1 /*
2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3  *  Copyright (C) 2007 The Regents of the University of California.
4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6  *  UCRL-CODE-235197
7  *
8  *  This file is part of the SPL, Solaris Porting Layer.
9  *  For details, see <http://zfsonlinux.org/>.
10  *
11  *  The SPL is free software; you can redistribute it and/or modify it
12  *  under the terms of the GNU General Public License as published by the
13  *  Free Software Foundation; either version 2 of the License, or (at your
14  *  option) any later version.
15  *
16  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
17  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19  *  for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include <linux/percpu_compat.h>
26 #include <sys/kmem.h>
27 #include <sys/kmem_cache.h>
28 #include <sys/taskq.h>
29 #include <sys/timer.h>
30 #include <sys/vmem.h>
31 #include <sys/wait.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/prefetch.h>
35 
36 /*
37  * Within the scope of spl-kmem.c file the kmem_cache_* definitions
38  * are removed to allow access to the real Linux slab allocator.
39  */
40 #undef kmem_cache_destroy
41 #undef kmem_cache_create
42 #undef kmem_cache_alloc
43 #undef kmem_cache_free
44 
45 
46 /*
47  * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
48  * with smp_mb__{before,after}_atomic() because they were redundant. This is
49  * only used inside our SLAB allocator, so we implement an internal wrapper
50  * here to give us smp_mb__{before,after}_atomic() on older kernels.
51  */
52 #ifndef smp_mb__before_atomic
53 #define	smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
54 #endif
55 
56 #ifndef smp_mb__after_atomic
57 #define	smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
58 #endif
59 
60 /* BEGIN CSTYLED */
61 
62 /*
63  * Cache magazines are an optimization designed to minimize the cost of
64  * allocating memory.  They do this by keeping a per-cpu cache of recently
65  * freed objects, which can then be reallocated without taking a lock. This
66  * can improve performance on highly contended caches.  However, because
67  * objects in magazines will prevent otherwise empty slabs from being
68  * immediately released this may not be ideal for low memory machines.
69  *
70  * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
71  * magazine size.  When this value is set to 0 the magazine size will be
72  * automatically determined based on the object size.  Otherwise magazines
73  * will be limited to 2-256 objects per magazine (i.e per cpu).  Magazines
74  * may never be entirely disabled in this implementation.
75  */
76 unsigned int spl_kmem_cache_magazine_size = 0;
77 module_param(spl_kmem_cache_magazine_size, uint, 0444);
78 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
79 	"Default magazine size (2-256), set automatically (0)");
80 
81 /*
82  * The default behavior is to report the number of objects remaining in the
83  * cache.  This allows the Linux VM to repeatedly reclaim objects from the
84  * cache when memory is low satisfy other memory allocations.  Alternately,
85  * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
86  * is reclaimed.  This may increase the likelihood of out of memory events.
87  */
88 unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
89 module_param(spl_kmem_cache_reclaim, uint, 0644);
90 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
91 
92 unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
93 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
94 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
95 
96 unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
97 module_param(spl_kmem_cache_max_size, uint, 0644);
98 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
99 
100 /*
101  * For small objects the Linux slab allocator should be used to make the most
102  * efficient use of the memory.  However, large objects are not supported by
103  * the Linux slab and therefore the SPL implementation is preferred.  A cutoff
104  * of 16K was determined to be optimal for architectures using 4K pages.
105  */
106 #if PAGE_SIZE == 4096
107 unsigned int spl_kmem_cache_slab_limit = 16384;
108 #else
109 unsigned int spl_kmem_cache_slab_limit = 0;
110 #endif
111 module_param(spl_kmem_cache_slab_limit, uint, 0644);
112 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
113 	"Objects less than N bytes use the Linux slab");
114 
115 /*
116  * The number of threads available to allocate new slabs for caches.  This
117  * should not need to be tuned but it is available for performance analysis.
118  */
119 unsigned int spl_kmem_cache_kmem_threads = 4;
120 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
121 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
122 	"Number of spl_kmem_cache threads");
123 /* END CSTYLED */
124 
125 /*
126  * Slab allocation interfaces
127  *
128  * While the Linux slab implementation was inspired by the Solaris
129  * implementation I cannot use it to emulate the Solaris APIs.  I
130  * require two features which are not provided by the Linux slab.
131  *
132  * 1) Constructors AND destructors.  Recent versions of the Linux
133  *    kernel have removed support for destructors.  This is a deal
134  *    breaker for the SPL which contains particularly expensive
135  *    initializers for mutex's, condition variables, etc.  We also
136  *    require a minimal level of cleanup for these data types unlike
137  *    many Linux data types which do need to be explicitly destroyed.
138  *
139  * 2) Virtual address space backed slab.  Callers of the Solaris slab
140  *    expect it to work well for both small are very large allocations.
141  *    Because of memory fragmentation the Linux slab which is backed
142  *    by kmalloc'ed memory performs very badly when confronted with
143  *    large numbers of large allocations.  Basing the slab on the
144  *    virtual address space removes the need for contiguous pages
145  *    and greatly improve performance for large allocations.
146  *
147  * For these reasons, the SPL has its own slab implementation with
148  * the needed features.  It is not as highly optimized as either the
149  * Solaris or Linux slabs, but it should get me most of what is
150  * needed until it can be optimized or obsoleted by another approach.
151  *
152  * One serious concern I do have about this method is the relatively
153  * small virtual address space on 32bit arches.  This will seriously
154  * constrain the size of the slab caches and their performance.
155  */
156 
157 struct list_head spl_kmem_cache_list;   /* List of caches */
158 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
159 taskq_t *spl_kmem_cache_taskq;		/* Task queue for aging / reclaim */
160 
161 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
162 
163 static void *
164 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
165 {
166 	gfp_t lflags = kmem_flags_convert(flags);
167 	void *ptr;
168 
169 	ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
170 
171 	/* Resulting allocated memory will be page aligned */
172 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
173 
174 	return (ptr);
175 }
176 
177 static void
178 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
179 {
180 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
181 
182 	/*
183 	 * The Linux direct reclaim path uses this out of band value to
184 	 * determine if forward progress is being made.  Normally this is
185 	 * incremented by kmem_freepages() which is part of the various
186 	 * Linux slab implementations.  However, since we are using none
187 	 * of that infrastructure we are responsible for incrementing it.
