1 /*
2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3  *  Copyright (C) 2007 The Regents of the University of California.
4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6  *  UCRL-CODE-235197
7  *
8  *  This file is part of the SPL, Solaris Porting Layer.
9  *
10  *  The SPL is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or (at your
13  *  option) any later version.
14  *
15  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include <linux/percpu_compat.h>
25 #include <sys/kmem.h>
26 #include <sys/kmem_cache.h>
27 #include <sys/taskq.h>
28 #include <sys/timer.h>
29 #include <sys/vmem.h>
30 #include <sys/wait.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/prefetch.h>
34 
35 /*
36  * Within the scope of spl-kmem.c file the kmem_cache_* definitions
37  * are removed to allow access to the real Linux slab allocator.
38  */
39 #undef kmem_cache_destroy
40 #undef kmem_cache_create
41 #undef kmem_cache_alloc
42 #undef kmem_cache_free
43 
44 
45 /*
46  * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
47  * with smp_mb__{before,after}_atomic() because they were redundant. This is
48  * only used inside our SLAB allocator, so we implement an internal wrapper
49  * here to give us smp_mb__{before,after}_atomic() on older kernels.
50  */
51 #ifndef smp_mb__before_atomic
52 #define	smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
53 #endif
54 
55 #ifndef smp_mb__after_atomic
56 #define	smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
57 #endif
58 
59 /* BEGIN CSTYLED */
60 /*
61  * Cache magazines are an optimization designed to minimize the cost of
62  * allocating memory.  They do this by keeping a per-cpu cache of recently
63  * freed objects, which can then be reallocated without taking a lock. This
64  * can improve performance on highly contended caches.  However, because
65  * objects in magazines will prevent otherwise empty slabs from being
66  * immediately released this may not be ideal for low memory machines.
67  *
68  * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
69  * magazine size.  When this value is set to 0 the magazine size will be
70  * automatically determined based on the object size.  Otherwise magazines
71  * will be limited to 2-256 objects per magazine (i.e per cpu).  Magazines
72  * may never be entirely disabled in this implementation.
73  */
74 static unsigned int spl_kmem_cache_magazine_size = 0;
75 module_param(spl_kmem_cache_magazine_size, uint, 0444);
76 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
77 	"Default magazine size (2-256), set automatically (0)");
78 
79 /*
80  * The default behavior is to report the number of objects remaining in the
81  * cache.  This allows the Linux VM to repeatedly reclaim objects from the
82  * cache when memory is low satisfy other memory allocations.  Alternately,
83  * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
84  * is reclaimed.  This may increase the likelihood of out of memory events.
85  */
86 static unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
87 module_param(spl_kmem_cache_reclaim, uint, 0644);
88 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
89 
90 static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
91 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
92 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
93 
94 static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
95 module_param(spl_kmem_cache_max_size, uint, 0644);
96 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
97 
98 /*
99  * For small objects the Linux slab allocator should be used to make the most
100  * efficient use of the memory.  However, large objects are not supported by
101  * the Linux slab and therefore the SPL implementation is preferred.  A cutoff
102  * of 16K was determined to be optimal for architectures using 4K pages and
103  * to also work well on architecutres using larger 64K page sizes.
104  */
105 static unsigned int spl_kmem_cache_slab_limit = 16384;
106 module_param(spl_kmem_cache_slab_limit, uint, 0644);
107 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
108 	"Objects less than N bytes use the Linux slab");
109 
110 /*
111  * The number of threads available to allocate new slabs for caches.  This
112  * should not need to be tuned but it is available for performance analysis.
113  */
114 static unsigned int spl_kmem_cache_kmem_threads = 4;
115 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
116 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
117 	"Number of spl_kmem_cache threads");
118 /* END CSTYLED */
119 
120 /*
121  * Slab allocation interfaces
122  *
123  * While the Linux slab implementation was inspired by the Solaris
124  * implementation I cannot use it to emulate the Solaris APIs.  I
125  * require two features which are not provided by the Linux slab.
126  *
127  * 1) Constructors AND destructors.  Recent versions of the Linux
128  *    kernel have removed support for destructors.  This is a deal
129  *    breaker for the SPL which contains particularly expensive
130  *    initializers for mutex's, condition variables, etc.  We also
131  *    require a minimal level of cleanup for these data types unlike
132  *    many Linux data types which do need to be explicitly destroyed.
133  *
134  * 2) Virtual address space backed slab.  Callers of the Solaris slab
135  *    expect it to work well for both small are very large allocations.
136  *    Because of memory fragmentation the Linux slab which is backed
137  *    by kmalloc'ed memory performs very badly when confronted with
138  *    large numbers of large allocations.  Basing the slab on the
139  *    virtual address space removes the need for contiguous pages
140  *    and greatly improve performance for large allocations.
141  *
142  * For these reasons, the SPL has its own slab implementation with
143  * the needed features.  It is not as highly optimized as either the
144  * Solaris or Linux slabs, but it should get me most of what is
145  * needed until it can be optimized or obsoleted by another approach.
146  *
147  * One serious concern I do have about this method is the relatively
148  * small virtual address space on 32bit arches.  This will seriously
149  * constrain the size of the slab caches and their performance.
150  */
151 
152 struct list_head spl_kmem_cache_list;   /* List of caches */
153 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
154 static taskq_t *spl_kmem_cache_taskq;   /* Task queue for aging / reclaim */
155 
156 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
157 
158 static void *
159 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
160 {
161 	gfp_t lflags = kmem_flags_convert(flags);
162 	void *ptr;
163 
164 	ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
165 
166 	/* Resulting allocated memory will be page aligned */
167 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
168 
169 	return (ptr);
170 }
171 
172 static void
173 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
174 {
175 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
176 
177 	/*
178 	 * The Linux direct reclaim path uses this out of band value to
179 	 * determine if forward progress is being made.  Normally this is
180 	 * incremented by kmem_freepages() which is part of the various
181 	 * Linux slab implementations.  However, since we are using none
182 	 * of that infrastructure we are responsible for incrementing it.
183 	 */
184 	if (current->reclaim_state)
185 		current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
186 
187 	vfree(ptr);
188 }
189 
190 /*
191  * Required space for each aligned sks.
