*
939  * Generic slab allocation function to run by the global work queues.
940  * It is responsible for allocating a new slab, linking it in to the list
941  * of partial slabs, and then waking any waiters.
942  */
943 static int
944 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
945 {
946 	spl_kmem_slab_t *sks;
947 
948 	fstrans_cookie_t cookie = spl_fstrans_mark();
949 	sks = spl_slab_alloc(skc, flags);
950 	spl_fstrans_unmark(cookie);
951 
952 	spin_lock(&skc->skc_lock);
953 	if (sks) {
954 		skc->skc_slab_total++;
955 		skc->skc_obj_total += sks->sks_objs;
956 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
957 
958 		smp_mb__before_atomic();
959 		clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
960 		smp_mb__after_atomic();
961 	}
962 	spin_unlock(&skc->skc_lock);
963 
964 	return (sks == NULL ? -ENOMEM : 0);
965 }
966 
967 static void
968 spl_cache_grow_work(void *data)
969 {
970 	spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
971 	spl_kmem_cache_t *skc = ska->ska_cache;
972 
973 	int error = __spl_cache_grow(skc, ska->ska_flags);
974 
975 	atomic_dec(&skc->skc_ref);
976 	smp_mb__before_atomic();
977 	clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
978 	smp_mb__after_atomic();
979 	if (error == 0)
980 		wake_up_all(&skc->skc_waitq);
981 
982 	kfree(ska);
983 }
984 
985 /*
986  * Returns non-zero when a new slab should be available.
987  */
988 static int
989 spl_cache_grow_wait(spl_kmem_cache_t *skc)
990 {
991 	return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
992 }
993 
994 /*
995  * No available objects on any slabs, create a new slab.  Note that this
996  * functionality is disabled for KMC_SLAB caches which are backed by the
997  * Linux slab.
998  */
999 static int
1000 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1001 {
1002 	int remaining, rc = 0;
1003 
1004 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1005 	ASSERT(skc->skc_magic == SKC_MAGIC);
1006 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1007 
1008 	*obj = NULL;
1009 
1010 	/*
1011 	 * Since we can't sleep attempt an emergency allocation to satisfy
1012 	 * the request.  The only alterative is to fail the allocation but
1013 	 * it's preferable try.  The use of KM_NOSLEEP is expected to be rare.
1014 	 */
1015 	if (flags & KM_NOSLEEP)
1016 		return (spl_emergency_alloc(skc, flags, obj));
1017 
1018 	might_sleep();
1019 
1020 	/*
1021 	 * Before allocating a new slab wait for any reaping to complete and
1022 	 * then return so the local magazine can be rechecked for new objects.
1023 	 */
1024 	if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1025 		rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1026 		    TASK_UNINTERRUPTIBLE);
1027 		return (rc ? rc : -EAGAIN);
1028 	}
1029 
1030 	/*
1031 	 * Note: It would be nice to reduce the overhead of context switch
1032 	 * and improve NUMA locality, by trying to allocate a new slab in the
1033 	 * current process context with KM_NOSLEEP flag.
1034 	 *
1035 	 * However, this can't be applied to vmem/kvmem due to a bug that
1036 	 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1037 	 */
1038 
1039 	/*
1040 	 * This is handled by dispatching a work request to the global work
1041 	 * queue.  This allows us to asynchronously allocate a new slab while
1042 	 * retaining the ability to safely fall back to a smaller synchronous
1043 	 * allocations to ensure forward progress is always maintained.
1044 	 */
1045 	if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1046 		spl_kmem_alloc_t *ska;
1047 
1048 		ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1049 		if (ska == NULL) {
1050 			clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1051 			smp_mb__after_atomic();
1052 			wake_up_all(&skc->skc_waitq);
1053 			return (-ENOMEM);
1054 		}
1055 
1056 		atomic_inc(&skc->skc_ref);
1057 		ska->ska_cache = skc;
1058 		ska->ska_flags = flags;
1059 		taskq_init_ent(&ska->ska_tqe);
1060 		taskq_dispatch_ent(spl_kmem_cache_taskq,
1061 		    spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1062 	}
1063 
1064 	/*
1065 	 * The goal here is to only detect the rare case where a virtual slab
1066 	 * allocation has deadlocked.  We must be careful to minimize the use
1067 	 * of emergency objects which are more expensive to track.  Therefore,
1068 	 * we set a very long timeout for the asynchronous allocation and if
1069 	 * the timeout is reached the cache is flagged as deadlocked.  From
1070 	 * this point only new emergency objects will be allocated until the
1071 	 * asynchronous allocation completes and clears the deadlocked flag.