188 	 */
189 	if (current->reclaim_state)
190 		current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
191 
192 	vfree(ptr);
193 }
194 
195 /*
196  * Required space for each aligned sks.
197  */
198 static inline uint32_t
199 spl_sks_size(spl_kmem_cache_t *skc)
200 {
201 	return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
202 	    skc->skc_obj_align, uint32_t));
203 }
204 
205 /*
206  * Required space for each aligned object.
207  */
208 static inline uint32_t
209 spl_obj_size(spl_kmem_cache_t *skc)
210 {
211 	uint32_t align = skc->skc_obj_align;
212 
213 	return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
214 	    P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
215 }
216 
217 uint64_t
218 spl_kmem_cache_inuse(kmem_cache_t *cache)
219 {
220 	return (cache->skc_obj_total);
221 }
222 EXPORT_SYMBOL(spl_kmem_cache_inuse);
223 
224 uint64_t
225 spl_kmem_cache_entry_size(kmem_cache_t *cache)
226 {
227 	return (cache->skc_obj_size);
228 }
229 EXPORT_SYMBOL(spl_kmem_cache_entry_size);
230 
231 /*
232  * Lookup the spl_kmem_object_t for an object given that object.
233  */
234 static inline spl_kmem_obj_t *
235 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
236 {
237 	return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
238 	    skc->skc_obj_align, uint32_t));
239 }
240 
241 /*
242  * It's important that we pack the spl_kmem_obj_t structure and the
243  * actual objects in to one large address space to minimize the number
244  * of calls to the allocator.  It is far better to do a few large
245  * allocations and then subdivide it ourselves.  Now which allocator
246  * we use requires balancing a few trade offs.
247  *
248  * For small objects we use kmem_alloc() because as long as you are
249  * only requesting a small number of pages (ideally just one) its cheap.
250  * However, when you start requesting multiple pages with kmem_alloc()
251  * it gets increasingly expensive since it requires contiguous pages.
252  * For this reason we shift to vmem_alloc() for slabs of large objects
253  * which removes the need for contiguous pages.  We do not use
254  * vmem_alloc() in all cases because there is significant locking
255  * overhead in __get_vm_area_node().  This function takes a single
256  * global lock when acquiring an available virtual address range which
257  * serializes all vmem_alloc()'s for all slab caches.  Using slightly
258  * different allocation functions for small and large objects should
259  * give us the best of both worlds.
260  *
261  * +------------------------+
262  * | spl_kmem_slab_t --+-+  |
263  * | skc_obj_size    <-+ |  |
264  * | spl_kmem_obj_t      |  |
265  * | skc_obj_size    <---+  |
266  * | spl_kmem_obj_t      |  |
267  * | ...                 v  |
268  * +------------------------+
269  */
270 static spl_kmem_slab_t *
271 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
272 {
273 	spl_kmem_slab_t *sks;
274 	void *base;
275 	uint32_t obj_size;
276 
277 	base = kv_alloc(skc, skc->skc_slab_size, flags);
278 	if (base == NULL)
279 		return (NULL);
280 
281 	sks = (spl_kmem_slab_t *)base;
282 	sks->sks_magic = SKS_MAGIC;
283 	sks->sks_objs = skc->skc_slab_objs;
284 	sks->sks_age = jiffies;
285 	sks->sks_cache = skc;
286 	INIT_LIST_HEAD(&sks->sks_list);
287 	INIT_LIST_HEAD(&sks->sks_free_list);
288 	sks->sks_ref = 0;
289 	obj_size = spl_obj_size(skc);
290 
291 	for (int i = 0; i < sks->sks_objs; i++) {
292 		void *obj = base + spl_sks_size(skc) + (i * obj_size);
293 
294 		ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
295 		spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
296 		sko->sko_addr = obj;
297 		sko->sko_magic = SKO_MAGIC;
298 		sko->sko_slab = sks;
299 		INIT_LIST_HEAD(&sko->sko_list);
300 		list_add_tail(&sko->sko_list, &sks->sks_free_list);
301 	}
302 
303 	return (sks);
304 }
305 
306 /*
307  * Remove a slab from complete or partial list, it must be called with
308  * the 'skc->skc_lock' held but the actual free must be performed
309  * outside the lock to prevent deadlocking on vmem addresses.
310  */
311 static void
312 spl_slab_free(spl_kmem_slab_t *sks,
313     struct list_head *sks_list, struct list_head *sko_list)
314 {
315 	spl_kmem_cache_t *skc;
316 
317 	ASSERT(sks->sks_magic == SKS_MAGIC);
318 	ASSERT(sks->sks_ref == 0);
319 
320 	skc = sks->sks_cache;
321 	ASSERT(skc->skc_magic == SKC_MAGIC);
322 
323 	/*
324 	 * Update slab/objects counters in the cache, then remove the
325 	 * slab from the skc->skc_partial_list.  Finally add the slab
326 	 * and all its objects in to the private work lists where the
327 	 * destructors will be called and the memory freed to the system.
328 	 */
329 	skc->skc_obj_total -= sks->sks_objs;
330 	skc->skc_slab_total--;
331 	list_del(&sks->sks_list);
332 	list_add(&sks->sks_list, sks_list);
333 	list_splice_init(&sks->sks_free_list, sko_list);
334 }
335 
336 /*
337  * Reclaim empty slabs at the end of the partial list.
338  */
339 static void
340 spl_slab_reclaim(spl_kmem_cache_t *skc)
341 {
342 	spl_kmem_slab_t *sks = NULL, *m = NULL;
343 	spl_kmem_obj_t *sko = NULL, *n = NULL;
344 	LIST_HEAD(sks_list);
345 	LIST_HEAD(sko_list);
346 
347 	/*
348 	 * Empty slabs and objects must be moved to a private list so they
349 	 * can be safely freed outside the spin lock.  All empty slabs are
350 	 * at the end of skc->skc_partial_list, therefore once a non-empty
351 	 * slab is found we can stop scanning.