192  */
193 static inline uint32_t
194 spl_sks_size(spl_kmem_cache_t *skc)
195 {
196 	return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
197 	    skc->skc_obj_align, uint32_t));
198 }
199 
200 /*
201  * Required space for each aligned object.
202  */
203 static inline uint32_t
204 spl_obj_size(spl_kmem_cache_t *skc)
205 {
206 	uint32_t align = skc->skc_obj_align;
207 
208 	return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
209 	    P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
210 }
211 
212 uint64_t
213 spl_kmem_cache_inuse(kmem_cache_t *cache)
214 {
215 	return (cache->skc_obj_total);
216 }
217 EXPORT_SYMBOL(spl_kmem_cache_inuse);
218 
219 uint64_t
220 spl_kmem_cache_entry_size(kmem_cache_t *cache)
221 {
222 	return (cache->skc_obj_size);
223 }
224 EXPORT_SYMBOL(spl_kmem_cache_entry_size);
225 
226 /*
227  * Lookup the spl_kmem_object_t for an object given that object.
228  */
229 static inline spl_kmem_obj_t *
230 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
231 {
232 	return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
233 	    skc->skc_obj_align, uint32_t));
234 }
235 
236 /*
237  * It's important that we pack the spl_kmem_obj_t structure and the
238  * actual objects in to one large address space to minimize the number
239  * of calls to the allocator.  It is far better to do a few large
240  * allocations and then subdivide it ourselves.  Now which allocator
241  * we use requires balancing a few trade offs.
242  *
243  * For small objects we use kmem_alloc() because as long as you are
244  * only requesting a small number of pages (ideally just one) its cheap.
245  * However, when you start requesting multiple pages with kmem_alloc()
246  * it gets increasingly expensive since it requires contiguous pages.
247  * For this reason we shift to vmem_alloc() for slabs of large objects
248  * which removes the need for contiguous pages.  We do not use
249  * vmem_alloc() in all cases because there is significant locking
250  * overhead in __get_vm_area_node().  This function takes a single
251  * global lock when acquiring an available virtual address range which
252  * serializes all vmem_alloc()'s for all slab caches.  Using slightly
253  * different allocation functions for small and large objects should
254  * give us the best of both worlds.
255  *
256  * +------------------------+
257  * | spl_kmem_slab_t --+-+  |
258  * | skc_obj_size    <-+ |  |
259  * | spl_kmem_obj_t      |  |
260  * | skc_obj_size    <---+  |
261  * | spl_kmem_obj_t      |  |
262  * | ...                 v  |
263  * +------------------------+
264  */
265 static spl_kmem_slab_t *
266 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
267 {
268 	spl_kmem_slab_t *sks;
269 	void *base;
270 	uint32_t obj_size;
271 
272 	base = kv_alloc(skc, skc->skc_slab_size, flags);
273 	if (base == NULL)
274 		return (NULL);
275 
276 	sks = (spl_kmem_slab_t *)base;
277 	sks->sks_magic = SKS_MAGIC;
278 	sks->sks_objs = skc->skc_slab_objs;
279 	sks->sks_age = jiffies;
280 	sks->sks_cache = skc;
281 	INIT_LIST_HEAD(&sks->sks_list);
282 	INIT_LIST_HEAD(&sks->sks_free_list);
283 	sks->sks_ref = 0;
284 	obj_size = spl_obj_size(skc);
285 
286 	for (int i = 0; i < sks->sks_objs; i++) {
287 		void *obj = base + spl_sks_size(skc) + (i * obj_size);
288 
289 		ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
290 		spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
291 		sko->sko_addr = obj;
292 		sko->sko_magic = SKO_MAGIC;
293 		sko->sko_slab = sks;
294 		INIT_LIST_HEAD(&sko->sko_list);
295 		list_add_tail(&sko->sko_list, &sks->sks_free_list);
296 	}
297 
298 	return (sks);
299 }
300 
301 /*
302  * Remove a slab from complete or partial list, it must be called with
303  * the 'skc->skc_lock' held but the actual free must be performed
304  * outside the lock to prevent deadlocking on vmem addresses.
305  */
306 static void
307 spl_slab_free(spl_kmem_slab_t *sks,
308     struct list_head *sks_list, struct list_head *sko_list)
309 {
310 	spl_kmem_cache_t *skc;
311 
312 	ASSERT(sks->sks_magic == SKS_MAGIC);
313 	ASSERT(sks->sks_ref == 0);
314 
315 	skc = sks->sks_cache;
316 	ASSERT(skc->skc_magic == SKC_MAGIC);
317 
318 	/*
319 	 * Update slab/objects counters in the cache, then remove the
320 	 * slab from the skc->skc_partial_list.  Finally add the slab
321 	 * and all its objects in to the private work lists where the
322 	 * destructors will be called and the memory freed to the system.
323 	 */
324 	skc->skc_obj_total -= sks->sks_objs;
325 	skc->skc_slab_total--;
326 	list_del(&sks->sks_list);
327 	list_add(&sks->sks_list, sks_list);
328 	list_splice_init(&sks->sks_free_list, sko_list);
329 }
330 
331 /*
332  * Reclaim empty slabs at the end of the partial list.
333  */
334 static void
335 spl_slab_reclaim(spl_kmem_cache_t *skc)
336 {
337 	spl_kmem_slab_t *sks = NULL, *m = NULL;
338 	spl_kmem_obj_t *sko = NULL, *n = NULL;
339 	LIST_HEAD(sks_list);
340 	LIST_HEAD(sko_list);
341 
342 	/*
343 	 * Empty slabs and objects must be moved to a private list so they
344 	 * can be safely freed outside the spin lock.  All empty slabs are
345 	 * at the end of skc->skc_partial_list, therefore once a non-empty
346 	 * slab is found we can stop scanning.
347 	 */
348 	spin_lock(&skc->skc_lock);
349 	list_for_each_entry_safe_reverse(sks, m,
350 	    &skc->skc_partial_list, sks_list) {
351 
352 		if (sks->sks_ref > 0)
353 			break;
354 
355 		spl_slab_free(sks, &sks_list, &sko_list);
356 	}
357 	spin_unlock(&skc->skc_lock);
358 
359 	/*
360 	 * The following two loops ensure all the object destructors are run,
361 	 * and the slabs themselves are freed.  This is all done outside the
362 	 * skc->skc_lock since this allows the destructor to sleep, and
363 	 * allows us to perform a conditional reschedule when a freeing a
364 	 * large number of objects and slabs back to the system.