1072 	 */
1073 	if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1074 		rc = spl_emergency_alloc(skc, flags, obj);
1075 	} else {
1076 		remaining = wait_event_timeout(skc->skc_waitq,
1077 		    spl_cache_grow_wait(skc), HZ / 10);
1078 
1079 		if (!remaining) {
1080 			spin_lock(&skc->skc_lock);
1081 			if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1082 				set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1083 				skc->skc_obj_deadlock++;
1084 			}
1085 			spin_unlock(&skc->skc_lock);
1086 		}
1087 
1088 		rc = -ENOMEM;
1089 	}
1090 
1091 	return (rc);
1092 }
1093 
1094 /*
1095  * Refill a per-cpu magazine with objects from the slabs for this cache.
1096  * Ideally the magazine can be repopulated using existing objects which have
1097  * been released, however if we are unable to locate enough free objects new
1098  * slabs of objects will be created.  On success NULL is returned, otherwise
1099  * the address of a single emergency object is returned for use by the caller.
1100  */
1101 static void *
1102 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1103 {
1104 	spl_kmem_slab_t *sks;
1105 	int count = 0, rc, refill;
1106 	void *obj = NULL;
1107 
1108 	ASSERT(skc->skc_magic == SKC_MAGIC);
1109 	ASSERT(skm->skm_magic == SKM_MAGIC);
1110 
1111 	refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1112 	spin_lock(&skc->skc_lock);
1113 
1114 	while (refill > 0) {
1115 		/* No slabs available we may need to grow the cache */
1116 		if (list_empty(&skc->skc_partial_list)) {
1117 			spin_unlock(&skc->skc_lock);
1118 
1119 			local_irq_enable();
1120 			rc = spl_cache_grow(skc, flags, &obj);
1121 			local_irq_disable();
1122 
1123 			/* Emergency object for immediate use by caller */
1124 			if (rc == 0 && obj != NULL)
1125 				return (obj);
1126 
1127 			if (rc)
1128 				goto out;
1129 
1130 			/* Rescheduled to different CPU skm is not local */
1131 			if (skm != skc->skc_mag[smp_processor_id()])
1132 				goto out;
1133 
1134 			/*
1135 			 * Potentially rescheduled to the same CPU but
1136 			 * allocations may have occurred from this CPU while
1137 			 * we were sleeping so recalculate max refill.
1138 			 */
1139 			refill = MIN(refill, skm->skm_size - skm->skm_avail);
1140 
1141 			spin_lock(&skc->skc_lock);
1142 			continue;
1143 		}
1144 
1145 		/* Grab the next available slab */
1146 		sks = list_entry((&skc->skc_partial_list)->next,
1147 		    spl_kmem_slab_t, sks_list);
1148 		ASSERT(sks->sks_magic == SKS_MAGIC);
1149 		ASSERT(sks->sks_ref < sks->sks_objs);
1150 		ASSERT(!list_empty(&sks->sks_free_list));
1151 
1152 		/*
1153 		 * Consume as many objects as needed to refill the requested
1154 		 * cache.  We must also be careful not to overfill it.
1155 		 */
1156 		while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1157 		    ++count) {
1158 			ASSERT(skm->skm_avail < skm->skm_size);
1159 			ASSERT(count < skm->skm_size);
1160 			skm->skm_objs[skm->skm_avail++] =
1161 			    spl_cache_obj(skc, sks);
1162 		}
1163 
1164 		/* Move slab to skc_complete_list when full */
1165 		if (sks->sks_ref == sks->sks_objs) {
1166 			list_del(&sks->sks_list);
1167 			list_add(&sks->sks_list, &skc->skc_complete_list);
1168 		}
1169 	}
1170 
1171 	spin_unlock(&skc->skc_lock);
1172 out:
1173 	return (NULL);
1174 }
1175 
1176 /*
1177  * Release an object back to the slab from which it came.
1178  */
1179 static void
1180 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1181 {
1182 	spl_kmem_slab_t *sks = NULL;
1183 	spl_kmem_obj_t *sko = NULL;
1184 
1185 	ASSERT(skc->skc_magic == SKC_MAGIC);
1186 
1187 	sko = spl_sko_from_obj(skc, obj);
1188 	ASSERT(sko->sko_magic == SKO_MAGIC);
1189 	sks = sko->sko_slab;
1190 	ASSERT(sks->sks_magic == SKS_MAGIC);
1191 	ASSERT(sks->sks_cache == skc);
1192 	list_add(&sko->sko_list, &sks->sks_free_list);
1193 
1194 	sks->sks_age = jiffies;
1195 	sks->sks_ref--;
1196 	skc->skc_obj_alloc--;
1197 
1198 	/*
1199 	 * Move slab to skc_partial_list when no longer full.  Slabs
1200 	 * are added to the head to keep the partial list is quasi-full
1201 	 * sorted order.  Fuller at the head, emptier at the tail.