352 	 */
353 	spin_lock(&skc->skc_lock);
354 	list_for_each_entry_safe_reverse(sks, m,
355 	    &skc->skc_partial_list, sks_list) {
356 
357 		if (sks->sks_ref > 0)
358 			break;
359 
360 		spl_slab_free(sks, &sks_list, &sko_list);
361 	}
362 	spin_unlock(&skc->skc_lock);
363 
364 	/*
365 	 * The following two loops ensure all the object destructors are run,
366 	 * and the slabs themselves are freed.  This is all done outside the
367 	 * skc->skc_lock since this allows the destructor to sleep, and
368 	 * allows us to perform a conditional reschedule when a freeing a
369 	 * large number of objects and slabs back to the system.
370 	 */
371 
372 	list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
373 		ASSERT(sko->sko_magic == SKO_MAGIC);
374 	}
375 
376 	list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
377 		ASSERT(sks->sks_magic == SKS_MAGIC);
378 		kv_free(skc, sks, skc->skc_slab_size);
379 	}
380 }
381 
382 static spl_kmem_emergency_t *
383 spl_emergency_search(struct rb_root *root, void *obj)
384 {
385 	struct rb_node *node = root->rb_node;
386 	spl_kmem_emergency_t *ske;
387 	unsigned long address = (unsigned long)obj;
388 
389 	while (node) {
390 		ske = container_of(node, spl_kmem_emergency_t, ske_node);
391 
392 		if (address < ske->ske_obj)
393 			node = node->rb_left;
394 		else if (address > ske->ske_obj)
395 			node = node->rb_right;
396 		else
397 			return (ske);
398 	}
399 
400 	return (NULL);
401 }
402 
403 static int
404 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
405 {
406 	struct rb_node **new = &(root->rb_node), *parent = NULL;
407 	spl_kmem_emergency_t *ske_tmp;
408 	unsigned long address = ske->ske_obj;
409 
410 	while (*new) {
411 		ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
412 
413 		parent = *new;
414 		if (address < ske_tmp->ske_obj)
415 			new = &((*new)->rb_left);
416 		else if (address > ske_tmp->ske_obj)
417 			new = &((*new)->rb_right);
418 		else
419 			return (0);
420 	}
421 
422 	rb_link_node(&ske->ske_node, parent, new);
423 	rb_insert_color(&ske->ske_node, root);
424 
425 	return (1);
426 }
427 
428 /*
429  * Allocate a single emergency object and track it in a red black tree.
430  */
431 static int
432 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
433 {
434 	gfp_t lflags = kmem_flags_convert(flags);
435 	spl_kmem_emergency_t *ske;
436 	int order = get_order(skc->skc_obj_size);
437 	int empty;
438 
439 	/* Last chance use a partial slab if one now exists */
440 	spin_lock(&skc->skc_lock);
441 	empty = list_empty(&skc->skc_partial_list);
442 	spin_unlock(&skc->skc_lock);
443 	if (!empty)
444 		return (-EEXIST);
445 
446 	ske = kmalloc(sizeof (*ske), lflags);
447 	if (ske == NULL)
448 		return (-ENOMEM);
449 
450 	ske->ske_obj = __get_free_pages(lflags, order);
451 	if (ske->ske_obj == 0) {
452 		kfree(ske);
453 		return (-ENOMEM);
454 	}
455 
456 	spin_lock(&skc->skc_lock);
457 	empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
458 	if (likely(empty)) {
459 		skc->skc_obj_total++;
460 		skc->skc_obj_emergency++;
461 		if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
462 			skc->skc_obj_emergency_max = skc->skc_obj_emergency;
463 	}
464 	spin_unlock(&skc->skc_lock);
465 
466 	if (unlikely(!empty)) {
467 		free_pages(ske->ske_obj, order);
468 		kfree(ske);
469 		return (-EINVAL);
470 	}
471 
472 	*obj = (void *)ske->ske_obj;
473 
474 	return (0);
475 }
476 
477 /*
478  * Locate the passed object in the red black tree and free it.
479  */
480 static int
481 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
482 {
483 	spl_kmem_emergency_t *ske;
484 	int order = get_order(skc->skc_obj_size);
485 
486 	spin_lock(&skc->skc_lock);
487 	ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
488 	if (ske) {
489 		rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
490 		skc->skc_obj_emergency--;
491 		skc->skc_obj_total--;
492 	}
493 	spin_unlock(&skc->skc_lock);
494 
495 	if (ske == NULL)
496 		return (-ENOENT);
497 
498 	free_pages(ske->ske_obj, order);
499 	kfree(ske);
500 
501 	return (0);
502 }
503 
504 /*
505  * Release objects from the per-cpu magazine back to their slab.  The flush
506  * argument contains the max number of entries to remove from the magazine.
507  */
508 static void
509 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
510 {
511 	spin_lock(&skc->skc_lock);
512 
513 	ASSERT(skc->skc_magic == SKC_MAGIC);
514 	ASSERT(skm->skm_magic == SKM_MAGIC);
515 
516 	int count = MIN(flush, skm->skm_avail);
517 	for (int i = 0; i < count; i++)
518 		spl_cache_shrink(skc, skm->skm_objs[i]);
519 
520 	skm->skm_avail -= count;
521 	memmove(skm->skm_objs, &(skm->skm_objs[count]),
522 	    sizeof (void *) * skm->skm_avail);
523 
524 	spin_unlock(&skc->skc_lock);
525 }
526 
527 /*
528  * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
529  * When on-slab we want to target spl_kmem_cache_obj_per_slab.  However,
530  * for very small objects we may end up with more than this so as not
531  * to waste space in the minimal allocation of a single page.  Also for
532  * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
533  * lower than this and we will fail.
534  */
535 static int
536 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
537 {
538 	uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
539 
540 	sks_size = spl_sks_size(skc);
541 	obj_size = spl_obj_size(skc);
542 	max_size = (spl_kmem_cache_max_size * 1024 * 1024);
543 	tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
544 
545 	if (tgt_size <= max_size) {
546 		tgt_objs = (tgt_size - sks_size) / obj_size;
547 	} else {
548 		tgt_objs = (max_size - sks_size) / obj_size;
549 		tgt_size = (tgt_objs * obj_size) + sks_size;
550 	}
551 
552 	if (tgt_objs == 0)
553 		return (-ENOSPC);
554 
555 	*objs = tgt_objs;
556 	*size = tgt_size;
557 
558 	return (0);
559 }
560 
561 /*
562  * Make a guess at reasonable per-cpu magazine size based on the size of
563  * each object and the cost of caching N of them in each magazine.  Long
564  * term this should really adapt based on an observed usage heuristic.