365 	 */
366 
367 	list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
368 		ASSERT(sko->sko_magic == SKO_MAGIC);
369 	}
370 
371 	list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
372 		ASSERT(sks->sks_magic == SKS_MAGIC);
373 		kv_free(skc, sks, skc->skc_slab_size);
374 	}
375 }
376 
377 static spl_kmem_emergency_t *
378 spl_emergency_search(struct rb_root *root, void *obj)
379 {
380 	struct rb_node *node = root->rb_node;
381 	spl_kmem_emergency_t *ske;
382 	unsigned long address = (unsigned long)obj;
383 
384 	while (node) {
385 		ske = container_of(node, spl_kmem_emergency_t, ske_node);
386 
387 		if (address < ske->ske_obj)
388 			node = node->rb_left;
389 		else if (address > ske->ske_obj)
390 			node = node->rb_right;
391 		else
392 			return (ske);
393 	}
394 
395 	return (NULL);
396 }
397 
398 static int
399 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
400 {
401 	struct rb_node **new = &(root->rb_node), *parent = NULL;
402 	spl_kmem_emergency_t *ske_tmp;
403 	unsigned long address = ske->ske_obj;
404 
405 	while (*new) {
406 		ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
407 
408 		parent = *new;
409 		if (address < ske_tmp->ske_obj)
410 			new = &((*new)->rb_left);
411 		else if (address > ske_tmp->ske_obj)
412 			new = &((*new)->rb_right);
413 		else
414 			return (0);
415 	}
416 
417 	rb_link_node(&ske->ske_node, parent, new);
418 	rb_insert_color(&ske->ske_node, root);
419 
420 	return (1);
421 }
422 
423 /*
424  * Allocate a single emergency object and track it in a red black tree.
425  */
426 static int
427 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
428 {
429 	gfp_t lflags = kmem_flags_convert(flags);
430 	spl_kmem_emergency_t *ske;
431 	int order = get_order(skc->skc_obj_size);
432 	int empty;
433 
434 	/* Last chance use a partial slab if one now exists */
435 	spin_lock(&skc->skc_lock);
436 	empty = list_empty(&skc->skc_partial_list);
437 	spin_unlock(&skc->skc_lock);
438 	if (!empty)
439 		return (-EEXIST);
440 
441 	ske = kmalloc(sizeof (*ske), lflags);
442 	if (ske == NULL)
443 		return (-ENOMEM);
444 
445 	ske->ske_obj = __get_free_pages(lflags, order);
446 	if (ske->ske_obj == 0) {
447 		kfree(ske);
448 		return (-ENOMEM);
449 	}
450 
451 	spin_lock(&skc->skc_lock);
452 	empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
453 	if (likely(empty)) {
454 		skc->skc_obj_total++;
455 		skc->skc_obj_emergency++;
456 		if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
457 			skc->skc_obj_emergency_max = skc->skc_obj_emergency;
458 	}
459 	spin_unlock(&skc->skc_lock);
460 
461 	if (unlikely(!empty)) {
462 		free_pages(ske->ske_obj, order);
463 		kfree(ske);
464 		return (-EINVAL);
465 	}
466 
467 	*obj = (void *)ske->ske_obj;
468 
469 	return (0);
470 }
471 
472 /*
473  * Locate the passed object in the red black tree and free it.
474  */
475 static int
476 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
477 {
478 	spl_kmem_emergency_t *ske;
479 	int order = get_order(skc->skc_obj_size);
480 
481 	spin_lock(&skc->skc_lock);
482 	ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
483 	if (ske) {
484 		rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
485 		skc->skc_obj_emergency--;
486 		skc->skc_obj_total--;
487 	}
488 	spin_unlock(&skc->skc_lock);
489 
490 	if (ske == NULL)
491 		return (-ENOENT);
492 
493 	free_pages(ske->ske_obj, order);
494 	kfree(ske);
495 
496 	return (0);
497 }
498 
499 /*
500  * Release objects from the per-cpu magazine back to their slab.  The flush
501  * argument contains the max number of entries to remove from the magazine.
502  */
503 static void
504 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
505 {
506 	spin_lock(&skc->skc_lock);
507 
508 	ASSERT(skc->skc_magic == SKC_MAGIC);
509 	ASSERT(skm->skm_magic == SKM_MAGIC);
510 
511 	int count = MIN(flush, skm->skm_avail);
512 	for (int i = 0; i < count; i++)
513 		spl_cache_shrink(skc, skm->skm_objs[i]);
514 
515 	skm->skm_avail -= count;
516 	memmove(skm->skm_objs, &(skm->skm_objs[count]),
517 	    sizeof (void *) * skm->skm_avail);
518 
519 	spin_unlock(&skc->skc_lock);
520 }
521 
522 /*
523  * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
524  * When on-slab we want to target spl_kmem_cache_obj_per_slab.  However,
525  * for very small objects we may end up with more than this so as not
526  * to waste space in the minimal allocation of a single page.
527  */
528 static int
529 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
530 {
531 	uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
532 
533 	sks_size = spl_sks_size(skc);
534 	obj_size = spl_obj_size(skc);
535 	max_size = (spl_kmem_cache_max_size * 1024 * 1024);
536 	tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
537 
538 	if (tgt_size <= max_size) {
539 		tgt_objs = (tgt_size - sks_size) / obj_size;
540 	} else {
541 		tgt_objs = (max_size - sks_size) / obj_size;
542 		tgt_size = (tgt_objs * obj_size) + sks_size;
543 	}
544 
545 	if (tgt_objs == 0)
546 		return (-ENOSPC);
547 
548 	*objs = tgt_objs;
549 	*size = tgt_size;
550 
551 	return (0);
552 }
553 
554 /*
555  * Make a guess at reasonable per-cpu magazine size based on the size of
556  * each object and the cost of caching N of them in each magazine.  Long
557  * term this should really adapt based on an observed usage heuristic.