1202 	 */
1203 	if (sks->sks_ref == (sks->sks_objs - 1)) {
1204 		list_del(&sks->sks_list);
1205 		list_add(&sks->sks_list, &skc->skc_partial_list);
1206 	}
1207 
1208 	/*
1209 	 * Move empty slabs to the end of the partial list so
1210 	 * they can be easily found and freed during reclamation.
1211 	 */
1212 	if (sks->sks_ref == 0) {
1213 		list_del(&sks->sks_list);
1214 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1215 		skc->skc_slab_alloc--;
1216 	}
1217 }
1218 
1219 /*
1220  * Allocate an object from the per-cpu magazine, or if the magazine
1221  * is empty directly allocate from a slab and repopulate the magazine.
1222  */
1223 void *
1224 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1225 {
1226 	spl_kmem_magazine_t *skm;
1227 	void *obj = NULL;
1228 
1229 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1230 	ASSERT(skc->skc_magic == SKC_MAGIC);
1231 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1232 
1233 	/*
1234 	 * Allocate directly from a Linux slab.  All optimizations are left
1235 	 * to the underlying cache we only need to guarantee that KM_SLEEP
1236 	 * callers will never fail.
1237 	 */
1238 	if (skc->skc_flags & KMC_SLAB) {
1239 		struct kmem_cache *slc = skc->skc_linux_cache;
1240 		do {
1241 			obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1242 		} while ((obj == NULL) && !(flags & KM_NOSLEEP));
1243 
1244 		if (obj != NULL) {
1245 			/*
1246 			 * Even though we leave everything up to the
1247 			 * underlying cache we still keep track of
1248 			 * how many objects we've allocated in it for
1249 			 * better debuggability.
1250 			 */
1251 			percpu_counter_inc(&skc->skc_linux_alloc);
1252 		}
1253 		goto ret;
1254 	}
1255 
1256 	local_irq_disable();
1257 
1258 restart:
1259 	/*
1260 	 * Safe to update per-cpu structure without lock, but
1261 	 * in the restart case we must be careful to reacquire
1262 	 * the local magazine since this may have changed
1263 	 * when we need to grow the cache.
1264 	 */
1265 	skm = skc->skc_mag[smp_processor_id()];
1266 	ASSERT(skm->skm_magic == SKM_MAGIC);
1267 
1268 	if (likely(skm->skm_avail)) {
1269 		/* Object available in CPU cache, use it */
1270 		obj = skm->skm_objs[--skm->skm_avail];
1271 	} else {
1272 		obj = spl_cache_refill(skc, skm, flags);
1273 		if ((obj == NULL) && !(flags & KM_NOSLEEP))
1274 			goto restart;
1275 
1276 		local_irq_enable();
1277 		goto ret;
1278 	}
1279 
1280 	local_irq_enable();
1281 	ASSERT(obj);
1282 	ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1283 
1284 ret:
1285 	/* Pre-emptively migrate object to CPU L1 cache */
1286 	if (obj) {
1287 		if (obj && skc->skc_ctor)
1288 			skc->skc_ctor(obj, skc->skc_private, flags);
1289 		else
1290 			prefetchw(obj);
1291 	}
1292 
1293 	return (obj);
1294 }
1295 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1296 
1297 /*
1298  * Free an object back to the local per-cpu magazine, there is no
1299  * guarantee that this is the same magazine the object was originally
1300  * allocated from.  We may need to flush entire from the magazine
1301  * back to the slabs to make space.
1302  */
1303 void
1304 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1305 {
1306 	spl_kmem_magazine_t *skm;
1307 	unsigned long flags;
1308 	int do_reclaim = 0;
1309 	int do_emergency = 0;
1310 
1311 	ASSERT(skc->skc_magic == SKC_MAGIC);
1312 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1313 
1314 	/*
1315 	 * Run the destructor
1316 	 */
1317 	if (skc->skc_dtor)
1318 		skc->skc_dtor(obj, skc->skc_private);
1319 
1320 	/*
1321 	 * Free the object from the Linux underlying Linux slab.
1322 	 */
1323 	if (skc->skc_flags & KMC_SLAB) {
1324 		kmem_cache_free(skc->skc_linux_cache, obj);
1325 		percpu_counter_dec(&skc->skc_linux_alloc);
1326 		return;
1327 	}
1328 
1329 	/*
1330 	 * While a cache has outstanding emergency objects all freed objects
1331 	 * must be checked.  However, since emergency objects will never use
1332 	 * a virtual address these objects can be safely excluded as an
1333 	 * optimization.