565  */
566 static int
567 spl_magazine_size(spl_kmem_cache_t *skc)
568 {
569 	uint32_t obj_size = spl_obj_size(skc);
570 	int size;
571 
572 	if (spl_kmem_cache_magazine_size > 0)
573 		return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
574 
575 	/* Per-magazine sizes below assume a 4Kib page size */
576 	if (obj_size > (PAGE_SIZE * 256))
577 		size = 4;  /* Minimum 4Mib per-magazine */
578 	else if (obj_size > (PAGE_SIZE * 32))
579 		size = 16; /* Minimum 2Mib per-magazine */
580 	else if (obj_size > (PAGE_SIZE))
581 		size = 64; /* Minimum 256Kib per-magazine */
582 	else if (obj_size > (PAGE_SIZE / 4))
583 		size = 128; /* Minimum 128Kib per-magazine */
584 	else
585 		size = 256;
586 
587 	return (size);
588 }
589 
590 /*
591  * Allocate a per-cpu magazine to associate with a specific core.
592  */
593 static spl_kmem_magazine_t *
594 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
595 {
596 	spl_kmem_magazine_t *skm;
597 	int size = sizeof (spl_kmem_magazine_t) +
598 	    sizeof (void *) * skc->skc_mag_size;
599 
600 	skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
601 	if (skm) {
602 		skm->skm_magic = SKM_MAGIC;
603 		skm->skm_avail = 0;
604 		skm->skm_size = skc->skc_mag_size;
605 		skm->skm_refill = skc->skc_mag_refill;
606 		skm->skm_cache = skc;
607 		skm->skm_cpu = cpu;
608 	}
609 
610 	return (skm);
611 }
612 
613 /*
614  * Free a per-cpu magazine associated with a specific core.
615  */
616 static void
617 spl_magazine_free(spl_kmem_magazine_t *skm)
618 {
619 	ASSERT(skm->skm_magic == SKM_MAGIC);
620 	ASSERT(skm->skm_avail == 0);
621 	kfree(skm);
622 }
623 
624 /*
625  * Create all pre-cpu magazines of reasonable sizes.
626  */
627 static int
628 spl_magazine_create(spl_kmem_cache_t *skc)
629 {
630 	int i = 0;
631 
632 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
633 
634 	skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
635 	    num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
636 	skc->skc_mag_size = spl_magazine_size(skc);
637 	skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
638 
639 	for_each_possible_cpu(i) {
640 		skc->skc_mag[i] = spl_magazine_alloc(skc, i);
641 		if (!skc->skc_mag[i]) {
642 			for (i--; i >= 0; i--)
643 				spl_magazine_free(skc->skc_mag[i]);
644 
645 			kfree(skc->skc_mag);
646 			return (-ENOMEM);
647 		}
648 	}
649 
650 	return (0);
651 }
652 
653 /*
654  * Destroy all pre-cpu magazines.
655  */
656 static void
657 spl_magazine_destroy(spl_kmem_cache_t *skc)
658 {
659 	spl_kmem_magazine_t *skm;
660 	int i = 0;
661 
662 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
663 
664 	for_each_possible_cpu(i) {
665 		skm = skc->skc_mag[i];
666 		spl_cache_flush(skc, skm, skm->skm_avail);
667 		spl_magazine_free(skm);
668 	}
669 
670 	kfree(skc->skc_mag);
671 }
672 
673 /*
674  * Create a object cache based on the following arguments:
675  * name		cache name
676  * size		cache object size
677  * align	cache object alignment
678  * ctor		cache object constructor
679  * dtor		cache object destructor
680  * reclaim	cache object reclaim
681  * priv		cache private data for ctor/dtor/reclaim
682  * vmp		unused must be NULL
683  * flags
684  *	KMC_KVMEM       Force kvmem backed SPL cache
685  *	KMC_SLAB        Force Linux slab backed cache
686  *	KMC_NODEBUG	Disable debugging (unsupported)
687  */
688 spl_kmem_cache_t *
689 spl_kmem_cache_create(char *name, size_t size, size_t align,
690     spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
691     void *priv, void *vmp, int flags)
692 {
693 	gfp_t lflags = kmem_flags_convert(KM_SLEEP);
694 	spl_kmem_cache_t *skc;
695 	int rc;
696 
697 	/*
698 	 * Unsupported flags
699 	 */
700 	ASSERT(vmp == NULL);
701 	ASSERT(reclaim == NULL);
702 
703 	might_sleep();
704 
705 	skc = kzalloc(sizeof (*skc), lflags);
706 	if (skc == NULL)
707 		return (NULL);
708 
709 	skc->skc_magic = SKC_MAGIC;
710 	skc->skc_name_size = strlen(name) + 1;
711 	skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
712 	if (skc->skc_name == NULL) {
713 		kfree(skc);
714 		return (NULL);
715 	}
716 	strncpy(skc->skc_name, name, skc->skc_name_size);
717 
718 	skc->skc_ctor = ctor;
719 	skc->skc_dtor = dtor;
720 	skc->skc_private = priv;
721 	skc->skc_vmp = vmp;
722 	skc->skc_linux_cache = NULL;
723 	skc->skc_flags = flags;
724 	skc->skc_obj_size = size;
725 	skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
726 	atomic_set(&skc->skc_ref, 0);
727 
728 	INIT_LIST_HEAD(&skc->skc_list);
729 	INIT_LIST_HEAD(&skc->skc_complete_list);
730 	INIT_LIST_HEAD(&skc->skc_partial_list);
731 	skc->skc_emergency_tree = RB_ROOT;
732 	spin_lock_init(&skc->skc_lock);
733 	init_waitqueue_head(&skc->skc_waitq);
734 	skc->skc_slab_fail = 0;
735 	skc->skc_slab_create = 0;
736 	skc->skc_slab_destroy = 0;
737 	skc->skc_slab_total = 0;
738 	skc->skc_slab_alloc = 0;
739 	skc->skc_slab_max = 0;
740 	skc->skc_obj_total = 0;
741 	skc->skc_obj_alloc = 0;
742 	skc->skc_obj_max = 0;
743 	skc->skc_obj_deadlock = 0;
744 	skc->skc_obj_emergency = 0;
745 	skc->skc_obj_emergency_max = 0;
746 
747 	rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0,
748 	    GFP_KERNEL);
749 	if (rc != 0) {
750 		kfree(skc);
751 		return (NULL);
752 	}
753 
754 	/*
755 	 * Verify the requested alignment restriction is sane.