558  */
559 static int
560 spl_magazine_size(spl_kmem_cache_t *skc)
561 {
562 	uint32_t obj_size = spl_obj_size(skc);
563 	int size;
564 
565 	if (spl_kmem_cache_magazine_size > 0)
566 		return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
567 
568 	/* Per-magazine sizes below assume a 4Kib page size */
569 	if (obj_size > (PAGE_SIZE * 256))
570 		size = 4;  /* Minimum 4Mib per-magazine */
571 	else if (obj_size > (PAGE_SIZE * 32))
572 		size = 16; /* Minimum 2Mib per-magazine */
573 	else if (obj_size > (PAGE_SIZE))
574 		size = 64; /* Minimum 256Kib per-magazine */
575 	else if (obj_size > (PAGE_SIZE / 4))
576 		size = 128; /* Minimum 128Kib per-magazine */
577 	else
578 		size = 256;
579 
580 	return (size);
581 }
582 
583 /*
584  * Allocate a per-cpu magazine to associate with a specific core.
585  */
586 static spl_kmem_magazine_t *
587 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
588 {
589 	spl_kmem_magazine_t *skm;
590 	int size = sizeof (spl_kmem_magazine_t) +
591 	    sizeof (void *) * skc->skc_mag_size;
592 
593 	skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
594 	if (skm) {
595 		skm->skm_magic = SKM_MAGIC;
596 		skm->skm_avail = 0;
597 		skm->skm_size = skc->skc_mag_size;
598 		skm->skm_refill = skc->skc_mag_refill;
599 		skm->skm_cache = skc;
600 		skm->skm_cpu = cpu;
601 	}
602 
603 	return (skm);
604 }
605 
606 /*
607  * Free a per-cpu magazine associated with a specific core.
608  */
609 static void
610 spl_magazine_free(spl_kmem_magazine_t *skm)
611 {
612 	ASSERT(skm->skm_magic == SKM_MAGIC);
613 	ASSERT(skm->skm_avail == 0);
614 	kfree(skm);
615 }
616 
617 /*
618  * Create all pre-cpu magazines of reasonable sizes.
619  */
620 static int
621 spl_magazine_create(spl_kmem_cache_t *skc)
622 {
623 	int i = 0;
624 
625 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
626 
627 	skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
628 	    num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
629 	skc->skc_mag_size = spl_magazine_size(skc);
630 	skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
631 
632 	for_each_possible_cpu(i) {
633 		skc->skc_mag[i] = spl_magazine_alloc(skc, i);
634 		if (!skc->skc_mag[i]) {
635 			for (i--; i >= 0; i--)
636 				spl_magazine_free(skc->skc_mag[i]);
637 
638 			kfree(skc->skc_mag);
639 			return (-ENOMEM);
640 		}
641 	}
642 
643 	return (0);
644 }
645 
646 /*
647  * Destroy all pre-cpu magazines.
648  */
649 static void
650 spl_magazine_destroy(spl_kmem_cache_t *skc)
651 {
652 	spl_kmem_magazine_t *skm;
653 	int i = 0;
654 
655 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
656 
657 	for_each_possible_cpu(i) {
658 		skm = skc->skc_mag[i];
659 		spl_cache_flush(skc, skm, skm->skm_avail);
660 		spl_magazine_free(skm);
661 	}
662 
663 	kfree(skc->skc_mag);
664 }
665 
666 /*
667  * Create a object cache based on the following arguments:
668  * name		cache name
669  * size		cache object size
670  * align	cache object alignment
671  * ctor		cache object constructor
672  * dtor		cache object destructor
673  * reclaim	cache object reclaim
674  * priv		cache private data for ctor/dtor/reclaim
675  * vmp		unused must be NULL
676  * flags
677  *	KMC_KVMEM       Force kvmem backed SPL cache
678  *	KMC_SLAB        Force Linux slab backed cache
679  *	KMC_NODEBUG	Disable debugging (unsupported)
680  */
681 spl_kmem_cache_t *
682 spl_kmem_cache_create(const char *name, size_t size, size_t align,
683     spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
684     void *priv, void *vmp, int flags)
685 {
686 	gfp_t lflags = kmem_flags_convert(KM_SLEEP);
687 	spl_kmem_cache_t *skc;
688 	int rc;
689 
690 	/*
691 	 * Unsupported flags
692 	 */
693 	ASSERT(vmp == NULL);
694 	ASSERT(reclaim == NULL);
695 
696 	might_sleep();
697 
698 	skc = kzalloc(sizeof (*skc), lflags);
699 	if (skc == NULL)
700 		return (NULL);
701 
702 	skc->skc_magic = SKC_MAGIC;
703 	skc->skc_name_size = strlen(name) + 1;
704 	skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
705 	if (skc->skc_name == NULL) {
706 		kfree(skc);
707 		return (NULL);
708 	}
709 	strlcpy(skc->skc_name, name, skc->skc_name_size);
710 
711 	skc->skc_ctor = ctor;
712 	skc->skc_dtor = dtor;
713 	skc->skc_private = priv;
714 	skc->skc_vmp = vmp;
715 	skc->skc_linux_cache = NULL;
716 	skc->skc_flags = flags;
717 	skc->skc_obj_size = size;
718 	skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
719 	atomic_set(&skc->skc_ref, 0);
720 
721 	INIT_LIST_HEAD(&skc->skc_list);
722 	INIT_LIST_HEAD(&skc->skc_complete_list);
723 	INIT_LIST_HEAD(&skc->skc_partial_list);
724 	skc->skc_emergency_tree = RB_ROOT;
725 	spin_lock_init(&skc->skc_lock);
726 	init_waitqueue_head(&skc->skc_waitq);
727 	skc->skc_slab_fail = 0;
728 	skc->skc_slab_create = 0;
729 	skc->skc_slab_destroy = 0;
730 	skc->skc_slab_total = 0;
731 	skc->skc_slab_alloc = 0;
732 	skc->skc_slab_max = 0;
733 	skc->skc_obj_total = 0;
734 	skc->skc_obj_alloc = 0;
735 	skc->skc_obj_max = 0;
736 	skc->skc_obj_deadlock = 0;
737 	skc->skc_obj_emergency = 0;
738 	skc->skc_obj_emergency_max = 0;
739 
740 	rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0,
741 	    GFP_KERNEL);
742 	if (rc != 0) {
743 		kfree(skc);
744 		return (NULL);
745 	}
746 
747 	/*
748 	 * Verify the requested alignment restriction is sane.