1334 	 */
1335 	if (!is_vmalloc_addr(obj)) {
1336 		spin_lock(&skc->skc_lock);
1337 		do_emergency = (skc->skc_obj_emergency > 0);
1338 		spin_unlock(&skc->skc_lock);
1339 
1340 		if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1341 			return;
1342 	}
1343 
1344 	local_irq_save(flags);
1345 
1346 	/*
1347 	 * Safe to update per-cpu structure without lock, but
1348 	 * no remote memory allocation tracking is being performed
1349 	 * it is entirely possible to allocate an object from one
1350 	 * CPU cache and return it to another.
1351 	 */
1352 	skm = skc->skc_mag[smp_processor_id()];
1353 	ASSERT(skm->skm_magic == SKM_MAGIC);
1354 
1355 	/*
1356 	 * Per-CPU cache full, flush it to make space for this object,
1357 	 * this may result in an empty slab which can be reclaimed once
1358 	 * interrupts are re-enabled.
1359 	 */
1360 	if (unlikely(skm->skm_avail >= skm->skm_size)) {
1361 		spl_cache_flush(skc, skm, skm->skm_refill);
1362 		do_reclaim = 1;
1363 	}
1364 
1365 	/* Available space in cache, use it */
1366 	skm->skm_objs[skm->skm_avail++] = obj;
1367 
1368 	local_irq_restore(flags);
1369 
1370 	if (do_reclaim)
1371 		spl_slab_reclaim(skc);
1372 }
1373 EXPORT_SYMBOL(spl_kmem_cache_free);
1374 
1375 /*
1376  * Depending on how many and which objects are released it may simply
1377  * repopulate the local magazine which will then need to age-out.  Objects
1378  * which cannot fit in the magazine will be released back to their slabs
1379  * which will also need to age out before being released.  This is all just
1380  * best effort and we do not want to thrash creating and destroying slabs.
1381  */
1382 void
1383 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1384 {
1385 	ASSERT(skc->skc_magic == SKC_MAGIC);
1386 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1387 
1388 	if (skc->skc_flags & KMC_SLAB)
1389 		return;
1390 
1391 	atomic_inc(&skc->skc_ref);
1392 
1393 	/*
1394 	 * Prevent concurrent cache reaping when contended.
1395 	 */
1396 	if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1397 		goto out;
1398 
1399 	/* Reclaim from the magazine and free all now empty slabs. */
1400 	unsigned long irq_flags;
1401 	local_irq_save(irq_flags);
1402 	spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1403 	spl_cache_flush(skc, skm, skm->skm_avail);
1404 	local_irq_restore(irq_flags);
1405 
1406 	spl_slab_reclaim(skc);
1407 	clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1408 	smp_mb__after_atomic();
1409 	wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1410 out:
1411 	atomic_dec(&skc->skc_ref);
1412 }
1413 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1414 
1415 /*
1416  * This is stubbed out for code consistency with other platforms.  There
1417  * is existing logic to prevent concurrent reaping so while this is ugly
1418  * it should do no harm.
1419  */
1420 int
1421 spl_kmem_cache_reap_active(void)
1422 {
1423 	return (0);
1424 }
1425 EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1426 
1427 /*
1428  * Reap all free slabs from all registered caches.
1429  */
1430 void
1431 spl_kmem_reap(void)
1432 {
1433 	spl_kmem_cache_t *skc = NULL;
1434 
1435 	down_read(&spl_kmem_cache_sem);
1436 	list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1437 		spl_kmem_cache_reap_now(skc);
1438 	}
1439 	up_read(&spl_kmem_cache_sem);
1440 }
1441 EXPORT_SYMBOL(spl_kmem_reap);
1442 
1443 int
1444 spl_kmem_cache_init(void)
1445 {
1446 	init_rwsem(&spl_kmem_cache_sem);
1447 	INIT_LIST_HEAD(&spl_kmem_cache_list);
1448 	spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1449 	    spl_kmem_cache_kmem_threads, maxclsyspri,
1450 	    spl_kmem_cache_kmem_threads * 8, INT_MAX,
1451 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1452 
1453 	if (spl_kmem_cache_taskq == NULL)
1454 		return (-ENOMEM);
1455 
1456 	return (0);
1457 }
1458 
1459 void
1460 spl_kmem_cache_fini(void)
1461 {
1462 	taskq_destroy(spl_kmem_cache_taskq);
1463 }
1464