756 	 */
757 	if (align) {
758 		VERIFY(ISP2(align));
759 		VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
760 		VERIFY3U(align, <=, PAGE_SIZE);
761 		skc->skc_obj_align = align;
762 	}
763 
764 	/*
765 	 * When no specific type of slab is requested (kmem, vmem, or
766 	 * linuxslab) then select a cache type based on the object size
767 	 * and default tunables.
768 	 */
769 	if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
770 		if (spl_kmem_cache_slab_limit &&
771 		    size <= (size_t)spl_kmem_cache_slab_limit) {
772 			/*
773 			 * Objects smaller than spl_kmem_cache_slab_limit can
774 			 * use the Linux slab for better space-efficiency.
775 			 */
776 			skc->skc_flags |= KMC_SLAB;
777 		} else {
778 			/*
779 			 * All other objects are considered large and are
780 			 * placed on kvmem backed slabs.
781 			 */
782 			skc->skc_flags |= KMC_KVMEM;
783 		}
784 	}
785 
786 	/*
787 	 * Given the type of slab allocate the required resources.
788 	 */
789 	if (skc->skc_flags & KMC_KVMEM) {
790 		rc = spl_slab_size(skc,
791 		    &skc->skc_slab_objs, &skc->skc_slab_size);
792 		if (rc)
793 			goto out;
794 
795 		rc = spl_magazine_create(skc);
796 		if (rc)
797 			goto out;
798 	} else {
799 		unsigned long slabflags = 0;
800 
801 		if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) {
802 			rc = EINVAL;
803 			goto out;
804 		}
805 
806 #if defined(SLAB_USERCOPY)
807 		/*
808 		 * Required for PAX-enabled kernels if the slab is to be
809 		 * used for copying between user and kernel space.
810 		 */
811 		slabflags |= SLAB_USERCOPY;
812 #endif
813 
814 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
815 		/*
816 		 * Newer grsec patchset uses kmem_cache_create_usercopy()
817 		 * instead of SLAB_USERCOPY flag
818 		 */
819 		skc->skc_linux_cache = kmem_cache_create_usercopy(
820 		    skc->skc_name, size, align, slabflags, 0, size, NULL);
821 #else
822 		skc->skc_linux_cache = kmem_cache_create(
823 		    skc->skc_name, size, align, slabflags, NULL);
824 #endif
825 		if (skc->skc_linux_cache == NULL) {
826 			rc = ENOMEM;
827 			goto out;
828 		}
829 	}
830 
831 	down_write(&spl_kmem_cache_sem);
832 	list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
833 	up_write(&spl_kmem_cache_sem);
834 
835 	return (skc);
836 out:
837 	kfree(skc->skc_name);
838 	percpu_counter_destroy(&skc->skc_linux_alloc);
839 	kfree(skc);
840 	return (NULL);
841 }
842 EXPORT_SYMBOL(spl_kmem_cache_create);
843 
844 /*
845  * Register a move callback for cache defragmentation.
846  * XXX: Unimplemented but harmless to stub out for now.
847  */
848 void
849 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
850     kmem_cbrc_t (move)(void *, void *, size_t, void *))
851 {
852 	ASSERT(move != NULL);
853 }
854 EXPORT_SYMBOL(spl_kmem_cache_set_move);
855 
856 /*
857  * Destroy a cache and all objects associated with the cache.
858  */
859 void
860 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
861 {
862 	DECLARE_WAIT_QUEUE_HEAD(wq);
863 	taskqid_t id;
864 
865 	ASSERT(skc->skc_magic == SKC_MAGIC);
866 	ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
867 
868 	down_write(&spl_kmem_cache_sem);
869 	list_del_init(&skc->skc_list);
870 	up_write(&spl_kmem_cache_sem);
871 
872 	/* Cancel any and wait for any pending delayed tasks */
873 	VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
874 
875 	spin_lock(&skc->skc_lock);
876 	id = skc->skc_taskqid;
877 	spin_unlock(&skc->skc_lock);
878 
879 	taskq_cancel_id(spl_kmem_cache_taskq, id);
880 
881 	/*
882 	 * Wait until all current callers complete, this is mainly
883 	 * to catch the case where a low memory situation triggers a
884 	 * cache reaping action which races with this destroy.
885 	 */
886 	wait_event(wq, atomic_read(&skc->skc_ref) == 0);
887 
888 	if (skc->skc_flags & KMC_KVMEM) {
889 		spl_magazine_destroy(skc);
890 		spl_slab_reclaim(skc);
891 	} else {
892 		ASSERT(skc->skc_flags & KMC_SLAB);
893 		kmem_cache_destroy(skc->skc_linux_cache);
894 	}
895 
896 	spin_lock(&skc->skc_lock);
897 
898 	/*
899 	 * Validate there are no objects in use and free all the
900 	 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
901 	 */
902 	ASSERT3U(skc->skc_slab_alloc, ==, 0);
903 	ASSERT3U(skc->skc_obj_alloc, ==, 0);
904 	ASSERT3U(skc->skc_slab_total, ==, 0);
905 	ASSERT3U(skc->skc_obj_total, ==, 0);
906 	ASSERT3U(skc->skc_obj_emergency, ==, 0);
907 	ASSERT(list_empty(&skc->skc_complete_list));
908 
909 	ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
910 	percpu_counter_destroy(&skc->skc_linux_alloc);
911 
912 	spin_unlock(&skc->skc_lock);
913 
914 	kfree(skc->skc_name);
915 	kfree(skc);
916 }
917 EXPORT_SYMBOL(spl_kmem_cache_destroy);
918 
919 /*
920  * Allocate an object from a slab attached to the cache.  This is used to
921  * repopulate the per-cpu magazine caches in batches when they run low.