749 	 */
750 	if (align) {
751 		VERIFY(ISP2(align));
752 		VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
753 		VERIFY3U(align, <=, PAGE_SIZE);
754 		skc->skc_obj_align = align;
755 	}
756 
757 	/*
758 	 * When no specific type of slab is requested (kmem, vmem, or
759 	 * linuxslab) then select a cache type based on the object size
760 	 * and default tunables.
761 	 */
762 	if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
763 		if (spl_kmem_cache_slab_limit &&
764 		    size <= (size_t)spl_kmem_cache_slab_limit) {
765 			/*
766 			 * Objects smaller than spl_kmem_cache_slab_limit can
767 			 * use the Linux slab for better space-efficiency.
768 			 */
769 			skc->skc_flags |= KMC_SLAB;
770 		} else {
771 			/*
772 			 * All other objects are considered large and are
773 			 * placed on kvmem backed slabs.
774 			 */
775 			skc->skc_flags |= KMC_KVMEM;
776 		}
777 	}
778 
779 	/*
780 	 * Given the type of slab allocate the required resources.
781 	 */
782 	if (skc->skc_flags & KMC_KVMEM) {
783 		rc = spl_slab_size(skc,
784 		    &skc->skc_slab_objs, &skc->skc_slab_size);
785 		if (rc)
786 			goto out;
787 
788 		rc = spl_magazine_create(skc);
789 		if (rc)
790 			goto out;
791 	} else {
792 		unsigned long slabflags = 0;
793 
794 		if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) {
795 			rc = EINVAL;
796 			goto out;
797 		}
798 
799 #if defined(SLAB_USERCOPY)
800 		/*
801 		 * Required for PAX-enabled kernels if the slab is to be
802 		 * used for copying between user and kernel space.
803 		 */
804 		slabflags |= SLAB_USERCOPY;
805 #endif
806 
807 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
808 		/*
809 		 * Newer grsec patchset uses kmem_cache_create_usercopy()
810 		 * instead of SLAB_USERCOPY flag
811 		 */
812 		skc->skc_linux_cache = kmem_cache_create_usercopy(
813 		    skc->skc_name, size, align, slabflags, 0, size, NULL);
814 #else
815 		skc->skc_linux_cache = kmem_cache_create(
816 		    skc->skc_name, size, align, slabflags, NULL);
817 #endif
818 		if (skc->skc_linux_cache == NULL) {
819 			rc = ENOMEM;
820 			goto out;
821 		}
822 	}
823 
824 	down_write(&spl_kmem_cache_sem);
825 	list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
826 	up_write(&spl_kmem_cache_sem);
827 
828 	return (skc);
829 out:
830 	kfree(skc->skc_name);
831 	percpu_counter_destroy(&skc->skc_linux_alloc);
832 	kfree(skc);
833 	return (NULL);
834 }
835 EXPORT_SYMBOL(spl_kmem_cache_create);
836 
837 /*
838  * Register a move callback for cache defragmentation.
839  * XXX: Unimplemented but harmless to stub out for now.
840  */
841 void
842 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
843     kmem_cbrc_t (move)(void *, void *, size_t, void *))
844 {
845 	ASSERT(move != NULL);
846 }
847 EXPORT_SYMBOL(spl_kmem_cache_set_move);
848 
849 /*
850  * Destroy a cache and all objects associated with the cache.
851  */
852 void
853 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
854 {
855 	DECLARE_WAIT_QUEUE_HEAD(wq);
856 	taskqid_t id;
857 
858 	ASSERT(skc->skc_magic == SKC_MAGIC);
859 	ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
860 
861 	down_write(&spl_kmem_cache_sem);
862 	list_del_init(&skc->skc_list);
863 	up_write(&spl_kmem_cache_sem);
864 
865 	/* Cancel any and wait for any pending delayed tasks */
866 	VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
867 
868 	spin_lock(&skc->skc_lock);
869 	id = skc->skc_taskqid;
870 	spin_unlock(&skc->skc_lock);
871 
872 	taskq_cancel_id(spl_kmem_cache_taskq, id);
873 
874 	/*
875 	 * Wait until all current callers complete, this is mainly
876 	 * to catch the case where a low memory situation triggers a
877 	 * cache reaping action which races with this destroy.
878 	 */
879 	wait_event(wq, atomic_read(&skc->skc_ref) == 0);
880 
881 	if (skc->skc_flags & KMC_KVMEM) {
882 		spl_magazine_destroy(skc);
883 		spl_slab_reclaim(skc);
884 	} else {
885 		ASSERT(skc->skc_flags & KMC_SLAB);
886 		kmem_cache_destroy(skc->skc_linux_cache);
887 	}
888 
889 	spin_lock(&skc->skc_lock);
890 
891 	/*
892 	 * Validate there are no objects in use and free all the
893 	 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
894 	 */
895 	ASSERT3U(skc->skc_slab_alloc, ==, 0);
896 	ASSERT3U(skc->skc_obj_alloc, ==, 0);
897 	ASSERT3U(skc->skc_slab_total, ==, 0);
898 	ASSERT3U(skc->skc_obj_total, ==, 0);
899 	ASSERT3U(skc->skc_obj_emergency, ==, 0);
900 	ASSERT(list_empty(&skc->skc_complete_list));
901 
902 	ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
903 	percpu_counter_destroy(&skc->skc_linux_alloc);
904 
905 	spin_unlock(&skc->skc_lock);
906 
907 	kfree(skc->skc_name);
908 	kfree(skc);
909 }
910 EXPORT_SYMBOL(spl_kmem_cache_destroy);
911 
912 /*
913  * Allocate an object from a slab attached to the cache.  This is used to
914  * repopulate the per-cpu magazine caches in batches when they run low.