922  */
923 static void *
924 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
925 {
926 	spl_kmem_obj_t *sko;
927 
928 	ASSERT(skc->skc_magic == SKC_MAGIC);
929 	ASSERT(sks->sks_magic == SKS_MAGIC);
930 
931 	sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
932 	ASSERT(sko->sko_magic == SKO_MAGIC);
933 	ASSERT(sko->sko_addr != NULL);
934 
935 	/* Remove from sks_free_list */
936 	list_del_init(&sko->sko_list);
937 
938 	sks->sks_age = jiffies;
939 	sks->sks_ref++;
940 	skc->skc_obj_alloc++;
941 
942 	/* Track max obj usage statistics */
943 	if (skc->skc_obj_alloc > skc->skc_obj_max)
944 		skc->skc_obj_max = skc->skc_obj_alloc;
945 
946 	/* Track max slab usage statistics */
947 	if (sks->sks_ref == 1) {
948 		skc->skc_slab_alloc++;
949 
950 		if (skc->skc_slab_alloc > skc->skc_slab_max)
951 			skc->skc_slab_max = skc->skc_slab_alloc;
952 	}
953 
954 	return (sko->sko_addr);
955 }
956 
957 /*
958  * Generic slab allocation function to run by the global work queues.
959  * It is responsible for allocating a new slab, linking it in to the list
960  * of partial slabs, and then waking any waiters.
961  */
962 static int
963 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
964 {
965 	spl_kmem_slab_t *sks;
966 
967 	fstrans_cookie_t cookie = spl_fstrans_mark();
968 	sks = spl_slab_alloc(skc, flags);
969 	spl_fstrans_unmark(cookie);
970 
971 	spin_lock(&skc->skc_lock);
972 	if (sks) {
973 		skc->skc_slab_total++;
974 		skc->skc_obj_total += sks->sks_objs;
975 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
976 
977 		smp_mb__before_atomic();
978 		clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
979 		smp_mb__after_atomic();
980 	}
981 	spin_unlock(&skc->skc_lock);
982 
983 	return (sks == NULL ? -ENOMEM : 0);
984 }
985 
986 static void
987 spl_cache_grow_work(void *data)
988 {
989 	spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
990 	spl_kmem_cache_t *skc = ska->ska_cache;
991 
992 	int error = __spl_cache_grow(skc, ska->ska_flags);
993 
994 	atomic_dec(&skc->skc_ref);
995 	smp_mb__before_atomic();
996 	clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
997 	smp_mb__after_atomic();
998 	if (error == 0)
999 		wake_up_all(&skc->skc_waitq);
1000 
1001 	kfree(ska);
1002 }
1003 
1004 /*
1005  * Returns non-zero when a new slab should be available.
1006  */
1007 static int
1008 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1009 {
1010 	return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
1011 }
1012 
1013 /*
1014  * No available objects on any slabs, create a new slab.  Note that this
1015  * functionality is disabled for KMC_SLAB caches which are backed by the
1016  * Linux slab.
1017  */
1018 static int
1019 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1020 {
1021 	int remaining, rc = 0;
1022 
1023 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1024 	ASSERT(skc->skc_magic == SKC_MAGIC);
1025 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1026 	might_sleep();
1027 	*obj = NULL;
1028 
1029 	/*
1030 	 * Before allocating a new slab wait for any reaping to complete and
1031 	 * then return so the local magazine can be rechecked for new objects.
1032 	 */
1033 	if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1034 		rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1035 		    TASK_UNINTERRUPTIBLE);
1036 		return (rc ? rc : -EAGAIN);
1037 	}
1038 
1039 	/*
1040 	 * Note: It would be nice to reduce the overhead of context switch
1041 	 * and improve NUMA locality, by trying to allocate a new slab in the
1042 	 * current process context with KM_NOSLEEP flag.
1043 	 *
1044 	 * However, this can't be applied to vmem/kvmem due to a bug that
1045 	 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1046 	 */
1047 
1048 	/*
1049 	 * This is handled by dispatching a work request to the global work
1050 	 * queue.  This allows us to asynchronously allocate a new slab while
1051 	 * retaining the ability to safely fall back to a smaller synchronous
1052 	 * allocations to ensure forward progress is always maintained.
1053 	 */
1054 	if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1055 		spl_kmem_alloc_t *ska;
1056 
1057 		ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1058 		if (ska == NULL) {
1059 			clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1060 			smp_mb__after_atomic();
1061 			wake_up_all(&skc->skc_waitq);
1062 			return (-ENOMEM);
1063 		}
1064 
1065 		atomic_inc(&skc->skc_ref);
1066 		ska->ska_cache = skc;
1067 		ska->ska_flags = flags;
1068 		taskq_init_ent(&ska->ska_tqe);
1069 		taskq_dispatch_ent(spl_kmem_cache_taskq,
1070 		    spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1071 	}
1072 
1073 	/*
1074 	 * The goal here is to only detect the rare case where a virtual slab
1075 	 * allocation has deadlocked.  We must be careful to minimize the use
1076 	 * of emergency objects which are more expensive to track.  Therefore,
1077 	 * we set a very long timeout for the asynchronous allocation and if
1078 	 * the timeout is reached the cache is flagged as deadlocked.  From
1079 	 * this point only new emergency objects will be allocated until the
1080 	 * asynchronous allocation completes and clears the deadlocked flag.
1081 	 */
1082 	if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1083 		rc = spl_emergency_alloc(skc, flags, obj);
1084 	} else {
1085 		remaining = wait_event_timeout(skc->skc_waitq,
1086 		    spl_cache_grow_wait(skc), HZ / 10);
1087 
1088 		if (!remaining) {
1089 			spin_lock(&skc->skc_lock);
1090 			if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1091 				set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1092 				skc->skc_obj_deadlock++;
1093 			}
1094 			spin_unlock(&skc->skc_lock);
1095 		}
1096 
1097 		rc = -ENOMEM;
1098 	}
1099 
1100 	return (rc);
1101 }
1102 
1103 /*
1104  * Refill a per-cpu magazine with objects from the slabs for this cache.
1105  * Ideally the magazine can be repopulated using existing objects which have
1106  * been released, however if we are unable to locate enough free objects new
1107  * slabs of objects will be created.  On success NULL is returned, otherwise
1108  * the address of a single emergency object is returned for use by the caller.