915  */
916 static void *
917 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
918 {
919 	spl_kmem_obj_t *sko;
920 
921 	ASSERT(skc->skc_magic == SKC_MAGIC);
922 	ASSERT(sks->sks_magic == SKS_MAGIC);
923 
924 	sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
925 	ASSERT(sko->sko_magic == SKO_MAGIC);
926 	ASSERT(sko->sko_addr != NULL);
927 
928 	/* Remove from sks_free_list */
929 	list_del_init(&sko->sko_list);
930 
931 	sks->sks_age = jiffies;
932 	sks->sks_ref++;
933 	skc->skc_obj_alloc++;
934 
935 	/* Track max obj usage statistics */
936 	if (skc->skc_obj_alloc > skc->skc_obj_max)
937 		skc->skc_obj_max = skc->skc_obj_alloc;
938 
939 	/* Track max slab usage statistics */
940 	if (sks->sks_ref == 1) {
941 		skc->skc_slab_alloc++;
942 
943 		if (skc->skc_slab_alloc > skc->skc_slab_max)
944 			skc->skc_slab_max = skc->skc_slab_alloc;
945 	}
946 
947 	return (sko->sko_addr);
948 }
949 
950 /*
951  * Generic slab allocation function to run by the global work queues.
952  * It is responsible for allocating a new slab, linking it in to the list
953  * of partial slabs, and then waking any waiters.
954  */
955 static int
956 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
957 {
958 	spl_kmem_slab_t *sks;
959 
960 	fstrans_cookie_t cookie = spl_fstrans_mark();
961 	sks = spl_slab_alloc(skc, flags);
962 	spl_fstrans_unmark(cookie);
963 
964 	spin_lock(&skc->skc_lock);
965 	if (sks) {
966 		skc->skc_slab_total++;
967 		skc->skc_obj_total += sks->sks_objs;
968 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
969 
970 		smp_mb__before_atomic();
971 		clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
972 		smp_mb__after_atomic();
973 	}
974 	spin_unlock(&skc->skc_lock);
975 
976 	return (sks == NULL ? -ENOMEM : 0);
977 }
978 
979 static void
980 spl_cache_grow_work(void *data)
981 {
982 	spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
983 	spl_kmem_cache_t *skc = ska->ska_cache;
984 
985 	int error = __spl_cache_grow(skc, ska->ska_flags);
986 
987 	atomic_dec(&skc->skc_ref);
988 	smp_mb__before_atomic();
989 	clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
990 	smp_mb__after_atomic();
991 	if (error == 0)
992 		wake_up_all(&skc->skc_waitq);
993 
994 	kfree(ska);
995 }
996 
997 /*
998  * Returns non-zero when a new slab should be available.
999  */
1000 static int
1001 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1002 {
1003 	return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
1004 }
1005 
1006 /*
1007  * No available objects on any slabs, create a new slab.  Note that this
1008  * functionality is disabled for KMC_SLAB caches which are backed by the
1009  * Linux slab.
1010  */
1011 static int
1012 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1013 {
1014 	int remaining, rc = 0;
1015 
1016 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1017 	ASSERT(skc->skc_magic == SKC_MAGIC);
1018 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1019 	might_sleep();
1020 	*obj = NULL;
1021 
1022 	/*
1023 	 * Before allocating a new slab wait for any reaping to complete and
1024 	 * then return so the local magazine can be rechecked for new objects.
1025 	 */
1026 	if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1027 		rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1028 		    TASK_UNINTERRUPTIBLE);
1029 		return (rc ? rc : -EAGAIN);
1030 	}
1031 
1032 	/*
1033 	 * Note: It would be nice to reduce the overhead of context switch
1034 	 * and improve NUMA locality, by trying to allocate a new slab in the
1035 	 * current process context with KM_NOSLEEP flag.
1036 	 *
1037 	 * However, this can't be applied to vmem/kvmem due to a bug that
1038 	 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1039 	 */
1040 
1041 	/*
1042 	 * This is handled by dispatching a work request to the global work
1043 	 * queue.  This allows us to asynchronously allocate a new slab while
1044 	 * retaining the ability to safely fall back to a smaller synchronous
1045 	 * allocations to ensure forward progress is always maintained.
1046 	 */
1047 	if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1048 		spl_kmem_alloc_t *ska;
1049 
1050 		ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1051 		if (ska == NULL) {
1052 			clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1053 			smp_mb__after_atomic();
1054 			wake_up_all(&skc->skc_waitq);
1055 			return (-ENOMEM);
1056 		}
1057 
1058 		atomic_inc(&skc->skc_ref);
1059 		ska->ska_cache = skc;
1060 		ska->ska_flags = flags;
1061 		taskq_init_ent(&ska->ska_tqe);
1062 		taskq_dispatch_ent(spl_kmem_cache_taskq,
1063 		    spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1064 	}
1065 
1066 	/*
1067 	 * The goal here is to only detect the rare case where a virtual slab
1068 	 * allocation has deadlocked.  We must be careful to minimize the use
1069 	 * of emergency objects which are more expensive to track.  Therefore,
1070 	 * we set a very long timeout for the asynchronous allocation and if
1071 	 * the timeout is reached the cache is flagged as deadlocked.  From
1072 	 * this point only new emergency objects will be allocated until the
1073 	 * asynchronous allocation completes and clears the deadlocked flag.
1074 	 */
1075 	if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1076 		rc = spl_emergency_alloc(skc, flags, obj);
1077 	} else {
1078 		remaining = wait_event_timeout(skc->skc_waitq,
1079 		    spl_cache_grow_wait(skc), HZ / 10);
1080 
1081 		if (!remaining) {
1082 			spin_lock(&skc->skc_lock);
1083 			if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1084 				set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1085 				skc->skc_obj_deadlock++;
1086 			}
1087 			spin_unlock(&skc->skc_lock);
1088 		}
1089 
1090 		rc = -ENOMEM;
1091 	}
1092 
1093 	return (rc);
1094 }
1095 
1096 /*
1097  * Refill a per-cpu magazine with objects from the slabs for this cache.
1098  * Ideally the magazine can be repopulated using existing objects which have
1099  * been released, however if we are unable to locate enough free objects new
1100  * slabs of objects will be created.  On success NULL is returned, otherwise
1101  * the address of a single emergency object is returned for use by the caller.
1102  */
1103 static void *
1104 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1105 {
1106 	spl_kmem_slab_t *sks;
1107 	int count = 0, rc, refill;
1108 	void *obj = NULL;
1109 
1110 	ASSERT(skc->skc_magic == SKC_MAGIC);
1111 	ASSERT(skm->skm_magic == SKM_MAGIC);
1112 
1113 	refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1114 	spin_lock(&skc->skc_lock);
1115 
1116 	while (refill > 0) {
1117 		/* No slabs available we may need to grow the cache */
1118 		if (list_empty(&skc->skc_partial_list)) {
1119 			spin_unlock(&skc->skc_lock);
1120 
1121 			local_irq_enable();
1122 			rc = spl_cache_grow(skc, flags, &obj);
1123 			local_irq_disable();
1124 
1125 			/* Emergency object for immediate use by caller */
1126 			if (rc == 0 && obj != NULL)
1127 				return (obj);
1128 
1129 			if (rc)
1130 				goto out;
1131 
1132 			/* Rescheduled to different CPU skm is not local */
1133 			if (skm != skc->skc_mag[smp_processor_id()])
1134 				goto out;
1135 
1136 			/*
1137 			 * Potentially rescheduled to the same CPU but
1138 			 * allocations may have occurred from this CPU while
1139 			 * we were sleeping so recalculate max refill.
1140 			 */
1141 			refill = MIN(refill, skm->skm_size - skm->skm_avail);
1142 
1143 			spin_lock(&skc->skc_lock);
1144 			continue;
1145 		}
1146 
1147 		/* Grab the next available slab */
1148 		sks = list_entry((&skc->skc_partial_list)->next,
1149 		    spl_kmem_slab_t, sks_list);
1150 		ASSERT(sks->sks_magic == SKS_MAGIC);
1151 		ASSERT(sks->sks_ref < sks->sks_objs);
1152 		ASSERT(!list_empty(&sks->sks_free_list));
1153 
1154 		/*
1155 		 * Consume as many objects as needed to refill the requested
1156 		 * cache.  We must also be careful not to overfill it.
1157 		 */
1158 		while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1159 		    ++count) {
1160 			ASSERT(skm->skm_avail < skm->skm_size);
1161 			ASSERT(count < skm->skm_size);
1162 			skm->skm_objs[skm->skm_avail++] =
1163 			    spl_cache_obj(skc, sks);
1164 		}
1165 
1166 		/* Move slab to skc_complete_list when full */
1167 		if (sks->sks_ref == sks->sks_objs) {
1168 			list_del(&sks->sks_list);
1169 			list_add(&sks->sks_list, &skc->skc_complete_list);
1170 		}
1171 	}
1172 
1173 	spin_unlock(&skc->skc_lock);
1174 out:
1175 	return (NULL);
1176 }
1177 
1178 /*
1179  * Release an object back to the slab from which it came.
1180  */
1181 static void
1182 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1183 {
1184 	spl_kmem_slab_t *sks = NULL;
1185 	spl_kmem_obj_t *sko = NULL;
1186 
1187 	ASSERT(skc->skc_magic == SKC_MAGIC);
1188 
1189 	sko = spl_sko_from_obj(skc, obj);
1190 	ASSERT(sko->sko_magic == SKO_MAGIC);
1191 	sks = sko->sko_slab;
1192 	ASSERT(sks->sks_magic == SKS_MAGIC);
1193 	ASSERT(sks->sks_cache == skc);
1194 	list_add(&sko->sko_list, &sks->sks_free_list);
1195 
1196 	sks->sks_age = jiffies;
1197 	sks->sks_ref--;
1198 	skc->skc_obj_alloc--;
1199 
1200 	/*
1201 	 * Move slab to skc_partial_list when no longer full.  Slabs
1202 	 * are added to the head to keep the partial list is quasi-full
1203 	 * sorted order.  Fuller at the head, emptier at the tail.
1204 	 */
1205 	if (sks->sks_ref == (sks->sks_objs - 1)) {
1206 		list_del(&sks->sks_list);
1207 		list_add(&sks->sks_list, &skc->skc_partial_list);
1208 	}
1209 
1210 	/*
1211 	 * Move empty slabs to the end of the partial list so
1212 	 * they can be easily found and freed during reclamation.
1213 	 */
1214 	if (sks->sks_ref == 0) {
1215 		list_del(&sks->sks_list);
1216 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1217 		skc->skc_slab_alloc--;
1218 	}
1219 }
1220 
1221 /*
1222  * Allocate an object from the per-cpu magazine, or if the magazine
1223  * is empty directly allocate from a slab and repopulate the magazine.
1224  */
1225 void *
1226 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1227 {
1228 	spl_kmem_magazine_t *skm;
1229 	void *obj = NULL;
1230 
1231 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1232 	ASSERT(skc->skc_magic == SKC_MAGIC);
1233 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1234 
1235 	/*
1236 	 * Allocate directly from a Linux slab.  All optimizations are left
1237 	 * to the underlying cache we only need to guarantee that KM_SLEEP
1238 	 * callers will never fail.
1239 	 */
1240 	if (skc->skc_flags & KMC_SLAB) {
1241 		struct kmem_cache *slc = skc->skc_linux_cache;
1242 		do {
1243 			obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1244 		} while ((obj == NULL) && !(flags & KM_NOSLEEP));
1245 
1246 		if (obj != NULL) {
1247 			/*
1248 			 * Even though we leave everything up to the
1249 			 * underlying cache we still keep track of
1250 			 * how many objects we've allocated in it for
1251 			 * better debuggability.
1252 			 */
1253 			percpu_counter_inc(&skc->skc_linux_alloc);
1254 		}
1255 		goto ret;
1256 	}
1257 
1258 	local_irq_disable();
1259 
1260 restart:
1261 	/*
1262 	 * Safe to update per-cpu structure without lock, but
1263 	 * in the restart case we must be careful to reacquire
1264 	 * the local magazine since this may have changed
1265 	 * when we need to grow the cache.