1109  */
1110 static void *
1111 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1112 {
1113 	spl_kmem_slab_t *sks;
1114 	int count = 0, rc, refill;
1115 	void *obj = NULL;
1116 
1117 	ASSERT(skc->skc_magic == SKC_MAGIC);
1118 	ASSERT(skm->skm_magic == SKM_MAGIC);
1119 
1120 	refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1121 	spin_lock(&skc->skc_lock);
1122 
1123 	while (refill > 0) {
1124 		/* No slabs available we may need to grow the cache */
1125 		if (list_empty(&skc->skc_partial_list)) {
1126 			spin_unlock(&skc->skc_lock);
1127 
1128 			local_irq_enable();
1129 			rc = spl_cache_grow(skc, flags, &obj);
1130 			local_irq_disable();
1131 
1132 			/* Emergency object for immediate use by caller */
1133 			if (rc == 0 && obj != NULL)
1134 				return (obj);
1135 
1136 			if (rc)
1137 				goto out;
1138 
1139 			/* Rescheduled to different CPU skm is not local */
1140 			if (skm != skc->skc_mag[smp_processor_id()])
1141 				goto out;
1142 
1143 			/*
1144 			 * Potentially rescheduled to the same CPU but
1145 			 * allocations may have occurred from this CPU while
1146 			 * we were sleeping so recalculate max refill.
1147 			 */
1148 			refill = MIN(refill, skm->skm_size - skm->skm_avail);
1149 
1150 			spin_lock(&skc->skc_lock);
1151 			continue;
1152 		}
1153 
1154 		/* Grab the next available slab */
1155 		sks = list_entry((&skc->skc_partial_list)->next,
1156 		    spl_kmem_slab_t, sks_list);
1157 		ASSERT(sks->sks_magic == SKS_MAGIC);
1158 		ASSERT(sks->sks_ref < sks->sks_objs);
1159 		ASSERT(!list_empty(&sks->sks_free_list));
1160 
1161 		/*
1162 		 * Consume as many objects as needed to refill the requested
1163 		 * cache.  We must also be careful not to overfill it.
1164 		 */
1165 		while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1166 		    ++count) {
1167 			ASSERT(skm->skm_avail < skm->skm_size);
1168 			ASSERT(count < skm->skm_size);
1169 			skm->skm_objs[skm->skm_avail++] =
1170 			    spl_cache_obj(skc, sks);
1171 		}
1172 
1173 		/* Move slab to skc_complete_list when full */
1174 		if (sks->sks_ref == sks->sks_objs) {
1175 			list_del(&sks->sks_list);
1176 			list_add(&sks->sks_list, &skc->skc_complete_list);
1177 		}
1178 	}
1179 
1180 	spin_unlock(&skc->skc_lock);
1181 out:
1182 	return (NULL);
1183 }
1184 
1185 /*
1186  * Release an object back to the slab from which it came.
1187  */
1188 static void
1189 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1190 {
1191 	spl_kmem_slab_t *sks = NULL;
1192 	spl_kmem_obj_t *sko = NULL;
1193 
1194 	ASSERT(skc->skc_magic == SKC_MAGIC);
1195 
1196 	sko = spl_sko_from_obj(skc, obj);
1197 	ASSERT(sko->sko_magic == SKO_MAGIC);
1198 	sks = sko->sko_slab;
1199 	ASSERT(sks->sks_magic == SKS_MAGIC);
1200 	ASSERT(sks->sks_cache == skc);
1201 	list_add(&sko->sko_list, &sks->sks_free_list);
1202 
1203 	sks->sks_age = jiffies;
1204 	sks->sks_ref--;
1205 	skc->skc_obj_alloc--;
1206 
1207 	/*
1208 	 * Move slab to skc_partial_list when no longer full.  Slabs
1209 	 * are added to the head to keep the partial list is quasi-full
1210 	 * sorted order.  Fuller at the head, emptier at the tail.
1211 	 */
1212 	if (sks->sks_ref == (sks->sks_objs - 1)) {
1213 		list_del(&sks->sks_list);
1214 		list_add(&sks->sks_list, &skc->skc_partial_list);
1215 	}
1216 
1217 	/*
1218 	 * Move empty slabs to the end of the partial list so
1219 	 * they can be easily found and freed during reclamation.
1220 	 */
1221 	if (sks->sks_ref == 0) {
1222 		list_del(&sks->sks_list);
1223 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1224 		skc->skc_slab_alloc--;
1225 	}
1226 }
1227 
1228 /*
1229  * Allocate an object from the per-cpu magazine, or if the magazine
1230  * is empty directly allocate from a slab and repopulate the magazine.
1231  */
1232 void *
1233 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1234 {
1235 	spl_kmem_magazine_t *skm;
1236 	void *obj = NULL;
1237 
1238 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1239 	ASSERT(skc->skc_magic == SKC_MAGIC);
1240 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1241 
1242 	/*
1243 	 * Allocate directly from a Linux slab.  All optimizations are left
1244 	 * to the underlying cache we only need to guarantee that KM_SLEEP
1245 	 * callers will never fail.
1246 	 */
1247 	if (skc->skc_flags & KMC_SLAB) {
1248 		struct kmem_cache *slc = skc->skc_linux_cache;
1249 		do {
1250 			obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1251 		} while ((obj == NULL) && !(flags & KM_NOSLEEP));
1252 
1253 		if (obj != NULL) {
1254 			/*
1255 			 * Even though we leave everything up to the
1256 			 * underlying cache we still keep track of
1257 			 * how many objects we've allocated in it for
1258 			 * better debuggability.
1259 			 */
1260 			percpu_counter_inc(&skc->skc_linux_alloc);
1261 		}
1262 		goto ret;
1263 	}
1264 
1265 	local_irq_disable();
1266 
1267 restart:
1268 	/*
1269 	 * Safe to update per-cpu structure without lock, but
1270 	 * in the restart case we must be careful to reacquire
1271 	 * the local magazine since this may have changed
1272 	 * when we need to grow the cache.