1266 	 */
1267 	skm = skc->skc_mag[smp_processor_id()];
1268 	ASSERT(skm->skm_magic == SKM_MAGIC);
1269 
1270 	if (likely(skm->skm_avail)) {
1271 		/* Object available in CPU cache, use it */
1272 		obj = skm->skm_objs[--skm->skm_avail];
1273 	} else {
1274 		obj = spl_cache_refill(skc, skm, flags);
1275 		if ((obj == NULL) && !(flags & KM_NOSLEEP))
1276 			goto restart;
1277 
1278 		local_irq_enable();
1279 		goto ret;
1280 	}
1281 
1282 	local_irq_enable();
1283 	ASSERT(obj);
1284 	ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1285 
1286 ret:
1287 	/* Pre-emptively migrate object to CPU L1 cache */
1288 	if (obj) {
1289 		if (obj && skc->skc_ctor)
1290 			skc->skc_ctor(obj, skc->skc_private, flags);
1291 		else
1292 			prefetchw(obj);
1293 	}
1294 
1295 	return (obj);
1296 }
1297 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1298 
1299 /*
1300  * Free an object back to the local per-cpu magazine, there is no
1301  * guarantee that this is the same magazine the object was originally
1302  * allocated from.  We may need to flush entire from the magazine
1303  * back to the slabs to make space.
1304  */
1305 void
1306 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1307 {
1308 	spl_kmem_magazine_t *skm;
1309 	unsigned long flags;
1310 	int do_reclaim = 0;
1311 	int do_emergency = 0;
1312 
1313 	ASSERT(skc->skc_magic == SKC_MAGIC);
1314 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1315 
1316 	/*
1317 	 * Run the destructor
1318 	 */
1319 	if (skc->skc_dtor)
1320 		skc->skc_dtor(obj, skc->skc_private);
1321 
1322 	/*
1323 	 * Free the object from the Linux underlying Linux slab.
1324 	 */
1325 	if (skc->skc_flags & KMC_SLAB) {
1326 		kmem_cache_free(skc->skc_linux_cache, obj);
1327 		percpu_counter_dec(&skc->skc_linux_alloc);
1328 		return;
1329 	}
1330 
1331 	/*
1332 	 * While a cache has outstanding emergency objects all freed objects
1333 	 * must be checked.  However, since emergency objects will never use
1334 	 * a virtual address these objects can be safely excluded as an
1335 	 * optimization.
1336 	 */
1337 	if (!is_vmalloc_addr(obj)) {
1338 		spin_lock(&skc->skc_lock);
1339 		do_emergency = (skc->skc_obj_emergency > 0);
1340 		spin_unlock(&skc->skc_lock);
1341 
1342 		if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1343 			return;
1344 	}
1345 
1346 	local_irq_save(flags);
1347 
1348 	/*
1349 	 * Safe to update per-cpu structure without lock, but
1350 	 * no remote memory allocation tracking is being performed
1351 	 * it is entirely possible to allocate an object from one
1352 	 * CPU cache and return it to another.
1353 	 */
1354 	skm = skc->skc_mag[smp_processor_id()];
1355 	ASSERT(skm->skm_magic == SKM_MAGIC);
1356 
1357 	/*
1358 	 * Per-CPU cache full, flush it to make space for this object,
1359 	 * this may result in an empty slab which can be reclaimed once
1360 	 * interrupts are re-enabled.
1361 	 */
1362 	if (unlikely(skm->skm_avail >= skm->skm_size)) {
1363 		spl_cache_flush(skc, skm, skm->skm_refill);
1364 		do_reclaim = 1;
1365 	}
1366 
1367 	/* Available space in cache, use it */
1368 	skm->skm_objs[skm->skm_avail++] = obj;
1369 
1370 	local_irq_restore(flags);
1371 
1372 	if (do_reclaim)
1373 		spl_slab_reclaim(skc);
1374 }
1375 EXPORT_SYMBOL(spl_kmem_cache_free);
1376 
1377 /*
1378  * Depending on how many and which objects are released it may simply
1379  * repopulate the local magazine which will then need to age-out.  Objects
1380  * which cannot fit in the magazine will be released back to their slabs
1381  * which will also need to age out before being released.  This is all just
1382  * best effort and we do not want to thrash creating and destroying slabs.
1383  */
1384 void
1385 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1386 {
1387 	ASSERT(skc->skc_magic == SKC_MAGIC);
1388 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1389 
1390 	if (skc->skc_flags & KMC_SLAB)
1391 		return;
1392 
1393 	atomic_inc(&skc->skc_ref);
1394 
1395 	/*
1396 	 * Prevent concurrent cache reaping when contended.
1397 	 */
1398 	if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1399 		goto out;
1400 
1401 	/* Reclaim from the magazine and free all now empty slabs. */
1402 	unsigned long irq_flags;
1403 	local_irq_save(irq_flags);
1404 	spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1405 	spl_cache_flush(skc, skm, skm->skm_avail);
1406 	local_irq_restore(irq_flags);
1407 
1408 	spl_slab_reclaim(skc);
1409 	clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1410 	smp_mb__after_atomic();
1411 	wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1412 out:
1413 	atomic_dec(&skc->skc_ref);
1414 }
1415 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1416 
1417 /*
1418  * This is stubbed out for code consistency with other platforms.  There
1419  * is existing logic to prevent concurrent reaping so while this is ugly
1420  * it should do no harm.
1421  */
1422 int
1423 spl_kmem_cache_reap_active(void)
1424 {
1425 	return (0);
1426 }
1427 EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1428 
1429 /*
1430  * Reap all free slabs from all registered caches.
1431  */
1432 void
1433 spl_kmem_reap(void)
1434 {
1435 	spl_kmem_cache_t *skc = NULL;
1436 
1437 	down_read(&spl_kmem_cache_sem);
1438 	list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1439 		spl_kmem_cache_reap_now(skc);
1440 	}
1441 	up_read(&spl_kmem_cache_sem);
1442 }
1443 EXPORT_SYMBOL(spl_kmem_reap);
1444 
1445 int
1446 spl_kmem_cache_init(void)
1447 {
1448 	init_rwsem(&spl_kmem_cache_sem);
1449 	INIT_LIST_HEAD(&spl_kmem_cache_list);
1450 	spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1451 	    spl_kmem_cache_kmem_threads, maxclsyspri,
1452 	    spl_kmem_cache_kmem_threads * 8, INT_MAX,
1453 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1454 
1455 	if (spl_kmem_cache_taskq == NULL)
1456 		return (-ENOMEM);
1457 
1458 	return (0);
1459 }
1460 
1461 void
1462 spl_kmem_cache_fini(void)
1463 {
1464 	taskq_destroy(spl_kmem_cache_taskq);
1465 }
1466