1273 	 */
1274 	skm = skc->skc_mag[smp_processor_id()];
1275 	ASSERT(skm->skm_magic == SKM_MAGIC);
1276 
1277 	if (likely(skm->skm_avail)) {
1278 		/* Object available in CPU cache, use it */
1279 		obj = skm->skm_objs[--skm->skm_avail];
1280 	} else {
1281 		obj = spl_cache_refill(skc, skm, flags);
1282 		if ((obj == NULL) && !(flags & KM_NOSLEEP))
1283 			goto restart;
1284 
1285 		local_irq_enable();
1286 		goto ret;
1287 	}
1288 
1289 	local_irq_enable();
1290 	ASSERT(obj);
1291 	ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1292 
1293 ret:
1294 	/* Pre-emptively migrate object to CPU L1 cache */
1295 	if (obj) {
1296 		if (obj && skc->skc_ctor)
1297 			skc->skc_ctor(obj, skc->skc_private, flags);
1298 		else
1299 			prefetchw(obj);
1300 	}
1301 
1302 	return (obj);
1303 }
1304 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1305 
1306 /*
1307  * Free an object back to the local per-cpu magazine, there is no
1308  * guarantee that this is the same magazine the object was originally
1309  * allocated from.  We may need to flush entire from the magazine
1310  * back to the slabs to make space.
1311  */
1312 void
1313 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1314 {
1315 	spl_kmem_magazine_t *skm;
1316 	unsigned long flags;
1317 	int do_reclaim = 0;
1318 	int do_emergency = 0;
1319 
1320 	ASSERT(skc->skc_magic == SKC_MAGIC);
1321 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1322 
1323 	/*
1324 	 * Run the destructor
1325 	 */
1326 	if (skc->skc_dtor)
1327 		skc->skc_dtor(obj, skc->skc_private);
1328 
1329 	/*
1330 	 * Free the object from the Linux underlying Linux slab.
1331 	 */
1332 	if (skc->skc_flags & KMC_SLAB) {
1333 		kmem_cache_free(skc->skc_linux_cache, obj);
1334 		percpu_counter_dec(&skc->skc_linux_alloc);
1335 		return;
1336 	}
1337 
1338 	/*
1339 	 * While a cache has outstanding emergency objects all freed objects
1340 	 * must be checked.  However, since emergency objects will never use
1341 	 * a virtual address these objects can be safely excluded as an
1342 	 * optimization.
1343 	 */
1344 	if (!is_vmalloc_addr(obj)) {
1345 		spin_lock(&skc->skc_lock);
1346 		do_emergency = (skc->skc_obj_emergency > 0);
1347 		spin_unlock(&skc->skc_lock);
1348 
1349 		if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1350 			return;
1351 	}
1352 
1353 	local_irq_save(flags);
1354 
1355 	/*
1356 	 * Safe to update per-cpu structure without lock, but
1357 	 * no remote memory allocation tracking is being performed
1358 	 * it is entirely possible to allocate an object from one
1359 	 * CPU cache and return it to another.
1360 	 */
1361 	skm = skc->skc_mag[smp_processor_id()];
1362 	ASSERT(skm->skm_magic == SKM_MAGIC);
1363 
1364 	/*
1365 	 * Per-CPU cache full, flush it to make space for this object,
1366 	 * this may result in an empty slab which can be reclaimed once
1367 	 * interrupts are re-enabled.
1368 	 */
1369 	if (unlikely(skm->skm_avail >= skm->skm_size)) {
1370 		spl_cache_flush(skc, skm, skm->skm_refill);
1371 		do_reclaim = 1;
1372 	}
1373 
1374 	/* Available space in cache, use it */
1375 	skm->skm_objs[skm->skm_avail++] = obj;
1376 
1377 	local_irq_restore(flags);
1378 
1379 	if (do_reclaim)
1380 		spl_slab_reclaim(skc);
1381 }
1382 EXPORT_SYMBOL(spl_kmem_cache_free);
1383 
1384 /*
1385  * Depending on how many and which objects are released it may simply
1386  * repopulate the local magazine which will then need to age-out.  Objects
1387  * which cannot fit in the magazine will be released back to their slabs
1388  * which will also need to age out before being released.  This is all just
1389  * best effort and we do not want to thrash creating and destroying slabs.
1390  */
1391 void
1392 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1393 {
1394 	ASSERT(skc->skc_magic == SKC_MAGIC);
1395 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1396 
1397 	if (skc->skc_flags & KMC_SLAB)
1398 		return;
1399 
1400 	atomic_inc(&skc->skc_ref);
1401 
1402 	/*
1403 	 * Prevent concurrent cache reaping when contended.
1404 	 */
1405 	if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1406 		goto out;
1407 
1408 	/* Reclaim from the magazine and free all now empty slabs. */
1409 	unsigned long irq_flags;
1410 	local_irq_save(irq_flags);
1411 	spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1412 	spl_cache_flush(skc, skm, skm->skm_avail);
1413 	local_irq_restore(irq_flags);
1414 
1415 	spl_slab_reclaim(skc);
1416 	clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1417 	smp_mb__after_atomic();
1418 	wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1419 out:
1420 	atomic_dec(&skc->skc_ref);
1421 }
1422 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1423 
1424 /*
1425  * This is stubbed out for code consistency with other platforms.  There
1426  * is existing logic to prevent concurrent reaping so while this is ugly
1427  * it should do no harm.
1428  */
1429 int
1430 spl_kmem_cache_reap_active()
1431 {
1432 	return (0);
1433 }
1434 EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1435 
1436 /*
1437  * Reap all free slabs from all registered caches.
1438  */
1439 void
1440 spl_kmem_reap(void)
1441 {
1442 	spl_kmem_cache_t *skc = NULL;
1443 
1444 	down_read(&spl_kmem_cache_sem);
1445 	list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1446 		spl_kmem_cache_reap_now(skc);
1447 	}
1448 	up_read(&spl_kmem_cache_sem);
1449 }
1450 EXPORT_SYMBOL(spl_kmem_reap);
1451 
1452 int
1453 spl_kmem_cache_init(void)
1454 {
1455 	init_rwsem(&spl_kmem_cache_sem);
1456 	INIT_LIST_HEAD(&spl_kmem_cache_list);
1457 	spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1458 	    spl_kmem_cache_kmem_threads, maxclsyspri,
1459 	    spl_kmem_cache_kmem_threads * 8, INT_MAX,
1460 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1461 
1462 	return (0);
1463 }
1464 
1465 void
1466 spl_kmem_cache_fini(void)
1467 {
1468 	taskq_destroy(spl_kmem_cache_taskq);
1469 }
1470